
HP TCP/IP Services for
OpenVMS
Guide to IPv6
Order Number: AA-RNJ3B-TE

September 2003

This manual describes the HP TCP/IP Services for OpenVMS IPv6
features and how to install and configure IPv6 on your system. In
addition, this manual describes changes in the socket application
programming interface (API) and how to port your applications to run in
an IPv6 environment.

Revision/Update Information: This manual supersedes the Compaq
TCP/IP Services for OpenVMS Guide
to IPv6, Version 5.1.

Software Version: HP TCP/IP Services for OpenVMS
Version 5.4

Operating Systems: OpenVMS Alpha Versions 7.3-1, 7.3-2

Hewlett-Packard Company
Palo Alto, California

PS Conditioner
Processed on 9/13/2003Black and white submission.

© Copyright 2003 Hewlett-Packard Development Company, L.P.

UNIX® is a trademark of The Open Group.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Proprietary computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

ZK6645

The HP TCP/IP Services for OpenVMS documentation is available on CD-ROM.

Contents

Preface . ix

1 What Is IPv6?

1.1 Terminology . 1–1
1.2 Introduction to IPv6 Addresses . 1–2
1.2.1 Address Text Representation . 1–2
1.2.2 Types of Addresses . 1–3
1.2.2.1 Unicast Addresses . 1–3
1.2.2.2 Anycast Address . 1–7
1.2.2.3 Multicast Address . 1–8
1.2.3 Address Prefixes . 1–9
1.2.4 Specifying IPv6 Nonglobal Addresses . 1–10
1.2.5 Address Autoconfiguration . 1–10
1.2.6 Address Resolution . 1–11
1.3 Address Assignment . 1–11
1.4 Deploying IPv6 Using Tunnels . 1–12
1.4.1 Automatic Tunnels . 1–12
1.4.2 6to4 Tunnels . 1–12
1.4.3 Configured Tunnels . 1–13
1.5 IPv6 Environment . 1–13

2 Configuring IPv6

2.1 IPv6 Processes . 2–1
2.1.1 TCPIP$ND6HOST . 2–1
2.1.2 TCPIP$IP6RTRD Process . 2–2
2.2 Preparing for Configuration . 2–2
2.3 IPv6 System Configuration Examples . 2–6
2.3.1 Simple Host-to-Host Configuration . 2–7
2.3.2 Host-to-Host with Router Configuration . 2–7
2.3.3 IPv6 Network-to-IPv6 Network with Router Configuration 2–8
2.3.4 Multiple IPv6 Networks and Multiple Routers Configuration 2–9
2.3.5 Host-to-Host over IPv4 Configured Tunnel Configuration 2–10
2.3.6 Host-to-Router over IPv4 Configured Tunnel Configuration 2–11
2.3.7 IPv6 Network to IPv6 Network over IPv4 Configured Tunnel

Configuration . 2–13
2.3.8 6to4 Tunnel Configuration . 2–15
2.4 Configuring IPv6 . 2–17
2.5 Configuring an IPv6 Host . 2–17
2.5.1 Run TCPIP$IP6_SETUP to Configure Host . 2–17
2.5.2 DNS Domain Name and Address Registration 2–20
2.6 Configuring an IPv6 Router . 2–20
2.6.1 Running TCPIP$IP6_SETUP to Configure Router 2–20

iii

2.6.2 TCPIP$IP6RTRD.CONF Configuration File . 2–24
2.6.2.1 Interface Keyword Information for TCPIP$IP6RTRD.CONF 2–24
2.6.2.2 Address-Prefix Keyword Information for

TCPIP$IP6RTRD.CONF . 2–26
2.6.2.3 Editing the Router Configuration File . 2–27

3 Configuring BIND

3.1 IPv6 Support in BIND Version 9 . 3–1
3.1.1 Address lookups Using AAAA records . 3–1
3.1.2 Name Lookups Using Nibble Format . 3–1
3.1.3 Using DNAME To Rename ip6.int . 3–2
3.1.4 Enabling IPv6 Interfaces . 3–2
3.2 Sample BIND Configuration Files . 3–2

4 Managing and Monitoring the IPv6 Network

4.1 IPv6 Extensions to Management Commands . 4–1
4.1.1 ifconfig Command . 4–1
4.1.2 iptunnel Command . 4–3
4.2 Typical Management Tasks . 4–3
4.2.1 Connecting to the 6bone Network . 4–4
4.2.2 Initializing a New Interface for IPv6 . 4–4
4.2.2.1 Setting the IPv6 Interface Identifier . 4–5
4.2.2.2 Removing IPv6 from an Interface . 4–5
4.2.3 Creating a Configured Tunnel . 4–5
4.2.4 Adding an Address to an Interface . 4–6
4.2.5 Deleting an Address from an Interface . 4–6
4.2.6 Adding or Deleting a Default Router . 4–7
4.2.7 Manually Adding a Route for an On-Link Prefix 4–7
4.3 UNIX-Style Commands to Monitor the Network . 4–8
4.3.1 ping Command . 4–8
4.3.2 netstat Command . 4–8
4.3.3 traceroute Command . 4–9
4.3.4 tcpdump Command . 4–10
4.4 IPv6 Process Log Files . 4–10

5 Mobile IPv6

5.1 Mobile IPv6 History . 5–1
5.2 Mobile IPv6 Environment . 5–2
5.3 Mobile IPv6 Operation . 5–2
5.4 Planning Mobile IPv6 . 5–6
5.5 Configuring Mobile IPv6 . 5–6
5.5.1 Configuring a Correspondent Node . 5–6
5.5.2 Configuring a Home Agent . 5–6
5.6 Monitoring the Mobile IPv6 Environment . 5–6
5.6.1 Using tcpdump . 5–7
5.6.2 Using netstat . 5–7
5.6.3 TCPIP$IP6RTRD Log File . 5–7

iv

6 Solving IPv6 Problems

6.1 Using the Diagnostic Suggestions . 6–1
6.2 Getting Started . 6–1
6.3 Solving IPv6 Network Problems . 6–2
6.4 Solving IPv6 Host Problems . 6–2
6.4.1 IPv6 Process Is Not Started . 6–2
6.4.2 Host Is Unknown . 6–3
6.4.3 On-Link Node Is Not Reachable . 6–3
6.4.4 Off-Link Node Is Not Reachable . 6–4
6.4.5 Your Node Is Unreachable . 6–5
6.4.6 Connection Is Not Accepted . 6–6
6.4.7 Connection Terminates . 6–6
6.5 Solving IPv6 Router Problems . 6–6
6.5.1 IPv6 Process Is Not Running . 6–6
6.5.2 Host Is Unknown . 6–7
6.5.3 On-Link Node Is Unreachable . 6–7
6.5.4 Off-Link Node Is Unreachable . 6–8
6.5.5 On-Link Node Addresses Are Not Configured 6–9
6.5.6 Router Does Not Forward Messages . 6–9
6.5.7 Your Node Is Unreachable . 6–10
6.5.8 Connection Is Not Accepted . 6–10
6.5.9 Connection Terminates . 6–10

7 Application Interface to Sockets

7.1 Structures . 7–1
7.1.1 in6_addr Structure . 7–1
7.1.2 sockaddr_in6 Structure . 7–2
7.1.3 msghdr Structure . 7–2
7.1.4 cmsghdr Structure . 7–2
7.2 Header Files . 7–2
7.3 Socket Options . 7–2
7.4 Basic API . 7–3
7.4.1 Interface Identification . 7–3
7.4.2 IPv6 Multicast Datagrams . 7–4
7.4.2.1 Sending IPv6 Multicast Datagrams . 7–4
7.4.2.2 Receiving IPv6 Multicast Datagrams . 7–5
7.4.3 Address Translation and Conversion Functions 7–6
7.4.4 Address-Testing Macros . 7–7
7.5 Advanced API . 7–7
7.5.1 Using IPv6 Raw Sockets . 7–8
7.5.1.1 Accessing ICMPv6 Messages . 7–9
7.5.1.2 Accessing the IPv6 Header . 7–9
7.5.1.3 Accessing the IPv6 Routing Header . 7–11
7.5.1.4 Accessing the IPv6 Options Headers . 7–12
7.6 Guidelines for Compiling and Linking IPv6 Applications 7–13
7.7 IPv6 Library Functions API . 7–14

freeaddrinfo() . 7–15
gai_strerror() . 7–16
getaddrinfo() . 7–17
getnameinfo() . 7–23
if_freenameindex() . 7–26
if_indextoname() . 7–27

v

if_nameindex() . 7–28
if_nametoindex() . 7–29
inet6_opt_append() . 7–30
inet6_opt_find() . 7–32
inet6_opt_finish() . 7–34
inet6_opt_get_val() . 7–35
inet6_opt_init() . 7–36
inet6_opt_next() . 7–37
inet6_opt_set_val() . 7–39
inet6_rth_add() . 7–40
inet6_rth_getaddr() . 7–41
inet6_rth_init() . 7–42
inet6_rth_reverse() . 7–44
inet6_rth_segments() . 7–45
inet6_rth_space() . 7–46
inet_ntop() . 7–47
inet_pton() . 7–48

8 Porting Applications

8.1 Using AF_INET6 Sockets . 8–1
8.2 Name Changes . 8–7
8.3 Structure Changes . 8–7
8.3.1 in_addr Structure . 8–7
8.3.2 sockaddr Structure . 8–8
8.3.3 sockaddr_in Structure . 8–8
8.3.4 hostent Structure . 8–8
8.4 Function Changes . 8–9
8.4.1 gethostbyaddr() Function . 8–9
8.4.2 gethostbyname() Function . 8–9
8.4.3 inet_ntoa() Function . 8–10
8.4.4 inet_addr() Function . 8–10
8.5 Other Application Changes . 8–10
8.5.1 Comparing IP Addresses . 8–10
8.5.2 Comparing an IP Address to the Wildcard Address 8–11
8.5.3 Using int Data Types to Hold IP Addresses . 8–11
8.5.4 Using Functions that Return IP Addresses . 8–12
8.5.5 Changing Socket Options . 8–12
8.6 Sample Client/Server Programs . 8–12
8.6.1 Programs Using AF_INET Sockets . 8–12
8.6.1.1 Client Program . 8–12
8.6.1.2 Server Program . 8–14
8.6.2 Programs Using AF_INET6 Sockets . 8–16
8.6.2.1 Client Program . 8–17
8.6.2.2 Server Program . 8–19
8.6.3 Sample Program Output . 8–21

vi

A Supported IPv6 RFCs

B Deprecated Library Functions

B.1 getipnodebyname Function . B–1
B.2 getipnodebyaddr Function . B–4
B.3 freehostent Function . B–5

Index

Examples

2–1 Sample TCPIP$IP6RTRD.CONF File . 2–28
3–1 Sample TCPIP$BIND.CONF_IPV6 . 3–3
3–2 Sample IPV6.DB File . 3–4
3–3 Sample IPV6.ARPA File . 3–4
3–4 Sample IPV6.INT File . 3–5

Figures

1–1 Unicast Addresses . 1–3
1–2 64-Bit Prefix Plus 64-Bit Interface ID . 1–4
1–3 Creating an Interface ID from a MAC Address 1–4
1–4 IPv6 Global Unicast Address . 1–5
1–5 IPv4-Compatible IPv6 Address . 1–5
1–6 IPv4-Mapped IPv6 Address . 1–6
1–7 IPv6 Link-Local Unicast Address . 1–6
1–8 IPv6 Site-Local Unicast Address . 1–7
1–9 Anycast Address . 1–7
1–10 IPv6 Multicast Address . 1–8
1–11 Host-to-Host Configuration with No Router . 1–14
1–12 Host-to-Host Configuration with Router . 1–14
1–13 IPv6 Network to IPv6 Network with Router Configuration 1–15
1–14 Multiple IPv6 Networks and Multiple Routers Configuration 1–15
1–15 Host-to-Host Configuration over Tunnel . 1–16
1–16 Host-to-Router Configuration over Tunnel . 1–16
1–17 IPv6 Network-to-IPv6 Network Configuration over Tunnel 1–17
1–18 IPv6 Network-to-IPv6 Network Configuration over Tunnel 1–18
2–1 Configuration Worksheet . 2–3
2–2 Simple Host-to-Host Configuration . 2–7
2–3 Host-to-Host with Router Configuration . 2–8
2–4 IPv6 Network-to-IPv6 Network with Router Configuration 2–9
2–5 Multiple IPv6 Networks and Multiple Routers Configuration 2–10
2–6 Host-to-Host over IPv4 Configured Tunnel Configuration 2–11
2–7 Host-to-Router over IPv4 Configured Tunnel Configuration 2–12
2–8 Router Not Advertising a Global Address Prefix 2–12
2–9 Router Advertising a Global Address Prefix . 2–13
2–10 Router A Not Advertising a Global Prefix on the Tunnel Link 2–13

vii

2–11 IPv6 Network to IPv6 Network over IPv4 Configured Tunnel
Configuration . 2–14

2–12 6to4 Tunnel Host E Configuration . 2–15
2–13 6to4 Tunnel Router Configuration . 2–16
2–14 6to4 Tunnel Host B Configuration . 2–16
5–1 Communication with Mobile Node at Home . 5–3
5–2 Communication with Mobile Node Away from Home–Part 1 5–4
5–3 Communication with Mobile Node Away from Home–Part 2 5–5
8–1 Using AF_INET Socket for IPv4 Communications 8–2
8–2 Using AF_INET6 Socket to Send IPv4 Communications 8–3
8–3 Using AF_INET6 Socket to Receive IPv4 Communications 8–4
8–4 Using AF_INET6 Socket for IPv6 Communications 8–6

Tables

1 TCP/IP Services Documentation . x
1–1 Well-Known Multicast Addresses . 1–9
1–2 IPv6 Address Types and Prefixes . 1–10
7–1 Socket Options . 7–3
7–2 Summary of Address-Testing Macros . 7–7
7–3 Differences Between IPv4 and IPv6 Raw Sockets 7–8
7–4 ICMPv6 Filtering Macros . 7–9
7–5 Optional Information and Socket Options . 7–10
7–6 Socket Calls for Routing Header Name Description 7–11
7–7 Socket Calls for Options Headers . 7–12
7–8 ai_flags Member Values . 7–19
7–9 Flag Bits . 7–24
8–1 Name Changes . 8–7
B–1 Node Name to Address Processing . B–2
B–2 AI_ADDRCONFIG Flag . B–3
B–3 AI_DEFAULT Flag . B–3

viii

Preface

The HP TCP/IP Services for OpenVMS product is the HP implementation of the
TCP/IP networking protocol suite and internet services for OpenVMS systems.

TCP/IP Services provides a comprehensive suite of functions and applications that
support industry-standard protocols for heterogeneous network communications
and resource sharing.

This manual describes IPv6 features included in this version of TCP/IP Services.
The manual covers installing and configuring your system for IPv6, changes to
the socket API, and how to port your applications to run in an IPv6 environment.

See the HP TCP/IP Services for OpenVMS Installation and Configuration manual
for information about installing, configuring, and starting this product.

Intended Audience
This manual is for experienced OpenVMS and UNIX system managers and
assumes a working knowledge of OpenVMS system management, TCP/IP
networking, and TCP/IP terminology.

Document Structure
This manual contains the following chapters and appendixes:

Chapter 1 Describes IPv6 terminology, the types and function of the different IPv6
addresses, and typical IPv6 configurations.

Chapter 2 Describes how to configure the IPv6 software.

Chapter 3 Provides guidelines for running BIND in an IPv6 environment.

Chapter 4 Describes how to manage and monitor an IPv6 network.

Chapter 5 Describes how to configure and use mobile IPv6.

Chapter 6 Describes how to solve IPv6 problems.

Chapter 7 Describes the IPv6 additions to the socket API.

Chapter 8 Describes how to port applications.

Appendix A Describes the supported IPv6 RFCs.

Appendix B Describes deprecated functions that have been replaced by new ones.

ix

Related Documents
Table 1 lists the documents available with this version of TCP/IP Services.

Table 1 TCP/IP Services Documentation

Manual Contents

Compaq TCP/IP Services for OpenVMS
Concepts and Planning

This manual provides conceptual information about TCP/IP
networking on OpenVMS systems, including general planning
issues to consider before configuring your system to use the
TCP/IP Services software.

This manual also describes the manuals in the TCP/IP Services
documentation set and provides a glossary of terms and
acronyms for the TCP/IP Services software product.

HP TCP/IP Services for OpenVMS
Release Notes

The release notes provide version-specific information that
supersedes the information in the documentation set. The
features, restrictions, and corrections in this version of the
software are described in the release notes. Always read the
release notes before installing the software.

HP TCP/IP Services for OpenVMS
Installation and Configuration

This manual explains how to install and configure the TCP/IP
Services product.

HP TCP/IP Services for OpenVMS
User’s Guide

This manual describes how to use the applications available with
TCP/IP Services such as remote file operations, email, TELNET,
TN3270, and network printing.

HP TCP/IP Services for OpenVMS
Management

This manual describes how to configure and manage the TCP/IP
Services product.

HP TCP/IP Services for OpenVMS
Management Command Reference

This manual describes the TCP/IP Services management
commands.

HP TCP/IP Services for OpenVMS
Management Command Quick
Reference Card

This reference card lists the TCP/IP management commands by
component and describes the purpose of each command.

HP TCP/IP Services for OpenVMS
UNIX Command Equivalents Reference
Card

This reference card contains information about commonly
performed network management tasks and their corresponding
TCP/IP management and Tru64 UNIX command formats.

Compaq TCP/IP Services for OpenVMS
ONC RPC Programming

This manual presents an overview of high-level programming
using open network computing remote procedure calls (ONC
RPCs). This manual also describes the RPC programming
interface and how to use the RPCGEN protocol compiler to create
applications.

HP TCP/IP Services for OpenVMS
Guide to SSH

This manual describes how to configure, set up, use, and manage
the SSH for OpenVMS software.

Compaq TCP/IP Services for OpenVMS
Sockets API and System Services
Programming

This manual describes how to use the Sockets API and OpenVMS
system services to develop network applications.

Compaq TCP/IP Services for OpenVMS
SNMP Programming and Reference

This manual describes the Simple Network Management Protocol
(SNMP) and the SNMP application programming interface
(eSNMP). It describes the subagents provided with TCP/IP
Services, utilities provided for managing subagents, and how to
build your own subagents.

(continued on next page)

x

Table 1 (Cont.) TCP/IP Services Documentation

Manual Contents

HP TCP/IP Services for OpenVMS
Tuning and Troubleshooting

This manual provides information about how to isolate the
causes of network problems and how to tune the TCP/IP Services
software for the best performance.

HP TCP/IP Services for OpenVMS
Guide to IPv6

This manual describes the IPv6 environment, the roles of
systems in this environment, the types and function of the
different IPv6 addresses, and how to configure TCP/IP Services
to access the IPv6 network.

For additional information about HP OpenVMS products and services, access the
HP website at the following location:

http://www.openvms.hp.com/

For a comprehensive overview of the TCP/IP protocol suite, refer to the book
Internetworking with TCP/IP: Principles, Protocols, and Architecture, by Douglas
Comer.

Reader’s Comments
HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How to Order Additional Documentation
For information about how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Conventions
The name TCP/IP Services means both:

• HP TCP/IP Services for OpenVMS Alpha

• HP TCP/IP Services for OpenVMS VAX

The following conventions are used in this manual. In addition, please note that
all IP addresses are fictitious.

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

xi

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold type Bold type represents the introduction of a new term. It also
represents the name of an argument, an attribute, or a reason.

italic type Italic type indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Example This typeface indicates code examples, command examples, and
interactive screen displays. In text, this type also identifies
URLs, UNIX commands and pathnames, PC-based commands
and folders, and certain elements of the C programming
language.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xii

1
What Is IPv6?

In the early 1990s, members of the Internet community realized that the address
space and certain aspects of the current TCP/IP architecture were not capable
of sustaining the explosive growth of the Internet. The problems included
the exhaustion of the Internet address space, the size of routing tables, and
requirements for new technology features.

The Internet Engineering Task Force (IETF) made several efforts to study and
improve the use of the 32-bit Internet Protocol (IPv4) addresses. They also
tackled the longer-term goal of identifying and replacing protocols and services
that would limit growth.

These efforts identified the 32-bit addressing architecture of IPv4 as the principal
problem affecting router overhead and network administration. In addition,
IPv4 addresses were often unevenly allocated in blocks that were too large or
too small; therefore, these addresses were difficult to change within any existing
network.

In July 1994, the Internet Protocol Next Generation (IPng) directorate announced
Internet Protocol Version 6 (IPv6) as the replacement network layer protocol,
and IETF working groups began to build specifications. (See RFC 1752, The
Recommendation for the IP Next Generation Protocol, for additional information
about the IPv6 protocol selection process.)

IPv6 is both a completely new network layer protocol and a major revision of the
Internet architecture. As such, it builds upon and incorporates experience gained
with IPv4. This chapter describes the following:

• Terminology

• IPv6 addressing

• Using tunnels

• IPv6 environment

1.1 Terminology
The following terms are used in this chapter:

• Node

Any system that uses the IPv6 protocol to communicate.

• Router

A node that forwards IPv6 packets addressed to other nodes. These systems
typically have more than one network interface installed and configured.

• Host

Any system that is not a router.

What Is IPv6? 1–1

What Is IPv6?
1.1 Terminology

• Link

A medium or facility over which nodes communicate with each other at the
Link layer. Examples include Ethernet, FDDI links, or internet layer tunnels.

• Interface

A node’s attachment to a link, which is usually assigned an IPv6 address or
addresses. This can be a physical NIC (for example, WE0) or virtual network
interface (for example, IT0).

• Tunnel

A link over which a packet of one protocol is encapsulated inside the packet
of another protocol. In this manner, one protocol’s packets an be carried
over another protocol’s infrastructure. The process for doing this is called
tunneling. See Section 1.4 for more information on the types of tunnels that
are available for you to use.

1.2 Introduction to IPv6 Addresses
The most noticeable feature of IPv6 is the address itself. The address size
is increased from 32 bits to 128 bits. The following sections describe the
components of the IPV6 address.

1.2.1 Address Text Representation
Use the following syntax to represent IPv6 addresses as text strings:

x:x:x:x:x:x:x:x

The x is a hexadecimal value of a 16-bit piece of the address. For example, the
following addresses are IPv6 addresses:

FEDC:BA98:7654:3210:FEDC:BA98:7654:3210

1070:0:0:0:0:800:200C:417B

IPv6 addresses can contain long strings of zero (0) bits. To make it easier to write
these addresses, you can use a double colon (::) once in an address to represent
one or more 16-bit groups of zeros. For example, you can compress the second
IPv6 address example in the following way:

1070::800:200C:417B

Alternately, you can use the following syntax to represent IPv6 addresses in an
environment of both IPv4 and IPv6 nodes:

x:x:x:x:x:x:d.d.d.d

In this case, x is a hexadecimal value of a 16-bit piece of the address (six high-
order pieces) and d is a decimal value of an 8-bit piece of address (four low-order
pieces) in standard, dotted-quad IPv4 form. For example, the following are IPv6
addresses:

0:0:0:0:0:0:13.1.68.3

0:0:0:0:0:FFFF:129.144.52.38

1–2 What Is IPv6?

What Is IPv6?
1.2 Introduction to IPv6 Addresses

When compressed, these addresses are as follows:

::13.1.68.3

::FFFF:129.144.52.38

Like IPv4 address prefixes, IPv6 address prefixes are represented using the
Classless Inter-Domain Routing (CIDR) notation. This notation has the following
format:

ipv6-address/prefix-length

For example, you can represent the 60-bit hexadecimal prefix 12AB00000000CD3
in any of the following ways:

12AB:0000:0000:CD30:0000:0000:0000:0000/60

12AB::CD30:0:0:0:0/60

12AB:0:0:CD30::/60

1.2.2 Types of Addresses
There are three types of IPv6 addresses:

• Unicast

• Anycast

• Multicast

Note

Unlike IPv4, IPv6 does not define a broadcast address. To get the function
of a broadcast address, use a multicast address. (See Section 1.2.2.3.)

The following sections describe the unicast, anycast, and multicast address
types.

1.2.2.1 Unicast Addresses
A unicast address is an identifier for an interface. Packets sent to a unicast
address are delivered to the node containing the interface that is identified by the
address.

Figure 1–1 shows the format of unicast addresses.

Figure 1–1 Unicast Addresses

VM-0617A-AI

node address

0 128

This address typically consists of a 64-bit prefix followed by a 64-bit interface ID,
as shown in Figure 1–2.

What Is IPv6? 1–3

What Is IPv6?
1.2 Introduction to IPv6 Addresses

Figure 1–2 64-Bit Prefix Plus 64-Bit Interface ID

VM-0618A-AI

64 bits 64 bits

0 128

 prefix Interface ID

An interface ID identifies an interface on a link. The interface ID is required to
be unique on a link, but it may also be unique over a broader scope. In many
cases, the interface ID is derived from its Link layer address. The same interface
ID can be used on multiple interfaces on a single node.

According to RFC2373, most prefixes must have 64-bit interface identifiers.
For a 48-bit MAC addresses, the interface identifier is created by inserting the
hexadecimal values of 0xFF and 0xFE in the middle of the address and inverting
the universal/local bit (bit 7) in the resulting 64-bit address. Figure 1–3 shows
how this process works.

Figure 1–3 Creating an Interface ID from a MAC Address

VM-1110A-AI

08 00 2B 36 70 1E

08 00 2B FF FE 36 70 1E

0A 00 2B FF FE 36 70 1E

Company ID Manufacturer Data

Expand to an
EUI-64

Invert the
Global Bit

The following list describes commonly used unicast addresses and their values:

• Unspecified address

Indicates the absence of an address and is never assigned to an interface. The
unspecified address has the following value:

0:0:0:0:0:0:0:0 (normal form)

:: (compressed form)

• Loopback address

1–4 What Is IPv6?

What Is IPv6?
1.2 Introduction to IPv6 Addresses

Used by a node to send IP datagrams to itself and is typically assigned to the
loopback interface.

The IPv6 loopback address has the following value:

0:0:0:0:0:0:0:1 (normal form)

::1 (compressed form)

• Global unicast addresses

These addresses are globally routable.

Figure 1–4 shows the format of the global unicast address.

Figure 1–4 IPv6 Global Unicast Address

VM-1109A-AI

n bits 128-n-m bits

0 128

 global routing
 prefix

Interface ID

m bits

Subnet ID

RFC 2374 defined aggregatable global unicast address formats that included
Top Level Aggregator (TLA) and Next Level Aggregator (NLA). RFC 3587
replaces replaces RFC 2374, and makes it and the TLS/NLA structure
historic.

• IPv6 addresses with embedded IPv4 addresses

Used in mixed IPv4 and IPv6 environments and can be either of the
following:

– IPv4-compatible IPv6 address

Used by IPv6 nodes to tunnel IPv6 packets across an IPv4 routing
infrastructure. The IPv4 address is carried in the low-order 32 bits.
Figure 1–5 shows the format of the IPV4-compatible IPV6 address.

Figure 1–5 IPv4-Compatible IPv6 Address

VM-0619A-AI

80 bits 16 bits

0 128

32 bits

0000.........0000 IPv4 Address00000

What Is IPv6? 1–5

What Is IPv6?
1.2 Introduction to IPv6 Addresses

Note

Do not use IPv4-compatible IPv6 addresses in DNS or in
TCPIP$ETC:IPNODES.

– IPv4-mapped IPv6 address

Used to represent an IPv4 address and to identify nodes that do not
support IPv6. This address is not used in an IPv6 packet. Figure 1–6
shows the format of the IPv4-mapped IPv6 address.

Figure 1–6 IPv4-Mapped IPv6 Address

VM-0620A-AI

80 bits 16 bits

0 128

32 bits

0000.........0000 IPv4 AddressFFFF

• Local-use IPv6 unicast addresses can be either of the following:

– Link-local

Used for addressing on a single link when performing address
autoconfiguration or neighbor discovery or when no routers are present.
Figure 1–7 shows the format of the link-local address.

Figure 1–7 IPv6 Link-Local Unicast Address

VM-0621A-AI

10 bits 54 bits

0 128

64 bits

1111111010 Interface ID00...............00

– Site-local

Used for sites or organizations that are not connected to the global
Internet. Figure 1–8 shows the format of the site-local address.

1–6 What Is IPv6?

What Is IPv6?
1.2 Introduction to IPv6 Addresses

Figure 1–8 IPv6 Site-Local Unicast Address

VM-0622A-AI

10 bits 38 bits 16 bits

0 128

64 bits

1111111011 00..........00 Interface IDSubnet ID

If you plan to use site-local addresses, be aware of the following
guidelines:

* Do not connect a single node to multiple sites.

* Do not use site-local addresses in the global DNS (the addresses
should not be visible outside the site).

* Dynamic DNS updates for site-local addresses are not supported.

* Do not advertise or propagate routes containing site-local prefixes
outside the site.

Interfaces typically have multiple IPv6 addresses. After IPv6 is configured and
the system boots, the LAN and configured tunnel interfaces are automatically
assigned a link-local address. If a router is on the link, the system also
autoconfigures a global unicast address on the interfaces.

1.2.2.2 Anycast Address
An anycast address is an identifier for a set of interfaces typically belonging to
different nodes. Packets sent to an anycast address are delivered to one of the
interfaces identified as the ‘‘nearest’’ address, according to the routing protocol’s
measure of distance.

Anycast addresses are allocated from the unicast address space, and cannot
be distinguished from unicast addresses. Only the subnet-router anycase
address and addresses defined in RFC 2526 are easily identified. Packets sent
to the subnet-router anycast address are delivered to the router closest to the
originating host only. Figure 1–9 shows the format of anycast addresses.

Figure 1–9 Anycast Address

VM-1111A-AI

n bits 128-n bits

0 128

 prefix 0000......0000

What Is IPv6? 1–7

What Is IPv6?
1.2 Introduction to IPv6 Addresses

1.2.2.3 Multicast Address
A multicast address is an identifier for a group of nodes. It is similar to an IPv4
multicast address. Figure 1–10 shows the format for multicast addresses.

Figure 1–10 IPv6 Multicast Address

VM-0623A-AI

8 bits 4 bits4 bits

0 128

112 bits

11..11 Group ID

Scope

Flags

In the multicast address format, the fields have the following definitions:

11..11 Identifies the address as multicast.

Flags Can be either of the following values:

• 0000, which indicates a permanently assigned
(well-known) multicast address,

• 0001, which indicates a nonpermanently assigned
(transient) multicast address.

1–8 What Is IPv6?

What Is IPv6?
1.2 Introduction to IPv6 Addresses

Scope Indicates the scope of the multicast group. The
following table lists the scope values:

Value
(hex) Scope

0 Reserved

1 Interface-local scope

2 Link-local scope

3 Reserved

4 Admin-local scope

5 Site-local scope

6 (unassigned)

7 (unassigned)

8 Organization-local scope

9 (unassigned)

A (unassigned)

B (unassigned)

C (unassigned)

D (unassigned)

E Global scope

F Reserved

Group ID Identifies the multicast group within the specified
scope.

Table 1–1 lists some well-known multicast addresses.

Table 1–1 Well-Known Multicast Addresses

Multicast Address Meaning

FF01::1 All nodes (interface-local)

FF02::1 All nodes (link-local)

FF01::2 All routers (interface-local)

FF02::2 All routers (link-local)

FF05::2 All routers (site-local)

FF02::1:FFxx:xxxx Solicited-node address

1.2.3 Address Prefixes
Each IPv6 address has a unique pattern of leading (high-order) bits that indicates
its address type. Table 1–2 lists some IPv6 address types and their prefixes.

What Is IPv6? 1–9

What Is IPv6?
1.2 Introduction to IPv6 Addresses

Table 1–2 IPv6 Address Types and Prefixes

Address Type Binary Prefix IPv6 Notation

Unspecified 00...0 (128 bits) ::/128

Loopback 00...1 (128 bits) ::1/128

Multicast 11111111 FF00::/8

Link-local unicast 1111111010 FE80::/10

Site-local unicast 1111111011 FEC0::/10

Global unicast (everything else)

1.2.4 Specifying IPv6 Nonglobal Addresses
The BIND resolver has been updated as described in the following RFC draft:

draft-ietf-ipngwg-scoping-arch-04.txt

This change allows the specification of an IPv6 nonglobal address without
ambiguity by also specifying an intended scope zone. The format is as follows:

address%zone_id

The format of the nonglobal address includes the following:

address is a literal IPv6 address.

zone_id is a string to identify the zone of the address.

% is a delimiter character to distinguish between the address and zone
identifier.

For example, the following specifies a nonglobal address on interface WE0:

fe80::1234%WE0

1.2.5 Address Autoconfiguration
The IPv6 address changes have led to the following definitions for configuring
addresses:

• Stateless address autoconfiguration

• Dynamic Host Configuration Protocol Version 6 (DHCPv6), which is stateful
address autoconfiguration

In the stateless model, nodes learn address prefixes by listening for Router
Advertisement packets. Addresses are formed by combining the prefix with a
data link-specific interface token, which is typically derived from the data link
address of the interface. This model is favored by administrators who do not need
tight control over address configuration. See RFC 2462 for more information.

In DHCPv6, hosts may request addresses, configuration information and services
from dedicated configuration servers. This model is favored by administrators
who want to delegate addresses based on a client/server model.

Note

This version of TCP/IP Services for OpenVMS does not support DHCPv6.

1–10 What Is IPv6?

What Is IPv6?
1.2 Introduction to IPv6 Addresses

In both cases, the resulting addresses have associated lifetimes, and systems
must be able to acquire new addresses and release expired addresses. Combined
with the ability to register updated address information with Domain Name
System (DNS) servers, these mechanisms provide a path towards network
renumbering and provide network administrators with control over the use of
network addresses without manual intervention on each host on the network.

1.2.6 Address Resolution
The Domain Name System (DNS) provides support for mapping names to IP
addresses and mapping IP addresses back to their corresponding names. Because
of the increased size of the IPv6 address, the DNS has the following new features:

• AAAA resource record type

This holds IPv6 addresses, encoded in network byte order. The version of
BIND shipped with TCP/IP Services for OpenVMS supports AAAA records.

• AAAA query

A query for a specified domain name in the Internet class returns all
associated AAAA resource records in the response.

• IP6.ARPA domain for looking up a name for a specified address (address-to-
name mapping)

An IPv6 address is represented in reverse order as a sequence of 4-bit nibbles
separated by dots with the suffix .IP6.ARPA appended. For example, the IPv6
address 4321:0:1:2:3:4:567:89ab has the following reverse lookup domain
name:

b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.0.0.0.1.2.3.4.IP6.ARPA

See Chapter 3 for guidelines on configuring BIND in an IPv6 environment.

1.3 Address Assignment
IPv6 addresses are now being deployed by the regional registries. See the IANA
web page at the following location for more information:

http://www.iana.org

In addition, you can contact your Internet Service Provider (ISP) to obtain an
IPv6 address.

Because of the need to test various implementations of the IPv6 RFCs, the IETF
has defined a temporary IPv6 address allocation scheme. You can assign the
addresses in this scheme to hosts and routers for testing IPv6 on the 6bone (a
prototype IPv6 implementation that can be used for testing). See the 6bone home
page at the following location for more information about 6bone address allocation
and assignment:

http://www.6bone.net

The planning stage for a multiyear phaseout of the 6bone has begun.

At the present time, the 6bone test addresses are aggregatable global
unicast addresses. Contact your 6bone service provider (for example, gw-
6bone@pa.dec.com) for a 6bone address delegation.

What Is IPv6? 1–11

What Is IPv6?
1.4 Deploying IPv6 Using Tunnels

1.4 Deploying IPv6 Using Tunnels
Because the Internet and most likely your network are based on IPv4, you need
to know how to use this routing infrastructure to carry your IPv6 traffic while
you gradually build up your IPv6 routing infrastructure. The best mechanism to
employ for routing IPv6 traffic across IPv4 routing infrastructures is tunneling.
The following types of tunnels are supported:

• Automatic

• 6to4

• Configured

The following sections describe each tunnel and its advantages and
disadvantages. The more powerful the tunnel, the more configuration and
administration it requires.

1.4.1 Automatic Tunnels
An IPv6 automatic tunnel is the simplest tunnel to configure and deploy. This
mechanism enables hosts with a globally unique IPv4 address to automatically
create a tunnel over an IPv4 network. The tunnel is created as a virtual interface
(TN0) and is configured with an IPv4-compatible IPv6 address, which is derived
from the IPv4 address. The destination address of the packet determines the
tunnel destination endpoint. See Section 1.2.2.1 for more information about
IPv4-compatible IPv6 addresses.

This mechanism is good for introducing hosts to IPv6 because it permits
application porting, testing, and experimentation with the IPv6 protocol.
However, an automatic tunnel has the following limitations:

• Requires a globally unique (not private) IPv4 address.

• Benefits hosts more than routers. You can neither run the RIPng protocol
over the automatic tunnel nor can you forward packets over the tunnel.

• Communicates only with other nodes that are configured with IPv4-
compatible IPv6 addresses. You cannot communicate with nodes that are
configured with native IPv6 addresses only.

• Is quite possibly going to be deprecated by the IPv6 community. Therefore, do
not deploy this in your production environment.

1.4.2 6to4 Tunnels
A 6to4 tunnel is a type of automatic tunnel, but it offers greater connectivity.
This mechanism enables a special IPv6 site, called a 6to4 site, with a single,
globally unique IPv4 address to automatically create a tunnel over an IPv4
network to communicate with other 6to4 sites. The tunnel is created as a virtual
interface (TNn) on a node at the IPv4 network attachment point. This node
is either an individual host or a router called a border router. The tunnel is
configured with a special 6to4 address that is derived from the IPv4 address. The
destination address of the packet determines the tunnel destination endpoint.

Within the 6to4 site, the border router creates the 6to4 site prefix from its
globally unique IPv4 address and advertises the prefix to all nodes in the 6to4
site. Each node automatically configures its 6to4 address based on the 6to4 prefix;
no special configuration is necessary. Nodes within the 6to4 site communicate
with each other using native IPv6. Any traffic that is addressed outside the site
is forwarded to the border router.

1–12 What Is IPv6?

What Is IPv6?
1.4 Deploying IPv6 Using Tunnels

This mechanism is easy to configure and can be deployed in a production
environment. However, a 6to4 tunnel has the following limitations:

• Communicates only with other nodes that are configured with 6to4 addresses.
However, if you use third-party 6to4 Relay Router services or 6to4 relay
services on the Internet, you can communicate with nodes that are configured
with native IPv6 addresses only.

• Relies on the underlying IPv4 network routing infrastructure. Therefore,
routing might not be as efficient as native IPv6 connectivity or configured
tunnels.

1.4.3 Configured Tunnels
A configured tunnel is the most complex tunnel to configure and deploy. There
are two types of configured tunnels:

• IPv4 configured tunnel—encapsulates IPv4 or IPv6 packets in an IPv4 packet
and carries those packets through an IPv4 network infrastructure. An IPv6
over IPv4 configured tunnel enables IPv6 sites and hosts to communicate with
other IPv6 nodes across an IPv4 network.

• IPv6 configured tunnel—encapsulates IPv4 or IPv6 packets in an IPv6 packet
and carries those packets through an IPv6 network infrastructure. An IPv6
over IPv6 configured tunnel is an enabling technology for mobile IPv6, and
can also be used for traffic engineering (for example, IPv6 multihoming
support).

A configured tunnel is created as a virtual interface (ITn) and uses IPv4 addresses
(IPv4 configured tunnel) or IPv6 addresses (IPv6 configured tunnel) as the
source and destination endpoints. If you want to send IPv6 traffic through any
configured tunnel, you configure an IPv6 address on the tunnel interface. If you
want to send IPv4 traffic through any configured tunnel, you configure an IPv4
address on the tunnel interface.

This mechanism is the most powerful tunneling mechanism, but has the following
limitations:

• Requires a coordinated configuration of each tunnel endpoint.

• Relies on the expertise of the administrator to obtain efficient routing of
traffic. If the endpoint is misconfigured, you might have inefficient routes,
routing loops, or both.

1.5 IPv6 Environment
This section shows some example IPv6 configurations. Select a configuration that
most closely matches the environment in which you want to configure IPv6 on
your system.

Figure 1–11 shows a simple LAN configuration in which host A and host B
communicate using IPv6 with no router.

What Is IPv6? 1–13

What Is IPv6?
1.5 IPv6 Environment

Figure 1–11 Host-to-Host Configuration with No Router

VM-0626A-AI

Key:
IPv6 packets (native)

fe80::0a00:2bff:fee2:1e10 fe80::0a00:2bff:fee2:1e11

Host BHost A

Figure 1–12 shows a simple LAN configuration in which host A, host B, and
router A communicate using IPv6. Host A and host B obtain global addresses
from router A.

Figure 1–12 Host-to-Host Configuration with Router

VM-0627A-AI

Key:
IPv6 packets (native)

Host B

dec:1:1::0a00:2bff:fee2:1e10 dec:1:1::0a00:2bff:fee2:1e11
fe80::0a00:2bff:fee2:1e10 fe80::0a00:2bff:fee2:1e11

dec:1:1::0a00:2bff:fee2:1e12
fe80::0a00:2bff:fee2:1e12

Host A

Router
A

Figure 1–13 shows a configuration in which two IPv6 networks are connected
through an IPv6 router (router A).

1–14 What Is IPv6?

What Is IPv6?
1.5 IPv6 Environment

Figure 1–13 IPv6 Network to IPv6 Network with Router Configuration

VM-0628A-AI

Host A Host B

Host C Host D

Router
A

dec:1:2::/64

dec:1:1::/64

Figure 1–14 shows a configuration in which four IPv6 networks are connected
using three routers. The three routers exchange routing information with each
other using the RIPng protocol.

Figure 1–14 Multiple IPv6 Networks and Multiple Routers Configuration

VM-0629A-AI

Host A Host B

Host C Host D

Router
A

Host E Host F

Host G Host H

Router
C

Router
B

dec:1:3::/64dec:1:1::/64

dec:1:2::/64 dec:1:4::/64

Figure 1–15 shows a configuration in which host A and host B, connected to an
IPv4 network, communicate using IPv6 through an IPv4 tunnel.

What Is IPv6? 1–15

What Is IPv6?
1.5 IPv6 Environment

Figure 1–15 Host-to-Host Configuration over Tunnel

VM-0630A-AI

IPv4
Network

Key:
IPv6 packets in an IPv4 tunnel

v4/v6 v4/v6

1.2.3.4
fe80::1.2.3.4

5.6.7.8
fe80::5.6.7.8

Host BHost A

Figure 1–16 shows a configuration in which host X is connected to an IPv4
network. Router A, an IPv6 router, is connected to the same IPv4 network and
is also connected to two IPv6 networks. Host X communicates with host B using
IPv6 through an IPv4 tunnel between host X and router A.

Figure 1–16 Host-to-Router Configuration over Tunnel

VM-0631A-AI

IPv4
Network

Key:
IPv6 packets in an IPv4 tunnel
IPv6 packets (native)

fe80::1.2.3.4

1.2.3.4

fe80::5.6.7.8

5.6.7.8

dec:1:2::/64

dec:1:1::/64

dec:3:1::5.6.7.8
Host X

Host A

Host C

Host B

Host D

Router
A

Figure 1–17 shows a configuration in which four IPv6 networks are connected
through two routers and an IPv4 network. Host A communicates with host F
through an IPv4 tunnel between router A and router B.

1–16 What Is IPv6?

What Is IPv6?
1.5 IPv6 Environment

Figure 1–17 IPv6 Network-to-IPv6 Network Configuration over Tunnel

VM-0632A-AI

IPv4
Network

Host A Host B

Host C Host D

Key:
IPv6 packets in an IPv4 tunnel
IPv6 packets (native)

Router
A

fe80::1.2.3.4

1.2.3.4

fe80::5.6.7.8

5.6.7.8

Host E

Host G Host H

Router
B

dec:2:1::/64dec:1:1::/64

dec:1:2::/64 dec:2:2::/64

Host F

Figure 1–18 shows a configuration in which host E is connected to an IPv4
network. Router B, an IPv6 router, is connected to the same IPv4 network and
also is connected to two IPv6 networks. Host E communicates with host B using
a 6to4 tunnel between host E and router B.

What Is IPv6? 1–17

What Is IPv6?
1.5 IPv6 Environment

Figure 1–18 IPv6 Network-to-IPv6 Network Configuration over Tunnel

VM-1114A-AI

IPv4
Network

IPv6 only
Network

Host A Host B

Key:
IPv6 packets in an 6to4 tunnel
IPv6 packets (native)

Router
A

Host E Router
B

v4/v6

6to4 site

Host C Host D

1–18 What Is IPv6?

2
Configuring IPv6

After installing TCP/IP Services, you can configure your system to communicate
in an IPv6 network environment by performing the tasks described in this
chapter.

You can configure your node as either an IPv6 host or IPv6 router. You make this
choice while running the TCPIP$IP6_SETUP configuration utility. After you run
the configuration utility and restart TCP/IP Services, IPv6 processes associated
with your choices are started on your system.

2.1 IPv6 Processes
Your selection of configuring your node as either a host or a router starts one of
the following processes during TCP/IP startup:

• TCPIP$ND6HOST (host process)

• TCPIP$IP6RTRD (router process)

Caution

Do not run the TCPIP$ND6HOST and TCPIP$IP6RTRD processes on the
same node, since doing so might produce unpredictable results.

2.1.1 TCPIP$ND6HOST
The TCPIP$ND6HOST process receives and processes IPv6 router advertisement
(RA) packets of the neighbor discovery protocol. This enables a system to
autoconfigure itself without manual intervention.

The TCPIP$ND6HOST process performs the following functions, based on the
contents of IPv6 router advertisements it receives:

• Router discovery—Learns the IPv6 address of default routers and installs
default routes in the kernel routing table.

• On-link prefix discovery—Learns IPv6 on-link prefixes (ranges of IPv6
addresses that are directly reachable on a given link).

• Stateless address configuration—Automatically creates and deletes interface
addresses.

• Interface attribute configuration—Automatically configures datalink
attributes, such as hop limit, reachable time, retransmit time, and link
MTU.

Configuring IPv6 2–1

Configuring IPv6
2.1 IPv6 Processes

2.1.2 TCPIP$IP6RTRD Process
After you configure the system as an IPv6 router, the TCPIP$IP6RTRD process
sends out periodic router advertisements for the following reasons:

• To advertise itself as a potential default router for IPv6 traffic. The IPv6
hosts on the link receive these advertisements as part of their neighbor
discovery processing.

• To advertise an IPv6 address prefix, in which case hosts on the link perform
address autoconfiguration.

At startup, the TCPIP$IP6RTRD process reads its configuration file for startup
information. See Section 2.6.2 for more information on the router configuration
file.

2.2 Preparing for Configuration
Before you configure the network software, you must gather information about
your system and network environment. The Configuration Worksheet shown
in Figure 2–1 can help you assemble this information in an orderly fashion.
The following sections describe the information that you need to record on the
worksheet.

2–2 Configuring IPv6

Configuring IPv6
2.2 Preparing for Configuration

Figure 2–1 Configuration Worksheet

VM-0633A-AI

IPv6 Configuration

Address prefix:

Start IPv6: yes no

IPv6 router:
DNS/BIND automatic updates (hosts only):

6to4 tunnel:

yes no

yes no

yes no
IPv6 interfaces:

Destination prefix:

Next hop address:

RIPng: yes no

Manual routes: yes no

Configured tunnel: yes no

Manual Routes

Router Interface:

Address prefix:

RIPng: yes no

Interface:

Domain name:

Automatic tunnel: yes no

Source IPv4 address:
Destination IPv4 address:

Interface:

DNS/BIND

Configured Tunnel

Address prefix:

RIPng: yes no

Type: IPv4 IPv6

Interface:

Destination prefix:

 Host Address:

Address prefix (hosts only):
Site Prefix:

Relay router address:

Next hop address:
Interface:

1

2

6to4 Tunnel3

4

5

6

! IPv6 Configuration

• IPv6 router

If you want this system to function as an IPv6 router, check Yes;
otherwise, check No. If you check No, the system is configured as an IPv6
host.

Configuring IPv6 2–3

Configuring IPv6
2.2 Preparing for Configuration

An IPv6 router can advertise address prefixes to all hosts on connected
links (for example, a LAN and a configured tunnel) and can forward
packets to their destinations. Packets can be forwarded directly on link or
over IPv4 tunnels.

• DNS/BIND automatic updates (hosts only)

If you want this system to record its addresses in the DNS/BIND database
automatically, check Yes; otherwise, check No. If you check Yes, you must
configure your system as a DNS/BIND client and your DNS/BIND server
must support dynamic updates to the DNS database. See Chapter 3 for
information on configuring your DNS/BIND server.

• IPv6 interfaces

Enter the device names of the network interface to the IPv6 network. For
example, WE0 and WF0. If you are creating a configured tunnel only on
your system, enter None.

• 6to4 tunnel

If you want IPv6 to run over a 6to4 tunnel, check Yes; otherwise, check
No. A 6to4 tunnel has one source and one destination in an IPv4 network.

• Configured tunnel

If you want IPv6 to run over a configured IPv4 tunnel, check Yes;
otherwise, check No. A configured tunnel has one source and one
destination in an IPv4 network. You should use configured tunnels
instead of automatic tunnels. You can configure multiple configured
tunnels.

• Automatic tunnel

If you want to configure IPv6 to run over IPv4 automatic tunnels, check
Yes; otherwise, check No.

Note

Do not use automatic tunnels in production environments. Their use
might be deprecated in the future.

• Manual routes

If you want to configure manual routes to other systems, check Yes;
otherwise, check No.

On a router, you might want to configure manual routes if one of the
following conditions is true:

You want a configured tunnel and you are not advertising an address
prefix on the tunnel link.

You want a configured tunnel and the router at the other end of the
tunnel is not running the RIPng protocol.

Your system is not running the RIPng protocol.

On a host, you might want to configure manual routes if you want a
configured tunnel to a router and the router is not advertising itself as a
default router on the tunnel link.

2–4 Configuring IPv6

Configuring IPv6
2.2 Preparing for Configuration

• Start IPv6

If you want the IPv6 initialization script executed from the configuration
utility, check Yes. If you want the initialization script executed during the
next system boot, check No.

" DNS/BIND

• Domain name

The fully qualified domain name for your node. This consists of
the host name and the DNS/BIND domain name (for example,
host1.subdomain.example).

6to4 Tunnel

• Host address

Your node’s name or IP address (this end of the tunnel).

• Site prefix

The TCPIP$IP6_SETUP command procedure automatically generates a
48-bit 6to4 site prefix.

• Address prefix (hosts only)

If your system is an IPv6 host, enter a 64-bit 6to4 prefix to be configured
on the 6to4 tunnel interface. The upper 48 bits of the address prefix
must be identical to the site prefix generated by the TCPIP$IP6_SETUP
command procedure.

• Relay router address

If you want to communicate with an IPv6-only network, enter the 6to4
address of the relay router.

$ Configured Tunnel

• Type

The type of configured tunnel. Valid types are IPv4 and IPv6.

• Interface

The name of the configured tunnel interface. For example, IT0.

• Destination address

The remote node’s address (the remote end of the tunnel).

• Source address

Your node’s address (this end of the tunnel).

• RIPng

If your system is a router and you want the router to run the RIPng
protocol on the tunnel link to exchange IPv6 routing information with a
router at the remote end of the tunnel, check Yes; otherwise, check No.

• Address prefix

If your system is a router and you want to advertise address prefixes to
the node at the remote end of the tunnel, enter a 64-bit prefix; otherwise,
write Done. If your system is an IPv6 host and the router at the remote
end of the tunnel is not advertising an address prefix, enter a 64-bit prefix
to be configured on the tunnel interface.

Configuring IPv6 2–5

Configuring IPv6
2.2 Preparing for Configuration

% Router

• Interface

The name of the interface (LAN or configured tunnel) on which you want
to run the RIPng protocol or advertise an address prefix.

• RIPng

If you want the router to run the RIPng protocol on the specified interface
and to exchange IPv6 routing information with other routers on the link
(LAN or configured tunnel), check Yes; otherwise, check No.

• Address prefix

If you want to advertise address prefixes to all hosts on the link, enter a
64-bit prefix; otherwise, write Done. If you do not specify a 64-bit prefix,
the router will not advertise an address prefix. All hosts must obtain
their prefix information from another source.

Prefixes in IPv6 define a subnet and are typically configured on a router
for a specific link by the network administrator. The router advertises
this prefix to all nodes connected to that link, along with the length of
the prefix, whether the prefix is on link (that is, a neighbor), whether the
prefix can also be used for stateless address configuration, and the length
of time the prefix is valid.

& Manual Routes

• Destination prefix

The address prefix of a remote IPv6 network. The address prefix contains
a Classless Inter-Domain Routing (CIDR) style bit length, for example,
5F00::/8. If you want to use the default route, write Default.

• Interface

The name of the interface through which you are sending traffic to the
remote IPv6 network.

• Next hop address

The IPv6 address of the first router in the path to the destination prefix.
Write the link local address of the router. If the connection to the router
is over an IPv4 tunnel, write the link local IPv6 address of the remote
tunnel endpoint.

When you run the TCPIP$IP6_SETUP command procedure, it gathers
information from the system and prompts you for additional configuration
information. See Section 2.4 for more information on running the TCPIP$IP6_
SETUP command procedure.

2.3 IPv6 System Configuration Examples
This section shows how to use the configuration worksheet to assemble
information for selected configurations. Each example shows how individual
systems are configured. In some cases, additional options for you to consider are
provided.

Note

OpenVMS interface names must be in uppercase.

2–6 Configuring IPv6

Configuring IPv6
2.3 IPv6 System Configuration Examples

2.3.1 Simple Host-to-Host Configuration
In a simple host-to-host configuration (shown in Figure 1–11), host A and host
B use IPv6 link-local addresses. By default, the TCPIP$IP6_SETUP command
procedure configures the hosts automatically with a link-local address for your
system. Figure 2–2 shows the completed worksheet for host A.

Figure 2–2 Simple Host-to-Host Configuration

IPv6 Configuration

Start IPv6: yes no

IPv6 router: yes no

IPv6 interfaces:

Manual routes: yes no

Configured tunnel: yes no
Automatic tunnel: yes no

WE0

VM-0634A-AI

DNS/BIND automatic updates (hosts only):

6to4 tunnel: yes no

yes no

After you configure IPv6 on host A, add a link-local address for host B to the
TCPIP$ETC:IPNODES.DAT file. The configuration process for host B in this
configuration is similar to that for host A.

In this configuration, no global address prefix is advertised on the LAN. If you
want to advertise a global address prefix, you can either configure one of the
hosts as a router by using TCPIP$IP6_SETUP or add an IPv6 router to the LAN
configuration. An IPv6 router advertises a global prefix on the link.

You can use the netstat -in command to view a local node’s link-local and global
addresses.

The following TELNET command connects host A to host B using host B’s link-local
address:

$ TELNET fe80::0a00:2bff:fee2:1e11

Alternately, you can place the address and node name in the
TCPIP$ETC:IPNODES.DAT file. Then use the node name as the argument
to the TELNET command.

2.3.2 Host-to-Host with Router Configuration
In a host-to-host with router configuration (shown in Figure 1–12), host A and
host B are on a LAN with router A. In this case, router A advertises the global
address prefix dec:1:1::/64 on the LAN. Host A and host B use this address
prefix to create global IPv6 addresses. (See Chapter 1 for information about
obtaining experimental testing addresses.) Figure 2–3 shows the completed
worksheet for router A.

Configuring IPv6 2–7

Configuring IPv6
2.3 IPv6 System Configuration Examples

Figure 2–3 Host-to-Host with Router Configuration

IPv6 Configuration

Start IPv6: yes no

IPv6 router: yes no

IPv6 interfaces:

Manual routes: yes no

Configured tunnel: yes no
Automatic tunnel: yes no

Address prefix:

RIPng: yes no

Router Interface:

Address prefix:

RIPng: yes no

Interface:

VM-0635A-AI

WE0

WE0

dec:1:1::/64

DNS/BIND automatic updates (hosts only):

6to4 tunnel: yes no

yes no

After you configure IPv6 on router A, add the global addresses for the other hosts
to the TCPIP$ETC:IPNODES.DAT file. Repeat this step on host A and host B.
Alternatively, you could establish DNS/BIND in your network using the global
addresses.

2.3.3 IPv6 Network-to-IPv6 Network with Router Configuration
In an IPv6 network-to-IPv6 network with router configuration (shown in
Figure 1–13), two IPv6 networks are connected to each other through router
A and its two interfaces. Figure 2–4 shows the completed worksheet for router A.

2–8 Configuring IPv6

Configuring IPv6
2.3 IPv6 System Configuration Examples

Figure 2–4 IPv6 Network-to-IPv6 Network with Router Configuration

IPv6 Configuration

Start IPv6: yes no

IPv6 router: yes no

IPv6 interfaces:

Manual routes: yes no

Configured tunnel: yes no
Automatic tunnel: yes no

Address prefix:

RIPng: yes no

Router Interface:

Address prefix:

RIPng: yes no

Interface:

VM-0636A-AI

WE0

WE0

WE1

dec:1:1::/64

dec:1:2::/64

WE1

DNS/BIND automatic updates (hosts only):

6to4 tunnel: yes no

yes no

2.3.4 Multiple IPv6 Networks and Multiple Routers Configuration
In this example configuration (shown in Figure 1–14), four IPv6 networks are
connected to each other using three routers. In this configuration, the routers
must exchange routing information in order to learn the routes to other subnets
in the network. To accomplish this, each router must run the RIPng protocol.
Figure 2–5 shows the completed worksheet for router A.

Configuring IPv6 2–9

Configuring IPv6
2.3 IPv6 System Configuration Examples

Figure 2–5 Multiple IPv6 Networks and Multiple Routers Configuration

IPv6 Configuration

Start IPv6: yes no

IPv6 router: yes no

IPv6 interfaces:

Manual routes: yes no

Configured tunnel: yes no
Automatic tunnel: yes no

Address prefix:

RIPng: yes no

Router Interface:

Address prefix:

RIPng: yes no

Interface:

VM-0637A-AI

WE0

WE0

WE1

dec:1:1::/64

dec:1:2::/64

WE1

DNS/BIND automatic updates (hosts only):

6to4 tunnel: yes no

yes no

The completed worksheets for router B and C would be similar.

2.3.5 Host-to-Host over IPv4 Configured Tunnel Configuration
In a host-to-host over tunnel configuration (shown in Figure 1–15), two IPv6
systems communicate with each other over a configured tunnel through an IPv4
network and use IPv6 link-local addresses. Figure 2–6 shows the completed
worksheet for host A.

2–10 Configuring IPv6

Configuring IPv6
2.3 IPv6 System Configuration Examples

Figure 2–6 Host-to-Host over IPv4 Configured Tunnel Configuration

IT0
5.6.7.8
1.2.3.4

VM-0638A-AI

IPv6 Configuration

Start IPv6: yes no

IPv6 router: yes

IPv6 interfaces:

Manual routes: yes no

Configured tunnel: yes no
Automatic tunnel: yes no

Source IPv4 address:
Destination IPv4 address:

Interface:

Configured Tunnel

Address prefix:

RIPng: yes no

no

none
DNS/BIND automatic updates (hosts only):

6to4 tunnel: yes no

yes no

Type: IPv4 IPv6

After you configure IPv6 on host A, add the link-local address for host B to the
TCPIP$ETC:IPNODES.DAT file. The configuration process for host B in this
configuration is similar to that for host A.

With this configuration, no global address prefix is advertised on the tunnel. If
you want to advertise a global address prefix, you can configure one of the hosts
as a router by using TCPIP$IP6_SETUP. An IPv6 router advertises a global
prefix on the link.

To view a local node’s link-local and global addresses, use the netstat -in
command.

The following TELNET command connects host A to host B:

$ telnet fe80::5.6.7.8

Alternately, you can place the address and node name in the
TCPIP$ETC:IPNODES.DAT file. Then use the Node name as the argument
to the TELNET command.

2.3.6 Host-to-Router over IPv4 Configured Tunnel Configuration
In a host-to-router over tunnel configuration (shown in Figure 1–16), host X
communicates with host B over a configured tunnel through an IPv4 network;
both nodes use IPv6 addresses. The tunnel in this case is between host X and
router A. Figure 2–7 shows the completed worksheet for host X when router A
is advertising itself as the default router for the tunnel link and is advertising a
global address prefix on the tunnel link.

Configuring IPv6 2–11

Configuring IPv6
2.3 IPv6 System Configuration Examples

Figure 2–7 Host-to-Router over IPv4 Configured Tunnel Configuration

IT0
5.6.7.8
1.2.3.4

VM-0638A-AI

IPv6 Configuration

Start IPv6: yes no

IPv6 router: yes

IPv6 interfaces:

Manual routes: yes no

Configured tunnel: yes no
Automatic tunnel: yes no

Source IPv4 address:
Destination IPv4 address:

Interface:

Configured Tunnel

Address prefix:

RIPng: yes no

no

none
DNS/BIND automatic updates (hosts only):

6to4 tunnel: yes no

yes no

Type: IPv4 IPv6

If router A is not advertising a global address prefix on the tunnel link, the value
dec:3:1::/64 would be in the Address prefix field in the Configured Tunnel
section of the host X worksheet. If router A is not advertising itself as the default
router for the tunnel link, the information shown in Figure 2–8 would also be on
the host X worksheet:

Figure 2–8 Router Not Advertising a Global Address Prefix

VM-0640A-AI

Destination prefix:

Next hop address:

Manual Routes

Interface:

Manual routes: yes no

default
IT0
fe80::1.2.3.4

Figure 2–9 shows the completed worksheet for router A when router A is
advertising a global address prefix on the tunnel link.

2–12 Configuring IPv6

Configuring IPv6
2.3 IPv6 System Configuration Examples

Figure 2–9 Router Advertising a Global Address Prefix

IPv6 Configuration

Start IPv6: yes no

IPv6 router: yes no

IPv6 interfaces:

Manual routes: yes no

Configured tunnel: yes no
Automatic tunnel: yes no

Source IPv4 address:
Destination IPv4 address:

Interface:

Configured Tunnel

Address prefix:

RIPng: yes no

WE0 WE1

VM-0641A-AI

IT0
5.6.7.8
1.2.3.4

dec:3:1::/64

DNS/BIND automatic updates (hosts only):

6to4 tunnel: yes no

yes no

Type: IPv4 IPv6

If router A is not advertising a global prefix on the tunnel link, the information
shown in Figure 2–10 would be on the router A worksheet. Note the manual
route to host X. Instead of specifying a destination network prefix, you specify
the host route, dec:3:1::5.6.7.8, to host X. The next hop is the link-local IPv6
address of host X’s tunnel interface, fe80::5.6.7.8.

Figure 2–10 Router A Not Advertising a Global Prefix on the Tunnel Link

VM-0639A-AI

Destination prefix:

Next hop address:

Manual Routes

Interface:

Manual routes: yes no

dec:3:1::5.6.7.8
IT0
fe80::5.6.7.8

2.3.7 IPv6 Network to IPv6 Network over IPv4 Configured Tunnel Configuration
In an IPv6 to IPv6 network over tunnel configuration (shown in Figure 1–17),
host A communicates with host F over a configured tunnel through an IPv4
network. The host configuration is similar to that of host A Section 2.3.1. All
hosts automatically use their default router in order to communicate with hosts
on other networks. Figure 2–11 shows the worksheet for router A.

Configuring IPv6 2–13

Configuring IPv6
2.3 IPv6 System Configuration Examples

Figure 2–11 IPv6 Network to IPv6 Network over IPv4 Configured Tunnel
Configuration

WE0

IT0
5.6.7.8
1.2.3.4

WE1

VM-0642A-AI

IPv6 Configuration

Address prefix:

Start IPv6: yes no

IPv6 router: yes no

IPv6 interfaces:

RIPng: yes no

Manual routes: yes no

Configured tunnel: yes no

Router Interface:

Address prefix:

RIPng: yes no

Interface:

Automatic tunnel: yes no

Source IPv4 address:
Destination IPv4 address:

Interface:

Configured Tunnel

Address prefix:

RIPng: yes no

WE0

WE1

dec:1:1::/64

dec:1:2::/64

DNS/BIND automatic updates (hosts only):

6to4 tunnel: yes no

yes no

Type: IPv4 IPv6

You do not have to run RIPng on the WE0 and WE1 interfaces because no routers
are attached to the interfaces.

The configuration of router B is similar, except that the source and destination
addresses for the configured tunnel would be switched and the address prefixes
advertised on WE0 and WE1 would be dec:2:1::/64 and dec:2:2::/64,
respectively.

Note

If the routers were not configured to use RIPng over the tunnel interface,
each router would need to specify a manual route to the other.

2–14 Configuring IPv6

Configuring IPv6
2.3 IPv6 System Configuration Examples

2.3.8 6to4 Tunnel Configuration
In a 6to4 tunnel configuration (shown in Figure 1–18), host E is the only node
in a 6to4 site. It communicates with host B over a 6to4 tunnel through an IPv4
network: both nodes use IPv6 6to4 addresses. The tunnel in this case is betwen
host E and router B. IPv6 is not configured on the host E physical interface
because it is connected to an IPv4 network. IPv6, however, is configured on the
6to4 tunnel. Figure 2–12 shows the worksheet for host E.

Figure 2–12 6to4 Tunnel Host E Configuration

VM-1115A-AI

IPv6 Configuration

Source IPv4 address:

Address prefix:

Start IPv6: yes no

IPv6 router:
DNS/BIND automatic updates (hosts only):

6to4 tunnel:

yes no

yes no

yes no

IPv6 interfaces:

Destination IPv4 address:

Manual routes: yes no

Configured tunnel: yes no

Configured Tunnel
Interface:

Automatic tunnel: yes no

 Host Address:

Address prefix (hosts only):
Site Prefix:

Relay router address:

6to4 Tunnel
5.6.7.8

2002:506:708::/48

2002:90a:b0c:1::1

2002:506:708::/64

Router B is the border router for another 6to4 site, and is also the IPv6 router for
that site. Router B is advertising a 6to4 prefix on each subnet. The upper 48 bits
of each 6to4 prefix are identical to the 6to4 site prefix. Figure 2–13 shows the
worksheet for router B.

Configuring IPv6 2–15

Configuring IPv6
2.3 IPv6 System Configuration Examples

Figure 2–13 6to4 Tunnel Router Configuration

VM-1112A-AI

IPv6 Configuration

Address prefix:

Start IPv6: yes no

IPv6 router:
DNS/BIND automatic updates (hosts only):

6to4 tunnel:

yes no

yes no

yes no
IPv6 interfaces:

RIPng: yes no

Manual routes: yes no

Configured tunnel: yes no

Router Interface:

Address prefix:

RIPng: yes no

Interface:

Automatic tunnel: yes no

 Host Address:

Address prefix (hosts only):
Site Prefix:

Relay router address:

6to4 Tunnel

WE0

1.2.3.4
2002:102:304::/48

2002:102:304:1::/64

2002:102:304:2::/64

2002:90a:b0c:1::1

WE1

WE2

WE1 WE2

Figure 2–14 shows the worksheet for host B. Because router B is advertising a
6to4 address prefix on the subnet, host B autoconfigures its own 6to4 address as
part of its participation in the site; it does not need to configure any 6to4 tunnel
interfaces.

Figure 2–14 6to4 Tunnel Host B Configuration

VM-1113A-AI

IPv6 Configuration

Start IPv6: yes no

IPv6 router:
DNS/BIND automatic updates (hosts only):

6to4 tunnel:

yes no

yes no

yes no

IPv6 interfaces:

Manual routes: yes no

Configured tunnel: yes no
Automatic tunnel: yes no

2–16 Configuring IPv6

Configuring IPv6
2.4 Configuring IPv6

2.4 Configuring IPv6
You can configure your system as either an IPv6 host or an IPv6 router. In either
case, you perform the following steps:

1. Configure your IPv4 stack through the menu-driven TCPIP$CONFIG
configuration procedure. This procedure is described in the HP TCP/IP
Services for OpenVMS Installation and Configuration manual.

Note

Add the following line to your LOGIN.COM file:

$ @SYS$MANAGER:TCPIP$DEFINE_COMMANDS.COM

This command procedure defines the UNIX management utilities as
foreign commands. Rerun your LOGIN.COM to make the definitions
effective for the current process.

2. Run the TCPIP$IP6_SETUP command procedure, described in Section 2.5
and Section 2.6, to configure your system as an IPv6 host or router.

3. Shut down TCP/IP Services and then restart it to enable IPv6.

4. Perform additional configuration tasks depending on whether you’ve
configured your system as a host or router.

Once you have completed configuring your system as either an IPv6 host or
router, you can optionally configure your system as a BIND server (described
in Chapter 3) or as a correspondent node to support mobile IPv6, described in
Chapter 5.

You may want to make other changes to your IPv6 configuration after initial
setup. Chapter 4 describes how to make further changes.

2.5 Configuring an IPv6 Host
Before running the TCPIP$IP6_SETUP command procedure, make sure that you
have configured your system for IPv4 by running TCPIP$CONFIG.

2.5.1 Run TCPIP$IP6_SETUP to Configure Host
To configure your system as an IPv6 host, do the following:

1. Invoke the TCPIP$IP6_SETUP command procedure by entering the following
command:

$ @SYS$MANAGER:TCPIP$IP6_SETUP

The utility displays information about the IPv6 network configuration
procedure and tells you that you can configure the system as either an IPv6
host or an IPv6 router.

2. Choose to configure the system as an IPv6 host by responding to the following
prompt:

Configure this system as an IPv6 router? [NO]:

Press Return to configure the system as an IPv6 host.

Configuring IPv6 2–17

Configuring IPv6
2.5 Configuring an IPv6 Host

3. Indicate whether you want to configure a 6to4 interface:

Configure a 6to4 interface? [NO]:

A 6to4 interface is needed only if the node is an isolated host with no
connection to an IPv6 network.

Press Return if you do not want to configure a 6to4 interface. The procedure
goes to step 8.

Enter Y and press Return, if you want to configure a 6to4 interface. You’ll be
prompted to enter information about the interface in subsequent steps.

4. Enter the node’s IPv4 address in response to the following prompt:

Enter this node’s IPv4 address:

When you enter your node’s IPv4 address and press Return, an IPv6 address
prefix is automatically generated and displayed.

5. You are prompted to enter the address prefix for the 6to4 tunnel:

Enter the address prefix to use on TNn:

Press Return to enter the IPv6 address prefix generated in the previous step.

6. Indicate whether you want this node to connect to native IPv6 sites:

Connectivity to native IPv6 sites? [NO]:

A relay router is needed to connect your system to native IPv6 sites. If a
relay router is not specified, your system can connect to other 6to4 sites but
not to native IPv6 sites.

If you do not want your system to connect to native IPv6 sites, press Return.
The procedure goes to step 8.

If you want your system to connect to native IPv6 sites, enter Y and press
Return.

7. Indicate the address of a relay router:

Enter 6to4 address of a 6to4 Relay Router [2002:C058:6301::]:

The address of the default relay router is displayed. Press Return to use the
default, or enter another 6to4 relay router address, and then press Return.
The procedure goes to step 8.

8. Answer the prompts about configuring each interface on your system. The
procedure displays the following questions:

Do you want to enable IPv6 on this interface?

Enable IPv6 on interface WE0? [YES]:

Press Return if you want to enable IPv6 on this interface; enter N if you do
not.

If your system has multiple interfaces, the procedure repeats this questions
for each interface.

2–18 Configuring IPv6

Configuring IPv6
2.5 Configuring an IPv6 Host

9. Indicate whether you want to configure an automatic tunnel by responding to
the following prompt:

Configure an IPv6 over IPv4 automatic tunnel interface? [NO]:

If you want to configure an automatic tunnel, enter Y and press Return; if
not, press Return.

10. Indicate whether you want to create a configured tunnel or additional
configured tunnels by responding to the following prompt:

Create a configured tunnel? [NO]:

If you want to create a configured tunnel, enter Y and press Return. You will
be prompted for source and destination addresses in steps 11 and 12.

If you do not want to create a configured tunnel or if you have finished adding
a series of configured tunnels, press Return. The procedure goes to step 14.

11. If you chose to create a configured tunnel, enter the tunnel’s source IPv4
address in response to the following prompt:

Source IPv4 address of tunnel IT0?:

Enter an IPv4 address in the standard format (xx.xx.xx.xx) and press
Return.

12. Enter the tunnel’s destination IPv4 address in response to the following
prompt:

Destination IPv4 address of tunnel IT0?:

Enter an IPv4 address in the following format (xx.xx.xx.xx) and press
Return.

13. Indicate whether you want to create another configured tunnel by responding
to the following prompt:

Create another configured tunnel? [NO]

If you want to create another configured tunnel, enter Y and press Return.
The procedure takes you back to steps 10 through 12 for each additional
configured tunnel you choose to create.

If you do not want to create another configured tunnel, press Return.

14. The procedure asks whether you want to create a host configuration file based
on the choices you have made.

Create IPv6 Host configuration file?

Please enter YES or NO [YES]:

If you are not satisfied with the configuration, enter N and press Return. The
utility ends immediately without changing any of the current configuration
files.

If you are satisfied with the configuration, enter Y and press Return. The
TCPIP$IP6_SETUP command procedure creates a configuration file called
SYS$SYSTEM:TCPIP$INET6_CONFIG.DAT. When you restart TCP/IP
Services, a process called TCPIP$ND6HOST will be started automatically.

Configuring IPv6 2–19

Configuring IPv6
2.5 Configuring an IPv6 Host

2.5.2 DNS Domain Name and Address Registration
After you shut down TCP/IP Services and before you restart it, you can use the
TCPIP$ND6HOST process to register the host’s domain name and address in the
DNS.

The TCPIP$ND6HOST process receives and processes IPv6 router advertisement
(RA) packets of the neighbor discovery protocol. This enables a system to
autoconfigure itself without manual intervention. With this version of TCP/IP
Services, you can also enable DNS registration.

To enable host name and address registration, enter the following command:

$ DEFINE /SYSTEM TCPIP$ND6D_ENABLE_DDNS 1

The domain name to be registered is obtained using the gethostname() call.

To update the zone, TCPIP$ND6HOST sends dynamic updates to the primary
master name server. To determine the master name server, a query for the
zone’s SOA record is sent to the name server specified in the DNS resolver
configuration. To display this information, use the TCP/IP management command
SHOW NAME. The name of the primary master server is stored in the SOA
MNAME field.

To make use of this feature, you must enable dynamic updates. By default,
dynamic updates are rejected by DNS servers. For information about allowing
dynamic updates, see the BIND Chapter of the HP TCP/IP Services for OpenVMS
Management guide.

2.6 Configuring an IPv6 Router
Before running the TCPIP$IP6_SETUP command procedure, make sure that you
have configured your system for IPv4 by running TCPIP$CONFIG.

You must also enable forwarding by setting the ipv6forwarding and ipv6router
attributes of the kernel inet subsystem to 1. You set these attributes temporarily
by entering the following sysconfig commands:

$ sysconfig -r inet ipv6forwarding=1
$ sysconfig -r inet ipv6router=1

See the HP TCP/IP Services for OpenVMS Tuning and Troubleshooting manual
to modify these attributes permanently.

2.6.1 Running TCPIP$IP6_SETUP to Configure Router
To configure your system as an IPv6 router, do the following:

1. Invoke the TCPIP$IP6_SETUP command procedure by entering the following
command:

$ @SYS$MANAGER:TCPIP$IP6_SETUP

The utility displays information about the IPv6 network configuration
procedure and tells you that you can configure the system as either an IPv6
host or an IPv6 router.

2. Choose to configure the system as an IPv6 router by responding to the
following prompt:

Configure this system as an IPv6 router? [NO]:

2–20 Configuring IPv6

Configuring IPv6
2.6 Configuring an IPv6 Router

If you want to configure the system as an IPv6 router, enter Y and press
Return.

3. Indicate whether you want this system to function as a 6to4 border router:

Configure this system as a 6to4 Border IPv6 router? [NO]:

To operate as a 6to4 border router, the IPv6 site to which this system is
attached must have at least one valid, globally unique IPv4 address and
must be configured on a network segment attacheded to the wide-area IPv4
network.

If you do not want the system to function as a 6to4 border router, press
Return. The procedure goes to step 8.

If you want the system to function as a 6to4 border router, enter Y and press
Return.

4. Indicate whether you want to configure a 6to4 interface on the border router
system:

Configure a 6to4 interface? [NO]:

To communicate with other 6to4 sites over an IPv4 wide-area network without
tunneling or to communicate with native IPv6 sites using 6to4 relay routers,
you need to configure a 6to4 interface.

If you do not want to configure a 6to4 interface, press Return. The procedure
goes to step 8. If you want to configure a 6to4 interface, enter Y and press
Return. You’ll be prompted for further information in subsequent steps.

5. Enter this node’s IPv4 address:

Enter this node’s IPv4 address:

Enter the IPv4 address for your system and press Return. A 6to4 site prefix
is automatically generated and displayed.

6. Indicate whether you want the system to have connectivity to native IPv6
sites:

Connectivity to native IPv6 sites? [NO]:

A relay router is needed to connect your system to native IPv6 sites. If a
relay router is not specified, your system can connect to other 6to4 sites but
not to native IPv6 sites.

If you do not want your system to connect to native IPv6 sites, press Return.
The procedure goes to step 8.

If you want your system to connect to native IPv6 sites, enter Y and press
Return.

7. Indicate the address of a relay router:

Enter 6to4 address of a 6to4 Relay Router [2002:C058:6301::]:

Press Return to use the default relay router anycast address. Or enter
another 6to4 relay router address, then press Return. The procedure goes to
step 8.

Configuring IPv6 2–21

Configuring IPv6
2.6 Configuring an IPv6 Router

8. Answer the prompts about configuring each interface on your system. The
procedure displays the following questions:

Do you want to enable IPv6 on this interface?

Enable IPv6 on interface WE0? [YES]:

Press Return if you want to enable IPv6 on this interface; enter N if you do
not.

9. Answer the prompts about enabling IPv6 routing on each interface on your
system. The procedure displays the following questions:

Do you want to enable IPv6 routing on this interface?

Enable IPv6 routing on interface WE0? [YES]:

Press Return if you want to enable IPv6 routing on this interface; enter N if
you do not.

10. Indicate whether you want the router to run the RIPng protocol on the
designated interface by responding to the following prompt:

Enable RIPng on interface WE0? [YES]:

If you want the router to run the RIPng protocol, press Return; enter N and
press Return if you do not.

11. Indicate whether you want the router to advertise an IPv6 address prefix for
the LAN on the designated interface, by responding to the following prompt:

Address prefix to advertise on interface WE0?:

If you want the router to advertise an IPv6 address prefix, enter a 64-bit
address prefix for the interface and press Return. The procedure repeats the
same prompt. You can enter as many additional prefixes as you want for the
interface. When you are finished, enter Done and press Return.

If you do not want the router to advertise an IPv6 address prefix on the
designated interface, enter Done and press Return.

If there are additional interfaces on your system, the procedure returns to
steps 8 through 11 for each interface. Once you have configured all interfaces,
the procedure goes to step 12.

12. Indicate whether you want to configure an automatic tunnel by responding to
the following prompt:

Configure an IPv6 over IPv4 automatic tunnel interface? [NO]:

If you want to configure an automatic tunnel, enter Y and press Return; if
not, press Return.

13. Indicate whether you want to create a configured tunnel or additional
configured tunnels by responding to the following prompt:

Create a configured tunnel? [NO]:

If you want to create a configured tunnel, enter Y and press Return. You will
be prompted for source and destination addresses in steps 14 and 15.

If you do not want to create a configured tunnel or if you have finished adding
a series of configured tunnels, press Return. The procedure goes to step 20.

2–22 Configuring IPv6

Configuring IPv6
2.6 Configuring an IPv6 Router

14. If you chose to create a configured tunnel, enter the tunnel’s source IPv4
address in response to the following prompt:

Source IPv4 address of tunnel IT0?:

Enter an IPv4 address in the standard format (xx.xx.xx.xx) and press
Return.

15. Enter the tunnel’s destination IPv4 address in response to the following
prompt:

Destination IPv4 address of tunnel IT0?:

Enter an IPv4 address in the following format (xx.xx.xx.xx) and press
Return.

16. Indicate whether you want to enable IPv6 routing on the interface by
reponding to the following prompt:

Enable IPv6 routing on interface IT0? [YES]:

If you want to enable IPv6 routing on the interface, press Return; if not, enter
N and press Return.

17. Indicate whether you want to enable RIPng on the interface by responding to
the following prompt:

Enable RIPng on interface IT0? [YES]:

Press Return if you want to enable RIPng protocol on this interface; enter N
and press Return if you do not.

18. Indicate whether you want the host to use an IPv6 address prefix on the
tunnel interface by responding to the following prompt:

Address prefix to advertise on interface IT0?:

If you want the host to use an IPv6 address prefix because a router is not
advertising a global address prefix, enter the prefix and press Return. Enter
as many prefixes as you want. When you are finished entering prefixes for
the interface, enter Done and press Return.

If you do not want the host to use an IPv6 address prefix on the tunnel
interface, enter Done and press Return.

19. Indicate whether you want to create another configured tunnel by responding
to the following prompt:

Create another configured tunnel? [NO]:

If you want to create another configured tunnel, enter Y and press Return.
The procedure returns to step 13.

If you do not want to create another configured tunnel, press Return.

20. The TCPIP$IP6_SETUP command procedure displays the configuration
information and asks you to indicate whether you want to update the current
startup procedures with the new configuration information.

Create IPv6 Router configuration files?

Please enter YES or NO [YES]:

Configuring IPv6 2–23

Configuring IPv6
2.6 Configuring an IPv6 Router

If you are not satisfied with the configuration, enter N and press Return. The
utility ends immediately without changing any of the current configuration
files.

If you are satisfied with the configuration, enter Y and press Return. The
TCPIP$IP6_SETUP command procedure creates a configuration file called
SYS$SYSTEM:TCPIP$INET6_CONFIG.DAT and a router configuration file
called SYS$SYSTEM:TCPIP$IP6RTRD.CONF, both with default values.
When you restart HP TCP/IP Services for OpenVMS, the TCIPI$IP6RTRD
process starts automatically.

2.6.2 TCPIP$IP6RTRD.CONF Configuration File
At startup, the TCPIP$IP6RTRD process reads the TCPIP$IP6RTRD.CONF file
to obtain data needed to send router advertisement and RIPng messages. The
TCPIP$IP6RTRD.CONF file is created when TCPIP$IP6_SETUP is run, if the
system is configured as a router. Initially, the link interface and advertised prefix
are inserted, and other default values are used.

The TCPIP$IP6RTRD.CONF file consists of structured information for each
interface in the following format:

interface interface-name {
interface keyword-value pairs, one per line
Prefix prefix/length {

prefix keyword-value pairs, one per line
}

}

Comments begin with the pound sign (#) and continue to the end of the line.
Accepted and default values for the interface keywords and prefix keywords are
listed in Section 2.6.2.1 and Section 2.6.2.2. Section 2.6.2.3 contains a sample
configuration file.

2.6.2.1 Interface Keyword Information for TCPIP$IP6RTRD.CONF
The following basic keywords are defined in RFC 2461 for IPv6 operation:

• AdvCurHopLimit

Specifies the value to be placed in the Cur Hop Limit field in the Router
Advertisement messages sent by the router. The value 0 (zero) means
unspecified (by this router). Valid values are any nonnegative integer. The
default is 64.

• AdvDefaultLifetime

Specifies a time, in seconds, that is placed in the Router Lifetime field in the
router advertisement. Valid values are between 0 or MaxRtrAdvInterval and
9000, inclusive. The default is 1800 seconds.

• AdvLinkMTU

Specifies a nonnegative integer value to be placed in MTU options sent by the
router. The default is 0.

• AdvManagedFlag

Enables (1) or disables (0) the setting of a flag in the "Managed address
configuration" flag field in the router advertisement. The default is 0.

2–24 Configuring IPv6

Configuring IPv6
2.6 Configuring an IPv6 Router

• AdvOtherConfigFlag

Enables (1) or disables (0) the setting of a flag in the "Other stateful
configuration" flag field in the router advertisement. The default is 0.

• AdvReachableTime

Specifies a time, in milliseconds, that is placed in the Reachable Time field in
router advertisement messages. Valid values are between 0 and 3,600,000 (1
hour), inclusive. The default is 0 milliseconds.

• AdvRetransTimer

Specifies a nonnegative integer value to be placed in the Retrans Timer field
in the router advertisement. The default is 0 (zero).

• AdvSendAdvertisements

Enables (yes) or disables (no) the sending of periodic Router Advertisements
and responding to Router Solicitations. The default is yes.

• MaxRtrAdvInterval

Specifies the maximum time, in seconds, between sending unsolicited
multicast router advertisements from the interface. Valid values are between
4 and 1800 seconds, inclusive. The default is 600 seconds.

• MinRtrAdvInterval

Specifies the minimum time, in seconds, between sending unsolicited
multicast router advertisements from the interface. Valid values are between
3 and .75 * MaxRtrAdvInterval. The default is 200 seconds.

The following additional interface keywords are accepted:

• AdvSendLinkLayerAddress

Enables (yes) or disables (no) the sending of the interface link-layer address
option in outgoing router advertisements. The default is yes.

• AdvSendSiteLocal

Enables (yes) or disables (no) the sending of site local prefixes in outgoing
router advertisements. The default is no.

• PoisonReverse

Enables (1) or disables (0) the Poisoned Reverse algorithm as specified in RFC
2080. The default is 1.

• ripng

Enables (yes) or disables (no) participation in RIPng on the interface. If
enabled, RIPng updates are sent on the interface, and received RIPng updates
are processed as defined in RFC 2080. You cannot specify yes for automatic
tunnels (the tun0 interface). The default is yes (except for tun0).

• SplitHorizon

Enables (1) or disables (0) the Split Horizon algorithm as specified in RFC
2080. The default is 1.

Configuring IPv6 2–25

Configuring IPv6
2.6 Configuring an IPv6 Router

2.6.2.2 Address-Prefix Keyword Information for TCPIP$IP6RTRD.CONF
Each address prefix to be configured on the interface must be defined within a
prefix block that begins with the keyword Prefix followed by the prefix and length
(separated by a slash [/] and optionally followed by an additional address-prefix
information block of keyword-value pairs).

The following address prefix keywords and values are defined in RFC 2461:

• AdvAutonomousFlag

Enables (1) or disables (0) the setting of the Autonomous Flag field in the
Prefix Information option. The default is 1.

• AdvOnLinkFlag

Enables (1) or disables (0) the setting of the on-link flag field in outgoing
router advertisements. The default is 1.

• AdvPreferredLifetime

Specifies the preferred lifetime of the address prefix, in seconds, to be placed
in outgoing router advertisements. The default is 604800 seconds, or 7 days.

• AdvValidLifetime

Specifies the valid lifetime of the address prefix, in seconds, to be placed in
outgoing router advertisements. The default is 2592000 seconds, or 30 days.

The following address prefix keywords and values are defined in RFC 2080:

• RouteMetric

Specifies a value that represents the total cost of getting a datagram from the
router to a destination. Valid values are between 1 and 16, inclusive. The
default is 1.

• RouteTag

Specifies a integer that is assigned to a route and must be preserved and
readvertised with a route. The default is 0.

In addition, you can specify the following address-prefix keywords:

• ConfigureThisPrefix

The TCPIP$IP6RTRD process will configure the advertised prefix on
the interface if ConfigureThisPrefix is specified and set to 1, or if
ConfigureThisPrefix is not specified and AdvAutonomousFlag is set to 1.

The prefix is not autoconfigured in all other cases. Valid values are 0 and 1.
The default value is the value of AdvAutonomousFlag.

• Gateway

Specifies an IPv6 address to use as an off-link route to a gateway. You can
use this mechanism to set up default routes.

• SendInAdvertisement

Enables (yes) or disables (no) the sending of the address prefix in routine
advertisements. The default is yes.

Each address to be configured on the interface must be defined within a address
block that begins with the keyword Address followed by the IPv6 address and
optionally followed by an additional address information block of keyword-value
pairs. The address value is the 128-bit IPv6 address, as follows:

2–26 Configuring IPv6

Configuring IPv6
2.6 Configuring an IPv6 Router

x:x:x:x:x:x:x:x

In this format, each x is the hexadecimal value of a 16-bit piece of the address.
An IPv6 address typically consists of a 64-bit prefix followed by a 64-bit interface
identifier.

You can specify the following address keywords and values:

• Anycast

Configures (yes) or unconfigures (no) the specified address as an anycast
address. The default is no.

• ConfigureThisAddress

Configures (yes) or unconfigures (no) the specified address on the interface.
The default is yes.

• Gateway

Specifies an IPv6 address to use as an off-link route to a host. You can use
this mechanism to set up host routes.

The following address keywords and values are defined in RFC 2080:

• RouteMetric

Specifies a value that represents the total cost of getting a datagram from the
router to a destination. Valid values are between 1 and 16, inclusive. The
default is 1.

• RouteTag

Specifies a integer that is assigned to a route and must be preserved and
readvertised with a route. The default is 0.

For related information, see the following RFCs:

• RFC 2461, Neighbor Discovery for IP version 6 (IPv6), Narten, T.; Nordmark,
E., Simpson W. A., December 1998

• RFC 2462, IPv6 Stateless Address Autoconfiguration, Thompson, S.; Narten,
T., December 1998

• RFC 2080, RIPng for IPv6, Malkin, G., Minnear, R., January 1997

2.6.2.3 Editing the Router Configuration File
The SYS$SYSTEM:TCPIP$IP6RTRD.CONF file contains the configuration
data needed to send router advertisement messages. This file is created when
TCPIP$IP6_SETUP is run (if the system is configured as a router). The link
interface and advertised prefix are inserted, and other default values are used.

You can modify this file as appropriate for your network, for example, when using
multiple prefix values. Example 2–1 shows a sample configuration file.

Configuring IPv6 2–27

Configuring IPv6
2.6 Configuring an IPv6 Router

Example 2–1 Sample TCPIP$IP6RTRD.CONF File

#
Sample ip6rtrd configuration file
#
interface WE0 {

MaxRtrAdvInterval 600
MinRtrAdvInterval 200
AdvManagedFlag 0
AdvOtherConfigFlag 0
AdvLinkMTU 1500
AdvReachableTime 0
AdvRetransTimer 0
AdvMaxHopLimit 64
AdvDefaultLifetime 1800
Prefix dec:1::/64 {

AdvValidLifetime 1200
AdvPreferredLifetime 600
AdvOnLinkFlag 1
AdvAutonomousFlag 1

}
}

2–28 Configuring IPv6

3
Configuring BIND

The information in this chapter is for experienced DNS/BIND administrators. See
the HP TCP/IP Services for OpenVMS Management manual for more information
on BIND.

3.1 IPv6 Support in BIND Version 9
BIND supports all forms of IPv6 name-to-address and address-to-name lookups.
It can also accept queries over an IPv6 (AF_INET6) connection and use IPv6
addresses to make queries when running on an IPv6-capable system.

Note

The BIND resolver has not yet been ported to communicate over IPv6
connections. Using getaddrinfo() and getnameinfo() calls, IPv6
applications are able to retrieve IPv6 address information contained in
AAAA and PTR records over an IPv4 transport until the BIND resolver is
ported to IPv6.

3.1.1 Address lookups Using AAAA records
For name-to-address lookups, using AAAA records is recommended because A6
records have been moved to experimental status. Like most stub resolvers, the
resolver in TCP/IP Services supports only AAAA lookups because of the difficulty
in following A6 chains. The AAAA record for IPv6 is analogous to the A record
for IPv4. It specifies an entire address in a single record. For example,

$ORIGIN ipv6.my.zone.

host1 IN AAAA 5f00:0000:0102:0300:0203:0800:2b0a:0b0c

3.1.2 Name Lookups Using Nibble Format
For address-to-name lookups, the nibble format is recommended because use of
the bitstring format has been moved to experimental status. Use of the ip6.arpa
IPv6 reverse mapping zone defined in RFC 3152 is recommended because the
ip6.int IPv6 address space defined in RFC 1886 has been deprecated and will
likely be phased out in the future.

As in IPv4, when looking up an address in nibble format, the address components
are simply reversed and ip6.arpa. is appended to the resulting name. For
example, the following would provide reverse lookup for a host with the address
5f00:0000:0102:0300:0203:0800:2b0d:0e0f:

$ORIGIN 3.0.2.0.0.0.3.0.2.0.1.0.0.0.0.0.0.0.f.5.ip6.arpa.

f.0.e.0.d.0.b.2.0.0.8.0 IN PTR host2.ipv6.my.zone.

Configuring BIND 3–1

Configuring BIND
3.1 IPv6 Support in BIND Version 9

3.1.3 Using DNAME To Rename ip6.int
The deprecation of the ip6.int IPv6 reverse mapping zone has resulted in an
issue for existing clients that will continue to search the ip6.int name space
for PTR resource records. Administrators will need to continue to provide PTR
data under both of these zones to be compatible with both old and new clients.
There is a convenient method using DNAME resource records that can ease
administration of this data. The DNAME resource record is used to substitute
one suffix of a domain name with another. In this case it will substitute your
ip6.int zone suffix with the equivalent ip6.arpa zone suffix. For example, the
following DNAME resource record accomplishes the substitution:

$ORIGIN 3.0.2.0.0.0.3.0.2.0.1.0.0.0.0.0.0.0.f.5.ip6.int.

DNAME 3.0.2.0.0.0.3.0.2.0.1.0.0.0.0.0.0.0.f.5.ip6.arpa.

This approach will work for any point in the name space as long as all
authoritative servers for the PTR zone fully implement DNAME resource record
behavior as specified in RFC 2672. This includes BIND9 servers but excludes
BIND8 servers.

3.1.4 Enabling IPv6 Interfaces
For IPv6, the BIND server does not bind a separate socket to each interface
address as it does for IPv4. Instead, it listens on the IPv6 wildcard address,
which is not enabled by default. You must use the listen-on-v6 option to specify
the ports on which the server will listen for incoming queries sent using IPv6. To
enable the BIND server to answer IPv6 queries, you must specify the port in the
options statement of the BIND server configuration file. The only values allowed
for the option are { any; } and { none; }. For example, to listen on the default port
53 specify the following:

listen-on-v6 { any; };

To listen on port 1234, specify the following:

listen-on-v6 port 1234 { any; };

If you do not specify the listen-on-v6 option, the BIND server will not listen on
any IPv6 interfaces.

3.2 Sample BIND Configuration Files
The SYS$COMMON:[SYSHLP.EXAMPLES.TCPIP.IPV6.BIND] directory contains
DNS configuration and data files that show sample IPv6 information for you to
study and adapt to your environment.

Example 3–1 shows a sample BIND Server configuration file. This file is the
mechanism used by BIND for pointing the server to its zone data files.

3–2 Configuring BIND

Configuring BIND
3.2 Sample BIND Configuration Files

Example 3–1 Sample TCPIP$BIND.CONF_IPV6

#
File name: TCPIP$BIND.CONF_IPV6
Product: hp TCP/IP Services for OpenVMS
Version: V5.4-00
#
© Copyright 1976, 2003 Hewlett-Packard Development Company, L.P.
#

#
Example IPv6 BIND server configuration
#

options {
directory "sys$specific:[tcpip$bind]";
#
(listen-on-v6 is for BIND 9 and later)
Unless this option is specified, the server
does not listen on any IPv6 addresses.
Use: listen-on-v6 { any; };
#

};

zone "ipv6.my.zone" {
type master;
file "ipv6.db";
};

zone "3.0.2.0.0.0.3.0.2.0.1.0.0.0.0.0.0.0.f.5.IP6.ARPA" {
type master;
file "ipv6.arpa";
};

zone "3.0.2.0.0.0.3.0.2.0.1.0.0.0.0.0.0.0.f.5.IP6.INT" {
type master;
file "ipv6.int";
};

zone "0.0.127.in-addr.arpa" {
type master;
file "127_0_0.db";
};

zone "localhost" in {
type master;
file "localhost.db";

};

zone "." {
type hint;
file "root.hint";

};

Example 3–2 shows the forward mapping data file for the ipv6.my.zone zone.
Note that both AAAA resource records (IPv6) and A resource records (IPv4) can
be included in a zone. Administrators may wish to delegate a separate zone
containing only IPv6 resource records for convenience.

Configuring BIND 3–3

Configuring BIND
3.2 Sample BIND Configuration Files

Example 3–2 Sample IPV6.DB File

;
; File name: IPV6.DB
; Product: hp TCP/IP Services for OpenVMS
; Version: V5.4-00
;
; © Copyright 1976, 2003 Hewlett-Packard Development Company, L.P.
;

;
; Example BIND data file for ipv6.my.zone
;

$TTL 1d
@ IN SOA ns.ipv6.my.zone. postmaster.ipv6.my.zone. (

1 ; Serial
3600 ; Refresh
300 ; Retry
3600000 ; Expire
3600) ; Minimum

;
; Nameservers
;

IN NS ns.ipv6.my.zone.
IN NS ns.ipv4.my.zone.

;
; IPv6 nodes
;

host1 IN AAAA 5F00:0000:0102:0300:0203:0800:2B0A:0B0C
host2 IN AAAA 5F00:0000:0102:0300:0203:0800:2B0D:0E0F

;
; IPv4 and IPv6 nodes
;

host3 IN AAAA 5F00:0000:0102:0300:0203:0800:2B0C:0B0A
IN A 10.20.30.40

host4 IN A 10.30.40.50

Example 3–3 shows the reverse mapping data file for the
3.0.2.0.0.0.3.0.2.0.1.0.0.0.0.0.0.0.f.5.ip6.arpa zone.

Example 3–3 Sample IPV6.ARPA File

;
; File name: IPV6.ARPA
; Product: hp TCP/IP Services for OpenVMS
; Version: V5.4-00
;
; © Copyright 1976, 2003 Hewlett-Packard Development Company, L.P.
;

;
; Example BIND data file for 3.0.2.0.0.0.3.0.2.0.1.0.0.0.0.0.0.0.f.5.IP6.ARPA
; (corresponds to the 5F00:0000:0102:0300:0203::/80 prefix)
;

(continued on next page)

3–4 Configuring BIND

Configuring BIND
3.2 Sample BIND Configuration Files

Example 3–3 (Cont.) Sample IPV6.ARPA File

$TTL 1d
@ IN SOA ns.ipv6.my.zone. postmaster.ipv6.my.zone. (

1 ; Serial
3600 ; Refresh
300 ; Retry
3600000 ; Expire
3600) ; Minimum

;
; Nameservers
;

IN NS ns.ipv6.my.zone.
IN NS ns.ipv4.my.zone.

;
; IPv6 nodes
;

c.0.b.0.a.0.b.2.0.0.8.0 IN PTR host1.ipv6.my.zone.
f.0.e.0.d.0.b.2.0.0.8.0 IN PTR host2.ipv6.my.zone.
a.0.b.0.c.0.b.2.0.0.8.0 IN PTR host3.ipv6.my.zone.

Example 3–4 shows a sample IPV6.INT data file containing the single DNAME
resource record that accomplishes the ip6.int renaming as discussed in
Section 3.1.3.

Any data added to the ip6.arpa name space in the IPV6.ARPA zone data file will
now also be available in the ip6.int name space. No changes need to be made to
the IPV6.INT zone data file. The IPV6.INT and IPV6.ARPA zone statements in
the BIND server configuration file are the same as those in Example 3–1.

Example 3–4 Sample IPV6.INT File

;
; File name: IPV6.INT
; Product: hp TCP/IP Services for OpenVMS
; Version: V5.4-00
;
; © Copyright 1976, 2003 Hewlett-Packard Development Company, L.P.
;

;
; Example BIND data file for 3.0.2.0.0.0.3.0.2.0.1.0.0.0.0.0.0.0.f.5.IP6.INT
; (corresponds to the 5F00:0000:0102:0300:0203::/80 prefix)
;

$TTL 1d
@ IN SOA ns.ipv6.my.zone. postmaster.ipv6.my.zone. (

1 ; Serial
3600 ; Refresh
300 ; Retry
3600000 ; Expire
3600) ; Minimum

;
; Nameservers
;

(continued on next page)

Configuring BIND 3–5

Configuring BIND
3.2 Sample BIND Configuration Files

Example 3–4 (Cont.) Sample IPV6.INT File

IN NS ns.ipv6.my.zone.
IN NS ns.ipv4.my.zone.

;
; DNAME record
;

DNAME 3.0.2.0.0.0.3.0.2.0.1.0.0.0.0.0.0.0.f.5.ip6.arpa.

3–6 Configuring BIND

4
Managing and Monitoring the IPv6 Network

Once you have configured your system for IPv6, you may want to make changes
to your configuration or monitor the network. TCP/IP Services for OpenVMS
supplies commands to do both.

Extensions to existing management commands and a new IPv6 command allow
you to perform typical management functions. Section 4.1 describes these
commands.

Section 4.2 describes typical IPv6 management tasks, with examples.

Section 4.3 describes UNIX-style management tools to monitor the network.

Section 4.4 describes log files that you can use to monitor network performance.

4.1 IPv6 Extensions to Management Commands
The HP TCP/IP Services for OpenVMS Management Command Reference manual
describes the basic management commands, including the UNIX commands,
you can use to manage the TCP/IP Services software. The HP TCP/IP Services
for OpenVMS Tuning and Troubleshooting manual contains more detailed
information about the UNIX management commands. The following sections
describe only IPv6 extensions to those management commands.

To use UNIX management commands at the DCL prompt, execute the following
command procedure (or put it into your LOGIN.COM so that it executes each
time you log in):

$ @SYS$MANAGER:TCPIP$DEFINE_COMMANDS

Note

UNIX flags and OpenVMS interface names are case sensitive. When
entering UNIX management commands at the DCL prompt, you must
enclose uppercase UNIX flags and OpenVMS interface names in quotation
marks to preserve the case of the input.

4.1.1 ifconfig Command
For the AF_INET6 address family, use the following syntax:

ifconfig interface_id address_family [[ip6prefix]
address[/bitmask] [dest_address]] [parameters]

For the AF_INET6 address family, the address argument is either a host name or
the 128-bit IPv6 address, in the following format:

x:x:x:x:x:x:x:x

In this format, each x is the hexadecimal value of a 16-bit piece of the address.

Managing and Monitoring the IPv6 Network 4–1

Managing and Monitoring the IPv6 Network
4.1 IPv6 Extensions to Management Commands

The ip6prefix argument specifies that the interface identifier is to be appended
to the address argument when configuring an address on the interface. The
interface identifier uniquely identifies an interface on a subnet and is typically
the interface’s Link layer address. The following are the parameters for the
ifconfig command.

Parameters [AF_INET6 only]:

• ip6interfaceid id

Overrides the default interface ID, which depends on the underlying link type
(for example, Ethernet, FDDI), and specifies an inet6 interface ID for the
interface. For example, if your system has the Ethernet hardware address
08-00-2b-2a-1e-d3, the following command generates the inet6 link-local
address fe80::a00:2bff:fe2a:1ed3 for the interface:

$ ifconfig "WEO" ipv6

On the same system, the following command generates the inet6 interface ID
abcd:1234 for the interface:

$ ifconfig "WE0" ip6interfaceid ::abcd:1234 ipv6

• ipv6

Initializes IPv6-related data structures and assigns an IPv6 link-local address
to the interface.

• -ipv6

Removes any IPv6 configuration associated with the interface, including all
IPv6 addresses and IPv6 routes through the interface. This command is
equivalent to the ifconfig interface inet6 delete command.

• ip6dadtries value

Specifies the number of consecutive neighbor solicitation messages that your
system transmits as it performs duplicate address detection on a tentative
address.

• ip6hoplimit hops

Sets the default number of hops to be included in transmitted unicast IP
packets.

• ip6mtu mtu_value

Alters the maximum trasmission unit (MTU) for messages that your system
transmits on the link.

• ip6nonud

Disables Neighbor Unreachability Detection (NUD) on the interface.

• ip6reachabletime time

Sets the time, in milliseconds, that your system considers a neighbor is
reachable after your system receives a reachability confirmation message.

• ip6retranstimer value

Sets the time interval, in milliseconds, between neighbor solicitation messages
to a neighbor.

Refer to the HP TCP/IP Services for OpenVMS Tuning and Troubleshooting
manual for more information on the ifconfig command.

4–2 Managing and Monitoring the IPv6 Network

Managing and Monitoring the IPv6 Network
4.1 IPv6 Extensions to Management Commands

4.1.2 iptunnel Command
The iptunnel command creates configured tunnels for sending and receiving IPv6
or IPv4 packets that are encapsulated as the payload of an IPv4 datagram.

The iptunnel command can perform the following operations:

• create

Creates a tunnel interface, which you must subsequently configure by using
the ifconfig command. The syntax of the create operation is as follows:

iptunnel create [-I int-name] [v4-dest] [v4-src]

Parameters

-I int-name

Specifies the interface unit of the tunnel to be created. This is an optional
parameter. The int-name parameter has the form itx, where x is the
interface unit number. By default, the interface name selected for the
tunnel is itx+1, or the value of the interface unit number of the last
tunnel created plus 1.

v4-dest

Specifies the remote endpoint to which a tunnel is to be created.

v4-src

Sets the IPv4 source address in the encapsulating header. The tunnel is
enabled (packets are sent and received on the tunnel) only if v4-src is a
valid address on the system. This is an optional parameter.

• delete

Deletes a tunnel interface. You must disable the tunnel before you can delete
it by entering the following command:

$ ifconfig tunnel name down delete abort

Then enter:

$ iptunnel delete tunnel

• show

Shows the tunnel attributes (name, tunnel endpoints, next hop for tunneled
packets).

$ iptunnel show tunnel

For related information, see RFC 2003.

4.2 Typical Management Tasks
After restarting the network with IPv6 enabled, you might want to do the
following:

• Connect to the 6bone network

• Initialize a new interface for IPv6

• Create a configured tunnel

• Add addresses to or delete addresses from an interface

Managing and Monitoring the IPv6 Network 4–3

Managing and Monitoring the IPv6 Network
4.2 Typical Management Tasks

• Add or delete a default router

• Manually add a route for an onlink prefix

The following sections describe these tasks.

4.2.1 Connecting to the 6bone Network
The 6bone network provides a test environment for IPv6 networks. To connect
to the 6bone, choose a 6bone point that is reasonably close to your normal IPv4
paths into the Internet. The 6bone web site at http://www.6bone.net contains
information on how to join the 6bone and how to find an attachment point. If you
want to connect to the 6bone through the HP Palo Alto site either before or after
you configure IPv6 on your host or router, complete the following steps:

1. Register your IPv4 tunnel by sending your 6bone IPv6 address prefix and the
IPv4 address of your router to the following address:

gw-6bone@pa.dec.com

2. Wait for confirmation that support for your tunnel is configured at HP.

HP will provide both an IPv6 global address prefix for you to use at your site
and the IPv4 address of the HP Palo Alto router.

3. Configure your tunnel by running the TCPIP$IP6_SETUP utility.

4. Verify that your tunnel is operational by issuing the ping command to one of
the following HP IPv6 nodes:

altavista.ipv6.digital.com
ftp.ipv6.digital.com
www.ipv6.hp.com

For additional information about connecting to the 6bone, see the 6bone home
page:

http://www.6bone.net

4.2.2 Initializing a New Interface for IPv6
In some cases, you might want to either add a new interface card to your system
or change an interface card from one type to another. After the new card is
installed, you must initialize it for IPv6 operation. To initialize an interface, use
the ifconfig command with the following syntax:

$ ifconfig device ipv6 up

Note

OpenVMS interface names must be in uppercase. When you enter them
with UNIX management commands at the DCL prompt, you must enclose
the name of the interface in double quotation marks.

For LAN interfaces, the ifconfig command creates the link-local address
(FE80::) and starts detection of duplicate addresses.

4–4 Managing and Monitoring the IPv6 Network

Managing and Monitoring the IPv6 Network
4.2 Typical Management Tasks

For example, to initialize Ethernet interface WE0 for use with IPv6, enter the
following:

$ ifconfig "WE0" ipv6 up

To initialize the loopback interface for use with IPv6, enter the following:

$ ifconfig "LO0" ipv6 up

To initialize the automatic tunnel interface, enter the following:

$ ifconfig "TN0" ipv6 up

This command designates one of the system’s IPv4 addresses for use as the tunnel
endpoint.

If you want the designated IPv4 address to be the permanent tunnel endpoint,
you must use TCPIP$IP6_SETUP.

4.2.2.1 Setting the IPv6 Interface Identifier
You can set the IPv6 interface ID at the same time you initialize an interface by
using the ifconfig command with the ip6interfaceid parameter. For example,
to initialize Ethernet interface WE0 for use with IPv6 and to set its interface ID
to the 64-bit value 0x0123456789abcdef, enter the following:

$ ifconfig "WE0" ip6interfaceid ::0123:4567:89ab:cdef ipv6 up

Although the interface ID is expressed in standard IPv6 address format, only the
low-order 64 bits are used.

4.2.2.2 Removing IPv6 from an Interface
Removing IPv6 from an interface removes the IPv6 configuration associated with
the interface, including all IPv6 addresses and IPv6 routes through the interface.
To remove IPv6 from an interface, use the ifconfig command with the following
syntax:

$ ifconfig interface -ipv6

For example, to remove IPv6 from Ethernet interface WE0, enter the following:

$ ifconfig "WE0" -ipv6

4.2.3 Creating a Configured Tunnel
To create a configured tunnel, use the iptunnel command in the following format:

iptunnel create remote-tunnel-IPv4address

For example, to create a tunnel to remote system 16.20.136.47, enter the following
command:

$ iptunnel create 16.20.136.47

To initialize the tunnel for IPv6 operation, enter the following command:

$ ifconfig "IT0" ipv6 up

Note

OpenVMS interface names must be in uppercase. When you enter them
with UNIX management commands at the DCL prompt, you must enclose

Managing and Monitoring the IPv6 Network 4–5

Managing and Monitoring the IPv6 Network
4.2 Typical Management Tasks

the name of the interface in quotation marks.

4.2.4 Adding an Address to an Interface
To add or assign an IPv6 prefix to an interface and to direct the kernel to
automatically append the interface identifier, use the ifconfig command with
the following syntax:

ifconfig interface inet6 ip6prefix prefix

The following example assigns the address dec:2::0a00:2bff:fe12:3456 to
interface WE0 (the interface ID is 0a00:2bff:fe12:3456):

$ ifconfig "WE0" inet6 ip6prefix dec:2::/64

The ip6prefix parameter directs the kernel to automatically append the interface
identifier to the address prefix.

To add or assign a full IPv6 address to an interface manually, use the ifconfig
command with the following syntax:

ifconfig interface inet6 ipv6address

The following example assigns the address dec:2::1 to interface WE0:

$ ifconfig "WE0" inet6 dec:2::1

Note

For IPv6 hosts, the TCPIP$ND6HOST process configures interface
prefixes automatically, depending on the contents of router
advertisements.

For IPv6 routers, the TCPIP$IP6RTRD process configures
interface prefixes automatically, depending on the contents of the
SYS$SYSTEM:TCPIP$IP6RTRD.CONF file.

4.2.5 Deleting an Address from an Interface
To delete an IPv6 address from an interface manually, use the ifconfig command
with the following syntax:

ifconfig interface inet6 delete ipv6address

For example:

$ ifconfig "WE0" inet6 delete dec:2::1

Note

OpenVMS interface names must be in uppercase. When you enter them
with UNIX management commands at the DCL prompt, you must enclose
the name of the interface in quotation marks.

4–6 Managing and Monitoring the IPv6 Network

Managing and Monitoring the IPv6 Network
4.2 Typical Management Tasks

4.2.6 Adding or Deleting a Default Router
To add a default router, use the route command with the following syntax:

route add -inet6 default ipv6address -I interface

For example:

$ route add -inet6 default fe80::0a00:2bff:fe12:3456 -"I" "WE0"

Note

UNIX flags and OpenVMS interface names are case sensitive. When
entering UNIX management commands at the DCL prompt, you must
enclose uppercase UNIX flags and OpenVMS interface names in quotation
marks.

To delete a default router, use the route command with the following syntax:

route delete -inet6 default ipv6address -I interface

For example:

$ route delete -inet6 default fe80::0a00:2bff:fe12:3456 -"I" "WE0"

Note

For IPv6 hosts, the TCPIP$ND6HOST process performs the add and
delete route operations automatically, depending on the contents of
router advertisements. See Section 2.1.1 for more information about
TCPIP$ND6HOST.

4.2.7 Manually Adding a Route for an On-Link Prefix
After you manually add an address prefix to an interface, you also can add a
static route so that traffic to other hosts with the same prefix is sent directly
to the destination rather than through a router. For example, if the prefix
DEC:5::/64 has been added to the Ethernet interface WE0, which has been
initialized with the link-local address fe80::0a00:2bff:fe12:3456, the following
command adds a route to neighboring hosts with the same prefix:

$ route add -inet6 dec:5::/64 fe80::0a00:2bff:fe12:3456 -interface

This command specifies that destinations with prefix dec:5::0/64 are reachable
through the interface with address fe80::0a00:2bff:fe12:3456. That is,
dec:5::0/64 is an on-link prefix.

Note

For IPv6 hosts, the TCPIP$ND6HOST process automatically adds on-link
prefixes based on the contents of router advertisements. See Section 2.1.1
for more information about TCPIP$ND6HOST.

Managing and Monitoring the IPv6 Network 4–7

Managing and Monitoring the IPv6 Network
4.3 UNIX-Style Commands to Monitor the Network

4.3 UNIX-Style Commands to Monitor the Network
To monitor your network, use the following UNIX-style commands:

• ping command

• netstat command

• traceroute command

• tcpdump commmand

Note

UNIX flags are case sensitive. When using an uppercase flag you must
enclose it with quotation marks to get the expected behavior. OpenVMS
interface names are case sensitive. The name of the interface must be
enclosed in quotation marks.

The following sections describe each command.

4.3.1 ping Command
You can test access to internet network hosts with the ping command. The ping
command accepts an IPv4 address, an IPv6 address, or a node name on the
command line. The following sample command specifies an IPv6 address:

$ ping -c 2 5F00:2100:108C:4000:8C40:800:2B2D:2B2

PING (5F00:2100:108C:4000:8C40:800:2B2D:2B2): 56 data bytes
64 bytes from 5F00:2100:108C:4000:8C40:800:2B2D:2B2: icmp6_seq=0

hlim=58 time=17 ms
64 bytes from 5F00:2100:108C:4000:8C40:800:2B2D:2B2: icmp6_seq=1

hlim=58 time=17 ms
----5F00:2100:108C:4000:8C40:800:2B2D:2B2 PING Statistics----
2 packets transmitted, 2 packets received, 0% packet loss
round-trip (ms) min/avg/max = 17/17/17 ms

The ping command accepts a -V4 or -V6 flag to send an IPv4 ECHO_REQUEST
to a node with an IPv4 address, or to send an IPv6 ECHO_REQUEST to a node
with an IPv6 address, respectively. If you do not specify either flag, the ping
command sends an appropriate ECHO_REQUEST based on the address family
being used.

You can also use the -I flag to force the use of a specific interface. For example:

$ ping -"I" "WE0" FE80::800:2B2D:2B2

4.3.2 netstat Command
The netstat command dispays network-related data in various formats. You can
display network statistics for sockets, interfaces, and routing tables.

The parameters -f address_family limit reports to the specified address family.
For example,

• netstat -f inet limits data to the IPv4 address family (AF_INET).

• netstat -f inet6 limits data to the IPv6 address family (AF_INET6).

4–8 Managing and Monitoring the IPv6 Network

Managing and Monitoring the IPv6 Network
4.3 UNIX-Style Commands to Monitor the Network

To display IPv6 routing entries, enter this command:

$ netstat -rnf inet6

To display active IPv6 connections, enter this command:

$ netstat -af inet6

To display statistics for all protocols including IPv6 and ICMPv6, enter this
command:

$ netstat -s

4.3.3 traceroute Command
The traceroute command with the host argument prints the route that packets
take to both IPv4 and IPv6 hosts.

The -G @addr1@addr2... parameters (IPv6 only) specify the source route for
packets to travel. The route consists of one or more IPv6 node names or
addresses. Use the at character (@) to separate multiple addresses. You can
specify up to 10 addresses.

The -V version parameter specifies the Internet Protocol (IP) version number to
enable the resolver to return the correct address. Use the -V 4 option if you want
to issue a traceroute command to a host name (not an IP address) that has both
IPv4 and IPv6 addresses, and you want to trace the route to the IPv4 address.

Note

By default, traceroute tries to resolve destination host names as an IPv6
address. If that fails, it resolves the host name as an IPv4 address. You
can override this behavior with the -V option.

In the following examples, the backslash (\) and the continuation of output onto a
second line is for display purposes only. In actual output, the information appears
on a single line.

$ traceroute -n -"V" 6 v6host1
traceroute to v6host1.corp.com (3ffe:1200:4110:3:a00:2bff:feb4:89c5), \
30 hops max, 24 byte packets
1 fe80::a00:2bff:fe2a:1ed3 130.86 ms 119.141 ms 119.14 ms
2 3ffe:1200:4110:1:a00:2bff:fe2d:2b2 126.014 ms 117.308 ms 116.33 ms
3 3ffe:1200:4110:3:a00:2bff:feb4:89c5 122.195 ms 135.882 ms 119.263 ms

$ traceroute 3ffe:1200:4110:3:a00:2bff:feb4:89c5
traceroute to 3ffe:1200:4110:3:a00:2bff:feb4:89c5 \
(3ffe:1200:4110:3:a00:2bff:feb4:89c5), 30 hops max, 24 byte packets
1 fe80::a00:2bff:fe2a:1ed3 (fe80::a00:2bff:fe2a:1ed3) 123.046 ms \
114.258 ms 117.188 ms
2 v6host2.corp.com (3ffe:1200:4110:1:a00:2bff:fe2d:2b2) 115.234 ms \
117.188 ms 116.287 ms
3 v6host1.corp.com (3ffe:1200:4110:3:a00:2bff:feb4:89c5) 120.241 ms \
113.398 ms 120.24 ms

When the route has an IPv6-over-IPv4 tunnel, traceroute views this as a single
hop. It prints only the IPv6 addresses of the nodes at each end of a tunnel, and
none of the intermediate IPv4 routers between the tunnel source and destination.
If a traceroute command over a tunnel interface fails, run the command again
and specify the tunnel’s IPv4 destination address.

Managing and Monitoring the IPv6 Network 4–9

Managing and Monitoring the IPv6 Network
4.3 UNIX-Style Commands to Monitor the Network

The following command shows a trace across the 6bone network to destination
tw4.es.net. Note that the intermediate routers appear to drop every other
message. The probable reason for this is that the routers rate-limit IPv6 ICMP
error messages to one per second. Rate-limiting ICMP error messages is valid
behavior.

In the following examples, the backslash (\) and the continuation of output onto a
second line is for display purposes only. In actual output, the information appears
on a single line.

$ traceroute tw4.es.net
traceroute to tw4.es.net (3ffe:780:40:1:a00:2bff:febc:e96c), 30 hops max, 24 byte packets
1 gw1.ipv6.pa-x.dec.com (3ffe:1280:1000:1::f842:1428) 83.985 ms * 83.000 ms
2 3ffe:700:20:1::21 (3ffe:700:20:1::21) 108.399 ms * 112.305 ms
3 3ffe:780:40:1:a00:2bff:febc:e96c(3ffe:780:40:1:a00:2bff:febc:e96c) \
124.023 ms 134.766 ms 116.211 ms

The following example shows a trace to destination yogi-gbl using 2000-byte
messages. It also shows the effect of path MTU discovery on traceroute results.

$ traceroute yogi-gbl 2000
traceroute to yogi-gbl (fec0:10:60:0:200:f8ff:fe40:d8e6), 30 hops max, 2024 byte packets
1 a30rtr-gbl (fec0:10:30:0:200:f8ff:fe45:cfb2) 5.859 ms 3.906 ms 3.907 ms
2 fec0:10:20:0:a00:2bff:feb0:972d (fec0:10:20:0:a00:2bff:feb0:972d) \
4.882 ms 3.906 ms 3.906 ms
3 * fec0:10:40:1::a0a:283c (fec0:10:40:1::a0a:283c) 6.836 ms 6.836 ms
4 yogi-gbl (fec0:10:60:0:200:f8ff:fe40:d8e6) 8.789 ms 8.789 ms 7.812 ms

Hops 1 and 2 occur across Ethernet links that have a link MTU of 1500 bytes.
Hop 3 occurs across a configured tunnel with an MTU of 1280 bytes.

The 1500-byte message fragments were transmitted without error until they hit
the tunnel. The first fragment across hop 3 triggered a ‘‘message too big’’ error,
which in turn caused the sender to record a reduced Path MTU for yogi-gbl. The
sender sent all subsequent messages with smaller fragments. The traceroute
display shows that the first probe to the tunnel was dropped but that all others
succeeded.

4.3.4 tcpdump Command
The tcpdump command captures, parses, and prints IPv6 and ICMPv6 packets.

To see IPv6 packets, enter this command:

$ tcpdump interface -s 1500 [-x] [ipv6 | icmpv6]

The tunneling interface is not visible to the packet filter routines so you cannot
trace the tunneled packets directly. To view these packets, use the actual IPv4
interface and filter for encapsulated IPv6 packets, which use the IP Protocol value
41, as follows:

$ tcpdump interface -s 1500 [-x] ip proto 41

4.4 IPv6 Process Log Files
The TCPIP$ND6HOST and TCPIP$IP6RTRD processes log informational and
severe events in the TCPIP$ND6HOST.LOG and TCPIP$IP6RTRD.LOG files,
which are located in the SYS$MANAGER directory.

Logging is enabled by default.

4–10 Managing and Monitoring the IPv6 Network

5
Mobile IPv6

The Internet Protocol Version 6 (IPv6) was designed to support mobility through
features such as extensible header structure, address autoconfiguration, security
(IPsec), and tunneling. Mobile IPv6 builds on these features and defines
operations that enable a mobile node to move from one link to another without
changing the node’s IP address. In this way, packets can be routed to and from
mobile nodes transparently when they are on another network.

The Mobile IPv6 implementation has the following restrictions:

• Not supported on OpenVMS Clusters

• Does not support Binding Update authentication as specified in the IETF
Internet Draft for Mobility Support in IPv6 (draft-ietf-mobileip-ipv6-15.txt).
For this reason, limit the use of this implementation to test environments
that are not subject to attack, since system integrity might be compromised
by accepting unauthenticated bindings.

This chapter describes the following:

• Mobile IPv6 history (Section 5.1)

• Mobile IPv6 environment (Section 5.2)

• Mobile IPv6 operation (Section 5.3)

• Mobile IPv6 planning (Section 5.4)

• Mobile IPv6 configuration (Section 5.5)

• Monitoring the Mobile IPv6 environment (Section 5.6)

5.1 Mobile IPv6 History
In communications the trend is toward mobility. Mobile telephones have already
transformed business and personal interactions. Computers, especially laptop
computers and handhelds, are also mobile, but they currently do not enjoy the
continuous connectivity that mobile telephones do.

Today, there are very basic data services that use the Wireless Application
Protocol (WAP) and General Packet Radio Service (GPRS). But the demand for
full voice and data mobile communications is being driven by the following trends:

• Development of third-generation (3G) networks

• Large amounts and types of content available on the Internet, including
video, voice, and images

• Increasing numbers of wireless subscribers and Internet users

• Development of convergent devices that offer voice and data

Mobile IPv6 5–1

Mobile IPv6
5.2 Mobile IPv6 Environment

5.2 Mobile IPv6 Environment
In a Mobile IPv6 environment, nodes can have the following roles:

• mobile node

An IPv6 node, host or router, that can change its point of attachment from
one link to another while still being reachable through its home address.

• correspondent node

A peer IPv6 node with which a mobile node communicates. The correspondent
node, whether a host or a router, can be either mobile or stationary. The
TCP/IP Services for OpenVMS implementation of Mobile IPv6 allows a
system to be a correspondent node.

• home agent

A router on a mobile node’s home link with which the mobile node registers
its current care-of address.

To completely understand the relationship among these nodes, you should be
familiar with the following terms:

• home address

The IPv6 address of the mobile node when it is on its home link, or at home.
The subnet prefix of this address is the home network’s subnet prefix. The
mobile node is always addressable by its home address; it does not change.

• care-of address

The IPv6 address of the mobile node when it is on a foreign link, or away
from home. The subnet prefix of this address is the foreign network’s subnet
prefix. A mobile node can have multiple care-of addresses, but the care-of
address registered with the mobile node’s home agent is called its primary
care-of address.

• binding

An association of the mobile node’s home address with its care-of address.
This association also has a lifetime. Each node maintains a cache of all
bindings. For information about viewing the contents of the binding cache,
see Section 5.6.2.

5.3 Mobile IPv6 Operation
Figure 5–1, Figure 5–2, and Figure 5–3 show three scenarios that illustrate
interactions among a correspondent node, home agent, and mobile node.

In Figure 5–1, the mobile node is on its home link (at home). Packets from the
correspondent node that are addressed to the mobile node’s home address are
delivered through standard IP routing mechanisms.

5–2 Mobile IPv6

Mobile IPv6
5.3 Mobile IPv6 Operation

Figure 5–1 Communication with Mobile Node at Home

Home Network

Foreign Network

OpenVMS

Home Agent

Correspondent Node
At Home

Mobile Node

VM-1116A-AI

Mobile IPv6 5–3

Mobile IPv6
5.3 Mobile IPv6 Operation

In Figure 5–2, the mobile node has moved to a foreign link (away from home).

Figure 5–2 Communication with Mobile Node Away from Home–Part 1

Home Network

Foreign Network

OpenVMS

Home Agent

Correspondent Node

Away from Home

Mobile Node

VM-1117A-AI

1

3

2

On the foreign link, the following events occur:

1. The mobile node configures a care-of address and registers it with its home
agent by sending the home agent a binding update. This new address is the
mobile node’s primary care-of address.

The home agent acknowledges the binding update by returning a binding
acknowledgment to the mobile node.

2. Packets sent by a correspondent node to the mobile node’s home address
arrive at its home link.

3. The home agent intercepts the packets, encapsulates them, and tunnels them
to the mobile node’s registered care-of address.

In Figure 5–3, the mobile node has received the tunneled packets from the home
agent.

5–4 Mobile IPv6

Mobile IPv6
5.3 Mobile IPv6 Operation

Figure 5–3 Communication with Mobile Node Away from Home–Part 2

Home Network

Foreign Network

OpenVMS

Home Agent

Correspondent Node

Away from Home

Mobile Node

VM-1118A-AI

1

3

2

After the mobile node receives the tunneled packets, the following events occur:

1. The mobile node recognizes its primary care-of address in the tunneled
packet’s header. The mobile node assumes that the original sending
correspondent node has no binding cache entry for the mobile node; otherwise,
the correspondent node would have sent the packet directly to the mobile node
using a routing header. It then sends a binding update to the correspondent
node.

2. The correspondent node creates a binding between the home address and
care-of address.

3. Packets flow directly between the correspondent node and mobile node. This
route optimization does the following:

• Eliminates what is commonly known as triangle routing.

• Eliminates congestion at the mobile node’s home agent and home link.

• Reduces the impact of any possible failure of the home agent, the home
link, or intervening networks leading to or from the home link, since
these nodes and links are not involved in the delivery of most packets to
the mobile node.

Mobile IPv6 5–5

Mobile IPv6
5.3 Mobile IPv6 Operation

When the mobile node is away from home, it always sends a home address
option to inform the receiver of its home address. That way, the receiver can
correctly identify the connection to which the packet belongs.

When the mobile node back on its home link, the mobile node sends a binding
update to the home agent and to the correspondent node to clear the bindings.

5.4 Planning Mobile IPv6
This section describes tasks required before you configure Mobile IPv6.

Before you can use Mobile IPv6, you must configure your system as an IPv6 host
node or a router. See Section 2.4 for more information.

You must verify that Mobile IPv6 support is enabled. You can verify this by
issuing the following command:

$ sysconfig -q ipv6 mobileipv6_enabled

If the mobileipv6_enabled attribute is not set to 1, reconfigure it with the
following command:

$ sysconfig -r ipv6 mobileipv6_enabled=1 mobileipv6_enabled: reconfigured

The system is now ready to function as a correspondent node. The correspondent
node can also forward packets as a router. If you want your system to also
function as a router, see Section 5.5.

5.5 Configuring Mobile IPv6
This section describes how to configure your IPv6 node both as a correspondent
node and as a correspondent node that acts as an IPv6 router.

5.5.1 Configuring a Correspondent Node
After you verify that IPv6 mobile support is enabled, your system is ready to
function as a correspondent node and to communicate with mobile nodes both
through the home agent and, after the receiving a binding update from a mobile
node, directly with the mobile node. No further configuration is necessary.

5.5.2 Configuring a Home Agent
Please see the HP TCP/IP Services for OpenVMS Release Notes for the latest
information on configuring a mobile node as a home agent.

5.6 Monitoring the Mobile IPv6 Environment
To monitor the Mobile IPv6 environment, use the following:

• tcpdump command

• netstat command

• TCPIP$IP6RTRD log file

5–6 Mobile IPv6

Mobile IPv6
5.6 Monitoring the Mobile IPv6 Environment

5.6.1 Using tcpdump
The tcpdump command captures, parses, and prints IPv6 packets. The binding
update and acknowledgment options are contained in IPv6 Destination Option
headers in IPv6 packets.

To see IPv6 packets, issue the tcpdump command as follows:

$ tcpdump -s 1500 -x ipv6

See the HP TCP/IP Services for OpenVMS Tuning and Troubleshooting manual
for more information about using tcpdump.

5.6.2 Using netstat
The netstat -b command allows you to monitor current mobility bindings and
their attributes. The following example shows the command output:

$ netstat -b

Mobile IPv6 Binding Cache

Home Address Care-of Address Flags Refs Sequence# Lifetime
testhome testcoa A 1 1 43
[1] [2] [3] [4] [5] [6]

This example shows that:

1. The mobile node has a home address of testhome.

2. The mobile node is currently reachable at care-of address testcoa.

3. The mobile node has asked for the binding update to be acknowledged (A
flag).

4. There is currently one reference on this binding data structure.

5. The sequence number is set to 1 in the binding update.

6. There are 43 seconds remaining on this binding’s lifetime. When the lifetime
expires, the entry is removed from the cache.

The netstat -bs command enables you to monitor mobility binding statistics.
The following example shows the command output:

$ netstat -bs
Mobile IPv6:

1 entry in binding cache
1 add
0 deletes
0 changes
0 frees
3 lookups

5.6.3 TCPIP$IP6RTRD Log File
The TCPIP$IP6RTRD process logs informational and severity events in the
SYS$MANAGER:TCPIP$IP6RTRD.LOG file.

Mobile IPv6 5–7

6
Solving IPv6 Problems

This chapter contains a diagnostic map to help you solve problems that might
occur when you use an IPv6 network and network services. Use this chapter
along with the appropriate HP documentation to solve problems that you
encounter.

6.1 Using the Diagnostic Suggestions
IPv6 network and network service problems can occur for a number of reasons.
This chapter should help you isolate the problem.

After you isolate the problem, you may be referred to other TCP/IP Services for
OpenVMS documentation for more information about problem-solving tools and
utilities.

If you use other products along with the IPv6 networking software described in
this manual, you may need to consult the documentation associated with those
products for additional information.

6.2 Getting Started
Before you start problem solving, ensure that communications hardware is ready
for use. Verify the following:

• The system’s physical connections are properly installed. See the
documentation for your system and communications hardware device.

• Event logging is enabled to monitor network events. See the system
administration manual for information about starting event logging and for
descriptions of event messages.

Also check the product release notes for up-to-date information on known
problems.

You should be familiar with the following terms:

• On-link node

An on-link node is attached to the same subnetwork as your system. This
subnetwork can be a LAN or an IPv6-over-IPv4 configured tunnel. There are
no IPv6 routers between your system and the on-link node.

For a configured tunnel, the on-link node is the node at the destination end of
the tunnel.

• Off-link node

An off-link node is not attached to the same subnetwork as your system.
There is at least one IPv6 router between your system and the off-link node.

Solving IPv6 Problems 6–1

Solving IPv6 Problems
6.3 Solving IPv6 Network Problems

6.3 Solving IPv6 Network Problems
This section describes the most basic causes of IPv6 network problems. Before
investigating further, make sure you perform the following checks:

1. Make sure the system is on and has completed all startup procedures.

Check the power to your system. See the system management manual for
your system’s startup procedure and any problem solving information.

2. Verify IPv6 installation.

To verify that the IPv6 components are installed, enter the following
command:

$ TCPIP SHOW VER/ALL

TCP/IP Services files should be listed. If the components are not listed,
install TCP/IP Services for OpenVMS by using the PCSI command. See the
HP TCP/IP Services for OpenVMS Installation and Configuration manual for
information about installing the product.

3. Verify IPv6 configuration.

To verify that IPv6 is configured, enter the following command:

$ DIR SYS$MANAGER:TCPIP$INET6_CONFIG.DAT

See Section 2.4 for information about setting up and configuring an IPv6 host
or router.

4. Verify that IPv6 is started.

To verify that IPv6 is started, enter the following commands:

$ SHOW LOGICAL TCPIP$IPV6_STARTED
$ ping ::1

If the ‘‘host is unreachable’’ message appears, enable IPv6 by entering the
following command:

$ @SYS$STARTUP:TCPIP$STARTUP

This creates the IPv6 interfaces, brings them up, and starts the IPv6
processes.

See Section 6.4 for a description of IPv6 host problems; see Section 6.5 for a
description of IPv6 router problems.

6.4 Solving IPv6 Host Problems
This section describes possible problems with IPv6 hosts and procedures for
solving them.

6.4.1 IPv6 Process Is Not Started
Verify that the TCPIP$ND6HOST process is running by issuing the following
command:

$ SHOW SYSTEM /PROCESS=TCPIP$ND6HOST

6–2 Solving IPv6 Problems

Solving IPv6 Problems
6.4 Solving IPv6 Host Problems

If the process is not running, enable IPv6 with the following command:

$ @SYS$STARTUP:TCPIP$STARTUP.COM

This creates the IPv6 interfaces, brings them up, and starts the
TCPIP$ND6HOST process.

6.4.2 Host Is Unknown
If a remote host is not known, the following message may appear in application
log files:

unknown host

Perform the following steps:

1. Check whether the user is specifying a valid host name to reach the remote
host.

2. Check whether the remote host is in another domain and whether the user
specified the fully qualified domain name.

3. If the remote host is in a domain that you control and your site implements
a BIND server, make sure the zone file contains an entry for the remote host.
If you do not implement a BIND server, you can add the host to the local host
database by editing the file TCPIP$ETC:TCPIP$IPNODES.DAT.

4. If the remote host does not reside in a domain under your control and you
are using a BIND server to search the BIND database for name-to-address
translation, make sure the resolver is pointing to a valid BIND server. See
the HP TCP/IP Services for OpenVMS Management guide for additional
information about setting up your BIND environment.

6.4.3 On-Link Node Is Not Reachable
If an on-link node is not reachable, one of the following messages may appear in
an application log file:

no route to host
network is unreachable
connection timed out

Verify that an on-link node or router (if one exists) is reachable by using the ping
command. If the command fails or if packets are frequently dropped, perform the
following steps:

1. If the node is attached to a LAN, check the data link counters by using the
LANCP SHOW DEVICE device /COUNTERS command. Problems with the
counters and their possible causes are as follows:

• Zero blocks sent or received can indicate a network hardware failure or a
wiring problem.

• High collision rates can indicate an improperly wired network or a node
that is sending excessive message traffic.

• Data overrun and buffer unavailable errors indicate that your system is
not configured properly.

Solving IPv6 Problems 6–3

Solving IPv6 Problems
6.4 Solving IPv6 Host Problems

2. If there is no problem with the data link counters, check the IPv6 and
ICMPv6 counters with the netstat -p ipv6 and netstat -p ipv6-icmp
commands, respectively. Problems with counters and their possible causes
are:

• Packets discarded because of errors or errors resulting from ICMP errors
indicate that another node is generating invalid messages. Other counters
show more specific information.

• Allocation errors can indicate excessive message traffic, an improperly
configured system, or a program that repeatedly allocates memory without
freeing it.

3. Using the ifconfig -a command, verify that IPv6 network interfaces exist,
are up, and have inet6 addresses. If the interfaces do not have inet6
addresses, check the startup file TCPIP$INET6_CONFIG.DAT. Run the
TCPIP$IP6_SETUP utility to correct any errors.

If your interface does not have a global or site-local address, contact your
network administrator to verify that your local router is advertising a prefix
on the link. If there is no local router, you can define a prefix by using the
ifconfig command.

4. Contact the system manager for the adjacent on-link node. Verify that the
on-link node is up and running, that it is configured correctly for IPv6, and
that the address you are using is enabled on the node’s interface.

5. If IPv4 is configured on both systems, issue the ping command to the on-link
node’s IPv4 address, If the commands succeeds, verify the IPv6 configuration
on both systems. If the command fails, see the HP TCP/IP Services for
OpenVMS Tuning and Troubleshooting manual for diagnostic procedures.

6. Issue the ping command to other nodes on the link to determine whether
the failure is confined to one node or extends to multiple nodes. Partial
connectivity might indicate a faulty network device or cable on the link.

7. If the link is a configured tunnel, do the following:

a. Verify the tunnel source and destination addresses by using the ifconfig
-a command. Contact the administrator for the tunnel destination
node and verify that your source and destination addresses match the
destination and source addresses on that node.

b. Issue the ping command to the tunnel destination address. If the
command fails, see the HP TCP/IP Services for OpenVMS Tuning and
Troubleshooting guide for diagnostic procedures.

6.4.4 Off-Link Node Is Not Reachable
If an off-link node is not reachable, one of the following messages may appear in
an application log files:

no route to host
network is unreachable
connection timed out

Verify that an off-link node is reachable by issuing the ping command.

If there is 100% packet loss, perform the following steps:

1. Verify connectivity between your system and an on-link router by using the
ping command.

6–4 Solving IPv6 Problems

Solving IPv6 Problems
6.4 Solving IPv6 Host Problems

If the command fails or shows frequently dropped packets, follow the steps in
Section 6.4.3.

If you do not know the address to a router, issue the following command:

$ ping -"I" interface ff02::2

2. Verify that the interface over which you are sending messages has a global or
site-local unicast address enabled by using the ifconfig -a command.

If it does not, contact the router’s administrator to verify that the router is
advertising a prefix on the link.

If the link is a configured tunnel and the router is not advertising an address
prefix, manually define one for the tunnel by using the TCPIP$IP6_SETUP
utility.

3. Contact the administrator for the remote system to verify that the system
is up and running, that it is configured correctly for IPv6, and that the IPv6
address on its interface is the same as the address you are using.

If the address is different, check your system’s
TCPIP$ETC:TCPIP$IPNODES.DAT file, or have the administrator for
the remote system check the DNS entry.

4. Verify that there is a default route (with U and G flags set) to a router on
the network by issuing the netstat -rf inet6 command. If there is no
default route, contact the router administrator to check whether the router is
advertising itself as a default router.

Also, check other routers to see whether your messages are being directed on
the wrong path.

5. Trace the path to the off-link node by using the traceroute command.

Frequently dropped packets might indicate either network congestion or an
intermittent routing problem. To determine the cause, do the following:

1. Verify connectivity between your system and an on-link router by using the
ping command.

2. Trace the path to the off-link node by using the traceroute command.

6.4.5 Your Node Is Unreachable
If someone reports a problem reaching your node from another node, perform the
following steps:

1. Verify that their node is reachable by issuing the ping command.

If the command fails, follow the steps in Section 6.4.3 for an on-link node or
Section 6.4.4 for an off-link node.

2. If they are using a name from the DNS database, verify that the address for
your node in the DNS database matches one of the addresses configured on
your system’s interfaces.

Use the dig AAAA nodename command to retrieve the address from DNS and
the ifconfig -a command to display addresses for your system.

3. If they are using an address defined in their local host file
TCPIP$ETC:TCPIP$IPNODES.DAT, use the ifconfig -a command to
compare that address with the addresses configured on your system’s
interfaces.

Solving IPv6 Problems 6–5

Solving IPv6 Problems
6.4 Solving IPv6 Host Problems

6.4.6 Connection Is Not Accepted
If a remote node is not configured to accept a connection from your application,
the following message might appear in an application log file:

connection refused

Verify that TCP/IP Services has been correctly configured on the remote node to
accept connections.

Contact the administrator for the remote node and ask whether the correct
socket-based service definitions are defined in the TCPIP$SERVICES.DAT file.
Check whether the service has IPv6 enabled.

6.4.7 Connection Terminates
If the connection terminates abnormally or a network application appears to
hang, perform the following steps:

1. Verify that there is network connectivity to the remote node by using the ping
command immediately after the failure.

If the ping command fails or shows a high rate of packet loss, follow the steps
in either Section 6.4.3 for on-link nodes, or in Section 6.4.4 for off-link nodes.

2. If your application transfers a large amount of data over the network, verify
whether large or fragmented messages are being handled correctly by using
the ping -s 2000 nodename command.

If the ping command fails, trace the path to the remote node with 1200-byte
packets by using the traceroute nodename 1200 command. All IPv6 links
should support message sizes of at least 1280 bytes. This command might
show the location of the problem in the network.

3. Run the application with different client and server nodes located on different
links in the network.

6.5 Solving IPv6 Router Problems
This section describes problems with IPv6 routers.

6.5.1 IPv6 Process Is Not Running
Verify that the TCPIP$IP6RTRD process is running by issuing the following
command:

$ SHOW SYSTEM /PROCESS=TCPIP$IP6RTRD

If the process is not running, start IPv6 with the following command:

$ @SYS$STARTUP:TCPIP$STARTUP.COM

This creates the IPv6 interfaces, brings them up, and starts the TCPIP$IP6RTRD
process.

6–6 Solving IPv6 Problems

Solving IPv6 Problems
6.5 Solving IPv6 Router Problems

6.5.2 Host Is Unknown
If a remote host is not known, the following message may appear in an
application log file:

unknown host

If you receive this message, perform these steps:

1. Check whether the user is specifying a valid host name to reach the remote
host.

2. Check whether the remote host is in another domain and whether the user
specified the fully qualified domain name.

3. If the remote host is in a domain that you control and if your site implements
a BIND server, make sure the zone file contains an entry for the remote host.
If you do not implement a BIND server, you can add the host to the local host
database by editing the file TCPIP$ETC:TCPIP$IPNODES.DAT.

4. If the remote host does not reside in a domain under your control and you
are using a BIND server to search the BIND database for name-to-address
translation, make sure the resolver is pointing to a valid BIND server. See
the HP TCP/IP Services for OpenVMS Management guide for additional
information about setting up your BIND environment.

6.5.3 On-Link Node Is Unreachable
If an on-link node is not reachable, one of the following messages may appear in
an application log file:

no route to host
network is unreachable
connection timed out

Verify that an on-link node or router is reachable by using the ping command. If
the command fails or if packets are frequently dropped, complete the following
steps:

1. If the node is attached to a LAN, check the data link counters by using the
LANCP SHOW DEVICE device /COUNTERS command. Problems with the
counters and their possible causes are as follows:

• Zero blocks sent or received can indicate a network hardware failure or a
wiring problem.

• High collision rates can indicate an improperly wired network or a node
that is sending excessive message traffic.

• Data overrun and buffer unavailable errors indicate your system is not
configured properly.

2. If the data link counters are okay, check the IPv6 and ICMPv6 counters with
the netstat -p ipv6 and netstat -p ipv6-icmp commands, respectively.
Problems with the counters and their possible causes are as follows:

• Packets discarded because of errors, or errors resulting from ICMP errors,
indicate that another node is generating invalid messages. Other counters
show more specific information.

• Allocation errors can indicate excessive message traffic, an improperly
configured system, or a program that repeatedly allocates memory without
freeing it.

Solving IPv6 Problems 6–7

Solving IPv6 Problems
6.5 Solving IPv6 Router Problems

3. Verify that IPv6 network interfaces exist, are up, and have inet6 addresses
by using the ifconfig -a command. If they do not have inet6 addresses,
check the configuration file TCPIP$INET6_CONFIG.DAT. Run the
TCPIP$IP6_SETUP utility to correct any errors.

4. Contact the system administrator for the adjacent on-link node and verify
that the on-link node is up and running, that it is configured correctly for
IPv6, and that the address you are using is enabled on the node’s interface.

5. If IPv4 is configured on both systems, issue the ping command to the on-link
node’s IPv4 address. If the command succeeds, verify the IPv6 configuration
on both systems. If the command fails, see the HP TCP/IP Services for
OpenVMS Tuning and Troubleshooting manual.

6. Issue the ping command to other nodes on the link to determine whether
the failure is confined to one node or whether it extends to multiple nodes.
Partial connectivity might indicate a faulty network device or cable on the
link.

7. If the link is a configured tunnel, do the following:

a. Verify the tunnel source and destination addresses by using the ifconfig
-a command. Contact the administrator for the tunnel destination
node and verify that your source and destination addresses match the
destination and source addresses on that node.

b. Issue the ping command to the tunnel destination address. If the
command fails, see the HP TCP/IP Services for OpenVMS Tuning and
Troubleshooting guide for diagnostic procedures.

6.5.4 Off-Link Node Is Unreachable
If an off-link node is not reachable, the following messages may appear in an
application log file:

no route to host
network is unreachable
connection timed out

Verify that an off-link node is reachable by issuing the ping command.

If there is 100% packet loss, perform the following steps:

1. Verify connectivity between your system and an on-link router by using the
ping command.

If the command fails or shows frequently dropped packets, follow the steps in
Section 6.5.3.

2. Verify that the interface over which you are sending messages has a global or
site-local unicast address enabled by using the ifconfig -a command.

If it does not, check the prefixes defined in the
SYS$SYSTEM:TCPIP$IP6RTRD.CONF file. Run the TCPIP$IP6_SETUP
utility to correct any errors.

3. Contact the administrator for the remote system to verify that the system
is up and running, that it is configured correctly for IPv6, and that the IPv6
address on its interface is the same as the address you are using.

If the address is different, check your system’s
TCPIP$ETC:TCPIP$IPNODES.DAT file, or have the remote system
administrator check the DNS entry.

6–8 Solving IPv6 Problems

Solving IPv6 Problems
6.5 Solving IPv6 Router Problems

4. Verify that there is a default route (with U and G flags set) to a router on the
network by issuing the netstat -rf inet6 command.

If the route is missing or incorrect, check the routes and the address prefixes
in the SYS$SYSTEM:TCPIP$IP6RTRD.CONF file.

If your site uses RIPng, verify that RIP is enabled in the
SYS$SYSTEM:TCPIP$IP6RTRD.CONF file. If it is, contact the administrator
of the next router to verify that RIP is enabled.

5. Trace the path to the off-link node by using the traceroute command.

Frequently dropped packets indicate either network congestion or an intermittent
routing problem.

To determine the cause, do the following:

1. Verify connectivity between your system and an on-link router by using the
ping command.

2. Trace the path to the off-link node by using the traceroute command.

6.5.5 On-Link Node Addresses Are Not Configured
IPv6 hosts generate their global and site-local unicast addresses automatically by
using address prefixes provided by a router on the link. If an on-link node cannot
autoconfigure its addresses, perform the following steps:

1. Verify that the host is reachable from your router by using the ping command
and specifying the host’s link-local address. If the command fails or shows a
high rate of packet loss, follow the steps in Section 6.5.3.

2. Edit the SYS$SYSTEM:TCPIP$IP6RTRD.CONF file and verify that the
router is configured to advertise the correct prefixes and that the timers are
reasonable. See Section 2.6.2.3 for more information.

6.5.6 Router Does Not Forward Messages
If another network user reports that message transmission appears to be failing
at your router, perform the following steps:

1. Obtain the source and destination addresses of the message that your router
is not forwarding. Then verify that your router can reach each node by using
the ping command.

If the command fails or shows a high rate of packet loss, follow the steps in
Section 6.5.3 for on-link nodes, or in Section 6.5.4 for off-link nodes.

2. If your router is running the RIPng protocol, verify that the IPv6 router
process is running by issuing the following command:

$ SHOW SYSTEM /PROCESS=TCPIP$IP6RTRD

If the process is running, edit the SYS$SYSTEM:TCPIP$IP6RTRD.CONF file
and verify that the RIPng protocol is enabled on each IPv6 link. If it is not,
your node may not be propagating routes correctly.

3. Make sure that you are not using manual routes on some interfaces
and RIPng routes on other interfaces. Manual routes defined in the
TCPIP$ROUTE.DAT file do not get propagated to other routers with RIPng.

Solving IPv6 Problems 6–9

Solving IPv6 Problems
6.5 Solving IPv6 Router Problems

6.5.7 Your Node Is Unreachable
If someone reports a problem reaching your node from another node, perform the
following steps:

1. Verify that their node is reachable by issuing the ping command.

If the command fails, follow the steps in Section 6.5.3 for an on-link node, or
Section 6.5.4 for an off-link nodes.

2. If they are using a name from the DNS database, verify that the address for
your node in the DNS database matches one of the addresses configured on
your system’s interfaces.

Use the dig AAAA nodename command to retrieve the address from DNS; use
the ifconfig -a command to display addresses for your system.

3. If they are using an address defined in their local host file, compare that
address with the addresses configured on your system’s interfaces by using
the ifconfig -a command.

6.5.8 Connection Is Not Accepted
If a remote node is not configured to accept a connection from your application,
the following message might appear in an application log file:

connection refused

Verify that TCP/IP Services has been correctly configured on the remote node to
accept connections.

Contact the administrator for the remote node and ask whether the correct
socket-based service definitions are defined in the TCPIP$SERVICES.DAT file.
Check whether the service has IPv6 enabled.

6.5.9 Connection Terminates
If the connection terminates abnormally or if a network application appears to
hang, perform the following steps:

1. Verify that there is network connectivity to the remote node by using the ping
command immediately after the failure.

If the ping command fails or shows a high rate of packet loss, follow the steps
in Section 6.5.3 for an on-link node, or in Section 6.5.4 for an off-link node.

2. If your application transfers a large amount of data over the network, verify
that large or fragmented messages are being handled correctly by using the
ping -s 2000 nodename command.

If the ping command fails, trace the path to the remote node with 1200-byte
packets by using the traceroute nodename 1200 command. All IPv6 links
should support message sizes of at least 1280 bytes. This command might
show the location of the problem in the network.

3. Run the application with different client and server nodes located on different
links in the network.

6–10 Solving IPv6 Problems

7
Application Interface to Sockets

The TCP/IP Services for OpenVMS programming interface supports the Berkeley
Software Distribution (BSD) socket programming interface. It also supports the
basic sockets interface extensions for Internet Protocol Version 6 (IPv6) as defined
in RFC 3493 and the advanced sockets application programming interfaces as
defined in draft RFC 3542. The basic syntax of socket functions remains the
same. Existing IPv4 applications will continue to operate as before, and IPv6
applications can interoperate with IPv4 applications.

To support IPv6, TCP/IP Services for OpenVMS provides the following:

• An address family AF_INET6, used by the socket function.

• A protocol level IPPROTO_IPV6, used by the setsockopt and getsockopt
functions

• Socket options used by the getsockopt and setsockopt functions

• Header files that define new structures, constants, and variables.

• Library functions

This chapter describes the following aspects of the IPv6 API:

• Structures

• Header files

• Socket options

• Basic interface functionality

• Advanced interface functionality

• Guidelines for compiling and linking

• IPv6 library functions

7.1 Structures
The following structures support IPv6. The header file containing each structure
is listed. Consult the appropriate header file for details on the definitions of each
structure.

7.1.1 in6_addr Structure
The in6_addr, defined in the IN6.H header file, supports IPv6.

The address is stored in network byte order as an array of sixteen 8-bit elements.

A wildcard address, defined in network byte order, has the following forms:

A global variable, in6addr_any, that is an in6_addr structure.

Application Interface to Sockets 7–1

Application Interface to Sockets
7.1 Structures

A symbolic constant, IN6ADDR_ANY_INIT, that can be used to initialize an
in6_addr structure only when it is declared.

A loopback address, defined in network byte order, has the following forms:

A global variable, in6addr_loopback, that is an in6_addr structure.

A symbolic constant, IN6ADDR_LOOPBACK_INIT, that can be used to
initialize an in6_addr structure only when it is declared.

7.1.2 sockaddr_in6 Structure
The sockaddr_in6 structure, defined in IN6.H header file, is the protocol-specific
address data structure for IPv6.

7.1.3 msghdr Structure
This data structure enables applications to send and receive ancillary data using
the sendmsg and recvmsg functions. This data structure, which is defined in the
SOCKET.H header file, also allows AF_INET sockets and raw AF_INET6 sockets
to receive certain data.

For IPv4, see the Compaq TCP/IP Services for OpenVMS Sockets API and System
Services Programming manual for the descriptions of the IP_RECVDSTADDR and
IP_RECVOPTS socket options.

For IPv6, Section 7.3 describes the IPV6_RECVHOPOPTS, IPV6_RECVDSTOPTS, and
IPV6_RECVRTHDR options.

7.1.4 cmsghdr Structure
The cmsghdr structure describes ancillary data objects transferred by the sendmsg
and recvmsg functions.

The msg_control member of the msghdr data structure points to the ancillary
data that are contained in a cmsghdr structure. Typically, only one data object is
passed in a cmsghdr structure. However, the IPv6 advanced sockets API enables
the sendmsg and recvmsg functions to pass multiple objects. See Section 7.5.1 for
information about using raw IPv6 sockets.

The data structure is defined in the SOCKET.H header file.

7.2 Header Files
Header files are provided by the C Run-Time Library (DECC$RTLDEF.TLB).
Updated header files may also appear in the TCPIP$EXAMPLES: directory. If
you use the /INCLUDE=TCPIP$EXAMPLES: qualifier in your compile command,
the header files in TCPIP$EXAMPLES: supersede those in DECC$RTLDEF.TLB.

7.3 Socket Options
The following socket options supporting IPv6 supplement those listed in the
Compaq TCP/IP Services for OpenVMS Sockets API and System Services
Programming manual. The IPv6 socket options do not have system service
symbols.

7–2 Application Interface to Sockets

Application Interface to Sockets
7.3 Socket Options

Table 7–1 Socket Options

Sockets API Symbol Description

IPV6_RECVPKTINFO Source and destination IPv6 address, and sending and
receiving interface.

IPV6_RECVHOPLIMIT Hop limit.

IPV6_RECVRTHDR Routing header.

IPV6_RECVHOPOPTS Hop-by-hop options.

IPV6_RECVDSTOPTS Destination options.

IPV6_CHECKSUM For raw IPv6 sockets other than ICMPv6 raw sockets,
causes the kernel to compute and store checksum for
output and to verify the received checksum on input.
Discards the packet if the checksum is in error.

IPV6_ICMP6_FILTER Fetches and stores the filter associated with the
ICMPv6 raw socket using getsockopt function and
setsockopt function.

IPV6_UNICAST_HOPS Sets the hop limit for all subsequent unicast packets
sent on a socket. You can also use this option with the
getsockopt function to determine the current hop
limit for a socket.

IPV6_MULTICAST_IF Sets the interface to use for outgoing multicast
packets.

IPV6_MULTICAST_HOPS Sets the hop limit for outgoing multicast packets.

IPV6_MULTICAST_LOOP Controls whether to deliver outgoing multicast packets
back to the local application.

IPV6_JOIN_GROUP Joins a multicast group on the specified interface.

IPV6_LEAVE_GROUP Leaves a multicast group on the specified interface.

7.4 Basic API
The basic IPv6 API focuses on interoperability between IPv4 and IPv6
applications. The API provides functions to identify interfaces, socket options
to support IPv6 multicast datagrams, and functions to translate and convert
addresses.

7.4.1 Interface Identification
To identify the interface on which a datagram is received, on which a datagram
is to be sent, and on which a multicast group is joined, the API uses a small,
positive integer called an interface index. The kernel assigns this integer to an
interface when the interface is initialized.

The API defines the following new functions:

Function Description

if_nametoindex() Maps an interface name to its corresponding index.

if_indextoname() Maps an interface index to its corresponding name.

if_nameindex() Returns an array of all interface names and indexes.

if_freenameindex() Frees dynamic memory allocated by if_nameindex()
to the array of interface names and indexes.

Application Interface to Sockets 7–3

Application Interface to Sockets
7.4 Basic API

7.4.2 IPv6 Multicast Datagrams
7.4.2.1 Sending IPv6 Multicast Datagrams

To send IPv6 multicast datagrams, an application indicates the multicast group to
send to by specifying an IPv6 multicast address in a sendto function. The system
maps the specified IPv6 destination address to the appropriate Ethernet or FDDI
multicast address prior to transmitting the datagram.

An application can explicitly control multicast options with arguments to the
setsockopt function. The following options can be set by an application using the
setsockopt function:

• Hop limit (IPV6_MULTICAST_HOPS)

• Multicast interface (IPV6_MULTICAST_IF)

• Disabling loopback of local delivery (IPV6_MULTICAST_LOOP)

Note

The examples here illustrate how to use the setsockopt function options
that apply to IPv6 multicast datagrams only.

The IPV6_MULTICAST_HOPS option to the setsockopt function allows an
application to specify a value between 0 and 255 for the hop limit field.

Multicast datagrams with a hop limit value of 0 restrict distribution of the
multicast datagram to applications running on the local host. Multicast
datagrams with a hop limit value of 1 are forwarded only to hosts on the
local link. If a multicast datagram has a hop limit value greater than 1 and
a multicast router is attached to the sending host’s network, multicast datagrams
can be forwarded beyond the local link. Multicast routers forward the datagram
to known networks that have hosts belonging to the specified multicast group.
The hop limit value is decremented by each multicast router in the path. When
the hop limit value is decremented to 0, the datagram is not forwarded further.

The following example shows how to use the IPV6_MULTICAST_HOPS option to
the setsockopt function:

u_char hops;
hops=2;

if (setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &hops,
sizeof(hops)) < 0)
perror("setsockopt: IPV6_MULTICAST_HOPS error");

A datagram addressed to an IPv6 multicast address is transmitted from the
default network interface unless the application specifies that an alternate
network interface is associated with the socket. The default interface is
determined by the interface associated with the default route in the kernel
routing table or by the interface associated with an explicit route, if one
exists. Using the IPV6_MULTICAST_IF option to the setsockopt function,
an application can specify a network interface other than that specified by the
route in the kernel routing table.

The following example shows how to use the IPV6_MULTICAST_IF option to the
setsockopt function to specify an interface other than the default:

7–4 Application Interface to Sockets

Application Interface to Sockets
7.4 Basic API

u_int if_index = 1;
.
.
.
if (setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_IF, &if_index,

sizeof(if_index)) < 0)
perror ("setsockopt: IPV6_MULTICAST_IF error");

else
printf ("new interface set for sending multicast datagrams\n");

The if_index parameter specifies the interface index of the desired interface,
or specifies 0 to select a default interface. You can use the if_nametoindex()
function to find the interface index.

If a multicast datagram is sent to a group that has the sending node as a member,
a copy of the datagram is, by default, looped back by the IP layer for local
delivery. The IPV6_MULTICAST_LOOP option to the setsockopt() function
allows an application to disable this loopback delivery.

The following example shows how to use the IPV6_MULTICAST_LOOP option to
the setsockopt() function:

u_char loop=0;
if (setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_LOOP, &loop,

sizeof(loop)) < 0)
perror("setsockopt: IPV6_MULTICAST_LOOP error");

If the value of loop is 0, loopback is disabled; if the value of loop is 1, loopback is
enabled. For performance reasons, you should disable the default by setting loop
to 0, unless applications on the same host must receive copies of the datagrams.

7.4.2.2 Receiving IPv6 Multicast Datagrams
Before a node can receive IPv6 multicast datagrams destined for a particular
multicast group other than the All Nodes group, an application must direct the
node to become a member of that multicast group.

This section describes how an application can direct a node to add itself to and
remove itself from a multicast group.

An application can direct the node it is running on to join a multicast group by
using the IPV6_JOIN_GROUP option to the setsockopt() function:

struct ipv6_mreq imr6;
.
.
.
imr6.ipv6mr_interface = if_index;
if (setsockopt(sock, IPPROTO_IPV6, IPV6_JOIN_GROUP,

(char *)&imr6, sizeof(imr6)) < 0)
perror("setsockopt: IPV6_JOIN_GROUP error");

The imr6 parameter has the following structure:

structipv6_mreq {
struct in6_addr ipv6mr_multiaddr; /* IP multicast address of

group */
unsigned int ipv6mr_interface; /* local interface index*/
};

Application Interface to Sockets 7–5

Application Interface to Sockets
7.4 Basic API

Each multicast group membership is associated with a particular interface. It
is possible to join the same group on multiple interfaces. The ipv6mr_interface
variable can be specified with a value of 0, which allows an application to choose
the default multicast interface. Alternatively, specifying one of the host’s local
interfaces allows an application to select a particular multicast-capable interface.
The maximum number of memberships that can be added on a single socket is
subject to the IPV6_MAX_MEMBERSHIPS value, which is defined in the <in.h>
header file.

To drop membership from a particular multicast group, use the IPV6_LEAVE_
GROUP option to the setsockopt function:

struct ipv6_mreq imr6;
if (setsockopt(sock, IPPROTO_IPV6, IPV6_LEAVE_GROUP, &imr6,

sizeof(imr6)) < 0)
perror("setsockopt: IPV6_LEAVE_GROUP error");

The imr6 parameter contains the same structure values used for adding
membership.

If multiple sockets request that a node join a particular multicast group, the node
remains a member of that multicast group until the last of those sockets is closed.

To receive multicast datagrams sent to a specific UDP port, the receiving socket
must have bound to that port using the bind system call. More than one process
can receive UDP datagrams destined for the same port if the bind function is
preceded by a setsockopt function that specifies the SO_REUSEPORT option.

Delivery of IP multicast datagrams to SOCK_RAW sockets is determined by the
protocol type of the destination.

7.4.3 Address Translation and Conversion Functions
The following functions are available for node name to address translation:

Function Description

gethostbyname() Returns IPv4 addresses.

getaddrinfo() Protocol-independent function for mapping names to
addresses.

freeaddrinfo() Returns addrinfo() structures and dynamic storage
to the system.

The following functions are available for address to node name translation:

Function Description

gethostbyaddr() Returns a node name for an IPv4 address.

getnameinfo() Protocol-independent function for mapping addresses
to names.

freeaddrinfo() Returns addrinfo() structures and dynamic storage
to the system.

The following address conversion functions convert both IPv4 and IPv6 addresses.

7–6 Application Interface to Sockets

Application Interface to Sockets
7.4 Basic API

Function Description

inet_pton() Converts an address in its standard text presentation
form to its numeric binary form, in network byte order.

inet_ntop() Converts a numeric address to a text string suitable
for presentation.

7.4.4 Address-Testing Macros
Table 7–2 lists the currently defined address-testing macros and the return value
for a valid test. To use these macros, include the following file in your application:

#include <in.h>

Table 7–2 Summary of Address-Testing Macros

Macro Return

IN6_IS_ADDR_UNSPECIFIED True, if specified type.

IN6_IS_ADDR_LOOPBACK True, if specified type.

IN6_IS_ADDR_MULTICAST True, if specified type.

IN6_IS_ADDR_LINKLOCAL True, if specified type.

IN6_IS_ADDR_SITELOCAL True, if specified type.

IN6_IS_ADDR_V4MAPPED True, if specified type.

IN6_IS_ADDR_V4COMPAT True, if specified type.

IN6_IS_ADDR_MC_NODELOCAL True, if specified scope.

IN6_IS_ADDR_MC_LINKLOCAL True, if specified scope.

IN6_IS_ADDR_MC_SITELOCAL True, if specified scope.

IN6_IS_ADDR_MC_ORGLOCAL True, if specified scope.

IN6_IS_ADDR_MC_GLOBAL True, if specified scope.

IN6_ARE_ADDR_EQUAL True, if addresses are equal.

7.5 Advanced API
The advanced API provides support for advanced applications that may need
knowledge of IPv6 headers. These applications commonly use raw sockets to
access IPv6 or ICMPv6 header fields. The advanced interface provides the
following:

• Support for portable interfaces for applications that use raw sockets under
IPv6

• Functions to access router headers

• Functions to access option headers

Application Interface to Sockets 7–7

Application Interface to Sockets
7.5 Advanced API

7.5.1 Using IPv6 Raw Sockets
Raw sockets are used in both IPv4 and IPv6 to bypass the TCP and UDP
transport layers.

Table 7–3 describes the principal differences between IPv4 and IPv6 raw
sockets.

Table 7–3 Differences Between IPv4 and IPv6 Raw Sockets

IPv4 IPv6

Use Access ICMPv4, IGMPv4, and to
read and write IPv4 datagrams
that contain a protocol field the
kernel does not recognize.

Access ICMPv6
and to read
and write IPv6
datagrams that
contain a Next
Header field the
kernel does not
recognize.

Byte order Not specified. Network byte
order for all data
sent and received.

Send and receive complete
packets

Yes No. Uses ancillary
data objects to
transfer extension
headers and hop
limit information.

For output, applications can modify all fields, except for the flow label field, by
using ancillary data or socket options, or both.

For input, applications can access all fields, except for the flow label, version
number, and Next Header fields, and all extension headers by using ancillary
data.

For IPv6 raw sockets other than ICMPv6 raw sockets, the application must set
the IPV6_CHECKSUM socket option. For example:

int offset = 2;
setsockopt (fd, IPPROTO_IPV6, IPV6_CHECKSUM, &offset, sizeof(offset));

This enables the kernel to compute and store a checksum for output and to verify
the checksum on input. This relieves the application from having to perform
source address selection on all outgoing packets. This socket option is disabled by
default. You can explicitly disable this option by setting the offset variable to -1.

Using IPv6 raw sockets, an application can access the following information:

• ICMPv6 messages

• IPv6 header

• Routing header

• IPv6 options headers: hop-by-hop options header and destination options
header

The following sections describe how to access this information.

7–8 Application Interface to Sockets

Application Interface to Sockets
7.5 Advanced API

7.5.1.1 Accessing ICMPv6 Messages
An ICMPv6 raw socket is a socket that is created by calling the socket function
with the PF_INET6, SOCK_RAW, and IPPROTO_ICMPV6 arguments.

The kernel calculates and inserts the ICMPv6 checksum for all outbound ICMPv6
packets and verifies the checksum for all received packets. If the received
checksum is incorrect, the packet is discarded.

Because ICMPv6 is a superset of ICMPv4, an ICMPv6 raw socket can receive
many more messages than an ICMPv4 raw socket. By default, when you create
an ICMPv6 raw socket, it passes all ICMPv6 message types to an application. An
application, however, does not need access to all messages. An application can
specify the ICMPv6 message types it wants passed by creating an ICMPv6 filter.

The ICMPv6 filter has a datatype of struct icmp6_filter. Use getsockopt() to
retrieve the current filter and setsockopt() to store the filter. For example, to
enable filtering of ICMPv6 messages, use the ICMP6_FILTER option, as follows:

struct icmp6_filter myfilter;

setsockopt (fd, IPPROTO_ICMPV6, IPV6_FILTER, &(myfilter), (sizeof)(myfilter));

The value of myfilter is an ICMPv6 message type between 0 and 255.

Table 7–4 describes the ICMPv6 filter macros.

Table 7–4 ICMPv6 Filtering Macros

Macro Description

ICMP6_FILTER_SETPASSALL Passes all ICMPv6 messages to an application.

ICMP6_FILTER_SETBLOCKALL Blocks all ICMPv6 messages from being passed to an
application.

ICMP6_FILTER_SETPASS Passes ICMPv6 messages of a given type to an
application.

ICMP6_FILTER_SETBLOCK Blocks ICMPv6 messages of a given type from being
passed to an application.

ICMP6_FILTER_WILLPASS Returns true, if specified message type is passed to
application.

ICMP6_FILTER_WILLBLOCK True, if the specified message type is blocked from
being passed to an application.

To clear an installed filter, call setsockopt() for the ICMP_FILTER option with a
zero-length filter.

The kernel does not perform any validity checks on message type, message
content, or packet structure. The application is responsible for checking them.

7.5.1.2 Accessing the IPv6 Header
When using IPv6 raw sockets, applications must be able to receive the IPv6
header content. To receive this optional information, use the setsockopt()
function with the appropriate socket option.

Table 7–5 describes the socket options for receiving optional information.

Application Interface to Sockets 7–9

Application Interface to Sockets
7.5 Advanced API

Table 7–5 Optional Information and Socket Options

Optional Information Socket Option cmsg_type

Source and destination IPv6
address, and sending and
receiving interface

IPV6_RECVPKTINFO IPV6_PKTINFO

Hop limit IPV6_RECVHOPLIMIT IPV6_HOPLIMIT
Routing header IPV6_RECVRTHDR IPV6_RTHDR
Hop-by-Hop options IPV6_RECVHOPOPTS IPV6_HOPOPTS
Destination options IPV6_RECVDSTOPTS IPV6_DSTOPTS

The recvmsg() function returns the received data as one or more ancillary data
objects in a cmsghdr data structure.

To determine the value of a socket option, use the getsockopt() function with
the corresponding option. If the IPV6_RECVPKTINFO option is not set, the function
returns an in6_pktinfo data structure with ipi6_addr set to in6addr_any and
ipi6_addr set to zero. For other options, the function returns an option_len
value of zero if there is no option value.

An application can receive the following IPv6 header information as ancillary
data from incoming packets:

• Destination IPv6 address

• Interface index

• Hop limit

The IPv6 address and interface index are contained in a in6_pktinfo data
structure that is received as ancillary data with the recvmsg() function. the
in6_pktinfo data structure is defined in in.h. The tasks associated with the
IPv6 header are:

• Receiving an IPv6 address

If the IPV6_RECVPKTINFO option is enabled, the recvmsg() function returns
a in6_pktinfo data structure as ancillary data. The ipi6_addr member
contains the destination IPv6 address from the received packet. For TCP
sockets, the destination address is the local address of the connection.

• Receiving an interface

If the IPV6_RECVPKTINFO option is enabled, the recvmsg() function returns
a in6_pktinfo data structure as ancillary data. The ipi6_ifindex member
contains the interface index of the interface that received the packet.

• Receiving a hop limit

If the IPV6_RECVHOPLIMIT option is enabled, the recvmsg() function returns
a cmsghdr data structure as ancillary data. The cmsg_type member is
IPV6_HOPLIMIT and the cmsg_data[] member contains the first byte of
the integer hop limit.

7–10 Application Interface to Sockets

Application Interface to Sockets
7.5 Advanced API

7.5.1.3 Accessing the IPv6 Routing Header
The advanced sockets API enables you to access the IPv6 routing header. The
routing header is an IPv6 extension header that enables an application to perform
source routing. RFC 2460 defines the type 0 routing header, which supports up to
127 intermediate nodes, or 128 hops.

Table 7–6 describes the sockets calls that an application uses to build and
examine routing headers.

Table 7–6 Socket Calls for Routing Header Name Description

Function Description

inet6_rth_space() Returns the number of bytes required for a routing
header.

inet6_rth_init() Initializes buffer data for a routing header.

inet6_rth_add() Adds one address to a routing header.

inet6_rth_reverse() Reverses the order of fields in a routing header.

inet6_rth_segments() Returns the number of segments, or addresses, in a
routing header.

inet6_rth_getaddr() Fetches one address from a routing header.

The tasks associated with the routing header are:

• Receiving a routing header

To receive a routing header, an application calls setsockopt() with the
IPV6_RECVRTHDR option enabled.

For each received routing header, the kernel passes one ancillary data object
in a cmsghdr structure with the cmsg_type member set to IPV6_RTHDR. An
application processes a routing header by calling inet6_rth_reverse(),
inet6_rth_segments(), and inet6_rth_getaddr().

• Sending a routing header

To send a routing header, an application specifies the header either as
ancillary data in a call to sendmsg() or by calling setsockopt(). An
application can remove a sticky routing header by calling setsockopt()
for the IPV6_RTHDR option and specifying a option length of zero.

When using ancillary data,the application sets cmsg_level member
to IPPROTO_IPV6 and the cmsg_type member to IPV6_RTHDR. Use the
inet6_rth_space(), inet6_rth_init(), and inet6_rth_add() calls to build
the routing header.

When an application specifies a routing header, the destination address
specified in a call to the connect(), sendto(), or sendmsg() function is the
final destination of the datagram. Therefore, the routing header contains the
addresses of all intermediate nodes.

Because of the order of extension headers specified in RFC 2460, an
application can specify only one outgoing routing header.

Application Interface to Sockets 7–11

Application Interface to Sockets
7.5 Advanced API

7.5.1.4 Accessing the IPv6 Options Headers
The advanced sockets API enables applications to access the following IPv6
options headers:

• Hop-by-hop header

A single hop-by-hop options header can contain a variable number of hop-
by-hop options. Each option is encoded with a type, length, and value (TLV).
The application uses sticky options or ancillary data to communicate this
information with the kernel.

• Destination header

One or more destination options headers can contain a variable number of
destination options. A destination options header appearing before a routing
header is processed by the first and subsequent destinations specified in the
routing header. A destination option appearing after the routing header is
processed only by the final destination. Each option is encoded with a type,
length, and value (TLV). The application uses sticky options or ancillary data
to communicate this information with the kernel.

See RFC 2460 for additional information about the alignment requirements of the
headers and ordering of the extensions headers.

Table 7–7 lists the sockets calls that an application uses to build and examine
hop-by-hop and destination headers.

Table 7–7 Socket Calls for Options Headers

Function Description

inet6_opt_init() Initializes buffer data for options.

inet6_opt_append() Adds an option to the options header.

inet6_opt_finish() Finishes adding options to the options header.

inet6_opt_set_val() Adds one component of the option content to the
options header.

inet6_opt_next() Extracts the next option from the options header.

inet6_opt_find() Extracts an option of a specified type from the options
header.

inet6_opt_get_val() Retrieves one component of the option content from
the options header.

The tasks associate with options headers are:

• Receiving hop-by-hop options

To receive a hop-by-hop options header, an application calls setsockopt()
with the IPV6_RECVHOPOPTS option enabled.

When using ancillary data, the kernel passes a hop-by-hop options header to
the application and sets the cmsg_level member to IPPROTO_IPV6 and the
cmsg_type member to IPV6_HOPOPTS.

An application retrieves these options by calling inet6_opt_next(),
inet6_opt_find(), and inet6_opt_get_val().

• Sending hop-by-hop options

7–12 Application Interface to Sockets

Application Interface to Sockets
7.5 Advanced API

To send a hop-by-hop options header, an application specifies the header
either as ancillary data in a call to sendmsg() or by calling setsockopt()
An application can remove a sticky hop-by-hop options header by calling
setsockopt() for the IPV6_HOPOPTS option and specifying a option length of
zero (0).

When using ancillary data, all hop-by-hop options are specified by a
single ancillary data object. The application sets cmsg_level member
to IPPROTO_IPV6 and the cmsg_type member to IPV6_HOPOPTS. Use the
inet6_opt_init(), inet6_opt_append(), inet6_opt_finish(), and
inet6_opt_set_val() calls to build the option header.

• Receiving destination options

To receive a destination options header, an application calls setsockopt()
with the IPV6_RECVDSTOPTS option enabled. The kernel passes each
destination option to the application as one ancillary data object and sets
the cmsg_level member to IPPROTO_IPV6 and the cmsg_type member to
IPV6_DSTOPTS.

An application processes these options by calling inet6_opt_next(),
inet6_opt_find(), and inet6_opt_get_val().

• Sending destination options

To send a destination options header, an application specifies the header
either as ancillary data in a call to sendmsg() or by calling setsockopt().

An application can remove a sticky hop-by-hop options header by calling
setsockopt() for either the IPV6_RTHDRDSTOPTS or the IPV6_DSTOPTS option
and specifying a option length of zero (0).

In accordance with RFC 2460, the API assumes that the extension headers
are in order. Only one set of destination options can precede a routing header
and only one set of destination options can follow a routing header.

Each set can contain one or more options, but each set is considered a single
extension header.

When using ancillary data, the application passes a destination options
header to the kernel in one of the following ways:

For destination options that precede a routing header, the application
sets the cmsg_level member to IPPROTO_IPV6 and the cmsg_type member
to IPV6_RTHDRDSTOPTS. Any setsockopt() or ancillary data is ignored
unless the application explicitly specifies its own routing header.

For destination options that follow a routing header or when no routing
header is specified, the application sets the cmsg_level member to
IPPROTO_IPV6 and the cmsg_type member to IPV6_DSTOPTS.

An application builds these options by calling inet6_opt_init(),
inet6_opt_append(), inet6_opt_finish(), and inet6_opt_set_val().

7.6 Guidelines for Compiling and Linking IPv6 Applications
To compile an IPv6 application that contains #includes of the following form

#include <path/file.h>

Application Interface to Sockets 7–13

Application Interface to Sockets
7.6 Guidelines for Compiling and Linking IPv6 Applications

that is, an include file specification preceded by "path/", you need to set up the
following environment:

$ DEFINE DECC$SYSTEM_INCLUDE TCPIP$EXAMPLES:
$ DEFINE ARPA TCPIP$EXAMPLES:
$ DEFINE NET TCPIP$EXAMPLES:
$ DEFINE NETINET TCPIP$EXAMPLES:
$ DEFINE SYS TCPIP$EXAMPLES:

If your IPv6 application does not contain any include statements of that format,
the DEFINE statements are not necessary.

To use certain features of the basic and advanced APIs, you must take special
measures when compiling and linking.

Under either of these conditions:

• Using getaddrinfo() with OpenVMS 7.3-1 or earlier

• Using any of the advanced APIs with any version of OpenVMS

You should do both of the following:

• Add /INCLUDE_DIRECTORY=TCPIP$EXAMPLES: to the compile command
line. This allows the compiler to use the updated header files that exist in
the TCPIP$EXAMPLES directory which are provided by TCP/IP Services
for OpenVMS. Otherwise, the compiler will use the header files from the C
Run-Time Library, which may not contain the information needed or which
may contain out-of-date information.

• Add TCPIP$LIBRARY:TCPIP$LIB/LIBRARY to the link command line.
This allows the linker to resolve references to routines from TCPIP$LIB.OLB
provided by TCP/IP Services for OpenVMS. This is necessary because routines
have not yet been implemented in the C Run-Time library.

See Section 8.6 for examples of the compile and link command lines.

7.7 IPv6 Library Functions API
This section describes functions that comprise the Sockets API that support IPv6
and that are supported by TCP/IP Services.

7–14 Application Interface to Sockets

Sockets API Reference
freeaddrinfo()

freeaddrinfo()

This function frees system resources used by an address information structure.

Format

#include <netdb.h>

void freeaddrinfo (struct addrinfo *ai);

Arguments

ai

Points to the addrinfo structure to be freed.

Description

This function frees an addrinfo structure and any dynamic storage pointed to
by the structure. The process continues until the function encounters a NULL
ai_next pointer.

Application Interface to Sockets 7–15

Sockets API Reference
gai_strerror()

gai_strerror()

Provides a descriptive text string that corresponds to an EAI_xxx error value.

Format

#include <netdb.h>

const char *gai_strerror (int ecode);

Arguments

ecode

The ecode argument is one of the EAI_xx values defined for the getaddrinfo and
getnameinfo functions.

Description

The gai_strerror() function returns a descriptive text string that corresponds
to an EAI_xxx error value. The return value points to a string that describes the
error. If the argument is not one of the EAI_xx values, the function still returns a
pointer to a string whose contents indicates an unknown error.

Return Values

X text string
-1 Failure

Errors

EAI_AGAIN The name could not be resolved at this time.
Future attempts may succeed.

EAI_BADFLAGS The flags parameter had an invalid value.
EAI_FAIL A nonrecoverable error occurred when attempting

to resolve the name.
EAI_FAMILY The address family was not recognized.
EAI_MEMORY There was a memory allocation failure when

trying to allocate storage for the return value.
EAI_NONAME The name does not resolve for the supplied

parameters. Neither nodename nor servname
were supplied. At least one of these must be
supplied.

EAI_SERVICE The service passed was not recognized for the
specified socket type.

EAI_SOCKTYPE The intended socket type was not recognized.
EAI_SYSTEM A system error occurred; the error code can be

found in errno.

7–16 Application Interface to Sockets

Sockets API Reference
getaddrinfo()

getaddrinfo()

Takes a service location (nodename) or a service name (servname), or both, and
returns a pointer to a linked list of one or more structures of type addrinfo.

Format

#include <socket.h>

#include <netdb.h>

int getaddrinfo (const char *nodename, const char *servname, const struct addrinfo *hints, struct
addrinfo **res);

Arguments

nodename

Points to a network node name, alias, or numeric host address (for example, an
IPv4 dotted-decimal address or an IPv6 hexadecimal address). An IPv6 nonglobal
address with an intended scope zone may also be specified. See Section 1.2.4 for
more information. This is a null-terminated string or NULL. NULL means the
service location is local to the caller. The nodename and servname arguments
cannot both be NULL.

servname

Points to a network service name or port number. This is a null-terminated string
or NULL; NULL returns network-level addresses for the specified nodename. The
nodename and servname arguments cannot both be NULL.

hints

Points to an addrinfo structure that contains information about the type of
socket, address family, or protocol the caller supports. The <netdb.h> header
file defines the addrinfo structure. If hints is a null pointer, the behavior is the
same as if addrinfo contained the value 0 for the ai_flags, ai_socktype and
ai_protocol members and AF_UNSPEC for the ai_family member.

res

Points to a linked list of one or more addrinfo structures.

Description

The getaddrinfo() routine takes a service location (nodename) or a service
name (servname), or both, and returns a pointer to a linked list of one or more
structures of type addrinfo. Its members specify data obtained from either the
local hosts database TCPIP$ETC:IPNODES.DAT file, local TCPIP$HOSTS.DAT
file, or one of the files distributed by DNS/BIND.

The <netdb.h> header file defines the addrinfo structure.

Application Interface to Sockets 7–17

Sockets API Reference
getaddrinfo()

If the hints argument is non-NULL, all addrinfo structure members other than
the following members must be zero or a NULL pointer:

• ai_flags

Controls the processing behavior of getaddrinfo(). See Table 7–8 for a
complete description of the flags.

• ai_family

Specifies to return addresses for use with a specific protocol family.

If you specify a value of AF_UNSPEC, the routine returns addresses for
any protocol family that can be used with nodename or servname.

If the value is not AF_UNSPEC and ai_protocol is not zero, the routine
returns addresses for use only with the specified protocol family and
protocol.

If the application handles only IPv4, set this member of the hints
structure to PF_INET.

If ai_family is set to PF_INET6, the function looks only in the
TCPIP$ETC:IPNODES.DAT file and the lookup fails in the BIND
database.

• ai_socktype

Specifies a socket type for the given service. If you specify a value of 0, you
will accept any socket type. This resolves the service name for all socket
types and returns all successful results.

• ai_protocol

Specifies a network protocol. If you specify a value of 0, you will accept any
protocol. If the application handles only TCP, set this member to IPPROTO_
TCP.

7–18 Application Interface to Sockets

Sockets API Reference
getaddrinfo()

Table 7–8 describes the ai_flags member values.

Table 7–8 ai_flags Member Values

Flag Value Description

AI_V4MAPPED If af value is AF_INET: If af value is AF_
INET6:

Ignored. Searches for AAAA
records.
The lookup sequence is
LOCAL host database,
TCPIP$ETC:IPNODES.DAT,
BIND database.
The lookup for a
particular type of
record, for example
an AAAA record, will
be performed in each
database before moving
on to perform a lookup
for the next type of
record.
If AAAA records found,
returns IPv6 addresses;
no search for A records
is performed.
If no AAAA records
found, searches for A
records.
If A records found,
returns IPv4-mapped
IPv6 addresses.
If no A records found,
returns a NULL pointer.

AI_ALL | AI_
V4MAPPED

If af value is AF_INET: If af value is AF_
INET6:

(continued on next page)

Application Interface to Sockets 7–19

Sockets API Reference
getaddrinfo()

Table 7–8 (Cont.) ai_flags Member Values

Flag Value Description

Ignored. Searches for AAAA
records.
The lookup sequence is
LOCAL host database,
TCPIP$ETC:IPNODES.DAT,
BIND database.
The lookup for a
particular type of
record, for example
an AAAA record, will
be performed in each
database before moving
on to perform a lookup
for the next type of
record.
If AAAA records found,
IPv6 addresses will
be included with the
returned addresses.
Searches for A records.
If A records found,
returns IPv4-mapped
IPv6 addresses and also
any IPv6 addresses that
were found with the
AAAA record search.
If no A records found,
returns a NULL pointer.

AI_CANONNAME If the nodename argument is not NULL, the function
searches f or the specified node’s canonical name.
Upon successful completion, the ai_canonname member
of the first addrinfo structure in the linked list points to
a null-terminated string containing the canonical name
of the specified node name.
If the nodename argument is an address literal, the
ai_cannonname member will refer to the nodename
argument that has been converted to its numeric binary
form, in network byte order.
If the canonical name is not available, the ai_canonname
member refers to the nodename argument or to a string
with the same contents.
The ai_flags field contents are undefined.

AI_NUMERICHOST A non-NULL node name string must be a numeric host
address string.
Resolution of the service name is not performed.

(continued on next page)

7–20 Application Interface to Sockets

Sockets API Reference
getaddrinfo()

Table 7–8 (Cont.) ai_flags Member Values

Flag Value Description

AI_NUMERICSERV A non-NULL service name string must be a numeric
port string.
Resolution of the service name is not performed.

AI_PASSIVE Returns a socket address structure that your application
can use in a call to bind().
If the nodename parameter is a NULL pointer, the IP
address portion of the socket address structure is set to
INADDR_ANY (for an IPv4 address) or IN6ADDR_ANY_
INIT (for an IPv6 address).
If not set, returns a socket address structure that your
application can use to call connect() (for a connection-
oriented protocol) or either connect(), sendto(),
or sendmsg() (for a connectionless protocol). If the
nodename argument is a NULL pointer, the IP address
portion of the socket address structure is set to the
loopback address.

You can use the flags in any combination to achieve finer control of the translation
process. The AI_ADDRCONFIG flag is typically used in combination with other
flags to modify the search based on the source address or addresses configured on
the system. The following table describes how the AI_ADDRCONFIG flags works
by itself.

Flag Value If af Value is AF_INET If af Value is AF_INET6

AI_ADDRCONFIG If an IPv4 source address is
configured, searches for A
records.

If an IPv6 source
address is configured,
searches for AAAA
records.

Most applications will want to use the combination of the AI_ADDRCONFIG and
AI_V4MAPPED flags to control their search. To simplify this for the programmer,
the AI_DEFAULT symbol, which is a logical OR of AI_ADDRCONFIG and AI_
V4MAPPED, is defined. The following table describes how AI_DEFAULT directs
the search.

Application Interface to Sockets 7–21

Sockets API Reference
getaddrinfo()

Flag Value If af Value is AF_INET If af Value is AF_INET6

AI_DEFAULT Searches for A records only
if an IPv4 source address is
configured on the system.
If found, returns IPv4
addresses. If not, returns
a NULL pointer.

Searches for AAAA
records only if an
IPv6 source address
is configured on the
system. If found,
returns IPv6 addresses.
If not and if an IPv4
address is configured
on the system, searches
for A records. If found,
returns IPv4-mapped
IPv6 addresses. If not,
returns a NULL pointer.

These flags are defined in <netdb.h>.

addrinfo Structure Processing

Upon successful return, getaddrinfo() returns a pointer to a linked list of
one or more addrinfo structures. The application can process each addrinfo
structure in the list by following the ai_next pointer until a NULL pointer is
encountered. In each returned addrinfo structure, the ai_family, ai_socktype,
and ai_protocol members are the corresponding arguments for a call to the
socket() function. The ai_addr member points to a filled-in socket address
structure whose length is specified by the ai_addrlen member.

Return Values

0 (zero) Success
nonzero value Failure

7–22 Application Interface to Sockets

Sockets API Reference
getnameinfo()

getnameinfo()

Maps addresses to names in a protocol-independent way.

Format

#include <socket.h>

#include <netdb.h>

int getnameinfo (const struct sockaddr *sa, size_t salen, char *node, size_t nodelen, char *service,
size_t servicelen, int flags);

Arguments

sa

Points either to a sockaddr_in structure (for IPv4) or to a sockaddr_in6 structure
(for IPv6) that holds the IP address and port number.

salen

Specifies the length of either the sockaddr_in structure or the sockaddr_in6
structure.

node

Points to a buffer in which to receive the null-terminated network node name
or alias corresponding to the address contained in the sa. The node name may
be suffixed with an intended scope zone as described in Section 1.2.4. A NULL
pointer instructs the routine not to return a node name. The node parameter
and service parameter cannot both be zero.

nodelen

Specifies the length of the node buffer. A value of zero instructs the routine not
to return a node name.

service

Points to a buffer in which to receive the null-terminated network service name
associated with the port number contained in sa. A NULL pointer instructs
the routine not to return a service name. The node parameter and service
parameter cannot both be 0.

servicelen

Specifies the length of the service buffer. A value of zero instructs the routine
not to return a service name.

Application Interface to Sockets 7–23

Sockets API Reference
getnameinfo()

flags

Specifies changes to the routine’s default actions. By default, the routine searches
for the fully qualified domain name of the node in the host’s database and returns
it. See Table 7–9 for a list of flag bits and their meanings.

Description

The getnameinfo() routine looks up an IP address and port number in a
sockaddr structure specified by sa and returns node name and service name
text strings in the buffers pointed to by the node and service parameters,
respectively.

If the node name is not found, the routine returns the numeric form of the node
address, regardless of the value of the flags parameter. If the service’s name is
not found, the routine returns the numeric form of the service’s address (port
number) regardless of the value of the flags parameter.

The application must provide buffers large enough to hold the fully qualified
domain name and the service name, including the terminating null characters.

Flag bits

Table 7–9 describes the flag bits and, if set, their meanings.

Table 7–9 Flag Bits

Flag Value Description

NI_DGRAM Specifies that the service is a datagram service
(SOCK_DGRAM). The default assumes a stream
service (SOCK_STREAM). This is required
for the few ports (512-514) that have different
services for UDP and TCP.

NI_NAMEREQD Returns an error if the host name cannot be
located in the host’s database.

NI_NOFQDN Searches the host’s database and returns the
node name portion of the fully qualified domain
name for local hosts.

NI_NUMERICHOST Returns the numeric form of the host’s address
instead of its name. Resolution of the host name
is not performed.

NI_NUMERICSERV Returns the numeric form (port number) of the
service address instead of its name. Resolution
of the host name is not performed.

The two NI_NUMERIC* flags are required to support the -n flag that many
commands provide. All flags are defined in <netdb.h> header file.

7–24 Application Interface to Sockets

Sockets API Reference
getnameinfo()

Return Values

0 (zero) Success
nonzero value Failure

Application Interface to Sockets 7–25

Sockets API Reference
if_freenameindex()

if_freenameindex()

Frees dynamic memory allocated by if_nameindex() to the array of interface
names and indexes.

Format

#include <if.h>

void if_freenameindex (struct if_nameindex *ptr);

Arguments

ptr

Pointer that was returned by the if_nameindex() function.

Description

The if_freenameindex() function frees dynamic memory that was allocated by
the if_nameindex() function.

7–26 Application Interface to Sockets

Sockets API Reference
if_indextoname()

if_indextoname()

Maps an interface index to its corresponding name.

Format

#include <if.h>

char *if_indextoname (unsigned int ifindex, char *ifname);

Arguments

ifindex

The interface index.

ifname

The ifname argument points to a buffer that is IFNAMSIZ bytes in length
(IFNAMSIZ is defined in <if.h>). If an interface name is found, it is returned in
the buffer.

Description

The if_indextoname() function maps an interface index to its corresponding
name.

Return Values

Interface name If interface name is found, it is returned to the
buffer.

NULL If no interface name corresponds to the specified
index, the function returns NULL and sets errno
to ENXIO.

Errors

ENXIO No interface name corresponds to the specified
index.

System error A system error.

Application Interface to Sockets 7–27

Sockets API Reference
if_nameindex()

if_nameindex()

Returns an array of all interface names and indexes.

Format

#include <if.h>

struct if_nameindex *if_nameindex (void);

Description

The if_nameindex() function dynamically allocates memory for an array of
if_nameindex structures, one structure for each interface. A structure with an
if_index value of 0 and a NULL if_name value indicates the end of the array.

The following if_nameindex structure must also be defined (by including <if.h>)
prior to the call to if_nameindex():

struct if_nameindex {
unsigned int if_index;
char *if_name;

};

To free the memory allocated by this function, use the if_freenameindex()
function. If an error occurs, the function returns a NULL pointer and sets errno
to an appropriate value.

Return Values

NULL Indicates an error; errno is set to an appropriate
value.

7–28 Application Interface to Sockets

Sockets API Reference
if_nametoindex()

if_nametoindex()

Maps an interface name to its corresponding index.

Format

#include <if.h>

unsigned int if_nametoindex (const char *ifname);

Arguments

ifname

The name of the interface.

Description

If ifname is the name of an interface, the if_nametoindex() function returns
the interface index corresponding to the name.

Return Values

Interface index Success
0 Failure

Application Interface to Sockets 7–29

Sockets API Reference
inet6_opt_append()

inet6_opt_append()

Returns the length of an IPv6 extension header with a new option and appends
the option.

Format

#include <ip6.h>

int inet6_opt_append (void *extbuf, size_t extlen, int offset, uint8_t type, size_t len, uint_t align, void
**databufp);

Arguments

extbuf

Points to a buffer that contains an extension header. This is either a valid pointer
or a NULL pointer.

extlen

Specifies the length of the extension header to initialize. Valid values are 0 if
extbuf equals 0, a value returned by inet6_opt_finish(), or any number that
is a multiple of 8.

offset
Specifies the length of the existing extension header. Obtain this value from a
prior call to inet6_opt_init() or inet6_opt_append().

type

Specifies the type of option. Specify a value from 2 to 255, inclusive, excluding
194.

len

Specifies the length of the option data, excluding the option type and option
length fields. Specify a value from 0 to 255, inclusive.

align

Specifies the alignment of the option. Specify one of the following values: 1, 2, 4,
or 8.

databufp

Points to a buffer that contains the option data.

7–30 Application Interface to Sockets

Sockets API Reference
inet6_opt_append()

Description

The inet6_opt_append() function, when called with extbuf as a NULL pointer
and extlen as 0, returns the updated number of bytes in an extension header.

If you specify extbuf as a valid pointer and valid extlen and align parameters,
the function returns the same information as in the previous case, but also inserts
the pad option, initializes the type and len fields, and returns a pointer to the
location for the option content.

After you call inet6_opt_append(), you can then use the data buffer directly or
call inet6_optt_set_val() to specify the option contents.

Return Values

x Upon successful completion, the
inet6_opt_append() function returns the
updated number of bytes in an extension header.

-1 Failure

Application Interface to Sockets 7–31

Sockets API Reference
inet6_opt_find()

inet6_opt_find()

Finds a specific option in an extension header.

Format

#include <ip6.h>

int inet6_opt_find (void *extbuf, size_t extlen, int offset, uint8_t type, size_t *lenp, void **databufp);

Arguments

extbuf

Points to a buffer that contains an extension header.

extlen

Specifies the length, in bytes, of the extension header.

offset

Specifies the location in the extension header of an option. Valid values are either
0 (zero) for the first option or the length returned from a previous call to either
inet6_opt_next() or inet6_opt_find().

type

Specifies the type of option to find.

lenp

Points to the length of the option found.

databufp

Points to the option data.

Description

The inet6_opt_find() function searches a received option extension header
for an option specified by type. If it finds the specified option, it returns the
option length and a pointer to the option data. In addition, it returns an offset
to the next option that you specify in the offset parameter to subsequent calls
to inet6_opt_next() in order to search for additional occurrences of the same
option type.

7–32 Application Interface to Sockets

Sockets API Reference
inet6_opt_find()

Return Values

x Upon successful completion, the
inet6_opt_find() function returns an offset
from which you can begin the next search in the
data buffer.

-1 Failure

Application Interface to Sockets 7–33

Sockets API Reference
inet6_opt_finish()

inet6_opt_finish()

Returns the total length of an IPv6 extension header, including padding, and
initializes the option.

Format

#include <ip6.h>

int inet6_opt_finish (void *extbuf, size_t extlen, int offset);

Arguments

extbuf

Points to a buffer that contains an extension header. This is either a valid pointer
or a NULL pointer.

extlen

Specifies the length of the extension header to finish initializing. A valid value is
any number greater than or equal to 0.

offset

Specifies the length of the existing extension header. Obtain this value from a
prior call to inet6_opt_init() or inet6_opt_append().

Description

The inet6_opt_finish() function when called with extbuf as a NULL pointer
and extlen as 0, returns the total number of bytes in an extension header,
including final padding.

If you specify extbuf as a valid pointer and a valid extlen parameter, the
function returns the same information as in the previous case, increments the
buffer pointer, and verifies that the buffer is large enough to hold the header.

Return Values

x Upon successful completion, the
inet6_opt_finish() function returns the
total number of bytes in an extension header,
including padding.

-1 Failure

7–34 Application Interface to Sockets

Sockets API Reference
inet6_opt_get_val()

inet6_opt_get_val()

Extracts data items from the data portion of an IPv6 option.

Format

#include <ip6.h>

int inet6_opt_get_val (void *databuf, size_t offset, void *val, int vallen);

Arguments

databuf

Points to a buffer that contains an extension header. This is a pointer returned
by a call to inet6_opt_find() or inet6_opt_next().

offset

Specifies the location in the data portion of the option from which to extract the
data. You can access the first byte after the option type and length by specifying
the offset of 0.

val

Points to a destination for the extracted data.

vallen

Specifies the length of the data, in bytes, to be extracted.

Description

The inet6_opt_get_val() function copies data items from data buffer databuf
beginning at offset to the location val. In addition, it returns the offset for the
next data field to assist you in extracting option content that has multiple fields.

Make sure that each field is aligned on its natural boundaries.

Return Values

x Upon successful completion, the
inet6_opt_get_val() function returns the
offset for the next field in the data buffer.

-1 Failure

Application Interface to Sockets 7–35

Sockets API Reference
inet6_opt_init()

inet6_opt_init()

Returns the length of an IPv6 extension header with no options and initializes
the header.

Format

#include <ip6.h>

int inet6_opt_init (void *extbuf, size_t extlen);

Arguments

extbuf

Points to a buffer that contains an extension header. This is either a valid pointer
or a NULL pointer.

extlen

Specifies the length of the extension header to initialize. Valid values are 0 and
any number that is a multiple of 8.

Description

The inet6_opt_init() function when called with extbuf as a NULL pointer
and extlen as 0, returns the number of bytes in an extension header that has no
options.

If you specify extbuf as a valid pointer and extlen as a number that is a multiple
of 8, the function returns the same information as in the previous case, initializes
the extension header, and sets the length field.

Return Values

x Upon successful completion, the
inet6_opt_init() function returns the number
of bytes in an extension header with no options.

-1 Failure

7–36 Application Interface to Sockets

Sockets API Reference
inet6_opt_next()

inet6_opt_next()

Parses received option extension headers.

Format

#include <ip6.h>

int inet6_opt_next (void *extbuf, size_t extlen, int offset, unit8_t *typep, size_t *lenp, void **databufp);

Arguments

extbuf

Points to a buffer that contains an extension header.

extlen

Specifies the length, in bytes, of the extension header.

offset

Specifies the location in the extension header of an option. Valid values are
either 0 for the first option or the length returned from a previous call to either
inet6_opt_next() or inet6_opt_find().

typep

Points to the type of the option found.

lenp

Points to the length of the option found.

databufp

Points to the option data.

Description

The inet6_opt_next() function parses a received option extension header and
returns the next option. In addition, it returns an offset to the next option that
you specify in the offset parameter to subsequent calls to inet6_opt_next().

This function does not return any PAD1 or PADN options.

Application Interface to Sockets 7–37

Sockets API Reference
inet6_opt_next()

Return Values

x Upon successful completion, the
inet6_opt_next() function returns the offset
for the next option in the data buffer.

-1 Failure

7–38 Application Interface to Sockets

Sockets API Reference
inet6_opt_set_val()

inet6_opt_set_val()

Adds one component of the option content to the options header.

Format

#include <ip6.h>

int inet6_opt_set_val (void *databuf, size_t offset, void *val int vallen);

Arguments

databuf

Points to a buffer that contains an extension header. This is a pointer returned
by a call to inet6_opt_append().

offset

Specifies the location in the data portion of the option into which to insert the
data. You can access the first byte after the option type and length by specifying
the offset of 0 (zero).

val

Points to the data to be inserted.

vallen

Specifies the length of the data, in bytes, to be inserted.

Description

The inet6_opt_set_val() function copies data items at the location val into a
data buffer databuf beginning at offset. In addition, it returns the offset for the
next data field to assist you in composing content that has multiple fields.

Make sure that each field is aligned on its natural boundaries.

Return Values

x Upon successful completion, the
inet6_opt_set_val() function returns the
offset for the next field in the data buffer.

-1 Failure

Application Interface to Sockets 7–39

Sockets API Reference
inet6_rth_add()

inet6_rth_add()

Adds an IPv6 address to the routing header under construction.

Format

#include <ip6.h>

int inet6_rth_add (void *bp, const struct in6_addr *addr);

Arguments

bp

Points to a buffer that is to contain an IPv6 routing header.

addr

Points to an IPv6 address to add to the routing header.

Description

The inet6_rth_add() function adds IPv6 address to the end of the routing
header under construction. The address pointed to by addr cannot be either an
IPv6 V4-mapped address or an IPv6 multicast address.

The function increments the ip60r_segleft member in the ip6_rthdr0
structure. The ip6_rthdr0 structure is defined in <ip6.h>.

Only routing header type 0 is supported.

Return Values

x Upon successful completion, the
inet6_rth_add() function returns 0 (zero).

-1 Failure

7–40 Application Interface to Sockets

Sockets API Reference
inet6_rth_getaddr()

inet6_rth_getaddr()

Retrieves an address for an index from an IPv6 routing header.

Format

#include <ip6.h>

struct in6_addr *inet6_rth_getaddr (const void *bp, int index);

Arguments

bp

Points to a buffer that contains an IPv6 routing header.

index

Specifies a value that identifies a position in a routing header for a
specific address. Valid values range from 0 to the return value from
inet6_rth_segments() minus 1.

Description

The inet6_rth_getaddr() function uses a specified index value and
retrieves a pointer to an address in a Routing header specified by bp. Call
inet6_rth_segments() before calling this function in order to determine the
number of segments (addresses) in the routing header.

Return Values

x Upon successful completion, the
inet6_rth_getaddr() function returns a pointer
to an address.

NULL pointer Failure

Application Interface to Sockets 7–41

Sockets API Reference
inet6_rth_init()

inet6_rth_init()

Initializes an IPv6 routing header buffer.

Format

#include <ip6.h>

void *inet6_rth_init (void *bp, int bp_len, int type, int segments);

Arguments

bp

Points to a buffer that is to contain an IPv6 routing header.

bp_len

Specifies the length, in bytes, of the buffer.

type

Specifies the type of routing header. The valid value is IPV6_RTHDR_TYPE_0 for
IPv6 routing header type 0.

segments

Specifies the number of segments or addresses that are to be included in the
routing header. The valid value is from 0 to 127, inclusive.

Description

The inet6_rth_init() function initializes a buffer and buffer data for an
IPv6 routing header. The function sets the ip6r0_segleft, ip6r0_nxt, and
ip6r0_reserved members in the ip6_rthdr0 structure to zero. In addition, it
sets the ip6r0_type member to type and sets the ip6r0_len member based in the
segments parameter. (See RFC 2460 for a description of the actual value.) The
ip6_rthdr0 structure is defined in <ip6.h>.

The application must allocate the buffer. Use the inet6_rth_space() function to
determine the buffer size.

Use the returned pointer as the first argument to the inet6_rth_add() function.

7–42 Application Interface to Sockets

Sockets API Reference
inet6_rth_init()

Return Values

x Upon successful completion, the
inet6_rth_init() function returns a pointer to
the buffer that is to contain the routing header.

NULL pointer If the type is not supported, the bp is a null, or
the number of bp_len is invalid.

Application Interface to Sockets 7–43

Sockets API Reference
inet6_rth_reverse()

inet6_rth_reverse()

Reverses the order of addresses in an IPv6 routing header.

Format

#include <ip6.h>

int inet6_rth_reverse (const void *in, void *out);

Arguments

in

Points to a buffer that contains an IPv6 routing header.

out

Points to a buffer that is to contain the routing header with the reversed
addresses. This parameter can point to the same buffer specified by the in
parameter.

Description

The inet6_rth_reverse() function reads an IPv6 routing header and writes a
new routing header, reversing the order of addresses in the new header. The in
and out parameters can point to the same buffer.

The function sets the ip6r0_segleft member in the ip6_rthdr0 structure to the
number of segments (addresses) in the new header.

The ip6_rthdr0 structure is defined in <ip6.h>.

Return Values

0 (zero) Success
-1 Failure

7–44 Application Interface to Sockets

Sockets API Reference
inet6_rth_segments()

inet6_rth_segments()

Returns the number of segments (addresses) in an IPv6 routing header.

Format

#include <ip6.h>

int inet6_rth_segments (const void *bp);

Arguments

bp

Points to a buffer that contains an IPv6 routing header.

Description

The inet6_rth_segments() function returns the number of segments (or
addresses) in an IPv6 routing header.

Return Values

x Upon successful completion, the
inet6_rth_segments() function returns the
number of segments, 0 (zero) or greater than 0.

-1 Failure

Application Interface to Sockets 7–45

Sockets API Reference
inet6_rth_space()

inet6_rth_space()

Returns the number of bytes required for an IPv6 routing header.

Format

#include <ip6.h>

size_t inet6_rth_space (int type, int segments);

Arguments

type

Specifies the type of routing header. The valid value is IPV6_RTHDR_TYPE_0 for
IPv6 routing header type 0.

segments

Specifies the number of segments or addresses that are to be included in the
routing header. The valid value is from 0 to 127, inclusive.

Description

The inet6_rth_space() function determines the amount of space, in bytes,
required for a routing header. Although the function returns the amount of space
required, it does not allocate buffer space. This enables the application to allocate
a larger buffer.

If the application uses ancillary data, it must pass the returned length to
CMSG_LEN() to determine the amount of memory required for the ancillary data
object, including the cmsghdr structure.

Note

If an application wants to send other ancillary data objects, it must
specify them to sendmsg() as a single msg_control buffer.

Return Values

x Upon successful completion, the
inet6_rth_space() function returns the length,
in bytes, of the routing header and the specified
number of segments.

0 (zero) Failure, if the type is not supported or the
number of segments is invalid for the type of
routing header

7–46 Application Interface to Sockets

Sockets API Reference
inet_ntop()

inet_ntop()

Converts a numeric address to a text string suitable for presentation.

Format

#include <inet.h>

const char *inet_ntop (int af, const void *src, char *dst, size_t size);

Arguments

af

Specifies the address family. Valid values are AF_INET for an IPv4 address and
AF_INET6 for an IPv6 address.

src

Points to a buffer that contains the numeric Internet address.

dst

Points to a buffer that is to contain the text string.

size

Specifies the size of the buffer pointed to by the dst parameter. For IPv4
addresses, the minimum buffer size is 16 octets; for IPv6 addresses, the minimum
buffer size is 46 octets. The <in.h> header file defines the INET_ADDRSTRLEN
and INET6_ADDRSTRLEN constants, respectively, for these values.

Description

The inet_ntop() function converts a numeric Internet address value to a text
string.

Return Values

Pointer to the buffer
containing the text string.

Success

Pointer to the buffer
containing NULL.

Failure

Application Interface to Sockets 7–47

Sockets API Reference
inet_pton()

inet_pton()

Converts an address in its standard text presentation form its numeric binary
form, in network byte order.

Format

#include <inet.h>

int inet_pton (int af, const char *src, void *dst);

Arguments

af

Specifies the address family. Valid values are AF_INET for an IPv4 address and
AF_INET6 for an IPv6 address.

src

Points to the address text string to be converted.

dst

Points to a buffer that is to contain the numeric address.

Description

The inet_pton() function converts a text string to a numeric value in Internet
network byte order.

• If the af parameter is AF_INET, the function accepts a string in the standard
IPv4 dotted-decimal format:

ddd.ddd.ddd.ddd

In this format, ddd is a one- to three-digit decimal number between 0 and
255.

• If the af parameter is AF_INET6, the function accepts a string in the
following format:

x:x:x:x:x:x:x:x

In this format, x is the hexadecimal value of a 16-bit piece of the address.

IPv6 addresses can contain long strings of zero (0) bits. To make it easier to
write these addresses, you can use double-colon characters (::) one time in an
address to represent 1 or more 16-bit groups of zeros.

• For mixed IPv4 and IPv6 environments, the following format is also accepted:

x:x:x:x:x:x:ddd.ddd.ddd.ddd

7–48 Application Interface to Sockets

Sockets API Reference
inet_pton()

In this format, x is the hexadecimal value of a 16-bit piece of the address, and
ddd is a one- to three-digit decimal value between 0 and 255 that represents
the IPv4 address. See RFC 2373 for more information about IPv6 addressing
formats.

The calling application is responsible for ensuring that the buffer referred to
by the dst parameter is large enough to hold the numeric address. AF_INET
addresses require 4 bytes and AF_INET6 addresses require 16 bytes.

Return Values

1 Success
0 (zero) If the input string is neither a valid IPv4 dotted-

decimal string nor a valid IPv6 address string,
the function returns a 0.

-1 Failure. errno is set to the following value.

Errors

EAFNOSUPPORT The address family specified in the af parameter
is unknown.

Application Interface to Sockets 7–49

8
Porting Applications

This chapter describes the changes you must make in your application code to
operate in an IPv6 networking environment.

• Name changes

• Structure changes

• Other changes

You can also use this information as guidelines for creating new IPv6-ready
applications.

See RFC 3493, Basic Socket Interface Extensions for IPv6, for complete
information on the changes to the BSD socket applications programming interface
(API). See RFC 3542, Advanced Sockets API for IPv6 for complete information on
how to use raw sockets and header information in IPv6 applications.

8.1 Using AF_INET6 Sockets
At present, applications use AF_INET sockets for IPv4 communications.
Figure 8–1 shows a sample sequence of events for an application that uses an
AF_INET socket to send IPv4 packets.

Porting Applications 8–1

Porting Applications
8.1 Using AF_INET6 Sockets

Figure 8–1 Using AF_INET Socket for IPv4 Communications

1.2.3.4

1.2.3.4

1.2.3.4

TCPIP$ETC:
IPNODES

or
DNS

Hosts
Database

gethostbyname ("host1")
User

Application

user space

kernel space

Socket layer

TCP UDP

IPv4
packet

IPv4

host1 = 1.2.3.4

open AF_INET socket (UDP)

VM-0643A-AI

1

2

34

5

6

! Application calls gethostbyname() and passes the host name, host1.

" The search finds host1 in the hosts database and gethostbyname returns the
IPv4 address 1.2.3.4.

The application opens an AF_INET socket.

$ The application sends information to the 1.2.3.4 address.

% The socket layer passes the information and address to the UDP module.

& The UDP module puts the 1.2.3.4 address into the packet header and passes
the information to the IPv4 module for transmission.

Section 8.6.1.1 contains sample program code that demonstrates these steps.

8–2 Porting Applications

Porting Applications
8.1 Using AF_INET6 Sockets

You can use the AF_INET6 socket for both IPv6 and IPv4 communications.
For IPv4 communications, create an AF_INET6 socket and pass it a
sockaddr_in6 structure that contains an IPv4-mapped IPv6 address (for example,
::ffff:1.2.3.4). Figure 8–2 shows the sequence of events for an application
that uses an AF_INET6 socket to send IPv4 packets.

Figure 8–2 Using AF_INET6 Socket to Send IPv4 Communications

::ffff:1.2.3.4

::ffff:1.2.3.4

1.2.3.4

IP

User
Application

user space

kernel space

TCP UDP

IPv4
packet

IPv4 IPv6

host1 = ::ffff:1.2.3.4 host1 = 1.2.3.4

open AF_INET6 socket (UDP)

getaddrinfo
("host1", "", hints, result)

VM-0644A-AI

1

2

34

5

6

Socket layer

TCPIP$ETC:
IPNODES

or
DNS

Hosts
Database

! Application calls getaddrinfo() and passes the host name (host1), the AF_
INET6 address family hint, and the (AI_V4MAPPED | AI_ADDRCONFIG)
flag hint. The flag tells the function that if an IPv4 address is found for host1,
return the address as an IPv4-mapped IPv6 address.

" The search finds an IPv4 address, 1.2.3.4, for host1 in the hosts database and
getaddrinfo() returns the IPv4-mapped IPv6 address ::ffff:1.2.3.4.

Porting Applications 8–3

Porting Applications
8.1 Using AF_INET6 Sockets

The application opens an AF_INET6 socket.

$ The application sends information to the ::ffff:1.2.3.4 address.

% The socket layer passes the information and address to the UDP module.

& The UDP module identifies the IPv4-mapped IPv6 address, puts the 1.2.3.4
address into the packet header, and passes the information to the IPv4
module for transmission.

AF_INET6 sockets can receive messages sent to either IPv4 or IPv6 addresses
on the system. An AF_INET6 socket uses the IPv4-mapped IPv6 address format
to represent IPv4 addresses. Figure 8–3 shows the sequence of events for an
application that uses an AF_INET6 socket to receive IPv4 packets.

Figure 8–3 Using AF_INET6 Socket to Receive IPv4 Communications

::ffff:1.2.3.4

1.2.3.4

IP

User
Application

user space

kernel space

TCP UDP

IPv4 IPv6

::ffff:1.2.3.4=host1 1.2.3.4=host1

open AF_INET6 socket (TCP)

5

6

1
4

::ffff:1.2.3.4
3

2

getnameinfo
("&sa, salen, &node, nodelen,
 "", 0, flags)

Socket layer

TCPIP$ETC:
IPNODES

or
DNS

Hosts
Database

IPv4
packet VM-0645A-AI

8–4 Porting Applications

Porting Applications
8.1 Using AF_INET6 Sockets

! The application opens an AF_INET6 socket, binds to it, and listens on it.

" An IPv4 packet arrives and passes through the IPv4 module.

The TCP layer strips off the packet header and passes the information and
the IPv4-mapped IPv6 address ::ffff:1.2.3.4 to the socket layer.

$ The application calls accept() and retrieves the information from the socket.

% The application calls getnameinfo() and passes the ::ffff:1.2.3.4 address
and the NI_NAMEREQD flag. The flag tells the function to return the host
name for the address. See Table 7–9 for a description of the flag bits and
their meanings.

& The search finds the host name for the 1.2.3.4 address in the hosts database,
and getnameinfo() returns the host name.

For IPv6 communications, create an AF_INET6 socket and pass it a
sockaddr_in6 structure that contains an IPv6 address (for example,
3ffe:1200::a00:2bff:fe2d:02b2). Figure 8–4 shows the sequence of events
for an application that uses an AF_INET6 socket to send IPv6 packets.

Porting Applications 8–5

Porting Applications
8.1 Using AF_INET6 Sockets

Figure 8–4 Using AF_INET6 Socket for IPv6 Communications

3ffe:1200::a00:
2bff:fe2d:02b2

3ffe:1200::a00:2bff:fe2d:02b2

3ffe:1200::a00:2bff:fe2d:02b2

IP

User
Application

user space

kernel space

TCP UDP

IPv6
packet

IPv4 IPv6

host1 = 3ffe:1200::a00:
2bff:fe2d:02b2

open AF_INET6 socket (UDP)

VM-0651A-AI

1

2

3
4

5

6

Socket layer

getaddrinfo
("host1", "", hints, result) TCPIP$ETC:

IPNODES
or

DNS

Hosts
Database

! Application calls getaddrinfo() and passes the host name (host1), the AF_
INET6 address family hint, and the (AI_V4MAPPED | AI_ADDRCONFIG)
flag hint. The flag tells the function that if an IPv4 address is found for host1,
to return it.

" The search finds an IPv6 address for host1 in the hosts database, and
getaddrinfo() returns the IPv6 address 3ffe:1200::a00:2bff:fe2d:02b2.

The application opens an AF_INET6 socket.

$ The application sends information to the 3ffe:1200::a00:2bff:fe2d:02b2
address.

% The socket layer passes the information and address to the UDP module.

8–6 Porting Applications

Porting Applications
8.1 Using AF_INET6 Sockets

& The UDP module identifies the IPv6 address and puts the
3ffe:1200::a00:2bff:fe2d:02b2 address into the packet header and
passes the information to the IPv6 module for transmission.

Section 8.6.2.1 contains sample program code that demonstrates these steps.

The following sections show how to convert an existing AF_INET application to
an AF_INET6 application that is capable of communicating over both IPv4 and
IPv6.

8.2 Name Changes
Most of the changes required are straightforward and mechanical, though some
may require a bit of code restructuring. For example, a routine that returns an
int data type holding an IPv4 address may need to be modified to take as an
extra parameter a pointer to an in6_addr into which it writes the IPv6 address.

Table 8–1 summarizes the changes you must make to your application’s code.

Table 8–1 Name Changes

Search file for Replace with Comments

AF_INET AF_INET6 Replace with IPv6 address family
macro.

PF_INET PF_INET6 Replace with IPv6 protocol family
macro.

INADDR_ANY in6addr_any Replace with IPv6 global variable.

8.3 Structure Changes
The structure names and field names have changed for the following structures:

• in_addr

• sockaddr_in

• sockaddr

• hostent

The following sections discuss these changes.

8.3.1 in_addr Structure
Applications that use the IPv4 in_addr structure must be changed to use the
IPv6 in6_addr structure, as follows:

IPv4 Structure IPv6 Structure

struct in_addr
unsigned int s_addr

struct in6_addr
uint8_t s6_addr

Make the following changes to your application, as needed:

1. Change the structure name in_addr to in6_addr.

2. Change the data type from unsigned int to uint8_t and the field name
s_addr to s6_addr.

Porting Applications 8–7

Porting Applications
8.3 Structure Changes

8.3.2 sockaddr Structure
Applications that use the generic socket address structure (sockaddr) to hold an
AF_INET socket address (sockaddr_in) must be changed to use the AF_INET6
sockaddr_in6 structure, as follows:

AF_INET Structure AF_INET6 Structure

struct sockaddr struct sockaddr_in6

Make the following change to your application, as needed:

1. Change structure name sockaddr to sockaddr_in6.

Note

A sockaddr_in6 structure is larger than a sockaddr structure.

8.3.3 sockaddr_in Structure
Applications that use the BSD Version 4.4 IPv4 sockaddr_in structure must be
changed to use the IPv6 sockaddr_in6 structure, as follows:

IPv4 Structure IPv6 Structure

struct sockaddr_in
unsigned char sin_len
sa_family_t sin_family
in_port_t sin_port
struct addr sin_addr

struct sockaddr_in6
uint8_t sin6_len
sa_family_t sin6_family
int_port_t sin6_port
struct in6_addr sin6_addr

Make the following changes to your application, as needed:

1. Change structure name sockaddr_in to sockaddr_in6. Initialize the entire
sockaddr_in6 structure to zero after your structure declarations.

2. Change the data type unsigned char to uint8_t and the field name sin_len
to sin6_len.

3. Change the field name sin_family to sin6_family.

4. Change the field name sin_port to sin6_port.

5. Change the field name sin_addr to sin6_addr.

8.3.4 hostent Structure
Applications that use the hostent structure must be changed to use the addrinfo
structure, as follows:

AF_INET Structure AF_INET6 Structure

struct hostent struct addrinfo

Make the following change to your application, as needed:

1. Change the structure name hostent to addrinfo.

See also Section 8.4.2 for related changes.

8–8 Porting Applications

Porting Applications
8.4 Function Changes

8.4 Function Changes
The names and parameters have changed for the following functions:

• gethostbyaddr()

• gethostbyname()

• inet_ntoa()

• inet_addr()

The following sections discuss these changes.

8.4.1 gethostbyaddr() Function
Applications that use the IPv4 gethostbyaddr() function must be changed to use
the IPv6 getnameinfo() function, as follows:

AF_INET Call AF_INET6 Call

gethostbyaddr(xxx,4,AF_
INET)

err=getnameinfo(&sa, salen, node, nodelen, service, servicelen,
flags);

Make the following change to your application, as needed:

1. Change the function name from gethostbyaddr() to getnameinfo() and
provide a pointer to the socket address structure, a character string for the
returned node name, an integer for the length of the returned node name,
a character string to receive the returned service name, an integer for the
length of the returned service name, and an integer that specifies the type of
address processing to be performed.

8.4.2 gethostbyname() Function
Applications that use the gethostbynam()e function must be changed to use the
getaddrinfo() function, as folllows:

AF_INET Call AF_INET6 Call

gethostbyname(name) err=getaddrinfo(nodename, servname, &hints, &res);
.
.
.
freeaddrinfo(&ai);

Make the following changes to your application, as needed:

1. Change the function name from gethostbyname() to getaddrinfo() and
provide a character string that contains the node name, a character string
that contains the service name to use, a pointer to a hints structure that
contains processing options, and a pointer to an addrinfo structure or
structures for the returned address information.

2. Add a call to the freeaddrinfo() routine to free the addrinfo structure or
structures when your application is finished using them.

Porting Applications 8–9

Porting Applications
8.4 Function Changes

8.4.3 inet_ntoa() Function
Applications that use the inet_ntoa() function must be changed to use the
getnameinfo() function, as follows:

AF_INET Call AF_INET6 Call

inet_ntoa(addr) err=getnameinfo(&sa, salen, node, nodelen, service, servicelen,
NI_NUMERICHOST);

Make the following change to your application, as needed:

1. Change the function name from inet_ntoa() to getnameinfo() and provide
a pointer to the socket address structure, a character string for the returned
node name, an integer for the length of the returned node name, a character
string to receive the returned service name, an integer for the length of the
returned service name, and the NI_NUMERICHOST flag.

8.4.4 inet_addr() Function
Applications that use the inet_addr() function must be changed to use the
getaddrinfo() function, as follows:

AF_INET Call AF_INET6 Call

result=inet_
addr(&string)

err=getaddrinfo(nodename, servname, &hints, &res);
.
.
.
freeaddrinfo(&ai);

Make the following change to your application, as needed:

1. Change the function name from inet_addr() to getaddrinfo() and provide
a character string that contains the node name, a character string that
contains the service name to use, a pointer to a hints structure that contains
the AI_NUMERICHOST option, and a pointer to an addrinfo structure or
structures for the returned address information.

2. Add a call to the freeaddrinfo() routine to free the addrinfo structure or
structures when your application is finished using them.

8.5 Other Application Changes
In addition to the name changes, you should review your code for specific uses of
IP address information and variables.

8.5.1 Comparing IP Addresses
If your application compares IP addresses or tests IP addresses for equality, the
in6_addr structure changes (see in Section 8.3.1) will change the comparison of
int quantities to a comparison of structures. This will break the code and cause
compiler errors.

Make either of the following changes to your application, as needed:

8–10 Porting Applications

Porting Applications
8.5 Other Application Changes

AF_INET Code AF_INET6 Code

(addr1->s_addr = = addr2->s_addr) (memcmp(addr1, addr2, sizeof(struct in6_
addr)) = = 0)

1. Change the equality expression to one that uses the memcmp (memory
comparison) function.

AF_INET Code AF_INET6 Code

(addr1->s_addr = = addr2->s_addr) IN6_ARE_ADDR_EQUAL(addr1, addr2)

1. Change the equality expression to one that uses the IN6_ARE_ADDR_EQUAL
macro.

8.5.2 Comparing an IP Address to the Wildcard Address
If your application compares an IP address to the wildcard address, the in6_addr
structure changes (see Section 8.3.1) will change the comparison of int quantities
to a comparison of structures. This will break the code and cause compiler errors.

Make either of the following changes to your application, as needed:

AF_INET Code AF_INET6 Code

(addr->s_addr = = INADDR_ANY) IN6_IS_ADDR_UNSPECIFIED(addr)

1. Change the equality expression to one that uses the
IN6_IS_ADDR_UNSPECIFIED macro.

AF_INET Code AF_INET6 Code

(addr->s_addr = = INADDR_ANY) (memcmp(addr, in6addr_any, sizeof(struct in6_addr)) = = 0)

1. Change the equality expression to one that uses the memcmp (memory
comparison) function.

8.5.3 Using int Data Types to Hold IP Addresses
If your application uses int data types to hold IP addresses, the in6_addr
structure changes (see Section 8.3.1) will change the assignment. This will break
the code and cause compiler errors.

Make the following changes to your application, as needed:

AF_INET Code AF_INET6 Code

struct in_addr foo;
int bar;
.
.
.
bar = foo.s_addr;

struct in6_addr foo;
struct in6_addr bar;
.
.
.
bar = foo;

1. Change the data type for bar from int to a struct in6_addr.

2. Change the assignment statement for bar to remove the s_addr field
reference.

Porting Applications 8–11

Porting Applications
8.5 Other Application Changes

8.5.4 Using Functions that Return IP Addresses
If your application uses functions that return IP addresses as int data types, the
in6_addr structure changes (see Section 8.3.1 will change the destination of the
return value from an int to an array of char. This will break the code and cause
compiler errors.

Make the following changes to your application, as needed:

AF_INET Code AF_INET6 Code

struct in_addr *addr;
addr->s_addr = foo(xxx);

struct in6_addr *addr;
foo(xxx, addr);

1. Restructure the function to enable you to pass the address of the structure in
the call. In addition, modify the function to write the return value into the
structure pointed to by addr.

8.5.5 Changing Socket Options
If your application uses IPv4 IP-level socket options, change them to the
corresponding IPv6 options.

8.6 Sample Client/Server Programs
This section contains sample client and server programs that demonstrate the
differences between IPv4 and IPv6 coding conventions:

• Section 8.6.1 contains sample programs using IPv4 AF_INET sockets.

• Section 8.6.2 contains sample programs using IPv6 AF_INET6 sockets.

To build the examples, use the following commands:

$ CC/DEFINE=(_SOCKADDR_LEN)/INCLUDE=TCPIP$EXAMPLES: client.c
$ LINK client, TCPIP$LIBRARY:TCPIP$LIB/LIBRARY

$ CC/DEFINE=(_SOCKADDR_LEN)/INCLUDE=TCPIP$EXAMPLES: server.c
$ LINK server, TCPIP$LIBRARY:TCPIP$LIB/LIBRARY

8.6.1 Programs Using AF_INET Sockets
This section contains a client and a server program that use AF_INET sockets.

8.6.1.1 Client Program
The following is a sample client program that you can build, compile and run on
your system. The program sends a request to and receives a response from the
system specified on the command line.

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */

#include <netdb.h> /* define network database library info */

#include <socket.h> /* define BSD 4.x socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#include <unixio.h> /* define unix i/o */

8–12 Porting Applications

Porting Applications
8.6 Sample Client/Server Programs

#define BUFSZ 1024 /* user input buffer size */
#define SERV_PORTNUM 12345 /* server port number */

int main(void); /* client main */
void get_serv_addr(void *);! /* get server host address */

int
main(void)
{

int sockfd; /* connection socket descriptor */

char buf[512]; /* client data buffer */

struct sockaddr_in serv_addr;" /* server socket address structure */

memset(&serv_addr, 0, sizeof(serv_addr));#
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(SERV_PORTNUM);
get_serv_addr(&serv_addr.sin_addr);$

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)%
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

printf("Initiated connection to host: %s, port: %d\n",
inet_ntoa(serv_addr.sin_addr), ntohs(serv_addr.sin_port)&

);

if (connect(sockfd,
(struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)’

{
perror("Failed to connect to server");
exit(EXIT_FAILURE);
}

if (recv(sockfd, buf, sizeof(buf), 0) < 0)
{
perror("Failed to read data from server connection");
exit(EXIT_FAILURE);
}

printf("Data received: %s\n", buf); /* output client’s data buffer */

if (shutdown(sockfd, 2) < 0)
{
perror("Failed to shutdown server connection");
exit(EXIT_FAILURE);
}

if (close(sockfd) < 0)
{
perror("Failed to close socket");
exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);
}

void
get_serv_addr(void *addrptr)(
{

char buf[BUFSZ]; /* input data buffer */
struct in_addr val; /* remote host address structure */
struct hostent *host; /* remote host hostent structure */

while (TRUE)
{
printf("Enter remote host: ");

Porting Applications 8–13

Porting Applications
8.6 Sample Client/Server Programs

if (fgets(buf, sizeof(buf), stdin) == NULL)
{
printf("Failed to read User input\n");
exit(EXIT_FAILURE);
}

buf[strlen(buf)-1] = 0;

val.s_addr = inet_addr(buf);

if (val.s_addr != INADDR_NONE)
{
memcpy(addrptr, &val, sizeof(struct in_addr));
break;
}

if ((host = gethostbyname(buf))))
{
memcpy(addrptr, host->h_addr, sizeof(struct in_addr));
break;
}

}
}

! Function code prototype for server host address/name translation function.

" Declares sockaddr_in structure.

Clears the server sockaddr_in structure and sets values for fields of the
structure

$ Calls get_serv_addr passing a pointer to the socket address structure’s
sin_addr field.

% Creates an AF_INET socket

& Calls inet_ntoa to convert the server address to a text string.

’ Calls connect passing a pointer to the sockaddr_in structure.

(Retrieves the server host’s address from the user and then stores it in the
server’s socket address structure. The user can specify a server host by using
either an IPv4 address in dotted decimal notation or a host domain name

) Calls gethostbyname() to retrieve the server host’s address.

8.6.1.2 Server Program
The following is a sample server program that you can build, compile, and run on
your system. The program receives requests from and sends responses to client
programs on other systems.

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */

#include <netdb.h> /* define network database library info */

#include <socket.h> /* define BSD 4.x socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#include <unixio.h> /* define unix i/o */

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

8–14 Porting Applications

Porting Applications
8.6 Sample Client/Server Programs

int main(void); /* server main */

int
main(void)
{

int optval = 1; /* SO_REUSEADDR’S option value (on) */

int conn_sockfd; /* connection socket descriptor */
int listen_sockfd; /* listen socket descriptor */

unsigned int client_addrlen; /* returned length of client socket */
/* address structure */

struct sockaddr_in client_addr;! /* client socket address structure */
struct sockaddr_in serv_addr; /* server socket address structure */

struct hostent *host;" /* host name structure */

char buf[] = "Hello, world!"; /* server data buffer */

memset(&client_addr, 0, sizeof(client_addr));

memset(&serv_addr, 0, sizeof(serv_addr));#
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(SERV_PORTNUM);
serv_addr.sin_addr.s_addr = INADDR_ANY;

if ((listen_sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)$
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

if (setsockopt(listen_sockfd,
SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)) < 0)
{
perror("Failed to set socket option");
exit(EXIT_FAILURE);
}

if (bind(listen_sockfd,
(struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
{
perror("Failed to bind socket");
exit(EXIT_FAILURE);
}

if (listen(listen_sockfd, SERV_BACKLOG) < 0)
{
perror("Failed to set socket passive");
exit(EXIT_FAILURE);
}

printf("Waiting for a client connection on port: %d\n",
ntohs(serv_addr.sin_port)

);

client_addrlen = sizeof(client_addr);

conn_sockfd = accept(listen_sockfd,
(struct sockaddr *) &client_addr,
&client_addrlen

);
if (conn_sockfd < 0)

{
perror("Failed to accept client connection");
exit(EXIT_FAILURE);
}

Porting Applications 8–15

Porting Applications
8.6 Sample Client/Server Programs

host = gethostbyaddr((char *)&client_addr.sin_addr.s_addr,
sizeof(client_addr.sin_addr.s_addr), AF_INET%
);

if (host == NULL)
{
perror("Failed to translate client address\n");
exit(EXIT_FAILURE);
}

printf("Accepted connection from host: %s (%s), port: %d\n",
host->h_name, inet_ntoa(client_addr.sin_addr),
ntohs(client_addr.sin_port)

);

if (send(conn_sockfd, buf, sizeof(buf), 0) < 0)
{
perror("Failed to write data to client connection");
exit(EXIT_FAILURE);
}

printf("Data sent: %s\n", buf); /* output server’s data buffer */

if (shutdown(conn_sockfd, 2) < 0)
{
perror("Failed to shutdown client connection");
exit(EXIT_FAILURE);
}

if (close(conn_sockfd) < 0)
{
perror("Failed to close socket");
exit(EXIT_FAILURE);
}

if (close(listen_sockfd) < 0)
{
perror("Failed to close socket");
exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);
}

! Declares sockaddr_in structures.

" Declares hostent structure.

Clears the server sockaddr_in structure and sets values for fields of the
structure.

$ Creates an AF_INET socket.

% Calls gethostbyaddr() to retrieve client name.

8.6.2 Programs Using AF_INET6 Sockets
This section contains a client and a server program that use AF_INET6 sockets.

8–16 Porting Applications

Porting Applications
8.6 Sample Client/Server Programs

8.6.2.1 Client Program
The following is a sample client program that you can build, compile and run on
your system. The program sends a request to and receives a response from the
system specified on the command line.

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */

#include <netdb.h> /* define network database library info */

#include <socket.h> /* define BSD 4.x socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#include <unixio.h> /* define unix i/o */

#define BUFSZ 1024 /* user input buffer size */
#define SERV_PORTNUM "12345" /* server port number string */

int main(void); /* client main */
void get_serv_addr(struct addrinfo *hints, struct addrinfo **res);!

/* get server host address */

int
main(void)
{

int sockfd; /* connection socket descriptor */

char buf[512]; /* client data buffer */

struct addrinfo hints; /* input values to direct operation */
struct addrinfo *res;" /* linked list of addrinfo structs */

memset(&hints, 0, sizeof(hints));#
hints.ai_family = AF_INET6;
hints.ai_flags = AI_ADDRCONFIG | AI_V4MAPPED | AI_CANONNAME;
hints.ai_protocol = IPPROTO_TCP;
hints.ai_socktype = SOCK_STREAM;
get_serv_addr(&hints, &res);$

if ((sockfd = socket(AF_INET6, SOCK_STREAM, 0)) < 0)%
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

printf("Initiated connection to host: %s, port: %d\n",
res->ai_canonname,
htons(((struct sockaddr_in6 *)res->ai_addr)->sin6_port)&

);

if (connect(sockfd, res->ai_addr, res->ai_addrlen) < 0)’
{
perror("Failed to connect to server");
exit(EXIT_FAILURE);
}

if (recv(sockfd, buf, sizeof(buf), 0) < 0)
{
perror("Failed to read data from server connection");
exit(EXIT_FAILURE);
}

printf("Data received: %s\n", buf); /* output client’s data buffer */

Porting Applications 8–17

Porting Applications
8.6 Sample Client/Server Programs

if (shutdown(sockfd, 2) < 0)
{
perror("Failed to shutdown server connection");
exit(EXIT_FAILURE);
}

if (close(sockfd) < 0)
{
perror("Failed to close socket");
exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);
}

void
get_serv_addr(struct addrinfo *hints, struct addrinfo **res)(
{

int gai_error; /* return value of getaddrinfo() */
char buf[BUFSZ]; /* input data buffer */
const char *port = SERV_PORTNUM; /* server port number */

while (TRUE)
{

printf("Enter remote host: ");

if (fgets(buf, sizeof(buf), stdin) == NULL)
{
printf("Failed to read User input\n");
exit(EXIT_FAILURE);
}

buf[strlen(buf)-1] = 0;

gai_error = getaddrinfo(buf, port, hints, res);)
if (gai_error)

printf("Failed to resolve name or address: %s\n",
gai_strerror(gai_error)+>

);
else

break;
}
}

! Function prototype for server host address/name translation function.

" Declares addrinfo structures.

Clears the addrinfo structure and sets values for fields of the structure.

$ Calls get_serv_addr() passing pointers to the input and output addrinfo
structures.

% Creates an AF_INET6 socket.

& Uses values from the output addrinfo structure for host name and port.

’ Calls connect() using values from the output addrinfo structure.

(Retrieves the server host’s address from the user and stores it in the addrinfo
structure. The user can specify a server host by using any of the following:

An IPv4 address in dotted-decimal notation

An IPv6 address in hexadecimal

8–18 Porting Applications

Porting Applications
8.6 Sample Client/Server Programs

An Ipv4-mapped IPv6 address in hexadecimal

A host domain name

) Calls getaddrinfo() to retrieve the server host’s name or address.

+> Calls gai_strerror() to convert one of the EAI_xx return values to a string
describing the error.

8.6.2.2 Server Program
The following is a sample server program that you can build, compile, and run on
your system. The program receives requests from and sends responses to client
programs on other systems.

#include <in.h> /* define internet related constants,
/* functions, and structures */

#include <inet.h> /* define network address info */

#include <netdb.h> /* define network database library info */

#include <socket.h> /* define BSD 4.x socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#include <unixio.h> /* define unix i/o */

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

int main(void); /* server main */

int
main(void)
{

int optval = 1; /* SO_REUSEADDR’S option value (on) */

int conn_sockfd; /* connection socket descriptor */
int listen_sockfd; /* listen socket descriptor */
int gni_error;! /* return status for getnameinfo() */

unsigned int client_addrlen; /* returned length of client socket */
/* address structure */

struct sockaddr_in6 client_addr; /* client socket address structure */
struct sockaddr_in6 serv_addr;" /* server socket address structure */

char buf[] = "Hello, world!"; /* server data buffer */
char node[NI_MAXHOST];# /* buffer to receive node name */
char port[NI_MAXHOST]; /* buffer to receive port number */
char addrbuf[INET6_ADDRSTRLEN]; /* buffer to receive host’s address */

memset(&client_addr, 0, sizeof(client_addr));

memset(&serv_addr, 0, sizeof(serv_addr));$
serv_addr.sin6_family = AF_INET6;
serv_addr.sin6_port = htons(SERV_PORTNUM);
serv_addr.sin6_addr = in6addr_any;

if ((listen_sockfd = socket(AF_INET6, SOCK_STREAM, 0)) < 0)%
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

Porting Applications 8–19

Porting Applications
8.6 Sample Client/Server Programs

if (setsockopt(listen_sockfd,
SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)) < 0)

{
perror("Failed to set socket option");
exit(EXIT_FAILURE);
}

if (bind(listen_sockfd,
(struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

{
perror("Failed to bind socket");
exit(EXIT_FAILURE);
}

if (listen(listen_sockfd, SERV_BACKLOG) < 0)
{
perror("Failed to set socket passive");
exit(EXIT_FAILURE);
}

printf("Waiting for a client connection on port: %d\n",
ntohs(serv_addr.sin6_port)

);

client_addrlen = sizeof(client_addr);

conn_sockfd = accept(listen_sockfd,
(struct sockaddr *) &client_addr,
&client_addrlen

);
if (conn_sockfd < 0)

{
perror("Failed to accept client connection");
exit(EXIT_FAILURE);
}

gni_error = getnameinfo((struct sockaddr *)&client_addr, client_addrlen,
&

node, sizeof(node), NULL, 0, NI_NAMEREQD
);

if (gni_error)
{
printf("Failed to translate client address: %s\n",
gai_strerror(gni_error) ’

);
exit(EXIT_FAILURE);
}

gni_error = getnameinfo((struct sockaddr *)&client_addr, client_addrlen,
addrbuf, sizeof(addrbuf), port, sizeof(port),
NI_NUMERICHOST | NI_NUMERICSERV (

);
if (gni_error)

{
printf("Failed to translate client address and/or port: %s\n",
gai_strerror(gni_error)

);
exit(EXIT_FAILURE);
}

printf("Accepted connection from host: %s (%s), port: %s\n",
node, addrbuf, port

);

if (send(conn_sockfd, buf, sizeof(buf), 0) < 0)
{
perror("Failed to write data to client connection");
exit(EXIT_FAILURE);
}

8–20 Porting Applications

Porting Applications
8.6 Sample Client/Server Programs

printf("Data sent: %s\n", buf); /* output server’s data buffer */

if (shutdown(conn_sockfd, 2) < 0)
{
perror("Failed to shutdown client connection");
exit(EXIT_FAILURE);
}

if (close(conn_sockfd) < 0)
{
perror("Failed to close socket");
exit(EXIT_FAILURE);
}

if (close(listen_sockfd) < 0)
{
perror("Failed to close socket");
exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);
}

! Declares variable for getnameinfo() return value

" Declares sockaddr_in6 structures

Declares buffers to receive client’s name, port number, and address for calls to
getnameinfo().

$ Clears the server sockaddr_in6 structure and sets values for fields of the
structure.

% Creates an AF_INET6 socket.

& Calls getnameinfo() to retrieve client name. This is for message displaying
purposes only and is not necessary for proper functioning of the server.

’ Calls gai_strerror() to convert one of the EAI_xxx return values to a string
describing the error.

(Calls getnameinfo() to retrieve client address and port number. This is for
message displaying purposes only and is not necessary for proper functioning
of the server.

8.6.3 Sample Program Output
This section contains sample output from the preceding server and client
programs. The server program makes and receives all requests on an AF_INET6
socket using sockaddr_in6. For requests received over IPv4, sockaddr_in6
contains an IPv4-mapped IPv6 address.

The following example shows a client program running on node hostb6 and
sending a request to node hosta6. The program uses an AF_INET6 socket. The
node hosta6 has the IPv6 address 3ffe:1200::a00:2bff:fe97:7be0 in the Domain
Name System (DNS).

$ run client.exe
Enter remote host: hosta6
Initiated connection to host: hosta6.ipv6.corp.example, port: 12345
Data received: Hello, world!
$

Porting Applications 8–21

Porting Applications
8.6 Sample Client/Server Programs

On the server node, the following example shows the server program invocation
and the request received from the client node hostb6:

$ run server.exe
Waiting for a client connection on port: 12345
Accepted connection from host: hostb6.ipv6.corp.example
(3ffe:1200::a00:2bff:fe97:7be0), port: 49174
Data sent: Hello, world!
$

The following example shows the client program running on node hostb and
sending a request to node hosta. The program uses an AF_INET6 socket. The
hosta node has only an IPv4 address in the DNS.

$ run client.exe
Enter remote host: hosta
Initiated connection to host: hosta.corp.example, port 12345
Data received: Hello, world!
$

On the server node, the following example shows the server program invocation
and the request received from the client node hostb:

$ run server.exe
Waiting for a client connection on port: 12345
Accepted connection from host: hostb.corp.example (::ffff:10.10.10.251), port: 49175
Data sent: Hello, world!
$

The following example shows the client program running on node
hostb6 and sending a request to node hosta6 using its link-local address
fe80::a00:2bff:fe97:7be0. The program uses an AF_INET6 socket.

$ run client.exe
Enter remote host: fe80::a00:2bff:fe97:7be0
Initiated connection to host: fe80::a00:2bff:fe97:7be0, port: 12345
Data received: Hello, world!
$

On the server node, the following example shows the server program invocation
and the request received from the client node hostb6.

$ run server.exe
Waiting for a client connection on port: 12345
Accepted connection from host: hosta6.ipv6.corp.example%WE0
(fe80::a00:2bff:fe97:7be0%WE0), port: 49177
Data sent: Hello, world!
$

8–22 Porting Applications

A
Supported IPv6 RFCs

The following are supported IPV6 Request for Comments (RFCs):

• Internet Protocol Version 6 (IPv6) Specification, RFC 2460 (December 1998)

• Internet Control Message Protocol (ICMPv6) for Internet Protocol Version 6
(IPv6), RFC 2463 (December 1998)

• Neighbor Discovery for IP Version 6 (IPv6), RFC 2461 (December 1998)

• IPv6 Stateless Address Autoconfiguration, RFC 2462 (December 1998)

• Path MTU Discovery for IP Version 6, RFC 1981 (August 1996)

• Transition Mechanisms for IPv6 Hosts and Routers, RFC 1933 (April 1996)

• IP Version 6 Addressing Architecture, RFC 3513 (April 2003)

• An IPv6 Aggregatable Global Unicast Address Format, RFC 2374 (July 1998)

• IPv6 Testing Address Allocation, RFC 2471 (December 1998)

• Transmission of IPv6 Packets over Ethernet Networks, RFC 2464 (December
1998)

• Transmission of IPv6 Packets over FDDI Networks, RFC 2467 (December
1998)

• Basic Socket Interface Extensions for IPv6, RFC 3493 (February 2003)

• Advanced Sockets API for IPv6, RFC 3542 (May 2003)

• DNS Extensions to Support IP version 6, RFC 1886 (December 1995)

• Dynamic Updates in the Domain Name System (DNS UPDATE), RFC 2136
(April 1997)

• RIPng, RFC 2080 (January 1997)

Supported IPv6 RFCs A–1

B
Deprecated Library Functions

This appendix describes deprecated library functions that were provided in
previous Early Adopter Kits (EAKs). Do not use these functions if you are
developing new applications. If your existing applications use these functions, see
Chapter 8 for changes you should make to your code.

The following table shows the deprecated functions and their replacements:

Deprecated Function Replacement Function

getipnodebyname getaddrinfo
getipnodebyaddr getnameinfo
freehostent freeaddrinfo

B.1 getipnodebyname Function
The getipnodebyname function has the following syntax:

#include <netdb.h>
struct hostent *getipnodebyname(

const char *name,
int addr_family,
int flags,
int *error_num);

Parameters:

• name

Specifies the official network node name, alias, or numeric node address (for
example, an IPv4 dotted-decimal address or an IPv6 hexadecimal address).

• addr_family

Specifies the address family. This can be AF_INET for IPv4 addresses or
AF_INET6 for IPv6 addresses.

• flags

Specifies the type of addresses for which to search and the types of addresses
that are returned. Table B–1 describes how the processing is affected by the
values of the af parameter and commonly used flag values.

• error_num

Specifies an error return code value if the function is not successful.

Description

The getipnodebyname() routine is an evolution of the gethostbyname() routine
that enables name lookups in address families other than AF_INET.

Deprecated Library Functions B–1

Deprecated Library Functions
B.1 getipnodebyname Function

The getipnodebyname() routine returns a pointer to a structure of type hostent.
Its members specify data obtained from the local TCPIP$ETC:IPNODES.DAT file,
TCPIP$HOSTS.DAT file or from one of the files distributed by DNS/BIND.

If multiple addresses are found, the h_addr_list field in the hostent structure
contains the addresses.

The <netdb.h> header file defines the hostent structure.

If you are using DNS/BIND, the information is obtained from a name server
as configured. When the name server is not running, the getipnodebyname()
routine searches both the local TCPIP$ETC:IPNODES.DAT name file for IPv6
and IPv4 addresses and the hosts name file for IPv4 addresses, if the addresses
not are found in the TCPIP$ETC:IPNODES.DAT file.

Table B–1 lists the flags parameters and how the processing is affected by the
value of the af parameters.

Table B–1 Node Name to Address Processing

Flag Value af Value is AF_NET af Value is AF_INET6

0 Searches for A records.

If found, returns IPv4 addresses
(h_length=4).

If not, returns a NULL pointer.

Provides backward compatibility
for existing IPv4 applications.

Searches for AAAA
records.

If found, returns IPv6
records (h_length=16).

If not, returns a NULL
pointer.

AI_V4MAPPED Ignored. Searches for AAAA
records.

If found, returns IPv6
records (h_length=16).

If not, searches for A
records.

If A records are found,
returns IPv4-mapped IPv6
addresses (h_length=16).

If no A records are found,
returns a NULL pointer.

AI_ALL | AI_
V4MAPPED

Ignored. Searches for AAAA
records.

If found, returns IPv6
addresses (h_length=16).
Then searches for A
records.

If A records are found,
returns IPv4-mapped IPv6
addresses (h_length=16).

If no A records are found,
returns a NULL pointer.

All flags can be used in any combination to achieve finer control of the translation
process. The AI_ADDRCONFIG flag is typically used in combination with other
flags to modify the search based on the source address or addresses configured
on the system. Table B–2 describes how the AI_ADDRCONFIG flag works by
itself.

B–2 Deprecated Library Functions

Deprecated Library Functions
B.1 getipnodebyname Function

Table B–2 AI_ADDRCONFIG Flag

Flag Value af Value is AF_NET af Value is AF_INET6

AI_ADDRCONFIG Searches for A records only if an
IPv4 source address is configured
on the system.

Searches for AAAA records
only if an IPv6 source
address is configured on
the system.

Searches for A records
only if an IPv4 source
address is configured on
the system.

Most applications will use a combination of the AI_ADDRCONFIG and AI_
V4MAPPED flags to control their search. To simplify this for the programmer,
the AI_DEFAULT symbol, which is a logical OR of AI_ADDRCONFIG and
AI_V4MAPPED, is defined. Table B–3 describes how AI_DEFAULT directs the
search.

Table B–3 AI_DEFAULT Flag

Flag Value af Value is AF_NET af Value is AF_INET6

AI_DEFAULT Searches for A records only if an
IPv4 source address is configured
on the system.

If found, returns IPv4 addresses
(h_length=4).

If not, returns a NULL pointer.

Searches for AAAA records
only if an IPv6 source
address is configured on
the system.

If found, returns IPv6
records (h_length=16).

If not found and if an IPv4
address is configured on
the system, searches for A
records.

If A records are found,
returns IPv4-mapped IPv6
addresses (h_length=16).

If no A records are found,
returns a NULL pointer.

The hostent structure returned by the getipnodebyname function is dynamically
allocated. You should free this structure and dynamic storage by using the
freehostent function (see Section B.3).

Errors

If the getipnodebyname() routine call fails, error_num is set to one of the
following values:

• HOST_NOT_FOUND

The name you have used is not an official node name or alias; another type of
name server request may be successful.

• NO_ADDRESS

The server recognized the request and the name, but no address is available
for the name. Another type of name server request may be successful.

• NO_RECOVERY

An unexpected server failure occurred. This is a nonrecoverable error.

Deprecated Library Functions B–3

Deprecated Library Functions
B.1 getipnodebyname Function

• TRY_AGAIN

A transient error occurred, for example, the server did not respond. A retry
at some later time may be successful.

B.2 getipnodebyaddr Function
The getipnodebyaddr function has the following syntax:

#include <netdb.h>

struct hostent *getipnodebyaddr(
const void *src,
size_t len,
int af,
int *error_num);

Parameters

• src

Specifies an Internet address in network order.

• len

Specifies the number of bytes in an Internet address.

• af

Specifies the Internet domain address format. Valid values are AF_INET and
AF_INET6.

• error_num

Specifies an error return code value if the function is not successful.

Description

The getipnodebyaddr() routine is an evolution of the gethostbyaddr() routine
that enables address lookups in address families other than AF_INET.

The getipnodebyaddr() routine returns a pointer to a structure of type hostent.
Its members specify data obtained from the local TCPIP$ETC:IPNODES.DAT file,
the TCPIP$HOSTS.DAT file, or one of the files distributed by DNS/BIND.

The getipnodebyaddr() routine searches the network host database sequentially
until a match with the src and af parameters occurs. The len parameter must
specify the number of bytes in an Internet address. The src parameter must
specify the address in network order. The af parameter can be either the constant
AF_INET or AF_INET6, which specifies the IPv4 address format or the IPv6
address format, respectively. When EOF (end-of-file) is reached without a match,
an error value is returned.

If the src parameter is either an IPv4-mapped IPv6 address or an IPv4-
compatible IPv6 address, the routine performs the following steps:

1. If the af parameter is AF_INET6, the len parameter is 16, and the src
parameter is either an IPV4-mapped IPv6 address or an IPv4-compatible
IPv6 address, the routine skips the first 12 bytes of the address, sets af to
AF_INET and len to 4.

2. If the af parameter is AF_INET, the routine queries for a PTR record in the
in-addr.arpa domain.

3. If the af parameter is AF_INET6, the routine queries for a PTR record in the
ip6.int domain.

B–4 Deprecated Library Functions

Deprecated Library Functions
B.2 getipnodebyaddr Function

4. If the routine returns success, the single address and address family
returned in the hostent structure are copies of the src parameter and the af
parameter, respectively, that were passed to the routine.

Note

The double colon (::) and ::1 IPv6 addresses are not considered IPv4-
compatible addresses.

If you are using DNS/BIND, the address is obtained from a name server as
configured. When the name server is not running, the getipnodebyaddr()
routine searches the local TCPIP$ETC:IPNODES.DAT name file for IPv6 and
IPv4 addresses and the hosts name file for IPv4 addresses, if the addresses are
not found in the TCPIP$ETC:IPNODES.DAT file.

The getipnodebyaddr() routine dynamically allocates the hostent structure.
Use the freehostent() routine to free the allocated memory. (See Section B.3.

Errors

If the getipnodebyaddr() routine call fails, error_num is set to one of the
following the values:

• HOST_NOT_FOUND

The name you have used is not an official node name or alias; another type of
name server request may be successful.

• NO_ADDRESS

The server recognized the request and the name, but no address is available
for the name. Another type of name server request may be successful.

• NO_RECOVERY

An unexpected server failure occurred. This is a nonrecoverable error.

• TRY_AGAIN

A transient error occurred, for example, the server did not respond. A retry
at some later time may be successful.

B.3 freehostent Function
The freehostrent function returns hostent structures and dynamic storage to
the system. You should use this function to free hostent structures and storage
that were returned by getipnodebyname and getipnodebyaddr.

This function has the following syntax:

void freehostent(
struct hostent *ptr);

The ptr parameter is a pointer to the hostent structure to be freed.

Note

Do not use the freehostent function with hostent structures returned by
gethostbyname and gethostbyaddr.

Deprecated Library Functions B–5

Index

A
AAAA

query, 1–11
resource record type, 1–11

AAAA records
for address lookups, 3–1

Adding address to interface
with ifconfig, 4–6

Adding a route manually for an on-link prefix,
4–7

Address assignment
for IPv6, 1–11

Address autoconfiguration
stateful, 1–10
stateless, 1–10

Addresses
introduction to, 1–2

Address keyword information
for TCPIP$IP6RTRD.CONF, 2–26

Address lookups
using AAAA records, 3–1

Address prefixes
for IPv6 addresses, 1–9

Address resolution
Domain Name System, 1–11

Address-testing macros, 7–7
Address translation and conversion functions, 7–6
Advanced API

description, 7–7
AF_INET6 sockets

using, 8–1
Anycast address, 1–7
Arpa zone

sample reverse mapping data file, 3–4
Automatic tunnels, 1–12

limitations, 1–12

B
Basic API

overview, 7–3
BIND

enabling IPv6 interfaces, 3–2
IPv6 support in, 3–1

BIND configuration files
sample, 3–2

Binding
for mobile IPv6, 5–2

BIND resolver, 1–10
BIND server

sample configuration file, 3–2
6bone

connecting to, 4–4
Border router, 1–12

C
Care-of address

for mobile IPv6, 5–2
cmsghdr

structure, 7–2
Compiling and linking IPv6 applications

guidelines, 7–13
Configuration

preparing for, 2–2
worksheets, 2–2

Configuration files
for BIND, 3–2

Configurations
host-to-host over tunnel, 1–15
host-to-host with no router, 1–13
host-to-host with router, 1–14
host-to-router over 6to4 tunnel, 1–17
host-to-router over tunnel, 1–16
IPv6 network to IPv6 network over tunnel,

1–16
multiple IPv6 networks with multiple routers,

1–15
sample IPv6, 1–13
two IPv6 networks with router, 1–14

Configured tunnels
creating with iptunnel, 4–5
IPv4, 1–13
IPv6, 1–13
limitations, 1–13
types of, 1–13

Configuring
a correspondent node, 5–6
a home agent, 5–6
mobile IPv6, 5–6

Index–1

Correspondent node
configuring, 5–6
for mobile IPv6, 5–2

D
Default router

adding or deleting, 4–7
Deleting address from interface

with ifconfig, 4–6
Deprecated library functions, B–1

freehostent, B–5
getipnodebyaddr, B–4
getipnodebyname, B–1

DNAME
using to rename ip6.int, 3–2

DNS
See Domain Name System

DNS domain name and address
registration, 2–20

Domain Name System
features, 1–11

F
Filtering macros

for ICMPv6 messages, 7–9
freeaddrinfo() function, 7–15
Function changes

gethostbyaddr function, 8–9
gethostbyname function, 8–9
inet_addr function, 8–10
inet_ntoa function, 8–10

G
gai_strerror() function, 7–16
getaddrinfo() function, 7–17
getnameinfo() function, 7–23
Global unicast addresses, 1–5

H
Header files

for IPv6, 7–2
Header information

received as ancillary data, 7–10
Home address

for mobile IPv6, 5–2
Home agent

configuring, 5–6
for mobile IPv6, 5–2

Host
definition, 1–1

Host problems
connection is not accepted, 6–6
connection terminates, 6–6
host is unknown, 6–3

Host problems (cont’d)
IPv6 process not started, 6–2
off-link node is not reachable, 6–4
on-link node is not reachable, 6–3
solving, 6–2
your node is unreachable, 6–5

Host process
TCPIP$ND6HOST, 2–1

I
ICMPv6 messages

accessing, 7–9
description, 7–9
filtering macros, 7–9

ifconfig command, 4–1
if_freenameindex() function, 7–26
if_indextoname() function, 7–27
if_nameindex() function, 7–28
if_nametoindex() function, 7–29
in6_addr

structure, 7–1
inet6_opt_append() function, 7–30
inet6_opt_finish() function, 7–34
inet6_opt_get_val() function, 7–35
inet6_opt_next() function, 7–37
inet6_opt_set_val() function, 7–39
inet6_rth_add() function, 7–40
inet6_rth_getaddr() function, 7–41
inet6_rth_init() function, 7–42
inet6_rth_reverse() function, 7–44
inet6_rth_segments() function, 7–45
inet6_rth_space() function, 7–46
inet_ntop() function, 7–47
inet_opt_find() function, 7–32
inet_pton() function, 7–48
init6_opt_init() function, 7–36
Interface

definition, 1–2
initializing with ifconfig, 4–4
removing with ifconfig, 4–5

Interface attribute configuration
by TCPIP$ND6HOST, 2–1

Interface identification
functions used for, 7–3

Interface identifier
setting with ifconfig, 4–5

Interface index, 7–3
Interface keyword information

for TCPIP$IP6RTRD.CONF, 2–24
ip6.int

using DNAME to rename, 3–2
iptunnel command, 4–3
IPv4 configured tunnel, 1–13
IPv6

library functions, 7–14
problems, 6–1
structures, 7–1

Index–2

IPV6.ARPA
sample reverse mapping data file for arpa zone,

3–4
IPV6.DB

sample forward mapping data file, 3–3
IPV6.INT

sample data file, 3–5
IPv6 addresses

comparing when porting application, 8–10
introduction to, 1–2
prefixes, 1–9
representation of, 1–2
type of, 1–3
unicast, 1–3
using CIDR notation, 1–3

IPv6 configurations, 1–13
automatic tunnel, 2–4
choosing host or router, 2–17
configured tunnel, 2–4, 2–5
DNS/BIND automatic updates, 2–4
examples, 2–6
host-to-host over IPv4 configured tunnel, 2–10
host-to-host with router, 2–7
host-to-router over IPv4 configured tunnel,

2–11
IPv6 interfaces, 2–4
IPv6 network to IPv6 network with router, 2–8
IPv6 to IPv6 network over IPv4 configured

tunnel, 2–13
manual routes, 2–4, 2–6
multiple IPv6 networkss and multiple routers,

2–9
overview of procedure, 2–17
router, 2–3, 2–5
running TCPIP$IP6_SETUP, 2–17
simple host-to-host, 2–7
6to4 tunnel, 2–4, 2–5, 2–15

IPv6 configured tunnel, 1–13
IPv6 header

accessing using socket options, 7–9
IPv6 history, 1–1
IPv6 host

configuring, 2–17
IPv6 interfaces

enabling for BIND, 3–2
initializing a new IPv6 interface, 4–4

IPv6 overview, 1–1
IPv6 processes, 2–1
IPv6 support

for BIND, 3–1
IPv6 terminology, 1–1

L
Library functions

deprecated, B–1
for IPv6, 7–14

Link
definition, 1–2

Link-local addresses, 1–6
Loopback address, 1–4

M
Management commands

ifconfig, 4–1
iptunnel, 4–3
IPv6 extensions, 4–1
using UNIX commands, 4–1

Management tasks, 4–3
Mobile IPv6

configuring, 5–6
environment, 5–2
history, 5–1
monitoring, 5–6
operation, 5–2
overview, 5–1
planning for, 5–6
restrictions, 5–1
terminology, 5–2

Mobile node
for mobile IPv6, 5–2

Monitoring mobile IPv6, 5–6
using tcpdump, 5–7
using using netstat, 5–7

msghdr
structure, 7–2

Multicast addresses, 1–8
fields and values, 1–8
format, 1–8
well known, 1–8

Multicast datagrams
receiving, 7–5
sending, 7–4

N
Name lookups

using nibble format, 3–1
netstat

using to monitor mobile IPv6, 5–7
netstat command, 4–8
Network problems

solving, 6–2
Nibble format

for name lookups, 3–1
Node

definition, 1–1

Index–3

Nonglobal addresses
format, 1–10
specifying, 1–10

O
Off-link node

description, 6–1
On-link discovery

by TCPIP$ND6HOST, 2–1
On-link node

description, 6–1
On-link prefix

adding a route manually, 4–7
Options headers

accessing, 7–12
destination header, 7–12
hop-by-hop header, 7–12
receiving destination options, 7–13
receiving hop-by-hop options, 7–12
sending destination options, 7–13
sending hop-by-hop options, 7–12
socket calls used to build and examine, 7–12

P
ping command, 4–8
Porting applications

address information and variables, 8–10
changing socket options, 8–12
comparing IP addresses, 8–10
comparing IP address to wildcard address,

8–11
function changes, 8–9
making name changes, 8–7
making structure changes, 8–7
overview, 8–1
using functions that return IP addresses, 8–12
using int data types to hold IP addresses,

8–11
Problems

IPv6, 6–1
Process log files

for IPv6, 4–10

R
Raw sockets

differences between IPv4 and IPv6, 7–8
using, 7–8

RFCs
supported, A–1

Router advertisements
sent by TCPIP$IP6RTRD process, 2–2

Router configuration file
editing, 2–27
sample, 2–27
TCPIP$IP6RTRD.CONF, 2–24

Router discovery
by TCPIP$ND6HOST, 2–1

Router process
TCPIP$IP6RTRD, 2–1

Routing headers
accessing, 7–11
socket calls used to build and examine, 7–11

Routing problems
connected is not accepted, 6–10
connection terminates, 6–10
host is unknown, 6–7
IPv6 process is not running, 6–6
off-link node is unreachable, 6–8
on-link node addresses are not configured, 6–9
on-link node is unreachable, 6–7
router does not forard messages, 6–9
solving, 6–6
your node is unreachable, 6–10

S
Sample programs

client program using AF_INET6 sockets, 8–17
client program using AF_INET sockets, 8–12
output, 8–21
server program using AF_INET6 sockets, 8–19
server program using AF_INET sockets, 8–14
using AF_INET6 sockets, 8–16
using AF_INET sockets, 8–12

Site-local addresses, 1–6
sockaddr_in6

structure, 7–2
Socket interface

overview, 7–1
Socket options

for IPv6, 7–2
for receiving optional information, 7–9
IPV6_JOIN_GROUP, 7–5
IPV6_LEAVE_GROUP, 7–6
IPV6_MULTICAST_HOPS, 7–4
IPV6_MULTICAST_IF, 7–4
IPV6_MULTICAST_LOOP, 7–4

Sockets
using AF_INET6, 8–1

Stateless address configuration
by TCPIP$ND6HOST, 2–1

Structure changes
hostent structure, 8–8
in_addr structure, 8–7
sockaddr structure, 8–8
sockaddr_in structure, 8–8

Structures
cmsghdr, 7–2
in6_addr, 7–1
msghdr, 7–2
sockaddr_in6, 7–2
to support IPv6, 7–1

Index–4

T
tcpdump command, 4–10

using to monitor mobile IPv6, 5–7
TCPIP$BIND.CONF_IPV6

sample BIND server configuration file, 3–2
TCPIP$IP6RTRD

router process, 2–1
TCPIP$IP6RTRD.CONF

address keyword information, 2–26
editing, 2–27
format, 2–24
interface keyword information, 2–24
router configuration file, 2–24

TCPIP$IP6RTRD log file, 5–7
TCPIP$IP6RTRD process

functions, 2–2
overview, 2–2

TCPIP$IP6_SETUP
configuring a router, 2–20
running, 2–17
using to configure host, 2–17

TCPIP$ND6HOST
host process, 2–1
interface attribute configuration, 2–1
on-link prefix discovery, 2–1
router discovery, 2–1
stateless address configuration, 2–1

TCPIP$ND6HOST process
functions, 2–1
overview, 2–1

6to4 tunnels, 1–12
border router, 1–12
limitations, 1–13

traceroute command, 4–9
Tunnels

automatic, 1–12
configured, 1–13
definition, 1–2
6to4, 1–12
types, 1–12
using, 1–12

U
Unicast addresses, 1–3

commonly used, 1–4
global addresses, 1–5
link-local, 1–6
local use, 1–6
loopback address, 1–4
site-local, 1–6
unspecified address, 1–4
with embedded IPv4 addresses, 1–5

UNIX flags
case sensitivity, 4–8

UNIX-style commands, 4–8
netstat, 4–8
ping, 4–8
tcpdump, 4–10
traceroute, 4–9

W
Wildcard address

comparing to IP address, 8–11

Index–5

	Preface
	1 What Is IPv6?
	1.1 Terminology
	1.2 Introduction to IPv6 Addresses
	1.2.1 Address Text Representation
	1.2.2 Types of Addresses
	1.2.3 Address Prefixes
	1.2.4 Specifying IPv6 Nonglobal Addresses
	1.2.5 Address Autoconfiguration
	1.2.6 Address Resolution

	1.3 Address Assignment
	1.4 Deploying IPv6 Using Tunnels
	1.4.1 Automatic Tunnels
	1.4.2 6to4 Tunnels
	1.4.3 Configured Tunnels

	1.5 IPv6 Environment

	2 Configuring IPv6
	2.1 IPv6 Processes
	2.1.1 TCPIP$ND6HOST
	2.1.2 TCPIP$IP6RTRD Process

	2.2 Preparing for Configuration
	2.3 IPv6 System Configuration Examples
	2.3.1 Simple Host-to-Host Configuration
	2.3.2 Host-to-Host with Router Configuration
	2.3.3 IPv6 Network-to-IPv6 Network with Router Configuration
	2.3.4 Multiple IPv6 Networks and Multiple Routers Configuration
	2.3.5 Host-to-Host over IPv4 Configured Tunnel Configuration
	2.3.6 Host-to-Router over IPv4 Configured Tunnel Configuration
	2.3.7 IPv6 Network to IPv6 Network over IPv4 Configured Tunnel Configuration
	2.3.8 6to4 Tunnel Configuration

	2.4 Configuring IPv6
	2.5 Configuring an IPv6 Host
	2.5.1 Run TCPIP$IP6_SETUP to Configure Host
	2.5.2 DNS Domain Name and Address Registration

	2.6 Configuring an IPv6 Router
	2.6.1 Running TCPIP$IP6_SETUP to Configure Router
	2.6.2 TCPIP$IP6RTRD.CONF Configuration File

	3 Configuring BIND
	3.1 IPv6 Support in BIND Version 9
	3.1.1 Address lookups Using AAAA records
	3.1.2 Name Lookups Using Nibble Format
	3.1.3 Using DNAME To Rename ip6.int
	3.1.4 Enabling IPv6 Interfaces

	3.2 Sample BIND Configuration Files

	4 Managing and Monitoring the IPv6 Network
	4.1 IPv6 Extensions to Management Commands
	4.1.1 ifconfig Command
	4.1.2 iptunnel Command

	4.2 Typical Management Tasks
	4.2.1 Connecting to the 6bone Network
	4.2.2 Initializing a New Interface for IPv6
	4.2.3 Creating a Configured Tunnel
	4.2.4 Adding an Address to an Interface
	4.2.5 Deleting an Address from an Interface
	4.2.6 Adding or Deleting a Default Router
	4.2.7 Manually Adding a Route for an On-Link Prefix

	4.3 UNIX-Style Commands to Monitor the Network
	4.3.1 ping Command
	4.3.2 netstat Command
	4.3.3 traceroute Command
	4.3.4 tcpdump Command

	4.4 IPv6 Process Log Files

	5 Mobile IPv6
	5.1 Mobile IPv6 History
	5.2 Mobile IPv6 Environment
	5.3 Mobile IPv6 Operation
	5.4 Planning Mobile IPv6
	5.5 Configuring Mobile IPv6
	5.5.1 Configuring a Correspondent Node
	5.5.2 Configuring a Home Agent

	5.6 Monitoring the Mobile IPv6 Environment
	5.6.1 Using tcpdump
	5.6.2 Using netstat
	5.6.3 TCPIP$IP6RTRD Log File

	6 Solving IPv6 Problems
	6.1 Using the Diagnostic Suggestions
	6.2 Getting Started
	6.3 Solving IPv6 Network Problems
	6.4 Solving IPv6 Host Problems
	6.4.1 IPv6 Process Is Not Started
	6.4.2 Host Is Unknown
	6.4.3 On-Link Node Is Not Reachable
	6.4.4 Off-Link Node Is Not Reachable
	6.4.5 Your Node Is Unreachable
	6.4.6 Connection Is Not Accepted
	6.4.7 Connection Terminates

	6.5 Solving IPv6 Router Problems
	6.5.1 IPv6 Process Is Not Running
	6.5.2 Host Is Unknown
	6.5.3 On-Link Node Is Unreachable
	6.5.4 Off-Link Node Is Unreachable
	6.5.5 On-Link Node Addresses Are Not Configured
	6.5.6 Router Does Not Forward Messages
	6.5.7 Your Node Is Unreachable
	6.5.8 Connection Is Not Accepted
	6.5.9 Connection Terminates

	7 Application Interface to Sockets
	7.1 Structures
	7.1.1 in6_addr Structure
	7.1.2 sockaddr_in6 Structure
	7.1.3 msghdr Structure
	7.1.4 cmsghdr Structure

	7.2 Header Files
	7.3 Socket Options
	7.4 Basic API
	7.4.1 Interface Identification
	7.4.2 IPv6 Multicast Datagrams
	7.4.3 Address Translation and Conversion Functions
	7.4.4 Address-Testing Macros

	7.5 Advanced API
	7.5.1 Using IPv6 Raw Sockets

	7.6 Guidelines for Compiling and Linking IPv6 Applications
	7.7 IPv6 Library Functions API
	freeaddrinfo()
	gai_strerror()
	getaddrinfo()
	getnameinfo()
	if_freenameindex()
	if_indextoname()
	if_nameindex()
	if_nametoindex()
	inet6_opt_append()
	inet6_opt_find()
	inet6_opt_finish()
	inet6_opt_get_val()
	inet6_opt_init()
	inet6_opt_next()
	inet6_opt_set_val()
	inet6_rth_add()
	inet6_rth_getaddr()
	inet6_rth_init()
	inet6_rth_reverse()
	inet6_rth_segments()
	inet6_rth_space()
	inet_ntop()
	inet_pton()

	8 Porting Applications
	8.1 Using AF_INET6 Sockets
	8.2 Name Changes
	8.3 Structure Changes
	8.3.1 in_addr Structure
	8.3.2 sockaddr Structure
	8.3.3 sockaddr_in Structure
	8.3.4 hostent Structure

	8.4 Function Changes
	8.4.1 gethostbyaddr() Function
	8.4.2 gethostbyname() Function
	8.4.3 inet_ntoa() Function
	8.4.4 inet_addr() Function

	8.5 Other Application Changes
	8.5.1 Comparing IP Addresses
	8.5.2 Comparing an IP Address to the Wildcard Address
	8.5.3 Using int Data Types to Hold IP Addresses
	8.5.4 Using Functions that Return IP Addresses
	8.5.5 Changing Socket Options

	8.6 Sample Client/Server Programs
	8.6.1 Programs Using AF_INET Sockets
	8.6.2 Programs Using AF_INET6 Sockets
	8.6.3 Sample Program Output

	A Supported IPv6 RFCs
	B Deprecated Library Functions
	B.1 getipnodebyname Function
	B.2 getipnodebyaddr Function
	B.3 freehostent Function

	Index
	Examples
	Example 2–1 Sample TCPIP$IP6RTRD.CONF File
	Example 3–1 Sample TCPIP$BIND.CONF_IPV6
	Example 3–2 Sample IPV6.DB File
	Example 3–3 Sample IPV6.ARPA File
	Example 3–4 Sample IPV6.INT File

	Figures
	Figure 1–1 Unicast Addresses
	Figure 1–2 64-Bit Prefix Plus 64-Bit Interface ID
	Figure 1–3 Creating an Interface ID from a MAC Address
	Figure 1–4 IPv6 Global Unicast Address
	Figure 1–5 IPv4-Compatible IPv6 Address
	Figure 1–6 IPv4-Mapped IPv6 Address
	Figure 1–7 IPv6 Link-Local Unicast Address
	Figure 1–8 IPv6 Site-Local Unicast Address
	Figure 1–9 Anycast Address
	Figure 1–10 IPv6 Multicast Address
	Figure 1–11 Host-to-Host Configuration with No Router
	Figure 1–12 Host-to-Host Configuration with Router
	Figure 1–13 IPv6 Network to IPv6 Network with Router Configuration
	Figure 1–14 Multiple IPv6 Networks and Multiple Routers Configuration
	Figure 1–15 Host-to-Host Configuration over Tunnel
	Figure 1–16 Host-to-Router Configuration over Tunnel
	Figure 1–17 IPv6 Network-to-IPv6 Network Configuration over Tunnel
	Figure 1–18 IPv6 Network-to-IPv6 Network Configuration over Tunnel
	Figure 2–1 Configuration Worksheet
	Figure 2–2 Simple Host-to-Host Configuration
	Figure 2–3 Host-to-Host with Router Configuration
	Figure 2–4 IPv6 Network-to-IPv6 Network with Router Configuration
	Figure 2–5 Multiple IPv6 Networks and Multiple Routers Configuration
	Figure 2–6 Host-to-Host over IPv4 Configured Tunnel Configuration
	Figure 2–7 Host-to-Router over IPv4 Configured Tunnel Configuration
	Figure 2–8 Router Not Advertising a Global Address Prefix
	Figure 2–9 Router Advertising a Global Address Prefix
	Figure 2–10 Router A Not Advertising a Global Prefix on the Tunnel Link
	Figure 2–11 IPv6 Network to IPv6 Network over IPv4 Configured Tunnel Configuration
	Figure 2–12 6to4 Tunnel Host E Configuration
	Figure 2–13 6to4 Tunnel Router Configuration
	Figure 2–14 6to4 Tunnel Host B Configuration
	Figure 5–1 Communication with Mobile Node at Home
	Figure 5–2 Communication with Mobile Node Away from Home–Part 1
	Figure 5–3 Communication with Mobile Node Away from Home–Part 2
	Figure 8–1 Using AF_INET Socket for IPv4 Communications
	Figure 8–2 Using AF_INET6 Socket to Send IPv4 Communications
	Figure 8–3 Using AF_INET6 Socket to Receive IPv4 Communications
	Figure 8–4 Using AF_INET6 Socket for IPv6 Communications

	Tables
	Table 1 TCP/IP Services Documentation
	Table 1–1 Well-Known Multicast Addresses
	Table 1–2 IPv6 Address Types and Prefixes
	Table 7–1 Socket Options
	Table 7–2 Summary of Address-Testing Macros
	Table 7–3 Differences Between IPv4 and IPv6 Raw Sockets
	Table 7–4 ICMPv6 Filtering Macros
	Table 7–5 Optional Information and Socket Options
	Table 7–6 Socket Calls for Routing Header Name Description
	Table 7–7 Socket Calls for Options Headers
	Table 7–8 ai_flags Member Values
	Table 7–9 Flag Bits
	Table 8–1 Name Changes
	Table B–1 Node Name to Address Processing
	Table B–2 AI_ADDRCONFIG Flag
	Table B–3 AI_DEFAULT Flag

