Tru64 UNIX

Writing Software for the International Market

Part Number: AA-RHOYC-TE

September 2002

Product Version: Tru64 UNIX Version 5.1B or higher

This manual discusses how to create international software and describes
the tools provided on the Tru64 UNIX operating system that help you
write international programs.

Hewlett-Packard Company
Palo Alto, California



© 2002 Hewlett-Packard Company

Microsoft®, Windows®, Windows NT,®and MS-DOS® are trademarks of Microsoft Corporation in the U.S.
and/or other countries. Motif®, OSF/1®, UNIX®, X/Open®, and The Open Group™ are trademarks of The
Open Group in the U.S. and/or other countries. All other product names mentioned herein may be the
trademarks of their respective companies.

Confidential computer software. Valid license from Compaq Computer Corporation, a wholly owned
subsidiary of Hewlett-Packard Company, required for possession, use, or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial
license.

None of Compaq, HP, or any of their subsidiaries shall be liable for technical or editorial errors or omissions
contained herein. The information is provided “as is” without warranty of any kind and is subject to
change without notice. The warranties for HP or Compaq products are set forth in the express limited
warranty statements accompanying such products. Nothing herein should be construed as constituting

an additional warranty.



Contents

About This Manual

1 Overview of International Software Development

11 Language Announcement ..............cooviiiiiiiiiiiiiiiiiiinne.. 1-1
11.1 Localization ..........ccooiiiiiiiiiiiiiiiii e 1-2
1.2 Language .. ...t s 1-2
1.2.1 Character Classification ..............ccoooiiiiiiiiiiiii.. 1-3
1.2.2 Case CONVErSION .......ovvuiiviitieiiitteniieaaieeaaieeannnen 1-3
1.2.3 Message Catalogs .........c.ovviiiiiiiiiiiiiiiiiiiii i, 1-3
1.3 Cultural Data ........cooiiiiiiiii i e 1-3
131 Language Information ..o, 14
1.4 Character Sets .......c.oviiiiiiiii i 1-4
14.1 Collating Sequence ..........coovviiiieeiiieeiiiiieeeaeeaiinnnn. 1-4
1.4.2 Characters and Strings ............cccoviiiiiiiiiiiiiniiiin... 1-5
1.4.3 Portable Character Set .............cooiiiiiiiiiiiiiii i, 1-6
1.4.4 Universal Character Set ...........ccoooiiiiiiiiiiiiiiinn. 1-7
2 Developing Internationalized Software

2.1 Using Locales .....oooviiiii i 2-2
2.2 Using Codesets ......oovuniiiiiiiiiiiiiiii i e 2-3
2.2.1 Ensuring Data Transparency ..................ccoovvvvveen.... 2-8
222 Using In-Code Literals ............ccciiiiiiiiiiiinniiin... 2-9
223 Manipulating Characters That Span Multiple Bytes ....... 2-11
224 Converting Between Multibyte-Character and

Wide-Character Data ............coovviiiiiiiiiiiiiiiiiinneen, 2-11
225 Rules for Multibyte Characters in Source and Execution

C0dESEES . oiiitiii i 2-12
2.2.6 Classifying Characters ............ccceviiiiiiiiiiieiineaninnn... 2-13
2.2.7 Converting Characters ............cccoviiiiiiiiiiieiinnaiinnn... 2-14
2.2.8 Comparing Strings ..........ooeiiiiiieeiiiiiiiiiieeeeeeaiinnnn. 2-15
2.3 Handling Cultural Data .............ccoceiiiiiiiiiiiiiniiiin.. 2-16
231 The langinfo Database ...............cccoiiiiiiiiiiiiniiin... 2-17
2.3.2 Querying the langinfo Database ............................... 2-17
2.33 Generating and Interpreting Date and Time Strings That

Observe Local Customs ...........cooviiiiiiiiiiiiiiiiian.. 2-18

Contents i



234
235
2.3.6
2.4

24.1
242
243
2.5

251
252

Formatting Monetary Values ...................ociiiiiin...
Formatting Numeric Values in Program-Specific Ways ....
Using the langinfo Database for Other Tasks ...............
Handling Text Presentation and Input ............................
Creating and Using Messages ..........ccoovvviiiieeeneannnnnn..
Formatting Output Text .............ccooiiiiiiiiiiiiiiiin...
Scanning Input Text ..........cooiiiiiiiiiiiiiiiii i,
Binding a Locale to the Run-Time Environment .................
Binding to the Locale Set for the System or User ...........
Changing Locales During Program Execution ..............

3 Creating and Using Message Catalogs

3.1
3.1.1
3.1.2
3.1.3
3.14
3.15
3.1.6
3.2
3.3
3.4
34.1
3.4.2
3.4.3

3.5
3.6
3.6.1
3.6.2
3.6.3

Creating Message Text Source Files ...................coooeii..
General Rules ...
MeSSaZEe SetS .ovviiiiiiie i
Message Entries .........coooviiiiiiiiiiiiiiii i
QuOote Directive .........oviiiiiiiiiiii i
Comment LiNes .......cooveiiiiiiiiiiiiiiiiiiiiiiii e
Style Guidelines for Messages ...........ccovvvieiineennnnnn..

Extracting Message Text from Existing Programs ..............

Editing and Translating Message Source Files ..................

Generating Message Catalogs ...........c.coooviiiiiiiiiiinnnn...
Using the mkcatdefs Command ................................
Using the gencat Command ...................ooeeeiiiinn...
Design and Maintenance Considerations for Message
Catalogs ..oiiiiiii

Displaying Messages and Locale Data ............................

Accessing Message Catalogs in Programs ........................
Opening Message Catalogs ...........ccoovviiiiiiiiiniiinn...
Closing Message Catalogs ...........cccovviiiiiiiiiineninn...
Reading Program Messages .............ccooviiiiiineiinn...

4 Handling Wide-Character Data with curses Library Routines

4.1
41.1
4.1.2

4.2
42.1

iv Contents

Writing a Wide Character to a curses Window ...................
Add Wide Character (Overwrite) and Advance Cursor .....
Insert Wide Character (No Overwrite) and Do Not
Advance CUurSOT ..........ooviiiiiiiiiiiiiiiiaas

Writing a Wide-Character String to a curses Window ..........
Add Wide-Character String (Overwrite) and Do Not
Advance CUurSOr ..........ooviiiiiiiiiiiiii i

WNOOO WO

N

NNNNNNDNNDNNDDNDDN

|
NNNNNNNDDN PP

[
AN

11 [
AP OOO0WOO®

WWWwWwwwww

|
NP RRRERR R

4-3
4-4

4-4



4.2.2
4.2.3

4.3
4.4
4.5
45.1
45.2
4.6
4.7
4.8
4.9

Add Wide-Character String (Overwrite) and Advance
LT P
Insert Wide-Character String (no Overwrite) and Do Not
Advance CUursor .........covviiiiiiiiiiiiii i aaaaens

Removing a Wide Character from a curses Window .............
Reading a Wide Character from a curses Window ...............
Reading a Wide-Character String from a curses Window ......

Reading Wide-Character Strings with Attributes ..........
Reading Wide-Character Strings Without Attributes ......

Reading a String of Characters from a Terminal ................
Reading or Queuing a Wide Character from the Keyboard ....
Converting Formatted Text in a curses Window .................
Printing Formatted Text on a curses Window ....................

5 Creating Internationalized X, Xt, and Motif Applications

51

51.1
51.2
5.1.3

514

5.2

521
52.2

5.2.3
5.3
53.1
53.2
53.21
5.3.2.2
5.3.2.3
53.24
5.3.25
5.3.3
534
5.3.5
5351

Using Internationalization Features in the Xt Intrinsics
1 03 ¢ 2

Establishing a Locale with Xt Functions .....................
Using Font Set Resources with Xt Functions ................
Filtering Events During Text Input with Xt Library
Functions ........cooiiiiiiiiiiiii
Including the Codeset Component of Locales with Xt
Library Functions ..o

Using Internationalization Features of the OSF/Motif and
DECwindows Motif Toolkits ...........ccovviiiiiiiiiiiiiiininn...

Setting Language in a Motif Application .....................
Using Compound Strings and the XmText and

XmTextField Widgets .........ccooviiiiiiiii i
Internationalization Features of Widget Classes ...........

Using Internationalization Features in the X Library ..........

Managing Locales .............ooiiiiiiiiiiiiiiiiiiii i
Displaying Text for Different Locales .........................
Creating and Manipulating Font Sets ...................
Obtaining Metrics for Font Sets ..........................
Drawing Text with Font Sets .....................ooiil
Handling Text with the X Output Method ...............
Converting Between Different Font Set Encodings ....
Handling Interclient Communication .........................
Handling Localized Resource Databases .....................
Handling Text Input with the X Input Method ..............
Opening and Closing an Input Method ..................

4-6
4-8
4-8
4-9
4-9

4-10

4-11

4-12

4-13

4-14

LELeeey

|
NP RRRERRRRRE
QCOWO~NOODUIWNRER O ®-N N O

o101 01010101 OO OOl

Contents v



5.3.5.2 Querying Input Method Values ........................... 5-22

5.3.5.3 Creating and Using Contexts for an Input Method .... 5-24
5.354 Providing Preediting Callbacks for the On-the-Spot

Input Style ... 5-27
5.3.5.5 Filtering Events for an Input Method .................... 5-30
5.3.5.6 Obtaining Composed Strings from the Keyboard ...... 5-31
5.3.5.7 Handling Failure of the Input Method Server .......... 5-32
5.3.6 Using Xt and X Library Features: A Summary ............. 5-34

6 Creating Locales

6.1 Creating a Character Map Source File for a Locale ............. 6-1
6.2 Creating Locale Definition Source Files ........................... 6-6
6.2.1 Defining the LC_CTYPE Locale Category ................... 6-8
6.2.2 Defining the LC_COLLATE Locale Category ................ 6-13
6.2.3 Defining the LC_MESSAGES Locale Category ............. 6-17
6.2.4 Defining the LC_MONETARY Locale Category ............. 6-19
6.2.5 Defining the LC_NUMERIC Locale Category ............... 6-22
6.2.6 Defining the LC_TIME Locale Category ..................... 6-22
6.3 Building Libraries to Convert Multibyte and Wide-Character
Encodings ........ooiiiiiiiiii 6-25

6.3.1 Required Methods .........c.coviiiiiiiiiiii i 6-26
6.3.1.1 Writing the __mbstopes Method for the fgetws

Function ... 6-27
6.3.1.2 Writing the __mbtopc Method for the getwe()

Function ... 6-29
6.3.1.3 Writing the __pcstombs Method for the fputws()

Function ... 6-33
6.3.1.4 Writing a __pctomb Method ........................... 6-35
6.3.1.5 Writing a Method for the mblen() Function ............. 6-36
6.3.1.6 Writing a Method for the mbstowes() Function ........ 6-39
6.3.1.7 Writing a Method for the mbtowc() Function ........... 6-41
6.3.1.8 Writing a Method for the westombs() Function ........ 6-45
6.3.1.9 Writing a Method for the wetomb() Function ........... 6-48
6.3.1.10 Writing a Method for the weswidth() Function ......... 6-50
6.3.1.11 Writing a Method for the wewidth() Function .......... 6-52
6.3.2 Optional Methods ........c.cooiiiiiiiiiii 6-54
6.3.3 Building a Shareable Library to Use with a Locale ......... 6-55
6.3.4 Creating a methods File for a Locale .......................... 6-56
6.4 Building and Testing the Locale ..................coooiiiiiiiae.. 6-57

vi Contents



7 Programming Considerations for International Applications

7.1 Choosing an Input Method ..............ccooiiiiiiiiiiiiiiii. .. 7-2
7.2 Managing User-Defined Characters and Phrase Input ......... 7-3
7.3 Assigning a Sort Order with a Locale Specification ............. 7-5
7.4 Processing Non-English Language Reference Pages ............ 7-6
7.4.1 The nroff Command ...........c.ccoiiiiiiiiiiiiiiiiii e 7-6
7.4.2 The tbl Command ...........cooiiiiiiiiii e 7-8
7.4.3 The man Command ...........ooiuiiiiiiiiiiiieeiiiie e, 7-8
7.5 Converting Data Files from One Codeset to Another ........... 7-9
7.6 Using Font Renderers in Chinese and Korean PostScript

103 o) Yt R 7-11
7.6.1 Using Font Renderers for Multibyte PostScript Fonts ..... 7-11
7.6.1.1 Setting Up the Font Renderer for Double-Byte

PostScript Fonts ........ccooiiiiiiiiiiii i 7-11
7.6.1.2 Setting Up the Font Renderer for UDC Fonts .......... 7-12
7.6.1.3 Using the Font Renderer for TrueType Fonts ........... 7-13
A Summary Tables of Worldwide Portability Interfaces

Al Locale Announcement ............ccovviiiiiiiiiiiiiiiiiiiiiaaen. A-1
A2 Character Classification .............ccooiiiiiiiiiiiiiiiiiiiin.. A-1
A.3 Case and Generic Property Conversion ........................... A-3
A4 Character Collation ............oooviiiiiiiiiii e A-4
A5 Access to Data That Varies According to Language and

CUSEOIN ..ttt e A-5
A.6 Conversion and Format of Date/Time Values ..................... A-5
A7 Printing and Scanning Text ............ccoviiiiiiiiiiiieiniiiinn... A-5
A.8 Number COonversion ............eoceeeeieeeeeriiieeneeeemneeeennnnen. A-7
A.9 Conversion of Multibyte and Wide-Character Values ........... A-7
A0 Inputand Output ........cooiiiiiiiiiiiiii e A-8
A1l String Handling ..........cooiiiiiiiiiiiiiii e A-9
A12  Codeset CONVErSION .......cveeuuteeneeeiieeeieeeiieeaiiaaenns A-11

B Setting Up and Using User-Defined Character Databases

B.1 Creating User-Defined Characters ....................ocoevee..n. B-3
B.1.1 Working on the cedit User Interface Screen ................. B-5
B.1.2 Editing Font Glyphs .........oooiiiiii B-8
B.2 Creating UDC Support Files That System Software Uses ..... B-18
B.3 Processing UDC Fonts for Use with X11 or Motif Applications B-20
B.3.1 Using fontconverter Command Options ...................... B-21

Contents vii



B.3.2

Controlling Output File Format ...............................

C Using DECterm Localization Features in Programs

Ci

Cl1
Cl1z2
C13
Cl4

C.15
Cc.2

c21
C22

Drawing Ruled Lines in a DECterm Window ....................

Drawing Ruled Lines in a Pattern ............................
Erasing Ruled Lines in a Pattern .............................
Erasing All Ruled Linesin an Area ...................cee..
Interaction of Ruled Lines and Other DECterm Escape

SEQUEINCES ..ttt et et e
Determining DECterm Support for Ruled Lines ............

DECterm Programming Restrictions ....................coooeel.

Downline Loadable Characters .............ccooviviiiieeiie...
DRCS Characters ......ooovviiiiiiiiii it iiiiiaeeeenns

D Sample Locale Source Files

D.1
D.2

Glossary
Index

Examples
3-1

5-10

viii Contents

Character Map (charmap) Source File ............................
Locale Definition Source File ..............coooiiiiiiiiiiiiiin...

Message Text Source File ..........coooiiiiiiiiiiiiiiiiiii..
Generating a Message Catalog Interactively .....................
Setting Locale in an X Window Application ......................
Creating and Using Font Sets in an X Window Application ...
Drawing Text in an X Window Application .......................

Communicating with Other Clients in an X Window

Application .........oiiiiiiiiii

Opening and Closing an Input Method in an X Window

ApPPlIcation ........oiiiiiiii
Obtaining User Interaction Styles for an Input Method ........

Creating and Destroying an Input Method Context in an X

Window Application ............cooiiiiiiiiiiiiiiiiiiiiiiiiii .
Using Preediting Callbacks in an X Window Application ......

Filtering Events for an Input Method in an X Window

ApPPlication ........ooiiiiiii e
Obtaining Keyboard Input in an X Window Application .......

3-2
3-18
5-9
5-11
5-14

5-18



Il o0 1
WN PP
H

| |
N

[
= ©O© 00 ~NO O

CIDG)G)G)G)CIDO)O)O)O)U'I
o

6-11

6-12

6-13

6-14

6-15

6-16

6-17

6-18

6-19

Handling Failure of the Input Method Server ..................
The charmap File for a Sample Locale ...........................
Fragment from a charmap File for a Multibyte Codeset .......
Structure of Locale Source Definition File .......................
LC_CTYPE Category Definition ...........cccovvviiiiiiiinnn...
LC_COLLATE Category Definition .............ccocvviiiiiin...
LC_MESSAGES Category Definition .............................
LC_MONETARY Category Definition ............................
LC_NUMERIC Category Definition ....................c..coeeeee.
LC_TIME Category Definition .............ccovviiiiiiiiiinnnn...

The __mbstopcs_sdeckanji Method for the ja_JP.sdeckanji

Locale oo

The __mbtopc_sdeckanji Method for the ja_JP.sdeckanji

Liocale oo

The __pcstombs_sdeckanji Method for the ja_JP.sdeckanji

Liocale oo

The __pctomb_sdeckanji Method for the ja_JP.sdeckanji

Liocale oo

The __mblen_sdeckanji Method for the ja_JP.sdeckanji

Li0Cale o

The __mbstowcs_sdeckanji Method for the ja_JP.sdeckanji

Li0cale o

The __mbtowc_sdeckanji Method for the ja_JP.sdeckanji

Locale oo

The __wcstombs_sdeckanji Method for the ja_JP.sdeckanji

Li0cale i

The __wctomb_sdeckanji Method for the ja_JP.sdeckanji

Li0Cale o

The __wcswidth_sdeckanji Method for the ja_JP.sdeckanji

Li0Cale o

The __wcwidth_sdeckanji Method for the ja_JP.sdeckanji

Locale ..o
Building a Library of Methods Used with the ja_JP.sdeckanji
Locale ..o
The methods File for the ja_JP.sdeckanji Locale ................
Building the fr FR.ISO8859-1@example Locale ................
Setting the LOCPATH Variable and Testing a Locale ..........
Default cp_dirs File .......cooiiiiiiii e

Converting an Existing Program to Use a Message Catalog ...

. 5-33

. 6-4
. 6-7

. 6-13
. 6-17
. 6-19
. 6-22
. 6-23
. 6-27
. 6-30
. 6-34
. 6-36
. 6-36
. 6-39
. 6-41
. 6-45
. 6-48
. 6-50
. 6-53
. 6-55
. 6-56
. 6-57

. 6-58
. 7-4

3-16

Contents ix



I oo
abwnNPEk

(POUJUIJUJUJUJ
N -

x Contents

Components That Support User-Defined Characters ........... B-3

The cedit User Interface Screen ...............ccooviiiiiiiinn... B-5
The cedit Font Editing Screen ................coooiiiiiiiiiin... B-9
Interpretation of Font Editing Screen for Sizing a Font ........ B-11
Keymap for cedit Functions ................coooiiiiiiiiiiiiin... B-13
Drawing Ruled Lines with the DECDRLBR Sequence ......... C-2
Bit Pattern for DECDRLBR Parameters .......................... C-3
Coding of Special Characters in Message Text Source Files ... 3-5
curses Routines to Add Wide Characters and Advance the

LT3 P 4-2
curses Routines to Insert Wide Characters and Not Advance

the CUrSOr ..ot 4-3
curses Routines to Add Wide-Character Strings and Not

Advance the Cursor ..........c.oviiiiiiiiiii e 4-4
curses Routines to Add Wide-Character Strings and Advance

the CUrSOor ..o e 4-6
curses Routines to Insert Wide-Character Strings and Not

Advance the Cursor ..........coooiiiiiiiiiiiiiiii 4-7
curses Routines to Remove a Wide Character .................... 4-8
curses Routines to Read Wide Characters From a Window .... 4-9
curses Routines to Read Wide-Character Strings With

Atributes ...ooii 4-9
curses Routines to Read Wide-Character Strings Without

Atributes ...oovi 4-11
curses Routines to Read Wide-Character Strings From a

Terminal ........oooiiiiiiiii e 4-12
curses Routines for Reading Wide Characters From the

Keyboard .........ccooiiiiiii 4-13
curses Routines to Convert Formatted Text in a Window ...... 4-14
curses Routines to Print Formatted Text on a Window ......... 4-15
Locale Announcement Functions in the X Library .............. 5-8
X Library Functions That Create and Manipulate Font Sets .. 5-11
X Library Functions That Measure Text .......................... 5-13
X Library Functions That Draw Text ............................e. 5-13
X Library Functions for Output Method and Context ........... 5-16
X Library Functions for Interclient Communication ............ 5-17
X Library Functions That Handle Localized Resource

Databases ....co.uiiiiii e 5-19
X Library Functions That Manage Input Context (XIC) ........ 5-26
Supported Codeset Conversions for English ...................... 7-11



~
N

[vs}

[ A O P |
=

O©CoO~NOOULA~,WN

OUIJUJUJUJUJUJUJUJUJ
o

N

XLFD Registry Names for UDC Characters ...................... 7-13
The stty Options for On-Demand Loading of UDC Support

Fales o B-1
The cedit Command Options ...........cceviiiiiiiiiieieeneeinnnn... B-4
Keys for Miscellaneous Font Editing Functions ................. B-14
Keys for cedit Mode Switching ..., B-14
Keys for Fine Control of Cursor Movement ....................... B-14
Keys for Moving Cursor to Window Areas ........................ B-15
Keys for Drawing Font Glyphs ..o, B-15
Keys for Editing Font Glyphs .............cooiiiiiiiiiiiiiiin... B-16
The cgen Command Options ...........ccevviiiiiiiiieeeeeeannnnnn.. B-19
Options and Arguments of the fontconverter Command ....... B-22
Behavior of Standard Escape Sequences with Ruled Lines .... C-5

Contents xi






About This Manual

HP Tru64 UNIX internationalization tools and routines allow you to write
programs for use in a number of nations. These tools and routines enable
you to write programs with the following features:

e An interface that appears to be designed for a nation’s users

e Source code that is independent of specific native languages and customs

Audience

This manual is intended for experienced applications developers who

are writing programs for multinational or non-English language use.
Translators who translate the messages displayed by international programs
will also find this manual useful.

New and Changed Features

This manual was written for Tru64 UNIX Version 5.1B. The manual has
been restructured. The Tru64 UNIX Writing Software for the International
Market manual now contains information specific to programming
international applications. Material on using the international features of
Tru64 UNIX has been moved to a companion manual, Using International
Software. This manual also includes changes related to the following:

¢ Chapter 2 has been updated with information on Unicode and dense
code locales, *. UTF- 8 locales, and enhanced support for the euro
currency sign that includes ISO 8859-15 (Latin-9) and UTF-8 locales
and additional bitmap fonts.

e Information and guidelines for writing translatable message files has
been added to Chapter 3.

Organization
This manual is organized as follows:

Chapter 1 Introduces the basic concepts and procedures for writing
programs that meet the needs of international users.

Chapter 2 Discusses techniques for handling character sets, cultural
data, and language in an internationalized application.

About This Manual xiii



Chapter 3 Explains how to extract and translate text for messages and
how to generate and access message catalogs.

Chapter 4 Describes the cur ses Library routines for writing, removing,
and reading wide-character data.

Chapter 5 Discusses how to use GUI programming libraries (X,
OSF/Motif, and DECwindows Extensions to OSF/Motif) when
writing internationalized programs.

Chapter 6 Discusses the source files for a locale, how to write library
methods, and how to build and test locales.

Chapter 7 Discusses miscellaneous programming topics that apply to the
creation of international applications. Topics include input
methods, user-defined characters, sorting, creating reference
pages, data file codeset conversion, and font renderers.

Appendix A Lists and summarizes internationalized functions for locale
initialization, character classification, case conversion,
character collation, date and time interpretation, text
strings, number conversion, multibyte characters, and string
manipulation.

Appendix B Describes support for user-defined characters (UDCs) in
Chinese, Japanese, and Korean, including information on
cedi t and UDC fonts.

Appendix C Describes DECterm programming features and restrictions.

Appendix D Contains complete source files for the sample locale discussed
in Chapter 6.

Glossary Defines terms and acronyms used in this manual.

Related Documentation and Standards

This manual focuses on internationalization from the perspective of the
application programmer. A companion manual, Using International
Software, focuses on the user of international applications. That manual
is part of the operating system documentation set. It describes setup
requirements for using applications in different language environments
and how to use operating system commands in a multilanguage working
environment.

The following manuals in the operating system documentation set provide
information about using the C compiler and other program development
tools on a Tru64 UNIX system. If you are developing internationalized
applications, see these manuals for general programming information.

e  Programmer’s Guide

e Programming Support Tools

xiv  About This Manual



The Tru64 UNIX Documentation Overview manual provides information on
all of the documentation provided with the operating system.

The Tru64 UNIX documentation is available on the World Wide Web at the
following URL:

http://ww. tru64uni x. conpaqg. conf docs/

The following manual, published by O’Reilly and Associates, Inc., is also a
good reference:

Programmer’s Supplement for Release 6 of the X Window System

The following standards or draft standards apply to software components
discussed in this manual. This manual refers to some of these standards.

e ANS X3.159 Programming Language C
e [SO/IEC 646: 1983

Information processing — ISO 7-bit coded character set for information
interchange.

e ISO 6937: 1983
Information processing — Coded character sets for text communication.
e ISO 8859-1: 1987

Information processing —— ISO 8-bit single-byte coded graphic character
sets — Latin alphabet No. 1.

e [SO/IEC 9899: 1990
Information technology —— programming languages — C.
e [SO/IEC 9945-1: 1990

Information technology — Portable operating system interface (POSIX) -
Part 1: System application programming interface (API) [C Language].

e [SO/IEC 9945-2: 1993

Information technology —— Portable operating system interface (POSIX)
- Part 2: Shells and Utilities.

e [SO/IEC 10646:2001

Information Technology — Universal Multiple-Octet Coded Character
Set (UCS) 2001. The Basic Multilingual Plane defined by this standard
is identical with the main body of Unicode character encoding.

e Code for Information Interchange, JIS X0201-1976; Japanese national
standard.

e Code of the Japanese Graphic Character Set for Information Interchange,
JIS X0208-1990; Japanese national standard.

About This Manual xv



Code of the Supplementary Japanese Graphic Character Set, JIS
X0212-1990; Japanese national standard.

Chinese Character Input Standard, GB18030-2000; National Standards
Bureau of China, Beijing, 2001.

Codes of Chinese Graphic Characters for Information Interchange,
Primary Set (GB2312-80); National Standards Bureau of China, Beijing,
1980.

Standard Codes of Common Chinese Characters for Information
Interchange, CNS 11643; Taiwan, 1986, 1992.

Standard Codes of Korean Characters for Information Interchange, KSC
5601; Korea, 1987.

Thai Industrial Standard, TIS 620-2533; Standard for a primary set of
graphic characters used for Thai information interchange.

The Open Group UNIX CAE specifications, specifically:

—  Commands and Utilities, XCU Issue 5

— Systems Interfaces and Headers, XSH Issue 5

—  System Interface Definitions, Issue 5

— Networking Services, Issue 5

— X/Open Curses, XCURSES, Issue 4 Version 2

The Unicode Standard, Version 3.0 and Version 3.1

XIIR6 Specification (including X Input and Output Methods)

Programming for the World: A Guide to Internationalization (O’Donnell,
Sandra Martin, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1994)
provides information about cultural and linguistic requirements around
the world and the changes needed in computer systems to handle those
requirements.

Articles in Digital Technical Journal, Volume 5 Number 3 (published
Summer 1993) cover topics related to product internationalization.

Reader's Comments

HP welcomes any comments and suggestions you have on this and other
Tru64 UNIX manuals.

You can send your comments in the following ways:

Fax: 603-884-0120 Attn: UBPG Publications, ZK03-3/Y32

Internet electronic mail: r eaders_comrent @k3. dec. com

xvi About This Manual



A Reader’s Comment form is located on your system in the following

location:

/usr/doc/ readers_coment .t xt

Please include the following information along with your comments:

e The full title of the manual and the order number. (The order number
appears on the title page of printed and PDF versions of a manual.)

¢ The section numbers and page numbers of the information on which
you are commenting.

e The version of Tru64 UNIX that you are using.
e Ifknown, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate HP technical support office. Information
provided with the software media explains how to send problem reports to

HP.

Conventions

The following conventions are used in this manual:

%

$

% cat

file

A percent sign represents the C shell system prompt.

A dollar sign represents the system prompt for the
Bourne and Korn shells.

A number sign represents the superuser prompt.

Boldface type in interactive examples indicates
typed user input.

Italic (slanted) type indicates variable values,
placeholders, and function argument names.

In syntax definitions, brackets indicate items that
are optional. Vertical bars separating items inside
brackets indicate that you choose one item from
among those listed.

In syntax definitions, braces indicate items that
are required. Vertical bars separating items inside

About This Manual xvii



cat (1)

Ctrl/x

Alt x

xviii  About This Manual

braces indicate that you choose one item from among
those listed.

In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

A vertical ellipsis indicates that a portion of an
example that would normally be present is not
included.

A cross-reference to a reference page includes
the appropriate section number in parentheses.
For example, cat (1) indicates that you can find
information on the cat command in Section 1 of
the reference pages.

This symbol indicates that you hold down the first
named key while pressing the key or mouse button
that follows the slash, for example, Ctrl/c.

Multiple key or mouse button names separated by
spaces indicate that you press and release each in
sequence, for example, Alt Space.



1

Overview of International Software
Development

Internationalization refers to the process of developing software

programs without prior knowledge of the language, cultural data, or
character-encoding schemes that the programs are expected to handle. In
system terms, internationalization refers to the provision of interfaces that
let programs produce varying output, depending on the specific environment
in which they are run. The mnemonic I18N is frequently used as an
abbreviation for internationalization.

This manual describes operating system interfaces and utilities that help
you develop internationalized programs. These interfaces and utilities
conform to specifications in the X/Open UNIX standard, which allows for
implementation-defined behavior in certain areas. This manual identifies
those software characteristics that are specific to the operating system.

The following sections provide an overview of the operating system interfaces
and utilities used for international program development:

e Language. Section 1.1 is a general description of language requirement
implementation. Section 1.2 defines language in software application
terms.

e (Cultural Data. Section 1.3 defines cultural data and Section 1.1.1 defines
the implementation of cultural or local requirements in a computer
system.

¢ Character Sets. Section 1.4 defines character sets in terms of
internationalization.

1.1 Language Announcement

Language announcement is the mechanism by which language, cultural
data, and codeset requirements are set either for the system as a whole, by
an application, or by individual users. Language announcement is performed
by setting a locale name in a set of reserved environment variables. System
administrators can set the default values for these variables for different
shell environments; see the Tru64 UNIX System Administration manual

for information about setting locale defaults for shells. Users can also set
locale variables on a per-process basis.

Overview of International Software Development 1-1



Typically, internationalized programs read locale variables at run time and
use them to attach settings to locale categories in the programs’ operational
environment. However, programs can also set these categories internally
when appropriate. Therefore, the binding to a particular locale need not be
general for all parts of a program. Within one execution cycle, different parts
of the program can request different localizations.

1.1.1 Localization

Localization refers to the process of implementing local requirements within
a computer system. Some of these requirements are addressed by locales.
Each locale is a set of data that supports a particular combination of native
language, cultural data, and codeset. The type of information a locale can
contain and the interfaces that use a locale are subject to standardization.
However, where locales reside on the system and how they are named can
vary from one vendor to another.

There is more to localization than providing locales. For example, the
localization process means making sure that translations are available

for software messages; appropriate fonts and measurement systems are
supported and available for display and printing devices; and, in some cases,
additional software is written to handle local requirements.

The mnemonic L10N is frequently used as an abbreviation for localization.

See Chapter 3 for information on creating and using localized data and
message files in application programs. See Chapter 5 for information on
localization and graphical user interfaces.

See Chapter 2 for information on the programming aspects of local
implementation and Chapter 6 for a description of locales, the primary tool
for localizing software.

1.2 Language

An internationalized program makes no assumptions about the language of
character data (text) that the program is designed to handle.

Language has implications for processing text for such things as character
handling and word ordering. The operating system provides interfaces
that allow internationalized programs to manipulate text according to the
language requirements of individual users.

Language differences require the separation of message text from program
code. The operating system provides facilities that allow message text to be
separated from the code, translated into different languages, and accessed
by the program at run time. Chapter 3 explains how an internationalized

1-2 Overview of International Software Development



program that uses the worldwide portability interfaces (WPI) generates
and accesses messages.

An internationalized program that uses X and Motif interfaces can separate
message text from program code in the following ways:

¢ By defining menu items, titles, text fields, and messages in user interface
language (UIL) files

¢ By specifying titles and font lists in application resource files

¢ By specifying help messages in files that the Help widget uses

For information about separating message text from program code for X and
Motif interfaces, see the following manuals:

e X Window System Toolkit

e Common Desktop Environment: Internationalization Programmer’s

Guide

1.2.1 Character Classification

Character classification information describes the characteristics associated
with each valid character code; that is, whether the code defines an
alphabetic, uppercase, lowercase, punctuation, control, space, or other kind
of character. Character classification functions and internationalized regular
expressions use this information to determine character classes.

1.2.2 Case Conversion

Case conversion refers to information that identifies the possible alternative
case of each valid character code. Case conversion functions use this
information to change characters from uppercase to lowercase or from
lowercase to uppercase. In some languages, case is not a characteristic of all
of the letters, or even of any characters.

1.2.3 Message Catalogs

A message catalog is a file or storage area that contains program messages,
command prompts, and responses to prompts for a particular language.
Motif applications also use resource files and UIL files in addition to, or in
place of, message catalogs for text and other values that can vary from one
locale to another. Chapter 3 describes the messaging system.

1.3 Cultural Data

Cultural data refers to the conventions of a geopolitical area, called
territory in this manual. Cultural data includes such things as date, time,
and currency formats.

Overview of International Software Development 1-3



An internationalized program cannot assume how cultural data formats are
set in advance and uses system facilities to determine formats at run time.
This capability is provided through a language information database (or
langinfo database) that programs can query for the required formats of
cultural data items.

1.3.1 Language Information

Language information refers to localization data that describes the format
and setting of cultural data that can vary from one locale to another. The
information stored in a langinfo database includes the appropriate formats
and characters for date and time, currency, and numeric values.

1.4 Character Sets

A character set is a set of alphabetic or other characters used to construct
the words and other elementary units of a native language or computer
language. A coded character set (or codeset) is a set of unambiguous rules
that establishes a character set and the one-to-one relationship between
each character of the set and its bit representation.

For a program to be able to handle text recorded in different codesets, the
program cannot make assumptions about the size or bit assignment of
character encodings. In particular, the program cannot assume that any
part of an area used to store a character is available for other uses.

1.4.1 Collating Sequence

The collating sequence, or ordering of characters, may be implicit in
underlying hardware but can be defined for software to conform to the way
language is used in a particular territory. Many languages have complex
rules for sorting. The following list describes some of these collating rules:

e A single letter is not necessarily represented by a single character

In traditional Spanish, for example, the character combination ch sorts
between the characters c and d.

¢ A single character can be equivalent to a combined set of characters

For example, the  character is equivalent to ss in standard and Swiss
German and to sz in Austrian German.

e Accented letters do not always follow unaccented letters

In many languages, this is true only if the words that contain those
letters are otherwise identical. In other languages, a particular accented
letter may be considered unique and sort after a letter that is different
from the unaccented counterpart.

1-4 Overview of International Software Development



e (Characters can be sorted in multiple ways for the same language

The ideographic characters in Asian languages have sort orders based
on pronunciation and on two visually recognized components (radicals,
which are pictograms for elements of meaning, and the number of
strokes).

Each locale contains information about collating sequences that informs
string comparison functions about the relative ordering of characters defined
in the associated codeset. Internationalized regular expressions also use the
collating sequence for implementing character ranges, collating symbols,
and equivalence classes.

1.4.2 Characters and Strings

A character is a sequence of one or more bytes that represent a single
graphic symbol or control code. Do not confuse the term character with
the C programming language char data type, which represents an object
large enough to store any member of the basic execution character set and
which is usually mapped as an 8-bit value. Unlike the char data type in C,
a character can be represented by a value that is one or more bytes. The
expression multibyte character is synonymous with the term character;
that is, both refer to character values of any length, including single-byte
values.

A character string or string is a contiguous sequence of bytes terminated
by and including the null byte. A string is an array of type char in the C
programming language. The null byte is a value with all bits set to zero (0).

A wide character is an integral type that is large enough to hold any
member of the extended execution character set. In program terms, a wide
character is an object of type wchar _t , which is defined in the header

files / usr /i ncl ude/ st ddef . h (for conformance to the X/Open XSH
specification) and / usr /i ncl ude/ st dl i b. h (for conformance to the ANSI
C standard). The locations of these header files are determined by standards
organizations; however, the definitions themselves are implementation
specific. For example, implementations that support only single-byte
codesets (not the case for Tru64 UNIX) might define wchar _t as a byte value.

A wide-character string is a contiguous sequence of wide characters
terminated by and including the null wide character. A wide-character
string is an array of type wchar _t . The null wide character is a wchar _t
value with all bits set to zero (0).

An empty string is a character string whose first element is the null byte.
Similarly, an empty wide-character string is a wide-character string whose
first element is the null wide character.

Overview of International Software Development 1-5



1.4.3 Portable Character Set

The Portable Character Set (PCS) is supported in both compile-time (source)
and run-time (executable) environments for all locales. The PCS contains
the following characters:

e The 26 uppercase letters of the English language alphabet:

ABCDEFGHI JKLMNOPQRSTUVWXYZ
¢ The 26 lowercase letters of the English language alphabet:

abcdefghij k|l mnopgrstuvwxyz
e The 10 decimal digits:

0123456789
¢ The following 32 graphic characters:

P #$%& () *+, - ./, <=>2@[\]"~_*"{]}~

¢ The space character, plus control characters that represent the
horizontal tab, vertical tab, and form feed

¢ In addition to the preceding characters, the execution version of the PCS
contains control characters that represent alert, backspace, carriage
return, and newline

The PCS as defined by X/Open is similar to the basic source and basic
execution character sets defined in ISO/IEC 9899: 1990, except that the
X/Open version also includes the dollar sign ($), commercial at sign (@), and
grave accent (. ) characters.

Some locales (for example, ISO 646 variants) may make substitutions for
one or more of the preceding characters. In such cases, the substituted
character has the same syntactic meaning as the character it replaces in the
PCS. An example of a character substitution might be the British pound sign
(£) for the number sign (#) that is the default.

The definition of a character set that is portable across all codesets is
particularly relevant to encoding formats that support a limited set of
native languages. This is typical for most of the character encoding formats
developed for UNIX systems. In other words, the codeset used for a Chinese
locale must include all the PCS characters in addition to characters that are
part of the Chinese language. However, that same codeset probably would
not include characters needed to support Russian or Icelandic. Similarly,
the codeset used for the Russian language probably would not include any
Chinese characters but must include all the PCS characters. Therefore, no
matter what the locale setting, programs can assume that characters in
the PCS are available.

1-6 Overview of International Software Development



1.4.4 Universal Character Set

The Universal Character Set (UCS), as specified by the Unicode and
ISO/IEC 10646 standards, is supported on the operating system. The UCS
specifies a repertoire of characters that can be used by all major languages
and standardizes the rules used by languages to process characters. This
character set supports the philosophy that applications should be able to
manipulate characters in any language by using the same encoding format
and set of rules. Thus, operating system support of UCS can include file
code and internal process code conversion without having to include
multiple algorithms.

The ISO/IEC 10646 standard support two character sizes (16 bits and 32
bits) that require different parsing schemes for data input and output. UCS
encoding that an implementation parses in 16-bit units (2 octets) is called
UCS-2. UCS encoding that an implementation parses in 32-bit units (4
octets) is called UCS-4. UCS-4 expands the number of characters that can
be supported and is more efficiently manipulated as internal process code
on larger computer systems.

The standards define a number of universal transformation formats (UTFs)
used by the byte-oriented protocols that handle file data. We recommend
UTF-8 and UTF-32 for use on the operating system. The operating system
supports the following universal transformation formats:

e UTF-8

UTF-8 is the standard method for transforming UCS-4 process encoding
into a sequence of 8-bit bytes and ensuring interchange transparency
for characters in CO code positions (0 to 31), the SPACE character (32),
and the DEL character (127). The operating system provides codeset
converters and locales for UTF-8.

e UTF-16

UTF-16 uses the surrogate character extension technique defined in the
Unicode standard and represents characters in 16-bit units. UTF-16 is a
superset of UCS-2, but does not support full representation of the UCS-4
code space. UTF-16 does support all characters currently defined for
languages covered by both standards.

Byte orientation in file code can differ and, depending on the platform
on which the file was generated, can be little-endian (LE) or big-endian
(BE). UTF-16 uses a byte order mark (BOM), which is not part of the
file text data, to indicate byte orientation. The Unicode standard also
defines UTF-16LE and UTF-16BE, which do not include a BOM, for
little-endian and big-endian orientations, respectively. The operating
system supports UTF-16, UTF-16LE, and UTF-16BE through codeset
converters. Because UCS-2 is a subset of UTF-16, the operating system
supports UCS-2 with UTF-16 codeset converters. The UCS- 2 codeset

Overview of International Software Development 1-7



converter name is recognized as an alias for UTF- 16*, but with a
restricted character repertoire.

The operating system normally expects UTF-16, rather than UTF-16LE
or UTF-16BE. On input, the system looks for a BOM. If one is not found,
the converter assumes UTF-16BE. On output, the system automatically
inserts a BOM. If your application expects little-endian or big-endian
byte orientation on input or output, you may have to explicitly state
byte orientation. See i conv_i nt r o(5) for more information on setting
byte orientation.

e UTF-32

UTF-32 allows character representation in 4-byte encoding units.
UTF-32 is a restricted subset of UCS-4 in that the range of character
values is restricted to U+0000 to U+10FFFF, the same range as UTF-16.
Keep in mind that private-use ranges above U+10FFFF will be removed
from future versions of ISO/IEC 10646 to promote interoperability
between ISO/IEC 10646 and Unicode standard encoding formats.

UTF-32 uses a BOM to indicate little-endian or big-endian byte
orientation. As with UTF-16, the Unicode standard defines UTF-32LE
and UTF-32BE, which do not include BOMs. The operating system
default for input and output is also the same as UTF-16.

Use the UCS- 4 codeset converter to process UTF-32.

The operating system supports UCS-4 with codeset converters and locales.
The locales and some library functions allow applications to use UCS-4 as
internal process code. The codeset converters allow file data to be converted
to encoding formats supported by fonts and other software resident on the
system.

See Section 2.2 for more information about Unicode, locales, and related
encoding formats. See Chapter 4 for a description of the cur ses Library and
information on support of wide-character format and multibyte characters.

1-8 Overview of International Software Development



2

Developing Internationalized Software

This chapter explains how the requirements of localization (language,
codeset, and cultural differences) change the way you implement basic
coding operations. A sample application that applies the suggested
program development techniques from this chapter is provided in the

[ usr/ exanpl es/i 18n/ xpg4deno directory. See the READVE file in that
directory for an introduction to the application and how you can compile and
run the application with different locales. Parts of the xpg4denn application
are used as examples in this and other chapters.

One of the primary functions of most computer programs is to manipulate
data, which can involve interaction between the program and a computer
user. In commercial situations, it is important that such interactions take
place in the native language of each user. Cultural data should also observe
the correct customs.

When you write programs to support multilanguage operation, you must
consider the fact that languages can be represented within the computer
system by one or more codesets. Because of the requirements of different
languages, characters in codesets may vary in both size (8 bits, 16 bits, and
so on) and binary representation.

You can satisfy the requirements of codesets and data by writing programs
that make no hard-coded assumptions about language, cultural data, or
character encodings. Such programs are said to be internationalized. Data
specific to each supported language, territory, and codeset combination are
held separately from the program code and can be bound to the run-time
environment by language-initialization functions.

The operating system provides the following facilities for developing
internationalized software, defining localization data, and announcing
specific language requirements:

¢ Locales that contain language, codeset, and cultural definitions for each
language (Section 2.1)

e Library functions that handle extended character codes and that
provide language- and codeset-independent character classification, case
conversion, number format conversion, and string collation (Section 2.2)

e Library functions that let programs dynamically determine cultural and
language-specific data (Section 2.3)

Developing Internationalized Software 2-1



e A message system that allows program messages to be held apart from
the program code, translated into different languages, and retrieved by a
program at run time (Section 2.4)

e An initialization function that binds a program at run time to the
linguistic and cultural requirements of each user (Section 2.5)

The discussion and examples in this chapter focus on functions provided in
the Standard C Library. See Chapter 4 for information on using functions in
the cur ses Library. See Chapter 5 for information about using functions
in the X and Motif libraries.

2.1 Using Locales

The operating system supports Unicode and dense code locales. The
Unicode locales are installed in / usr /i 18n/ 1 i b/ nl s/ ucsl oc/ . Dense code
locales are installed in / usr/i 18n/1i b/ nl s/ 1 oc. The active default is
determined by the symbolic link, / usr/i 18n/1i b/ nl s/ dl oc. For example,
the Japanese locale filename, /usr/li b/ nl s/l oc/ja_JP.eucJP,isa
symbolic link to/ usr/i 18n/1i b/ nl s/ dl oc/ja_JP. eucJP, where / dl oc
is a symbolic link to either / ucsl oc for the Unicode version or / | oc for the
dense code version of the Japanese locale.

If you are superuser, you can switch between Unicode and dense code locales
by changing the setting of the symbolic link, as described in | 10n_i nt r o(5),
or you can use the Configure International Software utility from the SysMan
Menu. You can also use the utility to change a default system locale and
specify an input method for those Asian locales that support multiple input
methods. See the online help for Configure International Software for more
information.

Unicode locales conform to Unicode and ISO/IEC 10646 standards and use
UTF-32 as the wide-character encoding. Under UTF-32 wide character
encoding, wchar _t values represent the same characters regardless of the
locale and, because Unicode standards prevail, implementation is consistent
across platforms.

Locales whose names end in . UTF- 8 use file code and UTF-32 internal
process code (wchar _t encoding) defined in the ISO 10646 and Unicode
standards.

Other, non-UTF-8 Unicode locales use traditional UNIX and proprietary
codesets for the file code while using UTF-32 as the internal process code. A
subset of these Unicode locales have a @ics4 modifier; however, they are
the same as the locales without the @ics4 modifier. The @Qics4 subset is
provided for backward compatibility and may be removed in the future. You
cannot choose @cs4 locales from the CDE Login Menu; you must specify
the locale name in the LANG environment variable.

2-2 Developing Internationalized Software



The uni ver sal . UTF- 8 locale is also available (for use by applications
rather than end users). This locale supports the complete set of characters
in the Universal Character Set (UCS).

See Uni code(5) for more information about encoding formats.

For . UTF- 8 locales, file code may include characters encoded in more than 1
byte; therefore, use these locales in applications that can process multibyte
data. Design new applications based on multibyte . UTF- 8 locales, which
incorporate a large character repertoire, to enable the application to expand
future character support without changing the character set.

Dense code locales use dense code for wide-character encoding to minimize
table size (that is, codepoints are assigned consecutively with no empty
positions). Under dense code locales, a wchar _t value for one locale may
not represent the same character in another locale and, thus, is locale
specific. Dense code locales are appropriate for applications that have no
dependencies on the internal process code or, because dense code locales are
slightly more efficient than Unicode locales, for applications whose primary
goal is better performance.

All valid codepoints in multibyte character sets are mapped to valid
codepoints in Unicode, including unmapped codepoints that are mapped to
Unicode codepoints in the private use area. Thus, dense code locales are
equivalent to Unicode locales. In general, the same charmaps and locale
source can be used for Unicode and dense code locales. However, Unicode
and dense code characters that are not defined in the LC_COLLATE section
may be sorted differently.

A Unicode locale exists for each dense code locale. (However, not all Unicode
locales have a dense code version.) For Latin-1 locales (ISO8859-1), the
dense code and Unicode locales are identical because Latin-1 characters are
the same as the first 256 characters in Unicode. Keep in mind that the same
locale name can refer to a Unicode locale or to a dense code locale, depending
on the setting of the symbolic link. Thus, if running an application in a
locale is problematic, check the symbolic link.

Because Unicode locales use consistent values for characters in wchar _t
form, the link to Unicode locales can increase consistency across locales and
platforms. However, some users may prefer the older, dense code locales that
use proprietary algorithms to convert characters to wchar _t form, or an
application may have dependencies on dense code wchar _t encoding.

2.2 Using Codesets

In the past, most UNIX systems were based on the 7-bit ASCII codeset.
However, most non-English languages include characters in addition to
those contained in the ASCII codeset.

Developing Internationalized Software 2-3



The X/Open UNIX standard does not require an operating system to supply
any particular codesets in addition to ASCII. The standard does specify
requirements for the interfaces that manipulate characters so that programs
are able to handle characters from whatever codeset is available on a given
system.

The first group of the International Standards Organization (ISO) codesets
covered only the major European languages. In this group, several codesets
allow for the mixing of major languages within a single codeset. All of these
codesets are a superset of the ASCII codeset and allow systems to support
non-English languages without invalidating existing software that is not
internationalized. The Tru64 UNIX operating system always includes a
locale for the United States that uses the ISO 8859-1 (ISO Latin-1) codeset.

Subsets that are installed as part of Worldwide Language Support (WLS)
support localized variants of the operating system and may include locales
based on additional ISO codesets. For example, the optional language
variant subsets included with the operating system to support Czech,
Hungarian, Polish, Russian, Slovak, and Slovene provide locales based on
the ISO 8859-2 (Latin-2) codeset.

The following is a complete list of ISO codesets provided with the WLS,
including the languages that they support and the reference pages where
they are discussed in more detail:

e [ISO 8859-1, Latin-1

Languages of Western Europe and North America, including Catalan,
Danish, Dutch, English/Great Britain, English/United States, Finnish,
Flemish/Belgium, French/Belgium, French/Canada, French/Swiss,
French, German/Swiss, German/Germany, Icelandic, Italian, Norwegian,
Portuguese, Spanish, and Swedish

See i s08859- 1(5)
e ISO 8859-2, Latin-2

Languages of Eastern Europe, including Czech Republic, Hungarian,
Polish, Slovak, and Slovene

See | s08859- 2(5)

e ISO 88594, Latin-4
Lithuanian
See | s08859- 4(5)

e ISO 8859-5, Latin/Cyrillic
Russian
See | s08859- 5(5)

e ISO 8859—7, Latin/Greek

2-4 Developing Internationalized Software



Greek
See | s08859- 7(5)
e SO 8859-8, Latin/Hebrew
Hebrew/Israel (uses the ISO Hebrew codeset)
See | s08859- 8(5)
e ISO 8859-9, Latin-5
Turkish
See i s08859- 9(5)
e ISO 8859-15, Latin-9

Catalan/Spain, Danish, Dutch, English/Great Britain, English/United
States, Finnish, Flemish/Belgium, French/Belgium, French/Canada,
French/Swiss, French, German/Swiss, German/Germany, Icelandic,
Italian, Norwegian, Portuguese, Spanish/Spain, and Swedish. ISO
8859-15 (and UTF-8) support the euro monetary character.

See i s08859-15(5)

The operating system does not include support for the ISO 8859-3 (Latin-3)
and ISO 8859-6 (Latin-6) codesets.

Another ISO codeset supported by utilities on a standard operating system
is ISO 6937: 1983. This codeset, which accommodates both 7-bit and 8-bit
characters, is used for text communication over communication networks
and interchange media, such as magnetic tape and disks.

The codesets discussed up to this point address the requirements of
languages whose characters can be stored in a single byte. Such codesets
do not meet the needs of Asian languages, whose characters can occupy
multiple bytes. The operating system supplies the following codesets
through installed subsets that support Asian languages and countries:

e Japanese

— Japanese Extended UNIX Code (the default)
See eucJP(5)

— Shift JIS
See shiftjis(s)

— DEC Kanji
See deckanj i (5)

— Super DEC Kanji
See sdeckanj i (5)

e Korean

Developing Internationalized Software 2-5



— DEC Korean
See deckor ean(s)
— Korean Extended UNIX Code
See eucKR(5)
e Thai
— Thai API Consortium/Thai Industrial Standard
See TACTI S(5)
e Simplified Chinese
— DEC Hanzi
See dechanzi (5)
— GBK and GB18030
See GBK(5) and GB18030(5)
e Traditional Chinese
— DEC Hanyu
See dechanyu(s)
— Taiwanese Extended UNIX Code
See eucTW5)
— BIG-5 (and the variant, Shift BIG-5)
See bi g5(5) and sbi g5(5)
— Telecode

See t el ecode(5)

These codesets are supplied when you install Asian language variant subsets
of the operating system software. Also supplied are a specialized terminal
driver and associated utilities that must be available on your system to
support the input and display of Asian characters at run time.

Codesets developed for PC systems are commonly called code pages. There
are PC code pages that correspond to most of the language-specific codesets
developed for UNIX systems. The operating system supports PC codesets
mostly through converters that can change file data from one type of
encoding format to another. The CP850 codeset supports English/United
States and is used with data that contains accented characters generated
on a PC using the CP850 code page for character encoding. This character
encoding is usually the default for MS-DOS and Windows operating systems
in Europe. See code_page(5).

The Unicode and ISO/IEC 10646 standards specify the Universal Character
Set (UCS), which allows character units to be processed for all languages,

2-6 Developing Internationalized Software



including Asian languages, using the same set of rules. The operating system
supports the UCS-4 (32-bit) encoding of this character set in process code.

Other encoding formats defined by the Unicode standard, the ISO/IEC 10646
standard, or both include the following:

e TUCS-2, a 16-bit encoding counterpart to UCS-4

¢ A number of universal transformation formats (UTF-8, UTF-16, and
UTF-32) that transform UCS encoding into sequences of bytes for
handling by byte-oriented protocols

The operating system supports these different formats through locales,
codeset converters, or both. Because UCS-2 is a subset of UTF-16, the
operating system supports UCS-2 with UTF-16 codeset converters. The
operating system supports UCS-4 with both codeset conversion and locales.

The following locales use UTF-32 as internal processing code:
e universal.UTF-8

Use this locale in applications to convert data in UTF-8 file format to
UCS-4 process code and to test any UCS-4 character to determine if it
is included in one of the following LC- CTYPE classes: al num al pha,

bl ank,cntrl  digit, graph,| ower, print, punct, space, upper, or
xdi gi t . In this locale, the LC_MESSAGES, LC_MONETARY, LC_NUMERI C,
and LC_TI ME definitions match those of the POSIX (C) locale. Your
application can use this locale, along with the fol d_stri ng_w( )
function, to process the full range of characters defined by the Unicode
and ISO/IEC 10646 standards.

This locale differs from most others because it does not provide access to
local cultural conventions.

e J|anguage_territory. UTF-8

These locales limit classification information to the characters in a
particular native language, make country-specific data available to your
application, and assume file data follows UTF-8 encoding rules. The
operating system locales that support the euro monetary symbol use
either UTF-8 or ISO 8859-15 codesets.

The Unicode UTF-8 codeset supports Catalan/Spain, Czech Republic,
Danish, Dutch, English/Great Britain, English/United States, Finnish,
Flemish, French/Belgium, French/Canada, French/Swiss, German/Swiss,
German, Greek, Hungarian, Icelandic, Italian, Japanese, Korean,
Lithuanian, Norwegian, Polish, Portuguese, Russian, Slovak, Slovene,
Spanish, Swedish, Turkish, simplified Chinese (Hanzi), and traditional
Chinese (Hanyu). See Uni code(5).

e native_|local e _nane

Developing Internationalized Software 2-7



These locales use UTF-32 as internal processing code. The codeset
portion of the nati ve_| ocal e_nane (for example, ISO8859-1) specifies
the file code. Also, the locale provides classification information for the
native language characters, but not for the full set of UTF-32 characters.
Country specific information is available to the application; the

LC COLLATE, LC_MESSAGES, LC_ MONETARY, LC NUMERI C, and LC TI ME
category definitions match the definition in nati ve_| anguage_nane.

e native_ | anguage_nane@cs4

These locales are provided for compatibility with existing applications
that use the @ics4 locales. They function the same as the

nati ve_l ocal e_narne locales, but the list of locales provided is not as
complete as the nati ve_I| anguage_nane locales.

See Section 2.5 for information on locale categories, such as LC_TI ME. See
Uni code(5) and Section 2.1 for information on locales and comparisons of
data handling. See eur o(5) for more information on the euro monetary
symbol.

See Uni code(5) for detailed information about support for UCS-2, UCS-4,
UTF-8, UTF-16, and UTF-32. For information on how codesets are supported
for a particular local language, see the reference page for that language.
Reference pages for languages, particularly Asian languages, might note
additional codesets that are not supported in a locale but for which there is
a codeset converter.

The following sections discuss important issues that affect the way you
write source code when your program must process characters in different
codesets:

e Ensuring data transparency (Section 2.2.1)
e Using in-code literals (Section 2.2.2)
e Manipulating characters that span multiple bytes (Section 2.2.3)

¢ Converting between multibyte-character and wide-character data
(Section 2.2.4)

¢ Rules for multibyte characters in source and executable codesets
(Section 2.2.5)

¢ C(Classifying characters (Section 2.2.6)
e Converting characters (Section 2.2.7)

e Comparing strings (Section 2.2.8)

2.2.1 Ensuring Data Transparency

As discussed in Section 2.2, internationalized software must accommodate a
wide variety of character-encoding schemes. Programs cannot assume that

2-8 Developing Internationalized Software



a particular codeset is on all systems that conform to requirements in the
X/Open UNIX CAE specifications, nor that individual characters occupy a
fixed number of bits.

Because of the historical dependence of UNIX systems on 7-bit ASCII
character encoding, some programs use the most significant bit (MSB) of

a byte for their own internal purposes. This was a dubious programming
practice, although quite safe when characters in the underlying codeset
always mapped to the remaining 7 bits of the byte. In the world of
international codesets, the practice of using the most significant bit of a byte
for program purposes must be avoided.

2.2.2 Using In-Code Literals

When you write internationalized software, avoid using in-code literals.
Consider, for example, the following conditional statement:

if ((c = getchar()) == \141)

This condition assumes that lowercase a is always represented by a fixed
octal value, which may not be true for all codesets. Use a function, instead of
an in-code literal. Consider the following statement that uses a get char ()
function to substitute a character constant for the octal value:

if ((c = getchar()) =="a’)

However, because the get char () function operates on bytes, the statement
would not work correctly if the next character in the input stream spanned
multiple bytes. To avoid this problem, substitute the get wchar ( ) function
for the get char () function. The get wchar () function, as used in the
example, works correctly with any codeset because a is a member of the PCS
and is transformed into the same wide-character value in all locales.

if ((c = getwhar()) ==L"a")

The X/Open UNIX standard specifies that each member of the source
character set and each escape sequence in character constants and string
literals is converted to the same member of the execution character set in
all locales. Thus, you can safely use any of the characters in the PCS as a
character constant or in string literals. Non-English language characters
are not included in the PCS and may not translate correctly when used as
literals. Consider the following example:

if ((c = getwchar()) ==L a’)

The accented character a may not be represented in the codeset’s source
character set or execution character set. Also, the binary value of the
accented character may not be translatable from one set to the other. When
source files specify non-English language characters in constants, the results

Developing Internationalized Software 2-9



are undefined. In cases such as this, it can be helpful to employ a consistent
use of Unicode locales.

The following example illustrates how to construct a test for a constant that
for whatever reason may be a non-English language character. The constant
has been defined in a message catalog with the symbolic identifier M5G | D.
Statements in the example retrieve the value for MSG_| D from the message
catalog, which is locale specific and bound to the program at run time.

char *schar;
wchar _t wchar;

schar = catgets(catd, NL_SETD, MSG I D, "a");
if (nbtowc (&achar, schar, VB CUR MAX) == -1)
error();

if ((c = getwechar()) == wchar)

Declares a pointer to schar as char.

Declares the variable wchar to be of type wchar _t .

@ P] =]

Calls the cat get s( ) function to retrieve the value of MSG_| D from the
message catalog for the user’s locale.

The cat get s( ) function returns a value as an array of bytes so the
value is returned to the schar variable. If the accented character is not
available in the locale’s codeset, the test is made against the unaccented
base character (a).

Tests to make sure the value contained in schar represents a valid
multibyte character. If the value is a valid multibyte character, the
program converts it to a wide-character value and stores the results in
the variable wchar .

If schar does not contain a valid multibyte character, the program
signals an error.

Codes the conditional statement to include the value contained in
wchar as the constant.

See Chapter 3 for more information about message catalogs and the

cat get s( ) function. See Section 2.2.4 for information about converting
multibyte characters and strings to wide-character data that your program
can process.

2-10 Developing Internationalized Software



2.2.3 Manipulating Characters That Span Multiple Bytes

The operating system provides all the interfaces (such as put we( ),
getwe( ), fputws( ), and fget ws( ) ) that are needed to support codesets
with characters that span multiple bytes. Language variant subsets of the
operating system must be installed to supply the locales and facilities that
make this support operational. On systems where such locales are not
available, or are available but not bound to the program at run time, the
*ws*( ) and *wc* () functions are merely synonyms for the associated
single-byte functions (such as putc( ), getc( ),fputs(),andfgets()).

2.2.4 Converting Between Multibyte-Character and Wide-Character
Data

On an internationalized system, data can be encoded as either multibyte
character or wide-character data.

Multibyte encoding is typically used when data is stored in a file or
generated for external use or data interchange. Multibyte encoding has
the following disadvantages:

¢ (Characters are not represented by a fixed number of bytes for each
character, even in the same codeset. Thus, the size of a character in a
multibyte data record can vary from one character to the next.

¢ The parsing rules for retrieving character codes from a multibyte data
record are locale dependent.

Because of these disadvantages, wide-character encoding, which allocates

a fixed number of bytes for each character, is typically used for internal
processing by programs; in fact, internal process code is another way of
referring to data in wide-character format. The size of a wide character
varies from one system implementation to another. On Tru64 UNIX
systems, the size for a wide character is set to 4 bytes (32 bits), a setting that
optimizes performance for the HP Alpha processor.

Library routines that print, scan, input, or output text can automatically
convert data from multibyte characters to wide characters or from wide
characters to multibyte characters, as appropriate for the operation.
However, applications almost always have additional statements or
requirements for which conversion to and from multibyte characters needs
to be explicit.

The following example is from a program module that reads records from a
database of employee data. In this case, the programmer wants to process
the data in fixed-width units, so uses the nbst owcs( ) function to explicitly
convert an employee’s first and last names from multibyte character to
wide-character encoding.

Developing Internationalized Software 2-11



o T

*/

The enpl oyee record is nornalized with the follow ng format, which
is local e independent: Badge nunber, First Nanme, Surnane,

Cost Center, Date of Join in the ‘yy/midd format. Each field is
separated by a TAB. The space character is allowed in the First
Narme and Surname fields.

static const char *dbQut Format = "% d\t %6\t %8\t %6\t ¥92d/ ¥©2d/ %92d\ n";
static const char *dblnFormat = "%d Y~ \t] Y"\t] %6 ¥02d/ ¥©2d/ ¥©2d\ n";

sscanf (record, dblnFornat,

&enp- >badge_num

firstnane,

sur nane,

enp- >cost _center,

&enp- >dat e_of _j oi n.tm year,

&enp->dat e_of _j oi n. t m non,

&enp- >dat e_of _j oi n. t m nday) ;
(voi d) nbstowcs(enp->first_name, firstname, FlI RSTNAVE MAX+1);
(voi d) nbstowcs(enp->surnane, surnanme, SURNAVE MAX+1);

See Section A.9 for a complete list of functions that work directly with
multibyte data.

2.2.5 Rules for Multibyte Characters in Source and Execution
Codesets

Both the source and execution character set variants of the same codeset can
contain multibyte characters. The encodings do not have to be the same, but
the source and execution variants both observe certain rules in codesets that
meet X/Open requirements. PC code pages and UCS-based codesets may
adhere to some or most of these rules, but the codesets native to any UNIX
system that conforms to X/Open standards must adhere to all of them.

The characters defined in the Portable Character Set must be present
in both sets.

The existence, meaning, and encoding of any additional members are
locale specific.

A character may have a state-dependent encoding. A string of
characters may contain a shift-state character that affects the system’s
interpretation of the following bytes until another shift-state character
is encountered.

While in the initial shift state, all characters from the basic character set
retain their usual interpretation and do not alter the shift state.

The interpretation for subsequent bytes in the sequence is a function
of the current shift state.

2-12 Developing Internationalized Software



e A byte with all bits set to zero is interpreted as a null character,
independent of the shift state.

¢ A byte with all bits zero must not occur in the second or subsequent bytes
of a multibyte character.

The source variant of a codeset must observe the following additional rules:

e A comment, string literal, character constant, or header name must
begin and end in the initial shift state

e A comment, string literal, character constant, or header name must
consist of a sequence of valid multibyte characters

The C language compiler supports trigraph sequences when you specify the
-stdl or - st d flag on the cc command line. Trigraph sequences, which are
part of the ANSI C specification, allow users to enter the full range of basic
characters in programs, even if their keyboards do not support all characters
in the source codeset. The following trigraph sequences are currently
defined, each of which is replaced by the corresponding single character:

Trigraph Sequence Single Character
??= #
??( [
??/ \
?? A
?27< {
??) ]
27! |
27> }
?27- ~

2.2.6 Classifying Characters

Another feature of program operation that depends on the locale is character
classification; that is, determining whether a particular character code
refers to an uppercase alphabetic, lowercase alphabetic, digit, punctuation,
control, or space character.

In the past, many programs classified characters according to whether the
character’s value fell between certain numerical limits. For example, the
following statement tests for all uppercase alphabetic characters:

if (c>>'A & c <='27)

Developing Internationalized Software 2-13



This statement is valid for the ASCII codeset, in which all uppercase letters
have values in the range 0x41 to 0x5a (A to Z). However, the statement is
not valid for the ISO 8859-1 codeset, in which uppercase letters occupy the
ranges 0x41 to Ox5a, 0xcO to Oxd6, and 0xd8 to Oxdf . In the EBCDIC
codeset, character values are different again and, in this case, even the
uppercase English language letters have a different encoding.

When you write internationalized programs, classify characters by calling
the appropriate internationalization function. For example:

if (iswupper (c))
Internationalization functions classify wide-character code values according

to ct ype information in the user’s locale. See Section A.2 for a complete list
and description of character classification functions.

2.2.7 Converting Characters

As an example of what not to do in an internationalized program, consider
the following statements, which perform case conversion of ASCII characters
by converting the character in a_var first to lowercase and then to
uppercase:

a_var |= 0x20;

a_var &= Oxdf;

The preceding statements are not safe to use in internationalized programs
because the statements assume ASCII-coded character values and because
they can convert invalid values.

The correct way to handle case conversion is to call the t ow ower ()
function for conversion to lowercase and the t owupper ( ) function for
conversion to uppercase. For example:

a_var = tow ower(a_var);

a_var = towupper(a_var);

These functions use information specified in the user’s locale and are
independent of the codeset in which characters are defined. The functions
return the argument unchanged if input is invalid. See Section A.3 for more
detailed discussion of case conversion functions.

2-14 Developing Internationalized Software



2.2.8 Comparing Strings

UNIX systems provide functions for comparing character strings. The
following statement, for example, compares the strings s1 and s2, returning
an integer greater than, equal to, or less than zero, depending on whether
the value of s1 is greater than, equal to, or less than the value of s2 in the
machine-collating sequence:

int cnp_val;
char *s1i;
char *s2;

cmp_val = strcnp(sl, s2);

Many languages, however, require more complex collation algorithms than a
simple numerical sort. For example, multiple passes may be required for
the following reasons:

¢ Ordering accented characters within a particular character class for a
language (for example, a, 4, a, and so on)

¢ (Collating certain multiple character sequences as a single character (for
example, the Welsh character ch, which collates after ¢ and before d)

e (Collating certain single characters as a 2-character sequence (for
example, the German character sharp s, which collates as ss)

¢ Ignoring certain characters during collation (for example, hyphens in
dictionary words)

String comparison in an international environment depends on the codeset
and language. This dependency means that additional functions are
required to compare strings according to collating sequence information in
the user’s locale. These functions include the following:

e strcoll ()

This function uses collation information defined in the user’s locale
rather than performing a simple numeric comparison as does the
strcnp( ) function.

e wcscoll ()

This function performs the same operation as strcol | (), except that it
operates on wide characters.

o wesxfrm)

Developing Internationalized Software 2-15



This function transforms a wide-character string by using collating
sequence information in the user’s locale so that the resulting string can
be compared using the wescnp( ) function.

If two strings are being compared only for equality, you can use
strcenp( ) orwescnp( ), which are faster in most environments than
wescol I ().

2.3 Handling Cultural Data

Cultural data refers to items of information that can vary between languages
or territories.

For example:

In the United Kingdom and the United States, a period represents the
radix character and a comma represents the thousands separator
in decimal numbers. In Germany, the same two characters in decimal
numbers have the opposite meaning.

In the United States, the date October 7, 1986 is represented as
10/7/1986. In the United Kingdom, the same date is represented as
7/10/1986. This example indicates that cultural data items can vary even
when the same language is spoken.

Date delimiters, as well as the order of year, month, and day, can vary
among countries. In Germany, for example, the date October 7, 1986 is
represented as 7.10.1986 rather than as 7/10/1986.

Currency symbols can vary both in the characters used and where they
are placed in a currency value; that is, currency symbols can precede,
follow, or be embedded in the value.

The euro character that is used as the currency symbol by European
countries belonging to the Economic and Monetary Union is supported
only by Unicode (*. UTF- 8) or Latin-9 (*. | SC8859- 15) locales and
associated fonts. See eur o(5) for complete information about support for
the euro currency symbol.

To enter the euro character from the keyboard, you must be working in a
Latin-9 or UTF-8 locale and the appropriate keymap must be active. To
display the euro character, you must be working in a Latin-9 or UTF-8
locale and the appropriate font must be active. To activate the required
locale and the appropriate keymap and font, log in to a Latin-9 or UTF-8
locale, or use set env to set the LANG environment variable, and start a
new dt t er m See the reference pages for | ocal e(1) and dt t er n{(1).

You cannot make assumptions about cultural data when writing
internationalized programs. Your program must operate according to the
local customs of users. The X/Open UNIX standard specifies that this

2-16 Developing Internationalized Software



requirement be met through a database of cultural data items that a
program can access at run time, plus a set of associated interfaces. The
following sections discuss this database and the functions used to extract
and process its data items.

2.3.1 The langinfo Database

The language information database, named | angi nf 0, contains items that
represent the cultural details of each locale supported on the system. The

| angi nf o database contains the following information for each locale, as
required by the X/Open UNIX standard:

¢ (Codeset name

¢ Date and time formats

e Names of the days of the week

¢ Names of the months of the year

e Abbreviations for names of days

e Abbreviations for names of months

e Radix character (the character that separates whole and fractional
quantities

¢ Thousands separator character
e Affirmative and negative responses for yes/no queries
e Currency symbol and its position within a currency value

e Emperor/Era name and year (for Japanese locales)

2.3.2 Querying the langinfo Database

You can extract cultural data items from the | angi nf o database by calling
the nl _I angi nf o( ) function. This function takes an i t emargument that
is one of several constants defined in the / usr/i ncl ude/ | angi nf o. h
header file. The function returns a pointer to the string with the value for

i t emin the current locale.

The following example is a call to nl _I| angi nf o( ) that extracts the string
for formatting date and time information. This value is associated with
the constant D T_FMT.

nl _l angi nfo(D_T_FM);

Developing Internationalized Software 2-17



2.3.3 Generating and Interpreting Date and Time Strings That
Observe Local Customs

Programs often generate date and time strings. Internationalized programs
generate strings that observe the local customs of the user. You can meet
this requirement by calling the strfti me( ) orwesfti me( ) function.
Both functions indirectly use the | angi nf o database. In addition, the
wesftime() function converts date and time to wide-character format.

In the following example, the st rfti ne( ) function generates a date string
as defined by the D_FMT item in the | angi nf o database:

setlocal e(LC_ALL, "");

clock = time((time_t*)NULL);
tm = local time(&cl ock);

strfti me(buf, size, "9%", tm;
put s(buf);

Binds the program at run time to the locale set for the system or
individual user.

Calls the ti me( ) subroutine to return the time value to the cl ock
variable. The time value returned is relative to Coordinated Universal
Time.

Calls the | ocal ti me( ) function to convert the value contained in
cl ock to a value that can be stored in a t mstructure, whose members
represent values for year, month, day, hour, minute, and so forth.

Callsstrftime( ) togenerate a date string formatted as defined in the
user’s locale from the value contained in the t mstructure.

The buf argument is a pointer to a string variable in which the date
string is returned. The si ze argument contains the maximum size of
buf. The " %" argument specifies conversion specifications, similar to
the format strings used with the printf () and scanf () functions.
The " %" argument is replaced in the output string by a representation
appropriate for the locale.

Calls the put s( ) function to copy the string contained in buf to the
standard output stream (st dout ) and to append a newline character.

2-18 Developing Internationalized Software



Consider the following example of how to use strfti me( ) and

nl _I angi nf o( ) in combination to generate a date and time string. Assume
that the preceding example’s calls to the setl ocal e( ),tine( ), and

| ocal ti me() interfaces have been made in this example. However, the
following example includes a call to nl _| angi nf o( ) that has replaced the
format string argument in the call tostrftime().

strftime(buf, size, nl_langinfo(D T _FMI), tm;
put s(buf);

To convert a string to a date/time value (that is, the reverse of the operation
performed by strftinme( ) ), you can use the strpti nme( ) function. The
strptine() function supports a number of conversion specifiers that
behave in a locale-dependent manner.

2.3.4 Formatting Monetary Values

The st rf mon( ) function formats monetary values according to information
in the locale that is bound to the program at run time. For example:

strfrmon(buf, size, "%", value);

This statement formats the double-precision floating-point value contained
in the val ue variable. The " %" argument is the format specification that
is replaced by the format defined in the run-time locale. The results are
returned to the buf array, whose maximum length is contained in the si ze
variable.

The noney program demonstrates how the st rf mon( ) function works.
When you install a Worldwide Language Support subset, the source file
for this sample program is installed in the / usr/i 18n/ exanpl es/ noney
directory.

2.3.5 Formatting Numeric Values in Program-Specific Ways

To perform your own conversions of numeric quantities, monetary or
otherwise, you can use specific formatting details in the user’s locale. The
| ocal econv( ) function, which has no arguments, returns all the number
formatting details defined in the locale to a structure declared in your
program. For example:

struct |conv *app_conv;

You can use the following features, which are contained in the | conv
structure, in program-defined routines:

Developing Internationalized Software 2-19



¢ Radix character

¢ Thousands separator character

¢ Digit grouping size

e International currency symbol

e Local currency symbol

e Radix character for monetary values

¢ Thousands separator for monetary values
¢ Digit grouping size for monetary values

¢ Positive sign

* Negative sign

e  Number of fractional digits to be displayed

e Parenthesis symbols for negative monetary values

2.3.6 Using the langinfo Database for Other Tasks

Functions in addition to the ones discussed so far use the | angi nfo
database to determine settings for specific items of cultural data. For
example, the wscanf (), wprintf (), and wecst od( ) functions determine
the appropriate radix character from information in the | angi nf o database.

2.4 Handling Text Presentation and Input
As you create applications, you need to consider the user’s native language
in three particular areas:
¢ The way program messages are defined and accessed (Section 2.4.1)
¢ How the program presents output text (Section 2.4.2)

e How the program processes input text (Section 2.4.3)

2.4.1 Creating and Using Messages

Programs need to communicate with users in their own language. This
requirement places some constraints on the way program messages are
defined and accessed. More specifically, messages are defined in a file that
is independent of the program source code and are not compiled into object
files. Because messages are in a separate file, they can be translated into
different languages and stored in a form that is linked to the program at
run time. Programs can then retrieve message text translations that are
appropriate for the user’s language.

The X/Open UNIX standard specifies the following messaging functions:

2-20 Developing Internationalized Software



A messaging system that contains a definition of message text source files

The gencat command to generate message catalogs from these source
files

A set of library functions to retrieve individual messages from one or
more catalogs at run time

The following example demonstrates how an internationalized program
retrieves a message from a catalog:

#i ncl ude <stdio. h>

#i ncl ude <l ocal e. h>
#i ncl ude <nl _types. h>

#i ncl ude "prog_nsg. h"
mai n()
{

@ N E]

(=]

nl _catd catd;

setlocal e(LC ALL, ""); [6]

catd = catopen("prog.cat", NL_CAT LOCALE);
puts(catgets(catd, SETN, HELLO MSG "Hello, world!"));
catcl ose(catd); [9]

Includes the header file for the Standard C Library.

Includes the / usr/i ncl ude/ | ocal e. h header file, which declares the
setl ocal e( ) function and associated constants and variables.

Includes the / usr /i ncl ude/ nl _t ypes. h header file, which declares
the cat open( ), catgets( ), and cat cl ose( ) functions.

Includes the program-specific pr og_nsg. h header file, which sets
constants to identify the message set (SETN) and specific messages
(HELLO_MSG in the example) that are used by this program module.

A message catalog can contain one or more message sets. Individual
messages are ordered within each set.

Declares a message catalog descriptor cat d to be of type nl _cat d.

This descriptor is returned by the function that opens the catalog. The
descriptor is also passed as an argument to the function that closes
the catalog.

Calls the set | ocal e( ) function to bind the program’s locale categories
to settings for the user’s locale environment variables.

The locale name set for the LC_MESSAGES category is the locale used by
the cat open( ) and cat get s( ) functions in this example. Because
the system administrator or user typically sets only the LANGor LC_ALL

Developing Internationalized Software 2-21



environment variable to a particular locale name, this operation
implicitly sets the LC_MESSACES variable as well.

Calls the cat open( ) function to open the pr og. cat message catalog
for use by this program.

The NL_CAT_LOCALE argument specifies that the program will use
the locale name set for LC_MESSAGES. The cat open( ) function uses
the value set for the NLSPATH environment variable to determine the
location of the message catalog. The call returns the message catalog
descriptor to the cat d variable.

Calls the put s( ) function to display the message.

The first argument to this call is a call to the cat get s( ) function, which
retrieves the appropriate text for the message with the HELLO MSG
identifier. This message is contained in the message set identified by
the SETN constant. The final argument to cat get s( ) is the default
text to be used if the messaging call cannot retrieve the translated text
from the catalog. Default text is usually in the English language.

[9] Calls the cat cl ose( ) function to close the message catalog whose
descriptor is contained in the cat d variable.

See Chapter 3 for information about creating and using message catalogs.

2.4.2 Formatting Output Text

Successful translation of messages into different languages depends not only
on making messages independent of the program source code but also on
careful construction of message strings within the program.

Consider the following example:

printf(catgets(catd, set_id, WRONG OMNMNER _MSG,
"% is owned by %\n"),
f ol der _name, user_nane);

The preceding statement uses a message catalog but assumes a particular
language construction (a noun followed by a verb in passive voice followed by
a noun). Passive verb constructions are not part of all languages; therefore,
message translation might mean printing user _nane before f ol der _nare.
In other words, the translator might need to change the construction of the

message so that the user sees the translated equivalent of “John_Smith owns
JULY_REVENUE” rather than “JULY_REVENUE is owned by John_Smith.”

To overcome the problems imposed by fixed ordering of message elements,
the pri nt f () routine format specifiers can apply format conversion to the
nth argument in an argument list, and not just to the next unused argument.
To apply the format conversion extension, replace the %conversion character
with the sequence %di gi t $, where di gi t specifies the position of the

2-22 Developing Internationalized Software



argument in the argument list. The following example illustrates how the
programmer applies this feature to the format string "% i s owned by
s\ n":

printf(catgets(catd, set_id, WRONG OMNMNER _MSG,
"%$s is owned by 9®@$s\n"),
f ol der _name, user_nane);

The construction of the string "%d$s i s owned by %2$s", which is the
default value for the WRONG_OWMER_MSG entry in the program’s message
file, can then be changed by the translator to the non-English language
equivalent of the following:

VWRONG_OWNER_M5G "%@%$s owns %d$s\n"

2.4.3 Scanning Input Text

The string construction issues that are discussed for output text in
Section 2.4.2 also apply to input text. For example, different countries have
different conventions for the order in which users specify the elements

of a date, or differ in the characters that are input to delimit parts of
monetary strings. The scanf () family of functions support extended
format conversion specifiers that allow for variation in the way that users
enter elements of a string.

Consider the following example:

int day;
int nonth;
int year;

scanf (" %l/ %/ %d", &ronth, &day, &year);

The format string in this statement is governed by the assumption that
all users use a United States format (mm/dd/yyyy) to input dates. In an
internationalized program, you use extended format specifiers to support
requirements that language may impose on the order of string elements.
For example:

scanf (catgets(catd, NL_SETD, DATE_STRI NG
"od$d/ 9@$d/ ¥8%d"), &month, &day, &year);

Developing Internationalized Software 2-23



The default " %d.$d/ 92%d/ ¥8$d" value for the DATE_STRING message is
still appropriate only for countries in which users use the format mm/dd/yyyy
to enter dates. However, for countries in which the order or formatting
would be different, the translator can change the entry in the program’s
message file. Consider the following languages:

e British English (dd/mm/yyyy):
DATE_STRI NG "oR$d/ ¥d$d/ ¥8$d"
e German (dd.mm.yyyy)
DATE_STRI NG "oR%d. ¥4$d. ¥8%d"

2.5 Binding a Locale to the Run-Time Environment

A correct, operational internationalized program must bind to localized data
that is appropriate for the user at run time. The set | ocal e( ) function
performs this task. You can call set| ocal e( ) to perform the following
operations:

¢ Bind to locale settings that are already in effect for the user’s process
¢ Bind to locale settings controlled by the program
® Query current locale settings without changing them

The call takes two arguments: cat egory and | ocal e_nane.

The cat egor y argument specifies whether you want to query, change, or
use all or a specific section of a locale. Values for cat egor y and what they
represent are as follows:

e LCALL

This cat egor y argument specifies all sections of a locale (overrides
specifications for specific sections).

e LC CTYPE

This cat egor y argument defines classes and character attributes used
in case conversion and similar operations.

e |LC COLLATE

This cat egor y argument specifies how to order characters and strings
in sorting, or collation, operations.

e | C MESSAGES

This cat egor y argument specifies yes/no responses and program
messages.

e LC _MONETARY

This cat egor y argument specifies rules and special symbols for use
in monetary values.

2-24 Developing Internationalized Software



e LC NUMERI C

This cat egor y argument specifies rules and special symbols used for
formatting numeric values.

e LCTIME

This cat egor y argument specifies names and abbreviations for days
of the week, months of the year, and other strings and formatting
conventions that govern expressions of date and time.

The | ocal e_nane argument is one of the following values:

* An empty string ("") that binds the program at run time to the locale
name set for cat egory by the system administrator or user

e A locale name that changes the locale that may already be set for
cat egory

e NULL that determines the locale name currently set for cat egory

2.5.1 Binding to the Locale Set for the System or User

Typically, the system administrator or user sets the LANGor LC_ALL
environment variable to the name of a locale. When you set either of these
variables, it automatically sets all locale category variables to the same
locale name.

Except for the case in which LC_ALL has been used to set all locale
categories to a single locale name, system administrators or individual
users can set locale category variables to different locale names. Usually,
internationalized programs contain the LC_ALL call, which initializes all
locale categories in the program to environment variable settings already
in effect for the user. For example:

set |l ocal e(LC_ALL, "");

A standard locale name consists of | anguage_TERRI TORY. codeset @mdi -
fier, for example, zh_CN. dechanzi @ adi cal , where:

e | anguage represents the human language of the locale (zh is Chinese)

e _TERRI TORY is the geographic country or region of the locale (_CN is
China, as opposed to TW for Taiwan or HK for Hong Kong)

e . codeset isthe coded character set used by the locale (dechanzi)

e @difier is additional information for localization data of a locale
(collation by radical)

Locales often have multiple variants. These variants have the same name as
the base locale but include a file name suffix that begins with the at sign (@).
Locale variants for support of codesets that are not native to UNIX (such as
UCS-4 and CP850), can be assigned to LANGor LC_ALL.

Developing Internationalized Software 2-25



However, locale variants that differ from the base locale in only one locale
category should be assigned only to the appropriate locale category. For
example, a locale variant designed to support a specific collation sequence,
such as @ adi cal , would be assigned to LC_COLLATE. A locale variant
designed to support the euro monetary sign (@ur o) would be assigned to
LC_MONETARY. Use the base locale name, not these variants, in assignments
to the LANG environment variable.

Furthermore, in cases where a base locale name is not being assigned to
all locale categories, avoid using the LC_ALL environment variable, whose
assigned value overrides settings for both LANG and the environment
variables for specific locale categories.

Many locale-specific files reside in directories whose names are constructed
from the language, territory, and codeset portions of a locale name.
Commands and other system applications insert the setting of the LANG
variable into search paths that contain % as one of the directory nodes. This
makes it possible for software programs to find the correct set of files, such
as fonts, resource files, user-defined character files, and translated reference
pages, that should be used with the current locale. An @suffix related to
collation, if included in an assignment to the LANG variable, may result in
applications being unable to find certain locale-specific files.

2.5.2 Changing Locales During Program Execution

Some internationalized programs may need to prompt the user for a locale
name or change locales during program execution. The following example
demonstrates how to call set| ocal e( ) when you want to explicitly
initialize or reinitialize all locale categories to the same locale name:

nl _catd catd;
char buf[BUFSI 7] ;

setlocal e(LC_ALL, "");
catd = catopen(CAT_NAME, NL_CAT LOCALE);

printf(catgets(catd, NL_SETD, LOCALE PROMPT_MSG
"Enter locale name: "));

gets(buf); [6]
setlocal e(LC ALL, buf);

Declares a catalog descriptor cat d as type nl _cat d.

2-26 Developing Internationalized Software



Declares the buf variable into which the locale name will later be stored.

To make sure that the variable is large enough to accommodate
locale names on different systems, you should set its maximum size
to the BUFSI Z constant, which is defined by the system vendor in
/usr/include/stdio. h.

Calls set | ocal e( ) to initialize the program’s locale settings to those
in effect for the user who runs the program.

Calls cat open( ) to open the message catalog that contains the
program’s messages. The function returns the catalog’s descriptor to
the cat d variable.

The CAT_NAME constant is defined in the program’s own header file.

Prompts the user for a new locale name.

The NL_SETD constant specifies the default message set number in a
message catalog and is defined in / usr /i ncl ude/ nl _t ypes. h. The
LOCALE_PROVPT_MSGidentifier specifies the prompt string translation
in the default message set.

[6] Calls the get s( ) function to read the locale name typed by the user
into the buf variable.

Calls set | ocal e( ) with buf as the | ocal e_nane argument to
reinitialize all portions of the locale.

Sometimes a program needs to vary the locale only for a particular
category of data. For example, consider a program that processes different
country-specific files that contain monetary values. Before processing data
in each file, the program might reinitialize a program variable to a new
locale name and then use that variable value to reset only the LC_MONETARY
category of the locale.

Developing Internationalized Software 2-27






3

Creating and Using Message Catalogs

A message catalog is a file of localization data that programs can access.
While the same definition applies to the | angi nf o database, there are
differences between the two.

The localization data elements in the | angi nf o database are used by
all applications, including the library routines, commands, and utilities
provided by the operating system. The | angi nf o database is generated
from the source files that define locales.

In contrast to the | angi nf o database, message catalogs meet the specific
localization needs of one program or a set of related programs. Message
catalogs are generated from message text source files that contain error
and informational messages, prompts, background text for forms, and
miscellaneous strings and constants that must vary for language and
cultural reasons.

X and Motif applications with graphical user interfaces, usually access X
resource files, rather than message catalogs, for the small segments of text
that belong to the title bars, menus, buttons, and simple messages for a
particular window. Motif applications can also use a user interface language
(UIL) file, along with a text library file, to access help, error message, and
other kinds of text. However, both X and Motif applications can access text
in message catalogs as well.

This chapter focuses on message catalogs.

e Section 3.1.1 contains general guidelines you can apply to defining the
contents of message text source files.

e Section 3.1.2 describes message sets, an optional component of message
text source files that you use to group messages.

e Section 3.1.3 describes the message entries that comprise a message
text source file.

e Section 3.1.4 describes the quote directive and Section 3.1.5 describes
comment lines that you use to delimit text or enter nonexecutable
comments in message text source files.

e Section 3.1.6 contains style guidelines to use when you create message
text.

e Section 3.2 describes how to extract message text from existing programs.

Creating and Using Message Catalogs 3-1



e Section 3.3 describes how to edit and translate message text source files.

e Section 3.4 describes how to generate message catalogs, including the
use of the nkcat def s and gencat commands, and hints for designing
and maintaining message catalogs.

e Section 3.5 describes how to display messages and locale data
interactively and from scripts.

e Section 3.6 describes how to access message catalogs from programs,
including the use of cat open( ), catcl ose( ), and cat gets( )
functions to open, close, and read message catalogs.

See Section 3.1.6 for X and Motif programming guidelines that apply to
the translation of message catalog text, regardless of the method used to
retrieve and display the text.

3.1 Creating Message Text Source Files

Before creating and using a message catalog, you must first understand the
components, syntax, and semantics of a message text source file. A brief
overview of a source file example can help provide context for later sections
of this chapter, which focus on particular kinds of file entries and processing
operations. Example 3—1 contains extracts from a message text source file
for the online example, xpg4deno.

Example 3—1: Message Text Source File

$ /*
$ * XPXA denp program nessage catal ogue.

$

$

$quote "

$set MSGError [4]

E_COM _EXI STBADGE "Enpl oyee entry for badge nunber %d \
al ready exists"

E_COM_FI NDBADGE "Cannot find badge nunber %d"

E_COM | NPUT "Cannot input"

E_COM MODI FY "Data file contains no records to nodify"
E_COM _NCENT "Data file contains no records to display"[5]

E_COM NOTDEL "Data file contains no records to delete"

$set MSG nfo [4]

| _COM NEVENP "New enpl oyee"

| _COM_YN_DELETE "Do you want to delete this record?"

| _COM_YN_MODI FY "Do you want to nodify this record?"

| _COM_YN_REPLACE "Are these the changes you want to make?"

$ NOTE - Message contains the format used to display nuneric dates
$ The first descriptor, 1%, contains the year

$ The second descriptor, 2%, contains the nonth

$ The third descriptor, 3%, contains the day

3-2 Creating and Using Message Catalogs



Example 3—-1: Message Text Source File (cont.)

| _SCR_| N_DATE_FMI "oR$d/ v8$d/ vd$d" 6]

$set MSGString [4]

$

$ One-character conmmands.

$ Note: These should not be translated because they are keywords for the application.
$S_COM CREATE "c"

S _COM DELETE " d"
S COMEXIT "e"

$ Note: These are col umm heads and spacing and shoul d be nuintained
$ Col um one begins at space 1.

$ Colum two begins at space 15.

$ Colum three begins on space 37.

$ Colum four (an abbreviation of Departnent) begins at space 60.

$ Colum five (an abbreviation of Date of Birth) begins at space 68.
$ S COMLIST_TITLE is output to underscore headers and shoul d be

$ increased or decreased as appropriate for translation.

S

COM LI ST_TI TLE " Badge Nane Sur name \
Dept DOB\ n"

S_COM LI ST_LI NE i \

————————————————————————————————— \n

$

$ If surname cones before first name, "y" should be specified.

$

S_SCR_SNAMELST v @]

Lines that begin with the dollar sign ($), followed by either a space or
tab, are comment lines. Section 3.1.5 discusses comment lines.

To improve readability, blank lines are allowed anywhere in the file.

The quote character delimits message text. Section 3.1.4 discusses
quote directives.

Identifiers are used to mark the beginning of a message set. There

are three sets of messages in this source file: error messages (in
the MSGError set), informational messages (in the MSGInfo set),
and miscellaneous strings and formats (in the MSGString set). See
Section 3.1.2 for more information about defining and removing
message sets.

Most lines in the source file are message entries, whose components are
a unique identifier and a message text string. The first message entry
is continued to the next line by using the backslash (\ ). Other entries
contain special character sequences, such as \ n (newline), that affect
how the message is printed. See Section 3.1.3 for more information

Creating and Using Message Catalogs 3-3



about message entries. Section 3.1.1 also discusses some rules and
options that apply to message entries.

[6] This type of message entry allows translators to vary the order in which
users are prompted to enter date elements. You frequently use message
entries to allow format control, although use of program logic to format
messages is a better alternative. This line also illustrates the value of
providing comments that identify variables to potential translators.

This type of message entry defines word abbreviations, which often need
special attention to preserve uniqueness from one language to another.

This type of message entry defines header lines for menu displays so
that translators can adjust the field order and line length to match other
adjustments that the program allows for cultural variation. This line
also illustrates the value of providing comments to translators who may
be unfamiliar with abbreviations or who need to know the amount of
spacing in the formatting of columns.

[9] This type of message entry defines a constant whose value controls
how the program positions name fields. For example, in the xpg4deno
program, you can change the position of first and last name (surname).

You can use one or more message text source files to create message catalogs
(. cat files) that programs can access at run time. To create a message
catalog from the source file in Example 3-1, perform the following tasks:

1. Use the nkcat def s command to convert symbolic identifiers for
message sets and messages to numbers that indicate the ordinal
positions of the message sets within the catalog and of messages within
each set.

2. Use the gencat command to create the message catalog from
nkcat def s output.

Section 3.4 discusses the nkcat def s and gencat commands.

3.1.1 General Rules

This section contains general guidelines that apply to the syntax of message
text source files. Section 3.1.6 contains stylistic guidelines for the content
of message text.

A message text source file (. nsg file) contains sequences of messages.
Optionally, you can order these messages within one or more message sets.
For a given application, there are usually separate message source files for
each localization; for example, there are source files for each locale (each
combination of codeset, language, and territory) with which users can run
the application.

3-4 Creating and Using Message Catalogs



If you do not quote values for identifiers, specify a single space or tab, as
defined by the source codeset, to separate fields in lines of the source file.
Otherwise, the extra spaces or tabs are treated as part of the value. Using
the character specified in a quot e directive to delimit all message strings
prevents extra spaces or tabs between the identifier and the string from
being treated as part of the string (see Section 3.1.4 for a description of the
quot e directive). Quoting message strings is also the only way to indicate
that the message text includes a trailing space or tab.

Message text strings can contain ordinary characters plus sequences for
special characters, as described in Table 3-1.

Table 3—1: Coding of Special Characters in Message Text Source Files

Description Symbol Coding Sequence
Newline NL (LF) \n

Horizontal tab HT \t

Vertical tab VT \v

Backspace BS \b

Carriage return CR \r

Form feed FF \f

Backslash \ \\

Octal value ddd \ddd 2
Hexadecimal value dddd \xdddd

2 The escape sequence \ddd consists of a backslash followed by one, two, or three octal digits that specify the
value of the desired character.

The escape sequence \xdddd consists of a backslash followed by the character x and one, two, three, or
four hexadecimal digits that specify the value of the desired character. The hexadecimal coding sequence is
an extension to X/Open UNIX CAE specifications and may not be supported on other systems that conform
to these specifications.

A backslash in a message file is ignored when followed by coding sequences
other than those described in Table 3—1. For example, the sequence \ m
prints in the message as m When you use octal or hexadecimal values to
represent characters, include leading zeros if the characters following the
numeric encoding of the special character are also valid octal or hexadecimal
digits. For example, to print $5.00 when 44 is the octal number for the dollar
sign, you must specify \ 0445. 00 to prevent the 5 from being parsed as
part of the octal value.

A newline character normally separates message entries. However, you can
continue the same message string from one line to another by entering a
backslash before the newline character. In this context, entering a newline
character means pressing the Return or Enter key on English language

Creating and Using Message Catalogs 3-5



keyboards. For example, the following two entries are equivalent and do not
affect how the string appears to the program user:

MSG I D This |ine continues \
to the next line.
MSG I D This line continues to the next |ine.

Any empty lines in a message source file are ignored. Thus, you can use
blank lines to improve the readability of the file.

3.1.2 Message Sets

Message sets are an optional component within message text source

files. You can use message sets to group messages for any reason. In an
application built from multiple program source files, you can create message
sets to organize messages by program module or, as done for the online
example xpg4deno, group messages that belong to the same semantic
category (error, informational, defined strings).

An advantage of grouping messages by program module is that, should the
module later be removed from the application, you can easily find and delete
its messages from the catalog.

Grouping messages by semantic category supports message sharing among
modules of the same application. When messages are grouped by semantic
category, programmers writing new modules or maintaining existing
modules for an application can easily determine if a message meeting their
needs already exists in the file.

A set directive specifies the set identifier of subsequent messages until
another set directive or end-of-file is encountered. Set directives have the
following format:

$SET set _id [ comment]

The set _i d variable can be one of the following:
¢ A number in the range [ 1 - NL_SETMAX]

The NL_SETMAX constant is defined in the / usr/include/limts. h
file. Numeric set identifiers must occur in ascending order within

the source file; however, the numbers need not be contiguous values.
Furthermore, set identifier numbers must occur in ascending order
from one source file to the next when multiple message source files are
processed by the gencat command to create a message catalog.

¢ A user-defined symbolic identifier, such as MSGErr or s

When you specify symbolic set identifiers, you must use the mkcat def s
command to convert the symbols to the numeric set identifiers required
by the gencat command.

3-6 Creating and Using Message Catalogs



Any characters following the set identifier are treated as comments.

If the message text source file contains no set directives, all messages are
assigned to a default message set. The numeric value for this set is defined
by the constant NL_SETDin the / usr/i ncl ude/ nl _t ypes. h file. When a
program calls the cat get s( ) function to retrieve a message from a catalog
that has been generated from sources that do not contain set directives, the
NL_SETD constant is specified on the call as the set identifier.

Note

Do not specify NL_SETD in a set directive of a message text
source file or try to mix default and user-defined message sets in
the same message catalog. Doing so can result in errors from the
nkcat def s or gencat utility. Furthermore, the value assigned
to the NL_SETD constant is vendor defined; using NL_SETD as

a symbolic identifier in the message text source file can result
in nkcat def s output that is not portable from one system to
another.

The rest of this section discusses entries that delete message sets from
an existing message catalog. Section 3.4.3 addresses the topic of catalog
maintenance more generally.

Message text source files can contain del set directives, which are used to
delete message sets from existing message catalogs. The del set directive
has the following format:

$del set n [ coment ]

The n variable must be the number that identifies the set in the existing
catalog to the gencat command. Unlike the case for the set directive, you
cannot specify symbolic set identifiers in del set directives. When message
files are preprocessed using the nkcat def s command, you have the option
of creating a separate header file that equates your symbolic identifiers with
the set numbers and message numbers assigned by the nkcat def s utility.
If you later want to delete one of the message sets, you first refer to this
header file to find the number that corresponds to the symbolic identifier
for the set you want to delete. This is the number that you specify in the
del set directive to delete that set.

Suppose that you are removing program module a_nod. ¢ from an
application whose associated message text source file is appl . nsg.
Messages used only by a_nod. ¢ are contained in the message set whose
symbolic identifier is A MOD_MSGS. The file appl _nsg. h contains the
following definition statement:

Creating and Using Message Catalogs 3-7



#define A MOD MSGS 2

The associated del set directive could then be the following:

$del set 2 Renmovi ng A_MOD_MSG set for a_nod.c in appl.cat.

You can specify del set directives either in a source file by themselves or
as part of a more general message source file revision that includes both
del set and set directives. In the latter case, make sure that multiple
directives occur in ascending order according to the specifier.

Assume that the preceding example is contained in a single-directive source
file named ki I | _nbd_a_nsgs. msg and existing message catalogs reside in
the / usr/ i b/ nl s/ msg directory. In this case, the following ksh loop would
carry out the message set deletion in catalogs for all locales:

for i in /usr/lib/nls/msg/*/appl.cat
do

gencat $i kill_nod_a_nsgs. nsg
done

3.1.3 Message Entries

A message entry has the following format:
msg_i d nessage_t ext

The nsg_i d can be either of the following:
¢ A number in the range [ 1 - NL_MSGVAX]

The constant NL_ MSGVAX is defined in the / usr/include/limts. h
file. Message numbers are associated with the message set defined
by the preceding set directive or, if not preceded by a set directive,
with the default message set NL_SETD, a constant defined in the
{usr/include/nl _types. h file.

Message numbers must occur in ascending order within a message
set; however, the numbers need not be contiguous values. If message
numbers are not in ascending order within a set, the gencat command
returns an error on attempts to generate a message catalog from the
source file.

¢ A user-defined symbolic name, for example, ERR | NVALI D | D

When a message text source file contains symbolic names, you must use
the nkcat def s command to convert the symbolic names to numbers that
the gencat command can process.

3-8 Creating and Using Message Catalogs



The nessage_t ext is a string that the program refers to by nsg_i d. You
can quote this string if a quot e directive enables a quotation character before
the message entry is encountered. Section 3.1.1 discusses the advantages of
quoting message text. Section 3.1.4 lists the rules for quot e directives.

The total length of ressage_t ext cannot exceed the maximum number of
bytes defined for the NL_ TEXTMAX constant in the/ usr/include/limts.h
file.

The rest of this section discusses entries that delete specific messages from
an existing message catalog. See Section 3.4.3 for a general discussion of
message catalog maintenance.

To delete a particular message from an existing message catalog, enter the
identifier for the message on a line by itself. This type of entry allows you
to delete a message without affecting the ordinal position of subsequent
messages. For the message deletion to be carried out correctly, use the
following guidelines:

1. Specify a numeric message identifier.

If you usually use symbolic identifiers in your message text source
files, you can obtain the associated numbers from the message header
file that is produced when the source file was last processed by the
nkcat def s command. Unlike the case for deleting message sets with
the del set directive, nkcat def s does not generate an error if you use
a symbolic message identifier to delete a message; however, you will
delete the wrong message if the symbol is not preceded by the same
number of message entries as is in the catalog.

2. The identifier cannot be followed by any character other than a newline.
If nsg_i d is followed by a space or tab separator, the message is not
deleted; rather, the message text is revised to be an empty string.

3. If the catalog contains user-defined message sets, make sure the
appropriate set directive precedes the entry to delete the message;
otherwise, the message may be deleted from the wrong message set. For
reasons similar to those noted for message identifiers in step 1, use a
numeric rather than symbolic set identifier in the set directive.

4. Unless you are replacing all messages in a set, use only the gencat
command to process the file. To replace all messages in a set, use the
nkcat def s utility, which generates a del set directive before each set
directive you specify in the input file. This is helpful when you want to
replace all messages in a message set, but it will not produce the results
you intend if your input source refers only to one or two messages that
you want to delete.

Consider the following two examples:

Creating and Using Message Catalogs 3-9



¢ This example uses message text source input processed with the gencat
command. The command in this example results in the deletion of
message 5 from message set 2.

$set 2
5

e This example uses the same source input. However, in this case, the
source is preprocessed with the nkcat def s command. The addition
of the del set directive results in the deletion of all messages in set 2
from the message catalog.

$del set 2
$set 2
5

3.1.4 Quote Directive

A quot e directive enables or disables a quote character that you use to
surround message text strings. The quot e directive has the following
format:

$quot e[ char act er]

The char act er variable is the character to be recognized as the message
string delimiter. In the following example, the quot e directive specifies the
double quotation mark as the message string delimiter:

$quote "

By default, or if a char act er is omitted, quoting of message text strings is
not recognized.

A source text message file can contain more than one quot e directive, in
which case each directive affects the message entries that follow it in the file.
Usually, however, a message file contains only one quot e directive, which
occurs before the first message entry.

3.1.5 Comment Lines

A line beginning with the dollar sign ($) followed by a space or tab is treated
as a comment. Neither the nkcat def s nor the gencat commands interpret
comment lines.

Remember that message files may be translated by individuals who are
not programmers. Be sure to include comment lines with instructions to
translators on how to handle message entries whose strings contain literals
and substitution format specifiers. For example:

$ Note to translators: Translate only the text that is within
$ quotation marks ("text text text") on a given line.
$ If you need to continue your translation onto the next |ine,

3-10 Creating and Using Message Catalogs



$ type a backslash (\) before pressing the newine

$ (Return or Enter) key to finish the nessage.

$ For an exanple of line continuation, see the

$ line that starts with the message identifier E_COM EXI STBADGE.

$ Note to translator: Wen users see the followi ng message, a badge

$ nunber appears in place of the %d directive.

$ You can nove the % d directive to another position

$ in the translated nessage, but do not delete %d or replace %d with
$ a word.

$

E_COM EXI STBADGE "Enpl oyee entry for badge nunber %d \

al ready exists"

Note to translator: The item 9%2%$d/ %d4$d/ ¥8$d i ndi cates nonth/day/year

as expressed in deci mal nunbers; for exanple, 3/28/81.

To inprove the appropriateness of this date input format, you can change
only the order of the date elenents and the delimter (/).

For exanple, you can change the string to %$d/ 9%2$d/ ¥8%d or

%4.$d. 92$d. ¥8%d to indicate day/ nmonth/year or day.nonth.year

(28/3/81 or 28.3.81).

i

_SCR_| N_DATE_FMT " oR$d/ YA $d/ Yas$d"

The operating system provides the t r ans utility, discussed in Section 3.3, to
help translators quickly locate and edit the translatable text in a message
source file. This utility does not eliminate the need for information from the
programmer on message context and program syntax.

3.1.6 Style Guidelines for Messages

When creating messages and other text strings in the English language,
keep the following information in mind:

e Text strings in the English language are usually shorter than equivalent
text strings in other languages. When text strings are translated, their
length can increase an average of 30 to 40 percent. Expect even larger
percentage increases for strings containing fewer than 20 characters.

The following guidelines address the likelihood that text strings will
grow when translated from the English language to another language:

— Ifyou must limit a text string to one line (for example, 80 characters),
make sure the English language text occupies no more than half
of the available space. Whenever possible, allow text to wrap to a
subsequent line rather than restricting it to an arbitrary length.

— Do not design a menu, form, screen, or window in which English
language text uses most of the available space.

Creating and Using Message Catalogs 3-11



— Design a dialog box so that its components can be moved around. The
developers who localize your application may have to reorganize the
contents of a dialog box because of text length changes and, for Asian
languages, to accommodate Asian character input.

— Do not embed text in a graphic. If text is embedded in a graphic, the
entire graphic must be redone when the application is localized.
Furthermore, the translated text may cause the graphic to grow
in size or to lose visual appeal.

¢ Nouns in languages other than English may have gender that affects the
spelling of the noun itself and associated adjectives and verbs. The way a
noun is spelled can also change, depending on whether the noun is the
subject or object of a verb, or the object of a preposition. There can be
additional grammatical rules, such as those for creating affirmative,
negative and imperative verb forms, that are different from the English
language. These conditions lead to the following rules:

— Do not create a message at run time by concatenating different kinds
of strings. For example, do not concatenate strings that represent
different nouns, adjectives, verbs, or combinations of these.

If adjectives and verbs can have multiple referents, each with

a different gender, the translator may not be able to create a
grammatically correct counterpart for all the possible sentences that
the user may see. In this case, the developer who is localizing the
application may have to redesign the error-handling logic so that the
application returns several distinct messages rather than one.

— Be careful about inserting the same text variable into different
strings. Word spelling may have to change if each string represents
a different grammatical context. Furthermore, you cannot assume
that there is a one-to-one correspondence between English language
words and their counterparts in other languages. For example, you
can create a negative statement in the English language by creating
a text variable that contains the word “not” and inserting that
variable into a verb phrase. The message could not be translated to
the French language, however, which usually requires two words,
“ne” before the verb and “pas” after the verb, to negate meaning.

Pathnames, file names, and strings that are complete sentences are
usually safe to insert into other strings.

— Avoid using the word “None” as a button label or menu item; this word
may be impossible to translate if its referents have different gender.

— In general, create messages that are complete sentences. Because of
differences in grammatical conventions from language to language,
building messages from fragments can create translation issues.

3-12 Creating and Using Message Catalogs



If the message is composed of a component that identifies a system
entity (a command, utility, error severity level, server, and so forth)
and a separate component that contains informational or error text,
you can break the rule about starting messages with a verb. In this
case, be sure to include comments to the translator in your message
source file about how the message components are constructed

and about the system entity referenced in the message. Also, use
grammatically complete phrases for the informational or error text
component. See Section 3.1.5 for information about adding comments
to message source files.

— Do not start messages with a verb (unless the message is an
imperative where the subject “you” is understood).

The following messages cannot be translated into some languages
because the translator cannot determine the subject of the sentence
or the correct form of the verb in the local language:

Is a directory.

Coul d not open file.

Unique identifiers that are based on the first letters of words may not
be unique when the words are translated. For example, a common
practice in applications that prompt users to choose among several items
is to accept a single character as the item identifier. Make sure your
application does not require this character to be the first character or
first several characters in the item name. The translator should have the
option of substituting any character or a number for the item identifier.

Languages can have syntax rules that require translators to change word
order. Therefore, use substitution specifiers as described in Section 2.4.2
so that translators can change the order of message components to meet
local language requirements.

Translations of messages with vague, ambiguous, or telegraphic wording
are likely to be incorrect. Use the following guidelines to help ensure
accurate translation:

— Include documentation in the message file, just as you would
for a program source file. Provide comments that describe
sentence constructions and that clarify any wording that might be
misconstrued by a non-native speaker.

— Include articles (the, a, an) and forms of the verb “to be” where
appropriate. Programmers often omit these words to reduce the
size of message strings; however, the omission sometimes makes
it difficult to distinguish nouns from verbs, subject nouns from
predicate nouns, and active voice from passive voice. The message
“Maximum parameter count exceeded” illustrates this problem.

Creating and Using Message Catalogs 3-13



— You can include very common contractions, such as “can’t” and
“don’t”, but avoid less commonly used contractions, like “should’ve”.
If you are using contractions in the English language to conserve line
space, be aware that your objective is likely to be lost in translation.

— Avoid using most abbreviations that programmers commonly use in
variable names and code comments. In particular, avoid such terms
as pkt, msg, tbl, ack, and max. These abbreviations do not appear in
a dictionary, and translators may have to guess at what they mean.
On the other hand, you can use formal abbreviations for product and
utility names and acronyms (such as ANSI or TCP/IP for names
of standards, protocols, and so forth that appear in commercial
literature).

— Use grammatically correct words. English langugage speakers have
a tendency to create new verbs or adjectives out of existing nouns
and new nouns out of existing verbs. This practice is confusing to
translators, particularly when the intended usage is not one of those
noted in an English language dictionary. For example, consider the
use of the word “parameter” as an adjective in the message “Invalid
parameter delimiter.”

— Avoid using slang or words whose intended meaning is not included
in a dictionary. Slang usually has no equivalent in another language
or can be misinterpreted. For example, the message “Server hang”
may be meaningful to English language speakers who develop
software or manage systems, but the meaning of the message may
be transformed in another language to “The system lynched the
waiter.” The message “The %s server failed.” is more likely to be
translated correctly.

¢ In general, use positional format elements in message files. However,
if the message contains only one format flag, a positional element adds
no value and tends to confuse the translator. Message files that contain
positioning format elements should be heavily commented to help the
translator understand the intended result.

3.2 Extracting Message Text from Existing Programs

If you have an existing program that you want to internationalize, the
operating system provides the following tools to help you extract message
strings into a message source file and to change calls to retrieve messages
from a message catalog:

3-14 Creating and Using Message Catalogs



Tool Description

extract command Interactively extracts text strings from program source
files and writes each string to a source message file.
The command also replaces each extracted string
with a call to the cat get s( ) function.

strextract command Performs string extraction operations in batch.

st rmer ge command Reads strings from the message file produced by
strextract and, in the program source, replaces those
strings with calls to the cat get s( ) function.

Consider the following call:

printf("Hello, world\n");

You can use the extr act command, or the strextract command followed
by the st r mer ge command, to do the following:

¢ Create the following entries in a message text source file (assuming that
"Hello, world" was the first string extracted):

$set 1
$quote "
1 "Hello, world\n"

¢ Change the printf () call to the following:
printf(catgets(cat, 1, 1, "Hello, world\n"));

Assuming that input to the commands is a program source file named
pr og. ¢, the commands create the following three new files: pr og. nsg
(message text source file), nl _pr og. ¢ (internationalized version of the
program source), and pr og. str (an intermediate strings file that other
utilities can reference). The commands use the following files along with
the input source program:

e A patterns file

This file specifies patterns that the extraction commands use to find
strings in the program. You can specify your own patterns file. By
default, the extraction commands use the/ usr/ i b/ nl s/ pat t er ns file.

* An optional ignore file

This file specifies strings that the extraction commands should ignore.

The extract, strextract, and st r mer ge commands do not perform

all the revisions necessary to internationalize a program. For example,
you must manually edit the revised program source to add calls to

setl ocal e( ), catopen( ), and cat cl ose( ). In addition, you may need
to add routines for multibyte character conversion (for Asian locales) and
improve user-defined routines to vary behavior according to values defined
in message catalogs or in the | angi nf o database.

Creating and Using Message Catalogs 3-15



Figure 3—1 illustrates the files and tools that help you change an existing
program to use a message catalog. For detailed instructions on using
the extract, strextract, and st r mer ge commands, see ext ract (1),
strextract (1), strnmerge(l), and patt er ns(4).

Figure 3—1: Converting an Existing Program to Use a Message Catalog

Source file
(prog.c)

Ignore file (——»
strextract  |q— /|_> extract
(““rce's" ( —(Patterns file(

(prog.str)

edit
source.str

strmerge ¢

| >

nl_source source.msg
((nl_prog.c) ( (prog.msg) ;
| | translate
(using trans)

Sl gencat  f¢——

nl_source

nl_source

(nl_prog.c)

compiler

(co) source.cat
| (prog.cat)

a.out 4—'
I:l = Internationalization tool

ZK-0045U-Al

3.3 Editing and Translating Message Source Files

You can use any text editor to edit message text source files, provided that
the following is true:

e The input device is capable of generating the necessary characters.

3-16 Creating and Using Message Catalogs



e If 8-bit or multibyte characters are required, the editor can transparently
handle this data.

The requirement on input devices is satisfied for languages other than
Western European by terminal drivers, locales, fonts, and other components
that are available with localized software subsets.

The requirement for transparent handling of 8-bit and multibyte data is
satisfied by the ed, ex, and vi editors. Localized software subsets may also
include enhanced versions of additional editors, such as Emacs, that can
handle 8-bit and multibyte characters.

The operating system includes the t r ans command to assist those who
translate message text source files for different locales. The command
provides a multiwindow environment so users can see both the original
and translated versions of the file. In addition, the command automatically
guides users in the file from one translatable string to the next. For more
information, see t r ans(1).

See Section 3.1.5 for examples of comments to include in message text source
files to ensure that messages are correctly translated.

For examples of translated message text source files, search the
[ usr/ exanpl es/i 18n/ xpg4deno/ directory for *. nsg files, as follows:

% cd /usr/exanpl es/i 18n/ xpg4deno/
%ls *.msg

A translated message catalog is associated with a particular locale and
encoding format. Many languages are supported by multiple locales and
encoding formats, and this generates a requirement that messages in the
same language be available in multiple encoding formats. Although you can
use codeset converters to convert message source files, building and installing
multiple versions of the same catalog for a single language is expensive.
Therefore, the cat open( ) and cat get s( ) functions support dynamic
codeset conversion of message catalogs. A set of . nsg_conv- | ocal e_nane
files in the / usr/ shar e directory controls codeset conversion of message
catalogs. See cat open(3) for detailed information.

3.4 Generating Message Catalogs

The gencat command generates message catalogs from one or more message
text source files. If the source files contain symbolic rather than numeric
identifiers for message sets, message entries, or both, those source files must
first be preprocessed by the nkcat def s command. Example 3-2 illustrates
interactive processing of message text source files with symbolic identifiers

Creating and Using Message Catalogs 3-17



for a default and nondefault locale. This example provides context for later
sections, which discuss each command.

Example 3-2: Generating a Message Catalog Interactively

% nkcat def s xpg4denp xpg4deno. nsg | gencat xpg4deno. cat
nkcat def s: xpg4deno_nsg. h created

% set env LANG fr_FR | SC8859-1

%nkdir fr_FR

% nkcat def s xpg4denmo xpg4deno_fr_FR msg -h | gencat \

fr_FR/ xpg4deno. cat

nmkcat def s: no nmsg. h created [6]

The nmkcat def s command specifies the following:
¢ The root name to use for the header file

The header file maps symbolic identifiers used in the program to
their numeric values in the message catalog.

¢ The name of the message text source file being processed

The preprocessed message source is piped to the gencat command,
which specifies the name of the message catalog.

The nkcat def s command prints to standard output the name of the
header file it creates. The utility appends _nsg. h to the root name to
create a name for the header file.

When generating a message file for a nondefault locale, you must set the
LANG environment variable to the name of the locale that the message
catalog will support, in this case, f r _FR. | SO8859- 1.

Because the name of the message catalog opened by the program does
not vary by locale name, you must create a directory in which to store
each message catalog variant.

This line creates the local variant of the message catalog. The header
file created by the nkcat def s utility does not vary by locale. The header
file has already been created for the default message catalog, so this
nkcat def s command includes the - h flag to disable creation of another
header file. The catalog specified to the gencat command is directed
to the temporary locale directory. On user systems, you can move this
version of the catalog to the /usr/1i b/ nl s/ msg/fr_FR | SO8859- 1
default directory or to a directory that is application specific.

[6] The nkcat def s command announces that no header file has been
created, as intended.

3-18 Creating and Using Message Catalogs



See the / usr/ exanpl es/ i 18n/ xpg4deno/ Makef i | e file for an example
of how you can integrate generation of a message catalog into the makefile
that builds an application.

3.4.1 Using the mkcatdefs Command

The nmkcat def s command preprocesses one or more message source files
to change symbolic identifiers to numeric constants. The utility has the
following features:

Sends preprocessed message source to standard output, so you can either
pipe the output to the gencat command as described in Example 3-2 or
use the > redirection specifier to print the output to a file

Creates a header file that maps numbers identifying message sets and
messages in the new message catalog with the symbolic identifiers
referred to in source programs

You must include this header file in all the program modules that open
this catalog and refer to message sets and messages that use symbolic
identifiers.

The advantage of symbolic identifiers is that you can specify them in place
of numbers when you code calls whose arguments include message sets
and message identifiers. Symbolic identifiers improve the readability of
your program source code and make the code independent of the order in
which message sets and entries occur in the message catalog. Each time
that the nkcat def s utility processes a message text source file, it produces
an associated header file to equate set and message symbols with numbers.
Updating your program after a message file revision can be as simple as
compiling it with the new header file.

Note

The nkcat def s command includes two options that are not
discussed in this chapter.

The - S option enables symbolic name support in output passed
to the gencat command. The dspnsg command (used in shell
scripts) has a corresponding - S option to enable use of symbolic
names to retrieve messages from message catalogs that were built
to include this support. (The cat get s( ) function in the | i bc
Library is restricted at run time by the XSH specification of the
X/Open UNIX standard to use numeric identifiers, not symbols,
to retrieve messages from a catalog.)

The - moption enables automatic generation of a default message
string and assigns it to a symbolic name. This feature removes
the requirement to specify a default message string in dspnsg

Creating and Using Message Catalogs 3-19



command lines or cat get s( ) calls for display when the
command or function cannot retrieve a message from a catalog.

See nkcat def s(1) for more information about these options.

The option of defining symbolic identifiers for message sets and catalogs

is not included in the XSH specification, so do not assume that the

nmkcat def s command is available on all operating systems that conform to
this specification. However, the source text message file and header files
produced by the nkcat def s command should be portable among systems
that conform to the specification.

The nmkcat def s command maps numbers to symbol identifiers based on
the ordinal position of those symbols in the message source input stream
currently being processed. When you are processing changes to an existing
catalog, make sure the symbols you specify in the source input to the
nkcat def s command are correctly mapped to numeric counterparts for
those symbols in the existing message catalog.

In general, consider the nkcat def s utility a tool for regenerating an entire
message catalog, not just parts of it. Use the following guidelines:

e For message and message set deletions, specify numeric identifiers in
place of symbols at strategic points in the message source input. This
technique prevents deletions of message sets and individual messages
from affecting the ordinal position of subsequent entries.

e Define new sets at the end of the input source stream (at the end of the
last source file if a catalog is generated from a sequence of source files).

¢ Define new messages for an existing message set at the end of that set.

e Specify source entries for the entire catalog; otherwise, nkcat def s will
not produce a complete message header file. You need a complete header
file for compiling programs that use both current and new symbols to
identify messages. In addition, nkcat def s generates a del set directive
before each set directive you specify in the input source. In other words,
nkcat def s expects your input to completely replace all messages in
the referenced set.

e Ifthe catalog was generated from multiple source files, specify source
files in the same order as they were specified to generate the existing
catalog; otherwise, you invalidate headers used to compile all program
modules that open the catalog. You can avoid recompiling programs
that do not refer to new messages as long as you do not invalidate the
symbol-number mapping in the message header file with which those
programs were compiled.

3-20 Creating and Using Message Catalogs



e Do not specify NL_SETDin a set directive of a message text source file or
try to mix default and user-defined message sets in the same message
catalog. Doing so can result in errors from the nkcat def s or gencat
utility.

e Keep in mind that the nkcat def s utility condenses multiple spaces
between the message indentifier and the message text to a single space.
This modification ensures compatibility with the UNIX standard and the
requirements of other UNIX and LINUX platforms.

3.4.2 Using the gencat Command

The gencat command merges one or more message text source files into a
message catalog. For example:

# gencat en_US/test_program cat test_program en_US. nmsg

The gencat command creates the message catalog if the specified catalog
path does not identify an existing catalog; otherwise, the command uses the
specified message text source file (or files) to modify the catalog. The gencat
command accepts message source data from standard input, so you can omit
the source file argument when piping input to gencat from another facility,
such as the nkcat def s command.

The X/Open UNIX standard does not specify file name extensions for
message source files and catalogs. On Tru64 UNIX systems, the convention
is to use the . msg extension for source files and the . cat extension for
catalogs. Because the message catalogs produced by the gencat command
are binary encoded, they may not be portable between different types

of systems. Message text source files preprocessed by the nkcat def s
command should be portable between systems that conform to X/Open UNIX
CAE specifications.

See gencat (1) for more details.

3.4.3 Design and Maintenance Considerations for Message Catalogs

Message sets and message entries are identified at run time by numbers
that represent ordinal positions within one version of a message catalog.
When you add or delete message sets and entries in an existing catalog, you
must be careful not to change the ordinal position specifiers that identify
messages.

Consider a message whose English language text "Enter street address:

" is identified as 3 : 10 (tenth message of the third message set) in the
original generation of a message catalog. That message will have a different
identifier in the next version of the catalog if the revised source input to the
gencat command performs any of the following operations:

Creating and Using Message Catalogs 3-21



e Inserts message sets at the beginning of the input source

e In the third message set, inserts any messages before the "Enter street
address: " entry

¢ In the third message set, deletes messages before the "Enter street
address: " entry without specifying a message deletion directive (a
message number followed by no other characters on the line)

Consider the value of adding comments to code to explain restrictions on
ordinal positioning to potential translators, as demostrated in the following
two program segments:

$ Note - Do not reorder nessage descriptors for columms.

S_COM LI ST_ROW " %bd %20s %20s %s 9®9s\ n"

$ The first descriptor nust always be displayed at the begi nning of error nessages.
$ The second descriptor contains the first nane.
$ The third descriptor contains the surnane.

S COM LI ST_ERROR "%d$s: Error badge nunber for $2%s  %8$s incorrect\n"

When program source refers to messages by numeric identifiers, any
changes in ordinal positions of message sets and message entries require
changes to program calls that refer to messages. When a program source file
refers to messages by symbolic identifiers, the maintenance cost of ordinal
position changes is sharply reduced for each module. In other words, you
can synchronize any particular program module with the new version of a
message catalog by compiling with the new header file generated by the
nkcat def s utility.

The ability to compile program source to synchronize with new message
catalog versions does not address issues of complex applications where
multiple source files refer to the same message catalog. For such
applications, a usual goal is to ensure module-specific maintenance updates.
In other words, after an application is installed at end-user sites, you should
be able to update a specific module and its associated message catalogs
without recompiling and reinstalling all modules in the application. You can
achieve this goal in a number of ways. The following design options can
help you decide on a message system design strategy that works best for
applications developed and maintained at your site:

* One message source file and catalog for each program module
— Advantages

This is the easiest strategy to implement for the individual
programmer as it eliminates problems that arise when programmers
share one source. Source control software, such as the Revision
Control System (RCS) and the Source Code Control System

3-22 Creating and Using Message Catalogs



(SCCS), help to manage files that multiple programmers maintain.
Sometimes, however, programmers work on different application
versions in parallel. This additional layer of complexity is not easy to
manage. A one-to-one correspondence between message source files
and associated program sources makes it easier to determine whose
changes are needed in the message file to build the application for a
particular release cycle at a specific point in time.

When the message catalog is module specific, you can replace the
entire message catalog when a new binary module is installed at
end-user sites. Module replacement minimizes risk to the run-time
behavior of other modules in the same application.

Disadvantages

At run time, the application may need to open and close as many
message catalogs as there are modules. Opening a message catalog
entails some performance overhead and adds to the number of open
file descriptors assigned to the user’s process and to the systemwide
open file table. There is a systemwide and process-specific maximum
for the number of files that can be open simultaneously, and these
limits vary from one system to another.

On Tru64 UNIX systems, opened message catalogs are mapped into
memory (and the file closed) to improve performance of message
retrieval. This operation also means that opening multiple message
catalogs has little impact on open file limits. This situation, however,
may not exist on other platforms to which you might need to port
your application.

¢ One message source file for each program source and a single catalog
for each application

Advantages

This technique has the same advantages as one message source file
and catalog for each program as described previously. In addition,
the single catalog design eliminates any problems associated with
numerous open operations if you port your application to systems
other than Tru64 UNIX.

Disadvantages

When you generate a message catalog from multiple source files,
maintainability problems can occur if you do not carefully control
message set directives. The best rule to follow is to define a fixed
number of sets for each source file. For example, define one set

for errors, one set for informational displays, and one set for
miscellaneous strings. If you allow programmers to change the
number of message sets for different versions of their message source
files, the message set numbers for subsequent program modules are

Creating and Using Message Catalogs 3-23



likely to change from one version of the catalog to another. This
means that other modules whose source code was not changed may
have to be included in an update release simply for synchronization
with a new version of the message catalog.

There are similar maintainability problems if no source files define
message sets or if only some of them do. The nmkcat def s and gencat
commands concatenate input source files so that the end-of-file
marker exists only at the end of the last input source file. This
means that, if no sets are defined in any file, all messages are
considered part of the default message set. (In program calls, the
NL_SETD constant refers to the default message set.) In this case,
adding messages to any source file other than the last one changes
the numeric identifiers of messages in all source files that follow on
the input stream.

Another disadvantage of the multiple source file to single message
catalog design arises when the resulting message catalog is extremely
large and memory is limited. As mentioned earlier, message catalogs
are mapped into memory when opened so that disk I/O for message
retrieval does not impede performance. If the users who run your
application typically use software and messages that are associated
only with a subset of the available modules, module-specific message
catalogs can conserve the total amount of memory used when
message catalogs are opened for a particular execution cycle.

Finally, if only some message source files define message sets,
message sets can cross source file boundaries. Messages defined

in source files that occur later on the input stream are considered
part of a message set defined by a source file processed earlier. This
arrangement can also result in message entry position changes when
new messages are added to different source files.

¢ Combination strategy

Depending on your application, it might make sense to have one or more
message catalogs that are generated from multiple, module-specific
source files and some that are generated from a single source file that is
maintained by all programmers.

For example, if many modules in the application generate messages for
the same error conditions, message text consistency is a desirable goal.
In this case, generate one message catalog with a single message text
source file in which error messages are defined. Use this source file to
define message sets for errors, warnings, and so forth. Programmers
would be instructed to add new messages only to the end of each set and
to delete obsolete messages with message deletion directives. Message
deletion directives remove messages from the catalog without changing
the position numbers for subsequent messages in the same set.

3-24 Creating and Using Message Catalogs



To make the task of maintaining message files easier, consider the following
guidelines:

Add new messages at the end of a message set. This helps to maintain
backward compatibility with existing message catalogs.

Do not remove obsolete messages. This allows older programs to continue
to work with newer message catalogs. You can, however, add comments
to the message file identifying the message as obsolete.

Resist the temptation to make cosmetic changes to messages. Because
changed messages often require retranslation, you must weigh this cost
against the need for change. In general, only change messages that
contain incorrect parameters (number or type), incorrect information,
and egregious spelling or grammatical errors.

Correct messages without changing the placement of the message in
the file. This avoids any mismatch between old and new programs or
catalogs. Also, add a comment to the file explaining the correction.

3.5 Displaying Messages and Locale Data

After a message catalog is created, you can display its contents to make
sure that the catalog contains the messages you intended and that both
messages and message sets are in the proper order. Your application might
also include scripts that, like programs, need to determine locale settings,
retrieve locale-dependent data, and display messages in a locale-dependent
manner at execution time.

The following list describes the dspcat , dspnsg, and pri nt f commands,
which display messages in a message catalog, and the | ocal e command,
which displays information for the current locale:

dspcat command

The dspcat command can display all messages, all messages in a
particular set, or a specific message. The following example displays the
fourth message in the second set of the xpg4deno. cat catalog:

% cd /usr/exanpl es/ xpg4deno/ en_US
% dspcat xpg4deno.cat 2 4
Are these the changes you want to nmake?%

The dspcat command also includes a - g flag, which reformats the
output stream for an entire catalog or message set so that it can be piped
to the gencat command. This option may be useful if you need to add
or replace message sets in one catalog by using message sets in another
catalog, perhaps as part of an application update procedure at end-user
sites. You can also use the dspcat - g command to create a source file
from an existing message catalog. You can then translate or customize

Creating and Using Message Catalogs 3-25



the source file for end users before building the translated source into a
new catalog with the gencat command.

The following example first displays the message source for the message
catalog used by the du command for the en_US. | SO8859- 1 locale and
then redirects that source to a file that can be edited:

% dspcat -g \
/fusr/lib/nls/nmsg/en_US. | SOB859-1/du. cat

$del set 1

$set 1

$quote "

1 "usage: du [-a]-s] [-klrx] [name ...]\n"
2 "du: Cannot find the current directory.\n"
3 "du: 9%\ n\

The specified pat hname exceeded 255 bytes.\n"

4 "du: 9%\ n\

The generated pat hname exceeded 255 bytes.\n"

5 "du: Cannot change directory to ../% \n"
6 "Qut of menory"

% dspcat -g \
/fusr/lib/nls/msg/en_US. | SOB859-1/du.cat >\
du. nsg

e dspnsg command

The dspnsg command displays a particular message from a catalog
and optionally allows you to substitute text strings for all % or % $s
specifiers in the message. For example:

% dspnmsg xpg4denp.cat -s 1 9 'Cannot open % for output’ xpg4denp.dat
Cannot open xpg4denp.dat for output %

e printf command

The pri ntf command writes a formatted string to standard output. Like
the printf () function, the command supports conversion specifiers
that let you format messages in a way that is locale dependent. You can
also use this command in scripts, along with the | ocal e command, to
interpret “yes/no” responses in the user’s native language. For example:
if printf "%\n" "$response” | grep -Eq "‘local e yesexpr‘"
then

<processing for an affirnative response goes here>
el se

<processing for a response other than affirmative goes here>
fi

e | ocal e command

The | ocal e command displays information for the current locale setting
or tells you what locales are installed on the system. In the following
example, the | ocal e command displays the current settings of all

3-26 Creating and Using Message Catalogs



locale variables, then the keywords and values for a specific variable
(LC_MESSAGES), and finally the value for a particular item of locale data:

% | ocal e

LANG=en_US. | SC8859- 1

LC COLLATE="en_US. | SC8859- 1"
LC CTYPE="en_US. | SO8859- 1"
LC_MONETARY="en_US. | S08859- 1"
LC NUMERI C="en_US. | SC8859- 1"
LC TI ME="en_US. | SC8859- 1"

LC MESSAGES="en_US. | S(8859- 1"

LC ALL=
% | ocal e -ck LC MESSAGES
LC_MESSAGES

yesexpr=""([yY]|[yY][eE][sS])"
noexpr=""([nN | [nN| [oQ )"
yesstr="yes:y: Y"

nostr="no: n: N'

% | ocal e yesexpr

MLy [yYl[eE] [sS])

See dspcat (1), dspnsg(1), pri nt f (1), and | ocal e(1) for more information
on the preceding commands.

3.6 Accessing Message Catalogs in Programs

Programs call the following functions to work with a message catalog:
e catopen( ) to open message catalogs (Section 3.6.1)
e catclose() toclose message catalogs (Section 3.6.2)

e catgets() toread program messages (Section 3.6.3)

Message catalogs are usually located through the setting of the NLSPATH
environment variable. The following sections discuss this variable and the
calls in the preceding list.

3.6.1 Opening Message Catalogs

Programs call the cat open( ) function to open a message catalog. For
example:

#i ncl ude <l ocal e. h>
#i ncl ude <nl _types. h>

nl _catd MsgCat ;
set |l ocal e(LC_ALL, "");

Creating and Using Message Catalogs 3-27



MsgCat = catopen("new application.cat", NL_CAT_LOCALE);

In this example, the cat open( ) function returns a message catalog
descriptor to the MsgCat variable. The variable that contains the descriptor
is declared as type nl _cat d. The cat open( ) function and the nl _catd
type are defined in the / usr/i ncl ude/ nl _t ypes. h header file, which
the program must include. A call to cat open( ) requires the following
arguments:

¢ The name of the catalog

The catalog name is customarily specified as fi | enane. cat (or a
program variable whose value is f i | enane. cat ) without the preceding
directory path. At run time, the cat open( ) function determines the
full pathname of the catalog by integrating the name argument into
pathname formats defined by the NLSPATH environment variable. If
you specify any slash (/) characters in the catalog name argument, the
cat open( ) function assumes that the specified catalog name represents
a full pathname and does not refer to the value of the NLSPATH variable
at run time.

e An of | ag argument

This argument is either the NL_CAT_LOCALE constant (defined

in /usr/incl ude/ nl _types. h) or zero (0). If you specify the
NL_CAT_LOCALE constant, the cat open( ) function searches for a
message catalog that supports the locale set for the LC_MESSAGES
environment variable. If you specify 0, the cat open( ) function
searches for a message catalog that supports the locale set for the LANG
environment variable.

A 0 argument is supported for compatibility with XPG3. The
NL_CAT_LOCALE argument conforms to The Open Group’s current UNIX
CAE specifications and is recommended.

Although the LC_MESSAGES setting is usually inherited from the LANG
setting rather than set explicitly, there are circumstances when programs
or users set LC_MESSAGES to a different locale than set for LANG

The names and locations of message catalogs are not standard from one
system to another. The Open Group’s UNIX standard therefore specifies the
NLSPATH environment variable to define the search paths and pathname
format for message catalogs on the system where the program runs.

The cat open( ) function refers to the variable setting at run time to

find the catalog being opened by the program. If you do not install your
application’s message catalogs in customary locations on the user’s system,
your application’s startup procedure will need to prepend an appropriate
pathname format to the current search path for NLSPATH.

3-28 Creating and Using Message Catalogs



The syntax for setting the NLSPATH environment variable is as follows:

NLSPATH= [ [[]l [/directory] [[[/]] | [substitution-field)] | [literal]] ...
[[:]alternate_pathname] ...]

A leading colon (:) or two adjacent colons (::) indicate the current directory;
subsequent colons act solely as separators between different pathnames.
Each pathname in the search path is assembled from the following
components:

/ di rect ory to indicate the full directory path to the catalog

You can also specify . / di r ect ory to indicate a relative path.

substitution-field, which can be one of the following directives:

9N

The value of the first argument to cat open( ), for example,
xpg4deno. cat in the following call:

cat open( " xpg4deno. cat", NL_CAT_LCOCALE);
%
The locale set for one of the following:

LC_MESSAGES, if the second argument to cat open( ) is the
NL_CAT_LOCALE constant

LANG, if the second argument to cat open( ) is zero (0)

This substitution field represents an entire locale name, such as
fr FR 1 S08859-1.

%

The language component of the locale set for either the LC_MESSAGES
or LANGvariable (as determined by the same conditions specified
for %)

Given the locale name fr _FR. | SO8859- 1, this substitution field
represents the component fr.

%

The territory component of the locale set for either the LC_MESSAGES

or LANGvariable (as determined by the same conditions specified
for 94.)

Given the locale name fr _FR. | SO8859- 1, this substitution field
represents the component FR.

Creating and Using Message Catalogs 3-29



- %

The codeset component of the locale set for either the LC_MESSAGES
or LANGvariable (as determined by the same conditions specified
for %)

Given the locale name fr _FR. | SO8859- 1, this substitution field
represents the component | SO8859- 1.

- %0
A single %character
e [|iteral toindicate the following:

— Directory or file names that cannot be specified using substitution
fields

— Field separators, for example, an underscore (_) or period (.) between
the language, territory, and codeset substitution fields or a slash (/)
between the %4 and %N substitution fields

To clarify how the LC_MESSAGES setting, NLSPATH setting, and the
cat open( ) function interact, consider the following set of conditions:

e The locale set for LC_ MESSAGESis fr_FR. | SO8859- 1. (Unless explicitly
set by the user or program, the locale set for LC_MESSAGES is derived
from the locale set for LANG)

e The NLSPATH variable is set to the following value:

2% _% /9N /usr/kits/ xpgd4deno/ nsg/ % _% / YN \
Jusr/lib/nls/msg/ %/ %N

e The program initializes the locale with the following call:

set |l ocal e(LC_ALL, "");

¢ The program opens a message catalog with the following call:
i\/lsgCat = cat open("xpg4deno. cat", NL_CAT_LOCALE);

Given the preceding conditions, the cat open( ) function looks for catalogs
at run time in the following pathname order:

1. xpg4deno. cat

3-30 Creating and Using Message Catalogs



2. . /fr_FR/ xpg4deno. cat
3. lusr/kits/xpg4deno/ nmsg/ fr_FR/ xpg4denv. cat
4. Jusr/lib/nls/msg/fr_FR | SO8859- 1/ xpg4deno. cat

When troubleshooting run-time problems, consider how cat open( ) behaves
when certain variables are not set.

If LC_MESSAGES is not set (directly or through the LANG variable), the %4
and 9% fields contain the value C (the default locale for LC_MESSAGES) and
the % and % substitution fields are omitted from the search path. In this
case, cat open( ) searches for the following catalogs:

1. xpg4deno. cat

2. ./ C_/xpg4denp. cat

3. lusr/kits/xpg4deno/ msg/ C/ xpg4deno. cat
4. [lusr/lib/nls/msg/ C xpgddeno. cat

If LC_MESSAGES is set but the NLSPATH variable is not set, the cat open( )
function searches for the catalog by using a default search path that

is vendor defined. On Tru64 UNIX systems, the default search path is
fusr/1ibl/nls/neg/ %/ %\ . For the sample set of conditions under
discussion now, this default would result in cat open( ) searching for the
following:

1. /usr/lib/nls/nmsg/fr_FR | S08859- 1/ xpg4deno. cat
2. xpg4deno. cat

Finally, if neither LC_MESSAGES nor NLSPATH is set, cat open( ) searches
for the following:

1. /usr/lib/nls/nmsg/xpg4deno. cat
2. ./ xpg4deno. cat

If cat open( ) fails to find a message catalog that matches the locale, the
function next checks for an appropriate / usr/ share/ . neg_conv- 1| ocal e-
nane file. This file, if it exists, specifies another locale for which a message
catalog is available and from which messages can be converted. If this file is
found, the available message catalog is opened and the appropriate codeset
converter is invoked to convert messages to the codeset of the LC_MESSAGES
setting. For example, the . nsg_conv-fr_FR UTF- 8 file specifies that, if
cat al og_nane exists for French in ISO8859-1 format, that catalog can be
opened and its messages converted to UTF-8 format.

The cat open( ) function does not return an error status when a message
catalog cannot be opened. To improve program performance, the catalog is

Creating and Using Message Catalogs 3-31



not actually opened until execution of the first cat get s( ) call that refers to
the catalog. If you need to detect the open file failure at the point in your
program where the cat open( ) call executes, you must include a call to

cat get s( ) immediately following cat open( ). You can then design your
program to exit on an error returned by the cat get s( ) call. Including an
early call to cat get s( ) may be important to do in programs that perform
a good deal of work before they retrieve any messages from the message
catalog. However, informing the user of this particular error is a problem
because you cannot retrieve an error message in the user’s native language
unless the catalog is opened successfully.

For additional information on the cat open( ) function, see cat open(3).

Note

When running in a process whose effective user ID is root, the
cat open( ) function ignores the NLSPATH setting and searches
for message catalogs by using the / usr/1i b/ nl s/ nmsg/ %./ 9N
path. If a program runs with an effective user ID of root, you
must do one of the following:

e Install all message catalogs used by the program in locale
directories identified as / usr/ i b/ nl s/ msg/ %A..

¢ Or, install message catalogs used by the program in another
directory and create links in the /usr/1i b/ nl s/ msg/ %
directories to those catalog files.

This restriction does not apply to a program when it is run by a
user who is logged in as superuser. The restriction applies only
to a program that executes the set ui d(\|) call to spawn a
subprocess whose effective user ID is root.

3.6.2 Closing Message Catalogs

The cat cl ose( ) function closes a message catalog. This function has one
argument, which is the catalog descriptor returned by the cat open( )
function. For example:

(void) catcl ose(MsgCat);

The exi t () function also closes open message catalogs when a process
terminates.

3.6.3 Reading Program Messages

The cat get s( ) function reads messages into the program. This function
takes the following arguments:

3-32 Creating and Using Message Catalogs



e The message catalog descriptor returned by the cat open( ) call
¢ The symbolic or numeric identifier of the message set

Use the NL_SETD constant when retrieving messages from message
catalogs that do not contain user-defined message sets.

¢ The symbolic or numeric identifier of the message
¢ The default message string

The program uses the default message string when the program cannot
retrieve the specified message from a catalog, which usually occurs
because the catalog was not found or opened. Because programs
commonly use default strings, make sure that the default text is
meaningful and always available.

You ordinarily use the cat get s( ) function in conjunction with another
routine, either directly or as part of a program-defined macro. The following
code from the xpg4deno program defines a macro to access a specific
message set, then uses the macro as an argument to the pri nt f () routine:

#define Get Msg(id, defnsg)\
catget s(MsgCat, MSG nfo, id, defnsg)

printf(GetMsg(l_COM DI SP_LI ST_FM,
"6ld 9R0S % 30S ¥BS % 0s\n"),
enp- >badge_num
enp->first_nane,
enp- >sur nane,
enp- >cost _center,
buf);

See cat get s(3) for more information.

Note

The gett xt () function also reads messages from message

catalogs. This function is included in the System V Interface
Definition (SVID) but is not recognized by the X/Open UNIX
standard. For information about this function, see get t xt (3).

Creating and Using Message Catalogs 3-33






A

Handling Wide-Character Data with
curses Library Routines

The cur ses Library provides functions for developing user interfaces on
character-cell terminals. This chapter discusses enhancements made to the
cur ses Library to support wide-character format, which accommodates
multibyte characters.

The recommended functions for handling multibyte characters in
wide-character or complex-character format conform to Version 4.2 of the
X/Open Curses CAE specification and supersede those specified by the
System V Multi-National Language Supplement (MNLS).

This chapter summarizes the cur ses Library functions and macros that
process characters and character strings from the screen or keyboard.
Tables in each section note if more than one cur ses interface is available to
perform the same operation and recommend the cur ses interface that is
best suited for writing international software. That is, the tables highlight
the cur ses Library functions and macros that handle wide-character

or complex-character format and conform to the X/Open Curses CAE
specification. Make sure your application uses the cur ses interface listed in
the Recommended Routine column of the table.

The Section 3 reference pages provide syntax and detailed information for
each interface. Use this chapter to determine the interface needed for the
operation you want to perform; then use the man command to display the
reference page for the chosen interface. For an overview of all the functions
in the cur ses Library, see cur ses(3).

Note

Some cur ses routines overwrite existing characters on the

cur ses window. Only the routines that use the wchar _t or
cchar _t data type ensure that overwriting does not leave
partial characters on the screen. When the display width of an
overwritten character is greater than one column, as may be the
case for multibyte characters, these routines write extra blank
characters to remove partial characters. For example, if the
English language character a overwrites the first column of a

Handling Wide-Character Data with curses Library Routines 4-1



2-column Chinese language character, the second column of the
Chinese character is overwritten with a blank.

Behavior is undefined when you overwrite multibyte characters
with cur ses routines that have not been internationalized.

4.1 Writing a Wide Character to a curses Window

The following sections discuss routines that add or insert individual wide
characters on a cur ses window. These routines perform one of the following
operations if a character already exists at the target position:

¢ Overwrite the existing character and then advance the cursor

e Insert the new character before the existing one and do not advance
the cursor

4.1.1 Add Wide Character (Overwrite) and Advance Cursor

The routines listed in Table 4-1 add a wide character and its attributes to a
window on the screen and advance the cursor. If a character already exists
at the target position, the character is overwritten by the one being added.

Your choice of routine depends on whether you need to do the following:
¢ Add the character to the default or a specified window
e Add the character at the current or specified coordinates

e Refresh the screen

Use the const cchar _t data type to pass a wide character with its
attributes to these routines.

Table 4—-1: curses Routines to Add Wide Characters and Advance the

Cursor

Recommended Used in Place of: Behavior with Respect to:

Routine

add_wch addch, addwch Window: default
Position: current
Screen refresh: no

wadd_wch waddch, waddwch Window: specified
Position: current
Screen refresh: no

mvadd_wch mvaddch, mvaddwch  Window: default

Position: specified
Screen refresh: no

4-2 Handling Wide-Character Data with curses Library Routines



Table 4—-1: curses Routines to Add Wide Characters and Advance the
Cursor (cont.)

Recommended Used in Place of: Behavior with Respect to:

Routine

mvwadd_wch mvwaddch, Window: specified
m/waddwe h

Position: specified
Screen refresh: no
echo_wchar echowchar Window: default
Position: current
Screen refresh: yes
wecho_wchar wechowchar Window: specified
Position: current
Screen refresh: yes

4.1.2 Insert Wide Character (No Overwrite) and Do Not Advance
Cursor

The routines listed in Table 4-2 insert a wide character in a window at
the current or specified coordinates and do not change the position of the
cursor after the write operation. The wide character is inserted before an
existing character at the target position, so these routines do not overwrite
characters that already exist on the line. Existing characters at and to the
right of the target position are moved further to the right and the character
in the rightmost position is truncated. Your choice of interface in this
category depends on whether you want to do the following:

e  Write to the default or a specified window

e  Write at the current or specified coordinates

Table 4-2: curses Routines to Insert Wide Characters and Not Advance the

Cursor

Recommended Used in Place of: Behavior with Respect to:

Routine

ins_wch i nsch, i nswch Window: default
Position: current

Wi ns_wch wi nsch, wi nswch Window: specified
Position: current

mvi ns_wch nmvi nsch, mvi nswch  Window: default
Position: specified

m/wi ns_wch mvwi nsch, Window: specified

mvwi nsweh Position: specified

Handling Wide-Character Data with curses Library Routines 4-3



4.2 Writing a Wide-Character String to a curses Window

The following sections discuss routines that add or insert wide-character
strings in cur ses windows.

4.2.1 Add Wide-Character String (Overwrite) and Do Not Advance
Cursor

The routines listed in Table 4-3 add a wide-character string and its character
attributes to a window. However, these routines also behave as follows:
¢ Do not advance the position of the cursor

¢ Do not check the string for special characters (such as newline, tab, and
backspace) that usually affect cursor position

¢ Truncate the string rather than wrapping it to the next line

Characters in the string that these routines add overwrite characters that
already exist at the target position. Your choice of interface in this category
depends on whether you need to do the following:

e  Write all or some of the characters in the string
e  Write the characters to the default or a specified window

e  Write the characters at the current or specified coordinates

Table 4-3: curses Routines to Add Wide-Character Strings and Not
Advance the Cursor

Recommended Used in Place of: Behavior with Respect to:
Routine
add_wchstr addwchst r Number of characters: all

Window: default
Position: current

add_wchnstr addwchnst r Number of characters: specified
Window: default
Position: current

wadd_wchstr waddwchst r Number of characters: all
Window: specified
Position: current

wadd_wchnst r waddwchnst r Number of characters: specified
Window: specified
Position: current

4-4 Handling Wide-Character Data with curses Library Routines



Table 4-3: curses Routines to Add Wide-Character Strings and Not
Advance the Cursor (cont.)

Recommended Used in Place of: Behavior with Respect to:
Routine
mvadd_wchstr mvaddwchst r Number of characters: all

Window: default
Position: specified

mvadd_wchnstr  nvaddwchnstr Number of characters: specified
Window: default
Position: specified
mvwadd_wchstr  mvwaddwchstr Number of characters: all
Window: specified
Position: specified
mvwadd_wchnstr mvwaddwechnst r Number of characters: specified
Window: specified
Position: specified

4.2.2 Add Wide-Character String (Overwrite) and Advance Cursor

As with the routines discussed in Section 4.2.1, the routines listed in
Table 4-4 also add a wide-character string (but without video-character
attributes) to a window and overwrite existing characters. However, these
routines also do the following:

e Advance the position of the cursor

¢ (Check the string for special characters (such as newline, tab, and
backspace) that can also affect the position of characters

e  Wrap strings to the next line rather than truncating them

Your choice of interface in this category depends on whether you want to
do the following:

e  Write all or a specified number of characters in the string
e  Write the characters to the default or a specified window

e  Write the characters at the current or specified coordinates

Handling Wide-Character Data with curses Library Routines 4-5



Table 4-4: curses Routines to Add Wide-Character Strings and Advance

the Cursor

Recommended Used in Place of: Behavior with Respect to:

Routine

addwst r addst r Number of characters: all
Window: default
Position: current

addnwst r no replacement Number of characters: specified
Window: default
Position: current

waddwst r waddst r Number of characters: all
Window: specified
Position: current

waddnwst r no replacement Number of characters: specified
Window: specified
Position: current

mvaddwst r mvaddstr Number of characters: all
Window: default
Position: specified

mvaddnwst r no replacement Number of characters: specified
Window: default
Position: specified

mvwaddwst r mvwaddst r Number of characters: all
Window: specified
Position: specified

nmvwaddnwst r no replacement Number of characters: specified

Window: specified
Position: specified

4.2.3 Insert Wide-Character String (no Overwrite) and Do Not
Advance Cursor

The routines listed in Table 4-5 insert a wide-character string before a
target position in a cur ses window. These routines do the following:

e Move further to the right any existing characters that are at and to the
right of the target position

Existing characters are not overwritten, but rightmost characters may
be truncated at the end of the line

4-6 Handling Wide-Character Data with curses Library Routines



¢ (Check the string for special characters (such as newline, tab, and

backspace) that can affect character and cursor placement

¢ Do not advance the cursor after the write operation

Your choice of interface in this category depends on whether you need to

do the following:
e  Write all or some of the characters in the string
e  Write the characters to the default or a specified window

e  Write the characters at the current or specified coordinates

Table 4-5: curses Routines to Insert Wide-Character Strings and Not
Advance the Cursor

Recommended Used in Place of: Behavior with Respect to:
Routine
ins_wstr i nswstr Number of characters: all

Window: default
Position: current

ins_nwstr i nsnwst r Number of characters: specified
Window: default
Position: current

Wi ns_wstr Wi nswst r Number of characters: all
Window: specified
Position: current

Wi ns_nwstr wi nsnwst r Number of characters: specified
Window: specified
Position: current

mvi ns_wst r nvi nswst r Number of characters: all
Window: default
Position: specified

mvi ns_nwst r mvi nsnwst r Number of characters: specified
Window: default
Position: specified

m/wW ns_wst r m/wi nswst r Number of characters: all
Window: specified
Position: specified

mM/W ns_nwst r m/wW nsnwst r Number of characters: specified
Window: specified
Position: specified

Handling Wide-Character Data with curses Library Routines

4-7



4.3 Removing a Wide Character from a curses Window

The routines listed in Table 4-6 delete a wide character at the target position
in a cur ses window. Characters that follow the deleted character on the
line shift one character to the left. These routines existed in the cur ses
Library before multibyte characters were supported and have been redefined
for correct handling of wide-character format.

Your choice of interface in this category depends on whether you need to
do the following:

¢ Delete a wide character in the default or a specified window

¢ Delete a wide character at the current or specified coordinates

Table 4—-6: curses Routines to Remove a Wide Character

Recommended Used in Place of: Behavior with Respect to:
Routine
del ch no replacement Window: default

Position: current

wdel ch no replacement Window: specified
Position: current

mvdel ch no replacement Window: default
Position: specified

mvwdel ch no replacement Window: specified
Position: specified

4.4 Reading a Wide Character from a curses Window

The routines listed in Table 4-7 read a wide character and its video attributes
from a cur ses window. The data returned to the program is of data type
cchar _t, so that both the wide character and its attributes are stored.

Your choice of interface in this category depends on whether the character
being read is one of the following:

¢ In the default or a specified window

e At the current or specified coordinates

4-8 Handling Wide-Character Data with curses Library Routines



Table 4-7: curses Routines to Read Wide Characters From a Window

Recommended Used in Place of: Behavior with Respect to:
Routine
in_wh i nch, inwch Window: default

Position: current
wi n_wch wi nch, wi nwch Window: specified
Position: current
mvi n_wch mvi nch, nvi nach Window: default
Position: specified
mvwi n_wch mvwi nch, mvwi nweh  Window: specified
Position: specified

4.5 Reading a Wide-Character String from a curses Window

Two sets of routines allow you to read a wide-character string from a cur ses
window. The set of routines described in Section 4.5.1 retrieve strings that
include wide characters with their video attributes. The set of routines
described in Section 4.5.2 strip attributes from the characters in the string.

4.5.1 Reading Wide-Character Strings with Attributes

The routines listed in Table 4-8 read a wide-character string and its
character attributes from a cur ses window. The string returned by the
recommended routines is of the data type cchar _t.

Your choice of interface in this category depends on whether you want to
do the following:

¢ Read all or up to a specified number of wide characters in the string
¢ Read characters from the default or a specified window

e Read characters that are at the current or specified coordinates

Table 4-8: curses Routines to Read Wide-Character Strings With Attributes

Recommended Used in Place of: Behavior with Respect to:
Routine
in wchstr i namchstr Number of characters: all
Window: default
Position: current
i n_wchnstr i nachnstr Number of characters: specified

Window: default
Position: current

Handling Wide-Character Data with curses Library Routines 4-9



Table 4-8: curses Routines to Read Wide-Character Strings With Attributes

(cont.)

Recommended Used in Place of: Behavior with Respect to:

Routine

wi n_wchstr wi nwchstr Number of characters: all
Window: specified
Position: current

wi n_wchnstr wi nwchnstr Number of characters: specified
Window: specified
Position: current

mvi n_wchstr mvi nwchst r Number of characters: all
Window: default
Position: specified

nvi n_wchnstr nvi nnchnstr Number of characters: specified
Window: default
Position: specified

m/w n_wchstr m/w nwchstr Number of characters: all
Window: specified
Position: specified

m/wi n_wchnstr  mvwi namchnstr Number of characters: specified

Window: specified
Position: specified

4.5.2 Reading Wide-Character Strings Without Attributes

The routines listed in Table 4-9 read a wide-character string from a cur ses
window and store a string of data type wchar _t in a program variable.
Video attributes are stripped from the characters included in the string.

Your choice of interface in this category depends on whether you want to
do the following:

e Read all or up to a specified number of characters in the string
¢ Read characters from the default or a specified window

¢ Read characters that are at the current or specified coordinates of the
window

4-10 Handling Wide-Character Data with curses Library Routines



Table 4-9: curses Routines to Read Wide-Character Strings Without

Attributes

Recommended Used in Place of: Behavior with Respect to:

Routine

i nwstr no replacement Number of characters: all
Window: default
Position: current

i nnwst r no replacement Number of characters: specified
Window: default
Position: current

W nwst r no replacement Number of characters: all
Window: specified
Position: current

W nnwst r no replacement Number of characters: specified
Window: specified
Position: current

mvi nwst r no replacement Number of characters: all
Window: default
Position: specified

mvi nnwst r no replacement Number of characters: specified
Window: default
Position: specified

m/wi nwst r no replacement Number of characters: all
Window: specified
Position: specified

m/w nnwst r no replacement Number of characters: specified

Window: specified
Position: specified

4.6 Reading a String of Characters from a Terminal

The routines listed in Table 4-10 get strings of characters from the terminal

associated with a cur ses window and store the characters in a program
buffer.

Your choice of interface in this category depends on whether you want to
do the following:

e Read all or up to a specified number of characters in a string

¢ Read characters for use in the default or a specified window

Handling Wide-Character Data with curses Library Routines 4-11



¢ Read characters for use at the current or specified coordinates on the

window

Table 4-10: curses Routines to Read Wide-Character Strings From a

Terminal

Recommended Used in Place of: Behavior with Respect to:

Routine

get _wstr getstr,getwstr Number of characters: all
Window: default
Position: current

getn_wstr get nwstr Number of characters: specified
Window: default
Position: current

wget _wstr wgetstr,wgetwstr  Number of characters: all
Window: specified
Position: current

wget n_wstr wget nwst r Number of characters: specified
Window: specified
Position: current

m/get _wstr mv/getstr, Number of characters: all

mvget wst r

mvget n_wst r

mvget nwst r

Window: default

Position: specified

Number of characters:

Window: default

Position: specified

specified

m/wget _wstr m/wget str, Number of characters: all
mywget wst r Window: specified
Position: specified
m/wget n_wstr m/wget nwst r Number of characters: specified
Window: specified
Position: specified

4.7 Reading or Queuing a Wide Character from the

Keyboard

The routines listed in Table 4-11 get a single-byte or multibyte character
from the terminal keyboard associated with a cur ses window, convert the
character to wide-character format, and return the character to the program.
Unless cur ses input mode is set to noecho, these routines also echo each
character back to the screen.

4-12 Handling Wide-Character Data with curses Library Routines



The unget _wch interface places the wide character at the head of the input
queue. In this case, the next call to wget _wch returns the character from
the input queue to the program.

Your choice of interface in this category depends on the following uses of
the character:

e Use with the default or a specified window
e Use at the current or specified position of the window

¢ Immediate or delayed use

Table 4-11: curses Routines for Reading Wide Characters From the

Keyboard

Recommended Used in Place of: Behavior with Respect to:

Routine

get _wch get ch, getwch Window: uses default
Position: uses current

wget _wch wget ch, wget wch Window: uses specified
Position: uses current

mvget _wch mvget ch, nvgetwch  Window: uses default
Position: uses specified

m/wget _wch mvwget ch, Window: uses specified

m/wget weh Position: uses specified

unget _wch unget ch, ungetwch  Window: not applicable
Position: not applicable
Input queue: queues character

4.8 Converting Formatted Text in a curses Window

The routines listed in Table 4-12 read wide characters from a cur ses
window and convert them. These functions existed in the cur ses Library
before it was internationalized and have been enhanced to handle
wide-character data. In all cases, these functions call wget str to read

a wide-character string from a window and then interpret and convert
characters according to scanf ( ) function rules. See scanf (3) for more
information.

Your choice of interface in this category depends on whether you do the
following:

¢ Convert a string in the default or a specified window
e Convert a string starting at the current or specified coordinates

¢ Need to include a list of variables as one of the arguments in the call

Handling Wide-Character Data with curses Library Routines 4-13



Table 4—-12: curses Routines to Convert Formatted Text in a Window

Recommended Used in Place of: Behavior with Respect to:
Routine
scanw no replacement Window: default

Position: current
Number of arguments: fixed

wscanw no replacement Window: specified
Position: current
Number of arguments: fixed

m/scanw no replacement Window: default
Position: specified
Number of arguments: fixed

m/wscanw no replacement Window: specified
Position: specified
Number of arguments: fixed

vw_scanw vwscanw Window: specified
Position: current
Number of arguments: variable

4.9 Printing Formatted Text on a curses Window

The routines listed in Table 4-13 format a string and then print it on a

cur ses window. The functions existed in the cur ses Library before it was
internationalized and have been redefined to process data in wide-character
format. These functions are analogous to printf () (or vprintf())
formatting the string and then addstr () (or waddst r ( ) ) writing it. See
pri nt f (3) for formatting information.

Your choice of interface in this category depends on whether you need to
do the following:

e Print on the default or a specified window
e Print at the current or a specified position

¢ Include a list of variables as one of the call arguments

4-14 Handling Wide-Character Data with curses Library Routines



Table 4—-13: curses Routines to Print Formatted Text on a Window

Recommended Used in Place of: Behavior with Respect to:
Routine
printw no replacement Window: default

Position: current
Number of arguments: fixed

wpr i ntw no replacement Window: specified
Position: current
Number of arguments: fixed

mvprintw no replacement Window: default
Position: specified
Number of arguments: fixed

mywpr i nt w no replacement Window: specified
Position: specified
Number of arguments: fixed

VW _printw vwpri ntw Window: specified
Position: current
Number of arguments: variable

Handling Wide-Character Data with curses Library Routines 4-15






5

Creating Internationalized X, Xt, and Motif
Applications

This chapter discusses some of the internationalization features that are
available for creating a graphical user interface. More specifically, this
chapter addresses the following components:

e |ibXt, the Toolkit Intrinsics Library available with Release 6 of the X
Window System (Section 5.1)

e |ibXmand | i bDXm the libraries available with Version 1.2 of OSF/Motif
and the features provided as DECwindows Extensions to the OSF/Motif
Toolkit (Section 5.2)

e |ibX11, the X Library available with Release 6 of the X Window System
(Section 5.3)

This chapter assumes that you are already familiar with the X Window
System and the OSF/Motif Toolkit. For more complete information on them,
see the following manuals:

e X Window System Environment, available as part of the operating
system online documentation set

e Programmer’s Supplement for Release 6 of the X Window System,
available in printed form, published by O’Reilly and Associates, Inc.

In addition to these manuals, you can see the reference pages for individual
functions for more information.

This chapter does not discuss internationalization features specific to the
Common Desktop Environment. See the Common Desktop Environment:
Internationalization Programmer’s Guide, available as part of the operating
system online documentation set, for information about using these features.
(You can view the operating system documentation at the following website:
http: //ww. t r ué4uni x. conpag. cont docs/ .)

For your convenience in localizing an application, the following list specifies
files that enable direct support for a locale in the CDE environment:

Message catalogs:

fusr/lib/nls/nmeg/local e_nane/fil enane. cat ...

Creating Internationalized X, Xt, and Motif Applications 5-1



Reference pages:

/usr/share/l ocal e_nane/ man/ mann/ r ef page. n...

Resource files:

/fusr/1ib/X11/1 ocal e_nane/ app-defaul ts/fil e_nane

[usr/dt/app-defaults/local e_nanme/fil e_nane

UID files:

fusr/lib/X11/1ocal e_nane/uid/file_nane

CDE action/datatyping files:

[usr/ dt/appconfig/types/|local e_nane/fil e_name

CDE help files:

[usr/ dt/appconfi g/ hel p/l ocal e_nane/fil e_nane

CDE StyleManager backdrop files:

[ usr/ dt/ backdrops/desc. | ocal e_nane

CDE StyleManager palette files:

/usr/dt/pal ettes/desc. | ocal e_nane

The operating system provides direct support for some locales and indirect
support (through automatic codeset conversion) for other locales. For
example, the operating system supports the j a_JP. UTF- 8 locale through
codeset conversion, so you will not find paths that contain j a_JP. UTF- 8
as a | ocal e- nane directory or a | ocal e- nane extension after installing
operating system product software.

However, if you want to enable direct support for the j a_JP. UTF- 8 locale,
you can create the appropriately localized and encoded files to do that and
install them in locations as specified for the list items. For information on
creating an entirely new locale, see Chapter 6.

5.1 Using Internationalization Features in the Xt Intrinsics
Library

The X Toolkit (Xt) Intrinsics Library includes internationalization features

related to the initialization process and resource management. The following
sections describe these features. For complete information on using routines

5-2 Creating Internationalized X, Xt, and Motif Applications



from the Xt Intrinsics Library (I i bXt ) in your applications, see the reference
pages for individual components.

5.1.1 Establishing a Locale with Xt Functions

An internationalized Xt application must parse resources in a
locale-dependent manner. Therefore, an application must establish its locale
before initializing the resource database. But it is also true that resources
can specify the application’s locale. To solve this paradox, Release 5 of the
X Toolkit introduced the language procedure, which is registered before
initializing X Toolkit and then called during initialization at the appropriate
time to set locale.

The Xt Set LanguagePr oc( ) function registers the language procedure
for setting the locale. By default, this function first calls the Standard

C Library function set | ocal e( ) to set the locale and then calls the X
Library functions XSupport sLocal e( ) and XSet Local eModi fiers() to
initialize the locale.

An application that uses the Xt routines must call Xt Set LanguagePr oc( ),
even if the application uses the system default language procedure;
otherwise, the locale is not set and other Xt routines do not behave in a
locale-dependent manner.

One of the most common ways to set a locale is for applications to make the
following call before calling Xt Appl nitialize():

Xt Set LanguagePr oc( NULL, NULL, NULL) ;

After calling Xt Set LanguagePr oc( ), your application can then call one of
the following Xt initialization functions:

e Xtlnitialize()

e XtApplnitialize()

e Xt Openbi spl ay()

These functions call Xt Di spl ayl ni tialize( ), which obtains the
value of the xnl Language resource by parsing the command line and
the RESOURCE_MANAGER property. The Xt Di spl aylnitialize()
function then calls the language procedure registered by the call to
Xt Set LanguagePr oc( ), passing it the xnl Language value as an

argument. After that, Xt Di spl ayl ni tialize( ) parses resources in the
locale returned by the language procedure.

Creating Internationalized X, Xt, and Motif Applications 5-3



5.1.2 Using Font Set Resources with Xt Functions

The Xt routines support the XFont Set structure in place of the
XFont St ruct structure in any internationalized widgets that draw native
language text. The following resource attributes exist to support XFont Set :

e Xt NFont Set (the resource name)
e Xt CFont Set (the resource class)

e Xt RFont Set (the resource representation type)

The X Toolkit includes a converter that changes a preregistered string, such
as - *-*-* - R *-*.%_120-75-75-*-*-*-* {0 a list of font sets in the
structure (XFont Set ). The converter should establish a default font set
list so that, if the string cannot be converted to a valid font set, there is

a fallback to another valid font set.

5.1.3 Filtering Events During Text Input with Xt Library Functions

Starting with Release 5 of the X Toolkit Intrinsics Library, the

Xt Di spat chEvent () function was changed to call XFi | t er Event ( ). This
change allows an input method to intercept registered X events before being
processed by an application that uses Xt routines.

5.1.4 Including the Codeset Component of Locales with Xt Library
Functions

Starting with Release 5 of the X Toolkit Intrinsics Library, an integral locale
entity supports the codeset component, in addition to the language and
territory components supported by earlier releases.

5.2 Using Internationalization Features of the OSF/Motif
and DECwindows Motif Toolkits

The Common Desktop Environment: Internationalization Programmer’s
Guide can provide you with guidelines for developing internationalized
Motif applications. This manual is part of the operating system
documentation set, which you can view at the following Web site:
http://ww. tru64uni x. conpaq. com docs/ .

The following sections supplement the information in the Common Desktop
Environment: Internationalization Programmer’s Guide.

5.2.1 Setting Language in a Motif Application

Most of the internationalization features in the OSF/Motif Toolkit (I i bXm
and the DECwindows Extensions to the OSF/Motif Toolkit (I i bDXm are

5-4 Creating Internationalized X, Xt, and Motif Applications



supported through features that were first introduced in Release 5 of the X
Library (I i bX) and the X Toolkit (I i bXt ).

Motif internationalization features are supported the same way regardless of
whether Release 6 or Release 6.3 of the X Library and X Toolkit are installed.
For example, to establish the locale of your Motif application, you use the
same set of functions and guidelines as described for an Xt application. (See
Section 5.1.1.) If your application fails to call Xt Set LanguagePr oc( )
before initializing X Toolkit to register the language procedure, the Motif
widgets do not support the internationalization features discussed in
subsequent sections. In other words, the widgets revert to behavior expected
in releases earlier than X Toolkit Release 5 and OSF/Motif Release 1.2.

The language for an application can be specified in one of the following
ways. The list is arranged in precedence order; for example, the language
setting in the ar gv argument takes precedence over the language setting in
RESOURCE_MANAGER.

1. The value of the ar gv argument on the call to Xt Appl ni tialize(),
Xt OpenDi spl ay( ), XtDi splaylnitialize(),orXtOQpenAppli -
cation()

2. The setting of the language resource in the RESOURCE_MANAGER
property of the root window for the specified display

3. The setting of the xnl Language resource in the user’s . Xdef aul t s file

4. The setting of the LANG environment variable

Note the following points:

e After an application opens its first display, Motif routines use the
established language setting until the application terminates.

e If the RESOURCE_MANAGER property exists in the root window, Motif
routines do not use the . Xdef aul t s file, even if the language resource is
not defined in the RESOURCE_MANAGER property.

5.2.2 Using Compound Strings and the XmText and XmTextField
Widgets

The OSF/Motif XmText and XniText Fi el d widgets provide
internationalization features based on the X and X Toolkit Libraries. The
widgets use the codeset of the current locale to encode text information
that users enter and display. To display the data in the correct fonts, the
widgets use one of the following search patterns to locate the fonts. They

Creating Internationalized X, Xt, and Motif Applications 5-5



use the search patterns in order from highest to lowest and stop when the
font set is determined.

1. Search the font list for an entry that is a font set and has the font list
element tag XmFONTLI ST_DEFAULT_TAG.

2. Search the font list for an entry that specifies a font set and use the
first one found.

3. Use the first font in the font list.

The internationalization features available through the text widgets have
changed from earlier OSF/Motif releases on the following two dimensions:

¢ The segments of a compound string can contain data from multiple
character sets. This ability is enabled through the font set construct and
support for a locale’s codeset rather than a single character set for each
language. (Except for Latin codesets, codesets usually support multiple
character sets.) To take advantage of this change, your application must
ensure the following:

— That the font list structure defines the appropriate font set as the list
element used to display segments of the compound string.

— That the compound string includes a tag that will match the correct
font set rather than a single font.

¢ For Asian input methods, the XniTrext and Xnilext Fi el d widgets
support the On-the-Spot, Off-the-Spot, Over-the-Spot, and Root Window
interaction, or preediting, styles for Asian input methods.

You can specify interaction styles as a priority list for the
XmNpr eedi t Type resource when creating locale-dependent resource
files for your application.

Note

When users choose the Off-the-Spot preediting style, an
application window is enlarged to make room for the input
status and preedit area (usually at the bottom of the window).
Therefore, the Off-the-Spot input style requires that auto-resizing
be enabled for any application in which that input style is used.

If you are writing an X or Motif application that will be used in
Asian countries where the input status and preedit area are used
extensively, do not use toolkit functions to disable auto-resizing
for your application.

You can use the following functions to create a compound string for codesets
that include multiple character sets:

5-6 Creating Internationalized X, Xt, and Motif Applications



XSt ri ngCr eat e( ), which creates a compound string composed of text
and a font list element tag

XSt ri ngCr eat eLocal i zed( ), which creates a compound string that
uses the encoding of the current locale

Note

Right-to-left display of language text, which is appropriate for
languages such as Hebrew, is supported through the DXnCSText
widget. The XnText and Xnirext Fi el d widgets support only
left-to-right displays.

5.2.3 Internationalization Features of Widget Classes

The following widget classes support native language input and display
capabilities through the XnTText and XniText Fi el d widgets (see
Section 5.2.2):

Command
FileSelectionBox
Label

List
MessageBox

SelectionBox

5.3 Using Internationalization Features in the X Library

Starting with Release 5 of the | i bX11 Library, the X Consortium defined
new specifications for developing X clients that handle data for different
locales. The new specifications are based on the ANSI C locale model,
which configures the Standard C Library to process data in different native
languages. These specifications provide interfaces for the following:

Requesting user input in different native languages
Drawing fonts used for native language text
Obtaining language-specific resource values

Interclient communication that supports native language text through
codeset conversion

The following sections describe different aspects of writing an
internationalized application with the X Library:

Managing locales (Section 5.3.1)

Creating Internationalized X, Xt, and Motif Applications 5-7



¢ Displaying text for different locales (Section 5.3.2)
¢ Handling interclient communication (Section 5.3.3)
¢ Handling localized resource databases (Section 5.3.4)

¢ Handling text input (Section 5.3.5)

To illustrate programming techniques, particularly those pertaining to text
input, this chapter uses excerpts from an application named xi ndeno. The
complete source file and an | makefi | e for this application are provided
in the $1 18NPATH usr/ exanpl es/ xi ndeno directory. You can read the
source file and build and run the application to understand more fully how
to apply the programming techniques being discussed.

5.3.1 Managing Locales

An internationalized X client uses the same locale announcement
mechanism, the set | ocal e function in the Standard C Library, as other
kinds of applications use. The X Library includes two additional functions to
determine the locale and to configure locale modifiers: XSupport sLocal e( )
and XSet Local eModi fi ers( ). Table 5-1 briefly describes these functions.
They are more fully described in XSupport sLocal e(8X11).

Table 5-1: Locale Announcement Functions in the X Library

Function Description

XSupportsLocal e( ) Determines if the X Library supports
the current locale.

XSet Local eModi fiers() Specifies a list of X modifiers for the current locale
setting.

The XSet Local eModi fi ers( ) list is a null-terminated string where list
elements use the following format:

@at egory =val ue

The only standard cat egor y currently defined as a locale modifier is i m
which identifies the input method. However, several i mentries can appear
on a modifier list when a locale supports more than one input method.

To provide default values on the local host system, the value defined for the
XMODI FI ERS environment variable is appended to the list of any modifiers
supplied by the XSet Local eModi fi ers( ) function call. For example, on
Tru64 UNIX systems, the default value for the input method is DEC. The
following command explicitly sets the XMODI FI ERS variable to this value:

% set env XMODI FI ERS @ n=DEC

In this example, the value @ m=DEC would be appended to the modifier list
specified on the call to the XSet Local eMbdi fi ers( ) function.

5-8 Creating Internationalized X, Xt, and Motif Applications



X Library functions operate according to current locale and locale-modifier
settings or according to locale and locale modifier settings attached to objects
that are supplied to the functions. The following types of objects relate to
locale settings:

e Xl Mand Xl C, which are related to text input
e XFont Set, which is related to text drawing and measurement
e XOMand XOC, which are related to text output
These objects were introduced in the Version 6 implementation of

Xr mDat abase, which is associated with application resource files.

The locale and locale modifiers of these objects depend on the locale setting
when the objects were created. Therefore, you can create objects for various
languages and use them simultaneously to process data from different
locales. This capability lets you develop multilingual X Window applications.
Adhere to the following rules when developing your application:

¢ Identify the locale that applies to data and handle that data with the
appropriate locale-specific object.

Results are unpredictable when the data’s locale does not match the
object’s locale.

¢  When passing text to WPI interfaces (such as printf()) in the
Standard C Library, ensure that the current locale setting for the process
matches the locale of the data being passed.

Example 5-1 illustrates how an X application sets or determines locale.

Example 5-1: Setting Locale in an X Window Application

#i ncl ude <stdio. h>
#i ncl ude <X11/ Xl ocal e. h>
#incl ude <X11/ Xl i b. h>

#defi ne DEFAULT_LOCALE "zh_TW dechanyu"

mai n(argc, argv)

int argc;

char *argv[];

{
i modi fier[0] ='\0";
for(i=1; i<argc; i++) {

if(!strenp(argv[i], "-Root")) {
best _styl e = Xl MPreedit Not hi ng;
}

Creating Internationalized X, Xt, and Motif Applications 5-9



Example 5-1: Setting Locale in an X Window Application (cont.)

else if (!strcnp(argv[i], "-locale"))
locale = argv[++i];
else if (!strenp(argv[i], "-immodifier")) {

strcpy(imodifier, "@n¥");
strcat (i mmodifier, argv[++i]);

}

if(locale == NULL)
| ocal e = DEFAULT_LOCALE;

if(setlocal e(LC_CTYPE, locale) == NULL) {
fprintf(stderr, "Error : setlocale() !'\n");
exit(0);

}
if (!XSupportsLocale()) {
fprintf(stderr, "X does not support this |ocale");
exit(1);

}
if (XSetLocal eModifiers(inmmodifier) == NULL) {
(void) fprintf(stderr, "%: Warning : cannot set locale \

nodi fiers. \n", argv[0]);

}

Defines a constant to contain the setting for the default locale.

In this example, the constant’s value is explicitly set to
zh_TW dechanyu.

Determines if a locale was specified on the application command line.

The user can override the default locale by using the - | ocal e option on
the command line that runs this application.

Sets the locale to the value of the DEFAULT _LOCALE constant if the
locale was not specified on the application command line.

If this constant were set to the null string ("") rather than to
zh_TW dechanyu, the default locale would be determined by the
setting of the LANG environment variable for the process in which the
application is run.

5.3.2 Displaying Text for Different Locales

Codesets for some locales, particularly those for Asian languages, require
more than one X Window font to display all the characters defined. To
handle these codesets, the X Library supports the concept of a font set, which
allows you to use more than one font to draw and measure text. The font
set concept is implemented by the XFont Set structure, which replaces the

5-10 Creating Internationalized X, Xt, and Motif Applications



XFont Struct structure that was supported by X Library releases earlier
than Release 5.

A font set is bound to the locale with which it was created. The functions
that draw and measure text interpret the text according to the locale of the
font set and therefore map characters to their font glyphs correctly.

The implementation of functions that draw and measure text allows you to
use fonts with different encodings to display native language text.

5.3.2.1 Creating and Manipulating Font Sets

Table 5—2 summarizes the functions that create and use font sets. For
complete information on a function, see its reference page.

Table 5-2: X Library Functions That Create and Manipulate Font Sets
Function Description

XCr eat eFont Set () Creates a font set for a specified display.
This function determines the codesets
required for the current locale and loads a
set of fonts to support those codesets.

XFr eeFont Set () Frees a specified font set and any associated
components, such as the base font name
list, the font name list, the XFont St r uct
list, and XFont Set Ext ent s.

XFont sOf Font Set () Returns a list of XFont St r uct structures
and font names for the given font set.

XBaseFont NameLi st Of Font Set ()  Returns the original base font name
list supplied by the client when the
font set was created.

XLocal eOf Font Set () Returns the name of the locale bound
to the specified font set.

Example 5-2 demonstrates the functions that create and use font sets.

Example 5-2: Creating and Using Font Sets in an X Window Application

#def i ne DEFAULT_FONT_NAVE "-*-SCREEN-*-*-R-Normal - -*-*, -*"
char *base_font_name = NULL;
XFont Set font _set;

Creating Internationalized X, Xt, and Motif Applications 5-11



Example 5-2: Creating and Using Font Sets in an X Window Application

(cont.)
char **m ssing_list;
int m ssi ng_count ;
char *def _string;

if (base_font_name == NULL)
base_font_name = DEFAULT_FONT_NANE;
font _set = XCreateFont Set (di spl ay, base_font_nane, &m ssing_list,
&m ssing_count, &def_string);

/*
* if there are charsets for which no fonts can be found,
* print a warning nessage.
*/
if (mssing_count > 0) {
fprintf(stderr, "The follow ng charsets are \
mssing: \n");
for (i=0; i<mssing_count; i++)
fprintf(stderr, "% \n", mssing_list[i]);
XFreeStringList(mssing_list);

Defines the constant DEFAULT _FONT _NAME to contain the value of the
default base font name list.

In this example, the default base font name list is set to
-*-SCREEN-*-*-R-Normal --*-*, -*_ For a default base font name
list, specify a generic name (using wildcard fields as demonstrated in
the example) rather than a fully specified list of fonts. A fully specified
font list works only for a particular locale, whereas a generic name can
be the default for multiple locales.

Determines whether the default base font name list was supplied on
the command line.

The user can override the default base font name list by using the - f s
option on the application command line.

5.3.2.2 Obtaining Metrics for Font Sets

Table 5—-3 summarizes the X Library functions that can query font set
metrics and measure text.

5-12 Creating Internationalized X, Xt, and Motif Applications



Table 5-3: X Library Functions That Measure Text
Function Description

XExt ent sOf Font Set () Returns an XFont Set Ext ent s structure, which
contains information about the bounding box
of the fonts in the specified font sets.

XnbText Escapenent (), Calculate the escapement (in pixels)

XwcText Escapenent () required to draw a given string by using
the specified font set.

XmbText Extents( ), Calculate the overall bounding box of the

XwecText Ext ent s( ) string’s image and a logical bounding box for

spacing purposes. These functions also return
the value returned by XnmbText Escapenent ()
and XwcText Escapenent ( ), respectively.

XmbText Per Char Extents( ), Return the text dimensions of each character
XweText Per Char Ext ent s( ) of the specified text according to the fonts
loaded for the specified font set.

5.3.2.3 Drawing Text with Font Sets

Table 5-4 summarizes functions provided specifically for drawing text in
different native languages. Unlike other X Library functions that draw text,
the internationalized functions do the following:

e  Work with font sets rather than single fonts

¢ Handle text drawing according to the locale of the font set

Applications use these functions to avoid handling text encoding directly.

Table 5-4: X Library Functions That Draw Text

Function Description

XnbDr awText (), Draw text, using multiple font sets, and allow

XweDr awText () complex spacing and font set shifts between text
strings.

Use these functions in place of their single-font
counterparts, XDr awText ( ) and XDr awText 16( ).

Creating Internationalized X, Xt, and Motif Applications 5-13



Table 5-4: X Library Functions That Draw Text (cont.)

Function Description
XmbDr awSt ring( ), Using one font set, draw only the specified text with
XweDrawSt ri ng( ) the foreground pixel.

Use these functions in place of their
single-font counterparts, XDr awSt ri ng( )
and XDrawSt ri ng16( ).

XrmbDr awm mageString( ), Fill a destination rectangle with the background
XweDr awl mageString( ) pixel. Then draw the specified image text, using one
font set, and paint that text with the foreground
pixel.
Use these functions in place of their single-font
counterparts, XDr awli mageStri ng( ) and
XDr awl mageStringl6( ).

Example 5-3 illustrates how internationalized functions draw text.

Example 5-3: Drawing Text in an X Window Application

GC Jxgc_on, Jxgc_off;

int Jxcx, Jxcy;

int Jxcx_of fset=2, Jxcy_of fset=2;

int Jxsfont_w, Jxwfont_w, Jxfont_height;
XRect angl e *Jxfont _rect;

int Jxw_wi dt h, Jxw_hei ght;

#define Jxnmax_line 10

i nt Jxsi ze[ Ixmax_li nej;

char Jxbuf f [ Ixmax_Iline] [128];

int Jxl i ne_no;

int Jxl i ne_hei ght;

static int
JxWiteText (display, client, font_set, len, string)
Di spl ay *di spl ay;

W ndow client;

XFont Set font_set;

i nt | en;

char *string;

{

int fy;

XFi Il Rectangl e(di splay, client, Jxgc_off, Jxcx, Jxcy,
Jxsfont _w, Jxfont_height);

if(len == 1 &&
(string[0] == LF || string[0] == TAB
|| string[0] == CR)) {
_JxNext Li ne();

5-14 Creating Internationalized X, Xt, and Motif Applications



Example 5-3: Drawing Text in an X Window Application (cont.)

XFi |l Rectangl e(di splay, client, Jxgc_off, 0, Jxcy,
Jxw_wi dt h, Jxfont_height);
}
el se {
if(JIxex >= (JIxw width - Jxwfont_w)
|| (Jxsize[Jxline_no] + len) >= 256) {
_JxNext Line();
XFi |l Rectangl e(di splay, client, Jxgc_off, 0, Jxcy,
Jxw_wi dt h, Jxfont_height);
}
strncpy(&Ixbuf f[JIxline_no][Jxsize[Jxline_no]], string,
I en);
Jxsi ze[ x| ine_no] += len;
fy = -Jxfont_rect->y + Jxcy;
XnmbDr awl mageStri ng(di splay, client, font_set,
Jxgc_on, Jxcx, fy, string, len);
Jxcx += XnbText Escapenent (font_set, string, len);
if(JIxex >= JIxw width) {
_JxNext Li ne();
XFi Il Rect angl e(di splay, client, Jxgc_off, 0, Jxcy, \
Jxw_wi dt h, Jxfont_height);
}

XFi Il Rectangl e(di splay, client, Jxgc_on, Jxcx, Jxcy, \
Jxsfont_w, Jxfont_height);
}

Displays a block-type cursor by using XFi | | Rect angl e( ).
Displays a native language string by using XnmbDr aw mageStri ng( ).
The string may contain both single-byte and multibyte characters.

Calculates the position for drawing the next string with
XmbText Escapenent ().

5.3.2.4 Handling Text with the X Output Method

The concept of a font set, as described in the preceding sections, was
introduced in Version 5 of the X Library. Version 6 of the X Library
implements the more generalized concepts of output methods and output
contexts. Output methods and output contexts handle multiple fonts and
context dependencies to enable bidirectional text and context-sensitive text
display.

To draw locale-dependent text, the application requires data about which
fonts are required for that text, how the text can be separated into its

Creating Internationalized X, Xt, and Motif Applications 5-15



components, and which font is required for each of those components. Version
6 of the X Library provides the following objects to address this requirement:

e X Output Method (XOM)

XOM is an opaque data structure that the application can use to
communicate with an output method.

¢ X Output Context (XOC)

XOC is compatible with XFont Set in terms of its program interface

but is a more generalized object.

Table 5-5 summarizes the X Library functions related to XOM and XOC.
For more information on these X Library functions, see the respective

reference pages.

Table 5-5: X Library Functions for Output Method and Context

Function

Description

XOpenOM )

Xd oseQM )
XSet Owal ues( )
XGet OWal ues( )

XDi spl aydf oV )

XLocal eO OM )

XCr eat eOC( )

XOMOY OC( )

XSet OCVal ues( )
XGet OCVal ues( )

XDest royQOC( )

Opens an output method to match
the specification of the current locale
and modifiers. The function returns
an XOM object to which the current
locale and modifiers are bound.

Closes the specified output method.
Sets an output method’s attributes.

Gets the properties or features of the
specified output method.

Returns the display associated with
the specified output method.

Returns the locale associated with the
specified output method.

Creates an output context within the
specified output method.

Returns the output method associated
with the specified output context.

Sets the values of the XOC object.
Gets the values of the XOC object.
Destroys the specified output context.

5.3.2.5 Converting Between Different Font Set Encodings

X fonts may be available in different encodings for the following reasons:

e More than one encoding for a character set may be in common use.

5-16 Creating Internationalized X, Xt, and Motif Applications



For example, character sets for Japanese (JIS X0208), Chinese (GB
2312), and Korean (KS C 5601) are available in GL or GR encoding.

e More than one character set may be supported in a particular country.

e Different vendors have adopted different font encoding schemes in their
products.

Font-encoding divergence from one system to another causes problems

for applications that you run on different kinds of systems. Therefore,

the implementation of the functions for text drawing and measurement
incorporates a mechanism to convert between different font encodings. For
conversion to take place, you must design your application so that it can
determine the base font name list appropriate for the run-time environment.
The application can obtain the base font name list from a resource file or
through an option the user specifies on the command line. For example, in
the command line to run the xi mdeno application, the user can include the
- f s option to specify a base font name list.

The conversion mechanism for font encoding is available only when your
application uses the internationalized text drawing functions in the X
Library. The conversion mechanism is not available with the primitive text
drawing functions, such as XDr awText ( ) and XDrawSt ri ng( ).

5.3.3 Handling Interclient Communication

When designing applications for use with different languages and in
different countries, you cannot assume that only Latin-1 or ASCII text
strings are used for interclient communication. The X Library therefore
contains functions that can handle text strings from any language for
interclient communication. Table 5-6 summarizes these functions.

Table 5-6: X Library Functions for Interclient Communication

Description

XmbSet WWPr operties( ) Provides a single programming interface for

setting essential window properties.

Your application uses these properties to
communicate with other clients, particularly
window and session managers. For example,
the functions have arguments for window and
icon names, and these names can contain
multibyte characters in some locales.

XmbText Li st ToText Property( ), Convert text encoded in the current
XwcText Li st ToText Property( ) locale to text properties of type STRI NG

or COVPOUND_TEXT.

Creating Internationalized X, Xt, and Motif Applications 5-17



Table 5-6: X Library Functions for Interclient Communication (cont.)

Function Description
XnbText PropertyToTextList(), Convert text properties of type
XwcText PropertyToText Li st () STRI NG or COMPOUND_TEXT to a list of
multibyte-character or wide-character strings.
XwcFreeStringList() Frees the memory allocated by
XweText PropertyToTextList().
XDef aul t String( ) Queries the default string that is substituted

when a character cannot be converted.

When conversion routines encounter a string
with a character that cannot be converted,
they substitute a locale-dependent default
string. The XDef aul t Stri ng( ) function
queries that default string.

Example 5-4 is an example of interclient communication in an X application.

Example 5-4: Communicating with Other Clients in an X Window
Application

if (!strcnp(locale,"zh_TWdechanyu")) {
strecpy(title, "XIMF| n/");

} else if (!strcnp(locale, "zh_CN dechanzi")) {
strepy(title, "XIMJ>76");

} else if (!strncnp(locale, "ja_JP', 5)) {
strecpy(title, "XIM %3%");

} else if (!strcnp(locale, "ko_KR deckorean")) {
strecpy(title, "XIM5%8p");

} else if (!strcnp(locale, "th_TH TACTIS")) {
strecpy(title, "XIM!RCIR8T5");

} else {

strepy(title, "X M Dermp")
}

XnmbSet WWPr operti es(di splay, window, title, title, NULL, \
0, NULL, NULL, NULL);

Inserts native language text in quoted arguments to the strcnp( )
and strcpy( ) functions.

In this example, the text is for a window title. Text strings are explicitly
specified in the function calls for the sake of simplicity. In practice, X or
Motif applications extract such text strings from locale-specific resource
or user interface language (UIL) files.

5-18 Creating Internationalized X, Xt, and Motif Applications



Passes the text to the XnbSet WWPr operti es( ) function to parse
the title, using the locale, and to set the window manager’s property
accordingly.

5.3.4 Handling Localized Resource Databases

The locale of an X resource file depends on the locale setting when the file
was created. Therefore, when a resource file or string is loaded to create a
resource database, the file or string is parsed in the current locale. This
situation is similar to the situation described for the binding of font sets
with locales in Section 5.3.2.

Table 5—-7 summarizes the X Library functions that handle localized resource
databases.

Table 5-7: X Library Functions That Handle Localized Resource Databases
Function Description

XrmLocal eOf Dat abase( ) Returns the name of the locale bound to
the specified database.

Xr mGet Fi | eDat abase( ) Opens the specified file, creates a new resource
database, and loads it with the specifications read
from the file.

The file is parsed in the current locale.

XrmGet St ri ngDat abase( ) Creates a new resource database and stores the
resources that are specified in a null-terminated
string.

The string is parsed in the current locale.

Xr mPut Li neResour ce( ) Adds a single resource entry to the specified database.
The entry string is parsed in the locale of the database.
Xr mPut Fi | eDat abase( ) Stores a copy of the specified database in the specified
file.
The file is written in the locale of the database.
XResour ceManager Stri ng( ) Converts the RESOURCE_MANAGER property encoded

in type STRI NG to the multibyte string encoded in the
current locale.

This function converts encoding in the

same way encoding is converted by the

XmbText PropertyToText Li st () function.

5.3.5 Handling Text Input with the X Input Method

When developing internationalized X applications, you must be able to
request data input in different locales from the same keyboard. The X
Library incorporates the following objects to address this problem:

Creating Internationalized X, Xt, and Motif Applications 5-19



¢ X Input Method (XIM)

XIM is an opaque data structure that an application can use to
communicate with an input method.

¢ X Input Context (XIC)

XIC represents the state of a text entry field in the context of a

multithreaded approach to user input.
An application can provide multiple text entry fields for users to enter text
data to switch between fields. To obtain data input, the application calls
XmbLookupSt ri ng( ) or XwcLookupSt ri ng( ) with an input context. The
strings returned are always encoded in the locale associated with the XIM or
XIC objects. The following sections provide more information about using
input method objects.

5.3.5.1 Opening and Closing an Input Method

To use an input method, an application must first call XOpenl M ) . This
function establishes a connection to the input method for the current locale
and locale modifiers. The function returns an XIM object to which the
current locale and locale modifiers are bound. The binding of the locale
and modifiers to the XIM object occurs when the call executes. You cannot
change the binding dynamically.

When the input method is no longer required, the application calls
XA osel M) to close the XIM object.

The following functions are also available to obtain information about an
XIM object:

e XDisplayOl M)

Returns the display associated with the specified XIM object.
e XLocal eI M)

Returns the locale associated with the specified XIM object.

The input method opened by the XOpenl M ) function is determined by one
of the following (in order of highest to lowest priority):

1. The value for the i mmodifier specified in the call to
XSet Local eModi fiers()

2.  The input method specified for the XMODI FI ERS environment variable
3. The default input method, whose name is DEC

If XOpenl M) fails to obtain the input method from any of the preceding
sources, the default is to support only ISO Latin-1 input. The XCpenl M )
call can fail under the following conditions:

e The server for the specified input method is not running

5-20 Creating Internationalized X, Xt, and Motif Applications



e The i mmodifier is specified incorrectly

e The specified input method does not support the current locale

Example 5-5 is an example of how to open and close an input method.

Example 5-5: Opening and Closing an Input Method in an X Window
Application

mai n(argc, argv)

int argc;
char *argv[];
{
Di spl ay *di spl ay;
XIM im
char *res_file = NULL;
Xr nDat abase rdb = NULL;

preedcb_cd.win = client;

if(res_file) {
printf("Set Database : file name = %\n", res_file);
rdb = XrnGet Fil eDat abase(res_file);

}

if((im= XOpenl Mdisplay, rdb, NULL, NULL)) == NULL) {
printf("Error : XOpenlM) !\n");
exit(0);
}

XCl osel Mim;

Passes the resource database r db to XOpenl M) for looking up
resources that are private to an input method.

You can specify resource databases created in the application by the
internationalized Xt functions.

Checks if the input method has been opened successfully.
Closes the input method.

Creating Internationalized X, Xt, and Motif Applications 5-21



5.3.5.2 Querying Input Method Values

Some input method behavior is vendor-defined. For example, different
implementations of an input method may support different combinations of
user interaction styles.

To help you develop portable applications, the X Library includes the

XGet | MVal ues( ) function to determine the attributes of an input method.
The XNQuer yl nput St yl e attribute specifies the user interaction styles
supported by an input method.

Example 5-6 demonstrates how to use the XGet | MWal ues( ) function
with the XNQuer yl nput St yl e attribute to obtain information for an input
method.

Example 5-6: Obtaining User Interaction Styles for an Input Method

mai n(argc, argv)

int argc;
char *argv[];
{
Di spl ay *di spl ay;
int i, n;
XI Mstyl es *imstyles;
XI Mstyl e xi m_node=0;
XI Mstyl e best _style = XI MPreedit Cal | backs;
XIM im
XI Mstyl e app_supported_styl es;

for(i=1; i<argc; i++) {
if(!strenp(argv[i], "-Root")) {
best _styl e = Xl MPreedit Not hi ng;

}

else if (!strcnp(argv[i], "-Cb")) {
best _style = Xl MPreedit Cal | backs;
}

/* set flags for the styles our application can support */
app_supported_styles = Xl MPreeditNone | XI MPreeditNothing |
XI MPr eedi t Cal | backs;

app_supported_styles | = Xl MstatusNone | Xl Mstat usNot hi ng;

XGet | Wal ues(im XNQuerylnput Style, & mstyles, NULL);

n =1

if(imstyles !'= (XIMStyles *)NULL) {

for(i=0; i<imstyles->count_styles; i++) {

xi mnmode = imstyl es->supported_styles[i];
i f((xi mnode & app_supported_styles) ==

5-22 Creating Internationalized X, Xt, and Motif Applications



Example 5-6: Obtaining User Interaction Styles for an Input Method (cont.)

ximnmode) { /* if we can handle it */
n = 0;
if (ximnode & best_style) /* pick user

break; [4]

sel ected style */

}
if(n) {
printf("warning : Unsupport InputStyle. or No
| Mserver.\n");
exit (0);
}

Determines if the user specified a preferred interaction style on the
application command line.

In the xi ndeno application, users can use the - Root and - Cb options
to specify the interaction styles. These options represent the only two
styles supported by this particular application. The - Root option
specifies the style to be Root Window; this style requires minimal
interaction between the client and the input server. The - Cb option
specifies a style where preediting is handled by callbacks. This style
enables On-the-Spot preediting.

Defines the app_support ed_styl es bitmask to specify the two
interaction styles that the application can support.

Calls XGet | Mal ues( ) to query interaction styles.
The call returns the interaction styles to the i m st yl es parameter.

Selects the interaction style that the input method supports and that
the application can handle properly.

The interaction style specified by the user takes precedence; otherwise,
the application selects the last interaction style in the returned style list.

The interaction styles, or preediting styles, supported for an input method
can vary from one locale to another.

To find out what interaction styles are supported for a particular input
method, see the following series of country-specific manuals:

e Technical Reference for Using Chinese Features
e Technical Reference for Using Japanese Features

e Technical Reference for Using Korean Features

Creating Internationalized X, Xt, and Motif Applications 5-23



e  Technical Reference for Using Thai Features

These manuals are available from the programming bookshelf of the
operating system documentation website (htt p: / / www. t r u64uni x. com
pag. conf docs/ ).

5.3.5.3 Creating and Using Contexts for an Input Method

Just as the X server can maintain multiple windows for a display, an
application can create multiple contexts for an input method. The X Library
contains the XCr eat el C( ) function to create an object for input context
(XIC). The XIC object maintains a number of attributes that you can set and
obtain through other functions. Among these attributes are the following:

e The interaction style for the input context

¢ The font set with which preediting and status text is drawn
e The callbacks for handling On-the-Spot preediting

To destroy an XIC object, call the XDest r oyl C( ) function.

Example 5-7 demonstrates how to use the XCreatel C( ) and
XDestroyl C( ) functions.

Example 5-7: Creating and Destroying an Input Method Context in an X
Window Application

Di spl ay *di spl ay;

W ndow root, w ndow, client;

XI Mstyl e xi m_node=0;

XIM im

X C ic;

XVaNest edLi st preedit_attr, status_attr;
XI MCal | back xi mapi cb[ 10] ;

char i modi fier[100];
preedcb_dat a preedcb_cd;

wi ndow = XCr eat eSi npl eW ndow( di spl ay, root, 0, O,
W W DTH, W HEI GHT, 2, bpixel, fpixel);

client = JxCreateText Wndow(di spl ay, wi ndow, 0, O,

5-24 Creating Internationalized X, Xt, and Motif Applications



Example 5-7: Creating and Destroying an Input Method Context in an X
Window Application (cont.)

exit:

WWDTH 2, WHEICGHT-2, 1, bpixel, fpixel,
font_set, &f ont_height);

if (ximnode & Xl MPreeditCallbacks) {
xi mapi cb[ 0] . client_data = (XPoi nter)NULL;
xi mapi cb[ 0] . cal | back = (Xl MProc)api _preedit_start_chb;
xi mapi cb[ 1] . client_data = (XPoi nter) (&preedcb_cd);
xi mapi cb[ 1] . cal | back = (Xl MProc) api _preedit_done_cb;
xi mapi cb[ 2] . client_data = (XPointer) (&preedcb_cd);
xi mapi cb[ 2] . cal | back = (Xl MProc) api _preedit_draw_cb;
xi mapi cb[ 3] . client_data = (XPointer)NULL;
xi mapi cb[ 3] . cal | back = (Xl MProc)api _preedit_caret_ch;
nestlist = XVaCreat eNest edLi st (10,
XNPr eedi t St art Cal | back, &xi mapicb[O0],
XNPr eedi t DoneCal | back, &xi mapicb[ 1],
XNPr eedi t Dr anCal | back, &xi mapicb[ 2],
XNPr eedi t Car et Cal | back, &xi mapicb[ 3],
NULL) ;
}

if (ximnode & Xl MPreeditCallbacks) {
ic = XCreatel C(im
XNl nput Styl e, xi m node,
XNC i ent W ndow, w ndow,
XNFocusW ndow, client,
XNPreedi t Attributes, nestlist,
NULL) ;
} else { /* preedit nothing */
ic = XCreatel C(im
XNl nput Styl e, xi m node,
XNC i ent W ndow, wi ndow,
XNFocusW ndow, client,

NULL );  [4]

}
if(ic == NULL) {
printf("Error : XCreatelC() !\n");
Xd osel Minm;
exit(0);
}

XDest royl C(ic); [6]

Calls the XVaCr eat eNest edLi st () function to create a nested

argument list for preediting and status attributes.

The XNPreedi t Attri but es and XNSt at usAt t ri but es attributes
contain a list of subordinate attributes. Your application must create
a nested list to contain the subordinate attributes before setting or

querying them.
Specifies XIC attributes.

Creating Internationalized X, Xt, and Motif Applications 5-25



Your application must always specify some XIC attributes when
creating an XIC object. The XNI nput St yl e attribute is mandatory;
requirements for other attributes depend on the interaction style.

Registers callbacks for On-the-Spot interaction style.

When the interaction style is On-the-Spot, your application must
register all callbacks when creating the XIC object.

Your application does not have to set the XNCl i ent W ndow attribute
when creating the XIC, but it must set this attribute before using the
XIC. If the XIC is used before XNCl i ent W ndow is set, results are
unpredictable.

Sets the interaction style, client window, and focus window attributes
for the Root Window style.

These are the only attributes your application needs to set at XIC
creation time when the interaction style is Root Window.

Specifies actions when XIC creation fails.

The call to XCr eat el C( ) fails (that is, returns NULL) under the
following conditions:

e A required attribute is not set.
¢ A read-only attribute (for example, XNFi | t er Event s) is set.

e An attribute name is not recognized.
[6] Closes the XIC.

Table 5—8 summarizes the functions available for managing an XIC object.

Table 5-8: X Library Functions That Manage Input Context (XIC)

Function Description
XSet | CFocus( ) Enables keyboard events to be directed to the input
method.

You must call this function when the focus window of
an XIC receives input focus; otherwise, keyboard events
are not directed to the input method.

XUnset | CFocus( ) Prevents keyboard events from being directed to the
input method.

Call this function when the focus window of an XIC
loses focus.

XnbReset | C( ), Reset the XIC to its initial state.
)

XweReset | C( Any input pending on that XIC is deleted. These
functions return either the current preedit string or
NULL, depending on the implementation of the input
server.

5-26 Creating Internationalized X, Xt, and Motif Applications



Table 5-8: X Library Functions That Manage Input Context (XIC) (cont.)

Function Description

XIEMOF 1 C() Returns the XIM associated with the specified XIC.
XSet | CVal ues( ) Sets attributes to a specified XIC.

XCGet | CVal ues( ) Queries attributes from a specified XIC.

5.3.5.4 Providing Preediting Callbacks for the On-the-Spot Input Style

If your application supports the On-the-Spot interaction style, you have to
provide a set of preediting callbacks. A number of callbacks are associated
with XIC. Example 5-8 demonstrates these callbacks.

Example 5-8: Using Preediting Callbacks in an X Window Application

int Jxsi ze

[Ixmax_line];
char JIxbuf f[ Ixmax_line] [128];
int Jxl i ne_no;
int Jxl i ne_hei ght;
int sav_cCXx, sav_cy;
int sav_w W dth, w_height;
int sav_si ze[ Ixmax_| i ne];
int sav_line_no;
char preedit_buffer[12];
voi d
save_val ue()
{ . .
int i;

sav_cx = JXCX;

sav_cy = Jxcy;

sav_line_no = Jxline_no;

for (i=0; i< Jxmax_line; i++)

sav_size[i] = JIxsize[i];
}
voi d
restore_val ue()
{ . .
int i;
JXCX = sav_cCx;
JXcy = sav_cy;
Jxline_no = sav_line_no;
for (i=0; i< Jxmax_line; i++)
Jxsize[i] = sav_size[i];
}
int
api _preedit_start_cbh(ic, clientdata, calldata)
XICic;

XPoi nter clientdata;
XPoi nter call data;
{
int len;
len = 12;
/* save up the val ues */
save_val ue();
return(len);

Creating Internationalized X, Xt, and Motif Applications 5-27



Example 5-8: Using Preediting Callbacks in an X Window Application
(cont.)

voi d
api _preedi t_done_cb(ic, clientdata, calldata)
XiCic;
XPoi nter clientdata;
XPoi nter call data;
{
preedcb_data *cd = (preedcb_data *)clientdata;
/* restore up the values */
restore_val ue();
/* conveni ent handling */
JxRedi spl ayText (cd- >dpy, cd->win, cd->fset);
return;
}
voi d
api _preedit_draw cb( ic, clientdata, calldata)
XiCic;
XPoi nter clientdata;
Xl MPr eedi t DrawCal | backStruct *cal | dat a;
{
preedcb_data *cd = (preedcb_data *)clientdata;
int count;
char *reset_str;
if (calldata->text) {
if (calldata->text->encoding_is_wchar) [4]
{
} else {
count = strlen(calldata->text->string.nulti_byte);
if (count > 12) {
/* preedit string > max preedit buffer */
reset _str = XmbReset|C(ic);
XFi |l Rect angl e(cd->dpy, cd->w n, Jxgc_off, Jxcx, Jxcy,
Jxw_w dt h*13, Jxfont_hei ght); /* clear the preedit area */
restore_val ue();
if (reset_str)
XFree(reset_str);
return;

if (!calldata->chg_length) { /* insert character */
if (lcalldata->chg_first) { /* insert in first character
in preedit buffer */
strncpy(&preedit_buffer[0], cal |l data->text->string.multi_byte, count);
restore_val ue();
} else {
/* Not Yet Inplenmented */
}
} else { /* replace character */
if (lcalldata->chg_first) { /* replace fromfirst
character in pre-edit buffer */
strncpy(&preedit_buffer[0], call data->text->string.multi_byte, count);
restore_val ue();
} else {
/* Not Yet Inplenmented */

}

XFi |l Rect angl e(cd->dpy, cd->win, Jxgc_off, Jxcx, Jxcy,
Jxw_w dt h*13, Jxfont_height); /* clear the preedit area */
JxWiteText (cd->dpy, cd->win, cd->fset, count, preedit_buffer);

} else { /* should del ete preedit buffer */

5-28 Creating Internationalized X, Xt, and Motif Applications



Example 5-8: Using Preediting Callbacks in an X Window Application
(cont.)

/* Not yet inplenmented */

}

return;
}
voi d
api _preedit_caret_cb(ic, clientdata, calldata)
XICic;
XPoi nter clientdata;
Xl MPr eedi t Car et Cal | backSt ruct *cal | dat a;

/* Not yet inplenmented */
return;

Saves the current drawing position.

As part of the operation of drawing preediting strings, this
application saves the current drawing position as the value of the
Preedi t Start Cal | back attribute. After the preediting is complete,
the application erases the preediting string and restores the original
drawing position.

Returns the length of the preediting string.

The value of 12 bytes is an arbitrary number to limit the length of the
string. The value should match the size of the preediting buffer. This
application declares the preediting buffer (pr eedi t _buf f er) to be

a 12-byte character array.

Restores the drawing position and redraws the text buffer.
Handles wide-character encoding.

This example assumes that the preediting string is in multibyte
encoding. However, your application should handle both multibyte
and wide-character encoding. Wide-character encoding is preferable
because information, such as character position, is returned in the
XI MPr eedi t Dr awCal | backStruct structure as the number of
characters rather than the number of bytes.

Clears the preediting string when its size exceeds 12 bytes.

The size of the string is obtained from the Pr eedi t Dr awCal | back
attribute. Without processing the string returned on the call to
XmbReset | C( ), the application frees the string with a call to Xfree( ).

Creating Internationalized X, Xt, and Motif Applications 5-29



5.3.5.5 Filtering Events for an Input Method

An input method has to receive events before the events are processed

by the application. The application has to pass to the input method not
only KeyPress/KeyRelease events but other events as well. The X Library
contains the Xfi |l t er Event () function to pass events to an input method.
Use this function, along with related functions, as follows:

1. Obtain a mask for the events to be passed to the input method by calling
the XGet | CVal ues( ) function with the XNFi | t er Event s argument.
Register the event types with the XSel ect | nput () function.

In the main loop of the program (usually right after the call to
XNext Event () ) call XFi |l t er Event () to pass the event to the input
method.

A return status of Tr ue indicates that the input method has filtered the
event and it needs no further processing by the application.

Example 5-9 illustrates the preceding process.

Example 5-9: Filtering Events for an Input Method in an X Window
Application

I ong i mevent _nask;

XGet | CVal ues(ic, XNFilterEvents, & mevent_mask, NULL);
mask = StructureNotifyMask | FocusChangeMask | ExposureMask;
XSel ect | nput (di spl ay, wi ndow, nask);
mask = ExposureMask | KeyPressMask | FocusChangeMask |
i mevent _nask;
XSel ect | nput (di splay, client, nask);

for(;;) {
XNext Event (di spl ay, &event);
if(XFilterEvent (&vent, NULL) == True)
conti nue;
switch(event.type ) {
/* dispatch event */

Filters the event.

5-30 Creating Internationalized X, Xt, and Motif Applications



Because the Xt Di spat chEvent ( ) function calls XFi | t er Event (),
you can replace the f or loop as demonstrated in this example with a
call to Xt AppMai nLoop( ).

5.3.5.6 Obtaining Composed Strings from the Keyboard

You use the XmbLookupStri ng( ) or XwcLookupSt ri ng( ) function in your
X application to obtain native language characters and key symbols. Your
application has to take into account the complexity of some input methods,
which require several keystrokes to compose a single character. Therefore,
expect that a composed character or string may not be returned on every
call to one of these functions.

Example 5-10 demonstrates how to get keyboard input in an X application.

Example 5-10: Obtaining Keyboard Input in an X Window Application

XEvent event;

int len = 128;
char string[128];
KeySym keysym

int count;

for(;;) {
XNext Event (di spl ay, &event);
if(XFilterEvent (&vent, NULL) == True)
conti nue;
switch(event.type ) {
case Focusln :
i f(event.xany.w ndow == w ndow)
XSet | nput Focus(di spl ay, client,
Revert ToParent, CurrentTine);
el se if(event.xany.w ndow == client) {
XSet | CFocus(ic);
}
br eak; case FocusQut :
i f(event.xany.w ndow == client) {
XUnset | CFocus(ic);

break;
case Expose :
i f(event.xany.w ndow == client)
JxRedi spl ayText (di spl ay, client,
font_set);
break;
case KeyPress :
count = XmbLookupString(ic, (XKeyPressedEvent
*)&event, string, len, &eysym NULL);
if( count == 1 && string[0] == (Ox1F& c')) {
/* exit */
goto exit;

}

Creating Internationalized X, Xt, and Motif Applications 5-31



Example 5-10: Obtaining Keyboard Input in an X Window Application
(cont.)

if( count > 0) {
JxWiteText (display, client,
font_set, count, string);
}
break;
case MappingNotify :
XRef r eshKeyboar dMappi ng( ( XMappi ngEvent *) &event);
break;
case DestroyNotify :
printf("Error : DestroyEvent !\n");
break;

}

Handles FocusIn and FocusOut events.

In this example, one XIC is associated with a focus window. Some
input servers require focus change information to update the status
area. Therefore, each FocusIn event calls XSet | CFocus( ) and each
FocusOut event calls XUnset | CFocus( ).

Your application can also use one XIC for several focus windows. In this
case, you do not need to call XSet | CFocus( ) for every focus change
event, but you do have to set the XNFocusW ndow attribute of the XIC.

Handles KeyPress events.

Make sure that your application passes only KeyPress events to
XmbLookupSt ri ng( ) or XwcLookupSt ri ng( ). Results are undefined
if you pass KeyRelease events to these functions.

For simplicity in this example, the status field in the call to
XmbLookupSt ri ng( ) is NULL. Your own application should check for
the status return and respond appropriately. For example, if the status
return is XBuf f er Over f | ow, your application might try to allocate
more memory for the buffer.

Processes the string when one is returned.

XmbLookupSt ri ng( ) returns the size of the composed string (in bytes).

5.3.5.7 Handling Failure of the Input Method Server

The XNDest r oyCal | back resources for an input method and an input
method context were introduced in X11R6. These resources, which are
triggered by failure of the input method server, close the XIM and XIC
objects for a client application. If a client application continues to run
without detecting server failure and then closes the XIC and XIM objects,
results are unpredictable.

5-32 Creating Internationalized X, Xt, and Motif Applications



Example 5-11 illustrates how to register the XNDest r oyCal | back resource
for the XIM object and how to close the XIM in the event of server failure.

Example 5-11: Handling Failure of the Input Method Server

static void _i nDest royCal | back();
Bool | M5_Connect ed = Fal se;
XI MCal | back cb;

if((im= XOpenl Mdisplay, rdb, NULL, NULL)) == NULL) {
printf("Error : XOpenlM) !\n");
exit(0);

}
el se {
| M5_Connected = True;
ch.client_data = (XPointer) & MS_Connected;
ch. cal I back = (XI MProc) _inDestroyCall back;
XSet | Wal ues(i m XNDestroyCal | back, &cb, NULL);

case KeyPress :
if (1 M5_Connected) count = XmbLookupString(ic,
(XKeyPr essedEvent *)&event, string, len, &eysym NULL);
el se count =
XLookupSt ri ng( ( XKeyPressedEvent *)&event, string, len, &eysym NULL); [4]

static void

_inDestroyCal | back(im client_data, call_data)
XIMim
XPoi nter client_data;
XPoi nter call_dat a;

Bool *Connected = (Bool *)client_data;
*Connect ed =3D Fal se;

Declares the function that closes the XIM if the input method server
(IMS) fails for any reason.

Declares the | MS_Connect ed variable to specify whether the input
method server is still connected and the cb structure to contain client
information needed for resource registration.

If the call to open the XIM fails, prints an error message and exits.

Otherwise, sets the | M5_Connect ed variable to Tr ue, fills the cb
structure with appropriate client data, and calls the XSet | Mval ues( )
function to register the XNDest r oyCal | back resource for the XIM.

Creating Internationalized X, Xt, and Motif Applications 5-33



If the input method server is running, uses the XmbLookupSt ri ng( )
function to process user input.

Otherwise, uses the XLookupStri ng( ) function.

Specifies the prototype for the function that closes the XIM if the input
method server fails.

The xi ndend program is very simple and uses only one input method
context. In this case, there is no need to explicitly close the XIC when the
input method server fails. The following example describes the prototype

for a callback function that would close an XIC:
static void icDestroyCall back(ic, client_data, call_data)
XICic;

XPoi nter client_data;

XPoi nter call_dat a;

5.3.6 Using Xt and X Library Features: A Summary

The following list of steps for processing native language input summarizes
the information presented in preceding sections on the X Library. For your
convenience, the step description also notes when programming with X
Toolkit Intrinsics Library (Xt) functions differs from programming with X
Library functions. See Section 5.1 for discussion of internationalization
features of the X Toolkit Intrinsics Library.

1. Callsetlocal e( ) tobind to the current locale.

You can accomplish the same result by registering an initialization
callback function with Xt Set LanguagePr oc( ).

2. Call XSupportsLocal e( ) to verify that X supports the current locale.

Either call XSet Local eModi fi ers( ) or set the XMODI FI ERS
environment variable to define the input method being used.

4. Call XOpenl M ) to connect to the selected input method.

If you are writing a widget, you can skip this step and assume that a
valid XIM will be passed to the widget as a resource.

5. Call XGet | Mal ues( ) to query the interaction styles supported by the
input method.

When writing a widget, do this step in the initialization method.
6. Create a window to associate with an XIC.
When using Xt functions, create a widget.

7. Call XCr eat eFont Set ( ) to create a font set for this window. In X11RS6,
you can use XOpenOM ) instead.

If you are using Xt functions and have created a widget, use the value
set for Xt Def aul t Font Set .

5-34 Creating Internationalized X, Xt, and Motif Applications



10.

11.

12.

Choose an interaction style from the supported values obtained by the
application and pass this value as an argument to XCr eat el C( ).

If you are using XI MPr eedi t Cal | backs, you must write the callback
routines and register them on the call to XCreat el C( ).

Call XGet | Cval ues( ) to query the XNFi | t er Event s attribute and
register the event that the input method needs from the focus window.

Call XFi | t er Event ( ) in the main event loop before dispatching an
event.

If the call returns Tr ue, you can discard the event.

If programming with routines from the X Intrinsics (Xt) Library, use
Xt Di spat chEvent ().

In the main event loop, set and unset input focus when the focus window
receives FocusIn and FocusOut events.

If programming with routines from the X Intrinsics (Xt) Library, use an
event handler or a translation or action table to track focus events.

For unfiltered KeyPress events, call XmbLookupString( ) or
XwecLookupStri ng( ) to obtain key symbols and the composed string.

You can draw the string with the internationalized functions for text
drawing.

Creating Internationalized X, Xt, and Motif Applications 5-35






6

Creating Locales

This chapter explains how to develop a locale. A locale is the set of data
that supports a particular combination of native language, cultural data,
and codeset on the operating system. You use the | ocal edef command to
create locales from the following files:

e char map, a character map source file (Section 6.1)

See char map(4) for an explanation of the format and rules for this file.
This chapter includes a char map example that conforms to binary
character encodings specified for the ISO Latin-1 codeset, which defines
all characters as single 8-bit bytes. The chapter also includes an example
of part of a char map file for the SJIS codeset, which defines both
single-byte and multibyte characters.

e A locale source file (Section 6.2)

See | ocal e(4) for an explanation of the rules and format for this file.
This chapter includes an example of the development of a locale named
fr_FR 1 S08859- 1@xanpl e, which supports the language and customs
of France.

¢ A methods file with associated shareable library (Section 6.3)

A methods file and shareable library are required when the char map
file defines multibyte characters; otherwise, they are optional. The
methods file contains an entry for each function used by the locale and
defined in the associated shared library. The message file entry includes
the library name and path. Method file entries also specify the shared
library containing redefinitions of the C Library interfaces that convert
data to and from internal process (wide-character) encoding.

For a list of files that must be changed in order for desktop applications
to use a new locale, see Chapter 5.

6.1 Creating a Character Map Source File for a Locale

A char map file defines symbols for character binary encodings. The
| ocal edef command uses this file to map character symbols in

a locale source file to the character encodings. Example 6-1 is a
fragment of the | SCB859- 1. cmap source file that is used in the
fr_FR | SOB8859- 1@xanpl e locale being developed in this chapter.
Section D.1 contains the | SO8859- 1. crrap file in its entirety.

Creating Locales 6-1



Example 6-1: The charmap File for a Sample Locale

#

# Charmap for 1SO 8859-1 codeset

#

<code_set name> "| SO8859- 1"
<nb_cur _max> 1
<mb_cur _mi n> 1
<escape_char > \

<comment _char > #

CHARMVAP

# Portable characters and ot her standard
# control characters
<NUL> \ x00
<SOH> \ x01

<STX> \ x02

<ETX> \ x03

<ECT> \ x04

<ENQ> \ x05

<ACK> \ x06

<BEL> \ x07

<alert> \ x07
<backspace> \ x08

<t ab> \ x09

<new i ne> \ x0a
<vertical -tab> \ x0b
<formfeed> \ x0c

<carri age-return> \ x0d

<SC> \ x0e

<zer o> \ x30
<one> \x31

<t wo> \ x32

<t hree> \ x33

<A> \ x41

<B> \ x42

<C \ x43

<D> \ x44

<under scor e> \ x5f
<l ow | i ne> \ x5f

<gr ave- accent > \ x60

<a> \ x61

6—2 Creating Locales



Example 6-1: The charmap File for a Sample Locale (cont.)

<b> \ x62

<c> \ x63

<d> \ x64

# Extended control characters

# (nanmes taken from | SO 6429)
<PAD> \ x80
<HOP> \ x81

<BPH> \ x82

<NBH> \ x83

<l ND> \ x84

# Qther graphic characters

<nobr eakspace> \ xa0

<i nverted-excl anati on- mar k> \ xal

END CHARMAP

Comment line
By default, the comment character is the number sign (#). You
can override this default with a <comment _char > definition (see
Example 6-1).

Keyword declarations

This example provides entries for all valid declarations and specifies
default values for all but <code_set _nane>. Usually, you specify a
declaration only when you want to override its default value. In this
example, the declarations for <escape_char > and <comment _char >
specify the default values for the escape character and comment
character, respectively. The value for <mb_cur _nmax>, the maximum
length (in bytes) of a character, is 1 for this particular char map file. The
value for <mb_cur _m n>, the minimum length (in bytes) of a character,
must be 1 in char nap files for all locales. (All locales include characters
in the Portable Character Set, which defines single-byte characters.)

Creating Locales 6-3



The <code_set _nane> value is the value returned on the
nl _| angi nf o( CODESET) call made by applications that bind to the
locale at run time.

Header marking start of character maps
Symbol-to-coding maps for characters

Each character map consists of a symbolic name and encoding. The
name and encoding are separated by one or more spaces.

A symbolic name begins with the left angle bracket (<) and ends with
the right angle bracket (>). The characters between the angle brackets
can be any characters from the Portable Character Set, except for
control and space characters. If the name includes more than one right
angle bracket (>), all but the last one must be preceded by the value of
<escape_char act er >. A symbolic name cannot exceed 128 bytes in
length.

An encoding can be one or more decimal, octal, or hexadecimal
constants. (Multiple constants apply to multibyte encodings.) The
constants have the following formats:

e Decimal

\'dnnn or \ dnn, where n is a decimal digit
e Hexadecimal

\ xnn, where n is a hexadecimal digit
e Octal

\ nnn or \ nn, where n is an octal digit

You can define multiple character map entries (each with a different
symbolic name) for the same encoding value. This example does not
define multiple symbolic names for the same encoding value.

Trailer marking end of character maps
The source files for codesets with multibyte characters have more complex
character maps. Example 6-2 is a subset of character map entries from a

source file for the Japanese SJIS codeset. This source file specifies entries
from several character sets that must be supported within the same codeset.

Example 6-2: Fragment from a charmap File for a Multibyte Codeset

# SJI'S charmap

#

<code_set _name> "SJI S"
<mb_cur _mi n> 1
<mb_cur _max> 2
CHARVAP

#

6—4 Creating Locales



Example 6-2: Fragment from a charmap File for a Multibyte Codeset (cont.)

# CS0: ASCl |

#

<commer ci al - at > \ x40
<A> \ x41
<B> \ x42
#

# CS1: JI'S X0208-1983 for ShiftJlsS.
#

<zenkaku- space> \ x81\ x40
<j 0101>...<j0163> \ x81\ x40
<j 0164>...<j 0194> \ x81\ x80
#

# UDC Area in JI'S X0208 pl ane

#

<u8501>. . .<u8563> \xeb\x40 [6]
<u8564>. . . <u8594> \xeb\x80 [6]
<u8601>. . .<u8663> \ xeb\ x9f [6]
#

# CS2: JI'S X0201 (so-call ed Hankaku- Kana)
#

<kana-f ul | st op> \ xal
<kana- conj uncti ve> \ xa5
<kana- WO> \ xa6
<kana- a> \ xa7
END CHARNVAP

Codeset name
Minimum number of bytes for each character

This value must be 1.
Maximum number of bytes for each character

Creating Locales 6-5



In SJIS, the largest multibyte character is 2 bytes in length.
Symbols and encodings for ASCII characters
Symbols and encodings for SJIS characters

Note how character symbols are specified as a range and how two
hexadecimal values determine the encoding for a 2-byte character.

When symbols are specified as a range of symbol values, the specified
character encoding applies to the first symbol in the range. The

| ocal edef command automatically increments both the symbol
value and the encoding value to create symbols and encodings for all
characters in the range.

[6] Maps for UDCs within the SJIS codeset

These maps establish ranges of encodings for which users can later
define characters.

Maps for the single-byte characters of the Hankaku-Kana character set

See char map(4) for a complete list of rules that apply to character map
source files.

Note

The symbolic names for characters in character map source files
are in the process of becoming standardized. A future revision of
the X/Open UNIX standard will likely specify both long and short
symbolic names for characters.

The symbolic names for characters in examples are not necessarily
the names being proposed for adoption by any standards group.

6.2 Creating Locale Definition Source Files

A locale definition source file defines data that is specific to a particular
language and territory. The source file is organized into sections, one for
each category of locale data being defined. The locale categories include
the following:

e LC _CTYPE defines character classes and attributes (Section 6.2.1)

e LC COLLATE defines how characters and strings are collated
(Section 6.2.2)

e | C MESSAGES defines the strings used for affirmative and negative
responses (Section 6.2.3)

e LC MONETARY defines the rules and symbols for monetary values
(Section 6.2.4)

6-6 Creating Locales



LC_NUMERI C defines the rules and symbols for numeric data
(Section 6.2.5)

LC_TI ME defines date and time (Section 6.2.6)

LC _ALL references all the categories

Example 6-3 illustrates the structure of a locale definition source file in
pseudocode.

Example 6-3: Structure of Locale Source Definition File

# coment-1line

comrent _char <char _synbol 1>
escape_char <char _synbol 2>

CATEGORY_NANE

cat egory_definition-statenent
cat egory_definition-statement

END CATEGORY NAMVE  [6 ]

Comment line

The number sign (#) is the default comment character. You can specify
comments as entire lines by entering the comment character in the first
column of the line. You cannot specify comments on the same lines as
definition statements in locale source files. In this respect, locale source
files differ from character map source files.

Redefinition of comment character

You can override the default comment character with an entry line that
begins with the comment _char keyword followed by the symbol for the
desired character. The character symbol is defined in the character map
(char map) source file for the locale.

Redefinition of escape character

The escape character is the backslash (\ ) by default. It is used in
decimal, hexadecimal, and octal constants to indicate when definition
statements are continued to the next line of the source file. You can
override the default escape character with an entry line that begins with
the escape_char keyword followed by one or more blank characters,

Creating Locales 6-7



then the symbol for the desired character. The character symbol is
defined in the character map source file for the locale.

Header for locale category section

Section headers correspond to category names, which are LC_CTYPE,
LC COLLATE, LC_NUMERI C, LC_MONETARY, LC MESSAGES, and
LC_TI ME.

Definition statement for the category

The format of these statements varies from one category to the next. In
general, a statement begins with a keyword, followed by one or more
spaces or tabs, then by the definition itself.

In place of any category definition statements, you can include a copy
statement to include definition statements in another locale source
file. For example:

copy en_US. | SO8859-1
If you include a copy statement, do not include other statements in
the category.

[6] Trailer for locale category section

Section trailers begin with the END keyword followed by the category
name.

You can include sections for all locale categories or only a subset of
categories. If you omit a section for a locale category from the source

file, the definition for the omitted category is derived from the default
locale (POSIX or C).

The following sections describe specific locale categories and illustrate the
description with parts of the fr _FR. | SO8859- 1@xanpl e. src locale
source file. Section D.2 contains this source file in its entirety.

6.2.1 Defining the LC_CTYPE Locale Category

The LC_CTYPE section of a locale source file defines character classes
and character attributes used in operations such as case conversion.
Example 6—4 describes the definition for this section.

Example 6—4: LC_CTYPE Category Definition

wABHBHBHAHARE

LC _CTYPE
R

upper <A>; <B>; <C>; <D>; <B>; <F>; <G; <H>; <l >; <J>; <K>; <L>; <M>; \

<N>; <O>; <P>; <@; <R>; <S>; <T>; <U>; <V>; <Wp; <X>; <Y>; <Z>; \
<A-grave>;\

6-8 Creating Locales



Example 6-4: LC_CTYPE Category Definition (cont.)

<U- di aer esi s>
| ower <a>; <b>; <c>; <d>; <e>; <f >; <g>; <h>; <i >; < >; <k>; <I >; <np; \

<n>; <0>; <pP>; <g>; <r >; <S>; <t >; <U>; <V>; <KW <X>; <y>; <z>; \
<a-grave>;\

<u- di aer esi s>

space <t ab>; <newl i ne>; <verti cal -t ab>; <f orm f eed>; \
<carri age-ret urn>; <space>

cntrl <NUL>; <SOH>; <STX>; <ETX>; <EQT>; <ENQ>; <ACK>; \

<al ert >; <backspace>; <t ab>; <newl i ne>; <vertical -t ab>;\
<form f eed>; <carri age-return>;\

<S0S>; <SGCI >; <SCl >; <CS| >; <ST>; <O8C>; <PM>; <APC>

graph <excl amat i on- mar k>; <quot at i on- mar k>; <nunber - si gn>; \

<u- ci rcunf | ex>; <u-di aer esi s>; <y-acut e>; <t horn-i cel andi ¢c>; <y- di aer esi s>
# print class includes everything in the graph class above, plus <space>.

print <excl amat i on- mar k>; <quot at i on- mar k>; <nunber - si gn>; \

<u- ci rcunf | ex>; <u- di aer esi s>; <y-acut e>; <t horn-i cel andi ¢c>; <y- di aer esi s>; \

<space>

punct <excl amat i on- mar k>; <quot at i on- mar k>; <nunber - si gn>; \
<dol | ar - si gn>; <per cent - si gn>; <anper sand>; <apost r ophe>; \
<l ef t - par ent hesi s>; <ri ght - par ent hesi s>; <ast eri sk>; \
<pl us- si gn>; <comma>; <hyphen>; <peri od>; <sl ash>; \
<col on>; <seni col on>; <| ess-t han- si gn>; <equal s- si gn>; \
<great er - t han- si gn>; <quest i on- mar k>; <conmer ci al - at >; \
<l ef t - squar e- br acket >; <backsl ash>; <ri ght - squar e- br acket >; \
<ci rcunf| ex>; <under scor e>; <gr ave- accent >; <l ef t - brace>; \
<vertical -1ine>; <right-brace>; <tilde>

digit <zer 0>; <one>; <t wo>; <t hr ee>; <f our >; \
<f i ve>; <si x>; <seven>; <ei ght >; <ni ne>

xdi git <zero>; <one>; <t wo>; <t hr ee>; <f our >; \
<five>; <si x>, <seven>; <ei ght >; <ni ne>; \
<A>; <B>; <C; <D>; <B>; <F>;\
<a>; <b>; <c>; <d>; <e>; <f >

bl ank  <space>; <t ab>

toupper (<a>, <A>);(<b>, <B>);(<c>, <C); (<d>, <D>); (<e>, <E>);\
(<f>, <F>); (<g>, <G>); (<h>, <H>); (<i >, <I >); (< >, <I>);\
(<k>, <K>); (<I >, <L>) ; (<P, <MP) ; (<n>, <N>) ; (<0>, <O>) ; \
(<p>, <P>); (<g>, <@); (<r>, <R>); (<s>, <S>); (<t >, <T>);\
(<u>, <U>); (<v>, <V>); (<we, <WB) ; (<x>, <X>); (<y>, <Y>);\

Creating Locales 6-9



Example 6-4: LC_CTYPE Category Definition (cont.)

(<z>,<Z>);\

(<a-grave>, <A-grave>);\
(<a-circunflex>, <A-circunflex>);\
(<ae-ligature>, <AE-ligature>);\
(<c-cedilla> <Ccedilla>);\
(<e-grave>, <E-grave>);\

(<e-acut e>, <E-acute>);\
(<e-circunflex>, <E-circunflex>);\
(<e-di aer esi s>, <E-di aeresi s>);\
(<i-circunflex>, <l-circunflex>);\
(<i-diaeresis>, <I-diaeresis>);\
(<o-circunflex>, <O circunflex>);\
(<u-grave>, <U-grave>);\
(<u-circunflex>, <U-circunflex>);\
(<u-di aer esi s>, <U-di aer esi s>)

# tolower class is the inverse of toupper.

tol ower (<A>, <a>); (<B>, <b>); (<C>, <c>); (<D>, <d>); (<E>, <e>);\
(<F>, <f>); (<G>, <g>) ; (<H>, <h>); (<I >, <i >); (<>, <j>);\
(<K>, <k>); (<L>, <I 3); (<Mp, <nP) ; (<N>, <n>); (<O>, <0>);\
(<P>, <p>); (<@, <q>); (<R>, <r>); (<S>, <s>); (<T>, <t >);\
(<U>, <u>); (<V>, <v>); (W, <w) ;5 (<X>, <x>); (<Y>, <y>);\
(<Z>, <z>);\
(<A-grave>, <a-grave>);\
(<A-circunflex>, <a-circunflex>);\
(<AE-1igature>, <ae-ligature>);\
(<C-cedilla> <c-cedilla>);\
(<E-grave>, <e-grave>);\
(<E- acut e>, <e-acute>);\
(<E-circunfl ex>, <e-circunflex>);\
(<E-di aer esi s>, <e-di aeresi s>);\
(<l-circunflex>, <i-circunflex>);\
(<I-di aeresi s>, <i-diaeresis>);\
(<O circunfl ex>, <o-circunflex>);\
(<U-grave>, <u-grave>);\
(<U-circunfl ex>, <u-circunflex>);\
(<U-di aer esi s>, <u-di aer esi s>)

END LC CTYPE [4]

Section header
Definition of character class

These definitions start with a keyword that stands for the character
class (also referred to as a property) followed by one or more blank
characters, then a list of symbols for all characters in that class. You can
substitute the character’s encoding for its symbol; however, specifying
characters by their encodings diminishes the readability of the locale
source file and makes it impossible to use the file with more than one
codeset.

Although not illustrated in the example, you can specify a horizontal
ellipsis (. . . ) to represent a range of characters. In the string
<NUL>; .. .; <t ab>, for example, the ellipsis represents all characters

6-10 Creating Locales



whose encodings are between the character whose symbol is <NUL> and
the character whose symbol is <t ab>. The symbols and their encodings
are specified in the char map file for the locale.

Character classes as defined by the X/Open UNIX standard are
represented by the following keywords:

e upper (uppercase letter characters)
e | ower (lowercase letter characters)
e al pha (all letter characters)

By default, the al pha class is the combination of characters specified
for the upper and | ower classes. Because the sample locale does
not explicitly define the al pha class, the default definition applies.

e space (white-space characters)
e cntrl (control characters)

e punct (punctuation characters)
e digit (numeric digits)

e xdigit (hexadecimal digits)

¢ bl ank (blank characters)

e graph

By default, this class is the combination of characters in the al pha,
di gi t, and punct classes.

e print

By default, this class is the combination of characters in the al pha,
di gi t, and punct classes, plus the space character.

From the application standpoint, there is also the class al num This
class is rarely defined in a locale because it is always a combination of
characters in the al pha and di gi t classes.

Unicode (*. UTF- 8) locales include character classes as defined by
the Unicode standard. See | ocal e(4) for details about character
classification for Unicode.

Certain locales, such as those for Asian languages like Japanese, may
define nonstandard character classes.

Definitions of case conversion for letter characters

Case conversion definitions, which begin with the keywords t oupper ()
and t ol ower, list symbols in pairs rather than individually. In the

t oupper () definition described here, the first symbol in the pair is
the symbol for a lowercase letter and the second symbol is the symbol
for that letter’s uppercase equivalent. This definition determines

Creating Locales 6-11



what a letter is converted to when functions, like t owupper () and
t owl ower (), perform case conversion on text data.

Locales that define nonstandard character classes may define other
property conversion definitions that are used by the wet rans( ) and
towctrans( ) functions.

Section trailer

The preceding example does not completely illustrate all the options you can
use when defining the LC_CTYPE category. Additional options allow you to
perform the following tasks:

e Use a copy statement to include the entire category definition from
another locale

When you use a copy statement, it must be the only entry between the
section trailer and header.

¢ Omit any of the standard character classes or define different character
classes

The standard character classes are language specific. Therefore, the
standard character classes may not apply to all languages. When

you define a locale, use only the standard character classes that are
appropriate for the locale’s language. Depending on the language, it may
be necessary to define nonstandardized classes.

A definition for a nonstandardized character class must be preceded by
the char cl ass statement to define a keyword for the class, followed by
the class definition. For example:

charcl ass vowel
vowel <a>; <e>; <i >; <0>; <u>; <y>

Applications can use the wct ype( ) andi swet ype( ) functions to determine
and test all character classes (including user-defined ones). Applications
can use class-specific functions, such as i swal pha( ) and i swpunct () to
test the standard character classes.

Note

The LC_CTYPE category of the fr _FR. | SC8859- 1@xanpl e
locale is limited to letter characters in the French language.
Some locale developers would define character classes to include
characters in all the languages supported by the ISO 8859-1
character set. This practice allows locales for multiple Western
European languages to use the same LC_CTYPE source definitions
through a copy statement.

6-12 Creating Locales



See | ocal e(4) for additional rules and restrictions that apply to the
LC_CTYPE category definition.

6.2.2 Defining the LC_COLLATE Locale Category

The LC_COLLATE section of a locale source file specifies how characters and
strings are collated. Example 6-5 is part of an LC_COLLATE section.

Example 6-5: LC_COLLATE Category Definition

LC _COLLATE
order_start
<NUL>
<SOH>

<STX>

<ETX>

<EQT>

<ENQ>

<ACK>
<alert>
<backspace>
<t ab>

<APC>
<space>

<excl amat i on- mar k>

<quot ati on- mar k>

f orwar d; backwar d; f or war d

<space>; <space>; <space>

<excl amat i on- mar k>; <excl amat i on- mar k>; <excl amat i on- mar k>

<quot at i on- mar k>; <quot at i on- mar k>; <quot at i on- mar k>

<a> <a>; <a>; <a>

<A> <a>; <a>; <A>

<f em ni ne> <a>; <f em ni ne>; <f em ni ne>
<a- acut e> <a>; <a- acut e>; <a- acut e>
<A-acut e> <a>; <a- acut e>; <A- acut e>
<a- grave> <a>; <a- grave>; <a- grave>
<A-grave> <a>; <a- grave>; <A-grave>

<a-circunflex>
<A-circunflex>
<a-ring>
<A-ring>

<a- di aeresi s>
<A-di aer esi s>
<a-til de>
<A-til de>
<ae-ligature>
<AE-1i gature>
<b>

<a>; <a-ci rcunfl ex>; <a-ci rcunfl ex>
<a>; <a-circunfl ex>; <A-circunfl ex>
<a>;<a-ring>; <a-ring>
<a>;<a-ring>; <A-ring>

<a>; <a- di aer esi s>; <a- di aeresi s>
<a>; <a- di aer esi s>; <A-di aeresi s>
<a>;<a-tilde> <a-tilde>
<a>;<a-tilde> <A-tilde>

<a>; <a><e>; <a><e>

<a>; <a><e>; <A><E>

<b>; <b>; <b>

<B> <b>; <b>; <B>
<c> <C>; <Cc>; <C>
<C <c>; <c>; <C

<c-cedilla>
<C-cedill a>

<c>; <c-cedill a>; <c-cedil |l a>
<c>; <c-cedill a>; <Ccedil | a>

<z> <z>; <7>;<z>
<Z> <Z>; <z2>; <Z>
UNDEFI NED  [4]

order_end

Creating Locales

6-13



Example 6-5: LC_COLLATE Category Definition (cont.)

END LC_COLLATE  [6]

Section header

An order_st art keyword that marks the beginning of a section with
statements that assign collating weights to elements

Following the or der _st art keyword on the same line are sort
directives, separated by semicolons (;) that apply to each sorting pass.
Sort directives can include the following keywords.

e forward, which specifies that the comparison operation proceeds
from the start of the string towards the end of the string.

e backwar d, which specifies that the comparison operation proceeds
from the end of the string towards the start of the string.

® position, which specifies that the comparison operation considers
the relative position of characters in the string that are not subject
to the collating weight | GNORE. In other words, the first characters
collated are those that do not have a collation weight of | GNORE and
are the shortest distance from the start (f or war d, posi ti on) or
end (backwar d, posi ti on) of the string.

When a sort directive includes two keywords, the positi on
keyword combined with either f or war d or backwar d, the two
keywords are separated by a comma (,). The posi ti on keyword by
itself is equivalent to the directive f or war d, posi ti on.

The number of sort directives corresponds to the number of weights
each collating element is assigned in subsequent statements.

Each sort directive and its associated set of weights specify information
for one pass, or level, of string comparison. The first directive applies
when the string comparison operation applies the primary weight, the
second when the string comparison operation applies the secondary
weight, and so on. The number of levels required to collate strings
correctly depends on language and cultural requirements and therefore
varies from one locale to another. There is also a level number
maximum, associated with the COLL_WEI GHTS _MAX setting in the
limts. handsys/| ocal edef. h files. On Tru64 UNIX systems, you
are limited to six collation levels (sort directives).

The backwar d directive is used for many languages to ensure that
accented characters sort after unaccented characters only if the
compared strings are otherwise equivalent.

6-14 Creating Locales



The posi ti on directive is frequently used to handle characters, such as
the hyphen (-) in Western European languages, whose significance can
be relative to word position. For example, assume you wanted the word
“o-ring” to collate in a word list before the word “or-ing”, but do not want
the hyphen to be considered until after strings are sorted by letters
alone. You would need two sort directives and associated sets of weight
specifiers to implement this order. For the first comparison operation,
you specify f or war d as the sort directive, letters as the first weights for
all letter characters, and | GNORE as the weight for the hyphen character.
For the second, or a later, comparison operation, you specify f or war d
posi ti on as the sort directive, | GNORE as the weight for all letter
characters, and the hyphen as the weight for the hyphen character.

If you do not specify a sort directive, the default is f or war d.
Collation order statements for elements

These statements specify a character symbol, optionally followed by
one or more blank characters (spaces or tabs), then the symbols for
characters that have the same weight at each stage of the sort.

In the example, the sort order is control characters, followed by
punctuation and digits, and then letters. Letters are sorted on multiple
passes, with diacritics and case ignored on the first pass, diacritical
marks being significant on the second pass, and case being significant
on the third pass.

Collation order statement for characters not specified in other collation
order statements

The UNDEFI NED keyword begins a collation order statement to be
applied to all characters that are defined in the locale’s char map file but
not specified in other collation order statements. Characters that fall
into the UNDEFI NED category are considered in regular expressions to
belong to the same equivalence class.

Always include the UNDEFI NED collation order statement. If this
statement is absent, the | ocal edef command includes undefined
characters at the end of the collating order and issues a warning.

Furthermore, if you place an UNDEFI NED statement as the last collation
order statement, the | ocal edef command can sometimes compress all
undefined characters into one entry. This action can reduce the size of
the locale.

This locale specifies that any characters specified in the locale’s
char map file, but not handled by other collation order statements, be
ordered last.

An UNDEFI NED statement can have an operand. For example, the
| GNORE keyword causes any characters unspecified by other collation
order statements to be ignored for the sort pass in which | GNORE

Creating Locales 6-15



appears. If the following UNDEFI NED statement had been included in
the example, characters not specified in other collation order statements
would be ignored in all sort passes defined by those statements:

UNDEFI NED I GNORE; | GNORE; | GNORE

Trailer to indicate the end of collation order statements
[6] Trailer to indicate the end of the LC_COLLATE section

Example 6-5 contains only a few of the options that you can specify when
defining the LC_COLLATE category. Additional options allow you to use the
following:

e A copy statement to include the entire category definition from another
locale

A copy statement can be the only entry between the section trailer and
header.

¢ (Collating order statements that specify a string of characters, rather
than single characters, as the collating elements

In such cases, you first specify col | ati ng- el enent statements before
the or der _st art statement to define symbols for the strings. You can
then specify those symbols in collating order statements.

For example:

col | ati ng-el ement <ch> from "<c><h>"
order _start forward;forward; backward

<ch> <Ch>; <ch>; <ch>

e Symbolic names, such as <UPPERCASE>, to use as weight specifiers in
collation order statements

You must define each symbolic name by using the col | ati ng- synbol
statement in the source file before the or der _st art statement. You
then include the symbol in the appropriate position in the list of collation
order statements for collating elements. For example, if you wanted the
symbol <LOW to represent the lowest position in the collating order,
<LOWt would be the line entry immediately following the or der _st art
statement. A symbol such as <UPPERCASE> would be positioned on the
line immediately preceding the section of collating order statements

for uppercase letters.

A symbol must occur before the first collation order statement in which it
is used. Therefore, you cannot define a symbol for the highest position in
the collating order.

6-16 Creating Locales



After symbols are defined and positioned, you can use them as weights in
collating order statements. For example:

col I ati ng- symbol <LOWNERCASE>
col I ati ng- synmbol <UNACCENTED>

order _start forward; backward; forward;forward
<UNACCENTED>

<L ONERCASE>
<a> <a>; <UNACCENTED>; <LONERCASE>; | GNCRE

Remember that, because Unicode and dense code locales are equivalent,
you can use the same charmaps and locale source for Unicode and dense
code locales. However, Unicode and dense code characters that are defined
in the charmap but not defined in the LC_COLLATE section may be sorted
differently.

See | ocal e(4) for detailed information on the LC_COLLATE category
definition.

6.2.3 Defining the LC_MESSAGES Locale Category

The LC_MESSAGES section of a locale source file defines strings that are
valid for affirmative and negative responses from users. Example 66 is an
LC_MESSAGES section.

Example 6—6: LC_MESSAGES Category Definition

LC_MESSAGES

# yes expression. The foll owi ng designates:

# "Moo [ [oQ [ulY[il])"

yesexpr "<ci rcunfl ex><l eft - parent hesi s>\
<l ef t - squar e- br acket ><0><C><ri ght - squar e- br acket >\
<vertical -line><l eft-square-bracket ><0><0>\

<ri ght - squar e- br acket ><I ef t - squar e- br acket ><u><U>\
<ri ght - squar e- br acket ><I ef t - squar e- br acket ><i ><I >\
<ri ght - squar e- br acket ><ri ght - par ent hesi s>"

# no expression. The foll ow ng desi gnates:

# "MInN [ [N [oQ [nN]) "

noexpr "<ci rcunfl ex><l| eft - parent hesi s>\
<l ef t - squar e- br acket ><n><N><ri ght - squar e- br acket >\

Creating Locales 6-17



Example 6-6: LC_MESSAGES Category Definition (cont.)

<vertical -line><l eft-square-bracket ><n><N>\

<ri ght - squar e- br acket ><I ef t - squar e- br acket ><0><0>\
<ri ght - squar e- br acket ><I ef t - squar e- br acket ><n><N>\
<ri ght - squar e- br acket ><ri ght - par ent hesi s>"

# yes string. The foll owi ng designates: "oui:o: O

yesstr " <o><u><i ><col on><o><col on><0>"

# no string. The follow ng designates: "non:n:N'

nost r " <n><o><n><col on><n><col on><N\>"
END LC MESSAGES [6]

Section header
Definition of an expression for a valid “yes” response

This entry consists of the yesexpr keyword followed by one or more
spaces or tabs, and an extended regular expression that is delimited by
double quotation marks.

This expression specifies that “oui” or “0” (case is ignored) is a valid
affirmative response in this locale. The regular expression for yesexpr
specifies individual characters by their symbols as defined in the locale’s
char map file.

Definition of an expression for a valid “no” response

This entry consists of the noexpr keyword followed by one or more
spaces or tabs, and an extended regular expression that is delimited by
double quotation marks.

This expression specifies that “non” or “n” (case is ignored) is a valid
negative response in this locale.

Definition of a string for a valid “yes” response

This entry consists of the yesst r keyword followed one or more spaces
or tabs, and a fixed string that is delimited by double quotation marks.

The yesstr entry is marked as LEGACY in the X/Open UNIX standard
and is not included in the POSIX standard; however, some applications
and systems software still might use yesstr rather than yesexpr. To
ensure that your locale works correctly with such software, you should
define yesstr in your locale. The X/Open UNIX standard defines a
single fixed string for yesstr. The colon (:) separator, which allows
multiple fixed strings to be specified, is an extension to the standard
definition.

6-18 Creating Locales



Definition of a string for a valid “no” response

This entry consists of the nost r keyword followed one or more spaces or
tabs, and a fixed string that is delimited by double quotation marks.

The nost r entry is marked as LEGACY in the X/Open UNIX standard
and is not included in the POSIX standard; however, some applications
and systems software still might use nostr rather than noexpr. To
ensure that your locale works correctly with such software, you should
define nost r in your locale. The X/Open UNIX standard defines a single
fixed string for nost r. The colon (:) separator, which allows multiple
fixed strings to be specified, is an extension to the standard definition.

[6] Section trailer

As an alternative to specifying symbol definitions, you can use the copy
statement between the section header and trailer to duplicate an existing
locale’s definition of the LC_MESSAGES category. The copy statement
represents a complete definition of the category and cannot be used when
explicit symbol definitions are used.

6.2.4 Defining the LC_MONETARY Locale Category

The LC_MONETARY section of the locale source file defines the rules and
symbols used to format monetary values. Application developers use

the | ocal econv( ) and nl _I| angi nf o( ) functions to determine the
information defined in this section and apply formatting rules through the
strfnon( ) function. Example 6-7 is an LC_MONETARY section.

Example 6—7: LC_MONETARY Category Definition

LC_MONETARY

int_curr_synbol " <F><R><F><space>"
cur rency_synbol " <pF>"

mon_deci mal _poi nt " <conmma>"

mon_t housands_sep ""

mon_gr oupi ng 3;0

positive_sign "

negative_sign " <hyphen>"

END LC_MONETARY

Section header
Symbol definitions

The entries in the example specify the following:

Creating Locales 6-19



¢ The international currency symbol is FRF (French Franc) and the
local currency symbol is F (Franc).

¢ The decimal point is the comma (, ).
e No character is defined to group digits to the left of the decimal point.

e The digits in each grouping to the left of the decimal point in this
locale are in groups of three. Because this locale does not define
a default monetary thousands separator, the monetary grouping
defined in this locale is significant only if the application uses a
function to specify a thousands separator.

¢ The positive sign is null.
¢ The negative sign is the minus (-) character.

Section trailer

The following list describes the symbol names you can define in the
LC_MONETARY section.

i nt_curr_synbol

The international currency symbol

currency_symnbol

The local currency symbol

nmon_deci mal _poi nt

The radix character, or decimal point, used in monetary formats
nmon_t housands_sep

The character used to separate groups of digits to the left of the radix
character

non_gr oupi ng

The size of each group of digits to the left of the radix character. The
character defined by nbn_t housands_sep, if any, is inserted between
the groups defined by non_gr oupi ng. You can vary the size of groups by
specifying multiple digits separated by a semicolon (;). For example, 3; 2
specifies that the first group to the left of the radix character contains
three digits and all subsequent groups contain 2 digits. On Tru64 UNIX
systems, 3; 0 and 3 are equivalent; that is, all digits to the left of the
decimal point are grouped by three.

positive_sign
The string indicating that a monetary value is not negative
negati ve_sign

The string indicating that a monetary value is negative

6—-20 Creating Locales



e int frac_ digits

The number of digits to be written to the right of the radix character
when i nt _curr_synbol appears in the format

e frac_digits

The number of digits to be written to the right of the radix character
when currency_synbol appears in the format

® p_cs_precedes
An integer that determines if the international or local currency symbol
precedes a nonnegative value

® p_sep_by_ space

An integer that determines whether a space separates the international
or local currency symbol from other parts of a formatted, nonnegative
value

® n_cs_precedes

An integer that determines if the international or local currency symbol
precedes a negative value

® n_sep_by_ space

An integer that determines whether a space separates the international
or local currency symbol from other parts of a formatted, negative value

® p_sign_posn

An integer that indicates if or how the positive sign string is positioned
in a nonnegative, formatted value

® n_sign_posn

An integer that indicates how the negative sign string is positioned in a
negative, formatted value

As an alternative to specifying symbol definitions, you can use the copy
statement between the section header and trailer to duplicate an existing
locale’s definition of LC_MONETARY. The copy statement represents a
complete definition of the category and cannot be used when explicit symbol
definitions are used.

The LC_MONETARY definition is set to the euro character for the UTF-8
and ISO8859-15 locales of the languages that have fully adopted the euro.
Because the euro character is not in the Latin-1 repertoire, the ISO8859-1
locales of the languages that have adopted the euro continue to use the
pre-euro currency. For example, the Italian localeit | T. |1 SC8859-15
supports the euro; the Italian locale it _| T. | SOB859-1 supports the lira.

See | ocal e(4) for complete information about specifying LC_MONETARY
symbol definitions.

Creating Locales 6-21



6.2.5 Defining the LC_NUMERIC Locale Category

The LC_NUMERI C section of the locale source file defines the rules and
symbols used to format numeric data. You can use the | ocal econv( )
and nl _| angi nf o( ) functions to access this formatting information.
Example 6-8 is an LC_NUMERI C section.

Example 6-8: LC_NUMERIC Category Definition

LC_NUMERI C

deci mal _poi nt " <comma>"
t housands_sep "
gr oupi ng 3;0

END LC_ NUMERI C

Category header.
Definition of radix character (decimal point).

Definition of character used to separate groups of digits to the left of
the radix character. In this locale, no default character is defined.
Therefore, applications must supply this character, if needed.

The size of each group of digits to the left of the radix character. The
character defined by t housands_sep, if any, is inserted between the
groups defined by gr oupi ng.

You can vary the size of groups by specifying multiple digits separated by
a semicolon (;). For example, 3; 2 specifies that the first group to the left
of the radix character contains three digits and all subsequent groups
contain 2 digits. On Tru64 UNIX systems, 3; 0 and 3 are equivalent;
that is, all digits to the left of the radix character are grouped by three.

Category trailer.

Example 6-8 contains all of the symbols you can define in the LC_NUMERI C
section. In place of any symbol definitions, you can specify a copy statement

between the section header and trailer to include this section from another
locale.

See | ocal e(4) for detailed rules about LC_NUVERI C symbol definitions.

6.2.6 Defining the LC_TIME Locale Category

The LC_TI ME section of a locale source file defines the interpretation

of field descriptors supported by the dat e command. This section also
affects the behavior of the strftime( ), wsftinme(),strptime(), and
nl _I angi nf o( ) functions. Example 6-9 contains some of the symbols
defined for the sample French locale.

6—-22 Creating Locales



Example 6-9: LC_TIME Category Definition

LC TIME

abday " <d><i ><np";
"< ><u><n>";
"<np<a><r>":
"<p<e><r >";
" <) ><e><u>";
"<y><e><n>";

" <g><a><np”

day " <d><i ><mp<a><n><c><h><e>";\
"<l ><u><n><d><i >\
"<pp<a><r ><d><i >";\
"<p<e><r ><e><r ><e><d><i >" ;)\
" <) ><e><u><d><i >";\
" <y><e><n><d><r ><e><d><i >" ;)\

" <g><a><np<e><d><i >"
abnon " <j ><a><n>";\

"<f ><e-acut e><v>";\

"<p<a><r>";\

"<a><y><r >\

"<p<a><i >\

" <j ><u><n>";\

—

" <j ><u><| >t
"<a><o><u-circunfl ex>";\
"<s><e><p>";\
"<o><c><t >";\
"<n><o><y>" ;|\
"<d><e- acut e><c>"

non " <j ><a><n><v><i ><e><r>" ;N\
"<f ><e- acut e><v><r ><j ><e><r>"; \
"<p<a><r ><s>";\
"<a><v><r><i ><| >" ;)\
"<p<a><i >\
" <j ><u><i ><n>";\
" <j ><u><i ><| ><| ><e><t >\
"<a><o><u-circunfl ex><t >";\
" <s><e><p><t ><e><np<b><r ><e>";\
"<o><c><t ><0><b><r ><e>";\
"<n><o><v><e><np<b><r><e>"; \
" <d><e- acut e><c><e><mp<b><r ><e>"

# date/tine format. The foll owi ng designates this
# format: "% % % %YM %S I W

d_t_fm "<percent-sign><a><space><percent -si gn><e>\

Creating Locales 6-23



Example 6-9: LC_TIME Category Definition (cont.)

<space><per cent - si gn><b><space><per cent - si gn><H>\
<col on><per cent - si gn><M><col on><per cent - si gn><S>\
<space><per cent - si gn><Z><space><per cent - si gn><Y>" [6]

END LC TI ME

Section header
Abbreviated names for days of the week

Use the % conversion specifier to include these strings in formats.
Full names for days of the week

Use the %A conversion specifier to include these strings in formats.
Abbreviated names for months of the year

Use the % conversion specifier to include these strings in formats.
Full names for months of the year

Use the B conversion specifier to include these strings in formats.
[6] Format for combined date and time information

The format combines field descriptors as defined for the strfti ne( )
function. See st rfti nme(3) for a complete list of field descriptors.

The specified format includes the field descriptors for the abbreviated
day of the week (%), the day of the month (%), the number of hours in
a 24-hour period (%), the number of minutes (%), and the number of
seconds (¥8), the time zone (%), and the full representation of the year
(90). If the date were April 23, 1999, on the East coast of the United
States, the format specified in this example would cause the dat e
command to display ven 23 avr 13:43:05 EDT 1999.

Section trailer

Example 6-9 includes only some of the symbol definitions that are standard
for the LC_TI ME category. LC_TI MEalso allows you to specify the following
standard definitions:

o d fm

Format for the date alone; corresponds to the % field descriptor
e t fmt

Format for the time alone; corresponds to the %X field descriptor

e ampm

6—-24 Creating Locales



Format for the ante meridiem and post meridiem time strings;
corresponds to the %p field descriptor

For example, the definition for the English language would be as follows:
am pm "<ASM" T <P><M
e t fm _anpm

Format for the time according to the 12-hour clock; corresponds to the %
field descriptor

® era

Definition of how years are counted and displayed for each era in the
locale. This format is for countries that use a year-counting system
other than the Gregorian calendar. Such countries often use both the
Gregorian calendar and a local era system.

e era d fnm
Format of the date alone in era notation; corresponds to the %Ex field
descriptor

e erat fm
Format of the time alone in era notation; corresponds to the %EX field
descriptor

e eradt fm

Format of both date and time in era notation; corresponds to the %&c
field descriptor

e alt digits
Definition of alternative symbols for digits; corresponds to the %O field
descriptor

This format is for countries that include alternative symbols in date
strings.

As is true for other category sections, you can specify a copy statement to
include all LC_TI ME definitions from another locale. The operating system
supports symbols and field descriptors in addition to those described here.
See | ocal e(4) for complete information on LC_TI ME definitions.

6.3 Building Libraries to Convert Multibyte and
Wide-Character Encodings

C Library routines rely on a set of special interfaces to convert characters to
and from data file encoding and wide-character encoding (internal process
code). By default, the C Library routines use interfaces that handle only
single-byte characters. However, many are defined with entry points that

Creating Locales 6-25



permit use of alternative interfaces for handling multibyte characters. The
interfaces that can be tailored to a locale’s codeset are called methods.

Locales with multibyte codesets must use methods. Also, some situations
require a locale with single-byte codesets to supply methods. For example, a
locale must supply a method when the corresponding interface is converting
characters between data formats and the interface requires codeset-specific
logic to do that operation correctly. However, a method is optional when
the corresponding interface is working with data that has already been
converted to wide-character format and the interface can apply logic that is
valid for both single-byte and multibyte characters.

When a locale supplies a method, it must include a set of required methods
as described in Section 6.3.1. See Section 6.3.2 for a description of optional
methods.

Methods must be available on the system in a shareable library. This library
and the functions that implement each method in the library are made
known to the | ocal edef command through a met hods file. When the

| ocal edef command processes the met hods file along with the char map
and | ocal e source files, the resulting locale includes pointers to all methods
that are supplied with the locale, and pointers to default implementations
for optional methods that are not supplied with the locale. When you set the
LANGvariable to the newly built locale and run a command or application,
methods are used wherever they have been enabled in the system software.

6.3.1 Required Methods

If your locale uses methods, it must supply the following:
e  nbstopcs (Section 6.3.1.1)
e  nbtopc (Section 6.3.1.2)

e  pcstonbs (Section 6.3.1.3)
e  pctonb (Section 6.3.1.4)

e nbl en (Section 6.3.1.5)

e nbst owcs (Section 6.3.1.6)

e nbt owc (Section 6.3.1.7)

e wcst onbs (Section 6.3.1.8)

e wct onb (Section 6.3.1.9)

e wcswi dt h (Section 6.3.1.10)

e wcwi dt h (Section 6.3.1.11)

6—-26 Creating Locales



These methods make it possible for C Library functions to convert data
between multibyte and wide-character formats.

6.3.1.1 Writing the __mbstopcs Method for the fgetws Function

The f get ws( ) function uses the __nbst opcs method to convert the bytes
in the standard I/O (st di 0) buffer to a wide-character string. The function
that implements this method must return the number of wide characters

converted by the call.

This method is similar to the one for mbst owcs( ) (see Section 6.3.1.6)
but contains additional parameters to meet the needs of f get ws( ).
By convention, a C source file for this method has the file name
__nbstopcs_codeset . ¢, where codeset identifies the codeset

for which the method is tailored. Example 6-10 is the file

__nbstopcs_sdeckanji. c,

with the j a_JP. sdeckanj i locale.

which defines the __nbst opcs method used

Example 6-10: The __mbstopcs_sdeckanji Method for the ja_JP.sdeckanji

Locale

#include <stdlib. h>
#i ncl ude <wchar. h>
#i ncl ude <sys/ | ocal edef . h>

int __nbstopcs_sdeckanji (

int
int
int

wchar _t *pwcs,
size_t pwes_len,
const char *s, [4]
size_t s_len,
int stopchr, [6]
char **endptr,

int *err,
_LC charmap_t *handle ) [9]
cnt = 0;

pwecs_cnt = 0;
s_cnt = 0;

*err = 0;
while (1) {

if (pwes_cnt >= pwes_len || s_cnt >= s_len) {
*endptr = (char *)&(s[s_cnt]);
break;

}

if ((cnt = __nbtopc_sdeckanji (& pwes[pwes_cnt]),

&(s[s_cnt]), (s_len - s_cnt), err)) == 0) {
*endptr = (char *)&(s[s_cnt]);
break;
}
pwes_cnt ++;
if ( s[s_cnt] == (char) stopchr) {
*endptr = (char *)&(s[s_cnt+1]);
break;

}
s_cnt += cnt;

Creating Locales 6-27



Example 6-10: The __mbstopcs_sdeckanji Method for the ja_JP.sdeckanji
Locale (cont.)

}
return (pwcs_cnt);

(=]

Include header files that contain constants and structures required
for this method.

Points, through pwcs, to a buffer that stores the wide-character string.

Defines a variable, pwcs_| en, to store the size of the pwcs buffer.

] [ ]

Points, through s, to a buffer that stores the multibyte character string
being converted.

@]

Defines a variable, s_I en, to store the number of bytes of data in the s
buffer.

This parameter is needed because the f get ws( ) function reads from
the standard I/O buffer, which does not contain null-terminated strings.

]

Defines a variable, st opchr, to contain a byte value that would force
conversion to stop.

This value, typically \ n, is passed to the method on the call from the
f get ws( ) function, which handles only one line of input for each call.

Defines a variable, endpt r , that points to the byte following the last
byte converted.

This pointer is needed to specify the starting character in the standard
I/0 buffer for the next call to f get ws( ).

Points, through err, to a variable that stores execution status for the
call made by this method to the nbt opc method.

[9] Points, through hdl , to a structure that points to the methods that
parse character maps for this locale.

The | ocal edef command creates and stores values in the
_LC charnmap_t structure.

Initializes variables that indicate the number of bytes that a character
uses in multibyte format (supplied by the nbt opc method) and the byte
or character position in buffers that the f get ws( ) function uses.

Sets err to zero (0) to indicate success.

Starts the whi | e loop that converts the multibyte string.

6—-28 Creating Locales



Sets endpt r and breaks out of the loop when there is either no more
space in the buffer that stores wide-character data or no more data in
the buffer that stores multibyte data.

Calls the mbt opc method to convert a character from multibyte format
to wide-character format.

If the mbt opc method fails to convert a character and returns an error,
the program breaks out of the loop and sets endpt r to the first byte of
the character that could not be converted.

The er r variable contains one of the following status returns of the
call to the nbt opc method:

¢ 0 indicates success.
e -1 indicates an invalid character.

e A value greater than 0 indicates that too few bytes remain in the
multibyte character buffer to form a valid character. In this case,
the return is the number of bytes required to form a valid character.
The f get ws( ) function can then refill the buffer and try again.

=
4]

Increments the character position in the buffer that stores the
wide-character data.

=
2]

Sets endpt r to the character following the character stored in st opchr
if the st opchr character is encountered in the multibyte data.

Increments the byte position in the buffer that contains multibyte data.
Ends the whi | e loop.

Returns the number of characters in the buffer that contains
wide-character data.

=] [=] [~
©o| |of |N

6.3.1.2 Writing the __mbtopc Method for the getwc() Function

The get we( ) or fgetwe( ) function calls the __nbt opc method to
convert a multibyte character to a wide character. The method returns

the number of bytes in the multibyte character that is converted. This
method is similar to the one for mbt owc (see Section 6.3.1.7) but contains an
additional parameter that get wc( ) needs. By convention, a C source file
for this method has the file name __nbt opc_codeset . ¢, where codeset
identifies the codeset for which this method is tailored. Example 6-11 is the
__nbtopc_sdeckanj i . c file, which defines the __nbt opc method used
with the j a_JP. sdeckanj i locale.

Creating Locales 6-29



Example 6-11: The __mbtopc_sdeckanji Method for the ja_JP.sdeckaniji
Locale

#i ncl ude <stdlib. h>
#i ncl ude <wchar. h>
#i ncl ude <sys/| ocal edef. h>

/*
The algorithm for this conversion is:
s[0] < Ox9f: PC = s[0]
s[0] = O0x8e: PC = s[1] + Ox5f;
s[0] = Ox8f PC = (((s[1] - Oxal) << 7) | (s[2] - Oxal)) + 0x303c
s[0] > Oxal:0Oxal < s[1] < Oxfe
PC = (((s[0O] - Oxal) << 7) | (s[1] - Oxal)) + Ox15e
0x21 < s[1] < Ox7e
PC = (((s[0O] - Oxal) << 7) | (s[1] - 0x21)) + Ox5f1la
L L Fommmmm e L R o +
| process code | s[ 0] | s[1] | s[ 2] |
L L Fommmmm e L T o +

0x0000 - Ox009f | 0x00-0x9f |
0x00a0 - Ox00ff | -- | -- | .-
|

| |
| |
| 0x0100 - 0x015d | Ox8e oOxal-Oxfe | -- | JI'S X0201 RH
| 0x015e - 0x303b | Oxal-Oxfe | Oxal-Oxfe | -- | JI'S X0208
| 0x303c - Ox5f19 | Ox8f | Oxal-Oxfe | Oxal-Oxfe | JI'S X0212
| Ox5fla - 0x8df7 | Oxal-Oxfe | 0x21-Oxfe | -- | uDC
e S e Fommm e +
* [
int _ _nbtopc_sdeckanji (

wchar _t *pwe,

char *ts, [4]

size_t maxlen,

int *err,

_LC charmap_t *handle )
{

wchar _t dunmy;
unsi gned char *s = (unsigned char *)ts; [9]
if (s == NULL)
return(0);
if (pwe == (wchar_t *)NULL)
pwe = &dunmy;
*err = 0;
if (s[0] <= 0x8d) {
if (mxlen < 1) {

*err = 1;
return(0);
el se {
*pwe = (wchar_t) s[0];
return(l);
}
}
else if (s[0] == 0x8e) {

if (mxlen >= 2) {
if (s[1] >=0xal && s[1] <=0xfe) {
*pwe = (wchar_t) (s[1] + Ox5f);
return(2);
}
el se {
*err = 2;
return(0);

}

6-30 Creating Locales



Example 6-11: The __mbtopc_sdeckanji Method for the ja_JP.sdeckaniji
Locale (cont.)

else if (s[0] == 0Ox8f) {
if (maxlen >= 3) {
if ((s[1] >=0xal && s[1] <=0xfe) &&
(s[2] >=0xal && s[2] <= Oxfe)) {
*pwe = (wehar_t) (((s[1] - Oxal) << 7) |
(wchar _t) (s[2] - Oxal)) + 0x303c;
return(3);

}

el se {
*err = 3;
return(0);

}
}

else if (s[0] <= 0x9f) {
if (mxlen < 1) {
*err = 1;
return(0);

el se {
*pwe = (wchar_t) s[0];
return(l);

}
else if (s[0] >= Oxal && s[0] <= Oxfe) {
if (mxlen >= 2) {
if (s[1l] >=0xal && s[1] <= Oxfe) {
*pwe = (wehar_t) (((s[0] - Oxal) << 7) |
(wchar _t) (s[1] - Oxal)) + Ox15e;
return(2);
} else if (s[1] >=0x21 && s[1] <= 0x7e) {
*pwe = (wehar_t) (((s[0] - Oxal) << 7) |
(wechar _t) (s[1] - 0x21)) + Ox5f1la;

return(2);
}
el se {
*err = 2;
return(0);
}
}
*err = -1;

return(0);

Include header files that contain constants and structures required
for this method.

Describes the algorithm used to determine the number of bytes and
valid byte combinations for the different character sets that the codeset

supports.

Creating Locales 6-31



The codeset supports several character sets and each set contains
characters of only one length. The value in the first byte indicates
the character set and therefore the character length. For character
sets with multibyte characters, one or more additional bytes must
be examined to determine whether the value sequence identifies a
character or is invalid.

Points, through pwe, to a buffer that stores the wide character.

=] [«

Points, through t s, to a buffer that stores the bytes that are passed to
the method from the calling function.

Declares a variable, max| en, that stores the maximum number of bytes
in the multibyte data.

(@]

This value is passed by the calling function.

Points, through err, to a buffer that stores execution status.

& [o

Points, through handl e, to a structure that contains pointers to the
methods that parse the character maps for this locale.

Declares a variable, dummy, to which pwc can be set to ensure a valid
address.

[o]

Casts t s (an array of signed characters) to s (an array of unsigned
characters).

This operation prevents problems when integer values are stored in the
array and then referenced by index. Compilers apply sign extension
to values when comparing a small signed data type, such as char, to a
large signed data type, such as i nt . In this case, a condition such as the
following is evaluated as true when you expect it to be false:

if (s[0] <= Ox8&d
Returns zero (0) if the s buffer contains or points to NULL.

Stores the contents of durmy in the wide-character buffer if the t s
buffer contains or points to NULL.

This operation ensures that * pwc always points to a valid address. If
this were not the case, and a wide character is not stored in pwc, an
application produces a segmentation fault by referring to this pointer.

Initializes err to zero (0) to indicate success.

Determines if the character is one of the single-byte characters that the
codeset defines for values equal to or less than 0x8d.

If s contains no characters, returns zero (0) to indicate that no bytes
were converted and sets err to 1 to indicate that 1 byte is needed
to form a valid character.

6-32 Creating Locales



If the byte value is in the range being tested, moves the associated
process code value to pwc and returns 1 to indicate the number of bytes
converted.

Determines if the character is one of the double-byte characters that
the codeset defines for the value 0x8e (first byte) and the value range
Oxal to Oxfe (second byte).

If yes, moves the associated process code value to the pwc buffer and
returns 2 to indicate the number of bytes converted; otherwise, returns
0 to indicate that no conversion took place and sets err to 2 to specify
that at least 2 bytes are needed to form a valid character.

Determines if the character is one of the triple-byte characters that the
codeset defines for the value 0x8f (first byte), the range Oxal to Oxfe
(second byte), and the range Oxal to Oxfe (third byte).

If yes, moves the associated process code value to pwc and returns 3

to indicate the number of bytes converted; otherwise, sets err to 3 to
indicate that at least 3 bytes are needed and returns zero (0) to indicate
that no character was converted.

Determines if the character is one of the single-byte characters that the
codeset defines for the range 0x90 to 0x9f.

If there are no bytes in the standard I/O buffer, returns zero (0) to
indicate that no bytes were converted and sets err to 1 to indicate that
at least 1 byte is needed to form a valid character.

If the byte value is in the defined range, moves the associated process
code value to pwc and returns 1 to indicate the number of bytes
converted.

Determines if the character is one of the double-byte characters that
the codeset defines for the range Oxal to Oxfe (first byte) and 0x21 to
0x7e (second byte).

If yes, moves the associated process code value to pwc buffer and returns
2 to indicate the number of bytes converted; otherwise, sets err to 2 to
indicate that at least 2 bytes are needed to form a valid character and
returns zero (0) to indicate that no bytes were converted.

Sets err to -1 to indicate that an invalid multibyte sequence was
encountered and returns zero (0) to indicate that no bytes were
converted.

These statements execute if the multibyte data in s satisfies none of the
preceding i f conditions.

6.3.1.3 Writing the __pcstombs Method for the fputws() Function

The f put ws( ) function first calls the _ _pcst onbs method to convert
a string of characters from process (wide-character) code to multibyte

Creating Locales 6-33



code. If this method returns —1 to indicate no support by the locale,

f put ws( ) then calls put wc( ) for each wide character in the string
being converted. By convention, a C source file for this method has

the file name __pcst onbs_codeset . ¢, where codeset identifies

the codeset for which this method is tailored. Example 6-12 is the file
__pcstonbs_sdeckanj i . c, which defines the __pcst onbs method used
with the j a_JP. sdeckanj i locale.

Example 6-12: The __pcstombs_sdeckanji Method for the ja_JP.sdeckanji
Locale

int __pcstonbs_sdeckanji ()

{
}

return -1;

Returns -1 to indicate that the locale does not support the method.

This return causes the f put ws( ) function to use multiple calls to
put wc( ) to convert wide characters in the string.

If you choose to implement this method fully rather than writing it to return
-1, your function implementation returns the number of wide characters
converted and must include header files and parameters as illustrated in
the following example:

#i ncl ude <stdlib. h>
#i ncl ude <wchar. h>
#i ncl ude <sys/ | ocal edef. h>

int __pcstonbs_newcodeset (
wchar _t *pcsbuf,
size_t pcsbuf _|en,
char *nbsbuf,
size t mbsbuf _|en,

char **endptr,
int *err, [6]
_LC charmap_t *handle )

Specifies a pointer to a buffer that contains the wide-character string.
Specifies a variable with the length of the wide-character buffer.
This value is passed to the method on the call from f put ws( ) .

Specifies a pointer to a buffer that contains the multibyte character
string.

Specifies a variable with the length of the multibyte character buffer.

This value is passed to the method on the call from f put ws( ) .

6-34 Creating Locales



Points, through endpt r, to a pointer to the byte position in the multibyte
character buffer where the next character would begin if multiple calls
to f put ws( ) are required to convert all the wide-character data.

[6] Specifies a pointer to the execution status return.

If this method calls the wct onb method to perform the character
conversion, the wet onb method sets this status. Otherwise, this method
must incorporate the logic to perform wide-character to multibyte
character conversion and set the status directly.

In any event, the f put ws( ) function expects the following values:
e 0 for success

e -] to indicate that the wide-character value is invalid and therefore
cannot be converted

e A positive value to indicate that the multibyte character buffer
contains too few bytes after the last character to store the next
character

In this case, the value is the number of bytes required to store
the next character. The f put ws( ) function can then empty the
multibyte character buffer and try again.

Specifies a pointer to the LC char map_t structure that stores pointers
to the methods used with this locale.

The __pcst onbs method performs the reverse of the operation that the

_ _nbst opcs method performs (as described in Section 6.3.1.1). Because of
the direction of the data conversion, the __pcst onbs method behaves as
follows:

¢ Does not require a variable for a stop conversion character, such as \ n.

e (alls (or implements the operation performed by) the wct onb method
rather than calling the mbt owc method to convert each character and
determine the number of bytes it needs in the multibyte character buffer.

6.3.1.4 Writing a __pctomb Method

C Library functions currently do not use the __pct onb interface. The
put we( ) function, for example, calls the wct onb method to convert a
character from wide-character to multibyte character format. Nonetheless,
the | ocal edef command requires a method for this function when your
locale supplies methods. By convention, a C source file for this method
has the file name __pct onb_codeset . c, where codeset identifies

the codeset for which this method is tailored. Example 6-13 is the
__pctonb_sdeckanj i . c file, which defines the __pct onb method used
with the j a_JP. sdeckanj i locale.

Creating Locales 6-35



Example 6-13: The __pctomb_sdeckanji Method for the ja_JP.sdeckaniji
Locale

int __pctonb_sdeckanji ()
{

}

return -1;

Returns -1 to indicate that the locale does not support this method.

6.3.1.5 Writing a Method for the mblen() Function

The mbl en( ) function uses the nmbl en method to return the number

of bytes in a multibyte character. By convention, a C source file for

this method has the file name __nbl en_codeset . c, where codeset
identifies the codeset for which this method is tailored. Example 6-14 is the
__nbl en_sdeckanj i . c file, which defines the nmbl en method used with
the j a_JP. sdeckanj i locale.

Example 6-14: The __mblen_sdeckanji Method for the ja_JP.sdeckaniji
Locale

#i ncl ude <stdlib. h>
#i ncl ude <wchar. h>

#i ncl ude <sys/errno. h>

#i ncl ude <sys/| ocal edef. h>

/*
The algorithm for this conversion is:

s[0] < Ox9f: 1 byte
s[0] = Ox8e: 2 bytes
s[0] = Ox8f 3 bytes
s[0] > Oxal 2 bytes

L L Fommmmm e L T o +
| process code | s[ 0] | s[1] | s[ 2] |
L L Fommmmm e L T o +
| 0x0000 - Ox009f | 0x00-0x9f | -- | -- |
| 0x00a0 - OxO0O0ff | -- | -- | -- |
| 0x0100 - 0x015d | Ox8e | Oxal-Oxfe | -- | JI'S X0201 RH
| 0x015e - 0x303b | Oxal-Oxfe | Oxal-Oxfe | -- | JI'S X0208
| 0x303c - Ox5f19 | Ox8f | Oxal-Oxfe | Oxal-Oxfe | JI'S X0212
| Ox5fla - 0x8df7 | Oxal-Oxfe | 0x21-O0xfe | -- | uDC
Fommm e Fommmmm e L R o +
* [
int __nbl en_sdeckanji (
char *fs,
size_t maxlen, [4]
_LC charmap_t *handl e )
{
const unsigned char *s = (void *) fs; [6] if (s == NULL || *s =="\0")

return(0);
if (maxlen < 1) {

_Seterrno(ElILSEQ;
return((size_t)-1);

6-36 Creating Locales



Example 6-14: The __mblen_sdeckanji Method for the ja_JP.sdeckaniji
Locale (cont.)

} if (s[0] <= 0x8d)
(o]

return(l);

else if (s[0] == 0x8e) {
if (mxlen >= 2 & s[1] >=0xal && s[1] <=0xfe)
return(2);

}

else if (s[0] == 0Ox8f) {
if(maxl en >=3 && (s[1] >=0xal && s[1] <=0xfe) &&
(s[2] >=0xal && s[2] <= Oxfe))
return(3);

}

else if (s[0] <= 0x9f)
return(1);

else if (s[0] >= Oxal) {
if (maxlen >=2 && (s[0] <= Oxfe) )
if ( (s[1] >=0xal && s[1] <= Oxfe) ||
(s[1] >=0x21 && s[1] <= Ox7e) )
return(2);

}

_Seterrno(ElLSEQ ;
return((size t)-1);

Includes header files that contain constants and structures required
by this method.

Describes the algorithm used to determine the number of bytes in the
character and whether it is a valid byte sequence.

The codeset supports several character sets and each set contains
characters of only one length. The value in the first byte indicates
the character set and therefore the character length. For character
sets with multibyte characters, one or more additional bytes must
be examined to determine whether the value sequence identifies a
character or is invalid.

Points, through f s, to a buffer that stores the byte string to be examined.

Defines a variable, max| en, that stores the maximum length of a
multibyte character.

This value is passed to the method by the nbl en( ) function.

Points, through handl e, to a structure that stores pointers to the
methods that parse character maps for this locale.

Casts f s (an array of signed characters) to s (an array of unsigned
characters).

Creating Locales 6-37



This operation prevents problems when integer values are stored in the
array and then referenced by index. Compilers apply sign extension to
values when comparing a small signed data type, such as char, to a
large signed data type, such as i nt. In this case, a condition such as the
following is evaluated as true when you expect it to be false:
if (s[0] <= Ox8&d

Returns zero (0) to indicate that the character length is zero (0) bytes if
S contains or points to NULL.

Returns -1 and sets er r no to [EILSEQ] (invalid character sequence) if
max| en (the maximum number of bytes to consider) is 0 or a negative
number.

To set errno in a way that works correctly with multithreaded
applications, use _Set err no rather than an assignment statement.

[9] Determines if the first byte identifies a single-byte character whose
value is equal to or less than 0x8d.

If yes, returns 1 to indicate that the character length is 1 byte.

Determines if the first byte identifies a double-byte character whose
first byte contains the value 0x8e and second byte contains a value
in the range Oxal to Oxfe.

If yes, returns 2 to indicate that the character length is 2 bytes.

Determines if the first byte identifies a triple-byte character whose first
byte contains the value 0x8f and whose second and third bytes contain a
value in the range Oxal to Oxfe.

If yes, returns 3 to indicate that the character length is 3 bytes.

Determines if the first byte identifies a single-byte character whose
value is equal to or less than 0x9f.

If yes, returns 1 to indicate that the character length is 1 byte.

Determines if the first byte identifies a double-byte character whose
first byte contains a value in the range 0xal to Oxfe and whose second
byte contains a value in the range 0x21 to Ox7e.

If yes, returns 2 to indicate that the character length is 2 bytes.

Returns -1 and sets er r no to [EILSEQ] to indicate an invalid multibyte
sequence.

These statements execute if the multibyte data in the standard I/O
buffer satisfies none of the preceding i f conditions.

6-38 Creating Locales



6.3.1.6 Writing a Method for the mbstowcs() Function

The mbst owcs( ) function uses the mbst owcs method to convert a
multibyte character string to process wide-character code and to return

the number of resultant wide characters. By convention, a C source file for
this method has the file name __nbst owcs_codeset . c, where codeset
identifies the codeset for which this method is tailored. Example 6-15 is the
__nbstowcs_sdeckanj i . c file, which defines the nbst owcs method used

with the j a_JP. sdeckanj i locale.

Example 6-15: The __mbstowcs_sdeckanji Method for the ja_JP.sdeckaniji

Locale

#i ncl ude <stdlib. h>
#i ncl ude <wchar. h>
#i ncl ude <sys/| ocal edef. h>

size_t _ _nbstowcs_sdeckanji (
wchar _t *pwes,
const char *s,
size_t n,
_LC charmap_t *handle )
{
int len =n; [6]
int rc;
int cnt;

wchar _t *pwes0 = pwes; [9]
int mb_cur_max;

if (s == NULL)
return (0);

mb_cur_max = MB_CUR_MAX;

if (pwes == (wchar_t *)NULL) {

cnt = 0;
while (*s !'="\0") {
if ((rc = __nblen_sdeckanji (s,
return(-1);
cnt ++
s +=rg¢;

}

return(cnt);

}

while (len-- > 0) {
if (*s =="'\0") {
*pwes = (wechar_t) '\0’;
return (pwes - pwes0);

}
if ((ent =

_ _nbtowc_sdeckanji (pws, s, nb_cur_nax,
return(-1);
s += cnt;
++pWCS;
}

return (n);

nb_cur_max, handle)) == -1)

handl e)) < 0)

Creating Locales 6-39



Example 6-15: The __mbstowcs_sdeckanji Method for the ja_JP.sdeckaniji
Locale (cont.)

Includes header files that contain constants and structures required
for this method.
Points, through pwcs, to a buffer that contains the wide-character
string.
Points, through s, to a buffer that contains the multibyte character
string.
Defines a variable, n, that contains the number of wide characters in
pwCs.
Points, through handl e, to a structure that stores pointers to the
methods that parse character maps for this locale.
[6] Assigns the number of wide characters in the pwcs buffer (the n value
supplied by the calling function) to | en.
Defines a variable, r ¢, that stores the return count from a call this
method makes to the nbl en function.
Defines a variable, cnt , that counts the bytes used by characters in
the s buffer.
[9] Saves the start of the wide-character string passed by the calling
function in the pwcsO variable.
Defines a variable, mb_cur _max, that is later set to MB_CUR _MAX and
used in a call to the nbl en method.
Returns zero (0) if s is NULL.
A method should return zero (0) if the locale’s character encoding is
stateless and a nonzero value if the locales’s character encoding is
stateful.
Assigns the value defined for MB_CUR_MAX to mb_cur _nmax for use on
the following call to the nbl en method.
Checks to see if a NULL pointer was passed from the calling function and,

if yes, calls the nbl en method to calculate the size of the wide-character
string.

You can request the size of the pwcs buffer (for memory allocation
purposes) by passing a null wide character as the pwcs parameter in
the call to mbst owcs( ) . You can then use the return value to efficiently

6-40 Creating Locales



allocate memory space for the application’s wide-character buffer before
calling mbst owcs( ) again to actually convert the multibyte string.

Converts bytes in the multibyte character buffer by calling the
__nbt owc method until a null character (end-of-string) is encountered.

Stops processing and returns the number of wide characters in the pwcs
buffer if a null character is encountered; increments the byte position in
the multibyte character buffer by an appropriate number each time a
character is successfully converted.

This whi | e loop uses the condition | en-- > 0 to ensure that
processing stops when the pwcs buffer is full. The first i f condition in
the loop makes sure that, if the multibyte string in the s buffer is null
terminated, the associated null terminator in the pwcs buffer is not
included in the wide-character count that the nmbt owcs( ) function
returns to the application.

Returns the value in n to indicate the resultant number of wide
characters in the pwcs buffer.

This statement executes if the pwcs buffer runs out of space before a
null is encountered in the s buffer.

6.3.1.7 Writing a Method for the mbtowc() Function

The bt owc( ) function uses the mbt owc method to convert a multibyte
character to a wide character and to return the number of bytes in the
multibyte character that was converted. By convention, a C source file for
this method has the file name __nbt owc_codeset . ¢, where codeset
identifies the codeset for which this method is tailored. Example 6-16 is
the __nbt owc_sdeckanj i . c file, which defines the mbt owc method used
with the j a_JP. sdeckanj i locale.

Example 6-16: The __mbtowc_sdeckanji Method for the ja_JP.sdeckaniji
Locale

#in
#in
#in
#in

/*
The

+- -

clude <stdlib. h>
cl ude <wchar. h>

cl ude <sys/errno. h>

cl ude <sys/|ocal edef. h>

algorithmfor this conversion is:
] < 0x9f: PC = s[0]
] = Ox8e: PC = s[1] + Ox5f;
] = Ox8f PC = (((s[1] - Oxal) << 7) | (s[2] - Oxal)) + 0x303c
] > Oxal:Oxal < s[1] < Oxfe

PC = (((s[0O] - Oxal) << 7) | (s[1] - Oxal)) + Ox15e
1 < s[1] < Ox7e

PC = (((s[0O] - Oxal) << 7) | (s[1] - 0x21)) + Ox5f1la
--------------- L T e LR
process code | s[ 0] | s[1] | s[ 2] |

Creating Locales 6-41



Example 6-16: The __mbtowc_sdeckanji Method for the ja_JP.sdeckaniji

Locale (cont.)

T e ——— oo oo R +
| 0x0000 - 0x009f | 0x00-O0x9f | -- | -- |
| 0x00a0 - Ox00ff | -- | -- | -- |
| 0x0100 - 0x015d | Ox8e | Oxal-Oxfe | -- |
| 0x015e - 0x303b | Oxal-Oxfe | Oxal-Oxfe | -- |
| 0x303c - O0x5f19 | Ox8f | Oxal-Oxfe | Oxal-Oxfe |
| Ox5fla - 0x8df7 | Oxal-Oxfe | Ox21-Oxfe | -- |
[ R oo oo S +
* [
int __nbtowc_sdeckanji (

wchar _t *pwc,

const char *ts, [4]

size_t maxl en,

_LC charmap_t *handle ) [6]
{

unsi gned char *s = (unsigned char *)ts;
wchar _t dummy;

if (s == NULL)
return(0);

o]

if (maxlen < 1) {
_Seterrno(ElILSEQ;
return((size_t)-1);

}
if (pwe == (wchar_t *)NULL)
pwec = &dummy;

if (s[0] <= Ox8d) {

*pwe = (wchar_t) s[0];
if (s[O] !'="\0")
return(l);

el se
return(0);
}
else if (s[0] == 0x8e) {

if ( (mxlen >= 2) && ((s[1]
*pwe = (wchar_t) (s[1] + Ox5f);
return(2);

}
}

>=0xal) && (s[1] <=
/* 0x100 - Oxal */

else if (s[O]

0x8f) {

JI'S X0201 RH
JI'S X0208
JI'S X0212
upC

oxfe))) {

if((maxlen >= 3) && (((s[1] >=0xal) && (s[1] <=0xfe))
&& ((s[2] >=0xal) && (s[2] <= 0xfe)))) {
*pwe = (wehar_t) (((s[1] - Oxal) << 7) |
(wechar _t) (s[2] - Oxal)) + 0x303c;
return(3);

}
}

else if (s[0] <= 0x9f) {
*pwe = (wchar_t) s[0];
if (s[O] !'="\0")
return(l);
el se
return(0);

6-42 Creating Locales



Example 6-16: The __mbtowc_sdeckanji Method for the ja_JP.sdeckaniji
Locale (cont.)

}

else if (((s[0] >= Oxal) && (s[0] <= Oxfe)) && (maxlen >= 2)){
if (((s[1] >=0Oxal) && (s[1] <= 0xfe))){
*pwe = (wehar_t) (((s[0] - Oxal) << 7) |
(wchar _t)(s[1] - Oxal)) + Ox15e;

return(2);
} else if (((s[1] >=0x21) && (s[1] <= 0x7e))){
*pwe = (wehar_t) (((s[0] - Oxal) << 7) |
(wchar _t)(s[1] - 0x21)) + Ox5fl1la;
return(2);

}
}
_Seterrno(ElILSEQ ;

return(-1);

Includes header files that contain constants and structures required
for this method.

Describes the algorithm used to determine the number of bytes in the
character and whether it is a valid byte sequence.

The codeset supports several character sets and each set contains
characters of only one length. The value in the first byte indicates
the character set and therefore the character length. For character
sets with multibyte characters, one or more additional bytes must
be examined to determine whether the value sequence identifies a
character or is invalid.

Points, through pwe, to a buffer that contains the wide character.

Points, through t s, to a buffer that contains values in multibyte
character format.

Defines a variable, max| en, that stores the maximum length of a
multibyte character.

This value is passed from the calling function; the value will have
been set to MB_CUR_MAX on the original call made by the application
programmer.

Points, through handl e, to a structure that stores pointers to the
methods that parse character maps for this locale.

Casts t s (an array of signed characters) to s (an array of unsigned
characters).

This operation prevents problems when integer values are stored in the
array and then referenced by index. Compilers apply sign extension
to values when comparing a small signed data type, such as char, to

Creating Locales 6-43



a large signed data type, such as i nt. In this case, a condition such
as the following would be evaluated as true when you would expect it
to be false:

if (s[0] <= Ox8&d

Defines a variable, dummy, that can be assigned to pwc to ensure pwc
points to a valid address.

[9] Returns zero (0) to indicate that the locale’s character encoding is
stateless if s contains or points to NULL.

If passed a NULL pointer, this method should return a value to indicate
whether the locale’s character encoding is stateful or stateless. Return a
nonzero value if your locale’s character encoding is stateful.

Returns -1 cast to si ze_t and sets er r no to [EILSEQ] (invalid byte
sequence) if the multibyte data buffer is less than 1 byte in length.

Stores the contents of durmy in the wide-character buffer if the t s
buffer contains or points to NULL.

This operation ensures that pwc always points to a valid address;
otherwise, an application could produce a segmentation fault by
referring to this pointer when a wide character has not been stored
in pwe.

Determines if the first byte identifies a single-byte character whose
value is equal to or less than 0x8d.

If yes, stores the associated process code value in the pwc buffer and
returns 1 to indicate that the character length is 1 byte.

Determines if the first byte identifies a double-byte character whose
first byte contains the value 0x8e and second byte contains a value
in the range Oxal to Oxfe.

If yes, stores the associated process code value in the pwc buffer and
returns 2 to indicate that the character length is 2 bytes.

Determines if the first byte identifies a triple-byte character whose first
byte contains the value 0x8f and whose second and third bytes contain a
value in the range Oxal to Oxfe.

If yes, stores the associated process code value in the pwc buffer and
returns 3 to indicate that the character length is 3 bytes.

Determines if the first byte identifies a single-byte character whose
value is equal to or less than 0x9f.

If yes, stores the associated process code value in the pwc buffer and
returns 1 to indicate that the character length is 1 byte.

6-44 Creating Locales



Determines if the first byte identifies a double-byte character whose
first byte contains a value in the range x0al to x0fe and whose second
byte contains a value in the range 0x21 to Ox7e.

If yes, stores the associated process code value in the pwc buffer and
returns 2 to indicate that the character length is 2 bytes.

Returns -1 and sets er r no to [EILSEQ)] to indicate that an invalid
multibyte sequence was encountered.

These statements execute if the multibyte data in the s buffer satisfies
none of the preceding i f conditions.

6.3.1.8 Writing a Method for the wcstombs() Function

The west ombs( ) function calls the west onbs method to convert a
wide-character string to a multibyte character string and to return the
number of bytes in the resultant multibyte character string. By convention,
a C source file for this method has the file name __wcst onbs_codeset. c,
where codeset identifies the codeset for which this method is tailored.
Example 6-17 is the __wcst onbs_sdeckanj i . c file, which defines the
wcst onbs method used with the j a_JP. sdeckanj i locale.

Example 6-17: The __wcstombs_sdeckanji Method for the ja_JP.sdeckaniji
Locale

#include <stdlib. h>
#i ncl ude <wchar. h>
#include <limts.h>

#i ncl ude <sys/| ocal edef. h>

size_t __westonbs_sdeckanji (

char *s,
const wchar _t *pwcs,
size_t n,
_LC charmap_t *handl e )
{
int cnt=0; [6]
int |en=0;
int i=0;
char tmps[ MB_LEN MAX+1]; [9]
if (s == (char *)NULL) {
cnt = 0;
while (*pwes !'= (wechar_t)'\0") {
if ((len = __wctonb_sdeckanji (tnps, *pwes)) == -1)
return(-1);
cnt += len;
pwes++;

return(cnt);

}

if (*pwes == (wchar_t)’'\0") {
*s = '\0";
return(0);

}

Creating Locales 6-45



Example 6-17: The __wcstombs_sdeckanji Method for the ja_JP.sdeckaniji
Locale (cont.)

while (1) {

if ((len = __wctonb_sdeckanji (tnps, *pwes)) == -1)
return(-1);

else if (cnt+len > n) {
*s = '\0";
br eak;

}

if (tnps[0] == "'\0") {
*s = '\0";
br eak;

}

for (i=0; i<len; i++) {
*s = tnps[il;
S++;

}
cnt += len;

if (cnt == n)
br eak;

pWCS ++;
}

if (cnt == 0)
cnt = len;
return (cnt);

(=]

Includes header files that contain constants and structures required
for this method.

]

Points, through s, to a buffer that stores the multibyte character string
that this method passes to the calling function.

]

Points, through pwcs, to a buffer that stores the wide-character string
that is being converted.

(=]

Defines a variable, n, that stores the maximum number of bytes in the
multibyte character string buffer.

This value is supplied by the calling function.

@]

Points, through handl e, to a structure that points to the methods that
parse character maps for this locale.

Initializes a variable, cnt , that is incremented by the number of bytes
(I en) of each converted character.

6-46 Creating Locales



=
[N

=] [=
5] 5

[y I 1= R =Y I [
E B B &

N o] = =
SEERERE

N
N

Initializes a variable, | en, that stores the length of each converted
character.

Initializes a variable, i , that is used to index the bytes in each multibyte
character when moving a converted character from temporary storage
to s.

Defines a temporary buffer, t nps, that stores the multibyte character
returned to this method from a call to the wct onb method.

Checks to see if a NULL was passed from the calling function in the s
buffer.

If yes, calls the wet onb method to calculate the number of bytes
required for converted characters (excluding the null terminator) in the
multibyte character buffer.

You can request the size of the s buffer (for memory allocation purposes)
by passing a null byte as the data in the s parameter on the call to
west ombs( ). You can then use the return value to efficiently allocate
memory space for the application’s wide-character buffer before calling
west onbs( ) again to actually convert the wide-character string.

Returns zero (0) to indicate that no multibyte characters resulted and
sets s to NULL if pwcs points to NULL.

Starts a whi | e loop to process characters in the wide-character string.

Converts characters in the wide-character buffer by calling the wct onb
method; returns -1 to indicate an invalid character if wct onb returns
-1.

Terminates s with NULL and breaks out of the whi | e loop if there is no
room in s for the character just converted by wct onb.

Moves a null terminator to s and breaks out of the whi | e loop when a
NULL is encountered in s.

Appends each byte in t nps to s if the current wide character is not
a NULL.

Increments cnt by the number of bytes (I en) occupied by this character
in multibyte format.

Breaks out of the whi | e loop without adding a null terminator if the
number of bytes processed equals n (the maximum number of bytes in s).

Increments pwes to point to the next wide character to be converted.
Ends the whi | e loop that converts each wide character.

Ensures that zero (0) is returned if s does not contain enough space for
even one character.

Returns the number of bytes in the resultant multibyte character string.

Creating Locales 6-47



6.3.1.9 Writing a Method for the wctomb() Function

The wet onb( ) function calls the wet onb method to convert a wide
character to a multibyte character and to return the number of bytes

in the resultant multibyte character. By convention, a C source file for

this method has the file name __wct onb_codeset . ¢, where codeset
identifies the codeset for which this method is tailored. Example 6-18 is the
__wctonb_sdeckanj i . c file, which defines the wct onmb method for the

j a_JP. sdeckanji locale.

Example 6-18: The __wctomb_sdeckanji Method for the ja_JP.sdeckaniji
Locale

#i ncl ude <stdlib. h>
#i ncl ude <wchar. h>

#i ncl ude <sys/errno. h>

#i ncl ude <sys/| ocal edef. h>

/*
The algorithmfor this conversion is:

PC <= 0x009f: s[0] = PC
PC >= 0x0100 and PC <=0x015d: s[0] = Ox8e
s[1] = PC - 0x005f
PC >= 0x015e and PC <=0x303b: s[0] = ((PC - 0x015e) >> 7) + 0x00al
s[1] = ((PC - 0x015e) & 0x007f) + 0x00al
PC >= 0x303c and PC <=0x5f19: s[0] = Ox8f
s[1] = ((PC - 0x303c) >> 7) + 0x00al
s[2] = ((PC - 0x303c) & 0x007f) + 0x00al
PC >= Ox5fla and PC <=0x8df7 s[0] = ((PC - Ox5fla) >> 7) + 0x00al
s[1] = ((PC - 0x5fla) & 0x007f) + 0x0021
L L Fommmmm e L T o +
| process code | s[ 0] | s[1] | s[ 2] |
L L Fommmmm e L T o +
| 0x0000 - 0x009f | 0x00-0x9f | -- | -- |
| 0x00a0 - OxO00ff | -- | -- | -- |
| 0x0100 - 0x015d | Ox8e | Oxal-Oxfe | -- | JI'S X0201 RH
| Ox015e - 0x303b | Oxal-Oxfe | Oxal-Oxfe | -- | JI'S X0208
| 0x303c - 0x5f19 | Ox8f | Oxal-Oxfe | Oxal-Oxfe | JI'S X0212
| Ox5fla - 0x8df7 | Oxal-Oxfe | 0x21-O0xfe | -- | uDC
Fommm e D TR L R drmmmeaaas +
* [
int __wctonb_sdeckanji (
char *s,
wchar _t we, 4]
_LC charmap_t *handle )
{
if (s == (char *)NULL)
return(0);
if (we <= 0x9f) {
s[0] = (char) wc;
return(l);
}
else if ((we >= 0x0100) && (wc <= 0x015d)) {
s[0] = Ox8e;

s[1] = we - Ox5f;

6-48 Creating Locales



Example 6-18: The __wctomb_sdeckanji Method for the ja_JP.sdeckaniji
Locale (cont.)

}

return(2);

else if ((we >=0x015e) && (wc <= 0x303b)) {

}

s[0] = (char) (((wc - 0x015e) >> 7) + 0x00al);
s[1] = (char) (((wc - 0x015e) & 0x007f) + Ox00al);
return(2);

else if ((we >=0x303c) && (wc <= 0x5f19)) {

}

s[0] = Ox8f;

s[1] = (char) (((wc - 0x303c) >> 7) + 0x00al);
s[2] = (char) (((wc - 0x303c) & 0x007f) + Ox00al);
return(3);

else if ((we >=0x5fla) && (wc <= 0x8df7)) {

}

s[0] = (char) (((wc - 0x5fla) >> 7) + 0x00al);
s[1] = (char) (((wc - 0x5fla) & 0x007f) + 0x0021);
return(2);

_Seterrno(ElILSEQ;

r

eturn(-1);

@ & [«

]

=]

Includes header files that contain constants and structures required
for this method.

Describes the conversion algorithm that this method uses.

Each character set supported by the codeset corresponds to a unique
range of wide-character (process code) values. Within each character
set, multibyte characters are of uniform length (1, 2, or 3 bytes).
Therefore, the range in which each wide-character value falls indicates
the number of bytes required for the character in multibyte format. The
wide-character value itself determines the specific byte value or values
for the character in multibyte format.

Points, through s, to a buffer that stores the multibyte character.
Defines the wec variable that stores the wide character.

Points, through handl e, to a structure that stores pointers to the
methods that parse the character maps for this locale.

Returns zero (0) to indicate that no characters were converted if s
points to NULL.

If the wide-character value is equal to or less than 0x9f, moves that
value into the first byte of the s array and returns 1 to indicate that the
converted character is 1 byte in length.

Creating Locales 6-49



6.3.1.10

If the wide-character value is in the range 0x0100 to 0x015d, moves the
value 0x8e to the first byte and a calculated value to the second byte
of the s array; returns 2 to indicate that the converted character is 2
bytes in length.

[9] If the wide-character value is in the range 0x015e to 0x303b, moves
calculated values to the first and second bytes of the s array and returns
2 to indicate that the converted character is 2 bytes in length.

If the wide-character value is in the range 0x303c to 0x5f19, moves 0x8f
to the first byte and calculated values to the second and third bytes
of the s array; returns 3 to indicate that the converted character is 3
bytes in length.

If the wide-character value is in the range 0x5fla to 0x8df7, moves
calculated values to the first and second bytes of the s array, and
returns 2 to indicate that the converted character is 2 bytes in length.

Sets errno to [EILSEQ] and returns —1 to indicate that the
wide-character value is invalid.

These statements execute if the wide-character values satisfy none of
the preceding conditions.

Writing a Method for the weswidth() Function

The weswi dt h( ) function uses the weswi dt h method to determine

the number of columns required to display a wide-character string.

By convention, a C source file for this method has the file name

__weswi dt h_codeset . ¢, where codeset identifies the codeset for which
this method is tailored. Example 6-19 is the __wcswi dt h_sdeckanji.c
file, which defines the wcswi dt h method used for the j a_JP. sdeckanj i
locale.

Example 6-19: The __wcswidth_sdeckanji Method for the ja_JP.sdeckanji
Locale

#i ncl ude <stdlib. h>
#i ncl ude <wchar. h>
#i ncl ude <sys/ | ocal edef. h>

/*
The algorithm for this conversion is:

PC <= 0x009f: s[0] = PC
PC >= 0x0100 and PC <=0x015d: s[0] = Ox8e
s[1] = PC - Ox005f
PC >= 0x015e and PC <=0x303b: s[0] = ((PC - 0x0l5e) >> 7) + Ox00al
s[1] = ((PC - 0x015e) & 0x007f) + 0x00al
PC >= 0x303c and PC <=0x5f19: s[0] = Ox8f
s[1] = ((PC - 0x303c) >> 7) + Ox00al
s[2] = ((PC - 0x303c) & 0x007f) + 0x00al
PC >= 0x5fla and PC <=0x8df7 s[0] = ((PC - Ox5fla) >> 7) + Ox00al
s[1] = ((PC - 0x5f1a) & 0x007f) + 0x0021

6-50 Creating Locales



Example 6-19: The __wcswidth_sdeckanji Method for the ja_JP.sdeckanji

Locale (cont.)

0x0000 -
0x00a0 -
0x0100 -

| 0x009f
|

|

| 0x015e -

|

|

0x00f f
0x015d |
0x303b |

Ox8e
Oxal- Oxfe |
0x303c - Ox5f19 | 0Ox8f | Oxal-oOxfe
Ox5fla - 0x8df7 | Oxal-Oxfe | 0x21-0xfe
B T R e

_ _weswi dt h_sdeckanj i (
const wchar_t *wcs,
size_t n,

_LC charmap_t *hdl )

(6]

if (wes == (wchar_t *)NULL ||
return(0);

=0 [

(i=0; wes[i]

Oxal- Oxfe
Oxal- Oxfe

+—————— +— +

int
int

len;
i

len
for I'= (wchar _t)NULL && i<
if (wes[i] <= 0x9f)

len += 1,

else if ((wes[i]
len += 1;
else if ((wes[i]
len += 2;
else if ((wes[i]

len += 2;

else if ((wes[i]

len += 2;

el se
return(-1);

}

[18]

return(len);

Oxal- Oxfe

*wes == (wchar_t) NULL)

n;, i++) {

JI'S X0201 RH
JI'S X0208
JI'S X0212
upC

[10]

>= 0x0100) && (wes[i] <= 0x015d))

>=0x015e) && (wes[i] <= 0x303b))

>=0x303c) && (wes[i] <= Ox5f19))

>=0x5f 1a) &% (wes[i] <= O0x8df 7))

Includes header files that contain constants and structures required

for this method.

Describes the algorithm used to determine the required display width.

Each character’s display width is either 1 or 2 columns, depending
on the character set to which a character belongs. Display width is
different from the size of the character in multibyte format; for example,

Creating Locales 6-51



6.3.1.11

[«]

@ [=]

Bl e e

= =l =l =l e
5 B B K E

=
2]

=] [~
5] [

triple-byte characters require 2 display columns and double-byte
characters can require either 1 or 2 display columns.

Points, through wcs, to a buffer that stores the wide-character string for
which display width information is requested.

Defines a variable, n, that stores the maximum size of the wcs buffer.

Points, through hdl , to a structure that stores pointers to the methods
that parse character maps for this locale.

Defines a variable, | en, that stores the display width in bytes/columns.
Defines a variable, i , that functions as a loop counter.

Returns zero (0) if wes contains or points to NULL.

Initializes | en to zero (0).

Begins a f or loop that processes each wide character in the wecs buffer
and increments the wide-character pointer.

Increments | en by 1 if the value of the current wide character is less
than or equal to 0x9f.

Increments | en by 1 if the value of the current wide character is in the
range 0x0100 to 0x015d.

Increments | en by 2 if the value of the current wide character is in the
range 0x015e to 0x303b.

Increments | en by 2 if the value of the current wide character is in
the range 0x303c to 0x5f19.

Increments | en by 2 if the value of the current wide character is in
the range 0x5fla to 0x8df7.

Returns -1 to indicate that the string contains an invalid wide character.

This statement executes if a value that satisfies none of the preceding
conditions is encountered in the string. The calling function,

weswi dt h( ), also returns -1 if the wide character is nonprintable;
however, this condition is evaluated at the level of the calling function
and does not need to be evaluated by the method.

Ends the f or loop that processes wide characters in the wes buffer.

Returns | en to indicate the number of columns required to display
the wide-character string.

Writing a Method for the wewidth() Function

The wewi dt h( ) function uses the wcwi dt h method to determine the
number of columns required to display a wide character. By convention, a
C source file for this method has the file name __wcwi dt h_codeset. c,
where codeset identifies the codeset for which this method is tailored.

6-52 Creating Locales



Example 6-20 is the __wcw dt h_sdeckanj i . c file, which defines the
wcwi dt h method used with the j a_JP. sdeckanj i locale.

Example 6-20: The __wecwidth_sdeckanji Method for the ja_JP.sdeckanji
Locale

#i ncl ude <stdlib. h>

#i ncl ude <wchar. h>
#i ncl ude <sys/| ocal edef. h>

/*

The algorithm for this conversion is:

PC <= 0x009f : s[0] = PC
PC >= 0x0100 and PC <=0x015d: s[0] = Ox8e
s[1] = PC - 0x005f
PC >= 0x015e and PC <=0x303b: s[0] = ((PC - 0x015e) >> 7) + Ox00al
s[1] = ((PC - 0x015e) & 0x007f) + 0x00al
PC >= 0x303c and PC <=0x5f19: s[0] = Ox8f
s[1] = ((PC - 0x303c) >> 7) + Ox00al
s[2] = ((PC - 0x303c) & 0x007f) + 0x00al
PC >= 0x5fla and PC <=0x8df7 s[0] = ((PC - Ox5fla) >> 7) + Ox00al
s[1] = ((PC - 0x5fla) & 0x007f) + 0x0021
e e e o +
| process code | s[ 0] | s[1] | s[ 2] |
e e e o +
| 0x0000 - 0x009f | 0x00-0x9f | -- | -- |
| 0x00a0 - Ox00ff |  -- | -- | -- |
| 0x0100 - 0x015d | Ox8e | Oxal-Oxfe | -- | JI'S X0201 RH
| 0x015e - 0x303b | Oxal-Oxfe | Oxal-Oxfe | -- | JI'S X0208
| 0x303c - Ox5f19 | Ox8f | Oxal-Oxfe | Oxal-Oxfe | JI'S X0212
| Ox5fla - 0x8df7 | Oxal-Oxfe | 0x21-0xfe | -- |
e e Fomm e o +
* [
int __wewi dt h_sdeckanji (
wint_t we,
_LC charmap_t *hdl ) [4]
{
if (w == 0)
return(0); [Glif (wec <= 0x9f)
return(l);
else if ((wec >= 0x0100) && (wc <= 0x015d))
return(1);
else if ((wec >=0x015e) && (wc <= 0x303b))
return(2);
else if ((wec >=0x303c) && (wc <= 0x5f19))
return(2); [9]
else if ((we >=0x5fla) && (wc <= 0x8df7))
return(2);
return(-1);
}
Includes header files that contain constants and structures required
for this method.
Describes the algorithm used to determine the required display width.

A character’s display width is either 1 or 2 columns, depending on the
character set to which a character belongs. Display width is different

Creating Locales 6-53



from the size of the character in multibyte format; for example,
triple-byte characters require 2 display columns and double-byte
characters can require either 1 or 2 display columns.

[«]

Defines the we variable that stores the wide character for which display
width information is requested.

(=]

Points, through hdl , to a structure that stores pointers to the methods
that parse character maps for this locale.

Returns zero (0) if the wide-character buffer is empty.

Returns 1 if the wide-character value is less than or equal to 0x009f.
Returns 1 if the wide-character value is in the range 0x0100 to 0x015d.
Returns 2 if the wide-character value is in the range 0x015e to 0x303b.
Returns 2 if the wide-character value is in the range 0x303c to 0x5f19.
Returns 2 if the wide-character value is in the range 0x5fla to 0x8df7.

| [
SRS EE=RENE

Returns -1 if the wide-character value is invalid.

The calling function, wewi dt h( ), also returns -1 if the wide character
is nonprintable; however, this condition is evaluated at the level of the
calling function and does not need to be evaluated by the method.

6.3.2 Optional Methods

A locale can include optional methods in addition to the required methods
discussed in Section 6.3.1. A method is considered optional if a default
method is applied in the absence of a method specification. That is, if your
locale uses methods but does not supply any methods for the functions
associated with particular locale categories or some other locale-related
functions, the | ocal edef command applies default methods that handle
process code for both single-byte and multibyte characters.

Writing optional methods requires detailed information about the internal
interfaces to C Library routines. This information is vendor proprietary and
may be subject to change. Thus, optional method descriptions in this section
are less complete than the descriptions for required methods.

In the rare cases in which your locale must include an optional method,
contact your technical support representative to request information.

The following list names the optional methods:
e LC _CTYPE category

— towupper

— tow ower

- wctype

6-54 Creating Locales



— iswctype
e |LC _COLLATE category

— fnmatch

strcol |

— strxfrm

wescol |
— wesxfrm
regconp
— regexec

— regfree
— regerror
e LC MONETARY, LC _NUMERI C, or both categories
— local econv
— strfnon
e LC_TI ME category
— strftime
— strptinme
— wesftinme
e | C MESSAGES category
— rpmatch
e Miscellaneous use

— nl _langinfo()

6.3.3 Building a Shareable Library to Use with a Locale

Example 6-21 contains the compiler and linker command lines that are
required to build the method source files into a shareable library that is used
with the j a_JP. sdeckanj i locale.

Example 6-21: Building a Library of Methods Used with the ja_JP.sdeckanji
Locale

cc -std0 -c \
__nbl en_sdeckanji.c __nbstopcs_sdeckanji.c \
__nbstowcs_sdeckanji.c __nbtopc_sdeckanji .
__nbtowc_sdeckanji.c __pcstonbs_sdeckanji .
__pctonb_sdeckanji.c __wstonbs_sdeckanji .
__weswi dt h_sdeckanji.c __wtonb_sdeckanji .
__wewi dt h_sdeckanji.c

c\
c\
c\
c\

Creating Locales 6-55



Example 6-21: Building a Library of Methods Used with the ja_JP.sdeckanji
Locale (cont.)

Id -shared -set_version osf.1 -sonane |ibsdeckanji.so -shared \
-no_archive -o |ibsdeckanji.so \
__nbl en_sdeckanji.o __nbstopcs_sdeckanji.o \
_ _nbstowcs_sdeckanji.o __nbtopc_sdeckanji.o \
__nbtowc_sdeckanji.o __pcstonbs_sdeckanji.o __pctonb_sdeckanji.o \
__westonbs_sdeckanji.o __wcsw dth_sdeckanji.o __wctonb_sdeckanji.o \
__wewi dt h_sdeckanji.o \
-lc

See cc(1) and | d(1) for more information about shared libraries.

6.3.4 Creating a methods File for a Locale

The et hods file contains an entry for each function that is defined in the
methods shared library for use with the locale. The operation performed by
the function is identified by a method keyword, followed by quoted strings
with the name of the function and the path to the shared library that
contains the function.

Example 6-22 illustrates the section of a met hods file for the methods
used with the j a_JP. sdeckanj i locale. Because you must define a list of
required methods if you want to override any C Library interfaces, your
nmet hods file must always specify an entry for each required method as
shown in this example. The j a_JP. sdeckanj i locale relies on default
implementations for all optional methods, and so the example does not
contain entries for any of the optional methods.

Example 6—22: The methods File for the ja_JP.sdeckaniji Locale

# sdeckanji.m
# <met hod_keyword> "<entry>" "<package>" "<library_path>"

METHODS  [2]

__nbstopcs "_ _nbstopcs_sdeckanji" "libsdeckanji.so" \
"lusr/shlib/libsdeckanji.so"
_ _nbtopc _ _nbtopc_sdeckanji" "l i bsdeckanji.so" \
"lusr/shlib/libsdeckanji.so"
__pcstonbs "_ _pcstonbs_sdeckanji" "libsdeckanji.so" \
"/usr/shlib/libsdeckanji.so"
_ _pctonb " __pctonb_sdeckanji" "l i bsdeckanji.so" \
"/usr/shlib/libsdeckanji.so"
nmbl en " __nbl en_sdeckanji" "l i bsdeckanji.so" \
"lusr/shlib/libsdeckanji.so"
nbst owcs " __nbstowcs_sdeckanji" "libsdeckanji.so" \
"lusr/shlib/libsdeckanji.so"
bt owc " __nbtowc_sdeckanji" "l i bsdeckanji.so" \
"/usr/shlib/libsdeckanji.so"
west onbs " __westonbs_sdeckanji" "libsdeckanji.so" \

“/usr/shlib/libsdeckanji.so"

6-56 Creating Locales



Example 6—22: The methods File for the ja_JP.sdeckanji Locale (cont.)

weswi dt h " __wesw dt h_sdeckanji" "libsdeckanji.so" \
"/usr/shlib/libsdeckanji.so"
wet onb " __wectonb_sdeckanji" "l i bsdeckanji.so" \
"/usr/shlib/libsdeckanji.so"
wewi dt h "__wew dth_sdeckanji" "libsdeckanji.so" \

"/usr/shlib/libsdeckanji.so"

END METHODS  [4]

Comment lines

These lines specify the name of the net hods file and the format of
method entries. The field identified in the format as <package> is
ignored, but you must specify some string for this field in order to
specify a library path.

Header to mark start of method entries

Entries for required methods

Trailer to mark end of method entries

See | ocal edef (1) for detailed information about net hods file entries.

6.4 Building and Testing the Locale

Use the | ocal edef command to build a locale from its source files.
Example 6-23 is the command line needed to build the French locale used
in most examples in this chapter. Assume for this example that all source
files reside in the user’s default directory and that the resulting locale is
also created in that directory.

Example 6—-23: Building the fr_FR.ISO8859-1@example Locale

% |l ocal edef -f |S08859-1.cnmap \
-i fr_FR 1S08859-1.src \
fr_FR |1 SOB859- 1@xanpl e

The- f option specifies the character map source file.
The-i option specifies the locale definition source file.

The final argument to the command is the name of the locale.
When you are testing locales, particularly ones that are similar to standard
locales installed on the system, add an extension to the locale name. Varying

names with the at (@ extension allows you to specify the standard strings
for language, territory, and codeset and still be sure that the test locale is

Creating Locales 6-57



uniquely identified. This is important if you later decide to move the locale
to the /usr/1i b/ nl s/ oc directory, where other locales reside.

Example 6-23 contains only one form and a few options for the | ocal edef
command. See | ocal edef (1) for a complete description of the command.

The following is a summary of some important rules and options:

e If you defined methods for your locale, you must specify the nmet hods
file with the - moption. For example, the command line that builds the
j a_JP. sdeckanj i locale would include -m sdeckanj i . mto identify
the file shown in Example 6-22.

*  You can use the - v option to run the command in verbose mode for
debugging purposes. This option, when used with the - ¢ option, creates
a . c file that contains useful information about the locale.

e Use the - woption if you want the command to display warnings when it
encounters duplicate definitions.

By default, locales must reside in the / usr/1i b/ nl s/ | oc directory

to be found. If you want to test your locale before moving it to the
[usr/lib/nls/loc directory, you can define the LOCPATH variable to
specify the directory where your locale is located. You can then define the
LANG environment variable to be your new locale and interactively test the
locale with commands and applications.

Example 624 uses the dat e command to test the date/time format.

Example 6—-24: Setting the LOCPATH Variable and Testing a Locale

% set env LOCPATH ~harry/ | ocal es

% set env LANG fr_FR | SC8859- 1@xanpl e
% dat e

ven 23 avr 13:43:05 EDT 1999

Note

The LOCPATH variable is an extension to specifications in the
X/Open UNIX standard and therefore may not be recognized on
all systems that conform to this standard.

Some programs have support files that are installed in system directories
with names that exactly match the names of standard locales. In such
cases, application software, system software, or both might use the value of
the LANG environment variable to determine the locale-specific directory in
which the support files reside. If assigned directly to the LANGor LC_ALL

6-58 Creating Locales



environment variable, locale file names with an at (@) suffix may result in
invalid search paths for some applications.

The following example illustrates how you can work around this problem
by assigning the standard locale name to the LANG variable and the name
of your variant locale to the locale category variables. You need to make
assignments only to those category variables that represent areas where
your locale differs from the locale on which it is based.

% setenv LANG fr_FR | SC8859- 1
% setenv LC CTYPE fr_FR | SO8859- 1@xanpl e
% set env LC_COLLATE fr_FR. | SO8859- 1@xanpl e

% setenv LC TIME fr_FR | SO8859- 1@xanpl e

Creating Locales 6-59






v

Programming Considerations for
International Applications

This chapter describes a set of miscellaneous tasks you should consider as
you develop international applications. These tasks include the following:

¢ (Choosing an input method and input styles (Section 7.1)

¢ Managing user-defined character databases (Section 7.2)

e Assigning a sort order with a locale specification (Section 7.3)
¢ Processing non-English language reference pages (Section 7.4)
¢ Converting data files from one codeset to another (Section 7.5)

e Using font renderers in Chinese and Korean language PostScript
Support (Section 7.6)

This chapter provides information on the tools needed to create international
applications. The information in this chapter is also closely related to how
international applications are used on the operating system. As you use

the information in this chapter, you may also find it helpful to refer to the
companion manual, Using International Software.

The following manuals provide language-specific information about
customization and software use provided for Asian languages on the
operating system:

e Technical Reference for Using Chinese Features
e Technical Reference for Using Japanese Features
e Technical Reference for Using Korean Features

e Technical Reference for Using Thai Features

These manuals are available from the programming bookshelf of the
operating system documentation Web site (ht t p: / / www. t r u64uni x. com
paqg. conf docs/ ). Non-English language characters are embedded in the
text of the Chinese, Japanese, and Korean Technical References. To view
these characters with your Web browser, you must install the appropriate
language support subsets on your system and set your locale to one that
includes the local language characters used in the technical reference.

Programming Considerations for International Applications 7-1



The operating system documentation also provides introductory reference
pages on the topics of internationalization (i 18n_i nt r o(5)) and localization
(I 10n_i nt r o(5)) as well as reference pages for all supported languages
and codesets.

7.1 Choosing an Input Method

For some languages, such as Japanese, Chinese, and Korean, you use an
input method to enter characters and phrases. An input method lets you
enter a character by taking multiple editing actions on entry data. The data
entered at intermediate stages of character entry is called the preediting
string.

The X Input Method specification defines the following user input, or
preediting, styles:

¢  On-the-Spot

Data being edited is displayed directly in the application window.
Application data is moved to allow the preediting string to display at
the point of character insertion.

e Over-the-Spot

The preediting string is displayed in a window that is positioned over
the point of insertion.

e Off-the-Spot

The preediting string is displayed in a window that is within the
application window but not over the point of insertion. Often, the
window for the preediting string appears at the bottom of the application
window. In this case, the preediting window may block the last line of
text from view in the application window. You can resize the application
window to make this last line visible.

e Root Window

The preediting string is displayed in a child window of the application
root window.

Input methods for different locales typically support more than one user
input style but not all of them. If you work in languages that are supported
by an input method, you can specify styles in priority order through the
VendorShell resource XmNpr eedi t Type. By default, this resource is defined
to be the following:

OnTheSpot , Over TheSpot , O f TheSpot , Root

The priority order of these values means that On-the-Spot input style is
used if the input method supports it, else the Over-the-Spot is used if the
input method supports it, and so forth.

7-2 Programming Considerations for International Applications



Use one of the following methods to supply the XmNpr eedi t Type resource
value to an application:

e In CDE, use the Input Methods application. See the CDE Companion
manual for information on using this application.

¢ In an application-specific resource file.
¢ On the command line that invokes an application.
For example:

% app-nanme -xrm’ *preeditType: offthespot, onthespot’ &
pp

Input styles are supported by specialized input method servers. An input
method server runs as an independent process and communicates with an
application to handle input operations.

An input method server does not have to be running on the same system
as the application but, with one exception, it must be running and made
accessible to the application before the application starts.

If a Motif application that has been internationalized to support simplified
Chinese contains an XnTText or XniText Fi el d widget with the Reconnectable
resource set to True, the application is able to establish a connection with
the input server when the application starts first or when the server stops
and restarts. See XniText (3X) and Xnirext Fi el d(3X) for more information.

See the Using International Software manual for information on the input
method servers available on the operating system and the input styles that
each server supports.

7.2 Managing User-Defined Characters and Phrase Input

The national character sets for Japan, Taiwan, and China do not include
some of the characters that can appear in Asian place names and personal
names. Such characters are defined by users and reside in site-specific
databases. These databases are called user-defined character (UDC) or
character-attribute databases. When users define ideographic characters,
they must also define font glyphs, collating files, and other support files
for the characters.

Appendix B provides details on how you set up and use UDC databases.

In Korea, Taiwan, and China, users can enter a complete phrase by typing a
keyword, abbreviation, or acronym. This capability is supported by a phrase
database and an input mechanism. The Using International Software

manual provides details on how the user sets up and uses a phrase database.

The / var/i 18n/ conf/ cp_di r s configuration file allows software services
or hardware to locate the databases that support UDC and phrase input.

Programming Considerations for International Applications 7-3



Example 7-1 contains the default entries in the cp_di r s file. You can edit
these entries to change the default locations.

Example 7-1: Default cp_dirs File

#

# Attribute directory configuration file

#

# System | ocati on User | ocation
# =============== =============
udc - /var/i 18n/udc ~/ . udc

odl - /var/i 18n/ odl ~/ . odl

sim - /var/i18n/sim ~/.sim

cdb /usr/il8n/.cdb /var/i18n/cdb ~/.cdb

i ks - /var/i18n/iks ~/.iks

pre - /var/il8n/fonts ~/.fonts

bdf - /var/i1l8n/fonts ~/.fonts

pcf - /var/i1l8n/fonts ~/.fonts

Each line in the cp_di r s file represents one entry and has the following
format:

[service_name standard_path system_path user_path |

The ser vi ce_nane can be one of the following:

e bdf (for font files in BDF format)

e cdb (for collating value databases used with the asort command)
e ks (for input key sequence files)

e odl (for databases of fonts and input key sequences that the SoftODL
service uses)

e pcf (for font files in Printer Customization File format)

These files, depending on their font resolution, reside in either the 75dpi
or 100dpi subdirectory.

e pr e (for font files in preload format created by the cgen utility)
These are raw font files used to preload multibyte character terminals.
¢ si m(for phrase databases)

¢ udc (for UDC databases)
The cp_di r s file can contain only one entry for each service named.
Remaining fields in the entry line consist of the following:

e standard_pat h specifies the location of the collating values database
for the standard character sets (applies only to the cdb entry)

e system pat h specifies the location of systemwide databases

e user _pat h specifies the location of users’ private databases

The preceding locations are specified as one of the following:

7-4 Programming Considerations for International Applications



e An absolute pathname, starting with a slash (/)

¢ A pathname, starting with tilde slash (~/ ), that is relative to a user’s
home directory

¢ A minus sign or hyphen (-) to indicate that the entry is not used

For example, you can specify - to be user _pat h for all services related
to user-defined characters if you want these characters supported only
through systemwide databases.

Comment lines in the cp_di r s file begin with the number sign (#).

7.3 Assigning a Sort Order with a Locale Specification

The sort command sorts characters according to the collation sequence
defined for the current locale. A particular locale can apply one set of
collation rules to the associated character set. Multiple locale names do exist,
however, for the same combination of language, territory, and character set.
These variations offer users the choice of more than one collating sequence.

When more than one locale is available for a given combination of language,
territory, and codeset, some of the locale names include a suffix with the
format @ar i ant . To avoid problems with pathnames constructed using the
%._ specifier, you should assign a locale name with a suffix that is category
specific only to the appropriate locale category variable (or variables). In the
following example, the locale assigned to LC_COLLATE differs from the locale
assigned to LANG only with respect to collating sequence:

% setenv LANG zh_TW eucTW
% setenv LC COLLATE zh_TW eucTW@ adi cal

Supporting different collation orders through one or more locales is adequate
for most languages. However, collation orders for Asian languages require
additional support for the following reasons:

e Asian languages include UDCs, which are not specified in a locale. These
characters can be defined with a collation weight. In this case, the
collation weight needs to be applied when the UDCs are encountered
in the strings being sorted.

¢ Ideographic characters can be sorted on more than one dimension
(radical, stroke, phonetic, and internal code). Some users need to combine
these dimensions during sort operations. In one operation the user may
need to sort characters first by radical and then according to the number
of strokes. For another operation, the user may need to put characters
first in phonetic order, then according to the number of strokes, and so
on. Sorting by combinations of dimensions requires breadth-first sorting,
rather than the depth-first sorting implemented through locales.

Programming Considerations for International Applications 7-5



For the preceding reasons, the asort command was developed and is
available when you install language variant subsets that support Asian
languages. The asort command uses, by default, the collating order defined
for the LC_COLLATE variable and supports all the options supported by the
sort command. In addition, the asort command includes the following
options:

e -C

This option indicates that the sort operation should use special system
sort tables, along with sort tables produced by the cgen utility, to
support UDCs. This option overrides the sort sequence defined in the
locale specified by the LC_COLLATE variable.

e -v

This option, which you can use only with the - C option, implements
breadth-first sorting.

See asor t (1) for more information about using this command.

7.4 Processing Non-English Language Reference Pages

Programmers who supply software applications for UNIX systems frequently
supply online reference pages (manpages) to document the application and
its components. UNIX text-processing commands and utilities must be able
to process translated versions of these reference pages for applications

sold to the international market. The operating system includes enhanced
versions of the nr of f , t bl , and man commands to support this requirement.

7.4.1 The nroff Command

The nr of f command includes the following functions to support locales:

e Formats reference page source files written in any language whose locale
is installed on the system.

e Supports characters of any supported languages in the string arguments
of macros and requests.

e Supports character mapping of characters for any supported language
through the . t r request in reference page source files.

e Allows you to set the escape character (\), command control character
(.), and nobreak control character (') to local language, as well as ASCII,
characters.

e Maps each 2-byte space character, which is defined in most codesets for
Asian languages, to two ASCII spaces in output.

When formatting reference pages that contain ideographic characters,
the nr of f command treats each character as a single word. A string of

7-6 Programming Considerations for International Applications



ideographic characters, including 2-byte letters and punctuation characters,
can be wrapped to the next line subject to the following constraints:

e The last character on the text line cannot be defined as a no-last
character by either the standard or private list of no-last characters.

e The first character on the text line cannot be defined as a no-first
character by either the standard or private list of no-first characters.

The standard no-first, no-last character lists are defined in nr of f catalog
files. For lists of these characters, see the following language-specific
manuals:

e Technical Reference for Using Chinese Features
e Technical Reference for Using Japanese Features
e Technical Reference for Using Korean Features

e Technical Reference for Using Thai Features

These manuals are available from the programming bookshelf of the
operating system documentation Web site (ht t p: / / www. t r u64uni x. com
pag. conf docs/ ).

The no-first and no-last constraints exist to prevent nr of f from placing a
punctuation mark or right parenthesis at the beginning of a text line or
placing a left parenthesis at the end of a text line. You can turn the standard
constraints on and off in source files with the . ki and . ko commands,
respectively.

You can also define a private set of no-first and no-last characters with the
following command:

.kl "no-first-list’'no-last-Iist

The parameters no-first-1ist and no-1ast-Iist are strings of
characters that you include in the no-first and no-last categories. You cancel
a private no-first and no-last list by entering a . kI command with null
strings as the parameters. For example:

.k|1|v

Note

The characters specified in the . kI command override, rather
than supplement, the characters in the standard set of no-first
and no-last characters. Therefore, you cannot use the standard
set of no-first and no-last characters together with a private set.

Using the command . ki restores use of the standard set of
no-first and no-last characters for the current locale.

Programming Considerations for International Applications 7-7



The nr of f command can format text so that it is justified or not justified to
the right margin. When text is justified to the right margin, nr of f inserts
spaces between words in the line. Ideographic characters, although treated
as words in most stages of the formatting process, differ in terms of whether
they can be delimited by spaces. The characters that can be preceded by

a space, followed by a space, or both are listed in the language-specific
user manuals that are available on line when you install language variant
subsets of the operating system. When right-justifying text, the nr of f
command inserts spaces only at the following places:

e  Where 1-byte or 2-byte spaces already occur
¢ Between English language characters and ideographic characters
e Before characters defined as can-space-before

e After characters defined as can-space-after

In other cases, no space is inserted between consecutive ideographic
characters. Therefore, if a text line contains only ideographic characters, it
may not be justified to the right margin.

7.4.2 The tbl Command

The t bl command preprocesses table formatting commands within blocks
delimited by the . TS and . TE macros. The t bl command handles multibyte
characters that can occur in text of languages other than English.

The t bl command is frequently used with the neqn equation formatting
preprocessor to filter input passed to the nr of f command. In such cases,
specify t bl first to minimize the volume of data passed through the pipes.
For example:

% cd /usr/usr/share/ja_JP.deckanji/man/ manl
%tbl od.1 | negn | nroff -Tlpr -man -h | \
| pr -Pryprinter

When printing Asian language text, you must use printer hardware that
supports the language.

7.4.3 The man Command

The man command can handle multibyte characters in reference page files.
By default, the man command automatically searches for reference pages

in the/ usr/ shar e/ | ocal e_nane/ man directory before searching the
/usr/share/ man and / usr/ | ocal / man directories. Therefore, if the LANG
environment variable is set to an installed locale and if reference page
translations are available for that locale, the man command automatically
displays reference pages in the appropriate language.

7-8 Programming Considerations for International Applications



In addition, the man command automatically applies codeset conversion
(assuming the availability of appropriate converters) when reference page
translations for a particular language are encoded in a codeset that does not
match the codeset of the user’s locale. See man(1) for information about
redefining the man command search path and for more details about codeset
conversion.

7.5 Converting Data Files from One Codeset to Another

Each locale is based on a specific codeset. Therefore, when an application
uses a file whose data is coded in one codeset and runs in a locale based on
another codeset, character interpretation may be meaningless. For example,
assume that a fictional language includes a character named “quo,” which
is encoded as \031 in one codeset and \042 in another codeset. If the “quo”
character is stored in a data file as \031, the application that reads data
from that file should be running in the locale based on the same codeset.
Otherwise, \031 identifies a character other than “quo.”

Users, the applications they run, or both may need to set the process
environment to a particular locale and use a data file created with a codeset
different from the one on which the locale is based. The data file in question
might be appropriate for a given language and in a codeset different from
the user’s locale for one of the following reasons:

¢ The data file might have been created on another vendor’s system by
using a locale based on a vendor-specific codeset. For example, the
integration of PCs into the enterprise computing environment increases
the likelihood that UNIX users need to process files for which the data
encoding is in MS-DOS code page format.

e The locale could be one of several UNIX locales that support the same
Asian language, such as Japanese. Asian languages are typically
supported by a variety of locales, each based on a different codeset.

¢ The data file could be in Unicode, UCS-4, UTF-8, UTF-16, or UTF-32
format. If characters in this file are to be printed or displayed on the
screen, they might need to be converted to encodings for which fonts
are available.

You can convert a data file from one codeset to another by using the i conv
command or the i conv_open( ),iconv(),andiconv_cl ose( ) functions.
For example, the following command reads data in the account s_|I ocal
file, which is encoded in the SJI S codeset; converts the data to the eucJP
codeset; and appends the results to the account s_central file:

%iconv -f SJIS -t eucJP accounts_|local \
>> accounts_central

Programming Considerations for International Applications 7-9



Many commands and utilities, such as the man command and
internationalized print filters, use the i conv( ) functions and associated
converters to perform codeset conversion on the user’s behalf.

The i conv command and associated functions can use either an algorithmic
converter or a table converter to convert data. Algorithmic converters,

if installed on your system, reside in the /usr/1i b/ nl s/l oc/iconv
directory; this directory is the one searched first for a converter. This
directory also contains an alias file (i conv. al i as) that maps different
name strings for the same converter to the converter as named on the
system. Table converters, if installed on your system, reside in the
{usr/1ib/nls/loc/iconvTabl e directory. The value of the LOCPATH
variable, if defined, overrides the command’s default search path.

The i conv command assumes that a converter name uses the following
format:

from codeset to-codeset

For the preceding example, the i conv command would search for and use
the/usr/lib/nls/loc/iconv/SJI'S eucJP converter.

Also consider operating system support for codeset conversion of the Hong
Kong Supplementary Character Set (HKSCS). HKSCS is not a locale or
character set name, but is used to provide a common language interface for
electronic communication and data exchange conducted in Chinese. The
characters in HKSCS are only for computer use. On Tru64 UNIX, HKSCS
is used as the name for extended Big-5 encoding that contains HKSCS
characters, and support is limited to code conversion between HKSCS and
Unicode. Using the i conv command, codeset conversion with HKSCS would
be specified as one of the following:

e UTF-16_HKSCS or HKSCS_UTF- 16
e UCS- 4_HKSCS or HKSCS_UCS- 4
e UTF- 8_HKSCS or HKSCS_UTF- 8

See HKSCS(5) for more information on the Hong Kong Supplementary
Character Set.

Table 7-1 specifies the codeset conversions that the operating system
supports for English language data. Tables with codeset conversions
supported for their respective Asian languages are described in the following
manuals:

e Technical Reference for Using Chinese Features
e Technical Reference for Using Japanese Features

e Technical Reference for Using Korean Features

7-10 Programming Considerations for International Applications



e  Technical Reference for Using Thai Features

For detailed information about the i conv command, see i conv(3) and

i conv_i ntro(5). For information on functions that programs can

use to perform codeset conversion, see i conv_open(3), i conv(1), and

i conv_cl ose(3). You can find a list of all the codeset converters available
for a particular language in the reference page for that language.

Table 7-1: Supported Codeset Conversions for English

Codeset ASCII-GR  1S08859-1 1SO8859-1-GL 1SO8859-1-GR
ASCII-GR - Yes No No
IS08859-1 Yes - Yes Yes
IS08859-1-GL No Yes - No
IS08859-1-GR No Yes No -

7.6 Using Font Renderers in Chinese and Korean PostScript
Support

This section describes the use of font renderers in the creation of Motif
applications that support PostScript fonts in Chinese and Korean. See the
Using International Software manual for information on tuning cache size
for ideographic characters and customizing windows for local languages.

7.6.1 Using Font Renderers for Multibyte PostScript Fonts

The operating sytem includes font renderers that allow any X application to
use the PostScript fonts available for the Chinese and Korean languages.
The system administrator can set up font renderers for the following kinds
of fonts for use through the X Server or the font server:

¢ Double-Byte PostScript outline fonts
e UDC fonts

By installing the | OSWAKFR* * subset, you automatically enable font
rendering for the PostScript outline fonts.

7.6.1.1 Setting Up the Font Renderer for Double-Byte PostScript Fonts

You can set up the font renderer for Chinese and Korean PostScript fonts for
use either through the X server or the font server by editing the appropriate
configuration file.

¢ For the X server, the font renderer is automatically added at installation
time to the f ont _r ender er s list in the X server’s configuration file.

Programming Considerations for International Applications 7-11



e For a font server, you must manually add the following entry to the
render er s list in the font server’s configuration file:

renderers = other_renderer, other_renderer,...
i bf r_DECpscf. so; DECpscf Regi st er Font Fi | eFuncti ons

In addition, you must specify the paths for the PostScript font files in the
cat al ogue list in the same configuration file. Double-Byte PostScript
fonts for the Asian languages are available in the following directories:

/fusr/i18n/lib/X11/fonts/ KoreanPS
fusr/i18n/li b/ X11/fonts/ SChi nesePS
fusr/i18n/li b/ X11/fonts/ TChi nesePS

Each font in these directories has the following components:
— A Typel font header with the . pf a2 file name extension

This header file is the only file that must be listed in the f ont s. di r
file in the font directory.

— A data file with the . csdat a file name extension

— A binary metrics file with the . xaf mfile name extension

The renderer for Asian Double-Byte PostScript fonts uses its own
configuration file that specifies the following information:

e (Cache size (number of cache units)
e (Cache unit size
¢ File handler (names associated with font-rendering software)

e Default character (character that is printed in place of any character
for which there is no glyph)

The default pathname for this configuration file is / var/ X11/r en-
der er/ DECpscf _confi g; however, you can change this path by setting the
DECPSCF_CONFI G_PATH environment variable.

7.6.1.2 Setting Up the Font Renderer for UDC Fonts

The UDC font renderer accesses the UDC database directly to obtain font
glyphs. Therefore, X applications that use this renderer do not need to use
. pcf files generated by the cgen utility.

You can set up the UDC font renderer for use either through the X server
or the font server as follows:

e For the X server, the font renderer is automatically added at installation
time to the f ont _r ender er s list in the X server’s configuration file.

¢ For a font server, you must manually add the following entry to the
render er s list in the font server’s configuration file:

7-12 Programming Considerations for International Applications



renderers = other_renderer, other_renderer,...
I'i bf r_UDC. so; UDCRegi st er Font Fi | eFuncti ons

In addition, you must specify the path to the UDC database in the

cat al ogue list of the same configuration file. This path should be set to
the top directory for the UDC database. For example, / var /i 18n/ udc is
the correct path for a systemwide UDC database if the database was set
up in the default directory.

To process UDC characters in a particular language, the font renderer
also requires entries in the f ont s. di r file in the appropriate PostScript
font directory from the following list:

fusr/i18n/li b/ X11/fonts/ SChi nesePS
fusr/i18n/li b/ X11/fonts/ TChi nesePS

Edit the f ont s. di r file to specify virtual file names in the format

| ocal e_nane. udc followed by the corresponding XLFD names
registered for the codesets. Table 7-2 describes the XLFD entry that
corresponds to different Asian codesets.

Table 7-2: XLFD Registry Names for UDC Characters

Codeset XLFD Registry Name
dechanyu, eucTW DEC. CNS11643. 1986- UDC
bi g5 BI G5- UDC

dechanzi GB2312. 1980- UDC
deckanj i, sdeckanji, eucJP JI SX. UDC- 1

The following example entry is appropriate for the f ont s. di r file in the
{usr/i18n/1ib/X11/f onts/ TChi nesePS directory:
2

zh_TW dechanyu. udc -system decw n-normal -r--24-240-75- 75- m 24- DEC. CNS11643. 1986- UDC
zh_TW bi g5. udc - system decw n-nornal -r--24-240- 75- 75- m 24- Bl G5- UDC

7.6.1.3 Using the Font Renderer for TrueType Fonts

The operating system includes a font renderer
(/usr/shlib/X11/1ibfr_TrueType. so) that enables the use of TrueType
fonts. Currently, the operating system includes TrueType fonts only for
simplified Chinese. However, you can configure the font renderer to use
third-party TrueType fonts for additional languages if these are required by
applications used at your site. See Tr ueType(5X) for more information.

Programming Considerations for International Applications 7-13






A

Summary Tables of Worldwide Portability
Interfaces

This appendix lists and summarizes worldwide portability interfaces (WPI)
that are defined by Version 5 of the X/Open CAE specification for system
interfaces and headers (XSH). All these interfaces support the wide-character
data type. Tables in this appendix also list older ISO C functions that use
the char data type and therefore cannot perform character-by-character
processing in all languages. The reference pages (manpages) provide
detailed information for each interface. See st andar ds(5) for information

about compiling a program in the appropriate definition environment for
XSH Version 5.

A.1 Locale Announcement

Programs call the following function to use the appropriate locale (language,
territory, and codeset) at run time:

WPI Function Description

set | ocal e() Establishes localization data at run time.

A.2 Character Classification

The following character classification functions classify values according to
the codeset defined in the locale category LC_CTYPE.

WPI Function Older ISO C Description

Function
i swal nun( ) i sal nun( ) Tests if a character is alphanumeric.
i swal pha( ) i sal pha() Tests if a character is alphabetic.
iswentrl () iscntrl() Tests if a character is a control character.
i swdigit() isdigit() Tests if a character is a decimal digit

in the portable character set.

i swgr aph( ) i sgraph() Tests if a character is a graphic character.
i sw ower () i sl ower () Tests if a character is lowercase.
i swprint() isprint() Tests if a character is a printing character.

Summary Tables of Worldwide Portability Interfaces A-1



WPI Function Older ISO C Description
Function
i swpunct () i spunct () Tests if a character is a punctuation mark.
i swspace( ) i sspace( ) Tests if a character determines white
space in displayed text.
i swupper () i supper () Tests if a character is uppercase.
i swxdigit() isxdigit() Tests if a character is a hexadecimal digit

in the portable character set.

In addition to the functions for each character classification, the WPI
includes the following functions that provide a common interface to all
classification categories:

* wectype()
This function returns a value that corresponds to a character
classification.

e iswctype()
This function tests if a character has a certain property.

The WPI functions listed in the preceding table can be replaced by calls to
the wct ype( ) andi swct ype( ) functions described in the following table:

Call Using Classification Equivalent Call Using wctype() and iswctype()

Function

i swal nun(wc ) i swctype(we , wectype("al nun'))
i swal pha(wc ) i swctype(we , wctype("al pha"))
iswentrl (we) i swctype(we , wetype("cntrl™))
iswdigit(we) i swctype(we , wetype("digit"))
i swgraph(wc ) i swctype(we , wctype("graph"))
i swl ower (wc ) i swctype(we , wctype("lower"))
i swprint(wc) i swctype(we , wetype("print"))
i swpunct (wc ) i swctype(we , wctype("punct"))
i swspace(wc ) i swctype(we , wctype("space"))
i swupper (wc ) i swctype(we , wctype("upper"))
i swxdigit(we) i swctype(we , wetype("xdigit"))

In this table, the quoted literals in the call to wct ype( ) are the character
classes defined in the X/Open UNIX standard for Western European and
many Eastern European languages; however, a locale can define other
character classes. The Unicode standard defines character classes that do
not have class-specific functions, and a locale for an Asian language might

A-2 Summary Tables of Worldwide Portability Interfaces



define additional character classes to distinguish ideographic from phonetic
characters. You must use the wct ype( ) and i swct ype( ) functions to
test if a character belongs to a class when no class-specific function exists
for the test. See | ocal e(4) for details about character classes and testing
equivalence between classes defined in the XSH and the Unicode standards.

Also, the input value for i sw* () functions must be in the range of wide
characters defined for the current locale. If the input value is outside that
range, the result is undefined. For more information, see i swct ype(3).

Note

The wet ype( ) calls in the second column of the preceding table
illustrate only functional equivalence to the i swct ype( ) calls in
the first column of the table. In most programming applications,

i swctype( ) needs to execute multiple times for each execution
of wet ype( ) . In such cases, you would code calls in the second
column of the table as follows to achieve performance equivalence
to corresponding calls in the first column:

wet ype_t property_handl e;
W nt_t WC;
int yes_or _no;

property_handl e=wct ype("al num');
while (...) {

yes_or _no=i swctype(wc, property_handl e);

A.3 Case and Generic Property Conversion

Use the following case conversion functions to switch the case of a character
according to the codeset defined in the locale category LC_CTYPE:

Summary Tables of Worldwide Portability Interfaces A-3



WPI Function Older ISO C Description

Function
tow ower () tol ower () Converts a character to lowercase.
t owupper () t oupper () Converts a character to uppercase.

The WPI also includes the following functions to map and convert a character
according to properties defined in the current locale:

e wctrans()
This function maps a character to a property defined in the current locale.
e towctrans()

This function converts a character according to a property defined in the
current locale.

Currently, the only properties defined in operating system locales are
t oupper and t ol ower . The following example of using wct rans( ) and
t owct rans( ) performs the same conversion as t owupper () :

W nt_t fromwe, to wc;
wctrans_t conv_handl e;

conv_handl e=wctrans("t oupper");
while (...) {

to_wc=t owct rans(fromwc, conv_handl e);

A.4 Character Collation

The function in the following table sort strings according to rules specified in
the locale defined for the LC_COLLATE category:

A-4 Summary Tables of Worldwide Portability Interfaces



WPI Function  Older ISO C Description
Function

wescol | () strcoll () Collates character strings.

You can also use the wesxf rnm( ) and wescnp( ) functions, summarized in
Section A.11, to transform and then compare wide-character strings.

A.5 Access to Data That Varies According to Language and
Custom

The functions in the following table allow programs to retrieve data that is
language specific or country specific, as specified by the locale setting:

WPI Function Description

nl _langi nfo() A general-purpose function that retrieves language and
cultural data according to the locale setting.

strfmon() Formats a monetary value according to the locale setting.

| ocal econv( ) Returns information used to format numeric values
according to the locale setting.

A.6 Conversion and Format of Date/Time Values

The ctime( ) and ascti ne( ) functions do not have the flexibility needed
for language independence. The WPI therefore includes the following
interfaces to format date and time strings according to information provided
by the locale:

WPI Function Description

stritime() Formats a date and time string based on the specified format
string and according to the locale setting.

wesftinme() Formats a date and time string based on a specified format
string and according to the locale setting, then returns
the result in a wide-character array.

strptime() Converts a character string to a time value according
to a specified format string; reverses the operation
performed by strftime().

A.7 Printing and Scanning Text

The WPI extends definitions of the following ISO C functions to support
internationalization requirements. The WPI extensions are described after
the table that lists the functions.

Summary Tables of Worldwide Portability Interfaces A-5



WPI/ISO C Description

Function

fprintf() Prints formatted output to a file by using a vararg
parameter list.

fwprintf() Prints formatted wide characters to the specified output
stream by using a var ar g parameter list.

printf() Prints formatted output to the standard output stream
by using a var ar g parameter list.

sprintf() Formats one or more values and writes the output to a
character string by using a var ar g parameter list.

swprintf() Prints formatted wide characters to the specified address
by using a var ar g parameter list.

viprintf() Prints formatted output to a file by using a st darg
parameter list.

viwprintf() Prints formatted wide characters to the specified output
stream by using a st dar g parameter list.

vprintf() Prints formatted output to the standard output stream
by using a st dar g parameter list.

vsprintf() Formats a st dar g parameter list and writes the
output to a character string.

vswprintf() Prints formatted output to the specified address by
using a st dar g parameter list.

vwprintf() Prints formatted wide characters to the standard output
by using a st dar g parameter list.

wprintf() Prints formatted wide characters to the standard output
by using a var ar g parameter list.

fscanf () Converts formatted input from a file.

fwscanf () Converts formatted wide characters from the spec-
ified output stream.

scanf () Converts formatted input from the standard input stream.

sscanf () Converts formatted data from a character string.

swscanf () Converts formatted wide characters from the specified address.

wscanf () Converts formatted wide characters from the standard input.

The WPI extensions to the preceding functions include the following:

* %li gi t $ conversion specifier, which allows variation in the ordinal
position of the argument being printed. Such variation is frequently
necessary when text is translated into different languages.

A-6 Summary Tables of Worldwide Portability Interfaces



e Use of the decimal-point character as specified by the locale. This feature
affects e, E, f, g, and G conversions.

e Use of the thousands-grouping character specified by the locale.

e The Cand S conversion characters, which let you convert wide characters
and wide-character strings, respectively.

A.8 Number Conversion

Functions in the following table convert strings to various numeric formats:

WPI Function Older ISO C Function Description

west od( ) strtod() Converts the initial portion of a string to
a double-precision floating-point number.

west ol () strtol () Converts the initial portion of a string
to a long integer number.

westoul () strtoul () Converts the initial portion of a string to

an unsigned long integer number.

A.9 Conversion of Multibyte and Wide-Character Values

To allow an application to get data from or write data to external files (as
multibyte data) and process it internally (as wide-character data), the
WPI defines the functions listed in the following table to convert between
multibyte data and wide-character data:

WPI Function

Description

bt owc( )

nbl en( )

nbrlen()

Converts a single byte from multibyte character format
to wide-character format.

Determines the number of bytes in a character according to
the locale setting. You should modify all string manipulation
statements, which assume the size of a character is always 1
byte, to call this function. The following statement updates a
pointer to the next character, cp:

cp++;

The following example incorporates the nbl en( ) function

to ensure language-independent operation at run time; the
MB_CUR_MAX variable is defined by the locale to be the maximum
number of bytes that any character can occupy:

cp += nmblen(cp, MB_CUR MAX);

Performs the same operation as nmbl en( ) but can be restarted
for use with locales that include shift-state encoding. 2

Summary Tables of Worldwide Portability Interfaces A-7



WPI Function

Description

nbrt owe( )

nmbsrtowcs( )

nbst owcs( )
nbt owc( )
west onbs( )
wer t onb( )

wesrtombs()

wet ob( )

wet onb( )

Performs the same operation as nbt owc( ) but can be restarted
for use with locales that include shift-state encoding. 2

Performs the same operation as mbst owcs( ) but can be
restarted for use with locales that include shift-state encoding. 2

Converts a multibyte character string to a wide-character string.
Converts a multibyte character to a wide character.
Converts a wide-character string to a multibyte character string.

Performs the same operation as wct onb( ) but can be restarted
for use with locales that include shift-state encoding. 2

Performs the same operation as wcst ombs( ) but can be
restarted for use with locales that include shift-state encoding. 2

Converts a wide character to a single byte in multibyte
character format, if possible.

Converts a wide character to a multibyte character.

2 The operating system does not currently provide locales that use shift-state encoding.

Note

You do not always need to explicitly handle the conversion to
and from file code (multibyte data). Functions for printing
and scanning text (discussed in Section A.7) include the %5
and %C format specifiers that automatically handle multibyte
to wide-character conversion. The WPI alternatives for older
ISO C input/output functions (see Section A.10) also perform
multibyte/wide-character conversions automatically.

A.10 Input and Output

The WPI functions listed in the following table automatically convert
between file code (usually multibyte encoding) and process code
(wide-character encoding) for text input and output operations:

WPI Function Older I1ISO C Description
Function
fgetwe() fgetc() Gets a character from an input stream
and advances the file position pointer.
fgetws() fgets() Gets a string from an input stream.
fputwe() fputc() Writes a character to an output stream.
fputws() fputs() Writes a string to an output stream.

A-8 Summary Tables of Worldwide Portability Interfaces



WPI Function Older ISO C Description
Function

fwide() None Sets stream orientation to byte or wide
character. This function is not useful
within current locale environments. 2

getwe( ) getc() Gets a character from an input stream.

getwchar () getchar () Gets a character from the standard
input stream.

None gets() Use fgetws( ).

mbsi nit () None Determines, for locales that use
shift-state encoding, whether a multibyte
string is in the initial conversion state. 2

putwe( ) putc() Writes a character to an output stream.

put wchar () getchar () Writes a character to the standard
output stream.

None puts() Use fputws( ).

unget we( ) unget c( ) Pushes a character back onto an

input stream.

2 The operating system does not currently provide locales that use shift-state encoding.

A.11 String Handling

The WPI defines alternatives and additions to ISO C byte-oriented functions
to support manipulation of character strings. The WPI functions support
both single-byte and multibyte characters.

String Concatenation:

WPI Function Older I1ISO C Description
Function
wescat () strcat () Appends a copy of a string to the
end of another string.
wesncat () strncat () Similar to the functions of wescat (),

except that the number of characters to be
appended is limited by the n parameter.

String Searching:

WPI Function

Older ISO C Function

Description

weschr ()

strchr()

Locates the first occurrence of a
character in a string.

Summary Tables of Worldwide Portability Interfaces A-9



WPI Function

Older ISO C Function

Description

wesrchr ()

wespbr k()

wesstr ()

wescespn( )

wesspn( )

strrchr()

strpbrk()

strstr()

strespn()

strspn()

Locates the last occurrence of a
character in a string.

Locates the first occurrence of
any characters from one string
in another string.

Finds a substring. The wesstr ()
function also supercedes the weswes( )
function included in versions of the XSH
specification earlier than Issue 5.

Returns the number of initial elements
of one string that are all characters not
included in a second string.

Returns the number of initial elements
of one string that are all characters
included in a second string.

String Copying:

WPI Function Older ISO C Function Description
wescpy( ) strepy() Copies a string.
wesnepy( ) strncpy( ) Similar to the st rcpy( ) function, except

that the number of characters to be
copied is limited by the n parameter.

String Comparison:

WPI Function Older ISO C Function Description
wescnp( ) strenp() Compares two strings.
wesncnp( ) strncnp( ) Similar to the st r cnp( ) function, except

that the number of characters to be
compared is limited by the n parameter.

String Length Determination:

WPI Function

Older ISO C Function

Description

wesl en()

strlen()

Determines the number of characters
in a string.

A-10 Summary Tables of Worldwide Portability Interfaces



String Decomposition:

WPI Function Older ISO C Function Description

west ok( ) strtok() Decomposes a string into a series of
tokens, each delimited by a character
from another string.

Printing Position Determination:

WPI Function Older ISO C Function Description

weswi dt h( ) None Determines the number of printing
positions required for a number of
characters in a string.

wewi dt h( ) None Determines the number of printing
positions required for a character.

Performing Memory Operations on Strings:

WPI Function Older ISO C Function  Description

wrencpy () menmcpy( ) Copies characters from one buffer
to another.

wrenchr () menchr () Searches a buffer for the specified
character.

wrencnp( ) mencnp( ) Compares the specified number of

characters in two buffers.

wrenmove( ) menmove( ) Copies characters from one buffer to
another in a nondestructive manner.

wrenset () nmenset () Copies the specified character into
the specified number of locations in
a destination buffer.

A.12 Codeset Conversion

The WPI provides codeset conversion capabilities through a set of functions
for program use or the i conv command for interactive use. In the program
or at the command level, specify the source and target codesets and the name
of a language text file to be converted. The codesets define a conversion
stream through which the language text is passed.

The following table summarizes the three functions you use for codeset
conversion. These functions reside in the | i bi conv. a library.

Summary Tables of Worldwide Portability Interfaces A-11



WPI Function Older ISO C Function Description

i conv_open() None Initializes a conversion stream
by identifying the source and the
target codesets.

iconv_close() None Closes the conversion stream.

iconv() None Converts an input string encoded in
the source codeset to an output string
encoded in the target codeset.

See Section 7.5 for a description of the i conv command and the types of
conversions that are supported. See i conv(3) for information on the i conv
library and program use.

A-12 Summary Tables of Worldwide Portability Interfaces



B

Setting Up and Using User-Defined
Character Databases

Japanese, Chinese, and Korean can include user-defined characters (UDCs)
that supplement the characters defined in the standard character sets for
Asian languages. This appendix explains how to create UDCs and the files
that support UDC input and display.

You create UDCs with the cedi t editor, discussed in Section B.1. You use
the cgen command, discussed in Section B.2, to create font, collation, and
other support files for UDCs. X applications can also obtain fonts for UDCs
directly from a UDC database by using font renderers. See Section 7.6 for
information about font renderers.

Note

The system default sort command does not access the collation
files created for UDCs. Use the asort command to access

these files. See asort (1) and the Using International Software
manual for information on sorting strings that may contain these
characters.

There are setup operations that you need to complete before terminals or
workstation monitors can display UDCs.

The at t y driver includes a mechanism to allow on-demand loading of files
associated with UDCs. You enable this mechanism and change some of its
default parameter values with the st ty command. Table B-1 describes the
stty command options that you use with on-demand loading.

Table B—1: The stty Options for On-Demand Loading of UDC Support Files
stty Option Description

odl Enables the Software On-Demand Loading
(SoftODL) service.
-odl Disables the Software On-Demand Loading

(SoftODL) service.

Setting Up and Using User-Defined Character Databases B-1



Table B—1: The stty Options for On-Demand Loading of UDC Support

Files (cont.)

stty Option

Description

odl si ze size

odl type type

odl db path

odl r eset

odl al |

Sets the maximum size of the ODL buffer. This
size should be the same as a terminal’s font-cache
size. By default, si ze is 256 characters.

Sets the ODL buffer replacement strategy. Valid
values for t ype are fi f o (first-in-first-out) and
I ru (least recently used)

Sets the path to the database and other files that
support UDCs.

If this path is not specified, either the system default
files are used or, if users are allowed to create personal
UDC databases, the process default files are used.

Default pathnames for various databases are specified
in the / var /i 18n/ conf/ cp_di r s file, which is
described in Section 7.2. The cp_di r s file specifies,
for example, that the systemwide defaults are
/var/i18n/udc and/var/i 18n/ odl , and that the
process defaults are SHOVE/ . udc and $HOVE/ . odl .
Use the odl db option when you want to change the
default odl file.

Resets the ODL service and clears the
internal ODL buffers.

Displays the current settings for the ODL service.

Figure B-1 demonstrates the relationship among components mentioned in
Table B—1 and the SoftODL service.

B-2 Setting Up and Using User-Defined Character Databases



Figure B—1: Components That Support User-Defined Characters

cedit # ubDC cgen ODL
Database db

SoftoDL tty

ZK-0930U-Al

B.1 Creating User-Defined Characters

The UDC editor (invoked with the cedi t command) is a cur ses application
for managing attributes of user-defined characters. The character attributes
that you usually manipulate with the cedi t application include the
following:

e Symbolic names

e Styles and sizes (16x18, 24x24, 32x32, and 40x40) for bitmap fonts
¢ Codeset values

e Collating values

¢ Input key sequences for supported input methods

e (Character classes

Each user-defined character has a character attribute record, which is stored
in a character attribute UDC database. A UDC database can be systemwide
or private. There can be only one systemwide database that all users share.
However, any user can have a private database in addition to a systemwide
database.

The following command invokes the UDC editor:
% cedi t

With no options, the cedi t command uses the default database. If you
are superuser, the default database is / var/i 18n/ udc. If you are not a

Setting Up and Using User-Defined Character Databases B-3



privileged user, the default database is $HOVE/ . udc. You can encounter

a number of problems when using UDCs that are maintained in private
databases. For example, users who exchange data with characters that rely
on attributes defined in private databases must maintain those databases
in common. To prevent these problems, make sure that a privileged user
maintains all UDCs in a systemwide database. The cedi t command has a
number of options and an argument, which are described in Table B-2.

Table B—2: The cedit Command Options

cedit Options and Description
Arguments
-c old_db Converts a Japanese ULTRIX f edi t font file or

an Asian ULTRIX character attribute database file
to the format used by cedi t.

cur _db Specifies the path of a character attribute database
(to override the default path).

-h Displays cedi t syntax.

-r ref _db Specifies the path of the reference character attribute

database (to override the default path).
This database provides a model for the UDC database on
which you are working with the cedi t utility.

The Reference Database item on the cedi t File menu is
an alternative to specifying the - r option on the cedi t
command line.

The cedi t command returns an error message if your locale setting is not
supported for creation of UDCs. Locales supported for UDCs include those
for the Chinese and Japanese languages. After you invoke cedi t, you can
use the Options menu on the cedi t user interface screen to change the
language of user interface messages and help text back to English.

Note

The dt t er mterminal emulator does not support cedi t functions
and an attempt to use cedi t functions under dt t er mmay hang
the UDC Manager utility. Use the dxt er mterminal emulator,
which does support cedi t functions.

The following sections discuss the screens, menu items, editing modes, and
function keys of the cedi t utility.

B-4 Setting Up and Using User-Defined Character Databases



B.1.1 Working on the cedit User Interface Screen

When the LANG variable is set to a supported locale, such as zh_TW bi g5,
the cedi t command displays the user interface screen (Figure B-2).

Figure B—2: The cedit User Interface Screen

File Edit Commands Options Print

Edit Delete Show Commands Options Help

Defaults

Language : Chinese(Taiwan)
Codeset : bigh

7K-092411-Al

The user interface screen is divided into the following areas:
e Menu area

This area contains a menu bar. When you choose and activate a
particular menu, its items appear in the portion of the menu area below
the menu bar.

e Status area

Below the menu area is the status area, which displays the current
language and codeset.

¢ Input and message area

The bottom two lines of the screen accept user input and display warning
or informational messages.

To see items on the menu, press the key for the letter that is underlined in
the title of the menu. Alternatively, you can use the four arrow keys on
the keyboard to choose a menu and then press either the Return key or
the space bar.

Setting Up and Using User-Defined Character Databases B-5



Menu items are displayed in one of the following states:

Active

An active item is one that you can choose. Active items appear with one
letter highlighted and underlined. You can press the key for that letter
to start the function represented by the item.

Inactive

You cannot choose inactive items. Inactive items do not contain
underlined and highlighted letters.

Chosen

If you press the down arrow key rather than the key for a highlighted
letter, you can choose items without starting the functions they
represent. The currently chosen item is in reverse video.

Activated

You activate an item when you press the key for a highlighted letter or
when you press the Return key or the space bar after choosing the item
with the down arrow key. Activating an item usually displays a pop-up
menu, causes a particular function to start, or both. Activating an item
that is followed by the characters >> displays a cascade menu.

To return to a higher menu level without activating items, press Ctrl/x.

Menus on the user interface screen provide the following options for
managing user-defined characters and their attributes:

File
Use the File menu to peform the following tasks:

— Save changes made to the current character

Cancel changes made to the current character

— Change the reference character attribute database
— Exit from the cedi t program

Edit

Use the Edit menu to choose a character and create or change its font
glyph, codeset value, collating value, input key sequence, class, or name.

Section B.1.2 discusses editing a character’s font glyph. For information
on changing codeset or collating values and input key sequences, see the
description of the Show, Commands, and Options menus in this section
or see cedi t (1).

Delete

Use the Delete menu to delete a character or some of its attributes.

B-6 Setting Up and Using User-Defined Character Databases



Show

Use the Show menu to display attributes of the character you are
working on or the status of databases (current character attribute
database or reference character attribute database).

The cedi t utility keeps track of a character through its attribute record.
This record contains fields to identify the following attributes:

Character number (unique for each character in the UDC database)

Codeset values (one for each codeset supported by a particular
language and territory combination)

Font styles and sizes

Collation values (one for each collation sequence supported by the
language)

Input key sequences (one for each input method supported by the
language)

Class identifiers (reserved for future use)

Character mnemonic (reserved for future use)

Some variation exists among Asian codesets in support for UDC
attributes. For example, you cannot define an input key sequence
through cedi t for a Japanese user-defined character. For Chinese, you
can define an input key sequence for use only with the DEC Hanyu
codeset and TsangChi and QuickTsangChi input modes.

Commands

Use the Commands menu to perform the following tasks:

Copy character records from the reference character attribute
database to the current character attribute database or, within the
current character attribute database, copy records from one range
of characters to another.

You can implement the copy operation without confirmation (No
Confirm), confirm the copy operation for each character in the range
(Confirm All), or confirm the copy operation only for characters that
will overwrite other characters (Confirm Conflict).

List all characters currently defined in the current character
attribute database for the current language and codeset setting.

Scale the character’s font from one size to another.

After you define a character in one font size, you can use this option
to make the character available in other sizes. The scaling algorithm
is a simple one, so you might need to do some manual editing to
refine font glyphs after they are scaled.

Setting Up and Using User-Defined Character Databases B-7



Options

Use the Options menu to change the current setting for language and
codeset that is applied to your work on UDCs. You can also independently
set the language of messages and help text in the cedi t user interface.
By default, the language of the cedi t user interface is the same as the
locale setting in effect when you invoked cedi t .

Help

Use the Help menu to display introductory text for cedi t functions.
Help is also available for menu items through the Help key when this
key is provided on your keyboard or, for workstation users, enabled by
your terminal setting. In other words, you can first choose a menu item
with the arrow keys and then press the Help key for a short description
of the chosen item.

B.1.2 Editing Font Glyphs

To create or change the font glyph of a user-defined character, you must
invoke the font editing screen of cedi t as follows:

1.

Choose a character by choosing the Character item from the Edit menu.

The cedi t program prompts you to enter the hexadecimal code value
(without the \ x prefix) for the character to be edited. The range of valid
codes for UDC characters is defined in a set of configuration files. When
more than one codeset is supported for the language and territory of
your current locale, cedi t attempts to supply values for the additional
codesets so the character can be used with all the associated locales.

If cedi t cannot determine the character’s value in other codesets, you
can change the codeset setting through the Options menu and then
explicitly specify the character’s encoding in the additional codeset.

In general, define UDCs to have values that can be mapped to other
codesets supported for the language. For more information on codes for
UDCs in specific Asian languages, see the following language-specific
manuals:

e Technical Reference for Using Chinese Features
e Technical Reference for Using Japanese Features
e Technical Reference for Using Korean Features

e Technical Reference for Using Thai Features

These manuals are available from the programming
bookshelf of the operating system documentation Web site
(http://ww. t ru64uni x. conpaq. cont docs/ ).

B-8 Setting Up and Using User-Defined Character Databases



The cedi t editor first searches your current UDC database for the code
that you enter. If a character with that code is not found in the UDC
database, the editor searches the current reference character database.

2. Choose the Font item from the Edit menu to see options for font
style/size.

3. Choose one of the font style/size options.

If you are creating a font glyph for use in a Motif application, the
available size options may not be appropriate for the window area where
you intend to use the font. In this case, choose the smallest size option
that will accommodate both dimensions of your font.

The cedi t editor then displays the full-screen font editor interface
(Figure B-3).

Figure B—3: The cedit Font Editing Screen

File Edit Commands Options Print
CEDIT Font Editor

Reference:

Codeval: FEFE

Codeset: bigh

Font Style: normal
Font Size : 24x24

Edit Mode :
Cursor: ON Type: LETTER
Paste : OVERWRITE Wrap: OFF

ZK-0925U-Al

The cedi t font editing screen has the following windows:

¢ The large window on the right side of the screen is where you edit the
UDC font glyph. To edit, use the cursor movements and editing functions
that cedi t supports.

Each dot on the editing window represents one pixel.

¢ The three small windows immediately under the Reference title display
other font glyphs that you can refer to while editing the current one. You

Setting Up and Using User-Defined Character Databases B-9



use the cedi t Refer function to control which font glyphs appear in
these windows.

¢ The small window under the three reference windows is called the
display window. The display window contains the font glyph you are
editing in its actual size. The display window does not automatically
reflect changes you make in the editing window. You must press the KP.
key to update the font glyph in the display window.

Note

There are some hardware restrictions regarding font glyph
displays in the small windows.

Font glyph displays in the reference and display windows are
enabled only on local language terminals that support the
Dynamic Replacement Character Set (DRCS) function.

On terminal emulation windows, the font glyph in the Display
window does not appear in its actual size.

Fonts created in the editing window for use with system software are
processed to occupy the size dimensions you chose before the editor interface
screen appeared.

You can also create a font for use with Motif applications and whose
dimensions are smaller than those chosen. In this case, you confine your
editing operations to a rectangle that originates at the upper-left corner of
the editing window and has dimensions smaller than the available editing
space (Figure B—4).

The UDC font converter that supports a Motif application considers the
upper-left corner of the editing window as the font origin, generates
dimensions needed to encompass the glyph based on this origin, and discards
unused space outside these dimensions. This utility also allows you to
explicitly specify the size dimensions for the compiled font glyphs.

B-10 Setting Up and Using User-Defined Character Databases



Figure B—4: Interpretation of Font Editing Screen for Sizing a Font

Origin

~35Q —® T

cedit
Workspace

Required
Font Area

Width

ZK-0932U-Al

All functions in cedi t are bound to keys; in other words, you press a key to
invoke a function. Press either the PF2 or the Help key to see a diagram of
how keys are bound to editing functions. Because of differences in keypad
design from system to system, your on-line diagram may vary from the
one described in this section. The cedi t editing screen has the following
editing modes:

e Cursor modes

Using the arrow keys to move the cursor does not affect the pixel state.
However, when you use keypad keys to move the cursor, the following
list describes how Cursor modes affect the pixel state:

On: Turns on the pixel under the cursor.
Off: Sets the pixel under the cursor off.
On/Off: Toggles the pixel under the cursor.

You can also toggle the pixel under the cursor with any movement
by pressing the KP5 key.

Move: Moves the cursor without changing the pixel state.

e Paste modes

Paste modes control the pixel operation when you perform the paste
function.

Overlay: Sets a pixel on if its corresponding pixel in the paste buffer
is on.

Overwrite: Sets the pixel to the state of the corresponding pixel in
the paste buffer.

¢ Type modes

Setting Up and Using User-Defined Character Databases B-11



Type modes determine whether the margin of one pixel width is
maintained around the character.

— Body: Allows you to edit the entire font glyph area.

— Letter: Prevents you from editing the pixel value of the boundary
area. Under this mode, you cannot set pixels to the on state when at
the boundary of the editing window.

e  Wrap modes
Wrap modes enable or disable cursor wrapping.

— On: Causes the cursor to wrap to the leftmost pixel when you move
the cursor beyond the rightmost pixel in the editing area.

Similar wrapping behavior occurs when you move the cursor beyond
the leftmost, uppermost, and lowermost pixels in the editing area.

— Off: Causes the bell to ring and stops cursor movement on attempts
to move the cursor beyond the leftmost, rightmost, uppermost, and
lowermost pixels in the editing area.

The cedi t font editor uses four buffers to store bitmap data. Some of these
buffers are used by editing functions, which are discussed following the
buffer descriptions.

e Edit buffer
This is the buffer whose contents normally appear in the editing window.
e Use buffer

This buffer is associated with the Use function and contains a font glyph
you retrieved from a UDC database or one of the reference windows.

¢ (Cut-and-Paste buffer

Use this buffer when pasting bitmap data in the editing window. The
bitmap data being pasted is copied either from a Use buffer or the Edit
buffer (if you are copying something from one section of the editing
window to another).

e Undo buffer

This buffer contains the changes made during the last edit operation and
is used by the cedi t Undo function to delete those changes.

When you are working on windows in the font-editing screen, you invoke
editing functions by using keystrokes or, in some cases, through a pop-up
menu that appears when you press the Do key. The following functions
are available on the pop-up menu:

e Scale

B-12 Setting Up and Using User-Defined Character Databases



This function lets you scale the current font glyph to another size
supported by the system. The SCALE function does not have a keystroke
alternative and is available only on the pop-up menu.

e Use

This function retrieves a font glyph from a UDC database or from one
of the reference windows.

e Refer

This function saves a font glyph copied from a UDC database into one
of the reference windows.

Figure B-5 describes the keypad keymaps for invoking different editing
functions. The keypad functions, along with the letter keys used for drawing,
are described in the following tables.

Figure B-5: Keymap for cedit Functions

ile Edit Commands Options Print

Keypads Function Diagram
GOLD key functions are shown in [geisieds

+
IUL Corner IIE (('JI‘I'IF'I‘
Up U&R | Type Mo. \

+
| L Side J| Center | I\

| \ Toggle \ nght | Wrap Mo.
+ +

BShift L.JIShift D.[IShift R.|EElLL (nlnvl\ Bottom \LE Corne
| Left | Down | Right D&l | Down
pommmmmmm mmmmmmm pommtmem tomommm-o e 4+ Exit

\I
| Display |

ress the key you want help on (<SPACE> to exit help)

ZK-0926U-Al

Setting Up and Using User-Defined Character Databases B-13



Table B—3: Keys for Miscellaneous Font Editing Functions

Key Description

Help or PF2 Describes which keys are bound to which editing functions.
Press Help along with another key in the diagram for more
information on a particular key’s editing function.

PF1 Toggles the GOLD state, a word processing term for a key
with alternate functions. Some keypad keys represent
more than one function; in this case, one of those functions
is invoked by pressing PF1 and then the other keypad key.

KP. Displays the font glyph in actual size on the display window.

GOLD KP. Clears the font glyph displayed in the editing window.

Uoru Undoes the previous operation.

Ctrl/L Redraws the screen.

Ctrl/z Suspends the cedi t program.

Do Displays the pop-up menu for invoking SCALE,

USE, and REFER functions.
Enter Saves changes and exits from the font editor.
GOLD Enter Quits the font editor without saving changes.

Table B—4: Keys for cedit Mode Switching

Key Description

PF3 Toggles Cursor mode.
PF4 Toggles Paste mode.
KP- Toggles Type mode.
KP. Toggles Wrap mode.

Table B-5: Keys for Fine Control of Cursor Movement

Key

Description

Up-arrow
Down-arrow
Left-arrow

Right-arrow

Moves the cursor up.

Moves the cursor down.

Moves the cursor left.

Moves the cursor right.

Depending on Cursor mode, moves the cursor up and left.
Depending on Cursor mode, moves the cursor up.
Depending on Cursor mode, moves the cursor up and right.

Depending on Cursor mode, moves the cursor left.

B-14 Setting Up and Using User-Defined Character Databases



Table B-5: Keys for Fine Control of Cursor Movement (cont.)

Key Description

KP6 Depending on Cursor mode, moves the cursor right.

KP1 Depending on Cursor mode, moves the cursor down and left.
KP2 Depending on Cursor mode, moves the cursor down.

KP3 Depending on Cursor mode, moves the cursor down and right.
KP5 Toggles the pixel under the cursor without moving the cursor.

Table B—6: Keys for Moving Cursor to Window Areas

Key? Description

GOLD KP7 Moves the cursor to the upper-left corner.
GOLD KP8 Moves the cursor to the top row.

GOLD KP9 Moves the cursor to the upper-right corner.
GOLD KP4 Moves the cursor to the leftmost column.
GOLD KP5 Moves the cursor to the center of the window.
GOLD KP6 Moves the cursor to the rightmost column.
GOLD KP1 Moves the cursor to the lower-left corner.
GOLD KP2 Moves the cursor to the bottom row.

GOLD KP3 Moves the cursor to the lower-right corner.

2 The PF1 key toggles the GOLD state.

Table B—7: Keys for Drawing Font Glyphs

Key Description

Lorl Draws a line connecting two selected points.

Corc Draws a circle centered at a selected point.

r Draws an open rectangle in a selected area.

R Draws a solid rectangle in a selected area.

e Draws an open ellipse in a selected area.

E Draws a solid ellipse in a selected area.

X or x Mirrors the font glyph along the horizontal axis (X axis).
Yory Mirrors the font glyph along the vertical axis (Y axis).

/ Mirrors the font glyph along the 45-degree diagonal axis.
\ Mirrors the font glyph along the 135-degree diagonal axis.

Setting Up and Using User-Defined Character Databases

B-15



Table B—7: Keys for Drawing Font Glyphs (cont.)

Key Description
Forf Depending on cursor mode, fills an area.
Tort Inverts the state of all pixels.

Table B—8: Keys for Editing Font Glyphs

Key? Description

KPO Changes the display in the Edit window from the font glyph
in the Edit buffer to the font glyph in the Use buffer.

GOLD KP. Displays font glyphs in the reference windows.

GOLD KPO Changes the display in the Edit window from the font glyph
in the Use buffer to the font glyph in the Edit buffer.

Select Starts or cancels a selected area.

Insert Inserts the contents of the CUT-AND-PASTE buffer.

Remove Cuts a selected area to the CUT-AND-PASTE buffer.

GOLD Remove Copies a selected area to the CUT-AND-PASTE buffer.
GOLD Up arrow Shifts the font glyph up by one line.

GOLD Down Shifts the font glyph down by one line.
arrow

GOLD Left arrow Shifts the font glyph left by one column.

GOLD Right Shifts the font glyph right by one column.
arrow

2 The PF1 key toggles the GOLD state.

The following summary discusses the recommended method to accomplish
common cedi t operations. Keep in mind that there is often more than one
way to perform the same editing operation.

¢ Drawing the glyph
Use the KP1 to KP9 keys to draw and navigate in the editing window.
These keys are bound to cursor movement. With the exception of KP5,
you can think of these keys as points on a compass; each point represents
the direction in which drawing occurs. Drawing is affected by cursor

mode, which is controlled using the KP3 key. When cursor mode is set to
Move, the drawing keys move the cursor without drawing anything.

Use the KP5 key (in the middle of the compass) to toggle the pixel state
on or off.

Cursor movement is affected by Type and Wrap modes, which are bound
to the KP- and KP, keys, respectively.

B-16 Setting Up and Using User-Defined Character Databases



Editing the glyph

Use the drawing keys to change pixels one at a time. Several operations
(cut, paste, and copy) affect pixels as a block. Use the Select function to
define a select area. Then use Cut or Copy to move the block of pixels
to a paste buffer. You can then move the cursor to another position and
use the Paste function to move the pixels in the paste buffer to the new
position. The paste operation is affected by the Paste mode setting.

To move the entire glyph in a particular direction, you can press the
GOLD or PF1 key and the appropriate arrow key.

To undo the last editing operation, press the U key.
Displaying the glyph in actual size

If you are working on an Asian terminal rather than in a terminal
emulation window, you can press the KP. key to display the glyph in
actual size. This operation is not supported in a desktop windows
environment.

Creating multiple prototypes of a glyph

You can create several versions of a glyph, store the versions in reference
windows, and later choose the one you like best. Press the KP. key to
move a glyph from the editing window to a reference window. The three
reference windows are used in round-robin fashion, from left to right.

The Refer function available from the pop-up menu allows you to move
an existing glyph from the current or reference database to a reference
window.

Replacing the glyph in the editing window with another glyph

The Use function moves a glyph into the editing window. The Use
function that is bound to the keypad copies a glyph from another
codepoint in the current or reference database. The Use function that is
accessed from the pop-up menu moves a glyph from one of the reference
windows into the editing window.

The Use function saves a copy of the current glyph in the editing window
to the Use buffer. You can retrieve the glyph from this buffer by pressing
the KPO key. Unlike the contents of the Undo buffer, the glyph in the
Use buffer is available across editing operations.

Creating multiple sizes of glyphs

The Scale option on the cedi t main menu creates multiple sizes of all
glyphs in the database with the currently selected size. The Scale option
available for the font-editing screen creates multiple sizes of only the
character currently being edited. If you are working with an existing
UDC database, use the Scale option from the font-editing screen rather
than the cedi t main menu. When scaling is implemented from the

Setting Up and Using User-Defined Character Databases B-17



cedi t main menu and affects an entire database, the operation undoes
any manual refinements that may have been made to fonts after scaling.

® Quitting the font-editing screen

Press the Enter key to save your edits and to exit from the font editing
screen.

Press the GOLD or PF2 and Enter keys to quit without saving your edits.

After you create a font glyph, you need to specify its name, input key
sequence, collating value, and, optionally, the name of the class to which the
character belongs. Use the Edit menu items on the cedi t user interface
screen to specify these attributes.

B.2 Creating UDC Support Files That System Software
Uses

The character attributes stored in the UDC database must be directed to
specific kinds of files to meet the needs of different kinds of system software.
Terminal driver software and the asort utility, for example, must recognize
user-defined character attributes but cannot directly access information in
UDC databases. Therefore, after you create or change character attributes
in a UDC database, you use the cgen command to create the following
support files:

e Font files that the SoftODL (Software On-Demand Loading) service uses
¢ Font files that can be directly loaded to the device

¢ Collating value tables for sorting characters

e Files of input key sequences for UDCs

e Font files that X and Motif applications use

The following command creates some of these files for the UDC database
in ~wang/ . udc:

% cgen -odl -pre -col -iks ~wang/.udc

If you enter the cgen command without specifying options, statistical
information about the specified database is displayed. If you are a
nonprivileged user and you enter the command without specifying a UDC
database, the private user database is used. If you are a superuser and

you enter the command without specifying a UDC database, the system
database is used. In other words, the database specification in the preceding
example would not be needed if the user who entered the command was
logged on as wang.

B-18 Setting Up and Using User-Defined Character Databases



Table B-9 describes cgen command options. In this table, bdf format
stands for Bitmap Distribution Format and pcf format stands for Portable
Compiled Format. For information on these formats, see bdf t opcf (1X).

Table B-9: The cgen Command Options
Option Description

- bdf Creates . bdf (Bitmap Distribution Format) files needed
for X and DECwindows Motif applications.

- col Creates collating value tables. You must use the asort
command, rather than the sort command, if you want
to apply these tables during sort operations.

-dpi 75| 100 Sets resolution to either 75 or 100 when creating . bdf
and . pcf files with the - bdf and - pcf options.

-fprop property Sets the font property when creating . bdf and . pcf
files with the - bdf and - pcf options.

-i ks Creates the input key sequence file.

-ner ge font_pattern Invokes the f ont convert er command to merge

the UDC fonts with an existing . pcf font file that
matches the specified f ont _pat t er n (for example,

' *-140-*jisx0208*" ).

If you specify the - mer ge option, you must also specify
the - pcf and - si ze options. The output . pcf file is
in the form r egi stry_wi dt h_ hei ght . pcf, where
regi stry is the font registry field of the specified font
file.

- 0si z width- xheight Specifies the font size for bdf output format.
The font size in bdf format may be different from the
size of the font defined in the UDC database. The font
sizes that the cedi t command supports are limited; the
- 0si z option lets you override these size restrictions
both in the . bdf file and the . pcf file generated from
the . bdf file.

If the size parameters specified for the - 0si z option are
smaller than the size parameters specified for the - si ze
option, only the upper-left portion of the UDC font glyph
is used. If the size parameters specified for the - osi z
option are larger than the size parameters specified for
the - si ze option, the lower-right portion of the resulting
font glyph is filled with OFF pixels.

Setting Up and Using User-Defined Character Databases B-19



Table B-9: The cgen Command Options (cont.)

Option Description

- pcf Invokes the bdf t opcf command to create the . pcf files
needed for X and Motif applications.
When you use this option, the cgen command also
invokes the nkf ont di r and xset commands to make
the fonts known to the font server and available to
applications.

-pre Creates preload font files.

Preload font files are files that are directly and
completely loaded to a terminal and some printers.
Preload files are not useful when UDC databases are
large because of the limited memory available on most
devices. On-Demand Loading (ODL), which uses ODL
font files, is an alternative to using preload font files.

- odl Creates ODL font files.

The terminal driver handles loading of fonts from ODL
font files on an incremental basis, according to need and
available memory.

-wi n userfont Generates a font file with the name user f ont , which
can be copied to a Windows Version 3.1 or Windows NT
Version 3.5 system. You must also specify the - si ze
flag because only one size can apply to the specified
file. Supported codesets for font files created by this
option are bi g5 (for Chinese Windows systems), SJI S
(for Japanese Windows systems), and deckor ean (for
Korean Windows systems).

B.3 Processing UDC Fonts for Use with X11 or Motif
Applications

The preload font files created with the - pr e option of the cgen utility
must be converted to BDF (Bitmap Distribution Format) or PCF (Portable
Compiled Format) for use by X11 or Motif applications. The f ont convert er
command performs this conversion and can do one of the following with
the converted output:

e C(Create independent pcf and bdf font files, which you must then install
on your workstation for use by an application.

e Merge the fonts into an existing (pcf ) font file.
The remainder of this section discusses the f ont convert er command and
its options. The cgen command has comparable options; in other words, you

can perform f ont convert er operations indirectly by using similar options
on the cgen command line.

B-20 Setting Up and Using User-Defined Character Databases



B.3.1 Using fontconverter Command Options

The following example demonstrates the simplest form of the

f ont convert er command, which produces a default name for the output
files. Assume for this example and the following discussion that the locale is
set to a Japanese locale when the command is entered and that 24x24 was
specified in the cedi t editor when the font glyphs were created.

% fontconverter \

-font -jdecw screen-nedi umr-normal --24-240-75- 75- m 240-j i sx0208- kanji 11 \
nmy_font.pre

The preceding command converts fonts in the my_f ont s. pre file.
By default, the command creates the JI SX. UDC 24 24. pcf and
JI SX. UDC_24_24. bdf font files.

The default base name for the output font files varies according to language,
as follows:

e Japanese: JI SX. UDC

e Hanyu: DEC. CNS. UDC

e Hanzi: GB. UDC

Font width and height are automatically appended to the base name in

the names of output font files. The base name is also used in the XLFD (X
Logical Font Description) as the registry name. For the fonts to be available

to applications, perform one of the following actions with the compiled (pcf )
fonts:

¢ In the directory where the fonts reside, enter the following commands:

% / usr/ bi n/ X11/ nkf ont di r
% / usr/ bin/ X11/ xset +fp ‘ pwd’
% / usr/ bi n/ X11/ xset fp rehash

These commands make the fonts available for testing until a server
restart or system shutdown occurs.

Alternately, you can include the - pcf option on the cgen command line
to execute the f ont convert er and nkf ont di r commands.

¢ To make the fonts available on a more permanent basis (that is, after a
server restart or system shutdown), use the following commands:
1. Copy the pcf fonts to an existing font directory, such as
fusr/il1l8n/usr/lib/X11l/fonts/decw n/100dpi :

% cp JI SX. UDC_24_24. pcf \
/usr/i18n/usr/1ib/X11/fonts/decw n/100dpi

2. Change to that directory:
% cd /usr/i18n/usr/1ib/X11/fonts/decw n/100dpi

Setting Up and Using User-Defined Character Databases B-21



3. Enter the nkf ont di r command at that location:
% /usr/ bin/ X11/ nkfontdir

4. Enter the following command xset command:

% / usr/ bi n/ X11/ xset fp rehash

Table B—10 describes options of the f ont convert er command. With the
exception of - pr el oad, the options are listed in command-line order. See
Section B.3.2 for examples that use these options.

Table B—10: Options and Arguments of the fontconverter Command

Argument or Option

Description

- mer ge

-udc base_name

Specifies that command output be merged with
an existing font file.

See also the entry for the - f ont option.

Specifies the font width.

Use this option when the fonts are created with
a width smaller than the one specified for the
cedi t font editing window.

Specifies the font height.

Use this option when the fonts are created with
a height smaller than the one specified for the
cedi t font editing window.

Specifies the base file name of the output UDC
font file.

Use this option when you are creating a
standalone output file (you are not merging
output into an existing file) and you do not want
your output file to have a default base name.

B-22 Setting Up and Using User-Defined Character Databases



Table B—10: Options and Arguments of the fontconverter Command (cont.)

Argument or Option Description

-font reference_font Specifies a reference font. The reference font
is the name of a font that is available on the
current display. Use the x| sf ont s command
(see x| sf ont s(1X)) to determine which fonts
are available.
If you use the - f ont option with the - ner ge
option, r ef er ence_f ont indicates the font with
which converted font glyphs are merged.

If you use the - f ont option without the - ner ge
option, the header of r ef erence_f ont is

used as a reference for generating the header
of the standalone output file. Information in
ref erence_f ont is also used to determine
default characters in the standalone output file.
A default character is a glyph (usually a square)
that appears when the font does not contain any
glyphs for a specified code.

-prel oad preload_font Specifies the input file (created by the cgen- pre
command).
Use this option when you want to specify the
prel oad_f ont argument at an arbitrary position
in the f ont convert er command line. You can
omit - pr el oad when placing pr el oad_f ont at
the end of the command line.

B.3.2 Controlling Output File Format
X and Motif applications require loadable fonts in PCF format.

If you do not use the - mer ge option, the f ont convert er command creates
standalone font files in both PCF and BDF format. When you specify the

- mer ge option, the command merges converted fonts with the standard
PCF font specified by the - f ont option and creates a standalone file only
in PCF format.

When you merge UDC fonts with standard fonts, you can use the combined
file with all Motif applications.

When you create independent font files, you can use the fonts with
applications that explicitly load the file. If the font registry is one of the UDC
registries for a particular locale, you can also use the files with standard
system applications.

Note that f ont convert er processing time is longer when you merge fonts
into an existing font file as compared to when you create independent files.

Setting Up and Using User-Defined Character Databases B-23



The following example of the f ont convert er command:
e Converts preload format fonts in the udc_f ont . pr e file to PCF format

e Merges the converted output with the standard font - j decw scr een-
medi um r - nor mal - - 24- 240- 75- 75- m 240-j i sx0208-kanj i 11

¢ Generates the JI SX0208- Kanj i 11_24_24. pcf output file, which
combines the standard and new fonts

% fontconverter -merge -font \
-j decw screen- medi um r - nor nal - - 24- 240- 75- 75- m 240-j i sx0208- kanj i 11 \
udc_font.pre

The following example of the f ont convert er command:

e C(Creates thedeckanji.udc_24 24. bdf and deck-
anji.udc_24_24. pcf files

¢ Obtains the default characters and most header information for
these files from the standard font - j decw scr een- medi um r -
nor mal - - 24- 24- 240- 75- 75- m 240-j i sx0208- kanj i 11

e Sets the font registry field to deckanj i . udc

% font converter -udc deckanji.udc -font \
-j decw screen- medi um r - nor nal - - 24- 240- 75- 75- m 240-j i sx0208- kanj i 11 \
udc_font.pre

B-24 Setting Up and Using User-Defined Character Databases



C

Using DECterm Localization Features in
Programs

This appendix discusses programming features for local language support
that are available in the DECterm terminal emulator.

C.1 Drawing Ruled Lines in a DECterm Window

Programming manuals for video terminals discuss how you use ANSI escape
sequences to perform operations, such as inserting and deleting characters,
inserting and removing blank lines, and requesting character display

in double height and width. Because a DECterm window is a terminal
emulator, these escape sequences also apply to programs that display text
and graphics in a DECterm window.

Operating system enhancements for Asian languages include additional
escape sequences for drawing and removing ruled lines in a specified area of
a DECterm window. These additional escape sequences allow applications
to construct tables and diagrams.

The following sections describe the escape sequences that draw and erase
lines according to pattern and area parameters.

C.1.1 Drawing Ruled Lines in a Pattern

The escape sequence identified by the mnemonic DECDRLBR draws ruled
lines on the boundaries of a rectangular area according to a specified pattern.
The DECDRLBR format is as follows:

CSl P1;Px;PIx;Py;Ply ,r
where:
¢ P1 indicates the pattern of drawing ruled lines

P1 indicates whether lines are drawn on all sides of the rectangular area,
on the left and right sides only, on the top and bottom only, and so forth.

¢ Px indicates the absolute position of the start point in columns
e PI x indicates the width of the area in columns
¢ Py indicates the absolute position of the start point in rows

¢ Ply indicates the height of the area in rows

Using DECterm Localization Features in Programs C-1



When the DECDRLBR escape sequence is received from an application,
DECterm software draws ruled lines on one or more of the boundaries of
the area between the coordinates( Px, Py ) and( Px+Pl x-1, Py+Ply -1)

according to the pattern specified in P1. Consider the following example:
csl 15; 1; 5; 1,; 2, r

The preceding escape sequence causes the DECterm software to draw the
ruled lines shown in Figure C-1.

Figure C-1: Drawing Ruled Lines with the DECDRLBR Sequence

FETTITII T H TTFTITTT TP AP B T T R T T L L L L L i r T L TT (T T T

ZK-0928U-Al

DECterm software draws ruled lines that are one pixel in width. When the
display scrolls, these lines scroll in the same manner as text.

Figure C-2 and the table following the figure describe the bit pattern to
which the DECDRLBR parameters map.

C-2 Using DECterm Localization Features in Programs



Figure C-2: Bit Pattern for DECDRLBR Parameters

Bt 7 6 5 4 3 21 0
— Bottom
> Right
> Top
> Left
ZK-0931U-Al
Bit Bit Value Description
Bit 0 1 Draws line on the bottom boundary
Bit 1 2 Draws line on the right boundary
Bit 2 4 Draws line on the top boundary
Bit 3 8 Draws line on the left boundary

The DECDRLBR parameters are more completely described in the following
list:

Pattern of ruled lines( P1)

The pattern is a bitmask that controls how the ruled lines are drawn on
the boundaries of the area. Ruled lines are drawn according to whether
the bits for the boundaries are set on or off. For example, ruled lines are
drawn on all boundaries if P1 is set to 15 and on the top and bottom
boundary if P1 is set to 5, for example:

Boundary : Bottom Right Top Left

P1 = Bit0 + Bitl + Bit2 + Bit3
P1 =1 + 2 + 4 + 8 = 15
P1 =1 + 4 = 5

Absolute position of the start point( Px, Py )

Px is the starting column position and Py is the starting row position. If
you omit these parameters or explicitly set them to 0 (zero), the starting
position is at column 1 and row 1. In other words, the upper left corner of
the rectangle is at the coordinates (1,1).

Size of the area( Pl x, Pl y )

Using DECterm Localization Features in Programs C-3



Pl x is the width of the area in columns and Pl y is the height of the area
in rows. If you omit these parameters or explicitly set them to 0 (zero),
the area is 1 column in width and 1 row in height.

C.1.2 Erasing Ruled Lines in a Pattern

The DECERLBRP escape sequence erases ruled lines on the boundaries of a
rectangular area according to a specified pattern. The DECERLBRP format
is as follows:

CSl P1;Px;Plx;Ply;Py,s
where:
¢ P1 indicates the pattern of drawing ruled lines

P1 indicates whether lines are drawn on all sides of the rectangular area,
on the left and right sides only, on the top and bottom only, and so forth.

¢ Px indicates the absolute position of the start point in columns
e PI x indicates the width of the area in columns
¢ Py indicates the absolute position of the start point in rows

¢ Ply indicates the height of the area in rows

C.1.3 Erasing All Ruled Lines in an Area

The escape sequence DECERLBRA erases all ruled lines in a rectangular area,
not just those drawn on the area boundaries. The DECERLBRA format is as
follows:

CSI P1;Px;PIx;Py;Ply ,t
where:

¢ P1 determines whether the area encompasses the entire display screen
or a specific section of the screen

When P1 is the value 1, DECterm software erases all ruled lines on the
screen. In this case, the Px, Pl x, Py, and Pl y parameters are ignored.
When P1 is the value 2, DECterm software erases all ruled lines within
a rectangular area defined by the Px, Pl x, Py, and Pl y parameters.
When P1 is omitted or explicitly set to 0 (zero), DECterm software erases
all ruled lines on the screen (the same result as for the value 1, which

is the default).

¢ Px indicates the absolute position of the start point in columns
e PI x indicates the width of the area in columns
¢ Py indicates the absolute position of the start point in rows

¢ Ply indicates the height of the area in rows

C-4 Using DECterm Localization Features in Programs



C.1.4 Interaction of Ruled Lines and Other DECterm Escape
Sequences

Table C-1 describes the effect of using standard DECterm escape sequences
when ruled lines are drawn on the screen.

Table C-1: Behavior of Standard Escape Sequences with Ruled Lines

Mnemonic Description Effect on Ruled Lines
DECDWL, Display as These escape sequences have no effect on ruled lines, whose
DECDHLT, double width  width is always one pixel. Furthermore, the parameter units
DECDHLB or double height for the escape sequences controlling ruled line display are
always specified in terms of single width and single height
columns and rows, even when the escape sequences are used
with those that double the height and width of text.
GSM Modify graphic These escape sequences have no effect on ruled lines, whose
size width is always one pixel. Comments made in the entry for
DECDW., DECDHLT, and DECDHLB also apply to GSM
ED, EL, ECH Erase display, These escape sequences do not erase ruled lines, only the
erase line, and characters within the boundaries of the ruled lines. For
erase character example:
ABCDEF | abcdef '
123456 | 123456
DL Delete line This escape sequence erases both lines of characters and
ruled lines at the active position of deletion. The text lines
and accompanying ruled lines that follow the deletion point
scroll up the screen. For example:
ABCDEF | abcdef ' | 123456 | 123456
123456 | 123456
IL Insert line

This escape sequence causes insertion of blank lines at the
active position. It causes both text and accompanying ruled
lines currently at the active position to scroll down the
screen. For example:

ABCDEF | abcdef
123456 | 123456

' ABCDEF | abcdef
123456 | 123456

Using DECterm Localization Features in Programs C-5



Table C-1: Behavior of Standard Escape Sequences with Ruled Lines (cont.)

Mnemonic Description Effect on Ruled Lines

DCH Delete character This escape sequence does not delete ruled lines. The
following example demonstrates the deletion of four
characters at the third column position:

' ABabcd | ef
123456 | 123456

I CH Insert character This escape sequence causes blank spaces to be inserted
at the active position but has no effect on ruled lines.
The following example demonstrates the insertion of four
characters at the third column position:

ABCDEF | abcdef
123456 | 123456

ABCDEF | abcdef » AB CDEFab | cdef
123456 | 123456 123456 | 123456
I RM Invoke Insert/replace mode has no effect on ruled lines. The
insert/replace  following example demonstrates the insertion of the
mode characters w, x, y, and z at the third column position and the

replacement of the character f with s:

ABCDEF | abcdef
123456 | 123456

' ABwxyz | CDEFab [icdes
123456 | 123456

DECCOLM Invoke column Ruled lines are erased with accompanying text
mode when column mode is in effect.

RIS, DECSTR Reset to initial The RI S sequence erases all ruled lines displayed on the
state and soft  screen while the DECSTR sequence does not. The Clear
terminal, invoke Display option on the DECterm Commands Menu erases all
reset SETUP ruled lines whereas the Reset Terminal option does not.
mode

C.1.5 Determining DECterm Support for Ruled Lines

The feature that allows applications to draw ruled lines is enabled only when
a DECterm window is emulating a terminal type that supports this feature.
Your application can check for device support by requesting primary device
attributes from DECterm software.

VT terminals and DECterm software return a primary device attributes
report on request from applications. If the extension value 43 is included in
this report, drawing ruled lines is enabled for the device. This extension is

C-6 Using DECterm Localization Features in Programs



valid at a level-2 video display or higher. For example, if a DECterm window
is emulating a VT'382-J terminal, which is the Japanese version of a VT382,

the primary device attributes are generated as follows:
cs ?63; 1, 2; 4, 5; 6; 7; 8; 10; 15; 43 c

Applications can send either the CSI ¢ or CSI 0 c escape sequence to a VT
terminal or DECterm software to request a device attributes report.

C.2 DECterm Programming Restrictions

This section discusses DECterm software restrictions with respect to
terminal programming features discussed in hardware manuals.

C.2.1 Downline Loadable Characters

DECterm software does not support the downline loadable characters that
are used for preloading and on-demand loading of terminals. The software
ignores the escape sequence for these characters.

C.2.2 DRCS Characters

DECterm software supports only the Standard Character Set (SCS)
component of the DIGITAL Replacement Character Set (DRCS). When
DECterm software receives the SCS characters, it searches the X Window
server for the fonts with XLFD named as - *- dec- dr cs and treats them as
a soft character set. The software ignores the DECDLD control string sent
by the terminal programming application.

Using DECterm Localization Features in Programs C-7






D

Sample Locale Source Files

This appendix contains complete source files for the sample locale discussed

in Chapter 6.

D.1 Character Map (charmap) Source File

This section contains the | SC8859- 1. crrap file used for the

fr_FR 1 S08859- 1@xanpl e locale.
#

#
#
#

<code_set _nanme>
<nb_cur _max>
<nb_cur _m n>
<escape_char >
<coment _char >

CHARMAP

Charmap for | SO 8859-1 codeset

"1 S0C8859- 1"

1
1
\

#

# Portable characters and ot her standard

# <control characters

<NUL>

<SOH>

<STX>

<ETX>

<EOT>

<ENQ>

<ACK>

<BEL>

<alert>
<backspace>

<t ab>
<new i ne>
<vertical -tab>
<formfeed>
<carriage-return>
<SSO

<S| >

\ x00
\ x01
\ x02
\ x03
\ x04
\ x05
\ x06
\ x07
\ x07
\ x08
\ x09
\ x0a
\ x0b
\ x0c
\ x0d
\ x0e
\ xOf

Sample Locale Source Files D-1



<DLE> \ x10

<DC1> \x11
<DC2> \ x12
<DC3> \ x13
<DC4> \ x14
<NAK> \ x15
<SYN> \x16
<ETB> \ x17
<CAN> \ x18
<EM> \ x19
<SuB> \ xla
<ESC> \ x1b
<| S4> \ x1c
<l S3> \ x1d
<l S2> \ xle
<l S1> \ x1f
<SP> \ x20
<space> \ x20
<excl amati on- mar k> \x21
<quot at i on- mar k> \ x22
<nunber - si gn> \ x23
<dol | ar - si gn> \ x24
<per cent - si gn> \ x25
<anper sand> \ x26
<apost rophe> \ x27
<l eft - par ent hesi s> \ x28
<ri ght - parent hesi s> \ x29
<asterisk> \ x2a
<pl us- si gn> \ x2b
<conma> \ x2¢
<hyphen> \ x2d
<hyphen- m nus> \ x2d
<peri od> \ x2e
<full-stop> \ x2e
<sl ash> \ x2f
<sol i dus> \ x2f
<zer o> \ x30
<one> \ x31
<t wo> \ x32
<t hree> \ x33
<f our > \ x34
<five> \ x35
<si x> \ x36
<seven> \ x37
<ei ght > \ x38
<ni ne> \ x39
<col on> \ x3a
<seni col on> \ x3b
<l ess-t han-si gn> \ x3c
<equal s-si gn> \ x3d

D-2 Sample Locale Source Files



<greater -t han-si gn>
<questi on- mar k>
<conmerci al - at >
<A>

<B>

<C

<D>

<BE>

<F>

<G

<H>

<| >

<J>

<K>

<L>

<M>

<N\>

<>

<p>

<Q

<R>

<S>

<T>

<>

<\/>

<Wp

<>

<Y>

<7>

<l eft-squar e- br acket >
<backsl ash>
<reverse-sol i dus>
<ri ght - squar e- br acket >
<circunfl ex>
<circunfl ex-accent >
<under scor e>

<l owIli ne>

<gr ave- accent >
<a>

<b>

<c>

<d>

<e>

<f>

<g>

<h>

<i>

<j >

<k>

<| >

\ x3e
\ x3f
\ x40
\ x41
\ x42
\ x43
\ x44
\ x45
\ x46
\ x47
\ x48
\ x49
\ x4a
\ x4b
\ x4c
\ x4d
\ x4e
\ x4f
\ x50
\ x51
\ x52
\ x53
\ x54
\ x55
\ x56
\ x57
\ x58
\ x59
\ x5a
\ x5b
\ x5¢
\ x5¢
\ x5d
\ x5e
\ x5e
\ x5f
\ x5f
\ x60
\ x61
\ x62
\ x63
\ x64
\ x65
\ X66
\ X67
\ x68
\ x69
\ x6a
\ x6b
\ x6¢

Sample Locale Source Files D-3



<ne

<n>

<o0>

<p>

<q>

<r >

<s>

<t>

<u>

<v>

<w>

<>

<y>

<z>

<l eft-brace>

<l eft-curly-bracket>
<vertical -1ine>
<right-brace>
<right-curly-bracket>

<tilde>
<DEL>
#

# Extended control characters
# (nanes taken from | SO 6429)
#

<PAD>
<HOP>
<BPH>
<NBH>
<l ND>
<NEL>
<SSA>
<ESA>
<HTS>
<HTJ>
<VTS>
<PLD>
<PLU>
<RI >
<SS2>
<SS3>
<DCS>
<PU1>
<pPuU2>
<STS>
<CCH>
<M\
<SPA>

D-4 Sample Locale Source Files

\ x6d
\ x6e
\ x6f
\ x70
\x71
\ x72
\ x73
\ x74
\ X75
\ X76
\ x77
\ x78
\ X79
\ x7a
\ x7b
\ x7b
\ x7c
\ x7d
\ x7d
\ x7e
\ x7f

\ x80
\ x81
\ x82
\ x83
\ x84
\ x85
\ x86
\ x87
\ x88
\ x89
\ x8a
\ x8b
\ x8¢c
\ x8d
\ x8e
\ x8f
\ x90
\ x91
\ x92
\ x93
\ x94
\ x95
\ x96



<EPA>
<SOS>
<SECl >
<SCl >
<CS| >
<ST>

<CsC>
<PM>

<APC>

#

# OQther graphic characters

#

<nobr eakspace>

<i nverted-excl anati on- mar k>

<cent >

<sterling>
<pound>
<currency>

<yen>

<br oken- bar >
<section>

<di ar esi s>

<di aeresi s>
<copyri ght >

<f eni ni ne>
<guill enot -1 eft >
<not >

<dash>
<regi st ered>
<macr on>

<degree>

<ring>

<pl us- m nus>
<superscri pt -t wo>
<superscript-three>
<acut e>

<mu>

<m cr o>
<par agr aph>

<dot >

<cedil I a>
<superscri pt - one>
<mascul i ne>

<gui |l l enot -ri ght >
<one-quarter>
<one- hal f >

<t hree-quarters>

\ x97
\ x98
\ x99
\ x9a
\ x9b
\ x9c
\ x9d
\ x9e
\ xof

\ xa0
\ xal
\ xa2
\ xa3
\ xa3
\ xa4
\ xab
\ xa6
\ xa7
\ xa8
\ xa8
\ xa9
\ xaa
\ xab
\ xac
\ xad
\ xae
\ xaf
\ xb0
\ xb0
\ xbl
\ xb2
\ xb3
\ xb4
\ xb5
\ xb5
\ xb6
\ xb7
\ xb8
\ xb9
\ xba
\ xbb
\ xbc
\ xbd
\ xbe

Sample Locale Source Files D-5



<i nverted- questi on-mar k> \ xbf

<A-grave> \ xc0
<A- acut e> \xcl
<A-circunfl ex> \ xc2
<A-til de> \ xc3
<A-di aer esi s> \ xc4
<A-ring> \ xc5
<AE- | i gat ure> \ xc6
<C-cedill a> \ xc7
<E- grave> \ xc8
<E- acut e> \ xc9
<E-circunfl ex> \ xca
<E- di aeresi s> \ xcb
<l -grave> \ xcc
<l -acute> \ xcd
<l -circunfl ex> \ xce
<| -di aeresi s> \ xcf
<ETH i cel andi c> \ xdO
<N-tilde> \ xd1
<O grave> \ xd2
<O acut e> \ xd3
<O-circunfl ex> \ xd4
<O-tilde> \ xd5
<O di aeresi s> \ xd6
<mul tiplication> \ xd7
<O sl ash> \ xd8
<U-grave> \ xd9
<U- acut e> \ xda
<U-circunfl ex> \ xdb
<U-di aer esi s> \ xdc
<Y-acut e> \ xdd
<THORN-i cel andi c> \ xde
<s-shar p> \ xdf
<a-grave> \ xe0
<a- acut e> \ xel
<a-circunfl ex> \ xe2
<a-tilde> \ xe3
<a- di aeresi s> \ xe4d
<a-ring> \ xe5
<ae-|igature> \ xe6
<c-cedill a> \ xe7
<e-grave> \ xe8
<e- acut e> \ xe9
<e-circunfl ex> \ xea
<e-di aer esi s> \ xeb
<i-grave> \ xec
<i -acute> \ xed
<i-circunflex> \ xee
<i -di aeresi s> \ xef
<et h-i cel andi c> \xfO

D-6 Sample Locale Source Files



<n-til de> \xf1l

<o-grave> \ xf 2
<0- acut e> \ xf3
<o-circunfl ex> \xf4
<o-til de> \ xf5
<o- di aer esi s> \ xf 6
<di vi si on> \ xf7
<o- sl ash> \ xf 8
<u- grave> \xf9
<u- acut e> \ xfa
<u-circunfl ex> \xfb
<u- di aeresi s> \xfc
<y-acut e> \ xfd
<t horn-i cel andi c> \ xfe
<y-di aeresi s> \ xff
END CHARMAP

D.2 Locale Definition Source File

This section contains the f r _FR. | SO8859- 1@xanpl e. src file used in
the examples in Chapter 6.

# Local e Source for fr_FR (French in France) locale

B
LC_CTYPE
B

upper <A>; <B>; <C; <D>; <E>; <F>; <G; <H>; <I >; <J>; <K>; <L>; <Mp>; \
<N>; <O>; <P>; <@; <R>; <S>; <T>; <U>; <V>; <Wp; <X>; <Y>; <Z>; \
<A-grave>;\
<A-circunflex>;\
<AE-1igature>;\
<C-cedilla>;\
<E- grave>;\
<E-acut e>;\
<E-circunflex>;\
<E-di aeresi s>;\
<l-circunflex>;\
<l -di aeresis>;\
<O-circunflex>;\
<U- grave>;\
<U-circunflex>;\
<U-di aer esi s>

lower <a>; <b>; <c>; <d>; <e>; <f >; <g>; <h>; <i >; <j >; <k>; <I| >; <np; \
<n>; <0>; <pP>; <g>; <r >; <S>; <t >; <U>; <V>; <KW <X>; <y>; <z>; \
<a-grave>;\
<a-circunflex>;\
<ae-ligature>;\
<c-cedilla>;\
<e-grave>;\
<e-acute>;\
<e-circunflex>;\
<e-di aeresis>;\

Sample Locale Source Files D-7



<i-circunflex>;\
<i -di aeresis>;\
<o-circunflex>;\
<u- grave>;\
<u-circunflex>;\
<u- di aer esi s>

space <tab>; <newl i ne>; <vertical -tab>; <formfeed>;\
<carriage-return> <space>

cntrl  <NUL>; <SOH>; <STX>; <ETX>; <EOT>; <ENQ>; <ACK>; \
<al ert >; <backspace>; <t ab>; <newl i ne>; <vertical -t ab>;\
<form f eed>; <carri age-return>;\
<SO>; <S8l >; <DLE>; <DC1>; <DC2>; <DC3>; <DC4>; <NAK>; <SYN>; \
<ETB>; <CAN>; <EM>; <SUB>; <ESC>; <I S4>; <| S3>; <I S2>;\
<| S1>; <DEL>; \
<PAD>; <HOP>; <BPH>; <NBH>; <I ND>; <NEL>; <SSA>; <ESA>; \
<HTS>; <HTJ>; <VTS>; <PLD>; <PLU>; <RI >; <SS2>; <SS3>; \
<DCS>; <PU1>; <PU2>; <STS>; <CCH>; <MAb; <SPA>; <EPA>: \
<SCS>; <SECl >; <SCl >; <CSl >; <ST>; <0SC>; <PM>; <APC>

graph <excl amati on- mar k>; <quot at i on- mar k>; <nunber - si gn>; \
<dol I ar - si gn>; <per cent - si gn>; <anper sand>; <apost r ophe>; \
<| ef t - par ent hesi s>; <ri ght - par ent hesi s>; <ast eri sk>; <pl us-si gn>; \
<comma>; <hyphen>; <peri od>; <sl ash>; \
<zer 0>; <one>; <t wo>; <t hr ee>; <f our >; <f i ve>; <si x>; <seven>; <ei ght >; <ni ne>; \
<col on>; <seni col on>; <| ess-t han- si gn>; <equal s- si gn>; \
<gr eat er - t han- si gn>; <quest i on- mar k>; <conmer ci al - at >; \
<A>; <B>; <C>; <D>; <E>; <F>; <G>; <H>; <I >; <J>; <K>; <L>; <Mp; \
<N>; <O>; <P>; <@; <R>; <S>; <T>; <U>; <V>; <Wp; <X>; <Y>; <Z>; \
<l ef t - squar e- br acket >; <backsl ash>; <ri ght - squar e- br acket >; \
<ci rcunf| ex>; <under scor e>; <gr ave- accent >; \
<a>; <b>; <c>; <d>; <e>; <f >; <g>; <h>; <i >; <j >; <k>; <I| >; <np; \
<n>; <0>; <pP>; <g>; <r >; <S>; <t >; <U>; <V>; <KW <X>; <y>; <z>; \
<l eft-brace>; <vertical -1ine>; <right-brace>;<til de>;\
<i nverted-excl amati on- mar k>; <cent >; <st erl i ng>; <currency>; <yen>; \
<br oken- bar >; <sect i on>; <di aer esi s>; <copyri ght >; <f em ni ne>; \
<gui | | enot - | ef t >; <not >; <dash>; <r egi st er ed>; <macr on>; \
<degr ee>; <pl us- m nus>; <super scri pt -t wo>; <superscript-three>;\
<acut e>; <mu>; <par agr aph>; <dot >; <cedi | | a>; <super scri pt - one>; \
<mascul i ne>; <gui | | enot - ri ght >; <one- quart er >; <one- hal f >; \
<t hree- quarters>; <i nvert ed- questi on-mark>;\
<A- grave>; <A-acut e>; <A-ci rcunfl ex>; <A-til de>; <A-di aeresi s>;\
<A-ring>; <AE-1i gature>; <C- cedil | a>; <E- gr ave>; <E- acut e>; <E-ci rcunf| ex>; \
<E- di aeresi s>; <l - grave>; <l -acut e>; <l -ci rcunf | ex>; <l - di aeresi s>; \
<ETH-i cel andi c>; <N-ti | de>; <O grave>; <O acut e>; <O-ci rcunfl ex>; <O til de>;\
<O di aeresi s>; <mul tiplication>; <O sl ash>; <U- grave>; <U-acut e>; \
<U-ci rcunfl ex>; <U- di aer esi s>; <Y-acut e>; <THORN- i cel andi c>; <s- shar p>; \
<a- grave>; <a- acut e>; <a-ci rcunfl ex>; <a-til de>; <a- di aeresi s>;\
<a-ring>; <ae-ligature>; <c-cedill a>; <e-grave>; <e-acut e>; <e-ci rcunfl ex>;\
<e-di aeresi s>; <i -grave>; <i -acut e>; <i -ci rcunfl ex>; <i - di aeresi s>;\
<et h-icel andi c>; <n-ti | de>; <o- gr ave>; <o0- acut e>; <o- ci rcunfl ex>; <o-til de>;\
<o- di aer esi s>; <di vi si on>; <o- sl ash>; <u- grave>; <u- acut e>; \
<u- ci rcunf | ex>; <u-di aer esi s>; <y-acut e>; <t horn-i cel andi c>; <y- di aer esi s>

print <excl amati on-mar k>; <quot ati on- mar k>; <nunber - si gn>; \
<dol I ar - si gn>; <per cent - si gn>; <anper sand>; <apost r ophe>; \
<| ef t - par ent hesi s>; <ri ght - par ent hesi s>; <ast eri sk>; <pl us-si gn>; \
<comma>; <hyphen>; <peri od>; <sl ash>; \
<zer 0>; <one>; <t wo>; <t hr ee>; <f our >; <f i ve>; <si x>; <seven>; <ei ght >; <ni ne>; \
<col on>; <seni col on>; <| ess-t han- si gn>; <equal s- si gn>; \
<great er - t han- si gn>; <quest i on- mar k>; <conmer ci al - at >; \
<A>; <B>; <C>; <D>; <B>; <F>; <G; <H>; <I >; <J>; <K>; <L>; <M>; \
<N>; <O>; <P>; <@; <R>; <S>; <T>; <U>; <V>; <Wp; <X>; <Y>; <Z>; \

D-8 Sample Locale Source Files



punct

digit

xdi gi t

bl ank

<l ef t - squar e- br acket >; <backsl ash>; <ri ght - squar e- br acket >; \

<ci rcunf| ex>; <under scor e>; <gr ave- accent >; \

<a>; <b>; <c>; <d>; <e>; <f >; <g>; <h>; <i >; <j >; <k>; <I >; <np; \

<N>; <0>; <pP>; <g>; <r >; <S>; <t >; <U>; <V>; <KW <X>; <y>; <z>; \

<l eft-brace>; <vertical -1ine>; <right-brace>;<til de>;\

<i nverted-excl amati on- mar k>; <cent >; <st erl i ng>; <currency>; <yen>; \

<br oken- bar >; <sect i on>; <di aer esi s>; <copyri ght >; <f em ni ne>; \

<gui | | enot - | ef t >; <not >; <dash>; <r egi st er ed>; <macr on>; \

<degr ee>; <pl us- m nus>; <super scri pt -t wo>; <superscript-three>;\

<acut e>; <mu>; <par agr aph>; <dot >; <cedi | | a>; <super scri pt - one>; \

<mascul i ne>; <gui | | enot - ri ght >; <one- quart er >; <one- hal f >; \

<t hree-quarters>; <i nverted- questi on-mark>;\

<A- grave>; <A- acut e>; <A-ci rcunfl ex>; <A-til de>; <A-di aeresi s>;\

<A-ring>; <AE-1i gature>; <C- cedil | a>; <E- gr ave>; <E- acut e>; <E-ci rcunf| ex>; \
<E- di aeresi s>; <l -grave>; <l -acut e>; <l -ci rcunf | ex>; <l - di aeresi s>; \

<ETH-i cel andi c>; <N-ti | de>; <O grave>; <O acut e>; <O-ci rcunfl ex>; <O til de>;\
<O di aeresi s>; <mul tiplication>; <O sl ash>; <U- grave>; <U-acut e>; \

<U-ci rcunfl ex>; <U-di aer esi s>; <Y-acut e>; <THORN-i cel andi c>; <s- shar p>; \

<a- grave>; <a- acut e>; <a-ci rcunfl ex>; <a-til de>; <a- di aeresi s>;\

<a-ring>; <ae-ligature>; <c-cedill a>; <e-grave>; <e-acut e>; <e-ci rcunfl ex>;\
<e-di aeresi s>; <i - grave>; <i -acut e>; <i -ci rcunfl ex>; <i - di aeresi s>;\
<eth-icel andi c>; <n-ti | de>; <o- gr ave>; <o0- acut e>; <o- ci rcunf | ex>; <o-til de>;\
<o- di aer esi s>; <di vi si on>; <o- sl ash>; <u- grave>; <u- acut e>; \

<u- ci rcunf | ex>; <u-di aer esi s>; <y-acut e>; <t horn-i cel andi c>; <y-di aer esi s>; \
<space>

<excl amat i on- mar k>; <quot at i on- mar k>; <nunber - si gn>; \

<dol | ar - si gn>; <per cent - si gn>; <anper sand>; <apost r ophe>; \

<l ef t - par ent hesi s>; <ri ght - par ent hesi s>; <asteri sk>; \

<pl us- si gn>; <comma>; <hyphen>; <peri od>; <sl ash>; \

<col on>; <seni col on>; <| ess-t han- si gn>; <equal s- si gn>; \
<great er - t han- si gn>; <quest i on- mar k>; <conmer ci al - at >; \

<l ef t - squar e- br acket >; <backsl ash>; <ri ght - squar e- br acket >; \
<ci rcunf| ex>; <under scor e>; <gr ave- accent >; <l ef t - brace>; \
<vertical -1ine>; <right-brace>; <tilde>

<zer 0>; <one>; <t wo>; <t hr ee>; <f our >; \
<five>; <si x>, <seven>; <ei ght >; <ni ne>

<zer 0>; <one>; <t wo>; <t hr ee>; <f our >; \
<five>; <si x>, <seven>; <ei ght >; <ni ne>; \
<A>; <B>; <C; <D>; <B>; <F>;\

<a>; <b>; <c>; <d>; <e>; <f >

<space>; <t ab>

toupper (<a>, <A>); (<b>, <B>); (<c>, <C); (<d>, <D>); (<e>, <E>);\

(<f>, <F>); (<g> <G); (<h>, <H>); (<i > <I>); (<] > <I>);\
(<k>, <K>); (<l >, <L>); (<nP, <MP) ; (<n>, <N>) ; (<0>, <OC>) ; \
(<p>, <P>); (<q>, <@); (<r>, <R>); (<s>, <S>); (<t>, <T>);\
(<u>, <U); (<v>, <V>); (<we, <W) 5 (<x>, <X>); (<y>, <Y>);\
(<z>,<Z>);\

(<a-grave>, <A-grave>);\

(<a-circunflex>, <A-circunflex>);\

(<ae-ligature>, <AE-ligature>);\

(<c-cedilla> <Ccedilla>);\

(<e-grave>, <E-grave>);\

(<e-acute>, <E-acute>);\

(<e-circunflex>, <E-circunflex>);\

(<e-di aer esi s>, <E-di aeresi s>);\

(<i-circunflex>, <l-circunflex>);\

(<i-diaeresis>, <I-diaeresis>);\

(<o-circunflex>, <O circunflex>);\

(<u-grave>, <U-grave>);\

Sample Locale Source Files



(<u-circunflex>, <U-circunflex>);\
(<u-di aer esi s>, <U-di aer esi s>)

tol ower (<A>, <a>); (<B>, <b>); (<C>, <c>); (<D>, <d>); (<E>, <e>);\
(<F>, <f>); (<G>, <g>); (<H>, <h>); (<I >, <i >); (<>, <j>);\
(<K>, <k>); (<L>, <I 3); (<Mp, <nP) ; (<N>, <n>) ; (<O>, <0>) ; \
(<P>, <p>); (<@, <q>); (<R>, <r>); (<S>, <s>); (<T>, <t >);\
(<U>, <u>); (<V>, <v>); (W, <w) 5 (<X>, <x>); (<Y>, <y>);\
(<Z>, <z>);\
(<A-grave>, <a-grave>);\
(<A-circunflex>, <a-circunflex>);\
(<AE-1igature>, <ae-ligature>);\
(<C-cedilla> <c-cedilla>);\
(<E-grave>, <e-grave>);\
(<E-acut e>, <e-acute>);\
(<E-circunfl ex>, <e-circunflex>);\
(<E-di aer esi s>, <e-di aeresi s>);\
(<l-circunflex>, <i-circunflex>);\
(<I-di aeresi s>, <i-diaeresis>);\
(<O circunfl ex>, <o-circunflex>);\
(<U-grave>, <u-grave>);\
(<U-circunflex>, <u-circunflex>);\
(<U-di aer esi s>, <u-di aer esi s>)

END LC _CTYPE

wABHBHBHARARE
LC_COLLATE
wABHBHBHAHARE

The order is control characters, followed by punctuation
and digits, and then letters. The letters have a
multi-level sort with diacritics and case being

ignored on the first plass, then diacritics being
significant on the second pass, and then case being
significant on the third (last) pass

o H HH H

order_start f orwar d; backwar d; f or war d

<NUL>

<SOH>

<STX>

<ETX>

<EOT>

<ENQ>

<ACK>

<al ert>
<backspace>
<t ab>

<new i ne>
<vertical -tab>
<formfeed>
<carriage-return>
<SOo>

<8I >

<DLE>

<DC1>

<DC2>

<DC3>

<DC4>

<NAK>

<SYN>

<ETB>

D-10 Sample Locale Source Files



<CAN>

<EM>

<SuB>

<ESC>

<| $4>

<| S3>

<| S2>

<| S1>

<PAD>

<HOP>

<BPH>

<NBH>

<| ND>

<NEL>

<SSA>

<ESA>

<HTS>

<HTJ>

<VTS>

<PLD>

<PLU>

<RI >

<S8S2>

<SS3>

<DCS>

<PUL>

<PU2>

<STS>

<CCH>

<M

<SPA>

<EPA>

<SCs>

<SCCl >

<SCl >

<Csl >

<ST>

<CsC

<PM>

<APC>

<space>

<excl amat i on- mar k>
<quot at i on- mar k>
<nunber - si gn>
<dol | ar - si gn>
<per cent - si gn>
<anper sand>
<apost r ophe>
<l ef t - par ent hesi s>
<ri ght - par ent hesi s>
<asterisk>
<pl us-si gn>
<comma>
<hyphen- m nus>
<peri od>

<sl ash>

<zer o>

<one>

<t wo>

<t hree>

<f our >

<five>

<si x>

<seven>

<space>; <space>; <space>

<excl amat i on- mar k>; <excl amat i on- mar k>; <excl amat i on- mar k>

<quot at i on- mar k>; <quot at i on- mar k>; <quot at i on- mar k>
<nunber - si gn>; <nunber - si gn>; <nunber - si gn>

<dol | ar - si gn>; <dol | ar - si gn>; <dol | ar - si gn>

<per cent - si gn>; <per cent - si gn>; <per cent - si gn>
<anper sand>; <anper sand>; <anper sand>

<apost r ophe>; <apost r ophe>; <apost r ophe>

<l ef t - par ent hesi s>; <l ef t - par ent hesi s>; <l ef t - par ent hesi s>
<ri ght - par ent hesi s>; <ri ght - par ent hesi s>; <ri ght - par ent hesi s>

<ast eri sk>; <asteri sk>; <asterisk>
<pl us- si gn>; <pl us- si gn>; <pl us-si gn>
<comma>; <conma>; <comma>

<hyphen- m nus>; <hyphen- nm nus>; <hyphen- m nus>
<peri od>; <peri od>; <peri od>

<sl ash>; <sl ash>; <sl ash>

<zer o>; <zer 0>; <zer 0>

<one>; <one>; <one>

<t wo>; <t wo>; <t wo>

<t hree>; <t hree>; <t hr ee>

<f our >; <f our >; <f our >

<five>; <five>; <five>

<si x>; <si x>; <si x>

<seven>; <seven>; <seven>

Sample Locale Source Files

D-11



<ei ght >
<ni ne>
<col on>

<ei ght >; <ei ght >; <ei ght >
<ni ne>; <ni ne>; <ni ne>
<col on>; <col on>; <col on>

<sem col on>

<l ess-than-si gn>
<equal s-si gn>
<greater-than-si gn>
<questi on- mar k>
<conmmer ci al - at >

<l ef t - squar e- br acket >
<backsl ash>

<ri ght - squar e- br acket >
<circunfl ex>

<under scor e>
<grave-accent >

<l eft-brace>

<sem col on>; <sem col on>; <seni col on>

<l ess-t han- si gn>; <l ess-t han- si gn>; <l ess-t han-si gn>

<equal s- si gn>; <equal s- si gn>; <equal s-si gn>

<great er -t han- si gn>; <gr eat er - t han- si gn>; <gr eat er - t han- si gn>
<questi on- mar k>; <quest i on- mar k>; <quest i on- mar k>

<commer ci al - at >; <conmer ci al - at >; <commerci al - at >

<l ef t - squar e- br acket >; <l ef t - squar e- br acket >; <l ef t - squar e- br acket >
<backsl ash>; <backsl ash>; <backsl ash>

<ri ght - squar e- br acket >; <ri ght - squar e- br acket >; <ri ght - squar e- br acket >
<ci rcunf | ex>; <ci rcunf | ex>; <ci rcunf | ex>

<under scor e>; <under scor e>; <under scor e>
<grave-accent >; <gr ave- accent >; <gr ave- accent >

<l eft-brace>; <l eft-brace>; <l eft-brace>

<vertical -1ine> <vertical-line>;<vertical-line> <vertical-Iline>
<ri ght-brace> <ri ght-brace>; <ri ght - brace>; <ri ght - brace>
<tilde> <tilde> <tilde>; <tilde>

<DEL> <DEL>; <DEL>; <DEL>

<nobr eakspace> <nobr eakspace>; <nobr eakspace>; <nobr eakspace>
<inverted-exclamation-mark> \

<i nverted-excl amat i on- mar k>; <i nvert ed- excl amat i on- mar k>; <i nvert ed- excl amat i on- mar k>
<cent > <cent >; <cent >; <cent >

<sterling> <sterling> <sterling>; <sterling>

<currency> <currency>; <cur rency>; <currency>

<yen> <yen>; <yen>; <yen>

<br oken- bar > <br oken- bar >; <br oken- bar >; <br oken- bar >

<par agr aph> <par agr aph>; <par agr aph>; <par agr aph>

<di aer esi s> <di aer esi s>; <di aer esi s>; <di aer esi s>

<copyri ght > <copyri ght >; <copyri ght >; <copyri ght >
<guillenot-left> <guillenot-left>; <quillenot-left>;<quillenot-left>

<not > <not >; <not >; <not >

<dash> <dash>; <dash>; <dash>

<regi stered> <regi st ered>; <regi st er ed>; <r egi st er ed>
<macron> <mecr on>; <maecr on>; <macr on>

<degree> <degr ee>; <degr ee>; <degr ee>

<pl us- m nus>
<superscri pt -two>
<superscript-three>

<pl us- m nus>; <pl us- m nus>; <pl us- M nus>
<t wo>; <super scri pt -t wo>; <super scri pt -t wo>
<t hree>; <superscript-three>; <superscript-three>

<acut e> <acut e>; <acut e>; <acut e>

<mu> <mu>; <nmu>; <mu>

<section> <section>; <section>; <secti on>
<dot > <dot >; <dot >; <dot >

<cedil |l a> <cedil | a>; <cedi | | a>; <cedi |l | a>

<superscri pt-one>
<guill emot -ri ght >
<one-quarter>

<one>; <super scri pt - one>; <super scri pt - one>

<gui |l enot -ri ght >; <gui | | enot -ri ght >; <gui | | enot -ri ght >
<zer 0>; <one- quart er >; <one- quarter>

<one- hal f > <zer 0>; <one- hal f >; <one- hal f >

<t hree-quarters> <zer 0>; <t hree- quarters>; <t hree-quarters>

<i nverted-question-mark>\

<i nverted- question-mark>; <i nvert ed- questi on- mar k>; <i nvert ed- questi on- mar k>
<mul tiplication> <mul tiplication>; <multiplication>;<nultiplication>
<di vi si on> <di vi si on>; <di vi si on>; <di vi si on>

<a> <a>; <a>; <a>
<A> <a>; <a>; <A>

<f em ni ne> <a>; <f em ni ne>; <f em ni ne>
<a- acut e> <a>; <a- acut e>; <a- acut e>
<A-acut e> <a>; <a- acut e>; <A- acut e>
<a- grave> <a>; <a- grave>; <a- grave>
<A-grave> <a>; <a- grave>; <A-grave>

<a-circunflex>
<A-circunflex>
<a-ring>

<a>; <a-circunfl ex>; <a-circunfl ex>
<a>; <a-circunfl ex>; <A-circunfl ex>
<a>;<a-ring>; <a-ring>

D-12 Sample Locale Source Files



<A-ring> <a>;<a-ring>; <A-ring>

<a- di aeresi s> <a>; <a- di aer esi s>; <a-di aeresi s>
<A- di aer esi s> <a>; <a- di aeresi s>; <A-di aer esi s>
<a-tilde> <a>;<a-tilde> <a-tilde>

<A-tilde> <a>;<a-tilde> <A-til de>
<ae-ligature> <a>; <a><e>; <a><e>

<AE-1i gature> <a>; <a><e>; <A><E>

<b> <b>; <b>; <b>

<B> <b>; <b>; <B>

<c> <c>; <c>; <c>

<C <c>; <c>; <C

<c-cedill a> <c>; <c-cedill a>; <c-cedil |l a>
<C-cedill a> <c>; <c-cedill a>; <Ccedill a>

<d> <d>; <d>; <d>

<D> <d>; <d>; <D>

<et h-i cel andi c> <d>; <et h-i cel andi ¢c>; <et h-i cel andi c>
<ETH- i cel andi c> <d>; <et h-i cel andi ¢>; <ETH-i cel andi c>
<e> <e>: <e>; <e>

<E> <e>; <e>; <BE>

<e- acut e> <e>; <e- acut e>; <e- acut e>

<E- acut e> <e>; <e- acut e>; <E- acut e>

<e-grave> <e>; <e- grave>; <e- grave>

<E- grave> <e>; <e- grave>; <E- grave>
<e-circunfl ex> <e>; <e-circunfl ex>; <e-circunfl ex>
<E-circunfl ex> <e>; <e-circunfl ex>; <E-circunfl ex>
<e-di aer esi s> <e>; <e-di aeresi s>; <e-di aeresi s>
<E- di aer esi s> <e>; <e-di aer esi s>; <E-di aer esi s>
<f> <f>; <f> <f>

<F> <f>; <f> <F>

<g> <g>; <g>; <g>

<G <g>; <g>; <&

<h> <h>; <h>; <h>

<H> <h>; <h>; <H>

<i> <i>;<i>; <i>

<l > <i><i> <>

<i -acut e> <i >; <i -acut e>; <i - acut e>

<l -acut e> <i >; <i -acut e>; <l -acut e>

<i -grave> <i >; <i -grave>; <i -grave>

<|-grave> <i >;<i-grave>; <l -grave>
<i-circunflex> <i>;<i-circunflex>;<i-circunflex>
<l-circunflex> <i>; <i-circunflex>;<l-circunflex>
<i -di aeresi s> <i >; <i -di aeresi s>; <i -di aeresi s>
<l -di aer esi s> <i >; <i -di aeresi s>; <| -di aeresi s>
<j > <j>;<) > <>

<J> <) >; < > <>

<k> <k>; <k>; <k>

<K> <k>; <k>; <K>

<l > <> <l><l>

<L> <l >; <l > <L>

<me <P <] <ne

<\b <me; <ne; <M>

<n> <n>; <n>; <n>

<N> <n>; <n>; <N>

<n-tilde> <n>;<n-tilde>; <n-til de>

<N-tilde> <n>;<n-tilde>; <N-til de>

<0> <0>; <0>; <0>

<O <0>; <0>; <>

<mascul i ne> <0>; <mascul i ne>; <mascul i ne>

<o0- acut e> <0>; <0- acut e>; <o- acut e>

<O acut e> <0>; <0- acut e>; <O acut e>

<o- grave> <0>; <0- gr ave>; <o0- grave>

<O grave> <0>; <0- grave>; <O grave>
<o-circunfl ex> <0>; <0-ci rcunf | ex>; <o-circunfl ex>
<O-circunfl ex> <0>; <0-circunfl ex>; <O-circunfl ex>

Sample Locale Source Files D-13



<o- di aer esi s> <0>; <0- di aer esi s>; <o-di aeresi s>

<O di aeresi s> <0>; <0- di aeresi s>; <O di aer esi s>
<o-til de> <0>;<0-til de>; <o-til de>
<O-tilde> <0>;<0-tilde> <O til de>

<o0-sl ash> <0>; <0- sl ash>; <o- sl ash>

<O sl ash> <0>; <0- sl ash>; <O sl ash>

<p> <p>; <p>; <p>

<p> <p>; <p>; <P>

<q> <Qg>; <q>; <q>

<> <qg>; <g>; <@

<r > <r > <r>; <r>

<R> <r>; <r>; <R>

<s> <s>; <s>; <S>

<S> <§>; <s>; <S>

<s-shar p> <§>; <§><S8>; <§><S>

<t > <t>;<t>;<t>

<T> <t>;<t>; <T>

<t horn-i cel andi c> <t >; <t ><h>; <t ><h>

<THORN-i cel andi c> <t >; <t ><h>; <T><h>

<u> <u>; <u>; <u>

<> <u>; <u>; <U>

<u- acut e> <u>; <u- acut e>; <u- acut e>

<U- acut e> <u>; <u- acut e>; <U- acut e>

<u- grave> <u>; <u- grave>; <u- grave>
<U-grave> <u>; <u- grave>; <U-grave>
<u-circunfl ex> <u>; <u-circunfl ex>; <u-circunfl ex>
<U-circunfl ex> <u>; <u-circunfl ex>; <U-circunfl ex>
<u-di aer esi s> <u>; <u- di aeresi s>; <u-di aer esi s>
<U- di aer esi s> <u>; <u- di aeresi s>; <U-di aer esi s>
<v> <Y>; <y>; <y>

<\V> <v>; <v>; <>

<Ww> W <W>; <we

<\t <W>; <we; <WA

<Xx> <X>; <X>; <X>

<> <X>; <X>; <X>

<y> <y>; <y>; <y>

<Y> <y>; <y>; <Y>

<y-acute> <y>; <y-acut e>; <y-acut e>

<Y-acut e> <y>; <y-acut e>; <Y-acut e>

<y-di aeresi s> <y>; <y-di aer esi s>; <y-di aer esi s>
<z> <z>; <z>; <z>

<Z> <z>; <z>; <Z>

UNDEFI NED

order_end

END LC_COLLATE

B

LC_MONETARY

B

int_curr_synbol " <F><R><F><space>"
currency_synbol " <>

non_deci mal _poi nt " <comma>"
non_t housands_sep ""

non_gr oupi ng 3;0
positive_sign "
negative_sign " <hyphen>"
int_frac_digits 2
frac_digits 2
p_cs_precedes 0
p_sep_by_space 1
n_cs_precedes 0

D-14 Sample Locale Source Files



[y

n_sep_by_space
p_si gn_posn 1
n_si gn_posn 1

END LC_MONETARY

wABHBHAHARARE
LC_NUMERI C
wABHBHBHARARE

deci mal _poi nt " <conmma>"
t housands_sep "
groupi ng 3;0

END LC_NUMERI C

beaiReaiaeainiatatatataiatd
LC TI ME
beaiReaiaeainiatatatataiaty
# abbrevi ated day nanes
abday "<d><i ><np ;)\
"<l ><u><n>"; )\
"<p<a><r>";\
"<p<e><r>" ;)\
\
\

" <) ><e><u>";

" <y><e><n>";
" <s><a><np"

# full day nanes

day " <d><i ><np<a><n><c><h><e>";\
"<l ><u><n><d><i >\
" <pp<a><r><d><i >";\
" <p<e><r ><e><r ><e><d><i >\
" <) ><e><u><d><i >";\
" Qy><e><n><d><r ><e><d><i >\
" <s><a><np<e><d><i >

# abbrevi ated nonth nanes
abnon " <) ><a><n>";\
"<f ><e-acut e><v>";\
"<np<a><r>";\
" <a><y><r >\
"<p<a><i >\
"<j ><u><n>";\
"< ><u><] >\
"<a><o><u-circunflex>";\
"<s><e><p>";\
"<o><c><t>";\
"<n><o><v>";\
" <d><e- acut e><c>"

# full nonth nanes
non " <j ><a><n><v><j ><e><r>";\
" <f ><e- acut e><v><r ><j ><e><r>";\
" <p<a><r><s>";\
" <a><y><r ><i ><| >\
"<np<a><i >\
" <j ><u><i ><n>";\
" <j ><u><i ><| ><| ><e><t >\
" <a><o><u-circunf |l ex><t >";\
" <s><e><p><t ><e><np<b><r><e>";\
" <o><c><t ><o><b><r ><e>"; \

Sample Locale Source Files D-15



" <n><o><v><e><np<b><r ><e>"; \
" <d><e- acut e><c><e><np<b><r ><e>"

# date/time format. The follow ng designates this
# format: "% % % %t 9M %S Y& W

d_t_fmt "<percent-sign><a><space><per cent - si gn><e>\
<space><per cent - si gn><b><space><per cent - si gn><H>\
<col on><per cent - si gn><M><col on><per cent - si gn><S>\
<space><per cent - si gn><Z><space><per cent - si gn><Y>"

# date format. The follow ng designates this

# format: "%l. %n %"

d_fnt " <per cent - si gn><d><peri od><per cent - si gn><np\
<peri od><per cent - si gn><y>"

# time format. The follow ng designates this

# format: "ot 9%Vt %S"

t_fnt " <per cent - si gn><H><col on><per cent - si gn><M>\
<col on><per cent - si gn><S>"

am pm "<seni col on>"

# 12-hour time representation. This is enpty, neaning
# this local e al ways uses 24-hour fornat.
t_fnt_anpm

END LC TI ME

wABHBHBHARARE
LC_MESSAGES
wABHBHAHAHARE

# yes expression. The follow ng designates:
#"M[oQ | [oQ[uUil])"

yesexpr "<circunflex><l eft-parenthesi s>\

<l ef t - squar e- br acket ><0><0O><r i ght - squar e- br acket >\
<vertical -1ine><l|eft-square-bracket ><0><0>\

<ri ght - squar e- br acket ><I| ef t - squar e- br acket ><u><U>\
<ri ght - squar e- br acket ><I| ef t - squar e- br acket ><i ><| >\
<ri ght - squar e- br acket ><ri ght - par ent hesi s>"

# no expression. The follow ng designates:

#"M([nNI|[nN[[oQ [nN]) "

noexpr "<circunfl ex><l eft-parenthesi s>\
<| ef t - squar e- br acket ><n><N><r i ght - squar e- br acket >\
<vertical -1ine><|eft-square-bracket ><n><N>\

<ri ght - squar e- br acket ><I| ef t - squar e- br acket ><0><0>\
<ri ght - squar e- br acket ><| ef t - squar e- br acket ><n><N>\
<ri ght - squar e- br acket ><ri ght - par ent hesi s>"

# yes string. The follow ng designates: "oui:o0:O'

yesstr "<o><u><i ><col on><o><col on><0O>"

# no string. The follow ng designates: "non:n:N'
nostr " <n><o0><n><col on><n><col on><N>"

END LC_MESSAGES

D-16 Sample Locale Source Files



Glossary

ASCII

American Standard Code for Information Interchange. ASCII defines 128
characters, including control characters and graphic characters, represented
by 7-bit binary values (see also ISO 646).

See also character set, coded character set

C locale

The standard, or default, language environment. This environment is
always in effect for non-internationalized applications or when locales are
not installed or are not active.

character

A sequence of one or more bytes that represents a single graphic symbol or
control code. Unlike the char datatype in C, a character can be represented
by a value that is one byte or multiple bytes. The expression “multibyte
character” and the term “character” both refer to character values of any
length, including single-byte values.

See also wide character

character set

A member of a set of elements used for the organization, control, or
representation of text.

See also ASCII, ISO 10646

character string

A contiguous sequence of bytes that is terminated by, and includes, the null
byte. A string is an array of type char in the C programming language. The
null byte has all bits set to zero (0).

An empty string is a character string whose first element is the null byte.
See also character, wide-character string

code page
See coded character set

coded character set

A set of unambiguous rules that establishes a character set and the
one-to-one relationship between each character of the set and its bit
representation. On UNIX systems, the more common term is codeset. On

Glossary—1



MS-DOS and Microsoft Windows systems, the more common term is code
page.

codeset

See coded character set

collating sequence

The ordering rules applied to characters or groups of characters when they
are sorted.

control character

A character, other than a graphic character, that affects the recording,
processing, transmission, or interpretation of text.

cultural data

The conventions of a geographical area for such things as date, time,
numeric, and currency values.

data

Information generated internally, information extracted from or written to
files, and message text used for communication with the program’s user.
dense code

The operating system supports two types of locales; dense code and Unicode.
Dense code locales use a wide-character encoding that minimizes table size
by assigning codepoints consecutively with no empty positions. Under dense
code locales, a wchar_t value for one locale may not represent the same
character in another locale and, thus, is locale specific.

See also Unicode

euro

The currency adopted by European countries belonging to the Economic and
Monetary Union (EMU) and scheduled to replace local currencies for EMU
member countries in the year 2002. The euro currency has a monetary sign
that looks like an equal sign (=) superimposed on the capital letter C and is
identified by the string EUR in international currency documents.

file code

The encoding format that applies to data outside the program.

Contrast with process code

graphic character

A character, other than a control character, that has a visual representation
when handwritten, printed, or displayed. Also, ideograph.

118N
See internationalization

Glossary—2



internationalization

The process of developing programs without prior knowledge of the language,
cultural data, or character-encoding schemes that the programs are expected
to handle. An internationalized program uses a set of interfaces that allows
the program to modify its behavior at run time for operation in a specific
native language environment. 118N is frequently used as an abbreviation for
internationalization.

See also locale, localization

ISO 10646

The ISO Universal Character Set (UCS). The first 65,536 code positions in
this character set are called the Base Multilingual Plane (BMP), in which
each character is 16 bits in length. This form of ISO 10646 is also known as
UCS-2. ISO 10646 also has a form called UCS-4, in which each character is
32 bits in length.

See also Unicode

ISO 646

ISO 7-bit codeset for information interchange. The reference version of

ISO 646 contains 95 graphic characters, which are identical to the graphic
characters defined in the ASCII codeset.

ISO 6937

ISO 7-bit or 8-bit codeset for text communication using public communication
networks, private communication networks, or interchange media such as
magnetic tapes and disks.

1ISO8859—*

ISO 8-bit single-byte codesets. The asterisk (*) represents a number
indicating the part of the associated ISO standard. For example, the
ISO8859—1 codeset conforms to ISO 8859 Part 1, Latin Alphabet No. 1,
which defines 191 graphic characters covering the requirements of most
Western European languages.

L10N

See localization

langinfo database

A collection of information associated with the numeric, monetary, date and
time, and messaging parts of a locale.

local language

See native language

locale

A set of data and rules that supports a particular combination of native
(local) language, cultural data, and codeset. Also called language table.

Glossary—3



See also coded character set, cultural data, langinfo database, localization

localization

The process of providing language- or culture-specific information for
computer systems. Some of these requirements are addressed by locales.
Other requirements are addressed by translations of program messages,
provision of appropriate fonts for printers and display devices, and, in some
cases, development of additional software. L10N is sometimes used as an
abbreviation for localization.

See also internationalization, locale

message catalog

A file or storage area external to the program code that contains program
messages, command prompts, and responses to prompts for a particular
native language, territory, and codeset.

multibyte character
See character

native language

A computer user’s spoken or written language, such as English, French,
Japanese, or Thai.

process code
The encoding format used for manipulating data inside programs.

Contrast with file code

radix character

The character that separates the integer part of a number from the fractional
part.

sign extension

The high bit of the value in the small data type is used to fill in bits that
remain when the value is converted to the larger data type for comparison.
For example, if s[ 0] is the value 0x8e, sign extension would cause it to be
treated as OxffffffSe.

string
See character string

territory

The geographic area, usually defined by a political entity such as nation or
state, with particular cultural differences that must be accommodated in
localization; for example, the currency or language of a territory.

UcCs
See ISO 10646

Glossary—4



Unicode

A standard that defines encoding for characters in most native languages.
The Unicode standard specifies a Universal Character Set (UCS) and defines
many thousands of characters, including a private use area for vendor
defined characters. “Unicode” originally referred to encoding that was
limited to the UCS-2 (16-bit) encoding defined by the ISO 10646 standard.
The Unicode standard now encompasses UCS-4 (32—bit) encoding and
defines a number of universal transformation formats (UTFs) for use with
byte-oriented protocols that process data files.

See also coded character set, ISO 10646

Universal Character Set
See ISO 10646

wide character

An integral type that is large enough to hold any member of the extended
execution character set. In program terms, a wide character is an object
of type wehar _t , which is defined in the / usr /i ncl ude/ st ddef . h (for
conformance to X/Open specifications) and / usr/i ncl ude/ stdlib.h
(for conformance to the ANSI C standard) header files. Although the

file locations where the wchar _t data type is defined are determined by
standards organizations, its definition is implementation specific. For
example, implementations that support only single-byte codesets might
define wchar _t as a byte value. On Tru64 UNIX systems, wchar _t is a
4-byte (32-bit) value.

The null wide character is a wchar _t value with all bits set to zero (0).

wide-character string

A contiguous sequence of wide characters that is terminated by and includes
the null wide character. A wide-character string is an array of type wchar _t .

See also character string, wide character

worldwide portability interface (WPI)

Functions that allow programmers to create applications that support
single-byte or multibyte codesets. WPI functions are similar to the C
language interface, but WPI uses wide characters.

Glossary-5






A

add_wch function, 4-2
add_wchnstr function, 4—4
add_wchstr function, 4—4
addnwstr macro, 4-5
addwch macro, 4-2
addwchnstr macro, 4—4
addwchstr macro, 4—4
addwstr macro, 4-5
application
and dense code locales, 2—3
and internal process code, 1-8
locale design, 2—3
locales and multibyte characters,
2-2
locales and process code, 2—2
running input method server, 7—3
supporting multiple languages, 2—1
application programming
international considerations, 7—1
ASCII codeset, 2—3
asctime function, A—5
Asian characters
number of strokes, 1-5
radicals, 1-5
sorting with radicals and strokes,
1-5
Asian language
codesets, 2—5
codesets and X Window fonts, 5—10
collation, 7-5
escape sequences, C—1
input method, 7-2
phrase input method, 7-3
printing text, 7—8

Index

technical references for, 7—1

user-defined characters, 7—3
Asian language support, 2—6
asort command, 7-5

application of, 7-6

collating UDCs, B-18

options, 7—6

B

backslash character

in message strings, 3—5
backspace character

in message strings, 3—5
big-endian

and UTF-16, 1-7
bit patterns

in message strings, 3—5
BUFSIZE constant

definition of, 2—27
byte orientation

system defaults, 1-8

C

C compiler

trigraph sequences, 2—13
C library

and internationalization, 2—2
case conversion, 1-3, 2-14, A-3
CAT_NAME constant

definition of, 2—27
catalog

retrieving messages from, 2—21
catclose function

argument, 3—32

Index—1



NLSPATH environment variable, reference pages, 5—2

2-22 resource files, 5—2
programmed calls to message StyleManager backdrop files, 5—2
catalogs, 3—27 StyleManager palette files, 5—2
with nl_catd descriptor type, 2—21 UID files, 5-2
catgets function cedit
and printf function, 2—22 bitmap data buffers, B—-12
arguments, 3—32 cursor control keys, B-14
detecting catalog open failures, cursor modes, B-11
3-31 cursor movement keys, B—15
dynamic codeset conversion, 3—17 cut and paste buffer, B—12
in program-defined macro, 3—33 drawing keys, B-15
programmed calls to message dtterm problems, B—4
catalogs, 3—27 edit buffer, B-12
with puts function, 2—21 editing function keys, B-16
catopen function, 3—27 editing key bindings, B—11
arguments, 3—28 font-editing function keys, B—14
codeset conversion support, 3—31 font-editing screen, B-8, B—-13
controlling message catalog search, help options, B-8
3-28 keymaps for editing functions,
dynamic codeset conversion, 3—17 B-13
example of catalog pathname mode switching keys, B—14
search, 3—30 paste modes, B—11
failure to return error status, 3—31 refer editing function, B-13
header file requirement, 3—28 scale editing function, B—12
NL_CAT_LOCALE constant, 3—28 type modes, B-11
NLSPATH environment variable, undo buffer, B-12
2-22, 3-28 use buffer, B-12
performance overhead, 3—23 use editing function, B—-13
programmed calls to message wrap modes, B—12
catalogs, 3—27 cedit command, B-3
troubleshooting problems, 3—31 C option, B—4
under root account, 3—32 changing message language, B—8
with nl_catd descriptor type, 2—21 editing modes, B-11
cc command font-editing screen, B—9, B—12
for compiling locale method h option, B—4
definitions, 6—55 menu interface, B-5
trigraph sequences, 2—13 menu item states, B—6
CDE options and arguments, B—4
datatyping files, 52 r option, B—4
enabling locale support, 5-1 user interface screen, B—4
help files, 5-2 cedit editor
message catalogs, 5—1 creating UDCs, B-1

Index—2



cedit menu

command options, B—7

delete options, B—6

edit options, B—6

file options, B—6

options menu, B—8

show options, B—7

UDC options, B—6
cgen command, B-18

bdf option, B-19, B-21

col option, B—19

compared to font renderer, 7—12

creating UDC support files, B—-1

fprop option, B—19

iks option, B—19

merge option, B—-19

odl option, B-19

options for, B-19

osiz option, B—19

pcf option, B-19, B-21

pre option, B-19

win option, B-19

without options, B—-18
char data type

list of ISO C functions, A—1
character classes

defining in a locale, 6—8

testing for Unicode defined, A—2

testing for XSH defined, A—2
character classification

functions for, 2—14
character codes

characteristics of, 1-3

conversion of, 1-3
character collation functions, A—4
character map, 61

( See also charmap file )

for multibyte characters, 6—4

multibyte character file

requirements, 6—1
sample source file, D-1

character set, 1-4
( See also codeset )
portable, 1-6
ucs, 1-7
character size
16-bit, 1-7
32-bit, 1-7
character string, 1-5
curses routines to read, 4—11
empty, 1-5
character-attribute databases,
7-3
( See also UDC database )
characters
and char data type, 1-5
collation of, 2—15
converting case of, 2—14
encoding for locales, 6—4
identifying classes of, 2—13
multibyte, 1-5
writing methods to convert, 6—-25
state-depended encoding, 2—12
wide, 1-5
charmap file, 6-1
character encoding in, 6—4
character symbols in, 6—4, 66
keyword declarations, 6—3
standardization of symbol names,
6—6
Clear Display option
ruled lines in DECterm, C—5
codeset, 1-4, 2-6
and interchange media, 2—-5
ASCII, 2-3, 2-9
Asian language support, 2—5
case conversion, 2—14
character classification, 2—13
comparing strings, 2—15
conversion by catopen function,
3-31
conversion for data files, 7-9

Index—3



converting files from one codeset to
another, A-11
creating, 6-1
data transparency, 2—8
differing from user locale, 7-9
dynamic conversion of message
catalogs, 3—17
handling multibyte characters,
2-11
in-code literals, 2—9
IS0, 24
language requirements, 2—1
man command conversion of, 7-9
null characters in, 2—-13
octal value references, 2—9
problems when using, 2—8
rules for source variants, 2—13
rules for X/Open conformance, 2—12
setting name of, 6—4
single-byte characters, 2—9
source and execution versions of]
2-12
state-dependent encoding, 2—12
use in locales, 2—4
used over networks, 2—5
using the most significant bit, 2—9
COLL_WEIGHTS_MAX variable,
6-14
collating sequence
and locale, 1-5
non-English character order, 1-4
collating table
creating for UDCs, B—18
collating value database
setting default locations of, 7—3
collation
algorithms, 2—15
Asian language support, 7-5
functions used for, 2—15
levels of, 6-14
performance issues, 2—16
collation functions
performance choices, 2—16
collation order

Index—4

defining in locale source file, 6-13

directing from source, 6—14
comment

in charmap file, 6—3

in locale source file, 67

in message set directives, 3—7

redefining delimiter, 6—7
comment character

in methods file, 6-57
comment_char keyword, 67
Common Desktop Environment

( See CDE )
compound string

creating in Motif applications, 5—6
constants

using non-English characters as,

2-9

copy statement, 6—8

in LC_CTYPE category, 6—12
cp_dirs file, 7-3

bdf entry, 7—4

cdb entry, 7—4

default entries in, 7—4e

iks entry, 7-4

odl entry, 7—4

pcf entry, 7—4

pre entry, 7—4

sim entry, 7—4

udc entry, 7-4
ctime function, A-5
cultural data, 1-3

currency symbols, 2—16

database of, 2—16

date formats, 2—16

extracting from database, 2—17

in langinfo database, 2—17

radix character, 2—16

thousands separator, 2—16
currency symbol

defining international, 6—19

defining local, 6-19

determining with localeconv

function, 2—19
euro, 2-16



variation for, 2—16
curses interface
choosing between multiples, 4—1
curses Library
multibyte characters, 4—1
overwriting multicolumn
characters, 4—1
recommended routines, 4—1
reference pages, 4—1
wide-character data, 4—1
curses routines
adding wide character with cursor
advance, 4-2
adding wide-character string with
cursor advance, 45
adding wide-character string with
no cursor advance, 4—4
converting formatted text in curses
window, 4—13
inserting wide character with no
cursor advance, 4—3
inserting wide-character string with
no cursor advance, 4—6
printing formatted text on curses
window, 4—-14
reading character string from
terminal, 4—11
reading wide character from curses
window, 4—8
reading wide character from
keyboard, 4—12
reading wide-character string with
attributes, 4-9
reading wide-character string
without attributes, 4—10
removing wide character from
curses window, 4—8

D

D_FMT constant

with strftime function, 2—18
D_T FMT constant
using with nl_langinfo function,
2-17
data
internationalization of, 2—1
separation from program code, 2—1
data file
converting from one codeset to
another, 7-9
database
gathering statistics, B—18
datatyping files
in CDE, 5-2
date
converting with strftime function,
2-19
differences in format, 2—16
formatting, 2—-23, A-5
generating strings for, 2—18
date format
defining era in locale source file,
6-25
defining in locale source file, 6-22
DCH escape sequence, C—5
DECCOLM escape sequence, C—5
DECDHLB escape sequence, C—5
DECDHLT escape sequence, C—5
DECDLD control string, C-7
DECDRLBR escape sequence, C—1
bit pattern mapping, C—2
parameters, C—3
DECDWL escape sequence, C—5
DECERLBRA escape sequence
erasing ruled lines, C—4
DECERLBRP escape sequence,
Cc4
decimal point, 6-19
( See also radix character )
DECSTR escape sequence, C—5
DECterm

Index-5



bitmask pattern for ruled lines,
C-3

Clear Display option, C—5

determining ruled lines support,
C-6

device attributes report, C—6

drawing ruled lines, C—1

erasing ruled lines, C—4

erasing ruled lines in an area, C—4

escape sequences and ruled lines,
C-5

length of ruled lines, C—3

Reset Terminal option, C—5

start point for ruled lines, C—3

terminal programming restrictions,
C-7

DECterm restrictions
DECDLD control strings, C—7
downline loadable characters, C—7

Standard Character Set (SCS), C-7

delch macro, 4-8

delset directive
deleting message sets, 3—7
position in message source file, 3—8
restrictions on, 3—7

dense code locale, 2—2
equivalence with Unicode, 2—3
same charmap for Unicode, 6—17
use in applications, 2—3
wide-character encoding, 2—3

digit grouping size
determining with localeconv

function, 2—-19

DIGITAL Replacement Character
Set (DRCS), C-7

display width
for multiwidth characters, 6-53

DL escape sequence, C—5

downline loadable characters,
C-7

dspcat command, 3—-25
reformating catalog output stream,

3-25
dspmsg command, 3-25

Index—6

substituting text strings, 3—26

E

ECH escape sequence, C—5
echo_wchar function, 4-2
echowchar macro, 4—2
ED escape sequence, C—5
EL escape sequence, C—5
encoding format
operating system support for, 2—7
UCs-2, 2-7
UTF, 2-7
errno
setting in threadsafe manner, 6—-38
escape character
in charmap file, 6—3
in message strings, 3—5
redefining in locale source, 6—7
setting for nroff command, 7-6
setting in locale source file, 67
escape_char keyword, 6-7
euro character
and LC_MONETARY category,
6-21
euro support
codesets, 2—7
example
ximdemo application, 5—8
exit function
closing message catalogs, 3—32
extract command, 3—-14

F

fgetc function, A—8
fgets function, A-8
fgetwc function, A—8
fgetws function, A-8

writing a method for, 627
file code, 2—-11
font

bitmap

TrueType, 7-13



compiled for X applications, B-21
creating for Motif, B—10
creating for system software, B—10
creating UDC files for, B—18
creating user-defined glyphs, B—8
files for UDCs, B-10
search by Motif widgets, 5—5
setting default location of UDC
files, 7-3
font editing
cedit screen, B-9
exiting, B—18
font encoding
enabling conversion mechanism,
5-17
system divergence, 5—17
font file
preload, B—-20
font glyph
creating multiple prototypes, B—17
creating multiple sizes, B—17
displaying in actual size, B—17
drawing, B-16
editing, B-17
replacing, B—17
specifying a name, B-18
specifying collating value, B—18
specifying input key sequence,
B-18
font name
benefits of using generic, 5—12
font renderer
Asian PostScript, 7-11
Asian PostScript configuration file,
7-12
TrueType fonts, 7-13
UDC, 7-12
font set, 5—-10
converting encoding in Xt
applications, 5—4
converting encoding of, 5—16

creating and using, 5—11
drawing text with, 5—13
in X applications, 5—10
obtaining metrics, 5—12
Xt Library, 5—4

font set encoding

conversion of GL and GR, 5-16
fontconverter command, B—20

cgen as an alternate, B—20

default creation of font files, B—23

font option, B—22

h option, B-22

merge option, B-22

merge option and font file format,

B-23

options and arguments, B—22

preload option, B—22

udc option, B—22

w option, B—22
form-feed character

in message strings, 3—5
format specifier

in input text strings, 2—23

in output text strings, 2—22
formatting

date and time, 2—17, 2—18

input text, 2—23

messages, 2—22

monetary values, 2—19

numeric values, 2—19

output text, 2—22

format specifiers for, 2—22

fprintf function, A-5
fputs function, A—8
fputws function, A—8

writing a method for, 6-33
fscanf function, A—5
fwide function, A—8
fwprintf function, A5
fwscanf function, A—5

Index—7



G

H

gencat command, 3-21
and delset directive, 3—7
avoiding inadvertent identifier
changes, 3—21
common errors, 3—21
defined by X/Open, 2-21
deleting a message set with, 3—8

generating message catalogs, 3—17

interactive use of, 3—17
lines ignored by, 3—10
message catalog creation, 3—21

message catalog modification, 3—21

message replacement, 3—9

message source modifications, 3—21

processing multiple source files,
3-24
use in makefile, 3—19
using dspcat command output,
3-25

get_wch function, 4—12
get_wstr function, 4-11
getc function, A-8

restricted use of, 2—11
getch function, 4-12
getchar function, A—8

and multibyte characters, 2-9
getn_wstr function, 4-11
getnwstr macro, 4-11
gets function, A-8

restricted use of, 2—11
gettxt function, 3—-33
getwe function, A—8

writing a method for, 6—29
getwch function, 4-12
getwchar function, A-8
getwstr macro, 4-11
graphics

with embedded text, 3—12
GSM escape sequence, C—5

Index—8

help files
in CDE, 5-2

I18N, 1-1
( See also internationalization )
ICH escape sequence, C—5
iconv command, 7-9, A-11
alias file, 7-10
location of algorithmic converters,
7-10
location of table converters, 7—10
iconv function, 7-9, A-11
alias file, 7-10
location of algorithmic converters,
7-10
location of table converters, 7—10
iconv_close function, A-11
iconv_open function, A-11
ideographic character
defining, 7-3
in reference pages, 7—6
sorting, 7-5
ignore file, 3—15
IL escape sequence, C—5
in_wch function, 4-8
in_wchnstr function, 4-9
in_wchstr function, 4-9
initialization function, 2—1
innwstr macro, 4-10
input method
choosing preediting styles, 7—2
default, 5-8
determining in X applications, 5—20
filtering events for, 5-30, 5—-32
FocusIn and FocusOut, 5—32
interaction styles for, 5—22
On-the-Spot, 527
KeyPress, 5-32
KeyRelease, 5—32



locale supported interaction styles,

5-23

opening and closing in X application,

5-21

preediting styles, 5—23, 7-2

X application calls, 5—20
input method server

handling failure of, 5-32

running with application, 7-3
ins_nwstr function, 4—6
ins_wch function, 4-3
ins_wstr function, 46
insnwstr macro, 46
inswch macro, 4-3
inswstr macro, 46
internal process code, 2—-11
internationalization, 1-1

collation algorithms, 2—15
internationalized software

characteristics of, 2—1

tools for developing, 2—1
inwch macro, 4-8
inwchnstr macro, 4-9
inwchstr macro, 4-9
inwstr macro, 4-10
IRM escape sequence, C—5
iscntrl function, A-1
isdigit function, A-1
isgraph function, A-1
islower function, A-1
ISO C functions

WPI extensions, A—5
ISO codesets, 2—4
ISO/IEC 10646 standard, 2—6
IS08859-15

euro support, 2—7
isprint function, A-1
ispunct function, A-1
isspace function, A—1
isupper function, A-1
iswalnum function, A—1
iswalpha function, A-1

iswentrl function, A—1
iswctype function, A2
testing character class, 6-12

iswdigit function, A-1

iswgraph function, A—1
iswlower function, A-1
iswprint function, A—1

iswpunct function, A-1
iswspace function, A-1
iswupper function, A-1
iswxdigit function, A-1

K

keyboard

entering unsupported characters,

2-13

obtaining composed strings, 5—31

L

L10N (localization), 1-2

LANG environment variable
and NLSPATH setting, 3—30
effect on setlocale, 2—25

generating message catalogs, 3—18
including locale file name suffix,

2-25
%L in search paths, 2—25

man command search path, 7-8

langinfo database, 1-4

differences with message catalogs,

3-1
information in, 2—17
querying, 2—17
strftime function, 2—18
wesftime function, 2—18
language
and character handling, 1-2

and internationalized software, 1-2

announcement, 1-1

Index—9



syntax constructions, 2—22
language support
with Latin Cyrillic codeset, 2—4
with Latin Greek codeset, 2—5
with Latin Hebrew codeset, 2—5
with Latin-1 codeset, 2—4
with Latin-2 codeset, 2—4
with Latin-4 codeset, 2—4
with Latin-5 codeset, 2—5
with Latin-9 codeset, 2—5
language variants
documentation for, 7—1
Latin Cyrillic codeset
language support, 2—4
Latin Greek codeset
language support, 2—5
Latin Hebrew codeset
language support, 2—5
Latin-1 codeset
language support, 2—4
Latin-1 locales
and non-euro currency symbols,
6-21
Latin-2 codeset
language support, 2—4
Latin-4 codeset
language support, 2—4
Latin-5 codeset
language support, 2—5
Latin-9 codeset
language support, 2—5
LC_COLLATE
assigning collating weights, 6—-14
defining in locale source file, 6—13
LC_CTYPE
additional options, 6—12
alnum character class, 6-11
case conversion, 6-11
character class, 6-10
character class keywords, 6-11
classes defined for, A—2
defining in locale source file, 6—8
specifying a range of characters,
6-10

Index—10

LC_MESSAGES
affirmative responses, 6—18
affirmative string definition, 6—18
and NLSPATH setting, 3—30
defining in locale source file, 617
negative response string, 6-19
negative responses, 6—18
use by setlocale function, 2—21
use of copy statement, 6—19
LC_MONETARY
and copy statement, 6-21
and euro character, 6-21
and non-euro currency, 621
defining in locale source file, 6-19
symbol names allowed, 6-20
LC_NUMERIC
defining in locale source file, 6—22
LC_TIME
and copy statement, 6-25
defining in locale, 622
1d command
for building a locale methods
library, 6-55
libiconv library, A-11
library functions, 2—1
line wrapping
with nroff command, 7—6
literal
PCS characters in, 2-9
little-endian
and UTF-16, 1-7
locale
and collating sequence, 1-5
binding program to, 2—25
categories in, 2—24
changing setting for specific
category of, 2—27
changing within program, 2—26
character classification, 2—13
charmap for Unicode and dense
code, 6-17
checking for duplicate definitions,
6-58
codepoint mapping, 2—3



compared to message catalogs, 3—1
components of name, 2—25
default system location of, 6-57
defining categories in, 6—6
dense code, 2—2
dense code and Unicode equivalence,
2-3
direct system support, 5—2
displaying information about, 3—26
enabling direct system support, 5—2
enabling support in CDE, 5-1
font sets in X applications, 5—10
in X applications, 5—8
indirect system support, 5—2
initializing at run time, 2—24
location of, 658
name extensions, 2—25, 6-57
nonstandard characters, 6—12
nroff command support, 7—6
objects in X applications, 5—9
provided with localized systems,
2-4
provided with standard system, 2—4
providing UTF-32 processing code,
2-7
reducing the size of, 6-15
retrieving data from scripts, 3—25
sample source file, D-1
setlocale specification, 2—25
setting in Motif applications, 5—4
setting in X applications, 5—9
setting in Xt applications, 5—3
setting with Configure International
Software, 2—2
source files for
charmap file, 6-1
locale definition file, 6—6
source for Unicode and dense code,
6-17
switching between dense code and
Unicode, 2—2

testing, 6-58

Unicode code, 2—2

UTF-8, 2-2

when methods are required, 6—26
locale category

default for omitted, 6—8

LC_COLLATE, 6-13

LC_CTYPE, 6-8

LC_MESSAGES, 6-17

LC_MONETARY, 6-19

LC_NUMERIC, 6-22

LC_TIME, 6-22
locale command

displaying locale information, 3—26
locale definition

sample source file, D-7
locale file

making known to programs, 2—26

resolving duplicate names, 6-58
locale name, 1-1

assignment with suffix, 7-5
locale source file, 6—1

escape character, 6—7

specifying comments, 6—7
locale variable

setting, 1-1
locale variant

assignment of, 2—26
localeconv function, A-5

formatting numeric values, 2—19
localedef command

building a locale, 657

building shareable library, 6-58

compiling methods files, 6-58

cv options, 6-55

default methods, 6-54

f option, 6-57

files used in creation of locale, 6—1

1 option, 6-57

incrementing symbol values, 6—6

m option, 6-58

methods file, 6-56

Index—11



on absence of UNDEFINED
collation, 6-15

v option, 6-58

verbose mode, 6-58

w option, 6-58
localization, 1-2
localtime function

with strftime function, 2—18

LOCPATH environment variable,

6-58

effect on iconv command, 7-10
lowercase characters

testing for, 2—-13

M

man command, 7-8

reference page translations, 7-8
manpage

( See reference page )
mblen function, A—7

writing a method for, 6—-36
mbrlen function, A—7
mbrtowe function, A—7
mbsinit function, A—8
mbsrtowes function, A—7
__mbstopcs method, 627
mbstowes function, 2-11, A-7

writing a method for, 6—-39
__mbtopc method, 6-29
mbtowe function, 2-10, A—7

writing a method for, 6—41
message catalog, 1-3, 3—6

and Motif applications, 1-3

blank lines in, 3—6

closing, 3—32

combining multiple and single

sources, 3—24
comment lines in, 3—10

comments to help translator, 3—10

compared to locales, 3—1
compiling program source, 3—22

Index—12

converting existing program to use,
3-14

converting to source format, 3—25

creating from source file, 3—4

date formats, 2—24

defining non-English constants,
2-10

deleting message sets from, 3—7

deleting messages from, 3—9

design and maintenance
considerations, 3—21

detecting file open failures, 3—31

differences with langinfo database,
3-1

displaying contents of, 3—25

dynamic codeset conversion of,
3-17

editing source files, 3—16

file name extension, 3—21

flowchart for program conversion,
3-16

gencat command, 3—21

general syntax rules, 3—4

generating for different locales,
3-17

in CDE, 5-1

installing in nondefault locations,
3-28

locale to use with, 2—21

location of, 2—22

NLSPATH environment variable,
3-27

one for each application, 3—23

one for each program module, 3—22

order of message sets in, 3—6

passive verb constructions, 2—22

performance issues, 3—24

portability of, 3—21

program access to, 3—27

quoting strings in source files, 3—5

retrieving messages from, 2—21

script access to, 3—25

set directives in, 3—6



source files for, 3—10 preprocessing with mkcatdefs,

translating, 3—10, 3—-16, 3—17 3-17, 3-19
under root account, 3—32 separating fields in, 3—5
word order changes, 2—23 symbolic names in, 3—8
message deletion message string
identifiers and other characters, extracting into source file, 3—14
3-9 specifying delimiter, 3—10
specifying set directive, 3—9 message system, 2—1
with numeric identifiers, 3—9 X/Open standard, 2—20
with symbolic identifiers, 3—9 messages, 3—6
message entry changing to empty string, 3—9
format, 3—8 coding special characters in, 3—5
message file construction of strings in, 2—22
advantages of, 2—20 deleting, 3-9
backslash in, 3—5 design strategy for maintenance,
guidelines for maintenance, 3—25 3-22
multiple quote directives, 3—10 displaying from message catalog,
newline character, 3—5 3-26
positional formatting, 3—14 identifiers for, 3-8
using hexadecimal values in, 3—5 language constraints on, 2—20
using octal values in, 3—5 maintenance of, 3—6
message identifier maximum length of, 3—9
advantages of symbolic, 3—22 order within sets, 3—8

message replacement ordering of elements in, 2—22

W%th gencat command, 3-9 preceding and trailing spaces in,
with mkcatdefs command, 3—9 3.5

message set, 3—6
( See also message catalog )

advantage of, 3-6 separating from program code, 1-2

defaqlt, 37 sharing by application modules,
deleting, 3—7, 3-9 3.6

replacing all messages in, 3—9
rules for identifiers, 3—6

quotation delimiter, 3—10
reading into program, 3—32

style guidelines, 3—11
symbolic identifiers for, 3—19

specifying identifiers for, 3—6 methods. 6-25

symbolic identifiers for, 3—19 appli ca;;i on of default. 6-54
message source file availability of, 6-26

contents of, 3—4 ’

. . L building shareable libraries for,
line continuation in, 3—5 6-55

one for each program, 3—23 list of optional, 654

ong fqr each prog‘ran31 n‘llodule, 3-22 localedef specification, 6-56
ordering messages, 3— mblen, 6-36

Index—13



__mbstopes, 627
mbstowces, 6—-39
__mbtopc, 6-29
mbtowe, 6—41
optional, 6-54
__pecstombs, 6-33
__pctomb, 6-35
required, 6-26
requirement with multibyte
codesets, 6—26
specifying to localedef command,
6-58
westombs, 6—45
weswidth, 6-50
wctomb, 6—48
wewidth, 6-52
writing optional, 6—54
methods file, 6-1
mkcatdefs command, 3—19
and delset directive, 3—7
common errors, 3—21
convert symbolic names to numbers,
3-8
deleting all messages from a set,
3-10
deleting messages, 3—9
header file produced by, 3—18
incomplete message header file,
3-20
interactive use of, 3—17
lines ignored by, 3—10
mapping identifiers and numbers,
3-20
message replacement, 3—9
portability, 3—20
preprocessing message text sources,
3-17
processing multiple source files,
3-24
restrictions and guidelines, 3—20
use in makefile, 3—19
when specifying set identifiers, 3—6
mkfontdir command, B-21

Index—14

MNLS, 4-1
monetary value
formatting, 2—19
month name
defining in locale source file, 6—22
Motif application, 5—4
and message catalog, 1-3
bidirectional text display, 5—7
compound strings, 5—6
creating UDC fonts for, B-9, B-19
editing glyphs, B-9
handling messages in, 3—1
loadable font requirement, B—23
notes on language setting, 5—5
setting language in, 5—4
setting locale, 5—5
text translation issues, 3—11
using font sets, 5—5
using text widgets, 5—5
XtSetLanguageProc call
requirement, 5—5
Motif interface
separating messages from code, 1-3
multibyte character, 1-5
charmap for, 6—4
compared to wide characters, 2—11
converting to wide-character
format, 2—-11, 6-25
interfaces for manipulating, 2—11
testing for, 2—10
multibyte codeset
required use of methods, 6—26
multibyte data
UTF-8 locales, 2—3
multithreaded applications
setting errno for, 6-38
mvadd_wch function, 4—2
mvadd_wchstr function, 4—4
mvaddnwstr macro, 4-5
mvaddw_wchnstr function, 4—4
mvaddwch macro, 42
mvaddwchnstr macro, 4—4
mvaddwchstr macro, 4—4
mvaddwstr macro, 45



mvdelch macro, 4-8
mvget_wch function, 4-12
mvget_wstr function, 4-11
mvgetch function, 4—12
mvgetn_wstr function, 4-11
mvgetnwstr macro, 4-11
mvgetwch function, 4-12
mvgetwstr macro, 4-11
mvin_wch function, 4-8
mvin_wchnstr function, 4-9
mvin_wchstr function, 4-9
mvinnwstr macro, 4—10
mvins_nwstr function, 46
mvins_wch function, 4-3
mvins_wstr function, 46
mvinsnwstr macro, 4—6
mvinswch macro, 4-3
mvinswstr macro, 4-—6
mvinwch macro, 4—8
mvinwchnstr macro, 4-9
mvinwchstr macro, 4-9
mvinwstr macro, 4—10
mvprintw function, 4-14
mvscanw function, 4—13
mvw_getwch function, 4-12
mvwadd_wch function, 4-2
mvwadd_wchnstr function, 4—4
mvwadd_wchstr function, 4—4
mvwaddnwstr macro, 4-5
mvwaddwch macro, 42
mvwaddwchnstr macro, 4—4
mvwaddwchstr macro, 4—4
mvwaddwstr macro, 45
mvwdelch function, 4—-8
mvwdelch macro, 4-8
mvwget_wstr function, 4-11
mvwgetch function, 4-12
mvwgetn_wstr function, 4—11
mvwgetnwstr macro, 4-11
mvwgetwch function, 4—12
mvwgetwstr macro, 4—11

mvwin_wch function, 4-8
mvwin_wchnstr function, 4-9
mvwin_wchstr function, 4-9
mvwinnwstr macro, 4-10
mvwins_nwstr function, 46
mvwins_wch function, 4-3
mvwins_wstr function, 4—6
mvwinsnwstr macro, 4—6
mvwinswch macro, 4-3
mvwinswstr macro, 4-—6
mvwinwch macro, 4-8
mvwinwchnstr macro, 4-9
mvwinwchstr macro, 4-9
mvwinwstr macro, 4—10
mvwprintw function, 4-14
mvwscanw function, 4—13

N

negative sign
defining for monetary values, 6—19
determining with localeconv
function, 2—19
neqn preprocessor
with tbl and nroff commands, 7-8
newline character
in message strings, 3—5
NL_CAT _LOCALE constant, 2—22
nl_catd type, 3—28
declaring in program, 2—21
nl_langinfo function, A-5
and langinfo database, 2—17
as argument to strftime function,
2-19
value returned for CODESET, 6—4
NL_MSGMAX constant, 3—8
NL_SETD constant, 2—27
defining default message set value,
3-7
NL_SETMAX constant, 3—6
NL_TEXTMAX constant

Index—15



message text parameter, 3—9
NLSPATH environment variable,
3-28
and LC_MESSAGES setting, 3—30
ignored by catopen, 3—32
substitution fields in setting of,
3-29
use by catclose function, 2—22
use by catopen function, 2—22,
3-28
no responses
defining in locale, 6—17
no-first characters, 7—7
defining private set of, 7—7
no-last characters, 7-7
defining private set of, 7—7
noexpr keyword, 6-18, 6-19
nostr keyword, 6-19
nroff command, 7-6
can-space-after, 7—8
ideographic characters, 7-8
justification rules, 7—8
ki, 7-7
k1, 7-7
ko, 7-7
line wrapping, 7-6
neqn equation formatting, 7—8
rules for wrapping lines, 7-6
null characters, 2—13
restriction on, 2—13
numeric conversion, A—7
numeric value
customized formatting, 2—19

O

Cb option, 5-23
for input methods, 7-2
requirements for creating XIC
object, 5—26
text widget for, 5—6
operating system
international interfaces, 1-1
international utilities, 1-1
order_start keyword, 6-14
output contexts, 5-15
output methods, 5-15
output text
formatting, 2—22
Over-the-Spot preediting style
for input methods, 7-2
text widget for, 5—6

P

octal value
in message strings, 3—5
Off-the-Spot preediting style
auto-resize requirement, 5—6
for input methods, 7—2
text widget for, 5—6
On-the-Spot preediting style
callback requirement, 5—27

Index—16

parentheses character

line wrapping of, 7—7
patterns file, 3—15
PCS, 2-9

availability of characters, 1-6

substituting characters in, 1-6
__pestombs method, 6-33
__pctomb method, 6-35
performance tradeoffs

collation, 2—-16
phrase database

setting default locations of, 7—3
phrase input method, 7-3
Portable Character Set

( See PCS)
positive sign

defining for monetary values, 6—19

determining with localeconv

function, 2—19

postscript font

font renderers, 7-11
preediting string

attributes for, 5—25

handling in X application, 527
preediting style, 7-2



Off-the-Spot, 7-2
On-the-Spot, 7-2
Over-the-Spot, 7-2
Root Window, 7—2
setting priority of, 7—2
specifying, 7-3
printf command
writing formatted output, 3—26
printf function, A-5
and catgets function, 2—22
format specifiers for, 2—22
in X Window applications, 5-9
restricted use of, 2—11
printw function, 4-14
program code
separating from messages, 1-2
program development
international, 1-1, 7-1
modular, 1-2
programming techniques
illustration of, 5—8
properties of characters
defining in a locale, 6—8
punctuation character
line wrapping of, 7—7
putc function, A-8
restricted use of, 2—11
puts function, A—8
restricted use of, 2—11
putwe function, A—8

Q

quote directive
multiple in source file, 3—10

R

determining with localeconv
function, 2—-19
extracting from langinfo database,
2-20
variation for, 2—16
reference character attribute
databases, B—4
reference page
in CDE, 5-2
location of translated files, 7—8
printing, 7-8
with ideographic characters, 7-6
reference page format
no-first characters, 7—7
no-last characters, 7—7
Reset Terminal option
ruled lines in DECterm, C—5
resource databases
handling localized, 5—19
resource files
in CDE, 5-2
response strings
defining in locale, 6-17
return character
in message strings, 3—5
RIS escape sequence, C—5
Root Window preediting style
for input methods, 7-2
text widget for, 5—6
run-time environment
binding locale to, 2—24

S

radicals, 1-5
radix character

defining for monetary values, 6—19

defining for numeric values, 6—22

sample application
location for, 2—1
scanf function, A5
format specifiers for, 2—23
restricted use of, 2—-11
scanw function, 4-13
screen handling
character-cell terminals, 4—1

Index—-17



script

retrieving locale data from, 3—25

using message catalogs from, 3—25
server

starting for input method, 7-3
set directive, 3—6

for deleting message sets, 3—9
setlocale function, A—1

and X applications, 5—8

binding to preset locales, 2—25

category argument, 2—24

changing locale setting with, 2—26

changing specific locale category,

2-27

initializing locale, 2—24

locale_name argument, 2—25
shareable libraries

for locale methods, 655

specifying in methods file, 656
shared libraries

to support locale methods, 6—25
shell script, 3—25
shift states, 2—12
Sign extension, 6—-32
SoftODL service, B—1, B-18
software

internationalized, 1-1, 1-2
sort

of hyphenated words, 6-15
sort command, 7-5, B-18

( See also asort command )
sort directive

keywords, 6-14

number of, 6-14

with two keywords, 6—14
sort rules

defining in locale source file, 6-13
sorting

internationalized rules for, 1-4
sorting characters

in different languages, 7-5
source files

for message catalogs, 3—2
sprintf function, A-5

Index—18

sscanf function, A-5
strcat function, A9
strchr function, A—9
stremp function, A-10
restrictions on, 2—15
strcoll function, A—4
advantages of, 2—15
restrictions on, 2—15
strepy function, A—10
strespn function, A-9
strextract command, 3—-14
files created by, 3—15
ignore file, 3—15
patterns file, 3—15
strfmon function, A-5
formatting monetary values, 2—19
strftime function, A-5
and langinfo database, 2—18
converting to date or time, 2—19
formatting date and time, 2—18
nl_langinfo function as argument,
2-19
with time and localtime functions,
2-18
string, 1-5
( See also character string )
string comparison, 2—15
string-handling functions, A-9
strings file, 3—15
strlen function, A—10
strmerge command, 3—-14
files created by, 3—15
strncat function, A-9
strncmp function, A-10
strncpy function, A-10
strpbrk function, A-9
strptime function, A—5
strrchr function, A-9
strstr function, A-9
strtod function, A—7
strtok function, A-11
strtol function, A—7
strtoul function, A-7



stty command
odl options of, B—1
StyleManager backdrop files
in CDE, 5-2
StyleManager palette files
in CDE, 5-2
substitution fields for NLSPATH
setting, 3—29
surrogate character extension
and UTF-16, 1-7
swprintf function, A-5
swscanf function, A—5
symbolic identifiers
replacing numbers in message sets,
3-19
symbolic name
convert for gencat input, 3—8
defining with collating-symbol,
6-16
in character map files, 6—4
System V Multi-National
Language Supplement
curses Library, 4—1

T

tab character

in message strings, 3—5
table formatting

.T'S and .TE macros, 7—8
tbl command, 7-8

neqn equation formatting, 7—8
technical references

viewing Asian characters, 7—1
terminal drivers

user-defined character recognition,

B-18

terminal emulation

escape sequences in programs, C—1
territories

and cultural data, 1-3
text

curses routines to convert, 4—13
curses routines to print, 4—14
text display
right to left, 5-7
text drawing
font sets in X applications, 5—13
text input
handling in X applications, 5—19
text justification by nroff, 7-8
text strings
guidelines for translation, 3—11
statistics on length and language,
3-11
thousands separator
defining for monetary values, 6—19
defining for numeric values, 6—22
determining with localeconv
function, 2—19
variation for, 2—16
time
converting with strftime function,
2-19
time format
defining in locale source file, 6—22
time function
with strftime function, 2—18
time values
formatting, 2—-18, A-5
tolower function, 6-11, A-3
toupper function, 6-11, A-3
towctrans function, A—4
towlower function, 6-11, A-3
advantages of, 2—14
towupper function, 6-11, A-3
advantages of, 2—14
trans command
translating message catalogs, 3—17
trans utility
locating text in message files, 3—11
translation
abbreviations, 3—14
and grammatical rules, 3—12

Index—19



designing dialog boxes, 3—12
message catalogs, 3—11
message guidelines, 3—12
positional formatting, 3—14
requirements for messages, 3—11
specifying ordinal positioning, 3—22
term identifiers, 3—13
text and graphics, 3—12
text string guidelines, 3—11
trans utility, 3—11
use of source comments, 3—11
word order, 3—13

trigraph sequences
supported by C language compiler,

2-13
TrueType fonts, 7-13

U

UCs, 1-7, 2-6
ucs-2, 1-7, 2-7
UCS-4
codeset, 2—6
support of, 1-8
UCS-4 processing code
convert UTF-8 data to, 2—7
UDC
Asian language restrictions, B—7
attributes of, B—3
cedit command, B-14
character attribute record, B-3,
B-7
choosing font size, B-9
collation weight, 7-5
conversion from ULTRIX, B—4
creating, B-1, B-3
creating classes, B—6
creating codeset values, B—6
creating font glyphs, B—8
creating input key sequences, B—6
creating names, B—6
deleting, B—6
in Asian languages, 7-3

Index—20

languages supported for, B—4
on-demand loading of files, B—1
scaling fonts, B—7

setting language and codeset, B—8
setup for display, B—1

UDC characters

codes for character editing, B—-8

UDC database, 7-3

default path to, B—3

font files for, B—18

font renderer for, 7—12

location configuration cp_dirs file,
7-3

on-demand loading, B-1

private, B—3

setting default locations of, 7—3

support files for, B—18

systemwide, B—3

UDC editor, B-3

character attributes, B—3

UDC font converter

for Motif applications, B—10

UDC fonts

in bdf format, B—19
in pef format, B—19
merging with standard fonts, B—23

UID files

in CDE, 5-2

UNDEFINED statement

benefits of, 615
operands, 6-15

ungetc function, A8
ungetch function, 4—12
ungetwe function, A—8
ungetwch function, 4-12
Unicode, 1-7, 2-6

( See also UCS )
standard, 2—6

Unicode locale, 2—-2

and standards, 2—2

equivalence with dense code, 2—3
private use area, 2—3

same charmap as dense code, 6—17
wide-character encoding, 2—2



Universal Character Set
( See UCS)
universal transformation format
( See UTF )
universal.UTF-8
when to use, 2—7
UNIX standards, 1-1
uppercase characters
testing for, 2—13
user-defined character
( See UDC )
UTF
formats supported on system, 1-7
recommended, 1-7
UTF-16
and surrogate characters, 1-7
and UCS-2, 1-7
and UCS-4, 1-7
byte orientation, 1-7
UTF-32
and byte orientation, 1-8
internal process code, 2—2
restrictions on, 1-8
UTF-32 processing code
list of locales, 2—7
UTF-8, 2-7
and UCS-4 encoding, 1-7
convert to UCS-4, 2—7
converters and locales, 1-7
euro support, 2—7
UTF-8 locales, 2—2
and multibyte data, 2—3
universal, 2—3

Vv

vw_scanw function, 4-13
vwprintf function, A-5
vwprintw function, 4-14
vwscanw function, 4-13

W

viprintf function, A-5
vfwprintf function, A-5
vprintf function, A5
vsprintf function, A-5
vswprintf function, A-5
vw_printw function, 4-14

wadd_wch function, 4—2
wadd_wchnstr function, 4—4
wadd_wchstr function, 4—4
waddnwstr function, 4-5
waddwch function, 4-2
waddwchnstr function, 4—4
waddwchstr macro, 4—4
waddwstr macro, 4-5
wchar_t

header file descriptions, 1-5
wertomb function, A—7
wescat function, A-9
weschr function, A-9
wesemp function, A-10

restrictions of, 2—15
wescoll function, A—4

advantages of, 2—15
wescepy function, A-10
wesespn function, A-9
wesftime function, A-5

and langinfo database, 2—18
weslen function, A—10
wesncat function, A—9
wesnemp function, A—10
wesnepy function, A-10
wespbrk function, A—9
wesrchr function, A—9
wesrtombs function, A—7
wesstr function, A-9
westod function, A—7
westok function, A-11
westol function, A7
westombs function, A—7

writing a method for, 6-45

Index—21



westoul function, A-7
weswes function, A—9
weswidth function, A-11

writing a method for, 6-50
wesxfrm function

advantages of, 2—15
wctomb function, A—7

writing a method for, 6—48
wetrans function, A—4
wetype function, A-2

testing character class, 6-12
wewidth function, A-11

writing a method for, 6-52
wecho_wchar function, 4—2
wechowchar macro, 4—2
weekday names

defining in locale source file, 6—22
wget_wch function, 4—12
wget_wstr function, 4—11
wgetch function, 4—12
wgetn_wstr function, 4-11
wgetnwstr function, 4-11
wgetwch function, 4—12
wgetwstr macro, 411
wide character, 1-5

compared to multibyte characters,

2-11

curses routines to add, 4—2

curses routines to insert, 4—3

curses routines to read, 4—8

curses routines to read from

keyboard, 4—12

curses routines to remove, 4—8

default size of, 2—11
wide-character data type

WPI support, A—1
wide-character encoding

and dense code locales, 2—3

Unicode locales, 2—2

use of ctype, 2—14
wide-character string, 1-5

curses routines to add, 4—4, 4-5

curses routines to insert, 4—6

curses routines to read, 4-9, 4-10

Index—22

win_wch function, 4-8
win_wchnstr function, 4-9
win_wchstr function, 4-9
winnwstr function, 4-10
wins_nwstr function, 4—6
wins_wch function, 4-3
wins_wstr function, 46
winsnwstr function, 4—6
winswch function, 4-3
winswstr macro, 4—6
winwch function, 4-8
winwchnstr function, 4-9
winwchstr macro, 4-9
winwstr macro, 4-10
WLS subsets
locales provided with, 2—4
wmemchr function, A-11
wmemecmp function, A-11
wmemcpy function, A-11
wmemmove function, A-11
wmemset function, A-11
WPI
case conversion functions, A—3
character classification functions,
A-1
character collation functions, A—4
formatting date and time values,
A-5
functions for codeset conversion,
A-11
input/output functions, A—8
list of interfaces, A—1
locale announcement function, A—1
numeric conversion functions, A—7
printing functions, A—5
retrieving langinfo data, A—5
scanning functions, A—5
string-handling functions, A—9
wchar and multibyte conversion,
A-T7
WPI extensions
for ISO C functions, A—5
WPI interface
passing text to, 5—9



wprintf function, A-5
wprintw function, 4-14
wscanf function, A-5
wscanw function, 4—13

X

X applications
creating UDC fonts for, B-19
developing multilingual, 5-9
developing portable, 5—22
filtering events for, 5-30
functions for handling text
encoding, 5—13
handling messages in, 3—1
loadable font requirement, B—23
obtaining characters and key
symbols, 5-31
setting locales, 5—8
text translation issues, 3—11
use of multibyte PostScript fonts,
7-11
X libraries
input processing summary, 5—34
text for interclient communication,
5-17
using internationalization features,
5-1
using with input methods, 5—34
X Open standard
message system requirements,
2-20
X Toolkit, 5—2
( See also Xt Library )
X Toolkit Intrinsics, 5—4
( See also Xt Library )
X/Open standards
requirements on codesets, 2—12
X11R6, 5-1
XBaseFontNameListOfFontSet
function, 5-11

XCloseIM function, 5-20, 5-21
XCloseOM function, 5-16
XCreateFontSet function, 5-11
XCreatelC function, 5—24
conditions for failure, 5—26
XCreateOC function, 5-16
XDefaultString function, 5—17
XDestroy function, 5-24
XDestroyOC function, 5-16
XDisplayOfIM function, 5—20
XDisplayOfOM function, 5-16
XDm Library, 5—4
XDrawlImageString function, 5-13
XDrawlmageString16 function,
5-13
XDrawString function, 5-13
XDrawString16 function, 5-13
XDrawText function, 5-13
XDrawText16 function, 5—13
XExtentsOfFontSet function, 5—12
XFillRectangle function, 5-15
XFilterEvent function, 5-30
called by XtDispatchEvent function,
5-31
XFontSet object, 5-9
XFontSet structure, 5-10
resource attributes for, 5—4
Xt routine support, 5—4
XFontSetExtents structure, 5—12
XFontsOfFontSet function, 5—11
XFontStruct structure, 5-10
XFreeFontSet function, 5-11
XGetICValues function, 526
XNFilterEvents argument, 5—30
XGetIMValues function, 5-22,
5-23
XGetOCValues function, 5-16
XGetOMValues function, 5-16
XIC object, 5-9, 5-20
and XNClientWindow attribute,
5-26

Index—23



attributes of, 5—24
creating and using, 5—24
destroying, 5—24
explicitly closing, 5—34
managing, 5—26
registering preediting callbacks for,
5-26
specifying attributes for, 5-25,
5-26
XIM object, 5-9, 5-20
closing if IM server fails, 5—32
opening and closing, 5—20
ximdemo application, 5-8
XIMOfIC function, 5—-26
XLocaleOfFontSet function, 5—11
XLocaleOfIM function, 5-20
XLocaleOfOM function, 5-16
XLookupString function, 5-32
Xm Library, 5—4
XmbDrawlmageString function,
5-13, 5-15
XmbDrawString function, 5-13
XmbDrawText function, 5-13
XmbLookupString function, 5-31,
5-32
XmbResetIC function, 5-26
XmbSetWMProperties function,
5-17, 5-19
XmbTextEscapement function,
5-12, 5-15
XmbTextExtents function, 5—12
XmbTextListToTextProperty
function, 5-17
XmbTextPerCharExtents
function, 5—12
XmbTextPropertyToTextList
function, 5-17
XMODIFIERS environment
variable, 5-8
XmStringCreate function, 5—7
XmStringCreateLocalized
function, 5-7
XmText widget, 5—6

Index—24

font search pattern, 5-5
XmTextField widget, 5—6
font search pattern, 5-5
XNDestroyCallback resource,
5-32
XNQueryInputStyle function,
5-22
XOC object, 5-9
drawing locale-dependent text,
5-15
XOM object, 5-9
drawing locale-dependent text,
5-15
XOMOfOC function, 5-16
XOpenIM function, 5-20, 5-21
conditions for failure, 5—20
defaults upon failure, 5-20
XOpenOM function, 5-16
xpgddemo
sample application, 2—1
XResourceManagerString
function, 5-19
XrmDatabase component, 5-9
XrmGetFileDatabase function,
5-19
XrmGetStringDatabase function,
5-19
XrmLocaleOfDatabase function,
5-19
XrmPutFileDatabase function,
5-19
XrmPutLineResource function,
5-19
XSelectInput function, 5-30
xset command, B-21
XSetICFocus function, 526, 5—-32
XSetICValues function, 5-26
XSetIMValues function, 5-32
XSetLocaleModifiers function,
5-3, 5-8
XSetOCValues function, 5-16
XSetOMValues function, 5-16
XSH CAE specification



functions included in, A-1
XSupportsLocale function, 53,
5-8
Xt Library
codesets, 5—4
font sets, 5—4
input methods, 5—4
internationalization features, 5—2
internationalization under different
releases, 5—5
locale and resources paradox, 5—3
setting locale, 5—3
Xt routines
XtSetLanguageProc call
requirement, 5—3
XtApplnitialize function, 5-3
XtDispatchEvent function, 5—4,
5-31
XtDisplaylInitialize function, 5—3
XtInitialize function, 5-3
XtOpenDisplay function, 5—3
XtSetLanguageProc call
required for Motif internationaliza-
tion, 5—5
XtSetLanguageProc function, 5—3
XUnsetICFocus function, 5-26,
5-32

XVaCreateNestedList function,
5-25

XwcDrawImageString function,
5-13

XweDrawString function, 5-13

XweDrawText function, 5—13

XwcFreeStringList function, 5-17

XwcLookupString function, 5-31

XwcResetIC function, 5—-26

XwecTextEscapement function,
5-12

XwecTextExtents function, 5—12

XwcTextListToTextProperty
function, 5-17

XwcTextPerCharExtents function,
5-12

XwcTextPropertyToTextList
function, 5-17

Y

yes responses
defining in locale, 6-17
yesexpr keyword, 6-18
yesstr keyword, 6-18
yesxpr keyword, 6-18

Index—25



