
DIGITAL UNIX33333333333333333
Common Desktop Environment:
Application Builder User’s Guide
Order Number: AA-QTM1A-TE

March 1996

Product Version: DIGITAL UNIX Version 4.0 or higher

33333333333333333
Digital Equipment Corporation
Maynard, Massachusetts

Please
Recycle

Copyright 1995 Digital Equipment Corporation
Copyright 1994, 1995 Hewlett-Packard Company
Copyright 1994, 1995 International Business Machines Corp.
Copyright 1994, 1995 Sun Microsystems, Inc.
Copyright 1994, 1995 Novell, Inc.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the
restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

The code and documentation for the DtComboBox and DtSpinBox widgets were contributed by Interleaf, Inc. Copyright
1993, Interleaf, Inc.

UNIX is a trademark exclusively licensed through X/Open Company, Ltd.

OSF/Motif and Motif are trademarks of Open Software Foundation, Ltd.

X Window System is a trademark of X Consortium, Inc.

iii

Contents

Preface . ix

1. Getting Started . 1

Application Builder Primary Window. 2

Starting and Exiting App Builder. 3

♦ To Open App Builder from an Icon 3

♦ To Start App Builder from the Command Line. 3

♦ To Exit App Builder . 3

Overview of the App Builder Process 4

Object Types . 6

Rules for Dropping Objects . 7

2. Managing Projects and Modules. 9

Creating, Opening, and Saving Projects. 9

♦ To Create a New Project. 10

♦ To Open an Existing Project 11

♦ To Save a Project . 12

iv Application Builder User’s Guide

♦ To Save a Version of a Project 12

♦ To Rename a Project. 13

♦ To Save a Project to a File (Encapsulate Project) . . . 14

♦ To Close a Project . 15

Creating, Importing, Exporting, and Saving Modules 15

♦ To Create a New Module . 15

♦ To Import a Module into a Project 16

♦ To Save a Module . 17

♦ To Rename a Module . 18

♦ To Export a Module . 18

♦ To Save a Module in UIL Format 19

Showing, Hiding, and Removing Modules 20

♦ To Show a Hidden Module . 20

♦ To Hide a Shown Module . 21

♦ To Remove a Module from a Project 21

3. Laying Out a User Interface . 23

Dragging and Dropping Palette Objects 24

♦ To Create a Main Window, Custom Dialog, or File
Selection Dialog . 24

♦ To Create a Window with a Spanning Control Pane. 24

Selecting Interface Objects . 26

♦ To Select Window or Pane Objects in the Interface or the
Browser. 26

♦ To Select Control Objects in the Interface or the Browser
26

Contents v

Editing Objects in the Interface or in the Browser 28

♦ To Cut or Copy Objects. 28

♦ To Paste Objects . 29

♦ To Delete Objects . 29

Aligning and Distributing Objects in an Interface. 30

♦ To Align Control Objects in an Interface. 30

♦ To Distribute Control Objects Evenly 31

4. Editing Properties of Interface Objects 33

♦ To Open a Property Editor . 34

♦ To Edit Properties of an Object 34

♦ To Display a Fixed Property Editor 35

♦ To Select Colors from the Color Chooser 36

Example: Editing Main Window Properties 37

♦ To Edit Properties of a Main Window 37

5. Creating and Editing Panes, Menus, and Messages . 41

Creating and Editing Pane Entities 42

Child Panes . 42

♦ To Create a Child Pane . 42

Layered Panes . 43

♦ To Create a Layered Pane . 43

♦ To View Layered Panes . 44

Paned Windows . 44

♦ To Create a Paned Window . 45

♦ To Add a Pane to a Paned Window 46

vi Application Builder User’s Guide

♦ To Unmake a Paned Window 46

Creating and Editing Menus. 47

Menu Property Editor . 47

♦ To Create a Menu . 49

♦ To Edit a Menu . 50

♦ To Attach an Existing Menu to an Object 52

♦ To Create and Attach a Menu 54

♦ To Attach an Existing Submenu to a Menu Item . . . 55

♦ To Create and Attach a Submenu 56

♦ To Create and Attach a Help Menu 57

Creating and Editing Messages . 59

Message Editor . 59

♦ To Create a Message Dialog Box 61

♦ To Edit a Message . 62

♦ To Connect a Non-Modal Message to a Function . . . 63

Example: Writing Code for Messages 64

♦ To Write Code for Modal Messages 65

♦ To Write Code for Non-Modal Messages 67

6. Adding Functionality to the Interface. 71

Creating Help and Help Connections 71

About App Builder Help . 72

♦ To Create Help . 72

♦ To Connect a Help Menu to On Item Help 74

♦ To Connect a Help Menu to a Help Volume. 75

Contents vii

Making Connections Between Objects 76

♦ To Make a Connection between Two Objects. 76

Connecting Menu Items to Actions. 78

♦ To Connect a Menu Item to a Predefined Action . . . 78

♦ To Connect a Menu Item to a Call Function 79

♦ To Connect a Menu Item to an Execute Code Action 80

Editing Existing Connections . 81

♦ To Edit an Existing Connection 82

Establishing Drag and Drop Behavior 83

♦ To Establish Drag and Drop Behavior. 85

Establishing Application Framework Behavior 87

♦ To Establish Application Framework Behavior 90

7. Grouping and Attaching Objects 93

Grouping Objects . 94

♦ To Create a Group . 94

♦ To Edit Group Properties . 95

♦ To Ungroup Objects in an Interface. 96

♦ To Create a Border around an Object 97

Attaching Objects . 97

Attachments Editor . 98

♦ To Attach Objects in an Interface 103

 Attachment Example: Custom Dialog 104

8. Testing Menus, Help, and Connections 105

♦ To Test a Project or Selected Modules 106

viii Application Builder User’s Guide

♦ To Test Help Volume Access. 106

♦ To Test On Item Help . 107

♦ To Test Menus in a Module . 108

♦ To Test Connections in a Project 109

9. Generating Code and Building an Application 111

 Making and Running an Application. 112

♦ To Make and Run in One Step 112

♦ To Generate Code, Make, and Run Separately 113

♦ To Set Code Generator Options 113

♦ To Set Environment Options 114

♦ To Generate Code from the Command Line 116

Adding User Code to Generated Code 117

A. App Builder Windows and
Dialog Boxes . 119

B. Revolving Property Editor . 139

Index. 161

ix

Preface

This manual introduces the Application Builder (referred to throughout
this document as App Builder) and shows you how best to use it. See
“Overview of the App Builder Process” on page 4 for a summary
description.

Who Should Use This Book

This user’s guide is for anyone who wants to build or prototype a user
interface with App Builder. Because you can easily create and modify user
interfaces without writing any code using App Builder, it is a powerful tool
for programmers and non-programmers—including user interface designers
and project managers.

How This Book Is Organized

Chapter 1, “Getting Started,” includes an annotated picture of the App
Builder primary window, an overview of the process of building an
application, and instructions for starting App Builder.

Chapter 2, “Managing Projects and Modules,” explains how to create,
open, save, and close projects and modules, and how to hide and show
modules.

Chapter 3, “Laying Out a User Interface,” explains how to drag and
drop objects from the object palettes, how to edit interface objects, and how
to align and distribute control objects in the interface.

x Application Builder User’s Guide

Chapter 4, “Editing Properties of Interface Objects,” explains how to
edit object properties in the Revolving Property Editor.

Chapter 5, “Creating and Editing Panes, Menus, and Messages,”
explains how to create and edit pane objects, menus, and message dialog
boxes.

Chapter 6, “Adding Functionality to the Interface,” explains how to
create on-item help, how to create functional connections between objects,
and how to establish drag and drop and application framework behavior.

Chapter 7, “Grouping and Attaching Objects,” explains how to group
control objects and how to attach objects to each other for dynamic resize
behavior.

Chapter 8, “Testing Menus, Help, and Connections,” explains how to
change to test mode for testing certain App Builder functions.

Chapter 9, “Generating Code and Building an Application,”
describes the Code Generator and explains how to generate code, make
your application, and run it.

Appendix A, “App Builder Windows and Dialog Boxes,” describes the
primary window, including its object palettes, and other App Builder
windows, including the Project Organizer, the Module Browser, and the
Code Generator.

Appendix B, “Revolving Property Editor,” describes the Revolving
Property Editor in general and each of the individual property editors
specifically.

xi

What Typographic Changes and Symbols Mean

The following table describes the typefaces and symbols used in this book.

Table P-1 Typographic Conventions

Typeface
or Symbol Meaning Example

Monospace The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail .

Italic Command-line placeholder:
replace with a real name or
value

To delete a file, type rm
filename.

Italic Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Code samples are included in boxes and may display the following:

% UNIX C shell prompt %

$ UNIX Bourne and Korn shell
prompt

$

Superuser prompt, all shells

xii Application Builder User’s Guide

1

Getting Started 1

App Builder is a development tool that makes designing, creating, and
prototyping a user interface easier. App Builder gives you the freedom to
create and try user interfaces without writing any code. Because you can
create and modify an interface easily, you’ll find that you can spend more
time designing and testing, the surest route to better user interfaces.

Application Builder Primary Window 2

Starting and Exiting App Builder 3

Overview of the App Builder Process 4

Object Types 6

Rules for Dropping Objects 7

2 Application Builder User’s Guide

1

Application Builder Primary Window

The Application Builder primary window, shown below, is the starting point
for creating a user interface. See “App Builder Primary Window” on
page 120,” for a detailed description of the primary window.

Figure 1-1 Application Builder primary window

The basic method for creating an App Builder user interface is to drag and
drop objects from the App Builder primary window onto the workspace or
onto other App Builder objects. See Chapter 3, “Laying Out a User
Interface,” for details.

Getting Started 3

1

Starting and Exiting App Builder

♦ To Open App Builder from an Icon

◊ If App Builder has previously been open and the App Builder icon is on the
workspace, double-click the icon to open App Builder.

◊ If App Builder is installed on the Front Panel, click the App Builder icon in
the Personal Applications subpanel to open App Builder.

To install App Builder on the Front Panel, see “To Put an Application
Icon in the Front Panel” in the Application Manager help volume for
instructions.

♦ To Start App Builder from the Command Line

The command to run App Builder is dtbuilder . Do the following to start
App Builder from the command line:

◊ Type dtbuilder

If dtbuilder is in your path, App Builder will start. If it is not in your
path, you will need to type the full path name (which, by default, is
/usr/dt/bin/dtbuilder) or change to the folder where dtbuilder is
located before typing dtbuilder .

♦ To Exit App Builder

◊ Choose Exit from the File menu of the App Builder primary window to quit
App Builder.

If you have not saved all changes, a message dialog box will be
displayed, giving you the opportunity to discard the changes and
continue the exit process or to cancel the exit process and continue
running App Builder. Click Discard Changes if you do not want to save
them. Click Cancel if you do not want to discard your changes; you could
then save your changes and exit.

4 Application Builder User’s Guide

1

Overview of the App Builder Process

The basic process of building and maintaining a user interface with App
Builder is simple and straightforward. There are many variations on this
formula, but the process is similar for any application.

1. Start App Builder. See “Starting and Exiting App Builder” on page 3.

2. Open a new project and a new module. See “Creating, Opening, and
Saving Projects” on page 9.

3. Drag and drop windows (main windows and custom dialogs) to the
workspace, creating a new module for each window, in most cases. See
“Dragging and Dropping Palette Objects” on page 24.

4. Drag and drop panes onto main windows or custom dialogs. See
“Dragging and Dropping Palette Objects” on page 24.

5. Drag and drop controls (buttons, choice objects, text fields, for example)
onto control panes. See “Dragging and Dropping Palette Objects” on
page 24.

6. Create pane objects, menus, and message dialogs. See Chapter 5,
“Creating and Editing Panes, Menus, and Messages.”

7. Create help dialogs. See “Creating Help and Help Connections” on
page 71.

8. Edit the properties of interface objects. See Chapter 4, “Editing
Properties of Interface Objects.”

9. Make functional connections between objects in the user interface. See
Chapter 6, “Adding Functionality to the Interface.”

10. Go into test mode to test menus, help, and connections. See Chapter 8,
“Testing Menus, Help, and Connections.”

11. Display the Code Generator to generate code and make the user
interface. See Chapter 9, “Generating Code and Building an
Application.”

12. Add user code to the code generated by App Builder. See “Adding User
Code to Generated Code” on page 117.

13. Debug the code, make and run the application.

Getting Started 5

1

14. Repeat the process to modify and maintain the user interface.

6 Application Builder User’s Guide

1

Object Types

There are three basic types of objects on the primary window: windows,
panes, and controls. See “App Builder Primary Window” on page 120,” for
descriptions of each of the objects.

The windows in App Builder are:

• Main window
• Custom dialog
• File selection dialog

The panes in App Builder are:

• Control pane
• Text pane
• Draw area pane
• Term pane

The controls in App Builder are:

• Button
• Check box (Choice object)
• Combo box
• Gauge
• Label
• List (scrolling list)
• Menu bar*
• Menu button
• Option menu (Choice object)
• Radio box (Choice object)
• Scale
• Separator
• Spin box
• Text Field

Note – *The menu bar is not a control, but it is on the Controls palette. It
can only be dropped on a main window.

Getting Started 7

1

Rules for Dropping Objects

The rules for dragging and dropping the three types of App Builder objects
are explained below. An error message will be displayed if you attempt to
drop an object on an illegal target.

Windows (main window, custom dialog, file selection dialog) can be dropped
anywhere on the workspace except for the App Builder primary window.

Panes (control pane, text pane, draw area pane, term pane) can be dropped
on a main window, a custom dialog, or on another pane. See “Creating and
Editing Pane Entities” on page 42 for more information.

Controls (buttons, menus, boxes, for example) can be dropped on a control
pane or a group.

Note – As noted above, a menu bar is on the Controls palette, but it is not
really a control. It can only be dropped on a main window. A menu bar can
be dropped anywhere on a main window; it will always appear at the top of
the window.

8 Application Builder User’s Guide

1

9

Managing Projects and Modules 2

When you use App Builder to create a graphical user interface, you are
working on a project, which is comprised of one or more modules. App
Builder, which was built with itself, was a single project comprising over 30
modules.

Creating, Opening, and Saving Projects

A project file is started when you choose New Project from the File menu of
the App Builder primary window or New from the Project menu of the
Project Organizer, or when you drag and drop a window onto the workspace
in a new session of App Builder. See “Project Organizer” on page 131 for a
description of the Project Organizer. See “Dragging and Dropping Palette
Objects” on page 24 for a discussion of drag and drop procedures.

A project file is saved when you choose Save Project from the File menu of
the App Builder primary window or when you select Save from the Project
menu of the Project Organizer. A project file has a .bip (builder interface
project) suffix.

Creating, Opening, and Saving Projects 9

Creating, Importing, Exporting, and Saving Modules 15

Showing, Hiding, and Removing Modules 20

10 Application Builder User’s Guide

2

♦ To Create a New Project

1. Choose New Project from the File menu of the App Builder primary
window or New from the Project menu of the Project Organizer.

The Project Name dialog box will be displayed. By default, an unnamed
project is called Untitled .

If you have made changes to the current project since you last saved it, a
message dialog box will be displayed first, giving you the option to
discard the changes and create the new project or to cancel the New
Project operation.

Click Discard Changes to throw out the changes and close the current
project.

Click Cancel if you want to save the current project. Save the current
project before creating the new project.

2. Type a name (all lowercase) for the project and click Apply.

The name of the project (with .bip added as a suffix) will be displayed
in the title bar at the top of the App Builder primary window. Every
module you create or import will be part of the current project until you
open another project.

Note – Project names should be all lowercase so that there is no conflict
between the name of the project resource file and the project executable file.
The name of the resource file created when you generate code is the same
as the name of the project, minus the .bip suffix, but it is given an initial
capital letter.

Managing Projects and Modules 11

2

♦ To Open an Existing Project

1. Choose Open Project from the File menu of the App Builder primary
window or Open from the Project menu of the Project Organizer.

The Open Project dialog box will be displayed.

If you have made changes to the current project since you last saved it, a
message dialog box will be displayed first, giving you the option to
discard the changes and open the other project or to cancel the Open
Project operation.

Click Discard Changes to throw out the changes and close the current
project.

Click Cancel if you want to save the current project. Save the current
project before opening the other project.

2. Change folders, if necessary.

You have to press Return or click Update before the folder change is
registered.

3. Double-click the appropriate project file (.bip suffix) in the Files list

Or, select the file and click Open.

The name of the project will be displayed in the title bar of the App
Builder primary window and the selected project will be displayed in the
Project Organizer.

12 Application Builder User’s Guide

2

4. In the module array of the Project Organizer, select the modules you
want to display and choose Show from the Module menu to display the
module interfaces.

See “To Show a Hidden Module” on page 20 for detailed instructions.

♦ To Save a Project

A project is only saved when you explicitly choose to save it, so be sure to
save often and regularly.

1. Choose Save Project from the File menu of the App Builder primary
window or Save from the Project menu of the Project Organizer.

If you have saved the project before, the project will be saved without
comment.

If this is the first time you have saved the project, the Save Project
dialog box will be displayed.

2. Change to the appropriate folder.

You will normally want a separate folder for each project you work on.
You are apt to have Makefile problems otherwise.

3. Type a file name in the Enter file name field.

You do not have to append .bip to the project name; this is done
automatically when you save a project.

4. Click Save.

The project will be saved.

♦ To Save a Version of a Project

Do the following to save a version of the current project in a different
folder. You might want to do this so that you can compare two versions of a
project or put the two versions out for review. If you have made unsaved
changes to the current project those changes will be saved in the new
project only.

Managing Projects and Modules 13

2

1. Choose Save Project As from the File menu of the App Builder primary
window or Save As from the Project menu of the Project Organizer.

The Save Project dialog box will be displayed, with the current project
name in the Enter file name field.

2. Change to another folder.

3. Type a name in the Enter file name field.

4. Click Save.

The project—the project file (.bip suffix) and all of the module files
(.bil suffixes)—has been copied to another folder. The original project
and module files are not affected. The new project will now be the
current project; its name will be displayed in the title bar of the App
Builder primary window.

♦ To Rename a Project

Do the following to give the current project a different name. The modules
that comprise the current project will become part of a new project with a
new name and the current project will no longer exist. See “To Save a
Version of a Project” above if you want to save a version of the the current
project.

1. Choose Save Project As from the File menu of the App Builder primary
window or Save As from the Project menu of the Project Organizer.

The Save Project dialog box will be displayed, with the current project
name in the Enter file name field.

2. Modify the name or type in a new name in the Enter file name field.

3. Click Save.

A message dialog box will be displayed for each module in the project,
telling you that the module exists and giving you the option to overwrite
it or cancel the operation.

14 Application Builder User’s Guide

2

4. Click Overwrite for each module if you want to rename the project and
save the module.

Click Cancel if you do not want to rename the project and overwrite the
current module.

If you click Overwrite for each of the modules the project will be
renamed; the new project name will be displayed in the title bar of the
App Builder primary window. The old project file (.bip suffix) will still
be in the folder, but it will not be the active project file. If you generate
code for the project and run make in the folder, the new project name will
be used.

♦ To Save a Project to a File (Encapsulate Project)

A project is comprised of one or more modules. Normally a project file is
saved in a file with a .bip suffix, and each module file is saved in a
separate file with a .bil suffix. To save a project as a single file (for
convenience in mailing the project to someone, for instance):

1. Open the project, as described in “To Open an Existing Project” on
page 11.

2. Choose Save Project As from the File menu of the App Builder primary
window or Save As from the Project menu of the Project Organizer.

3. Change to the appropriate folder, if necessary.

4. Select Save As Encapsulated Project.

The name of the current project will be displayed in the Enter file name
field, with a .bix (builder interface exchange) suffix.

5. Click Save or press Return.

Note – When a project is saved as an encapsulated file, the .bip file is not
affected. When an encapsulated project is opened in App Builder, it is
opened just like any other project. When you attempt to save a project that
was opened from an encapsulated file, a message dialog box will be
displayed, explaining that the project will be saved as individual files.
Choose Save Project As if you want to save it as an encapsulated project
again.

Managing Projects and Modules 15

2

♦ To Close a Project

◊ Choose Close Project from the File menu of the App Builder primary window
or Close from the Project menu of the Project Organizer.

If you have made changes since saving the project a message dialog box
will be displayed, giving you the chance to discard the changes or to
cancel the close operation.

Creating, Importing, Exporting, and Saving Modules

A module is a logical unit of a project. Each window and dialog in App
Builder is a module of the App Builder project, for instance. A module is
created when you choose New Module from the File menu of the App
Builder primary window or New from the Module menu of the Project
Organizer.

You do not have to create a new module for each window, but in most cases
you will want to: this will make maintaining modules simpler and will
allow you to use a module for various applications.

All module files in a project are saved when the project is saved. You can
explicitly save a particular module by choosing Save from the Module menu
of the Project Organizer. A saved module file has a .bil (builder interface
language) suffix.

♦ To Create a New Module

Do the following to create a new module, which will become part of the
current project.

1. Choose New Module from the File menu of the App Builder primary
window or New from the Module menu of the Project Organizer.

The Module Name dialog box will be displayed, with Untitled selected as
the default name:

16 Application Builder User’s Guide

2

Note – If you drag and drop a window on the workspace after creating a
new project, the Module Name dialog box will be displayed, just as if you
had chosen New Module from the File menu.

2. In the dialog box, type in the name you want to give the new module.

3. Click Apply or press Return.

The name of the new module will appear in the Editing Module field at
the bottom of the App Builder primary window. Any windows you drag
from the Windows palette and drop on the workspace will be part of the
new module.

♦ To Import a Module into a Project

To import an existing module into the current project:

1. Choose Import Module from the File menu of the App Builder primary
window or Import from the Module menu of the Project Organizer.

The Import File dialog box will be displayed.

2. Change to the folder where the module (.bil suffix) file is saved.

3. Change the Import Format type, if necessary.

By default, BIL format is selected. If the file you are importing is a UIL
file, click the UIL button. The file will be converted to BIL format when
it is imported.

Managing Projects and Modules 17

2

4. Change Import By method, if necessary.

By default, Import By Copy is selected. If you want to import the
module by reference rather than making a copy of it, click the Reference
button.

Note – Import By Reference, which causes module files to be shared, can be
dangerous, since the actual module file may be changed or deleted
inadvertantly.

5. Double-click on the module to be imported in the Files list.

Or, select the file and click Import.

The module will be added to the current project the next time you save
the project.

♦ To Save a Module

All modules in a project are saved when you save the project. If you want to
save individual modules, you can do so in the Project Organizer.

1. Display the Project Organizer by choosing Project Organizer from the
File menu of the App Builder primary window.

2. In the module array of the Project Organizer select the module you want
to save.

18 Application Builder User’s Guide

2

3. Choose Save from the Module menu.

If you have saved the module previously during this App Builder session,
the module will be saved without comment.

If this is the first time you have saved the module, the Save BIL File
dialog box will be displayed, with the name of the selected module (with
a .bil suffix) in the Enter file name field.

4. Change to the folder where you want to save the module, if necessary.

5. Click Save or press Return.

♦ To Rename a Module

Use Save As from the Module menu of the Project Organizer to rename a
module. When you save the current project, the new module name will
replace the old name in the project (.bip) file. The original module will still
be in the project folder, but it will not be part of the project. To save a
module without affecting the project, see “To Export a Module” on page 18.

1. Display the Project Organizer by choosing Project Organizer from the
File menu of the App Builder primary window.

2. Select the module you want to rename.

3. Choose Save As from the Module menu.

The Save BIL File dialog box will be displayed, with the name of the
selected module (with a .bil suffix) in the Enter file name field.

4. Type a file name in the Enter file name field.

5. Click Save or press Return.

The new module name will replace the old name in the project (.bip) file
the next time you save the project.

♦ To Export a Module

Do the following to save a copy of a module in the current project. The
current project is not affected when you export a module. A new module is
created, which is not part of the current project; the original module
remains as part of the project.

Managing Projects and Modules 19

2

1. From the File menu of the App Builder primary window choose Export
Module and select one of the currently open modules from the submenu
displayed.

Or, in the Project Organizer select the module to be exported in the
module array and choose Export from the Module menu.

The Export File dialog box will be displayed, with the selected module
name in the Enter file name field.

2. Type a new file name in the Enter file name field

Or, change to the folder where you want to save the module and type a
file name in the Enter file name field.

If you want to save a version of the module in the current folder, do not
change folders. Simply give the module a different name.

3. Click Export or press Return.

A copy of the selected module has been created.

♦ To Save a Module in UIL Format

To save a module in UIL (user interface language) format instead of BIL
(builder interface language) format:

1. Choose Export Module from the File menu of the App Builder primary
window and select the module you want to export from the submenu that
is displayed.

Or, in the Project Organizer select the module to be exported and choose
Export from the Module menu.

The Export File dialog box will be displayed, with the selected module
name in the Enter file name field.

2. Change to the folder where you want to save the module, if necessary.

3. Select Save As UIL (above the Enter file name field).

The file name suffix will change from .bil to .uil .

4. Type a file name in the Enter file name field, if necessary.

If the name in the Enter file name field is OK, leave it as it is.

20 Application Builder User’s Guide

2

5. Click Export or press Return.

The file will be saved with a .uil suffix.

Showing, Hiding, and Removing Modules

For a small project you may always want to show all modules. For a large
project with many modules you may want to show only one or two modules
at a time. Use the Project Organizer to show and hide modules, and to
remove modules from projects. The Project Organizer displays icons for all
of the modules that comprise a project. In the Project Organizer you can
display or hide the interfaces for selected modules and you can remove
modules from a project.

♦ To Show a Hidden Module

1. Display the Project Organizer by choosing Project Organizer from the
File menu of the App Builder primary window.

2. Double-click the module icons in the module array of the Project
Organizer that you want to show.

Or, select the module icons and choose Show from the Module menu.

The user interfaces for the selected modules will be displayed.

Managing Projects and Modules 21

2

Note – If a module you want to show is in a different project, you will first
have to open the other project. See “To Open an Existing Project” on
page 11 for instructions.

♦ To Hide a Shown Module

To hide a module that is displayed (to clean up the workspace so that you
can more easily work on another module, for instance):

1. Display the Project Organizer by choosing Project Organizer from the
File menu of the App Builder primary window.

2. Select the modules in the module array that you want to hide.

Select one module by clicking mouse button 1 on it. To add to the
selection click mouse button 2 on other modules. To select a number of
adjacent modules drag-select with mouse button 1 or mouse button 2,
starting above and to the left of the first module to be selected.

3. Choose Hide from the Module menu.

The user interfaces for the selected modules will be hidden.

♦ To Remove a Module from a Project

When you remove a module from the current project, the module file will
still exist in the project folder, but it will no longer be part of the project.
The module file name will be removed from the project file (.bip suffix) the
next time the project is saved. With the appropriate project open, do the
following to remove one or more modules from the project.

1. Display the Project Organizer by choosing Project Organizer from the
File menu of the App Builder primary window.

2. Select the modules in the module array that you want to remove.

3. Choose Remove from the Module menu of the Project Organizer.

22 Application Builder User’s Guide

2

23

Laying Out a User Interface 3

The basic App Builder process for laying out an interface is to drag objects
from the App Builder primary window and drop them on the workspace or
on other App Builder objects.

See Appendix A, “App Builder Windows and Dialog Boxes” for a full
description of the primary window and its elements, and for a description of
the Module Browser.

Dragging and Dropping Palette Objects 24

To Create a Main Window, Custom Dialog, or File Selection
Dialog 24

To Create a Window with a Spanning Control Pane 24

Selecting Interface Objects 26

Editing Objects in the Interface or in the Browser 28

To Cut or Copy Objects 28

To Paste Objects 29

Aligning and Distributing Objects in an Interface 30

24 Application Builder User’s Guide

3

Dragging and Dropping Palette Objects

The rules for dropping palette objects are simple; they are enforced by error
messages when they are violated.

• Windows (main window, custom dialog, file selection dialog) are dropped
on the workspace.

• Panes (control, draw area, text, and term) are dropped on windows or on
other panes.

• Controls (buttons, boxes, choice objects, and others) are dropped on a
control pane. The menu bar, which is on the Controls palette, is not
strictly a control; it is dropped on a main window only.

♦ To Create a Main Window, Custom Dialog, or File Selection Dialog

1. Drag a main window, custom dialog, or a file selection dialog box from
the Windows palette and drop it on the workspace.

If you haven’t previously named the module, the Module Name dialog
box will be displayed. Move the cursor to the Module Name dialog box,
type a name, and click Apply.

The module name will be displayed in the status area at the bottom of
the window.

2. Edit the properties of the window object, if necessary.

This can be done now or later. See “To Edit Properties of an Object” on
page 34 for general instructions. See “Example: Editing Main Window
Properties” on page 37 for specific instructions for a main window or a
primary main window.

♦ To Create a Window with a Spanning Control Pane

Often you will want a control pane to fill the entire blank pane area of a
main window or custom dialog. You can then drop controls or other panes
on the control pane to create a complex window such as the App Builder
primary window. Do the following once you have dropped a main window or
custom dialog on the workspace.

Laying Out a User Interface 25

3

1. Drag a control pane from the Panes palette and drop it on the top-left
corner of the main window or custom dialog.

2. Drag the bottom-right corner of the control pane (an arrow pointing
towards a corner will be displayed) beyond the bottom-right corner of the
window and release mouse button 1.

The control pane will be attached to the four sides of the window. If you
resize the window, the control pane will be resized with it.

See “To Attach Objects in an Interface” on page 103 for details about
attachments.

26 Application Builder User’s Guide

3

Selecting Interface Objects

For many actions, including editing, moving, aligning, and grouping, you
need to select one or more objects in an interface. You can only multiply-
select siblings—objects that are children of the same parent. (All windows
in a project are siblings, for instance, as are panes in a window and control
objects in a single control pane. Panes that are dropped on a control pane
and created as children of the control pane function like control objects in
the control pane.)

You can select objects in the interface or in the Module Browser. See
“Module Browser” on page 132 for a description of the Browser. See
“Editing Objects in the Interface or in the Browser” on page 28 for
information about cutting, copying, and pasting interface objects.

Only control objects can be grouped or aligned (using the Align and
Distribute functions).

♦ To Select Window or Pane Objects in the Interface or the Browser

Selecting an object in the Module Browser also selects it in the interface,
and vice versa.

• Select a single window (main window, custom dialog, or file selection
dialog box) by clicking mouse button 1 on the object in the Browser or in
the interface (click in the status area at the bottom of the window
object).

• Select an additional window by clicking mouse button 2 on the window
in the browser or in the interface.

• Select a single pane by clicking mouse button 1 on the pane in the
Browser or in the interface.

• Select additional panes in the same window by clicking mouse button 2
on the pane in the Browser or in the interface.

♦ To Select Control Objects in the Interface or the Browser

Selecting an object in the Module Browser also selects it in the interface,
and vice versa.

• Select one object by clicking it in the interface or in the Module Browser.

Laying Out a User Interface 27

3

• Select a number of adjacent objects by positioning the mouse cursor
above and to the left of the objects, pressing mouse button 1, and
dragging the mouse to encompass other objects down and to the right of
the first object.

• Add or subtract an object to the current selection by clicking mouse
button 2 on the object.

If an object is selected, clicking mouse button 2 on it deselects it.

• To add a number of adjacent objects to those that are selected, position
the mouse cursor above and to the left of the objects to be added, press
mouse button 2, and drag the mouse to encompass other objects down
and to the right of the first object.

• To deselect all but one object, click mouse button 1 on an object.

Only that object will be selected.

Note – When you have selected a number of objects in the interface, all the
objects will move if you press mouse button 1 on one of the objects and
move the mouse. A rectangular border will be drawn around the objects as
you move the mouse.

28 Application Builder User’s Guide

3

Editing Objects in the Interface or in the Browser

Once you have created an interface by dragging and dropping objects on the
workspace or on other App Builder objects, you may want to edit the
interface in various ways. You can cut, copy, paste, and delete objects, and
you can undo the last editing function performed—and you can perform
these functions in the interface or in the Module Browser, or between the
interface and the Browser. See “Module Browser” on page 132 for a
description of the Browser.

You can copy or cut any object you can select—from a single control to a
complex window with multiple panes and many controls—and you can
paste that object in any open module.

Note – Objects selected in the interface are also selected in the Browser,
and vice versa. See “To Select Control Objects in the Interface or the
Browser” on page 26 for instructions for selecting objects. When you edit
objects in the Module Browser, be sure to check to see what is happening in
the interface—especially if you are cutting and pasting.

♦ To Cut or Copy Objects

1. Select the objects you want to edit in the interface or the Browser.

2. Choose Cut or Copy from an Edit or pop-up menu.

Choose Cut or Copy from the Edit menu in the App Builder primary
window, from the Edit menu in the Module Browser, or from the pop-up
menu in either the primary window or the Browser (displayed by
pressing mouse button 3 in the interface or the Browser).

The chosen function (cut or copy) will be performed. If you choose Cut,
the selected objects will be deleted from the interface and placed in the
App Builder edit buffer. If you choose Copy, the selected objects will be
placed in the edit buffer.

Choose Undo before performing any other function to cancel the cut or copy
operation.

Laying Out a User Interface 29

3

♦ To Paste Objects

Once you have placed objects in the edit buffer by cutting or copying, you
can paste the objects in the interface with the Paste function.

1. Select the paste location.

Window: Windows can be pasted if any App Builder object is selected.
Pane: Panes can be pasted if an App Builder window or control pane is
selected.
Control: Controls can be pasted if an App Builder control pane or control
object is selected. If a control object is selected, the controls will be
pasted in the parent control pane.

2. Choose Paste from the Edit menu in the App Builder primary window,
from the Edit menu in the Module Browser, or from the pop-up menu in
either the primary window or the Browser (displayed by pressing mouse
button 3 in the interface or the Browser).

The objects will be added to the current module and will be displayed
appropriately in the interface.

Note – Pasted objects may obscure other objects; you may have to do some
moving and aligning after the paste. See “Aligning and Distributing Objects
in an Interface” on page 30 for instructions.

Choose Undo before performing any other function to cancel the paste
operation.

♦ To Delete Objects

1. Select the objects you want to delete in the interface or the Browser.

2. Choose Delete from the Edit menu in the App Builder primary window,
from the Edit menu in the Module Browser, or from the pop-up menu in
either the primary window or the Browser (displayed by pressing mouse
button 3 in the interface or the Browser).

The objects will be deleted from the interface.

Choose Undo before performing any other function to cancel the delete
operation.

30 Application Builder User’s Guide

3

Aligning and Distributing Objects in an Interface

This section describes “static” alignment and distribution of objects: the
objects are aligned or distributed one time only. See Chapter 7, “Grouping
and Attaching Objects,” for instructions to find out how to group and attach
objects for “dynamic” alignment.

♦ To Align Control Objects in an Interface

1. Select two or more objects.

See “To Select Control Objects in the Interface or the Browser” on
page 26 for instructions.

2. Choose Align from the Layout menu of the primary window or the
interface pop-up menu (displayed by pressing mouse button 3) and select
one of the alignment icons from the submenu.

The selected objects will be aligned according to the alignment choice.
Choices are described below. Vertical alignment icons are on the left and
are described first.

• Left-edge: Aligns selected objects vertically along their left edges.

• Vertical-center: Aligns selected objects vertically on their horizontal
centers.

• Right-edge: Aligns selected objects vertically along their right edges.

• Colon: Aligns selected objects vertically along their colons or labels.

• Top-edge: Aligns selected objects horizontally along their top edges.

• Horizontal-center: Aligns selected objects horizontally on their vertical
centers.

• Bottom-edge: Aligns selected objects horizontally along their bottom
edges.

• Grid: Does no alignment at this time.

Note – If you select objects that are arranged horizontally and choose a
vertical alignment (or vice versa), the objects will end up on top of one
another. You can unstack the objects by choosing Distribute from the pop-

Laying Out a User Interface 31

3

up menu immediately after the align function (the objects will still be
selected). See “To Distribute Control Objects Evenly” on page 31 for
instructions.

♦ To Distribute Control Objects Evenly

1. Select one or more objects.

See “To Select Control Objects in the Interface or the Browser” on
page 26 for instructions. Select one object to center it between the edges
of its parent.

2. Choose Distribute from the Layout menu of the primary window or the
interface pop-up menu (displayed by pressing mouse button 3) and select
one of the distribute icons from the submenu.

The selected objects will be distributed or centered according to your
choice.

Objects will be spaced 10 pixels apart horizontally or vertically if you
choose one of the distribute choices. If you choose one of the centering
choices, the object or objects will be centered within the boundaries of
the parent control pane.

• Horizontal-space: Distributes selected objects horizontally 10 pixels
apart. The left-most object is the anchored object, which does not move.

• Vertical-space: Distributes selected objects vertically 10 pixels apart. The
top-most object is the anchored object, which does not move.

• Horizontal-center: Centers selected objects horizontally between the left
and right edges of the parent object, maintaining the distance between
selected objects.

• Vertical-center: Centers selected objects vertically between the top and
bottom edges of the parent object, maintaining the distance between
selected objects.

32 Application Builder User’s Guide

3

33

Editing Properties of Interface
Objects 4

All objects dragged from the App Builder palettes have properties that can
be edited. These properties include object name, color, and a variety of
other characteristics, depending on the object type. Once you have dropped
an object or have created an object in the interface, you will want to
customize the object by editing it in the Revolving Property Editor. See
Appendix B, “Revolving Property Editor,” for an illustration of a property
editor and descriptions of each of the elements in all of the property editors.

To Open a Property Editor 34

To Edit Properties of an Object 34

To Display a Fixed Property Editor 35

Example: Editing Main Window Properties 37

34 Application Builder User’s Guide

4

♦ To Open a Property Editor

• Double-click an object in the interface or in the Module Browser to open
the Revolving Property Editor with the clicked-on object selected.

• Or, select an object in the interface or in the Module Browser and choose
Props (Revolving or Fixed) from the pop-up menu (displayed by pressing
mouse button 3 in the interface or the Browser) to open the property
editor with the object selected.

• Or, choose Properties from the Editors menu in the App Builder primary
window.

The Revolving Property Editor will be displayed, with the object most
recently selected in the interface or the Module Browser selected in the
Revolving Property Editor.

♦ To Edit Properties of an Object

Once you have displayed the property editor, do the following to edit the
properties of an object:

1. Choose the object type that you want to edit from the Object Type menu
at the top of the Revolving Property Editor, if necessary.

If you double-clicked an object to display the Revolving Property Editor
or if the object was selected when you chose Props from one of the pop-up
menus, the object type and the specific object will already be selected.

If a tear-off (Fixed) editor is displayed, there is no Object Type menu.

2. Select the object that you want to edit in the Objects scrolling list, if
necessary.

The object may already be selected.

3. Modify any of the properties, as appropriate.

See Appendix B, “Revolving Property Editor,” for descriptions of each of
the elements of the property editors.

Editing Properties of Interface Objects 35

4

Note – List item editing: once you have the appropriate number of items
in the list, the easiest way to perform item editing in those property editors
that have an item list* is to select the first item in the list, thus selecting it
in the label text field. Type a new name for the item and click Return. The
new name will be displayed in the item list and the next item in the list
will be selected. Continue down the list with this select, type, Return
sequence until all items are completed.
*Property editors with item lists include the choice objects (Radio Box,
Check Box, Option Menu), Combo Box, List, Menu, Menubar, and Spin Box.

4. Click the Apply button to apply the changes and leave the property
editor displayed.

Click the OK button to apply the changes and close the property editor.

Click Reset to reset all changed elements to their values at the last
Apply.

Click Cancel to reset all elements to their values at the last Apply and
close the property editor.

See “Example: Editing Main Window Properties” on page 37 for specific
instructions for editing the properties of a main window.

♦ To Display a Fixed Property Editor

The Revolving Property Editor is a single dialog box that displays one of 20
property editors, depending on the item you choose from the Object Type
option menu. To display a separate, fixed property editor of a specific object
type:

1. Select the object you want to edit in the interface or in the Module
Browser. See “Module Browser” on page 132 for a description of the
Browser.

2. Choose Props from the pop-up menu (displayed by pressing mouse
button 3 in the interface or in the Module Browser) and select Fixed
from the Props submenu.

A fixed version of the property editor for the selected object type will be
displayed.

36 Application Builder User’s Guide

4

Or

1. Choose the object type you want to edit in the Object Type menu of the
Revolving Property Editor.

2. Click the Tear-off button at the top-right of the Revolving Property
Editor.

A fixed version of the property editor for the selected object type will be
displayed.

♦ To Select Colors from the Color Chooser

Most property editors have background and foreground color properties. If
you know the name of the color you want to use, type it in the text field
next to Color:Background or Color:Foreground. To select a color from the
Color Chooser palette:

1. Click the Background or Foreground menu button and choose Color
Chooser.

The Color Chooser, with an array of color choices available, will be
displayed.

2. Click the desired color in the palette.

The name of the selected color will be displayed after Color Name.

Editing Properties of Interface Objects 37

4

3. Click OK to select the color and dismiss the Color Chooser.

The selected color will be displayed in the rectangle next to the
Background or Foreground menu and the name of the color will be
displayed in the text field next to the colored rectangle.

4. Repeat the process for Background or Foreground, if desired.

5. Click Apply in the property editor to apply the changes.

The background or foreground of the object in the interface will display
the selected color.

Example: Editing Main Window Properties

Use the procedure for editing a main window below as an example for
editing other object types.

Your application might have multiple main windows, but only one primary
main window, which is the starting point for the application. By default,
the first main window created in the current project is designated as the
primary main window. This designation can be changed in the Application
Framework Editor, described in “To Establish Application Framework
Behavior” on page 90.

♦ To Edit Properties of a Main Window

Once you have dropped a main window on the workspace do the
following to edit its properties. See Appendix B, “Revolving Property
Editor,” for descriptions of each of the elements of the property editor.

1. Double-click the main window to display the Revolving Property Editor.

Or, Choose Properties from the Editors menu of the App Builder primary
window, choose Main Window from the Object Type menu, and select the
main window in the Objects list.

The main window will be selected in the Revolving Property Editor.

2. Change the Object Name, if necessary.

3. Change the Window Title to something appropriate.

This is the label that appears in the title bar of the main window.

38 Application Builder User’s Guide

4

4. Type the names of an Icon File, an Icon Mask File, and an Icon Label, if
you want an icon to represent the window when it is minimized.

The Icon File and Icon Mask File must be xpm or xbm graphics files.

5. Change the User Resize Mode, if appropriate.

This determines if a user can resize the window in the compiled
application.

6. Select Menubar, Toolbar, and Footer, as appropriate, to add these
functional areas to the window.

If you select Menubar, you will want to create menus after you finish
editing main window properties. See “Creating and Editing Menus” on
page 47 for instructions.

Note – Selecting Menubar is the same as dragging a menu bar from the
Controls palette and dropping it on a main window.

If you select Toolbar or Footer, you will want to edit the properties of the
control panes that comprise these objects after you finish editing main
window properties. You can drop controls on the control panes, make
connections to programmatic actions, and do other things that can be
done to any control pane.

7. Change the Size Policy and Size, as appropriate.

Note – For all main windows and custom dialogs you will probably want to
leave the Size Policy as Fixed while you are creating the application, and
change it to Fit Contents as you finish the application, for
internationalization and other purposes. When Size Policy is Fit Contents,
the window will change size to accommodate changes in the size of objects
as the text in the objects changes—or if the font size changes, for example.

8. Set Initial State to Iconic if you want the application to appear as an
icon when it is started.

9. If you want the main window to be invisible when the application is
started, deselect the visible setting for Initial State.

If the Visible check box is checked, click it to deselect it.

Editing Properties of Interface Objects 39

4

10. Set Background and Foreground colors, if appropriate.

Type in a color name if you know it or press mouse button 1 on the
Background or Foreground menu button and choose Color Chooser to
display the Color Chooser. Select a color and click OK. Background sets
the color of the blank pane area of the window. Foreground does nothing
that is visible in the completed interface.

11. Click Help Text to add on item help, if appropriate.

See “To Create Help” on page 72 for instructions.

12. Click OK to apply the changes and dismiss the Revolving Property
Editor.

Unless you are creating a primary main window, you are finished with
this task.

13. If you are creating a primary main window, choose Application
Framework Editor from the Editors menu.

14. Type a Vendor Name and Version number in the Application section of
the Application Framework Editor, if appropriate.

See “To Establish Application Framework Behavior” on page 90 for
details about the editor.

15. Click OK in the Application Framework Editor to apply the changes and
close the editor.

40 Application Builder User’s Guide

4

41

Creating and Editing Panes,
Menus, and Messages 5

Most App Builder objects are dragged from the windows, panes, or controls
palettes. Some objects (layered panes, paned windows, menus, and
messages) are created objects. This chapter explains how to create, use, and
edit these objects.

Creating and Editing Pane Entities 42

Layered Panes 43

Paned Windows 44

Creating and Editing Menus 47

Menu Property Editor 47

Creating and Editing Messages 59

Message Editor 59

Example: Writing Code for Messages 64

42 Application Builder User’s Guide

5

Creating and Editing Pane Entities

There are four types of pane objects on the Panes palette of the App Builder
primary window: control pane, text pane, draw area pane, and term pane.
In addition, there are three types of created pane entities: child panes,
layered panes, and paned windows.

Child Panes

A child pane is a text pane, term pane, or draw area pane that has been
dropped on a control pane and made a “child” of the control pane. In App
Builder, for example, the Label field in the Label Property Editor is a text
pane that is a child of a control pane.

♦ To Create a Child Pane

1. Drop a text pane, draw area pane, or term pane on a control pane in the
interface.

A message dialog box will be displayed, asking if you want to create the
dropped pane as a child of the control pane or as a layered pane.

Click Cancel if you do not want to create a child pane or a layered pane.

2. Click Child.

The pane will be instantiated at the drop location, just as if it were a
control object. The pane will be a sibling of the control objects on the
control pane. You will be able to select the pane and move it around on
the control pane just like any other control object.

Creating and Editing Panes, Menus, and Messages 43

5

Layered Panes

A layered pane is a “stack” of two or more panes, one on top of the other. In
App Builder, for example, the Revolving Property Editor, which is used to
display the properties of each of the interface objects, is a layered pane.

♦ To Create a Layered Pane

1. Drop a pane on another pane in the interface.

A message dialog box will be displayed, giving you the option to create a
layered pane.

If you have dropped a text pane, draw area pane, or term pane on a
control pane, you will also have the option to create the object as a child
of the control pane.

Click Cancel if you do not want to create a child pane or a layered pane.

2. Click Layer.

The pane will be instantiated as a layered pane on top of the pane it was
dropped on. Because it is the same size as the original pane, it will
obscure the original pane completely. If you resize one of the layers of a
layered pane, all panes are resized. See “To View Layered Panes” for
instructions for viewing the layers of a layered pane.

Once you have completed the interface you may want to change the Size
Policy of any panes in a layered pane to Fit Contents (the default value
is Fixed, which should be retained until the interface is complete). Each
of the panes might be a different size.

Note – There is no direct way to unmake a layered pane, but you can
accomplish the task by selecting one of the layers and choosing Cut from
the Edit menu of the App Builder primary window or from one of the pop-
up menus (displayed by pressing mouse button 3 in the interface or in the
Module Browser).

If you want to save the layer you cut, select an empty window and choose
Paste from the Edit menu. Repeat the Cut and Paste process until there
are no more layers (this is easiest to see in the Browser). If you don’t want
to save the layers, choose Delete instead of Cut.

44 Application Builder User’s Guide

5

♦ To View Layered Panes

Only one layer of a layered pane is visible. To view other layered panes:

1. Select the visible pane of the layered panes in the interface or in the
Module Browser.

Note – Selecting a layered pane in the Browser does not pop the selected
pane to the top of the stack of panes in the interface.

2. Choose NextLayer from the View menu of the primary window or from
the interface pop-up menu (displayed by pressing mouse button 3).

The layer immediately beneath the current pane will be displayed.
Repeat this step to view other layers.

Paned Windows

A paned window is a combination of two or more panes (control, text, draw
area, or term panes, in any combination) into one virtual window with
multiple panes, one above the other, separated by a movable sash. While
the paned window maintains a constant height, the individual panes
become smaller or larger as you move the sash between them.

A paned window’s initial size and position are determined by the position
and size of its panes: the left margin of the paned window is determined by
the left (West) edge of the pane that is furthest to the left. The width of the
paned window is determined by the width of its widest pane.

Creating and Editing Panes, Menus, and Messages 45

5

You can set limits on the minimum and maximum heights of any of the
panes by setting Pane Height in the Paned Window property editor. See
Appendix B, “Revolving Property Editor,” for more details.

Once you have created a paned window you can resize the panes by
pressing mouse button 1 or mouse button 2 on the sash and moving it up or
down.

♦ To Create a Paned Window

1. Drag a pane from the Panes palette and drop it on a main window or a
custom dialog.

If you want the paned window to span the top of the parent window, drop
the pane on the top-left corner of the parent. The pane will be attached
to the window at its left and top margins with an offset of 0.

2. Resize the pane, if necessary.

If you want the paned window to span its parent window, drag the right
edge of the pane beyond the right edge of the window. The pane will be
attached to this edge, also.

3. Drag one or more additional panes to the main window or dialog and
drop them on an unoccupied portion of the window.

4. Select all panes that you want to be part of the paned window.

Use mouse button 1 to select one pane and mouse button 2 to select
additional panes.

5. Choose Make Paned Window from the Layout menu or from the interface
or Module Browser pop-up menu (displayed by pressing mouse button 3).

The paned window will be created.

Note – If one of the panes is attached to the right (East) edge of its parent
and one or more of the other panes are not attached to the right edge of the
parent, the right edge of the panes not attached to the right edge will be
attached to the right edge. A message dialog box will be displayed,
explaining that the children of the paned window have different East

46 Application Builder User’s Guide

5

attachments and that the East attachment has been set to that of the
rightmost pane. You can adjust the right attachment in the Attachments
Editor. Click OK.

♦ To Add a Pane to a Paned Window

1. Drop a pane on the paned window.

A message dialog box will be displayed, giving you the option to include
the new pane as a child of the control pane (if you drop a text pane, draw
area pane, or a term pane on a control pane), create as a layered pane, or
to add it to the paned window.

2. Click Pane to add the pane to the paned window.

The new pane will be added to the bottom of the paned window.

♦ To Unmake a Paned Window

1. Select the paned window.

Select a paned window by clicking at its edge. Be sure you select the
paned window and not one of its panes. You will know you have selected
the paned window if a dark box is drawn around the paned window.

Or, open the Module Browser and select the paned window there. This is
the easiest, surest way to select a paned window.

2. Choose Unmake Paned Window from the Layout menu or from the pop-
up menu in the interface or the Module Browser (displayed by pressing
mouse button 3).

The panes that made up the paned window will become separate panes
again.

Creating and Editing Panes, Menus, and Messages 47

5

Creating and Editing Menus

A menu is a list of items with meaningful labels. Each item is connected to
a function which is performed when the menu is displayed and the item is
selected. This section explains how to create and edit menus, how to attach
menus to objects, and how to connect menu items to programmatic
functions.

Menus can be attached to menu buttons, menubar items, lists, and any of
the four types of panes. A menu is automatically attached to an option
menu, so there is no need to attach a menu to it.

Menu Property Editor

The Menu Property Editor is used to create menus. A menu, unlike most of
the objects edited in the Revolving Property Editor, is a created object and
is not available from the object palettes.

Only properties unique to a menu object are described here. See “Property
Editor: Universal Properties” on page 140 for descriptions of Object Type,
Objects, Object Name, and Color. See “Property Editor: Common
Properties” on page 141 for descriptions of Items, Label, and Item State
(Active).

Add New Menu Adds a new menu to the list of menus.

Edit Performs edit functions (Cut, Copy, Paste, Delete) on
the selected item in the list of menu objects. Cut and
Copy place the selected item in a buffer, ready for
Paste. Delete removes the item, but does not place it
in a buffer.

Tearoff Specifies whether tearoff is Enabled or Disabled. If
tearoff is enabled the selected menu will be
"postable." That is, the menu will be displayed until
you explicitly dismiss it if you click on the Tearoff
indicator (a dotted line).

Item Label Type Specifies the type of label (String, Graphic, or
Separator) for the item selected in the Items list. If
Graphic is chosen, Label becomes Graphic Filename.
If Separator is chosen, Label or Graphic Filename
becomes inactive and Line Style becomes active. A

48 Application Builder User’s Guide

5

Separator menu item is used to create a visual
division in a menu, such as that seen in the Editors
menu of the App Builder primary window.

Item Mnemonic Specifies one of the letters in the selected item as a
keyboard shortcut for choosing the item when the
menu is posted. The letter specified will be
underlined. Pressing the mnemonic letter when the
menu is posted causes that item to be chosen. Note
that case is significant and that a particular letter
can be used as a mnemonic only once within a menu.

Accelerator Specifies a keyboard shortcut for choosing the
selected item. An accelerator is comprised of a prefix
(Ctrl, Alt, Meta, or Shift), <key> , and a letter
(uppercase or lowercase). To make Control-x an
accelerator, for instance, type the following:
Ctrl<key>x

When you display the menu in test mode or in the
compiled application, Ctrl+x will be included to the
right of the menu item label. If you press the Control
key and type x with focus in the window that
contains the menu, the action specified in the menu
item will be performed.
You can combine the Shift key with one of the other
keys to form a compound prefix, if you wish. To make
Shift Control-x an accelerator, type the following:
Shift Ctrl<key>x

Line Style Specifies the type of line style for the selected
separator item; active only when Item Label Type is
Separator. Choices are None, Etched In, Etched Out,
Etched In Dash, Etched Out Dash, Single Line,
Double Line, Single Dashed Line, and Double
Dashed Line. A separator of the chosen line style
will be displayed in the menu instead of a graphic or
text label.

Item SubMenu A menu button and a text field for attaching, de-
attaching, creating, or editing a submenu for the
selected item in the Items list. If a submenu is
attached to the selected item, the name of the
submenu will be displayed in the text field. Not valid
for separator item type.

Creating and Editing Panes, Menus, and Messages 49

5

♦ To Create a Menu

This description assumes you are creating a menu and attaching it to an
interface object as two separate procedures. To combine these procedures,
see “To Create and Attach a Menu” on page 54.

Note – Menus are available within modules only. Be sure the menu created
is in the same module as the object you wish to attach the menu to. Menus
are created in the current module, which is determined by what is selected
in the interface. The Editing Module field in the object information area of
the App Builder primary window indicates the current module.

1. Display the Menu Property Editor by choosing Menus from the Editors
menu in the App Builder primary window.

Or, display the Revolving Property Editor and choose Menu as the Object
Type.

Choosing Menus from the Editors menu in the primary window is the
same as clicking the Tear-off button in the Revolving Property Editor
when the Object Type is Menu.

See “Menu Property Editor” on page 47 for a description of the editor.

If no menus exist in the current project, the Menu Objects list will be
blank and only the Add New Menu and Edit buttons will be active.

If any menus exist in the current project, they will be listed in the Menu
Objects list. One of the menus will be selected in the list and the menu’s
properties will be displayed for editing.

2. Click Add New Menu.

A menu will be created with a default Object Name (“menu,” “menu2,”
and so on, depending on how many menus there are in the current
module), and with two items in the Items list (“Item1” and “Item2”). The
menu will be added to the end of the Menu Objects list, with the name of

50 Application Builder User’s Guide

5

the current module preceding the menu name. The menu will have
default values for Object Name, Tearoff, Items, Item Label Type, Label,
and Item State.

If you know you are going to need a number of menus, you could create
them all at the same time by clicking Add New Menu the appropriate
number of times. You can also create menus that will be used as
submenus, to be attached to menu items, at this time.

3. Edit the menu, as described in “To Edit a Menu” on page 50.

You can edit the menu immediately after creating it or you can edit it
later.

After you have created and edited a menu you will want to attach it to an
interface object and make the menu functional by creating connections
between menu items and specific actions. See “To Attach an Existing Menu
to an Object” on page 52 and “Connecting Menu Items to Actions” on
page 78 for instructions. See “To Attach an Existing Submenu to a Menu
Item” on page 55 if you want to attach a submenu to a menu item.

♦ To Edit a Menu

After creating a menu you will need to edit the menu: add menu items, give
the menu items meaningful names, add submenus, and so on.

1. Display the Menu Property Editor by choosing Menus from the Editors
menu in the App Builder primary window.

Or, display the Revolving Property Editor and choose Menu as the Object
Type.

See “Menu Property Editor” on page 47 for a description of the editor.

2. Change Object Name, if necessary.

The automatically-generated Object names, which are unique within
modules, do not usually need to be changed.

3. Click Enabled to enable the Tearoff function, if necessary.

This will make the menu “postable,” meaning that if you click on the
Tearoff indicator (a dotted line) the menu will not be dismissed as soon
as you select a menu item. The menu will remain posted until you
dismiss it.

Creating and Editing Panes, Menus, and Messages 51

5

4. Add menu items to the Items list, if necessary.

Click Add Item to add an item after the selected item; choose from the
Edit menu button to perform other edit functions.

5. Change Item Label Type for menu items in the Items list, if necessary.

Choices are String (text), Graphic, or Separator. Label becomes Graphic
Filename if Graphic is chosen; Line Style becomes active if Separator is
chosen.

6. Type a different Label or Graphic Filename for the selected item, if
necessary.

Note – The easiest way to edit labels for menu items is to select the first
one in the Items list, thus selecting it in the Label field. Type a new name
and click Return. The new name will be displayed in the Items list and the
next item in the list will be selected. Continue down the list with this
select, type, Return process until all labels are completed.

If Graphic Item Label Type was chosen, the Graphic Filename must be
an xpm or xbm graphic file.

7. Type an Item Mnemonic, if necessary.

Type one of the letters in the item label. That letter will be underlined in
the menu item label. If the menu is posted, pressing that key will cause
the action connected with the menu item to be performed.

Note – The same mnemonic letter, regardless of case, cannot be used more
than once in a menu.

8. Type an Accelerator, if necessary.

An accelerator is comprised of a prefix (Ctrl, Alt, Meta, or Shift), <key> ,
and a letter (uppercase or lowercase). See “Menu Property Editor” on
page 47 for more information.

9. Choose a Line Style, if Item Label Type is Separator.

See “Menu Property Editor” on page 47 for the list of choices.

52 Application Builder User’s Guide

5

10. Attach an Item Submenu, if appropriate.

See “To Attach an Existing Submenu to a Menu Item” on page 55 for
instructions.

11. Change Item State, if necessary.

By default the item state is Active. If you want the menu item to be
inactive when the application is started, click the Active check box to
deselect it.

12. Select Background and Foreground Colors, if necessary.

Type in a color or choose Color Chooser from the menu and select a color
from the Color Chooser. See “To Select Colors from the Color Chooser” on
page 36 for details.

13. Click Connections to add programmatic connections to menu items, as
necessary.

See “Connecting Menu Items to Actions” on page 78 for instructions.

14. Click Apply or OK to apply the changes.

If you click Apply the property editor will remain displayed.

♦ To Attach an Existing Menu to an Object

The following instructions assume you have created one or more menus as
described in “To Create a Menu” on page 49 and that you are ready to
attach a menu to an object in the interface. Menus can be attached to menu
buttons, menubar items, lists, and any of the four types of panes. A menu is
automatically attached to an option menu, so there is no need to attach a
menu to it.

1. Display the Revolving Property Editor with the object to which you wish
to attach a menu selected in the editor.

Double-click the object in the interface or the Module Browser or choose
the appropriate Object Type in the Revolving Property Editor and select
the desired object in the Objects list.

Creating and Editing Panes, Menus, and Messages 53

5

2. Select a menu to attach to the selected object.

Click mouse button 2 or press mouse button 1 or 3 on the Popup Menu or
Pulldown Menu menu button. Choose the appropriate menu from the
Menus submenu.

The name of the selected menu will be displayed in the text field of the
Popup Menu or Pulldown Menu.

3. Click OK or Apply.

The menu will be attached to the selected object. See “Making
Connections Between Objects” on page 76 for instructions for making the
menu functional.

Note – If you attach a menu to one of the pane objects or to a list, the menu
will be a pop-up menu, displayed in test mode or in the compiled
application by pressing mouse button 3 with the cursor on the pane or the
list.

54 Application Builder User’s Guide

5

♦ To Create and Attach a Menu

One method of creating and attaching a menu to an object is described in
“To Create a Menu” on page 49 and “To Attach an Existing Menu to an
Object” on page 52. With the method described here you create and attach
the menu at one time. Use whichever method is most convenient.

1. Display the Revolving Property Editor with the object to which you wish
to attach a menu selected in the editor.

Double-click the object in the interface or the Module Browser or choose
the appropriate Object Type in the Revolving Property Editor and select
the desired object in the Objects list.

2. Choose Create New Menu from the Pulldown Menu or Popup Menu
button available for some objects.

Pulldown menus are available for menu buttons and menu bars. Popup
menus are available for all pane objects and for lists. An Item SubMenu
is available for menus themselves.

The Menu Property Editor will be displayed, with a newly-created menu
selected in the Menu Objects list. The menu will have default values for
Object Name, Tearoff, Items, Item Label Type, Label, and Item State.

The Object Name will be of the form “object_type_menu,”
“object_type_menu2,” and so on., depending on what type of object was
selected in the property editor when Create New Menu was chosen and
how many menus have been created for the current module. The menu
will be added to the end of the Menu Objects list, with the name of the
current module preceding the menu name.

3. Edit the menu and click OK to apply the changes and dismiss the Menu
Property Editor.

See “To Edit a Menu” on page 50 for instructions. You can edit the menu
later if you like.

4. Click Apply or OK in the Revolving Property Editor to attach the menu
to the selected object.

See “Making Connections Between Objects” on page 76 for instructions
for making the menu functional.

Creating and Editing Panes, Menus, and Messages 55

5

♦ To Attach an Existing Submenu to a Menu Item

The following instructions assume you have created two or more menus as
described in “To Create a Menu” on page 49 and that you are ready to
attach one of them as a submenu for a menu item.

1. Display the Menu Property Editor or the Revolving Property Editor with
Menu chosen as the Object Type.

2. In the Menu Objects or Objects list select the menu that contains the
menu item to which you want to attach a submenu.

3. In the Items list select the menu item to which you want to attach a
submenu.

4. Select a menu to attach to the selected menu item.

Click mouse button 2 or press mouse button 1 or 3 on the Item SubMenu
menu button. Choose the appropriate menu from the Menus submenu.

The name of the selected menu will be displayed in the text field of the
Item SubMenu.

5. Click OK or Apply.

The submenu will be attached to the selected menu item. See “Making
Connections Between Objects” on page 76 for instructions for making the
submenu functional.

56 Application Builder User’s Guide

5

♦ To Create and Attach a Submenu

The following instructions assume you have created one or more menus and
that you want to create and attach a submenu to one of the items in one of
the menus. With this method you create the submenu and attach it as part
of a single procedure. Another method for accomplishing this task is to
create the menu as described in “To Create a Menu” on page 49 and to
attach it to a menu item as described in “To Attach an Existing Submenu to
a Menu Item” on page 55. Use whichever method is most convenient.

Note – When you create and attach a submenu you will be using two
editors—one to create the menu and the other to attach the submenu to the
menu item. If you start this procedure in the Menu Property Editor, you
will be attaching the submenu in the Menu Property Editor but creating it
in the Revolving Property Editor. If you start the procedure in the
Revolving Property Editor, you will be attaching the menu there but
creating it in the Menu Property Editor.
The example below assumes you are starting the procedure in the Menu
Property Editor.

1. Display the Menu Property Editor by choosing Menus from the Editors
menu of the App Builder primary window.

2. In the Objects list select the menu that contains the menu item to which
you want to attach a submenu.

3. In the Items list select the menu item to which you want to attach a
submenu.

4. Choose Create New Menu from the Item SubMenu menu.

The Revolving Property Editor will be displayed, with the new menu
selected in the Objects list.

5. Edit the menu and click OK to apply the editing changes you made and
to dismiss the Revolving Property Editor

See “To Edit a Menu” on page 50 for instructions. You can edit the menu
later if you like.

6. Click Apply in the Menu Property Editor to attach the submenu to the
menu item selected in Step 2. See “Connecting Menu Items to Actions”
on page 78 for instructions for making the submenu functional.

Creating and Editing Panes, Menus, and Messages 57

5

♦ To Create and Attach a Help Menu

A help menu at the right end of the menu bar in the application primary
main window is a common feature of applications. Do the following to
create a help menu and attach it to the Help item of a menu bar. These
instructions assume you have included a menu bar in the primary main
window and that Help is one of the menu bar items.

1. Display the Revolving Property Editor with Menubar selected in the
editor.

Double-click the appropriate menu bar in the interface or the Module
Browser or choose Menubar from the Object Type menu in the Revolving
Property Editor and select the desired menu bar in the Objects list. This
will normally be the menu bar in the primary main window.

2. Select Help in the Items list.

This is the Help item on the menu bar.

3. Click mouse button 2 or press mouse button 1 or 3 on the Pulldown
Menu menu button. Choose Create New Menu from the Menus submenu.

The name of the new menu will be displayed in the text field of the
Pulldown Menu and the Menu Property Editor will be displayed with the
new menu loaded.

4. Edit the menu.

a. If you want a Help menu that looks like the App Builder Help menu,
for instance, add four items to the two default items in the Items list.
Select each item in turn and type appropriate labels (Overview, Tasks,
Reference, On Item, Using Help, and About [application_name], for
instance).

b. Add item mnemonics and accelerators, if appropriate.

See “Menu Property Editor” on page 47 for details.

c. Make other changes to the menu, if appropriate.

5. Click OK or Apply in the Menu Property Editor.

The menu is complete. The Menu Property Editor will be dismissed if
you click OK.

58 Application Builder User’s Guide

5

6. Click OK or Apply in the Revolving Property Editor.

The Help menu has been attached to the Help item in the menu bar. The
Revolving Property Editor will be dismissed if you click OK.

Creating and Editing Panes, Menus, and Messages 59

5

Creating and Editing Messages

This section describes the Message Editor and explains how to create and
edit message dialog boxes.

Message Editor

The Message Editor is used to create various types of messages to be
displayed at appropriate times in the compiled application. It is shown in
Figure 5-1 and then described. See “To Create a Message Dialog Box” on
page 61 and “To Edit a Message” on page 62 for instructions on its use.

Figure 5-1 Message Editor

Messages Lists all messages for the current project. The
module name precedes the message name in the list.

Module menu Specifies the module for which you wish to add a
new message. The module name precedes the
message name in the Messages list.

Type menu

Message text pane

Button check boxes

Module menu

60 Application Builder User’s Guide

5

Add Message Adds a new message to the Messages list and to the
current project. The message is for the module
selected in the module option menu.

Delete Message Deletes the selected message.

Name Specifies the instance name of the current message
object. Messages are given names such as “message,”
“message2,” “message3,” by default.

Dialog Title Specifies the title that will appear at the top of the
message dialog box.

Type Specifies the type of message to be created. The
choices are Error, Information, Working, Question,
and Warning. The message type appears above the
message text pane. The appropriate message icon
appears in the message dialog box in the compiled
applications.

Message text pane A text pane for entering the text of the message.
Press Return when you want the text to start a new
line. The label above the text pane varies, depending
on what type of message you have chosen.

Button check boxes Specifes which buttons will be included at the
bottom of the message dialog box. Each message
type has a different set of buttons specified by
default; these default choices can be changed.
Actions associated with the Action1, Action2,
Action3, and Cancel buttons are set in the
Connections Editor. See “To Create a Message Dialog
Box” on page 61 for detailed instructions.

Default Button menu
Specifies the default button for the selected message
dialog.

Connections Displays the Connections Editor for specifying what
functions to call for each of the Action buttons and
the Cancel button.

Help Text Displays the Help Editor, in which you write help
text to be displayed when the Help button is clicked
in the message dialog box.

Creating and Editing Panes, Menus, and Messages 61

5

Show Dialog A push button for displaying the selected message in
a message dialog box that looks like the actual
dialog box in the compiled application. Click one of
the buttons other than Help to dismiss the dialog
box.

See “Property Editor: Common Buttons” on page 143 for descriptions of the
buttons at the bottom of the editor.

♦ To Create a Message Dialog Box

See “Message Editor” on page 59 for descriptions of each of the fields in the
editor. See “To Connect a Non-Modal Message to a Function” on page 63 for
a discussion of how to connect messages to the functions that cause them to
be displayed, with examples.

1. Choose Messages from the Editors menu of the App Builder primary
window to display the Message Editor.

2. Choose the module to which you want to add a message in the option
menu below the Messages list.

3. Click Add Message.

A unique name (“message,” “message2,” and so on, depending on how
many messages are in the current module) will be displayed in the Name
field. The module name and the message name will be added to the
Messages list.

4. Modify the Name if you wish.

This is the name used to identify the message internally—in the
Connections Editor, for instance. This name is not displayed in the
compiled message dialog box.

5. Type a title for the message dialog in the Dialog Title field.

This will appear in the title bar of the compiled message dialog box.

6. Choose a message type from the Type menu.

The icon for the message type will be displayed in the Type menu and
the message type (Error, Information, Working, Question, or Warning)
will be displayed above the message text pane (to the right of the Type
menu).

62 Application Builder User’s Guide

5

7. Type the message text in the message text pane, pressing Return when
you want a new line to start in the compiled message.

8. Specify which buttons will appear in the message dialog box by clicking
the check boxes below the message text pane and typing the labels you
want on the Action1, Action2, and Action3 buttons.

Each of the message types includes a default set of buttons that you can
modify:

• Error: Action2 (Retry), Cancel, Help.
• Information: Action1 (OK), Help.
• Working: Action1 (Close), Action2 (Stop), Help.
• Question: Action1 (Yes), Action2 (No), Help.
• Warning: Action2 (Continue), Cancel, Help.

9. Choose a default button from the Default Button menu.

This is the button that will have an extra border when the message
dialog box is displayed. This is the button that will be activated if Return
is pressed. Each of the message types has a default Default Button that
you can modify:

• Error: Action2
• Information: Action1
• Working: Action1
• Question: Action1
• Warning: Action2

10. Click the Help Text button and create help text, as appropriate.

See “To Create Help” on page 72 for instructions.

11. Click OK or Apply to apply the changes.

The Message Editor will be dismissed if you click OK.

♦ To Edit a Message

1. Choose Messages from the Editors menu of the App Builder primary
window to display the Message Editor.

2. Select the message you want to edit in the Messages list.

3. Edit the message, as appropriate.

Creating and Editing Panes, Menus, and Messages 63

5

• To delete a message, click Delete Message.
• To modify the dialog box title, click in the Dialog Title text field and

type the new label.
• To change the message type, choose a different Type icon.
• To modify the message text, click in the message text pane and type

the appropriate changes.
• To change the available buttons, select the check boxes and type new

button labels, if appropriate.
• To change the default button, choose another from the Default Button

menu.
• To modify help text, click Help Text, make the changes in the Help

Editor, and click OK in the Help Editor.

4. Click OK or Apply to apply the changes.

The Message Editor will be dismissed if you click OK.

♦ To Connect a Non-Modal Message to a Function

See “Example: Writing Code for Messages” on page 64 for a discussion of
how to connect a message to the function that causes it to be displayed,
with examples. In particular, read that section to see how to attach a modal
(blocking) message to a function.

1. Display the Connections Editor by clicking Connections in the Message
Editor or by choosing Connections from the Editors menu of the App
Builder primary window.

If you select a message in the Message Editor and click Connections, the
selected message will be selected in the Source list of the Connections
Editor. You can skip the next two steps.

2. Display messages in the Source list by choosing Message from the Source
menu.

3. Select a message in the Source list.

4. Choose Call Function as the Action Type.

This activates the When menu on the Source side of the Connections
Editor.

64 Application Builder User’s Guide

5

5. Choose a When item (Action1, Action2, Action3, or Cancel Activated,
depending on which buttons were checked in the Message Editor).

6. Type the name of the Function to be called when the selected button is
selected.

When code is generated, this function is created in
<module_name >_stubs.c . You will have to substitute appropriate code
before running make.

7. Click Connect to create the connection.

The connection will be displayed in the View list at the bottom of the
Connections Editor.

8. Repeat the previous three steps for each button except Help.

9. Click Cancel to dismiss the Connections Editor.

Example: Writing Code for Messages

Once you have created a message as described in “To Create a Message
Dialog Box” on page 61, you must determine when and how it should be
displayed. Usually messages are displayed after a certain piece of logic has
been executed. For example, if a user types digits in a text field that is
designed to accept a name, you will want to post an error message
informing the user that digits are not valid.

Message boxes in Motif can be displayed in one of two ways: modally or
non-modally (equivalently, blocking or non-blocking). The App Builder code
generator (dtcodegen) supplies two routines, corresponding to the two
modes of display. They are found in dtb_utils.c and are named:

• dtb_show_modal_message()
• dtb_show_message()

If you want to display a particular message modally, use
dtb_show_modal_message() . If you want to display a particular
message non-modally, use dtb_show_message() .

One of the key differences in the way these two types of of messages are
handled is in how the application determines which button was pressed by
the user in the message dialog box. For non-modal messages callbacks are
added to each button via the Connections Editor. When the user clicks a

Creating and Editing Panes, Menus, and Messages 65

5

button the corresponding callback is called. Since modal dialogs are
blocking, the button callbacks are not called. Instead, the value is returned
by dtb_show_modal_message , which indicates which button is pressed by
the user.

♦ To Write Code for Modal Messages

If a message is to be displayed modally, use dtb_show_modal_message() .
This routine returns a value which indicates which message box button the
user has pressed. The value is an enum that is defined in dtb_utils.h :

/*
 * Returns answer value for modal MessageBox
 */
typedef enum {

 DTB_ANSWER_NONE,
 DTB_ANSWER_ACTION1,
 DTB_ANSWER_ACTION2,
 DTB_ANSWER_ACTION3,
 DTB_ANSWER_CANCEL,
 DTB_ANSWER_HELP

} DTB_MODAL_ANSWER;

You can then examine the return value (for example via a switch
statement) and execute the appropriate piece of code.

Here's an example of displaying a message modally. Say that you have
created a simple application, named foo . The project is named foo.bip
and consists of one module, foo.bil . The module foo.bil consists of a
main window, control pane, and two text fields, one for the user to enter a
person's first name and the other to enter the last name. If the user types
digits, an error message will be posted, informing the user that digits are
not allowed, and giving the user a couple of options. The user can start
over, which means the text entered will be erased, or the user can continue,
which means that the text entered will be left intact, giving the user
discretion as to how to modify the text.

66 Application Builder User’s Guide

5

A call-function connection is made for both text fields, which will be called
each time the user types something. The function for the first text field will
check if the character typed is a digit. If so, it will post the error message
modally:

void
verify_first_nameCB(
 Widget widget,
 XtPointer clientData,
 XtPointer callData
)
{
 /*** DTB_USER_CODE_START vvv Add C variables and code below vvv ***/
 char *text = (char *)NULL;
 int textlen = 0;
 DTB_MODAL_ANSWER answer = DTB_ANSWER_NONE;
 DtbFooMainwindowInfo instance = (DtbFooMainwindowInfo) clientData;
 /*** DTB_USER_CODE_END ^^^ Add C variables and code above ^^^ ***/

 /*** DTB_USER_CODE_START vvv Add C code below vvv ***/

 text = XmTextFieldGetString(widget);
 if ((text != NULL) && (*text != NULL))
 {
 textlen = strlen(text);
 if (isdigit(text[textlen-1]))
 {
 dtb_foo_message_initialize(&dtb_foo_message);
 answer = dtb_show_modal_message(instance->textfield,
 &dtb_foo_message, NULL, NULL, NULL);
 switch (answer)
 {
 case DTB_ANSWER_ACTION1: /* Start Over */
 XmTextFieldSetString(widget, "");
 break;

 case DTB_ANSWER_ACTION2:/* Continue */
 break;
 }
 }
 }

 /*** DTB_USER_CODE_END ^^^ Add C code above ^^^ ***/
}

Creating and Editing Panes, Menus, and Messages 67

5

♦ To Write Code for Non-Modal Messages

If you want to post a non-modal message, use dtb_show_message() .
Since this function is not modal and does not return a return value,
callbacks for the message box buttons should be specified via the
Connections Editor, as described in “To Connect a Non-Modal Message to a
Function” on page 63. The buttons that are specified for the message box
are displayed as When items for the message object in the Connections
Editor.

Using the same example as above, make the last name text field display the
error message non-modally if the user types a digit. As previously
mentioned, first you'll need to make a couple of call-function connections for
the two buttons in the message box, labelled "Start Over" and "Continue."
When code is generated, add code to those routines to do the right thing.
The start over routine will clear out the text field and the continue routine
will do nothing, in this case.

void
verify_last_nameCB(
 Widget widget,
 XtPointer clientData,
 XtPointer callData
)
{
 /*** DTB_USER_CODE_START vvv Add C variables and code below vvv ***/
 char *text = (char *)NULL;
 int textlen = 0;
 DtbFooMainwindowInfo instance = (DtbFooMainwindowInfo) clientData;

 /*** DTB_USER_CODE_END ^^^ Add C variables and code above ^^^ ***/

 /*** DTB_USER_CODE_START vvv Add C code below vvv ***/

 text = XmTextFieldGetString(widget);
 if ((text != NULL) && (*text != NULL))
 {
 textlen = strlen(text);
 if (isdigit(text[textlen-1]))
 {
 dtb_foo_message_initialize(&dtb_foo_message);
 dtb_show_message(instance->textfield,
 &dtb_foo_message, NULL, NULL);
 }
 }

68 Application Builder User’s Guide

5

 /*** DTB_USER_CODE_END ^^^ Add C code above ^^^ ***/
}

void
start_overCB(
 Widget widget,
 XtPointer clientData,
 XtPointer callData
)
{
 /*** DTB_USER_CODE_START vvv Add C variables and code below vvv ***/

 DtbFooMainwindowInfo instance = (DtbFooMainwindowInfo) clientData;

 /*** DTB_USER_CODE_END ^^^ Add C variables and code above ^^^ ***/

 /*** DTB_USER_CODE_START vvv Add C code below vvv ***/

 XmTextFieldSetString(dtb_foo_mainwindow.textfield2, "");

 /*** DTB_USER_CODE_END ^^^ Add C code above ^^^ ***/
}

void
continueCB(
 Widget widget,
 XtPointer clientData,
 XtPointer callData
)
{
 /*** DTB_USER_CODE_START vvv Add C variables and code below vvv ***/
 /*** DTB_USER_CODE_END ^^^ Add C variables and code above ^^^ ***/

 /*** DTB_USER_CODE_START vvv Add C code below vvv ***/
 /*** DTB_USER_CODE_END ^^^ Add C code above ^^^ ***/
}

The two routines above, start_overCB() and continueCB() , are added
as callbacks for the two buttons via the call to dtb_show_message() . Here
is the code fragment that adds the callback (from dtb_utils.c):

 /* Add Callbacks if necessary */

Creating and Editing Panes, Menus, and Messages 69

5

 if (mbr->action1_callback != (XtCallbackProc) NULL)
 XtAddCallback(msg_dlg, XmNokCallback, mbr->action1_callback, NULL);
 if (mbr->cancel_callback != (XtCallbackProc) NULL)
 XtAddCallback(msg_dlg, XmNcancelCallback, mbr->cancel_callback, NULL);
 if (mbr->action2_callback != (XtCallbackProc) NULL)
 {
 action_btn = dtb_MessageBoxGetActionButton(msg_dlg, DTB_ACTION2_BUTTON);
 if (action_btn != NULL)
 XtAddCallback(action_btn, XmNactivateCallback,
 mbr->action2_callback, NULL);
 }
 if (mbr->action3_callback != (XtCallbackProc) NULL)
 {
 action_btn = dtb_MessageBoxGetActionButton(msg_dlg, DTB_ACTION3_BUTTON);
 if (action_btn != NULL)
 XtAddCallback(action_btn, XmNactivateCallback, mbr->action3_callback, NULL);
 }

The structure mbr contains all the necessary information for the message.
The structure is filled in with the values specified in the Message Editor
when the message object was created via the dtb_&_&_initialize()
routine—in this example, dtb_foo_message_initialize() .

70 Application Builder User’s Guide

5

71

Adding Functionality to the
Interface 6

Once you have laid out an interface you may want to add help to interface
elements, make programmatic connections between objects, specify drag
and drop behavior, and specify application framework behavior (including
internationalization, resource file creation, session management, and
ToolTalk message handling).

Creating Help and Help Connections

Two kinds of help—object help and a help volume—can be accessed from an
App Builder application. Object help is created in App Builder, as explained
in “To Create Help” on page 72. A help volume is created separately from
App Builder, and is accessed in your compiled application from the Help

Creating Help and Help Connections 71

Making Connections Between Objects 76

Connecting Menu Items to Actions 78

Editing Existing Connections 81

Establishing Drag and Drop Behavior 83

Establishing Application Framework Behavior 87

72 Application Builder User’s Guide

6

menu or by clicking More in a help dialog box. See the Help System
Author's and Programmer's Guide, which is included in the desktop Help
Developer's Kit, for instructions for creating a help volume.

About App Builder Help

With App Builder you can create help for any object in the interface—a
control, a pane, or a window. Help is created in the Help Editor, as
described in “To Create Help” on page 72. In test mode or in the compiled
application, help is displayed in the following ways:

• Press F1 with the cursor over an interface window.

If help exists for the object with input focus, it is displayed. If there is no
help for the object with input focus but help exists for a parent window,
help for that window will be displayed.

• Click the Help button in a window or dialog box.

• Choose On Item from the Help menu and click on an object in the
interface.

See “To Test On Item Help” on page 107 for instructions for testing On Item
help. If help is not available for a particular child object (a control or a
pane) but is available for the parent of the child object (a pane or a
window), help for the parent object is displayed.

♦ To Create Help

1. Display the Revolving Property Editor.

2. Choose the Object Type for which you want to write help.

3. Select the object for which you want to write help.

4. Click Help Text to display the Help Editor with the appropriate object
selected.

Adding Functionality to the Interface 73

6

5. Type help text in the Help Text pane.

Press Return when you want a new line to start in the compiled help
dialog box.

6. Type a Volume Name if appropriate.

This is the name of a help volume.

7. Type a Location ID, if appropriate.

This is the helptag location ID that will provide more information about
the selected object.

Note – You must create help for an object if you want access to a help
volume from a help dialog box. If you create help for an object and include
a Volume Name and Location ID, the More button will be active in the help
dialog box.

74 Application Builder User’s Guide

6

8. Click OK or Apply to apply the changes.

If you want to add help to other objects, choose the appropriate Object
Type in the menu, select the appropriate object, and repeat the previous
two steps.

The Help Editor will be dismissed if you click OK.

♦ To Connect a Help Menu to On Item Help

One of the standard items in a Help menu is On Item Help, which is used
to display help for a specific object in an interface. The instructions below
assume you have included a menu bar in a main window and that you have
attached a Help menu to the Help item in the menu bar. See “To Create and
Attach a Help Menu” on page 57 for instructions.

1. Choose Menus from the Editors menu in the App Builder primary
window.

The Menu Property Editor is displayed.

2. Select the Help menu in the Objects list.

3. Select one of the items in the Items list as the On Item Help item.

4. Type On Item or other appropriate text in the Label text field.

5. Include an item mnemonic, if appropriate.

An item mnemonic specifies one of the letters in the selected item as a
keyboard shortcut for activating the menu item when the menu is
posted. The letter specified will be underlined in the menu item. Case is
significant for mnemonics.

6. Include an item accelerator, if appropriate.

An item accelerator specifies a keyboard shortcut for choosing the
selected item. An accelerator is comprised of a prefix (Ctrl, Alt, Meta, or
Shift), <key> , and a letter (upper- or lowercase). To make Control-x an
accelerator, for instance, type Ctrl<key>x .

7. Click Apply.

The changes to the Help menu will be applied.

Adding Functionality to the Interface 75

6

8. Click Connections to display the Connections Editor.

The Connections button is at the bottom of the Menu Property Editor.

9. Choose Menu Item in the Source menu.

10. Select the On Item Help item in the Source list.

11. Choose Activate On Item Help from the Action Type menu.

12. Click Connect.

When you choose the On Item Help item in the Help menu in test mode or
in the compiled application, the cursor will become an arrow with a
question mark. Move the cursor over an object and click mouse button 1 to
display On Item help for the selected object (or for one of its parent objects
if no help is available for the object itself). See “To Test On Item Help” on
page 107 for more information.

♦ To Connect a Help Menu to a Help Volume

After creating a help menu and attaching it to the Help item in a menu bar
as explained in “To Create and Attach a Help Menu” on page 57, do the
following to connect menu items to specific locations in a help volume. See
“To Connect a Help Menu to On Item Help” on page 74 for instructions for
connecting the On Item help item in the Help menu to the On Item help
function.

1. Display the Connections Editor.

Click Connections in the Revolving Property Editor or in the Menu
Property Editor or choose Connections from the Editors menu.

2. Choose Menu Item from the Source option menu.

3. Select one of the Help menu items from the Source scrolling list.

4. Choose Access Help Volume from the Action Type option menu.

5. Type the name of the help volume in the Volume text field.

6. Type the appropriate location ID in the Location text field.

7. Click Connect to make the connection.

76 Application Builder User’s Guide

6

Making Connections Between Objects

In its simplest form a connection is a programmatic relationship between a
source object and a target object: when I click on Button A I want Dialog
Box B to be displayed. This type of connection is described below in “To
Make a Connection between Two Objects.”

Different types of connections from menu items are described in “To
Connect a Menu Item to a Predefined Action” on page 78, “To Connect a
Menu Item to a Call Function” on page 79, and “To Connect a Menu Item to
an Execute Code Action” on page 80.

Other types of connections (to On Item Help and to a help volume) were
discussed in “To Connect a Help Menu to On Item Help” on page 74 and in
“To Connect a Help Menu to a Help Volume” on page 75. In “To Connect a
Non-Modal Message to a Function” on page 63, a message dialog box is
connected to the function which causes the dialog box to be displayed.

♦ To Make a Connection between Two Objects

1. Select the source and target objects.

By “drag-linking”: While holding down the Control key, position the
mouse cursor over the intended source object, press mouse button 1,
drag the cursor to the intended target object, and release the mouse
button.

This can be done in the interface or in the Module Browser (or between
the interface and the Module Browser). See “Module Browser” on
page 132 for a description of the Browser.

A line with a “plug” at its end will extend from the source as you move
the mouse. The target object will be highlighted with a dark box. When
you release the mouse button on the target object, the Connections
Editor will be displayed, with the source and target objects selected.

• Through the Connections Editor: Display the Connections Editor
by choosing Connections in the Editors menu. Choose the object type
you want as the source object in the Source menu, and select the object
you want as the source in the Source list. Then choose the object type
you want as the target object in the Target menu, and select the object
you want as the target in the Target list.

Adding Functionality to the Interface 77

6

Note – If you select an object in the Revolving Property Editor and click
the Connections button, the Connections Editor will be displayed with the
selected object selected in the Source list.

2. Choose an action in the When menu.

This is the action on the source object that will cause an action to be
performed on the target object. Choices vary, depending on the source
object type.

3. Choose an action to be performed on the target in the Action Type menu.

Different target action types require different subsequent action by you:

• Predefined: Choose an action from a second option menu.
• Call Function: Type the name of a function in the Function text field.

You will also have to write code for the call function, as described in
“Adding User Code to Generated Code” on page 117.

• Execute Code: Type the code to be performed in the Execute Code
Editor and click OK in the editor.

78 Application Builder User’s Guide

6

4. Click Connect to make the connection.

The connection will be displayed in the View list at the bottom of the
Connections Editor.

5. Click Cancel to dismiss the Connections Editor.

Connecting Menu Items to Actions

Once you have created a menu and attached it to an object as described in
“To Create a Menu” on page 49 and “To Attach an Existing Menu to an
Object” on page 52, you need to connect a meaningful action to each item in
each menu. Choices for target actions are Predefined, Call Function,
Execute Code, Activate On-Item Help, and Access Help Volume.

Connecting menu items to the first three types of actions are described
below. See “To Connect a Help Menu to On Item Help” on page 74 and “To
Connect a Help Menu to a Help Volume” on page 75 for instructions for
making help connections.

♦ To Connect a Menu Item to a Predefined Action

Only Predefined target actions are described in this section. See “To
Connect a Menu Item to a Call Function” on page 79 and “To Connect a
Menu Item to an Execute Code Action” on page 80 for information about
those connections.

1. Display the Connections Editor.

Click Connections at the bottom of the Revolving Property Editor or
choose Connections from the Editors menu of the App Builder primary
window.

2. Choose Menu Item from the Source menu.

All of the menu items in the current project will be listed.

3. Select a menu item from the list below the Source menu.

This is the item from which the connection will be made.

4. Choose Predefined as the target action type from the Action Type menu.

The Target menu will be activated.

Adding Functionality to the Interface 79

6

5. Choose the appropriate type of object from the Target menu.

This is the type of object that will be acted on when the When action is
performed on the source menu item.

6. Select an object in the list of Target items.

This is the specific object that will be acted on when the When action is
performed on the source menu item.

7. Choose a When action for the Source menu item.

Choices are Activated, Created, and Destroyed.

8. Choose a target action from the option menu to the right of Action Type.

The choices vary depending on the target type.

9. Click Connect to make the connection.

The connection will be displayed in the View list at the bottom of the
Connections Editor.

10. Click Cancel to dismiss the Connections Editor.

The designated target action will be performed in the compiled application
when the When action is performed on the menu item.

Depending on the source When and target action, you may be able to test
the connection in Test mode. See “To Test Menus in a Module” on page 108
for instructions.

♦ To Connect a Menu Item to a Call Function

Only the Call Function target action is described in this section. See “To
Connect a Menu Item to a Predefined Action” on page 78 and “To Connect a
Menu Item to an Execute Code Action” on page 80 for information about
those connections.

1. Display the Connections Editor.

Click Connections at the bottom of the Revolving Property Editor or
choose Connections from the Editors menu of the App Builder primary
window.

80 Application Builder User’s Guide

6

2. Choose Menu Item from the Source menu.

All of the menu items in the current project will be listed.

3. Select a menu item from the list below the Source menu.

This is the item from which the connection will be made.

4. Choose Call Function as the target action type from the Action Type
menu.

The Function text field will be activated.

5. Type the name of the function to be called in the Call Function text
field.

This is the function that will be called when the When action is
performed on the source menu item. See “Adding User Code to
Generated Code” on page 117 for information about incorporating user
code into the generated code.

6. Choose a When action for the Source menu item.

Choices are Activated, Created, and Destroyed.

7. Click Connect to make the connection.

The connection will be displayed in the View list at the bottom of the
Connections Editor.

8. Click Cancel to dismiss the Connections Editor.

♦ To Connect a Menu Item to an Execute Code Action

Only the Execute Code target action is described in this section. See “To
Connect a Menu Item to a Predefined Action” on page 78 and “To Connect a
Menu Item to a Call Function” on page 79 for information about those
connections.

1. Display the Connections Editor.

Click Connections at the bottom of the Revolving Property Editor or
choose Connections from the Editors menu of the App Builder primary
window.

Adding Functionality to the Interface 81

6

2. Choose Menu Item from the Source menu.

All of the menu items in the current project will be listed.

3. Select a menu item from the list below the Source menu.

This is the item from which the connection will be made.

4. Choose a When action for the Source menu item.

Choices are Activated, Created, and Destroyed.

5. Choose Execute Code as the target action type from the Action Type
menu.

The Execute Code Editor will be displayed.

6. Type the code to be executed in the Execute Code Editor.

The Execute Code Editor will be displayed. Type the code in the editor.
See “Adding User Code to Generated Code” on page 117 for information
about incorporating user code into the generated code.

7. Click OK in the Execute Code Editor to apply the changes and dismiss
the editor.

8. Click Connect in the Connections Editor to make the connection.

The connection will be displayed in the View list at the bottom of the
Connections Editor.

9. Click Cancel to dismiss the Connections Editor.

The code will be executed in the compiled application when the When
action is performed on the menu item.

Editing Existing Connections

Once you have created a connection you can modify the connection, delete
it, or create a new connection by selecting an existing connection, modifying
it, and saving it as a new connection.

82 Application Builder User’s Guide

6

♦ To Edit an Existing Connection

1. Choose Connections from the Editors menu in the App Builder primary
window.

The Connections Editor will be displayed.

2. Choose the source object type whose connection you want to view from
the View menu at the bottom of the Connections Editor.

If you want to edit a connection with a button as a source object, for
instance, choose Button from the View menu. All connections in the
current project with button as source object will be displayed in the View
list.

If you want to view all connections for a particular source object, choose
Source Object in the View menu and select the object in the Source
menu. All connections for the selected object will be displayed.

3. Select the connection you want to edit in the View list.

The source and target objects will be selected in the Source and Target
lists at the top of the editor. Their When and Action Type choices will be
displayed.

4. Edit the connection.
• To delete the selected connection, click Delete.
• To modify the selected connection, make changes to any of the choices

(source object, When action, target object, Action Type) and click
Change.

• To add a connection similar to the selected connection, modify any of
the choices and click Connect. A new connection will be created.

5. Click Cancel to dismiss the Connections Editor.

Adding Functionality to the Interface 83

6

Establishing Drag and Drop Behavior

Use the Drag and Drop Editor to establish drag and drop behavior for
interface objects. See “To Establish Drag and Drop Behavior” on page 85 for
instructions.

Object Type An option menu for choosing the type of object
(Control Pane, Custom Dialog, Draw Area Pane,
Label, or Main Window) for which you wish to
establish drag and drop behavior.

84 Application Builder User’s Guide

6

Objects A scrolling list for selecting a specific object for
which you wish to establish drag and drop behavior.

Drag Operations Check boxes for specifying which types of operations
(Copy, Move, Link) will be legal for the selected
object.

Cursor Filename A text field for typing the name of the graphics file
that contains the graphical representation of the
cursor that will be displayed as a drag from the
selected object is being performed.

Cursor Mask Filename
A text field for typing the name of the graphics file
that contains the bitmap which determines the
shape of the visible representation of the cursor
beneath the cursor mask. The cursor mask acts like
a stencil, allowing only the pixels in the cursor that
correspond to pixels in the mask to be visible.

Data Types Check boxes for specifying Text, Filename, and User
Defined as legal data types for drag operations.

Drag Connection A push button to display the Connections Editor for
creating the Call Function connection that makes
the dragged-from operation functional.

Drop Operations Check boxes for specifying which types of operations
(Copy, Move, Link) will be legal for the selected
object.

Data Types Check boxes for specifying Text, Filename, User
Defined, and Any Other Type as legal data types for
drop operations.

Drop on Children A check box for specifying whether a child of the
selected object will be a legal drop site; this is
relevant only if the child object is specified as a legal
drop site.

Drop Connection A push button to display the Connections Editor for
creating the Call Function connection that makes
the dropped-on operation functional.

Adding Functionality to the Interface 85

6

♦ To Establish Drag and Drop Behavior

1. Choose Drag and Drop from the Editors menu of the App Builder
primary window.

The Drag and Drop Editor is displayed.

2. Choose an Object Type.

3. Select an object in the Objects list.

4. Select the Drag Operations you want to be legal for the selected object.

5. To display a special cursor when a drag operation is being performed
from the selected object, type the names of graphics files in the Cursor
Filename and Cursor Mask Filename fields.

6. Select the Data Types that will be legal for drag operations.

7. Click Drag Connection.

The Connections Editor is displayed.

8. Choose Dragged From as the When action in the Connections Editor.

9. Choose Call Function as the Action Type in the Connections Editor.

10. Type a name for the called function in the Function text field in the
Connections Editor.

This is the name of the function that will be called when a drag
operation is performed. You will have to edit the stubs.c file to make
the called function do something useful. See “Adding User Code to
Generated Code” on page 117 for information.

11. Click Connect in the Connections Editor.

12. Click Cancel to dismiss the Connections Editor.

13. Select which Drop Operations will be legal.

14. Select the Data Types that will be legal for drop operations.

15. Check Drop on Children if you want a drop operation on a child of the
selected object to be legal.

This is relevant only if the selected object has a child which is designated
as a legal drop site.

86 Application Builder User’s Guide

6

16. Click Drop Connection to display the Connections Editor.

17. Choose Dropped On as the When action in the Connections Editor.

18. Choose Call Function as the Action Type in the Connections Editor.

19. Type a name for the called function in the Function text field in the
Connections Editor.

This is the name of the function that will be called when a drop
operation is performed. You will have to edit the stubs.c file to make
the called function do something useful. See “Adding User Code to
Generated Code” on page 117 for information.

20. Click Connect in the Connections Editor.

21. Click Cancel to dismiss the Connections Editor.

22. Click OK or Apply in the Drag and Drop Editor to apply the changes.

The Drag and Drop Editor will be dismissed if you click OK.

Adding Functionality to the Interface 87

6

Establishing Application Framework Behavior

Use the Application Framework Editor to specify basic functionality in the
application for internationalization, resource file attributes, session
management, and ToolTalk message handling. See “To Establish
Application Framework Behavior” on page 90 for instructions.

88 Application Builder User’s Guide

6

Application Vendor Name

A text field for typing an optional string, which will
be stored in the source code. Used in the call to
initialize ToolTalk (if ToolTalk is enabled).

Application Version A text field for typing an optional string, which will
be stored in the source code. Used in the call to
initialize ToolTalk.

Application Primary Main Window

An option menu for specifying the primary main
window of the application being developed. An
application may have more than one main window,
but only one primary window. This window is
typically the window which is first displayed when
the application is opened. By default the first main
window dropped on the workspace in a new project is
the primary window.

Internationalization Enabled

A check box for specifying whether
internationalization is enabled; if checked, turns on
XPG4-compliant internationalization in the
generated code for the project. In the [module]_ui.c
file, all labels and strings for objects are generated,
enclosed by the catgets (3C) call, which is used to
fetch the appropriate localized version of the string
at runtime. If internationalization is turned on,
dtcodegen will also automatically generate and
maintain the message catalog ([project].msg) which
maps to the generated catgets (3C) calls.

Generated Code Check boxes for specifying which categories of object
attributes (which map to Xt Resources) should be
written into a Resource file instead of placing them
directly in the [module]_ui.c file—which is the
default. Any attribute (resource) which is specified
in a Resource file—and not directly in the code—can
be modified without recompiling the application. The
Attribute categories are as follows:
Colors: Background, Foreground
Label Strings: Label String, Title
Initial Values: Initial Value

Adding Functionality to the Interface 89

6

Geometry: X, Y, Width, Height, all attachment
attributes
Other Strings
Other

Session Management Method

An option menu for specifying the method of session
management (None, Command Line, Session File, or
Both), and two push buttons (Session Save
Connection, Session Restore Connection) for
displaying the Connections Editor and making
appropriate connections.

ToolTalk Desktop Message Handling

An option menu for specifying what level of the
ToolTalk Desktop Message Alliance protocol the
application will participate in, and a push button
(Advanced ToolTalk Connections) for displaying the
Connections Editor. The ToolTalk desktop protocol is
a set of predefined ToolTalk messages which
communicate desktop-type events or requests to a
running application. App Builder support for
ToolTalk is provided at three levels: None, Basic, or
Advanced, as described below.
None. There is no participation in the ToolTalk
Desktop Protocol; no ToolTalk code is generated.
Basic. The ToolTalk library responds to Desktop
messages in categories 1-3 in a predefined and
standard way. Code is generated in main() which
initializes ToolTalk and calls the function which tells
ToolTalk to handles these messages. At this level,
you do not need to write any special application
code.
Advanced. The ToolTalk library responds to
messages in categories 1 and 2, but the application
is notified (via callback) when messages in categories
3 & 4 are received.
If you choose Advanced, you must use the
Connections Editor to identify which messages the
application wishes to handle. If you click the
Advanced ToolTalk Connections button, the
Connections Editor will be displayed with

90 Application Builder User’s Guide

6

Application as the Source object type. The When
option menu lists four ToolTalk choices: ToolTalk Do
Command, ToolTalk Get Status, ToolTalk
Pause/Resume, and ToolTalk Quit. The only valid
action type for a ToolTalk connection is Call
Function; your callback function will be called when
the ToolTalk message is received.
At this level code is generated in [project].c:main()
which initializes ToolTalk and sets up the Desktop
Protocol so that the callbacks defined in the
Connections Editor will be called when the
corresponding message is received. Each user-
defined callback contains descriptive comments
describing what the application is expected to do in
response to the message. These callbacks are also
generated in [project].c .

♦ To Establish Application Framework Behavior

1. Choose Application Framework from the Editors menu in the App
Builder primary window to display the editor.

2. Type a Vendor Name and Version number in the text fields in the
Application section, if appropriate.

These are used in the call to initialize ToolTalk, if ToolTalk is enabled.

3. Choose a different primary main window, if appropriate.

4. Set Internationalization to Enabled, if appropriate.

Internationalization generates labels and strings for objects with a call
that fetches the appropriate localized version of the string at run time. It
also generates and maintains a similar message catalog.

5. Select the attributes you want to be written to the Resource file in the
Generated Code section.

The categories you select are written to a resource file instead of directly
to the module file; these attributes, therefore, can be modified without
recompiling the application.

6. Choose a Method (None, Command Line, Session File, or Both) in the
Session Management section, as appropriate.

Adding Functionality to the Interface 91

6

7. Select Session Save Connection and/or Session Restore Connection, as
appropriate, to make connections in the Connections Editor.

8. Choose a Desktop Message Handling level (None, Basic, or Advanced) in
the ToolTalk section, as appropriate.

See “Establishing Application Framework Behavior” on page 87 for more
about ToolTalk message handling.

9. If you did not choose Advanced in the previous step, click OK to apply
the changes made and dismiss the Application Framework Editor.

10. Click Advanced ToolTalk Connections if you chose Advanced in the
previous step.

11. Choose the appropriate ToolTalk function from the When menu in the
Connections Editor.

12. Choose Call Function as the Action Type.

13. Type in the name of the appropriate call function.

This is the name of the function that will be called when a ToolTalk
operation is performed. You will have to edit the stubs.c file to make
the called function do something useful. See “Adding User Code to
Generated Code” on page 117 for information.

14. Click Connect to make the connection.

15. Click Cancel to dismiss the Connections Editor.

16. Click OK in the Application Framework Editor to apply the changes and
dismiss the editor.

92 Application Builder User’s Guide

6

93

Grouping and Attaching Objects 7

In order to ensure that interface objects maintain consistent spacing and
size relationships, regardless of text changes (including
internationalization changes) and resizing of windows, you may need to
group control objects and to attach objects to each other.

This chapter discusses how to group and attach objects for dynamic layout
behavior.

Grouping Objects 94

To Create a Group 94

To Edit Group Properties 95

To Ungroup Objects in an Interface 96

To Create a Border around an Object 97

Attaching Objects 97

Attachments Editor 98

To Attach Objects in an Interface 103

Attachment Example: Custom Dialog 104

94 Application Builder User’s Guide

7

Grouping Objects

A group is a collection of objects that can be treated as a unit. Once the
objects in a group are positioned as desired, the group can be moved,
maintaining the relative positioning of the individual objects. Because
groups use dynamic layout for positioning objects, spacing and alignment in
the group are maintained if any of the objects in the group change size.

.See “Group Property Editor” on page 149 for a description of the editor and
each of its elements

♦ To Create a Group

1. Select the control objects you want to be part of the group.

You can select the objects either in the interface or the Module Browser,
and you can select the objects in whatever manner is most convenient.
See “To Select Control Objects in the Interface or the Browser” on
page 26 for instructions.

2. Choose Group from the Layout menu or the pop-up menu (displayed by
pressing mouse button 3 with the cursor in the window interface or in
the Module Browser).

A rectangular box will be drawn around the group in the interface,
indicating that the group is selected. Note that Ungroup is active in the
Layout and pop-up menus; this is only true when a group is selected.

A new object will be displayed and selected in the Module Browser—an
object called "group" (or "group2," and so on, if other groups exist in the
module). The group object is the parent of the objects that comprise the
group. Group members cannot be moved independently. Any attempt to
move an object in a group will cause the entire group to move.

Grouping and Attaching Objects 95

7

♦ To Edit Group Properties

Group properties, including horizontal or vertical alignment and spacing
between objects, are set in the Group Property Editor.

1. Double-click the group in the interface or in the Module Browser.

The group will be selected in the Revolving Property Editor. In the
interface you will have to click in the space between group members to
select the group.

Alternatively, you can display the Group Property Editor by choosing
Groups from the Editors menu of the primary window. Choosing Groups
from the Editors menu is the same as clicking Tear-off in the Revolving
Property Editor with Group chosen as Object Type.

2. Select the group to be edited from the Group Objects list, if necessary.

3. Type a new name for the group, if necessary.

4. Choose a border frame style if you want the group to have a border in
the completed interface (no border is the default).

Border frame style choices are shadow out, shadow in, etched out, etched
in, and none.

5. Select a Layout Type.

Choices are as-is, vertical, horizontal, and row-column.

Depending on what you select, either the Vert Alignment or Horiz
Alignment option menu, or both, will be active. If you select rows-
columns, the Rows and Columns radio buttons will be active, also.

6. Designate the number of Rows or Columns (if row-column layout was
selected).

The number of columns will be determined automatically if you
designate the number of rows, and the number of rows will be
determined automatically if you designate the number of columns.

7. Choose a vertical alignment (if either vertical alignment or row-column
layout type was chosen).

The choices are align on left edge of objects (the default), align on
colons/labels, align on middle of objects, or align on right edge of objects.

96 Application Builder User’s Guide

7

8. Designate vertical spacing (if either vertical alignment or row-column
layout type was chosen).

The absolute values are in pixels; 10 is the default.

9. Choose a horizontal alignment (if either horizontal alignment or row-
column layout type was chosen).

The choices are align on top edge of objects (the default), align on middle
of objects, or align on bottom edge of objects.

10. Designate horizontal spacing (if either horizontal alignment or row-
column layout type was chosen).

The absolute values are in pixels; 10 is the default.

11. Deselect Visible if you do not want the objects in the group to be visible
when the application is opened.

12. Deselect Active if you do not want the objects in the group to be active
when the application is opened.

13. Click OK or Apply to apply the changes.

The Revolving Property Editor or Group Property Editor will be
dismissed if you click OK.

♦ To Ungroup Objects in an Interface

1. Select the group in the Module Browser or in the interface.

In the interface, click between objects in a group to select the group. You
will know the group is selected if a box appears around two or more
objects.

If you can't select a group in the interface or if you want to be sure to
select the right group in an interface with many groups, open the Module
Browser. Groups are shown in the Module Browser by name of group; if
you select the group in the Module Browser, it is also selected in the
interface.

2. Choose Ungroup from the Layout menu or the interface pop-up menu
(displayed by pressing mouse button 3 in an interface window).

The objects are no longer part of the group. You can now select any of the
objects and move it independently of the other objects.

Grouping and Attaching Objects 97

7

♦ To Create a Border around an Object

The group function can be used to create a border around an individual
object, such as a label.

1. Select the object in the interface.

2. Choose Group from the Layout menu or the interface pop-up menu.

The object will be part of a group.

3. Display the Group Property Editor.

4. Select the group you want to put a border around.

If you double-click the group in the Module Browser, the Group Property
Editor will be displayed, with the group selected.

5. Choose the Border Frame style you want to add to the object.

6. Click OK to apply the change and dismiss the Group Property Editor.

Attaching Objects

Attachments (and groups, which are based on attachments) establish
dynamic layout behavior for objects in the interface. Dynamic layout
behavior ensures that objects will maintain consistent relationships during
resize activities. Attachments enable an internationalized application to
work well in a number of locales.

All child objects are attached by their top and left edges to the top and left
edge of their parent object, by default. Thus a control pane dropped on a
main window is attached by its left and top edges to the left and top edges
of the main window. Similarly, a button dropped on the control pane is
attached to the control pane.

If the parent object is resized in an upward or leftward direction, the child
object moves with the parent, maintaining the distance from the top and
left edge of the parent.

If a pane object is dropped on the top or left edge of its parent it will be
attached to that edge with an offset of 0. If it is dropped some distance to
the right and below the left and top edges of its parent, it will have positive
offsets.

98 Application Builder User’s Guide

7

If a pane object is resized from its right and bottom edges so that it spans
its parent object, it will be attached to the right and bottom edges of its
parent.

Attachments Editor

Used to attach objects to each other for layout purposes, the Attachments
Editor is described below.

Grouping and Attaching Objects 99

7

Object Type An option menu for choosing the type of object for
which you want to make attachments. Some object
types (custom dialog, file selection dialog, main
window) do not have parents and are not included in
the menu.

Objects A scrolling list for selecting the object for which you
want to make attachments.

Parent A text field that indicates the parent of the selected
object.

Children A scrolling list that lists the children of the Parent
object.

Parent attachments/Attachments in child

Radio buttons for displaying the attachments of the
parent of the selected object or the attachments of
the children of the selected object.

Some objects (draw area pane, term pane, text pane)
cannot have children and may be children of a main
window or custom dialog; thus, neither Parent
attachments nor Attachments in child will be active.
If the pane is a child of another pane, though, or if it
is part of a layered pane, Parent attachments will be
active.

Attach To Option menus for choosing the type of attachment
for the selected object and what to attach the object
to. Also includes text fields for specifying the Offset
(in pixels) from the selected object and its parent or
sibling (a sibling is another object with the same
parent) or for specifying the Percentage offset of the
selected object from its parent.

The option menu below "Attach To:" is for choosing
which sibling to attach to and is active only for
sibling attachments (two small squares). The Offset
text field is active for absolute (pixel) attachments
only; the Percentage text field is active for
percentage attachments only.

100 Application Builder User’s Guide

7

The selected object is shown in the center of its four
possible attachments. The attachments, starting at
the top and going clockwise, are top edge of selected
object, right edge of selected object, bottom edge of
selected object, and left edge of selected object.

Top- and left-edge attachments are illustrated and
described below; by default an object is attached at
its top and left edges to the top and left edges of its
parent. The selected object (the object at the center
of the four Attach To boxes) is the controlling
object: if you move this controlling object, the pixel
or percentage offset is changed; click Reset to see
current values after moving an attached object.

If an attached parent object is resized, its child
objects will retain their pixel or percentage offsets
from the edges of their parent. The offsets will
change if a child object is moved.

Sibling icons (two small squares) are inactive if the
selected object has no siblings.

An ascending line from the top edge of a small
square to the top edge of its surrounding box
represents an absolute (pixel offset) attachment of
the top edge of the selected object to the top edge of
its parent.

A descending line from the top edge of a small
square to the bottom edge of its surrounding box
represents an absolute (pixel offset) attachment of
the top edge of the selected object to the bottom edge
of its parent. This value will be negative, since y
values are positive as they ascend and negative as
they descend.

Two vertically-aligned squares connected by a
vertical line represent an absolute (pixel offset)
attachment of the top edge of the selected object to
the bottom edge of its sibling. The offset will change
if the selected object is moved. This value will be
negative if the top edge of the selected object is
above the bottom edge of its sibling.

Grouping and Attaching Objects 101

7

Two horizontally-aligned squares connected by a
horizontal line to the centers of their top edges
represent an absolute (pixel offset) attachment of the
vertical center of the selected object to the vertical
center of its sibling. The offset will change if the
selected object is moved. This value will be negative
if the center of the selected object is above the center
of its sibling.

A square with a two-headed arrow and a percentage
sign above it represents a percentage offset
attachment of the top edge of the selected object to
the top edge of its parent. The offset will change if
the selected object is moved.

A square with a percentage sign above it and a two-
headed arrow between the center line of the square
and the top of the surrounding box represents a
percentage offset attachment of the center of the
selected object to the top edge of its parent. The
offset will change if the selected object is moved.

A circle with a diagonal line through it represents no
attachment from the edge (top, left, bottom, or right)
to another object. By default a dropped object has no
right or bottom edge attachments.

Note – Descriptions of the attachments to the bottom edge of the selected
object are correlatives of the descriptions of the top-edge attachments
above. Substitute "bottom" for "top" and "top" for "bottom" for bottom-edge
attachments. Normally you will want top- and left-edge attachments only.

A horizontal line from the left edge of the
surrounding box to the left edge of a small square
represents an absolute (pixel offset) attachment of
the left edge of the selected object to the left edge of
its parent. The offset will change if the selected
object is moved.

A horizontal line from the right edge of the
surrounding box to the left edge of a small square
represents an absolute (pixel offset) attachment of
the left edge of the selected object to the right edge
of its parent. The offset will change if the selected

102 Application Builder User’s Guide

7

object is moved. This value will be negative, since x
values are positive to the left and negative to the
right.

Two horizontally-aligned squares connected by a
horizontal line represent an absolute (pixel offset)
attachment of the left edge of the selected object to
the right edge of its sibling. The offset will change if
the selected object is moved. This value will be
negative if the left edge of the selected object is left
of the right edge of its sibling.

Two vertically-aligned squares connected by a
vertical line to the centers of their left edges
represent an absolute (pixel offset) attachment of the
horizontal center of the selected object to the
horizontal center of its sibling. The offset will change
if the selected object is moved. This icon is inactive if
the selected object has no siblings. This value will be
negative if the center of the selected object is left of
the center of its sibling.

A square with a two-headed arrow and a percentage
sign above it represents a percentage offset
attachment of the left edge of the selected object to
the left edge of its parent. The offset will change if
the selected object is moved.

A square with a percentage sign to its left and a two-
headed arrow between the center line of the square
and the left of the surrounding box represents a
percentage offset attachment of the center of the
selected object to the left edge of its parent. The
offset will change if the selected object is moved.

Note – Descriptions of the attachments to the right edge of the selected
object are correlatives of the descriptions of the left-edge attachments
above. Substitute "right" for "left" and "left" for "right" for right-edge
attachments. Normally you will want top- and left-edge attachments only.

Grouping and Attaching Objects 103

7

♦ To Attach Objects in an Interface

See “Attachments Editor” on page 98 for an illustration of the editor and
descriptions of its elements.

1. Choose Attachments from the Editors menu in the App Builder primary
window to display the Attachments Editor.

The Attachments Editor can also be displayed by clicking the
Attachments button in a property editor or by choosing Attachments
from the interface or Module Browser pop-up menu.

2. Choose the object type you want to attach to its parent or siblings.

3. Select the object that you want to attach.

4. Select an attachment type.

If you choose an icon with one small square you are making an
attachment from a child object to its parent. If you choose an icon with
two small squares you are making a sibling attachment. See
“Attachments Editor” on page 98 for descriptions of the types of
attachments.

When you make an attachment, the selected object—the object in the
center of the four Attach To boxes—is the controlling object. That is, this
object can be moved without affecting its parent or sibling. The offset
value or percentage value will change to reflect the changed relationship
between the two objects.

On the other hand, if you move the other object—the object to which the
selected object is attached—the selected object will move so as to
maintain its relationship with the other object.

You may have to click Reset after moving an object in the interface
before the change is noted in the Attachments Editor.

5. Click OK or Apply to apply the changes.

If you click OK, the Attachments Editor will be dismissed.

104 Application Builder User’s Guide

7

Attachment Example: Custom Dialog

Drag and drop an App Builder custom dialog object to see an example of
attachments. Each of the buttons at the bottom of the custom dialog are
attached to the top and sides of their enclosing dialog panel. They are
attached five pixels from the top of the panel and varying percentages from
the left edge of the panel (Button1 left edge 10%, right edge 30%; Button2
40% and 60%; Button3 70% and 90%).

The left edge of Button1 will always be 10% from the edge of the panel and
the right edge of Button1 will always be 30% from the edge of the panel.
Button1 will therefore always be as wide as 20% of the total width of the
panel. Button2's edges are 40% and 60% from the left edge of the panel;
Button3's edges are 70% and 90% from the left edge of the panel.

The three buttons will grow and shrink as the panel grows and shrinks,
and the distance between them will always be 10% of the total width of the
panel.

105

Testing Menus, Help, and
Connections 8

Many functions of your interface can be tested without generating code and
making the application. In both Test Shown Modules and Test Project
mode, all build windows except the App Builder primary window are closed,
and the App Builder primary window is inactive except for the Build button
and the Help menu.

If your project is small, you will probably want to test the entire project. If
it is large, you may want to test only selected modules, thus saving the
time it takes to load a large project. In Test Project mode the entire project
is available. Windows that are designated as not visible at startup (as are
custom dialogs by default, for instance) will not be visible.

See “To Show a Hidden Module” on page 20 for instructions if you are going
to use Test Shown Modules.

To Test a Project or Selected Modules 106

To Test Help Volume Access 106

To Test On Item Help 107

To Test Menus in a Module 108

To Test Connections in a Project 109

106 Application Builder User’s Guide

8

♦ To Test a Project or Selected Modules

1. Click Test Project or Test Shown Modules in the App Builder primary
window.

Depending on which button you selected, all modules in the current
project or only shown modules will be tested.

2. Test help, if appropriate.

See “To Test On Item Help” on page 107 for instructions.

3. Test menu displays, if appropriate.

See “To Test Menus in a Module” on page 108 for instructions.

4. Test connections, if appropriate.

See “To Test Connections in a Project” on page 109 for instructions.

5. Click Build to return to build mode.

♦ To Test Help Volume Access

These instructions assume you have created a help menu and attached it to
a Help menu on the menu bar of a main window, as described in “Creating
Help and Help Connections” on page 71.

1. Display the modules to be tested, if necessary.

If you are not going to test the entire project, you will need to show the
modules to be tested. See “To Show a Hidden Module” on page 20 for
instructions.

2. Click Test Shown Modules or Test Project, as appropriate.

Click Test Project to test the entire project. Click Test Shown Modules to
test selected modules.

3. Test help volume access by choosing one of the help volume chapters
(Overview, Tasks, Reference, for example) from the Help menu.

A help volume window with the appropriate help text will be displayed,
if the help viewer (dthelpview) is accessible and the proper connection
has been made to the compiled help volume. See “Creating Help and

Testing Menus, Help, and Connections 107

8

Help Connections” on page 71 for instructions for creating help and
making connections to it. Dismiss the help window when you are
finished with it.

4. Click Build to return to build mode.

♦ To Test On Item Help

These instructions assume you have created a help menu and attached it to
a Help item on the menu bar of a main window, as described in “Creating
Help and Help Connections” on page 71.

1. Display the modules to be tested, if necessary.

If you are not going to test the entire project, you will need to show the
modules to be tested. See “To Show a Hidden Module” on page 20 for
instructions.

2. Click Test Shown Modules or Test Project, as appropriate.

Click Test Project to test the entire project. Click Test Shown Modules to
test selected modules.

3. Test help volume access by choosing one of the help volume chapters
(Overview, Tasks, Reference, for example) from the Help menu.

A help volume window with the appropriate help text will be displayed,
if the help viewer (dthelpview) is accessible and the proper connection
has been made to the compiled help volume. See “Creating Help and
Help Connections” on page 71 for instructions for creating help and
making connections to it. Dismiss the help window when you are
finished with it.

4. Test On Item help by choosing On Item from the Help menu.

The cursor will turn into an arrow and a question mark.

5. Move the cursor over an interface object and click.

If the object (or one of its parent objects) has help text, it will be
displayed in a quick help window.

108 Application Builder User’s Guide

8

6. Click the More button in the quick-help window, if it is active.

The help volume will be displayed, at the location specified in the
Location ID for the selected object in the Help Editor. Dismiss the help
window when you are finished with it.

7. Click the Close button in the quick help window to dismiss it.

8. Click Build to return to build mode.

♦ To Test Menus in a Module

In Test Shown Modules mode, all windows in the currently-shown modules
will be displayed, including those whose initial state is not set Visible. See
“To Test a Project or Selected Modules” on page 106 if you want to test the
entire project, with not-Visible windows hidden.

1. Display the module to be tested, if necessary.

See “To Show a Hidden Module” on page 20 for instructions.

2. Click Test Shown Modules.

3. Click or press on the items in a menu bar, if appropriate.

The menus will be displayed. If you select a menu item that is connected
to certain predefined functions (Show or Hide a dialog, Access Help
Volume, Activate On Item Help, for example), the function will be
performed.

4. Click each button menu, as appropriate.

The menus will be displayed. If you select a menu item that is connected
to certain predefined functions (Show or Hide a dialog, Access Help
Volume, Activate On Item Help, for example), the function will be
performed.

5. Press mouse button 3 on a pane or list item to display a pop-up menu, if
appropriate.

The menus will be displayed. If you select a menu item that is connected
to certain predefined functions (Show or Hide a dialog, Access Help
Volume, Activate On Item Help, for example), the function will be
performed.

Testing Menus, Help, and Connections 109

8

6. Click Build to return to build mode.

♦ To Test Connections in a Project

1. Display the modules to be tested, if necessary.

See “To Show a Hidden Module” on page 20 for instructions.

2. Click Test Project.

All build windows except the App Builder primary window will be closed,
and the primary window will be inactive except for the Build button and
the Help menu. Only windows in the project with an initial state set to
Visible will be displayed.

3. Click a button or choose a menu item that has a testable connection.

The following connections should work in test mode as they will work in
the compiled application:

• Show
• Hide
• Set Value
• Set Text
• Access Help Volume
• Activate On Item Help
• Enable
• Disable

If you connect a button to a custom dialog, for instance, specifying the
button as the source object, Activated as the When action, the custom
dialog as the target object, and Show as the Action Type, the custom
dialog will be displayed when you click the button.

Connections to Call Function and Execute Code will be noted by
messages to standard out.

Connections to Application Framework, ToolTalk, and message dialogs
are not supported in test mode.

110 Application Builder User’s Guide

8

111

Generating Code and Building an
Application 9

This chapter describes the Code Generator and its use to generate code,
add user code to generated code, make the application, and run the
compiled application. See “Code Generator Window” on page 134 for an
illustration of the Code Generator window and descriptions of its elements.

Making and Running an Application 112

To Set Code Generator Options 113

To Set Environment Options 114

Adding User Code to Generated Code 117

To Generate Code from the Command Line 116

112 Application Builder User’s Guide

9

 Making and Running an Application

Two scenarios are described below. In the first scenario, you build and run
an application in one step. In the second scenario, you generate code,
compile the code, and run the application in separate steps.

In either case, if you have made changes to the project that have not been
saved, a message dialog box will be displayed, telling you that you have
unsaved edits and giving you the choice of cancelling the generate code
process or saving the project. If you choose to save the project, you will
have to specify where to save the project if it has not been saved before.

♦ To Make and Run in One Step

1. Choose Code Generator from the File menu of the App Builder primary
window.

The Code Generator is displayed.

2. Click Make & Run to generate code, build the application, and run it.

If you have saved the project and all goes well, a number of messages
will be displayed in the output pane at the top of the Code Generator.
The final message will be "Running: ./[projectname]" and the application
will run.

At the least, the application primary window will be displayed. Any
windows whose visibility is not set to yes at application startup will be
hidden. Depending on what functionality you included that does not
require user code, the application might do a variety of things. Menus
can be displayed, some connections can be tested, On Item help can be
displayed, and so on.

Note – Ultimately, you must write some code to complete the application.
For example, any Call Function callbacks specified in the Connections
Editor will have to be substituted for. See “Adding User Code to Generated
Code” on page 117 for more information.

Generating Code and Building an Application 113

9

♦ To Generate Code, Make, and Run Separately

1. Click Generate Code to generate code for the current project.

As the code generator runs, messages are displayed in the output pane
at the top of the Code Generator window. The final message should be
"Completed successfully." A number of files will be created, including
Makefiles, project files, module files, and two dtb_utils files. You can
look at the files in the term pane at the bottom of the Code Generator
window.

2. Click Make to build the application.

More messages will be displayed in the Output Pane as the application is
compiled. The final message again should be "Completed successfully." A
few more files will be created, including object files and the executable
application file, which has the name you gave the project.

3. Click Run to run the application.

The application will be started—as if you had typed the name of the
executable at the command line.

4. Click Abort to quit the application.

This will terminate the application, closing all windows. You can also
click Abort to terminate code generation or make operations started in
the Code Generator window.

♦ To Set Code Generator Options

To change the options that determine what code is generated and other
Code Generator functions:

1. Choose Code Generator from the File menu of the App Builder primary
window to display the Code Generator window.

2. Choose Generator from the Options menu to display the Code Generator
Options dialog box.

114 Application Builder User’s Guide

9

3. Select one of the Generate Code For options (Entire Project, Main Only,
Specific Modules Only, Specific Modules and Main).

If you select Specific Modules or Specific Modules and Main, the list of
modules is active. Select the names of the modules you want to generate
code for in the list.

4. Click Don't Merge if you do not want your hand-edited code merged with
the generated code.

Note – Do not select Don’t Merge unless you are sure you want to destroy
the user code.

5. Choose a different message reporting option if you wish.

Choices are Report Normal Messages, Be Silent, and Be Verbose.

6. Type Make Arguments, if appropriate.

These arguments will be included when you click Make or Make & Run.

7. Type Run Time Arguments, if appropriate.

These arguments will be included when you click Run or Make & Run.

8. Click Reset to Defaults to set all fields to their default values.

Default values are Generate Code For Entire Project, Merge user code
with generated code, and Report Normal Messages.

9. Click OK or Apply to make the changes.

The Options dialog box will be dismissed if you click OK.

♦ To Set Environment Options

1. Choose Code Generator from the File menu of the App Builder primary
window to display the Code Generator window.

2. Choose Environment from the Options menu to display the Environment
Options dialog box.

3. Type a variable in the Variable Name text field.

You might want to change PATH, for instance.

Generating Code and Building an Application 115

9

4. Click Get to display the current value for the variable in Variable Name.

The value of the variable will be displayed in the Value pane.

5. Make a change to Value and click Set to change the value of the variable.

This change is made for this App Builder session only.

6. Click Reset to reset Value to its value outside this session of App Builder.

7. Click Cancel to dismiss the dialog box.

116 Application Builder User’s Guide

9

♦ To Generate Code from the Command Line

To generate App Builder code from the command line, run dtcodegen .
Usage is described below.

Usage: dtcodegen [options] [project-file] [module-file [module-file] ...]

Code is generated for each module specified on the command line, or for all
modules in the project, if no modules are specified. If no project file is
specified, a project file containing the specified module(s) is searched for in
the current directory.

Files with extension .bip are assumend to be BIL project files, files with
.bix extension are assumed to be encapsulated BIL files, and files with a
.bil extension are assumed to be BIL module files.

Options (* = default, + = default with no project file)

-help (-h) Print out this help message

-main Write file containing main()

-changed Only generate files that have changed

* -merge Merge generated _stubs.c files with previous version

-nomerge Don't merge existing and new stubs file

* -project (-p) Specify a project to generate code for

-noproject (-np) Use default project settings, ignore project file

+ -showall Application shows (maps) all windows at startup

* -noshowall Application shows (maps) only initially-visible
windows

-silent (-s) Silent mode, no messages written

-verbose (-v) Verbose mode, detailed progress messages

Generating Code and Building an Application 117

9

Adding User Code to Generated Code

When you generate code for the interface you have developed by clicking
Generate Code in the Code Generator window or running dtcodegen from
the command line, a number of files are generated in the project folder. If
your project is called “test” and it has one module, called “mod1,” for
instance, the following files will be created:

• Makefile (plus Makefiles for other platforms)
• dtb_utils.c
• dtb_utils.h
• mod1.bil (module file)
• mod1_stubs.c
• mod1_ui.c
• mod1_ui.h
• test.bip (project file)
• test.c
• test.h
• Test (resource file)

If you have made Call Function or Execute Code connections in the
Connections Editor, those connections will show up in the generated code.
All of the areas of the generated code that my be modified by you are
marked with comments of the form:

/* DTB_USER_CODE START */

/* DTB_USER_CODE_END */

The area between the START and END comments are considered a “user
segment.” Any text (even non-C code) may be added within a user segment,
and the code generator will preserve this code in all future versions of the
code. Each user segment begins with a comment that suggests what type of
code should be added in that segment, or what state the application is in
when that segment is executed. These suggestions are purely
informational, and may be ignored.

Neither App Builder nor the code generator verify that the code added by
you is legal C code. It is your responsibility to ensure that any file you
modify can be processed satisfactorily by your compiler.

118 Application Builder User’s Guide

9

If you wish to destroy all of the hand-edited code, you must either explicitly
select Don't Merge from the Options dialog of the Code Generator Window,
or run dtcodegen with the -nomerge option. This should be done only
with great caution, as large amounts of work may be lost.

Under no circumstances should the generated comments be modified. If
they are modified, code generation will fail, and the resulting file will very
likely be uncompilable. A backup file, with the extension .BAK , is preserved
in the current directory to help recover from such mistakes.

The user code segments appear in strategic places in the code, to allow you
a great deal of freedom in customizing the generated application. All code
related to main() and application-wide data and structures are defined in
<projectname>.h and <projectname>.c . In these files, fields may be added
to the Xt resource data structure for the application, new developer-defined
data types and variables may be added, and the application’s startup
procedures may be amended.

Each <modulename>_stubs.c file contains user segments for modifying
the effects of generated connections. Your code may be added both before
and after the automatically-generated code is executed.

In addition, each file contains a user segment at the top of each file that
can be used to add a custom header or copyright notice.

119

App Builder Windows and
Dialog Boxes A

This appendix describes the major windows and dialog boxes in App
Builder, including illustrations of the windows and dialog boxes and
descriptions of the window and dialog box elements.

App Builder Primary Window 120

Windows Palette 122

Panes Palette 125

Controls Palette 128

Project Organizer 131

Module Browser 132

Code Generator Window 134

120 Application Builder User’s Guide

A

App Builder Primary Window

The App Builder primary window is the starting point for building a
graphical user interface. The interface is created by dragging objects from
the App Builder object palettes (Windows, Panes, and Controls) to the
workspace, editing the properties of the resultant interface objects, and
adjusting the layout of the interface. See “Overview of the App Builder
Process” in Chapter 1, “Getting Started,” for a summary of the steps
involved in creating an interface.

Title bar Includes the name of the application,
“Application Builder,” the window manager
menu, a minimize button, a maximize button,
the name of the current project (if one is open),
and a "(Save Needed)" indication if the current
project has changed since being saved.

Mode bar Includes Build, Test Shown Modules, and Test
Project radio buttons for specifying build and
test modes.
Build is for designing and building an interface.
Test Shown Modules is for testing help, menus,
and connections in current, shown modules. All
window objects will be shown, including those for
which the initial state is not set to Visible.

Title bar

Windows palette

Panes palette

Mode bar

Controls palette

Object
information area

App Builder Windows and Dialog Boxes 121

A

Test Project is for testing help, menus, and
connections in the current project. Objects for
which the initial state is not set to Visible will
not be shown.

Windows palette Includes the three App Builder window objects:
main window, custom dialog, and file selection
dialog. Window objects are dropped on the
workspace. See “Windows Palette” below for
details.

Panes palette Includes the four App Builder pane objects:
control pane, text pane, draw area pane, and
term pane. Pane objects are dropped on main
windows, custom dialogs, or other panes. See
“Panes Palette” on page 125 for details.

Controls palette Includes 14 App Builder control objects: button,
menu button, combo box, option menu, menu bar,
radio box, check box, gauge, scale, separator, text
field, label, list, and spin box. Control objects are
dropped on control panes. See “Controls Palette”
on page 128 for details.

Object information area Provides information about the object beneath
the cursor. See “Object Information Area” on
page 130 for details.

122 Application Builder User’s Guide

A

Windows Palette

The Windows palette contains three objects: main window, custom dialog,
and file selection dialog.

Main Window

A main window is the basic App Builder object. It is created by dropping a
main window icon on the workspace. The starting point for a user interface
is built in a main window. A main window has a minimize button and
therefore can be iconified.

The status region includes the name of the module the window is part of
and indicates when the window object is selected. It does not appear in the
compiled application.

Examples of main windows used in building App Builder itself are the App
Builder primary window, the Project Organizer, the Module Browser, and
the Code Generator.

App Builder Windows and Dialog Boxes 123

A

Custom Dialog

A custom dialog is a window for displaying information or providing a pop-
up for a specific task within an interface. It is created by dropping a custom
dialog icon on the workspace. A custom dialog might be "connected" to a
button or a menu in a main window, causing the pop-up dialog to be
displayed when the button is clicked or a menu item is chosen. A custom
dialog cannot be closed to an icon.

The status region includes the name of the module the dialog is part of and
indicates when the dialog object is selected. It does not appear in the
compiled application.

Examples of custom dialogs used in building App Builder include the File
Selection Dialog, the Project Name and Module Name dialog boxes, all of
the editors, and the message dialog boxes.

124 Application Builder User’s Guide

A

File Selection Dialog

A file selection dialog is a specialized pop-up dialog for specifying a file in
an Open or Save operation. It is created by dropping a file selection dialog
icon on the workspace.

The status region includes the name of the module the dialog is part of and
indicates when the dialog object is selected. It does not appear in the
compiled application.

App Builder Windows and Dialog Boxes 125

A

Panes Palette

The Panes palette contains four objects: control pane, text pane, draw area
pane, and term pane. All panes can be dropped on a main window, a custom
dialog, or another pane. If a pane is dropped on a pane, the dropped pane
will become a child of the first pane or a layered pane will be created. See
“To Create a Layered Pane” in Chapter 5, “Creating and Editing Panes,
Menus, and Messages,” for more information.

Control Pane

A control pane is the drop site for App Builder controls. It is created by
dropping a control pane icon on a main window, a custom dialog, or another
pane. In the figure above, a control pane has been dropped on the top-left
corner of a main window, in anticipation of resizing it to fill the entire
canvas.

Examples of control panes used in building App Builder include the pane
on which the three panes palettes reside on the App Builder primary
window and the pane beneath the controls on each of the property editors.

126 Application Builder User’s Guide

A

Text Pane

A text pane is a multi-line text-entry area in the completed application. It is
created by dropping a text pane icon on a main window, custom dialog, or
another pane.

Examples of the use of text panes in building App Builder include the
Initial Value field in the Text Pane property editor and the Help Text field
in the Help Editor.

Draw Area Pane

A draw area pane is used as a drawing or display area in the completed
application. It is created by dropping a draw area pane icon on a main
window, custom dialog, or another pane.

Note the horizontal and vertical scroll bars, which enable you to view
objects outside the current view area.

App Builder Windows and Dialog Boxes 127

A

Examples of the use of draw area panes in building App Builder include the
panes displaying modules and module objects in the Module Browser, and
the pane displaying modules in the Project Organizer.

Term Pane

A term pane is a terminal emulation object which accepts user input and
echoes standard output. It is created by dropping a term pane icon on a
main window, custom dialog, or another pane.

128 Application Builder User’s Guide

A

Controls Palette

The Controls palette contains 14 objects, including buttons, lists, text
fields, and a menu bar. To find out how to edit the properties of these
objects, see Chapter 4, “Editing Properties of Interface Objects.” To find out
how to create menus and submenus and attach them to objects, see
“Creating and Editing Menus” in Chapter 5, “Creating and Editing Panes,
Menus, and Messages.”

Button A control which, when clicked, performs a specified
action. A button can be a push button, a drawn
button, or a menu button, settable in the Button
property editor. A drawn button, like a push button,
performs a specific function when clicked; the label
on a drawn button, however, can change
dynamically, depending on the status of the
application.

Menu Button A specialized button, ready for attachment of a
menu. Note that there is no menu button property
editor; edit the properties of a menu button in the
Button Property Editor.

Combo Box A combination text field and option menu object. As
with an option menu, you can select an item from a
pop-down menu, but you can also edit any of the
items in the list—if you have checked "Editable" in
the property editor, and if you write code to make it
work.

Option Menu One of the three "choice" objects (option menu, radio
box, check box). When you click on an option menu, a
menu is displayed, providing a choice of items to
choose from. The chosen item remains in the option
menu box and becomes the active choice. Examples
of option menus in App Builder are Object Type in
the property editors and Source and Target in the
Connections Editor. An option menu is an exclusive-
choice object.

Radio Box One of the three "choice" objects (option menu, radio
box, check box). A radio box is comprised of a label
and two or more round buttons representing
application functions, only one of which can be

App Builder Windows and Dialog Boxes 129

A

selected (hence the term "radio button," named for
the type of buttons on an automobile radio). A radio
box is an exclusive-choice object.

Check Box One of the three "choice" objects (option menu, radio
box, check box). A check box is comprised of a label
and one or more check boxes, each with its own
label. Each check box has a "binary" (on or off) state,
and each is independent of the other. A check box is
a nonexclusive-choice object.

Gauge One of two "scale" objects (gauge, scale). A gauge is
used to indicate a value.

Scale One of two "scale" objects (gauge, scale). A scale, like
a gauge, indicates a value, but a user can modify the
value of a scale by moving the slider.

Separator A horizontal or vertical line used to indicate
separate functions in an application window.

Menu Bar A horizontal bar of menu buttons arrayed across the
top of a main window. The buttons are cascade
buttons, for attaching menus. The default menu bar
includes File, Edit, and Help topics. You can change,
delete, or add to this group of topics. Note that the
menu bar is not strictly a control object: it is a
control pane with three buttons.

Text Field A single-line text-entry area with a label (in contrast
to a text pane, which is a is a multi-line text-entry
area).

Label A text string or graphic icon which can be attached
to an object for identification purposes.

Scrolling List An object for listing selectable options. A scrolling
list is comprised of a variable-length list with scroll
bars and an optional label. A list can allow single or
multiple selections, and it can include a pop-up
menu.

Spin Box An object for selecting from a number of choices,
only one of which is visible at any one time. A spin
box is comprised of a text field, a label, and a set of
arrows for sequencing through the choices.

130 Application Builder User’s Guide

A

Object Information Area

The object information area provides information about the object directly
beneath the cursor—either on one of the primary window palettes or in the
user interface. It includes the following information fields:

Object Type The type of object beneath the cursor (main window,
control pane, text field, for example). This field is
active in the App Builder primary window, so you
can use it to identify object types in the object
palettes.

Object Name The name of the interface object beneath the cursor.
This name, in combination with the module name,
uniquely identifies App Builder objects. Palette
objects do not have names, so the field will be blank
if the cursor is over the App Builder primary
window. Note that all palette objects are given
unique names when they are instantiated in the
interface; you can change the name in the property
editor for the object.

Position The (x,y) pixel coordinates of the top-left corner of
the object beneath the cursor, measured in the
coordinate system of the object that contains it. If
the object is a window object (main window, custom
dialog, or file selection dialog), the position will be
relative to the top-left corner of the monitor screen.
If the object is a pane that was dropped on the top-
left corner of a window, its position will be 0,0, since
0,0 are the coordinates of the top-left corner of the
parent window. A pane that is dropped on another
pane and made a layered pane also has coordinates
of 0,0.
If the object is a control or a pane that has been
made a child of a control pane, its coordinates are
measured from the top-left corner of the parent
object to the top-left corner of the child object.

Size The size, in pixels, of the object beneath the cursor,
in the form "width X, height Y."

Cursor Position The (x,y) pixel coordinate location of the cursor,
measured in the coordinate system of the object that
contains it. Every object, including controls, has its
own coordinate system. Some compound objects,

App Builder Windows and Dialog Boxes 131

A

comprised of more than one widget, have multiple
coordinate systems; a custom dialog, for instance,
includes a control pane, a tool bar, and buttons, each
with its own coordinate system.

Editing Module The name of the module currently being edited. Any
window dragged from the Windows palette becomes
part of that module. If more than one module is
shown on the workspace, you can change the current
module by selecting an object in another module.

Project Organizer

The Project Organizer is used to open, save, or close a project, and to save,
show, hide, import, export, or remove modules.

Location A control pane with Project Path and Module Path
fields; indicates the full-path location of the current
project and the relative path to modules. The
module will normally be in the same folder as the
project, and its path will be noted as "." ("dot,"
signifying the current folder).

Module Array A draw area pane that depicts each of the modules
in the current project as a single icon with the
module name beneath the App Builder icon.

132 Application Builder User’s Guide

A

Module Browser

The Module Browser (also called the browser) provides a hierarchical, tree
view of a module. Use it to view modules, edit the interface, group or
ungroup objects, create connections, and display object property editors for
editing. About the only things you can’t do in the Browser that you can do
in the interface is move or align objects.

To display the Browser, choose Module Browser from the View menu in the
App Builder primary window and select a module in the pull-right menu
displayed or select an object in the interface and Choose Browse from the
pop-up menu (displayed by pressing mouse button 3 in the interface).

App Builder Windows and Dialog Boxes 133

A

Edit menu Includes the same functions as the Edit menu in the
App Builder primary window: Undo, Cut, Copy,
Paste, and Delete. If you select an object or objects
in the Browser and choose a menu item, the objects
selected will be selected in the interface and the
function chosen will be performed in the interface.

View menu Horizontal displays child objects to the right of their
parent object. Toggles with Vertical, which displays
child objects below their parent object. Vertical is the
default view.

Hide Object Glyph hides the icons/glyphs that
represent the objects in the interface. Toggles with
Show Object Glyph, which is the default.

Show Object Type displays the object types of objects
in the interface. Toggles with Hide Object Type,
which is the default.

Collapse "undisplays" the children of selected parent
objects. This enables you to see more of the interface
in a smaller space.

Expand displays the children of selected collapsed
parent objects.

Expand All expands all collapsed parent objects.

Module displays the module chosen from the
submenu.

Find displays a Find Object dialog box, for finding
objects by object name; if the object is found, the
object is selected and the canvas scrolls to show the
object.

Tearoff Browser displays a new browser, enabling
you to view more than one module.

Module name Indicates the module being viewed. Can be changed
through the View menu.

Top-level view Shows all direct children of the module—windows,
menus, and messages. A detailed view of each of the
objects selected here is shown in the detailed tree
view.

134 Application Builder User’s Guide

A

Detailed tree view Shows a detailed view of the top-level objects
selected. All children of the selected top-level objects
are shown.

Note – When you group objects or edit the interface in the Browser, be sure
to check the interface to see that you haven’t obscured any objects. In
particular, if you group objects, the rectangular group created may hide an
object behind it.

Code Generator Window

The Code Generator window is used to generate code for the created
interface and to make and run the completed application. Display the
window by choosing Code Generator from the File menu of the App Builder
primary window.

Path Indicates the path to the current project, which is
included in the title bar at the top of the window.

Output Pane Refers to the text pane below this label. The results
when you click on the buttons below the pane are
displayed in this text pane. (The functions of the
buttons also appear as menu items in the File
menu.)

App Builder Windows and Dialog Boxes 135

A

Generate Code Generates code for the current project. The output
for this action is displayed in the output pane.

Make "Makes" the application for the current project. The
output for this action is displayed in the Output
Pane.

Run Runs the compiled application after generating code
and making the application. The output for this
action is displayed in the Output Pane. The primary
window for the compiled application will be
displayed.

Make & Run Combines the functions of the first three buttons
(Generate Code, Make, Run). The output for this
action is displayed in the Output Pane. The primary
window for the compiled application will be
displayed.

Abort Aborts the currently running function. If the
compiled application is being run, clicking Abort
quits the application.

Term Pane Performs any terminal emulation functions.

136 Application Builder User’s Guide

A

Code Generator Options Dialog Box

The Code Generator Options dialog box, accessible from the Options menu
in the Code Generator window, is used to set options that determine what
will happen when various Code Generator functions are performed.

Project The name of the current project.

Generate Code For Specifies whether code will be generated for
Entire Project, Main Only, Specific Modules
Only, or Specific Modules and Main. If one of
the latter two choices is specified, the modules
in the scrolling list are active.

App Builder Windows and Dialog Boxes 137

A

Don't Merge Specifies whether user-written code will be
merged into the generated code; if you check
Don't Merge, any user-written code will be
discarded when code is generated.

Report Normal Messages Determines whether Normal Messages will be
displayed in the output pane when code is
generated, whether no messages will be
generated (Be Silent), or whether all messages
will be displayed (Be Verbose).

Make Arguments Specifies what arguments will be appended to
the Make command when it is run in the Code
Generator.

Run Time Arguments Specifies what arguments will be appended to
the Run command when it is run in the Code
Generator.

Reset to Defaults Resets all Code Generator Options settings to
their default values.

Code Generator Environment Options Dialog Box

The Code Generator Environment Options dialog box, accessible from the
Options menu in the Code Generator window, is used for specifying a
Variable Name and a Value for the variable, which value will be used for
functions performed in the Code Generator window.

Variable Name Specifies the name of an environment variable.

138 Application Builder User’s Guide

A

Value Specifies a value for the variable specified in
Variable Name. This value is only set for the Code
Generator window and has no effect on the value of
the variable outside of the Code Generator.

Get Gets the current Code Generator value of Variable
Name and displaying it in the Value text field.

Set Sets Variable Name to the value in Value. This value
is set for Code Generator window functions only.

Reset Resets Value for Variable Name to its value as set
outside of the Code Generator.

Cancel Cancels any changes made to Value and closes the
Environment Options dialog box.

139

Revolving Property Editor B

Used to edit the properties (the look or functionality) of interface objects,
the Revolving Property Editor customizes your application interface. This
appendix describes the properties common to all property editors, and the
properties and the buttons common to a number of property editors. It also
describes the individual property editors for each object.

Property Editor: Universal Properties 140

Property Editor: Common Properties 141

Property Editor: Common Buttons 143

Individual Property Editors 144

140 Application Builder User’s Guide

B

The property editor for a separator, which includes the properties common
to almost all property editors, is shown below, with common elements
noted.

Property Editor: Universal Properties

The property editor for each of the App Builder objects is unique, but there
are a number of properties common to almost all of them.

Object Type Not a property. Object Type is an option menu for
choosing the type of property editor to be displayed.
Properties change depending on which object type is
chosen.

Objects Not a property. Objects lists the objects of the
selected object type in the current project. The list
displays the full, unique name for each object, which
is comprised of the name of the module in which the
object exists, two colons, and the Object Name.

Object Name Displays the default name or the name given by you
to the object selected in the Objects list.

Tear-off button

Object list

Object name

Color (Background)

Color (Foreground)

Buttons that display the
Attachments, Help, and
Connections editors,
respectively

Object Type menu

Initial State setting

Standard dialog box
buttons

Revolving Property Editor 141

B

Initial State, Visible Specifies whether the selected object is visible when
the application starts up; all objects except a custom
dialog are visible by default.

Initial State, Active A check box for specifying whether the object
selected is "active" when the application starts up.
An inactive object is not functional: it is dimmed and
no functions can be activated from the object.

Color: Background Specifies the background color of the selected object.
You can either type in a known color name or choose
Color Chooser from the menu and select a color from
the palette displayed.

Color: Foreground Specifies the foreground color of the selected object.
You can either type in a known color name or choose
Color Chooser from the menu and select a color from
the palette displayed.

Property Editor: Common Properties

The following properties are common to three or more property editors.

Border Frame Determines the type of border, if any, around
certain objects. Choices are None, Shadow Out,
Shadow In, Etched Out, and Etched In.

Geometry Indicates the X and Y location of the selected
object, and the W(idth) and H(eight) of the
object. X and Y values specify the position of the
selected object in relation to its parent. The
values are in pixels and are measured from the
top-left corner of the parent object to the top-left
corner of the child object. W and H values are in
pixels.

Graphic Filename Indicates the name of the pixmap (.pm) or
bitmap (.bm) file that contains the graphic to be
used as the label for the selected object or item.
This property is available only if Label Type or
Item Label Type is "Graphic."

Item Label Type Specifies the type of label (String or Graphic) for
the selected item in the Items list. If Graphic is
chosen, "Label" becomes "Graphic Filename."

142 Application Builder User’s Guide

B

Item State, Active Specifies whether the selected item will be active
when the compiled application is opened.

Items Lists the labels that represent the items in the
list. When an item is selected in the Items list,
its label is displayed in the Label or Graphic
Filename field.

Label (Object/Item) Specifies the label for the selected object or item.
"Label" becomes "Graphic Filename" if Graphic
Label Type is chosen. Label is inactive in the
Button property editor if Arrow Label Type is
chosen.

Label Type Specifies the type of label (String, Graphic, or
Arrow) for the selected object. If Graphic is
chosen, "Label" becomes "Graphic Filename." If
you choose Arrow, the label in the Button
property editor becomes an arrow and the Arrow
Direction property becomes active.

Menu Title Specifies the (optional) title of the pop-up menu,
if any.

Popup, Pulldown Menu A menu button and a text field for creating,
attaching, de-attaching, or editing a pop-up or
pull-down menu for the selected object. When the
Menus button is clicked, a menu with four
choices (None, Create New Menu, Menus, Edit
Current) is displayed. Menus and Edit Current
are inactive if no menus exist in the current
project. If a menu is already attached to the
selected object, the menu name will be displayed
in the text field.

Position (Label) Specifies the position (Left or Above) of the label
in relation to the selected object. This Position
option menu is next to the Label Type option
menu.

Position [XY] Indicates the X and Y location of the selected
object in relation to its parent. The values are in
pixels and are measured from the top-left corner
of the parent object to the top-left corner of the
child object.

Revolving Property Editor 143

B

Scrollbars Specifies when scroll bars should be attached to
the selected pane. The choices are Never and
Always for a term pane or a text pane, and
Never, When Needed, and Always for a draw
area pane.

Size Specifies the absolute W(idth) and H(eight) of
the window or pane. These values change if you
resize the window or pane manually in the
interface. For a term pane or a text pane, there
is an option menu for choosing Characters or
Pixels as the unit value.

Size Policy Specifies whether the selected object should
retain a fixed size or if it should become bigger or
smaller depending on the contents of the object.
The choices are Size of Label and Fixed for
buttons and labels, Fit Contents and Fixed for
main windows and custom dialogs.

Note – List item editing: once you have the appropriate number of items
in the list, the easiest way to perform item editing in those property editors
that have an item list* is to select the first item in the list, thus selecting it
in the label text field. Type a new name for the item and click Return. The
new name will be displayed in the item list and the next item in the list
will be selected. Continue down the list with this select, type, Return
sequence until all items are completed.
*Property editors with item lists include the choice objects (Radio Box,
Check Box, Option Menu), Combo Box, List, Menu, Menubar, and Spin Box.

Property Editor: Common Buttons

The following functional push buttons or menu buttons are common to
many property editors. The buttons at the bottom of the property editors
(OK, Apply, Reset, Cancel, and Help) are common to other editors and
dialog boxes.

Tear-off Displays a property editor of the selected type; use
this when you want to edit a specific object type
while viewing other types of objects in the Revolving
Property Editor.

144 Application Builder User’s Guide

B

Add Item Adds an item after the selected item in the Items
list. Added items are given default names starting
with "Item1" and incrementing, as needed. By
default, items are added after the selected item.

Edit Performs edit functions (Add After, Add Before,
Change, Cut, Copy, Paste, Delete) in a list. Add After
and Add Before add an item to the list either after or
before the selected item. Change applies the change
that you have made. Cut, Copy, Paste and Delete act
on the selected item, in the normal way: Cut and
Copy place the selected item in a buffer, ready for
Paste. Delete removes the item, but does not place it
in a buffer.

Attachments Displays the Attachments Editor; there is no
Attachments button on the Main Window, Menubar,
Custom Dialog, or Paned Window property editors.

Help Text Displays the Help Editor.

Connections Displays the Connections Editor.

OK Applies the changes made to the selected object and
dismisses the editor; changes to properties are
marked with change bars at the left side of the
editor.

Apply Applies the changes made to the selected object, but
does not dismiss the editor.

Reset Resets all changes made since the last Apply.

Cancel Resets all changes made since the last Apply and
dismisses the editor.

Help Displays help for the editor. See “Creating Help and
Help Connections” on page 71 for information about
App Builder help.

Individual Property Editors

An individual property editor is displayed by:

• Double-clicking an object in the interface or the Module Browser.

• Or, selecting an object of the desired type and choosing Properties from
the Editors menu on the App Builder primary window.

Revolving Property Editor 145

B

• Or, choosing Props from the interface or Browser pop-up menu.

• Or, choosing the desired object type from the Object Type options menu
at the top of the Revolving Property Editor.

The individual property editors are described in the following sections.

Button Property Editor

Only properties unique to a button object are described here. See “Property
Editor: Universal Properties” on page 140 for descriptions of Object Type,
Objects, Object Name, Initial State, and Color. See “Property Editor:
Common Properties” on page 141 for descriptions of Label Type, Label,
Pulldown Menu, Size Policy, and Geometry.

Button Type Specifies what kind of button (Push, Drawn, Menu)
the selected button should be. Push button is the
default. Selecting Menu transforms the push button
into a menu button, as if you had dragged and
dropped a menu button from the controls palette.
The Pulldown Menu property becomes active if you
select Menu. See “Controls Palette” in Appendix A,
“App Builder Windows and Dialog Boxes,” for
descriptions of button types.

Label Alignment Specifies the alignment (Left, Right, Centered) of the
button label within the button border frame. Label
Alignment is relevant only if Fixed is selected as
Size Policy. This menu is inactive if Arrow Label
Type is chosen.

Arrow Direction Specifies which direction (Up, Down, Left, Right) the
arrow should point if Arrow Label Type is chosen.

Choice Property Editor

Only properties unique to a choice object (Radio Box, Check Box, Option
Menu) are described here. See “Property Editor: Universal Properties” on
page 140 for descriptions of Object Type, Objects, Object Name, Initial
State, and Color. See “Property Editor: Common Properties” on page 141 for
descriptions of Label Type, Label Position, Label (Object), Items, Item
Label Type, Label (Item), Item State (Active), and Position [XY].

146 Application Builder User’s Guide

B

Choice Type Specifies which type of choice object (Radio Box,
Check Box, or Option Menu) the selected object
should be. The object changes form depending on
which you choose. Note that there is a control object
for each of the choice types in the Controls palette.
See “Controls Palette” in Appendix A, “App Builder
Windows and Dialog Boxes,” for descriptions of
choice types.

Rows/Columns Specifies whether the radio box or check box should
be laid out in rows or columns, and how many rows
or columns there should be. Not relevant for an
option menu.

Item State, Selected Specifies whether the selected item will be selected
when the compiled application is opened. Only one
item can be selected. For a check box or a radio box
object, the selected item will be marked as selected;
for an option menu, the label for the selected object
will be displayed in the option menu when the
application is opened.

Combo Box Property Editor

Only properties unique to a combo box are described here. See “Property
Editor: Universal Properties” on page 140 for descriptions of Object Type,
Objects, Object Name, Initial State, and Color. See “Property Editor:
Common Properties” on page 141 for descriptions of Label Type, Label
Position, Label, Items, Item Label, and Position [XY].

Combo Box Type Specifies whether the text field for the selected
combo box will be Static or Editable in the compiled
application. If Editable is selected, code must be
written to implement the edit functionality.

Selected Specifies which item will be selected when the
compiled application is opened.

Width Specifies whether the combo box shrinks or grows to
accommodate the Longest Item in the list, or if the
W(idth) of the box is Fixed. If Fixed is selected, the
W(idth) value can be edited.

Revolving Property Editor 147

B

Control Pane Property Editor

There are no properties unique to a control pane. See “Property Editor:
Universal Properties” on page 140 for descriptions of Object Type, Objects,
Object Name, Initial State, and Color. See “Property Editor: Common
Properties” on page 141 for descriptions of Border Frame, Size Policy,
Geometry, Popup Menu, and Menu Title.

Custom Dialog Property Editor

Only properties unique to a custom dialog object are described here. See
“Property Editor: Universal Properties” on page 140 for descriptions of
Object Type, Objects, Object Name, Initial State, and Color. See “Property
Editor: Common Properties” on page 141 for descriptions of Size Policy and
Size.

Dialog Title The title that appears at the top of the custom
dialog.

Window Parent An option menu for specifying a parent main window
for the selected custom dialog. Choices are None and
any main window in the project. If a main window is
specified as a window parent, the custom dialog will
be iconified and de-iconified with the main window.
Note that this functionality does not work in test
mode, but it does in the compiled application.

User Resize Mode Specifies whether the window is Fixed or Adjustable
(whether it can be resized in the compiled
application).

Dialog Areas Specifies whether a custom dialog includes a Button
Panel (three buttons, by default) and a Footer area.

Default Button Specifies one of the dialog buttons as the selected
button, by default. The function represented by the
selected button will be performed if you press Return
while the mouse cursor is in the custom dialog in the
compiled application.

Help Button Specifies one of the dialog buttons as the help
button. See “Creating Help and Help Connections”
on page 71,” for a description of the Help Editor and
instructions for creating help.

148 Application Builder User’s Guide

B

Draw Area Pane Property Editor

Only the one property unique to a draw area pane object is described here.
See “Property Editor: Universal Properties” on page 140 for descriptions of
Object Type, Objects, Object Name, Initial State, and Color. See “Property
Editor: Common Properties” on page 141 for descriptions of Scrollbars,
Border Frame, Geometry, Popup Menu, and Menu Title.

Total Canvas Size Specifies the W(idth) and H(eight) of the draw area
canvas. Note that only a portion of the canvas will be
visible if the draw area pane's size is smaller than
the canvas size (400 by 400 pixels, by default). You
can use the scroll bars to view other parts of the
canvas.

File Selection Dialog Property Editor

Only properties unique to a file selection dialog object are described here.
See “Property Editor: Universal Properties” on page 140 for descriptions of
Object Type, Objects, Object Name, Initial State, and Color.

Window Parent Specifies the main window parent of the file
selection dialog. When displayed, the file selection
dialog will appear over its main window. By default,
the Primary Main Window is the parent of all file
selection dialogs.

Dialog Title Specifies the title that appears in the title bar at the
top of the file selection dialog.

Initial Directory Specifies the folder (directory) set as the starting
value in the Path field of the file selection dialog.

Search Pattern Type Specifies whether files, directories (folders), or both
will be listed in the Files list of the file selection
dialog.

Search Pattern Specifies the value of the Filter field in the file
selection dialog. The Filter value limits the files that
will be listed in the Files field. The default value is *
(asterisk), which means all files in the current folder
will be listed. The Filter value for the Import Module
file selection dialog in App Builder is *.bil , which
means that only files that end in .bil will be listed.

Revolving Property Editor 149

B

OK Button Label Specifies the label that will appear on the button in
the left-most position at the bottom of the file
selection dialog, normally labelled "OK." Clicking
this button completes the file selection process and
dismisses the file selection dialog. This button is
labelled "Import" for the Import Module file selection
dialog in App Builder.

Popdown Behavior Specifies whether the file selection dialog will be
automatically dismissed (the default) when the OK
button is clicked.

Group Property Editor

Used to modify the layout and framing of groups, the Group Property
Editor can be displayed by choosing Groups from the Editors menu of the
App Builder primary window or by choosing Group from the Revolving
Property Editor Object Type option menu. A group, unlike most of the
objects edited in the Revolving Property Editor, is a created object and is
not available from an object palette. See “Grouping Objects” on page 94,”
for instructions.

Only properties unique to a group object are described here. See “Property
Editor: Universal Properties” on page 140 for descriptions of Object Type,
Objects, Initial State, and Color. See “Property Editor: Common Properties”
on page 141 for descriptions of Border Frame and Position.

Note that choosing Groups from the Editors menu in the App Builder
primary window is the same as clicking the Tear-off button in the Revolving
Property Editor when the Object Type is Group.

Group Name Displays the default name or the name given by you
to the group selected in the Objects list.

Layout Type Specifies As-Is, Vertical, Horizontal, or Row/Column
layout of the objects in the selected group.

Rows Columns Specifies whether the primary layout will be by rows
(vertical layout) or columns (horizontal layout), and
how many rows or columns to display. Active only if
Layout Type is Row/Column.

150 Application Builder User’s Guide

B

Vert Alignment Specifies left-edge, colon/label, center-line, or right-
edge alignment of the objects in the selected group.
Active only if Layout Type is Vertical or
Row/Column.

Spacing Specifies the number of pixels separating the objects
in the selected group. Vert Alignment Spacing is
active only if Layout Type is Vertical or
Row/Column. Horiz Alignment Spacing is active only
if Layout Type is Horizontal or Row/Column.

Horiz Alignment Specifies top-edge, center-line, or bottom-edge
alignment of the objects in the selected group.
Active only if Layout Type is Horizontal or
Row/Column.

Label Property Editor

Only the property unique to a label object is described here. See “Property
Editor: Universal Properties” on page 140 for descriptions of Object Type,
Objects, Object Name, Initial State, and Color. See “Property Editor:
Common Properties” on page 141 for descriptions of Label Type, Label, Size
Policy, and Geometry.

Note that no border appears around a label in the compiled application. See
“To Create a Border around an Object” in Chapter 7, “Grouping and
Attaching Objects,” if you want a border around a label.

Label Alignment Specifies the alignment (Left, Right, Centered) of the
label within its margins. Label Alignment is
relevant only if Fixed is selected as Size Policy.

List Property Editor

Only properties unique to a list object are described here. See “Property
Editor: Universal Properties” on page 140 for descriptions of Object Type,
Objects, Object Name, Initial State, and Color. See “Property Editor:
Common Properties” on page 141 for descriptions of Label Type, Position
(Label), Label, Items, Item Label, Position [XY], Popup Menu, and Menu
Title.

Selection Mode Specifies how objects can be selected in a scrolling
list. Choices are Single Select, Browse Select,
Multiple Select, and Browse Multiple Select.

Revolving Property Editor 151

B

In Single Select mode, only one item can be selected,
by clicking mouse button 1.
In Browse Select mode, one item can be selected, but
you can press mouse button 1 and drag through the
list until the item you want is selected.
In Multiple Select mode, you can make multiple,
discontiguous selections with mouse button 1.
In Browse Multiple Select mode, you can drag the
cursor over items to make multiple, contiguous
selections, and you can make a multiple, contiguous
selection between a selected item and the cursor
location with Shift-mouse button 1.

Selected Specifies whether an item will be selected at
application startup.

Width Specifies whether the list object shrinks or grows to
accommodate the Longest Item in the list, or if the
W(idth) of the box is Fixed. If Fixed is selected, the
W(idth) value can be edited.

Height Specifies the number of text Lines in the list or its
Pixels height.

Main Window Property Editor

Only properties unique to a main window object are described here. See
“Property Editor: Universal Properties” on page 140 for descriptions of
Object Type, Objects, Object Name, Initial State (Visible), and Color. See
“Property Editor: Common Properties” on page 141 for descriptions of Size
Policy and Size.

Window Title Specifies the title that appears at the top of the main
window.

Icon File Specifies the name of the graphics file that contains
the graphical representation of the application
icon—the object that is displayed when the
application is "iconified" by clicking on the minimize
button in the title bar.

Icon Mask File Specifies the name of the graphics file that contains
the bitmap that determines the shape of the visible
representation of the icon beneath the icon mask.

152 Application Builder User’s Guide

B

The icon mask acts like a stencil, allowing only the
pixels in the icon that correspond to pixels in the
mask to be visible.

Icon Label Specifies the text label that appears beneath the
application icon.

User Resize Mode Specifies whether the window size is Fixed or
Adjustable (whether it can be resized in the
compiled application).

Window Areas Specifies whether the main window will have a
menu bar, a tool bar, or a footer.
Note that a tool bar or a footer will show up as a
control pane object in the Revolving Property Editor.
You will probably want to add controls, such as the
radio buttons in the App Builder primary window
Build/Test tool bar, to a tool bar, and to make
connections between the controls and programmatic
functions. Code will have to be written to make a
tool bar or footer functional.

Initial State, Iconic Specifies whether the window is displayed as a
window or an icon when the compiled application is
opened.

Revolving Property Editor 153

B

Menu Property Editor

Used to create menus, the Menu Property Editor can be displayed by:

• Choosing Menus from the Editors menu of the App Builder primary
window

Note – Choosing Menus from the Editors menu in the App Builder primary
window is the same as clicking the Tear-off button in the Revolving
Property Editor when the Object Type is Menu.

• Or, choosing Menu from the Revolving Property Editor Object Type
option menu

• Or, choosing Create New Menu from the Popup Menu option menu in a
property editor.

A menu, unlike most of the objects edited in the Revolving Property Editor,
is a created object and is not available from an object palette.

Only properties unique to a menu object are described here. See “Property
Editor: Universal Properties” on page 140 for descriptions of Object Type,
Objects, Object Name, and Color. See “Property Editor: Common
Properties” on page 141 for descriptions of Items, Label, and Item State
(Active).

Add New Menu Adds a new menu to the list of menus.

Edit Performs edit functions (Cut, Copy, Paste, Delete) on
the selected item in the list of menu objects. Cut and
Copy place the selected item in a buffer, ready for
Paste. Delete removes the item, but does not place it
in a buffer.

Tearoff Specifies whether tearoff is Enabled or Disabled. If
tearoff is enabled the selected menu will be
"postable." That is, the menu will be displayed until
you explicitly dismiss it if you click on the Tearoff
indicator (a dotted line).

Item Label Type Specifies the type of label (String, Graphic, or
Separator) for the item selected in the Items list. If
Graphic is chosen, "Label" becomes "Graphic
Filename." If Separator is chosen, Label or Graphic
Filename becomes inactive and Line Style becomes

154 Application Builder User’s Guide

B

active. A Separator menu item is used to create a
visual division in a menu, such as that seen in the
Editors menu of the App Builder primary window.

Item Mnemonic Specifies one of the letters in the selected item as a
keyboard shortcut for choosing the item when the
menu is posted. The letter specified will be
underlined. Pressing the mnemonic letter when the
menu is posted will cause that item to be chosen.
Note that case is significant and that a particular
letter can be used as a mnemonic only once within a
menu.

Accelerator Specifies a keyboard shortcut for choosing the
selected item. An accelerator is comprised of a prefix
(Ctrl, Alt, Meta, or Shift), <key> , and a letter (upper
or lower case). To make Control-x an accelerator, for
instance, type the following:
Ctrl<key>x

When you display the menu in test mode or in the
compiled application, "Ctrl+x" will be included to the
right of the menu item label. If you press the Control
key and type x with the cursor in the window that
contains the menu, the specified action will be
performed.
You can combine the Shift key with one of the other
keys to form a compound prefix, if you wish. To make
Shift Control-x an accelerator, type the following:
Shift Ctrl<key>x

Line Style Specifies the type of line style for the selected
separator item; active only when Item Label Type is
Separator. Choices are None, Etched In, Etched Out,
Etched In Dash, Single Line, Double Line, Etched
Out Dash, Single Dashed Line, and Double Dashed
Line. A separator of the chosen line style will be
displayed in the menu instead of a graphic or text
label.

Item SubMenu A menu button and a text field for attaching, de-
attaching, creating, or editing a submenu for the
selected item in the Items list. If a submenu is
attached to the selected item, the name of the
submenu will be displayed in the text field.

Revolving Property Editor 155

B

Menubar Property Editor

Only properties unique to a menu bar object are described here. See
“Property Editor: Universal Properties” on page 140 for descriptions of
Object Type, Objects, Object Name, Initial State, and Color. See “Property
Editor: Common Properties” on page 141 for descriptions of Items, Item
Label Type, Label, Pulldown Menu, and Item State (Active).

Item Mnemonic Specifies one of the letters in the selected item
as a keyboard shortcut for displaying the
menu. The letter specified will be underlined in
the menu bar. In test mode and in the compiled
application, the menu will be displayed if you
hold down the Alt key and press the mnemonic
letter (case is irrelevant) while the window
that contains the menu bar has focus.

Item State, Is Help Item Specifies that the selected item is the Help
menu. The Help menu appears at the right
edge of the menu bar and has a built-in
connection to the online help mechanism. The
item labelled "Help" is the help button, by
default.

Paned Window Property Editor

A paned window, unlike most of the objects edited in the Revolving
Property Editor, is a created object and is not available from an object
palette. See “To Create a Paned Window” on page 45 for instructions for
creating a paned window.

Only properties unique to a paned window object are described here. See
“Property Editor: Universal Properties” on page 140 for descriptions of
Object Type, Objects, Object Name, and Initial State.

Panes Lists the panes that comprise the paned window.

Pane Geometry Displays the W(idth) and H(eight) of the pane
selected in the Panes list.

Pane Height Specifies the Min(imum) and Max(imum) height (in
pixels) of the selected pane. These values determine
the limits for the panes when you move the sash
between panes.

156 Application Builder User’s Guide

B

Scale Property Editor

Only properties unique to a scale or gauge object are described here. See
“Property Editor: Universal Properties” on page 140 for descriptions of
Object Type, Objects, Object Name, Initial State, and Color. See “Property
Editor: Common Properties” on page 141 for descriptions of Label Type,
Position (Label), Label, and Geometry.

Scale Type Specifies Scale or Gauge. A scale includes a slider
and is modifiable by a user (in the compiled
application or in test mode). A gauge indicates a
value, does not include a slider, and is not modifiable
by a user.

Orientation Specifies whether the scale object will be displayed
in Horizontal or Vertical orientation.

Direction Specifies Left to Right or Right to Left incrementing
of value for a horizontal scale object, Bottom to Top
or Top to Bottom incrementing of value for a vertical
scale object.

Value Range Specifies Min(imum), Max(imum, and Incr(ement)
values for a scale object. All values must be integers.
The increment value is used when you click with the
mouse at either end of the scale object (in the
compiled application or in test mode). See Decimal
Points.

Decimal Points Specifies the number of decimal places to shift the
scale value when displaying it (if Show Value is
checked). For example, a scale value of 250 with a
Decimal Points value of 1 would display as 25.0; a
scale value of 250 with a Decimal Points value of 2
would display as 2.50.

Initial Value Specifies the initial numerical value setting for the
scale.

Show Value Specifies whether the numerical value of the scale
position will be displayed. See Decimal Points and
Initial Value above.

Revolving Property Editor 157

B

Separator Property Editor

Only properties unique to a separator object are described here. See
“Property Editor: Universal Properties” on page 140 for descriptions of
Object Type, Objects, Object Name, Initial State, and Color. See “Property
Editor: Common Properties” on page 141 for a description of Geometry.

Orientation Specifies whether the separator object will be
displayed in Horizontal or Vertical orientation.

Line Style Specifies the type of line style for the separator.
Choices are None, Etched In, Etched Out, Etched In
Dash, Etched Out Dash, Single Line, Double Line,
Single Dashed Line, and Double Dashed Line.

Spin Box Property Editor

Only properties unique to a spin box object are described here. See
“Property Editor: Universal Properties” on page 140 for descriptions of
Object Type, Objects, Object Name, Initial State, and Color. See “Property
Editor: Common Properties” on page 141 for descriptions of Label Type,
Position (Label), Label, Items, Item Label, and Geometry.

Spin Box Type Specifies the type of spin box. If Numeric is chosen,
the Items, Label, Add Item, Edit, and Selected
properties are inactive. If String List is chosen, the
Value Range, Initial Value, and Decimal Points
properties are inactive.

Arrow Style Specifies the style of arrow to be displayed on the
spin box. Choices are Flat Beginning, Flat End,
Beginning, End, and Split.

Value Range Specifies Min(imum), Max(imum, and Incr(ement)
values for a spin box object. All values must be
integers. The increment value is used when you click
with the mouse on one of the spin box arrows (in the
compiled application or in test mode). Value Range is
inactive if Spin Box Type is String List. See Decimal
Points.

Initial Value Specifies the starting value in the spin box in the
compiled application. Initial Value is inactive if Spin
Box Type is String List.

158 Application Builder User’s Guide

B

Decimal Points Specifies the number of decimal places to shift the
spin box value when displaying it. For example, a
spin box value of 250 with a Decimal Points value of
1 would display as 25.0; a spin box value of 250 with
a Decimal Points value of 2 would display as 2.50.
Decimal Points is inactive if Spin Box Type is String
List.

Selected Specifies whether the item selected in the Items list
will be selected when the compiled application is
opened. Only one item can be selected. Selected is
inactive if Spin Box Type is Numeric.

Term Pane Property Editor

Only properties unique to a term pane object are described here. See
“Property Editor: Universal Properties” on page 140 for descriptions of
Object Type, Objects, Object Name, Initial State, and Color. See “Property
Editor: Common Properties” on page 141 for descriptions of Scrollbars,
Border Frame, Position [XY], Size, Popup Menu, and Menu Title.

Process String A text field for specifying the process (command)
that will be run in the term pane in the compiled
application. The default value is /bin/csh .

Text Field Property Editor

Only properties unique to a text field object are described here. See
“Property Editor: Universal Properties” on page 140 for descriptions of
Object Type, Objects, Object Name, Initial State, and Color. See “Property
Editor: Common Properties” on page 141 for descriptions of Label Type,
Position (Label), Label, Position [XY], and Width.

Operation Specifies whether the text field in the compiled
application and in test mode will be Editable or
Read-Only.

Maximum Chars Specifies the maximum number of characters that
can be typed in the text field. This field is
independent of the W(idth) field, which specifies the
width of the displayed text.

Initial Value Specifies the initial value to be displayed in the text
field in the compiled application or in test mode.

Revolving Property Editor 159

B

Text Pane Property Editor

Only properties unique to a text pane object are described here. See
“Property Editor: Universal Properties” on page 140 for descriptions of
Object Type, Objects, Object Name, Initial State, and Color. See “Property
Editor: Common Properties” on page 141 for descriptions of Border Frame,
Position [XY], Size, Popup Menu, and Menu Title.

Operation Specifies whether the text pane in the compiled
application and in test mode will be Editable or
Read-Only.

Word Wrap Specifies whether words will be wrapped to the
following line when the Size W(idth) value is
reached.

Initial Value Specifies the initial value to be displayed in the text
pane in the compiled application or in test mode.

160 Application Builder User’s Guide

B

161

Index

A
accelerator for menu item, 48, 154
Add Item button, 144
adding

footer to window, 152
items to Items list, 144
menu bar to window, 152
menu to list of menus, 153
pane to paned window, 46
tool bar to window, 152

aligning objects, 30
alignment choices, 30
App Builder

exiting, 3
icon, 3
overview of process, 4
primary window, 2, 120
quitting, 3
starting, 3

application
building, 113
building and running in one

step, 112
generating code for, 113
quitting, 113
running, 113
setting behavior of, 90 to 91

Application Framework Editor, 90

Apply button, 144
Arrow Direction property, 145
attaching

menu to object, 52
menu while creating, 54
objects, 93, 103
submenu to menu item, 55
submenu while creating, 56

attachments, 97
Attachments button, 144
Attachments Editor, 103

B
background color, 36, 141
border

creating for single object, 97
setting frame style for groups, 95
types of, 141

Border Frame property, 141
browser, 132

editing objects, 28
building application, 113
button control, 128

properties of, 145
Button property editor, 145

162 Application Builder User’s Guide

C
Cancel button, 144
check box control, 129
child pane, 42
choice objects, 146
Choice property editor, 145
closing projects, 15
Code Generator, 112, 134

environment options, 137
options, 113

Code Generator Options dialog box, 136
color

background, 141
foreground, 141

Color Chooser, 36
combo box control, 128, 146
Combo Box property editor, 146
connecting

menu item and Call Function
action, 79

menu item and Execute Code
action, 80

menu item and predefined
action, 78

menu item to help topic, 75
message to function, 63
On Item help to Help menu item, 74
two objects, 76 to 78

connections
drag, 85
drop, 85
editing, 82
On Item help menu item, 74
selecting objects through drag-

linking, 76
selecting objects through the

Connections Editor, 76
testing, 109

Connections button, 144
Connections Editor, 77
control objects

selecting, 26
control pane, 125

Control Pane property editor, 147
controls

button, 128
check box, 129
combo box, 128
drop rules, 7
gauge, 129
label, 129
menu bar, 129
menu button, 128
option menu, 128
radio box, 128
scale, 129
scrolling list, 129
separator, 129
spin box, 129
text field, 129

Controls palette, 128 to 129
copying objects, 28
creating

border on object, 97
child pane, 42
connection between two objects, 76

to 78
custom dialog, 24
groups, 94
interface, 2
layered panes, 43
main window, 24
menu while attaching, 54
menus, 49 to 50
messages, 61 to 62
modules, 15
On Item help, 72
On Item menu item, 74
paned windows, 45
projects, 10
spanning control pane, 25
submenu while attaching, 56

custom dialog
creating, 24
default buttons in, 147
definition of, 123
parent main window for, 147
properties of, 147

Index 163

Custom Dialog property editor, 147
cutting objects, 28

D
default button sets for messages, 62
default buttons

for custom dialog, 147
for messages, 62

deleting objects, 29
deselecting objects, 27
displaying

fixed property editor, 35
help, 72
layered panes, 44

distributing objects evenly, 31
drag and drop, 2

rules, 7
setting behavior for, 85 to 86

Drag and Drop Editor, 85
drag connection, 85
drag operations, 85
drag-link connection, 76
drag-select, 27
draw area pane, 126

size of canvas in, 148
Draw Area Pane property editor, 148
drop connection, 85
drop operations, 85
drop rules

for controls, 7
for panes, 7
for windows, 7

dtappbuilder command, 3

E
Edit button, 144
editing

browser, 28
connections, 82
group properties, 95 to 96
interface, 28

interface objects, 28
menu properties, 50 to 52
message properties, 62
object properties, 34

editor
See also property editor
Application Framework, 90
Attachments, 103
Connections, 77
Drag and Drop, 85
Help, 73
Message, 59 to 61
retaining on workspace, 143

encapsulated project file, 14
environment options, Code

Generator, 114, 137
exporting

module in UIL format, 19
modules, 18

F
file selection dialog, 124

properties of, 148 to 149
File Selection Dialog property

editor, 148
fixed property editor, displaying, 35
foreground color, 36, 141

G
gauge control, 129

properties of, 156
generating code for application, 113
Geometry property, 141
Graphic Filename property, 141
Group Property Editor, 95 to 96, 149
grouping and attaching objects, 93
groups

creating, 94
editing properties of, 95 to 96
naming, 95
properties for, 149 to 150
setting border frame style for, 95

164 Application Builder User’s Guide

undoing, 96

H
help

displaying, 72
specifying menu bar item as, 155

Help Editor, 73
Help menu, 75

connecting On Item help to, 74
Help Text button, 144
help volume, 75
hiding modules, 21

I
importing

module in UIL format, 16
modules, 16

Initial State property
active, 141
Iconic, 38
Visible, 38, 141

interface
creating, 2
overview of creating and

maintaining, 4
internationalization of application, 90
Item Label Type property, 47, 141
item mnemonic, 48, 154, 155
Item State property, 142

L
label control, 129

alignment of, 150
Label property, 142
Label property editor, 150
Label Type property, 142
labels

arrow direction for, 145
for buttons, ?? to 145
for OK button in file selection

dialog, 149

position setting for, 142
layered panes

creating, 43
definition of, 43
displaying, 44
unmaking, 43
viewing, 44

line style for separator, 48, 154
List property editor, 150
lists, properties of, 151

M
main window

creating, 24
definition of, 122
editing properties of, 37 to 39

Main Window property editor, 151
menu bar control, 129

properties of, 155
menu button control, 128
menu items

accelerator for, 48
attaching help topic to, 75
connecting to Call Function

action, 79
connecting to Execute Code

action, 80
connecting to predefined action, 78
mnemonics for, 48

Menu Property Editor, 47, 153
Menu Title property, 142
Menubar property editor, 155
menus

attaching to objects, 52
creating, 49 to 50
creating and attaching in one

procedure, 54
definition of, 47
editing properties of, 50 to 52
Item Label Type for, 47
and modules, 49
properties of, 153 to 154
property for attaching, 142

Index 165

setting title for pop-up, 142
style for separator line, 48
Tearoff property, 47, 153
testing, 108

message dialog box, See messages
Message Editor, 59 to 61
message types, 61
messages

adding to module, 61
connecting to functions, 63
creating, 61 to 62
default button for, 62
default button sets for, 62
editing properties of, 62
entering text for, 62
naming, 61
selecting type of, 61

mnemonic, See item mnemonic
module browser, 132

editing objects, 28
modules

adding message to, 61
creating, 15
exporting, 18
hiding, 21
importing, 16
importing in UIL format, 16
naming, 16
removing from project, 21
renaming, 18
saving, 17
saving in UIL format, 19
showing, 20

multiple-select, 27

N
naming

application icon, 152
custom dialog, 147
groups, 95, 149
messages, 61
modules, 16
projects, 10
resource files, 10

windows, 37, 151

O
object information area, 130 to 131
object types, 6
objects

adding to selection, 27
aligning, 30
attaching, 103
button, 128
check box, 129
choice, 146
combo box, 128
creating border for, 97
cut or copy, 28
deleting, 29
deselecting, 27
distributing evenly, 31
draw area pane, 126
editing, 28
editing properties of, 34
gauge, 129
grouping and attaching in one

procedure, 93
label, 129
label setting for, 142
label type for, 142
menu bar, 129
menu button, 128
option menu, 128
paste, 29
position in relation to parent, 142
radio box, 128
rules for dropping, 7
scale, 129
scrolling list, 129
selecting, 26
separator, 129
setting fixed size, 143
setting size to fit contents, 143
spin box, 129
term pane, 127
text field, 129
text pane, 126

166 Application Builder User’s Guide

width and height values of, 141
XY location of, 141

OK button, 144
On Item help

creating, 72
menu item, 74

opening
existing projects, 11
property editor, 34

option menu control, 128
options, Code Generator, 113

P
palette

Controls, 128 to 129
Panes, 125
Windows, 122

Paned Window property editor, 155
paned windows

adding pane to, 46
creating, 45
definition of, 44
properties of, 155
unmaking, 46

panes
adding to paned window, 46
attaching a scroll bar to, 143
drop rules, 7
setting absolute width and height

for, 143
pasting objects, 29
Position property, 142
primary main window

editing properties of, 37 to 39
setting for application, 90

Project Organizer, 131
projects

closing, 15
creating, 10
naming, 10
opening existing, 11
removing a module from, 21
renaming, 13

saving, 12
saving as encapsulated file, 14
saving in different folder, 12
testing, 106

property editor
Button, 145
Choice, 145
Combo Box, 146
Control Pane, 147
Custom Dialog, 147
Draw Area Pane, 148
File Selection Dialog, 148
Group, 95 to 96, 149
Label, 150
List, 150
Main Window, 151
Menu, 153
Menubar, 155
opening, 34
Paned Window, 155
Scale, 156
Separator, 157
Spin Box, 157
Term Pane, 158
Text Field, 158
Text Pane, 159

Q
quitting

App Builder, 3
application, 113

R
radio box control, 128
removing module from project, 21
renaming

modules, 18
projects, 13

Reset button, 144
resource file

attributes written to, 90
naming, 10

Revolving Property Editor

Index 167

common buttons in, 143 to 144
common properties in, 141 to 143
universal properties in, 140 to 141

rules
for dropping objects, 7
drag and drop, 7

running application, 113
in one step, 112

S
saving

module in UIL format, 19
modules, 17
project, 12
project to different folder, 12
project to encapsulated file, 14

scale control, 129
properties of, 156

Scale property editor, 156
Scrollbars setting, 143
scrolling list control, 129
selecting

colors, 36
message type, 61
multiple objects, 27
objects, 26
single object, 26

separator, 129
properties of, 157

Separator property editor, 157
session management method, 90
setting

background color, 36
border frame style for groups, 95
Code Generator options, 113
environment options, 114
foreground color, 36
internationalization, 90
primary main window for

application, 90
vendor name for application, 90
version number for application, 90

showing modules, 20

size
of draw area canvas, 148
of lists, 151
of pane in paned window, 155
setting for combo box, 146
to fit contents, 143
of window, 152

Size Policy property, 38, 143
Size property, 143
spanning control pane

creating, 25
description of, 24

spin box control, 129
properties of, 157 to 158

Spin Box property editor, 157
starting App Builder, 3
submenus

attaching to menu items, 55
creating and attaching in one

procedure, 56
property for attaching, 142

T
Tear-off button, 143
Tearoff menu property, 47, 153
tear-off property editor, displaying, 35
term pane, 127

process string for, 158
Term Pane property editor, 158
testing

connections, 109
menus, 108
projects, 106

text field control, 129
properties of, 158

Text Field property editor, 158
text pane

definition of, 126
properties of, 159

Text Pane property editor, 159
title bar, 120
ToolTalk message handling, 91

168 Application Builder User’s Guide

types of objects, 6

U
UIL format

importing modules in, 16
saving module in, 19

ungrouping objects, 96
unmaking

layered panes, 43
paned windows, 46

user interface, See interface
User Resize Mode, 38

V
vendor name, setting for application, 90
version number, setting for

application, 90
viewing layered panes, 44

W
windows

adding footer, 152
adding menu bar, 152
adding tool bar, 152
creating main, 24
drop rules, 7
main, 37, 122
naming, 37, 151
parent for custom dialog, 147
primary, 37
setting absolute width and height

for, 143
setting size of, 143
spanning control pane, 24

Windows palette, 122

