
OpenVMS Obsolete Features
Manual
Order Number: AA–PS6JA–TE

May 1993

This manual contains information about DCL commands and qualifiers,
system services, RTL routines and argument notation, and VMS utilities
and components that are now obsolete. The manual also includes an
appendix of DCL commands and qualifiers, RTL routines, and VMS
utilities and components that have been eliminated from VMS.

Revision/Update Information: This manual supersedes VMS Obsolete
Features Manual, Version 5.4.

Software Version: OpenVMS VAX Version 6.0

Digital Equipment Corporation
Maynard, Massachusetts

May 1993

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1993.

All Rights Reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: DECwindows, Digital, OpenVMS,
VAX, VAX DOCUMENT, VMS, and the DIGITAL logo.

PostScript is a registered trademark of Adobe Systems, Inc.

ZK4710

This document was prepared using VAX DOCUMENT, Version 2.1.

Contents

Preface . vii

1 Obsolete DCL Commands and Qualifiers

1.1 Obsolete DCL Commands . 1–1
SET CLUSTER/QUORUM . 1–2
SET DEVICE/ACL . 1–4
SET DIRECTORY/ACL . 1–8
SET FILE/ACL . 1–14
SET QUEUE/ENTRY . 1–20
SHOW MAGTAPE . 1–28

1.2 Obsolete DCL Command Qualifiers . 1–29
1.2.1 Obsolete Qualifiers of the INITIALIZE/QUEUE Command 1–29
1.2.1.1 INITIALIZE/QUEUE/[NO]BURST . 1–29
1.2.1.2 INITIALIZE/QUEUE/[NO]FLAG . 1–29
1.2.1.3 INITIALIZE/QUEUE/PRIORITY . 1–30
1.2.1.4 INITIALIZE/QUEUE/TERMINAL . 1–30
1.2.2 Obsolete Qualifiers of the START/QUEUE Command 1–30
1.2.2.1 START/QUEUE/[NO]BATCH . 1–30
1.2.2.2 START/QUEUE/PRIORITY=n . 1–30
1.2.2.3 START/QUEUE/TERMINAL . 1–31

2 Obsolete System Services

$BRDCST . 2–2
$CNTREG . 2–6
$CRELOG . 2–8
$DELLOG . 2–11
$GETCHN . 2–13
$GETDEV . 2–17
$INPUT . 2–20
$OUTPUT . 2–21
$SETSFM . 2–23
$SETSSF . 2–25
$SNDACC . 2–27
$SNDSMB . 2–31
$TRNLOG . 2–47

iii

3 Obsolete RTL Routines and Notation

3.1 Obsolete FOR$ Routines . 3–1
3.2 Obsolete Terminal-Independent Screen Manipulation Procedures 3–2
3.2.1 Obtaining Screen Information . 3–3
3.2.2 Positioning the Cursor on the Screen . 3–4
3.2.2.1 Controlling Input from and Output to the Screen 3–4
3.2.2.2 Buffering Screen I/0 . 3–6
3.2.2.3 Using Screen Procedures with Files and Hardcopy Terminals 3–7
3.3 Obsolete PPL$ Routines . 3–8
3.4 LIB$EMULATE . 3–8
3.5 Obsolete RTL Routines . 3–8

FOR$CNV_OUT_I . 3–9
FOR$CNV_OUT_L . 3–10
FOR$CNV_OUT_O . 3–11
FOR$CNV_OUT_Z . 3–12
FOR$CNV_IN_I . 3–13
FOR$CNV_IN_L . 3–15
FOR$CNV_IN_O . 3–17
FOR$CNV_IN_DEFG . 3–19
FOR$CNV_IN_Z . 3–22
LIB$DOWN_SCROLL . 3–24
LIB$EMULATE . 3–25
LIB$ERASE_LINE . 3–27
LIB$ERASE_PAGE . 3–28
LIB$GET_SCREEN . 3–29
LIB$PUT_BUFFER . 3–31
LIB$PUT_LINE . 3–33
LIB$PUT_SCREEN . 3–35
LIB$SCREEN_INFO . 3–37
LIB$SET_BUFFER . 3–39
LIB$SET_CURSOR . 3–41
LIB$SET_OUTPUT . 3–43
LIB$SET_SCROLL . 3–46
LIB$STOP_OUTPUT . 3–47
LIB$UP_SCROLL . 3–48
PPL$FIND_SYNCH_ELEMENT_ID . 3–49
PPL$INITIALIZE . 3–51

4 Obsolete Utilities and Utility Components

4.1 Obsolete Utilities . 4–1
DISK QUOTA . 4–2

4.1.1 Establishing Disk Quotas . 4–2
4.1.2 Creating a Quota File . 4–2
4.1.3 Maintaining a Quota File . 4–3
4.1.4 Disabling a Quota File . 4–3
4.1.5 Listing of Commands . 4–3

iv

DISKQUOTA Commands . 4–5
ADD . 4–6
CREATE . 4–7
DISABLE . 4–8
ENABLE . 4–9
EXIT . 4–10
HELP . 4–11
MODIFY . 4–12
REBUILD . 4–13
REMOVE . 4–14
SHOW . 4–15
USE . 4–16

4.2 Obsolete Components of Current VMS Utilities . 4–17

A Eliminated Features

Eliminated Features . A–2

Index

Tables

1–1 Table of Obsolete DCL Commands . 1–1
1–2 Table of Obsolete DCL Command Qualifiers . 1–29
2–1 Obsolete System Services . 2–1
2–2 Obsolete System Services–Not Replaced . 2–1
3–1 Table of Obsolete RTL Routines . 3–1
3–2 The Terminal-Independent Screen Procedures 3–2
3–3 Screen Attributes . 3–5
3–4 Table of Obsolete PPL$ Routines . 3–8
4–1 DISKQUOTA Command Summary . 4–3

v

Preface

Intended Audience
This manual is for those users who maintain programs and command procedures
containing references or calls to the now obsolete DCL commands, system
services, and RTL routines as well as for all those who use the now obsolete
utilities and commands.

The contents of this manual have appeared previously in earlier versions of the
VMS manuals that describe the individual components.

Document Structure
This manual is organized by VMS operating system components, with one chapter
each for DCL commands, system services, RTL routines, and utilities.

The contents of the chapters are as follows:

• Chapter 1 lists obsolete DCL commands and their replacements. The chapter
also contains the DCL Dictionary entry for each obsolete command.

• Chapter 2 lists obsolete system services and their replacements. The chapter
also describes each obsolete system service.

• Chapter 3 obsolete Run-Time Library routines and their replacements
and describes each obsolete routine. The chapter also documents the RTL
argument notation commonly known as dot notation.

• Chapter 4 describes obsolete VMS utilities and their replacements. The
chapter also lists and describes obsolete components of current VMS utilities.

The manual also contains an appendix that describes DCL commands, RTL
routines, and utilities and utility components eliminated from VMS. Note that
eliminated features no longer work and do not have replacements.

Associated Documents
This manual describes obsolete features of VMS. For detailed reference
information about replacement features, see OpenVMS DCL Dictionary,
OpenVMS Programming Interfaces: Calling a System Routine, OpenVMS
System Services Reference Manual, or OpenVMS System Management Utilities
Reference Manual.

vii

Conventions
In this manual, every use of VAX VMS means the OpenVMS VAX operating
system.

The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1, then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In format descriptions, parentheses indicate that, if you
choose more than one option, you must enclose the choices
in parentheses.

[] In format descriptions, brackets indicate optional elements.
You can choose one, none, or all of the options. (Brackets
are not optional, however, in the syntax of a directory name
in a VMS file specification, or in the syntax of a substring
specification in an assignment statement.)

{ } In format descriptions, braces surround a required choice of
options; you must choose one of the options listed.

boldface text Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in online versions
of the manual.

italic text Italic text emphasizes important information, indicates
variables, and indicates complete titles of manuals. Italic
text also represents information that can vary in system
messages (for example, Internal error number), command lines
(for example, /PRODUCER=name), and command parameters
in text.

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

- A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

viii

numbers All numbers in text are assumed to be decimal, unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

mouse The term mouse refers to any pointing device, such as a mouse,
a puck, or a stylus.

MB1, MB2, MB3 MB1 indicates the left mouse button, MB2 indicates the middle
mouse button, and MB3 indicates the right mouse button. (The
buttons can be redefined by the user.)

PB1, PB2, PB3, PB4 PB1, PB2, PB3, and PB4 indicate buttons on the puck.

SB, SB SB and SB indicate buttons on the stylus.

ix

1
Obsolete DCL Commands and Qualifiers

This chapter describes all DCL commands and qualifiers that have been made
obsolete since VMS Version 4.0. Obsolete commands and obsolete qualifiers have
been superseded by more flexible or more efficient commands and qualifiers and
are no longer updated. Digital recommends that you use current commands
when you write new programs. Old programs that use obsolete commands and
qualifiers should be updated with current commands and qualifiers.

1.1 Obsolete DCL Commands
This section describes obsolete DCL commands. Table 1–1 lists the obsolete
command in the left column, the version of VMS that superseded the obsolete
command in the center column, and the current command in the third column.
For example, SET CLUSTER/QUORUM was replaced in VMS Version 5.0 by SET
CLUSTER/EXPECTED_VOTES.

Table 1–1 Table of Obsolete DCL Commands

Obsolete Command

Made
Obsolete
in Version Current Command

SET CLUSTER/QUORUM 5.0 SET CLUSTER/EXPECTED_VOTES

SET DEVICE/ACL 5.0 SET ACL/OBJECT_TYPE=DEVICE

SET DIRECTORY/ACL 5.0 SET ACL/OBJECT_TYPE=FILE

SET FILE/ACL 5.0 SET ACL/OBJECT_TYPE=FILE

SET QUEUE/ENTRY 5.0 SET ENTRY

SHOW MAGTAP 5.4 SHOW DEVICES/FULL

1–1

SET CLUSTER/QUORUM

SET CLUSTER/QUORUM

Sets the cluster quorum to a value that you specify or, if no value is specified,
sets the cluster quorum to a value determined by the system. The /QUORUM
qualifier is required.

In VMS Version 5.0, the SET CLUSTER/QUORUM command was replaced by
SET CLUSTER/EXPECTED_VOTES. For more information on the replacement
command see the OpenVMS DCL Dictionary.

Format

SET CLUSTER/QUORUM[=quorum-value]

Restrictions

Requires operator (OPER) privilege.

Parameters

None.

Description

The SET CLUSTER/QUORUM command enables you to manually adjust the
cluster quorum value. The cluster quorum is based upon an estimate of the total
number of votes available in the cluster. It is automatically adjusted upward as
new systems join.

You can specify the desired quorum value as part of the SET CLUSTER
/QUORUM command string. If you issue the SET CLUSTER/QUORUM command
without specifying a value for quorum, the system calculates the value for you,
using the formula:

(V+2)/2

where V is the sum of the votes of all nodes that are currently in the cluster. The
system will not allow you to set the quorum to a value less than or equal to the
value calculated by the system formula or to a value greater than the number of
votes present.

When you issue the SET CLUSTER/QUORUM command without specifying a
quorum value, the system assumes that all nodes that are expected to be in the
cluster are currently members.

In general, you use the SET CLUSTER/QUORUM command only when a node is
leaving the cluster for an extended period of time. Under normal circumstances,
quorum is not reduced when a node leaves the cluster, since it is assumed that
the node may be rebooted and rejoin the cluster. If a node is removed from the
cluster and is unable to rejoin the cluster within a reasonable period of time
(for example, if a node crashes due to a hardware problem and cannot rejoin the
cluster for several days), the quorum for the cluster can safely be reduced until
that node rejoins.

The purpose of the quorum is to eliminate any possibility of the cluster
partitioning into separate clusters and simultaneously accessing the same
resources (such as HSC50 disks). If the sum of the votes of all members of the
cluster is smaller than the cluster quorum, all nodes in the cluster will block

1–2

SET CLUSTER/QUORUM

activity until new nodes join to increase the vote total. Lowering the quorum
value when one or more nodes leave the cluster, reduces the possibility of this
happening.

When you issue the SET CLUSTER/QUORUM command, either with or without
a quorum value specified, the system will respond with a message indicating
the new quorum value that was actually set. Note that you need only issue this
command on one node in the cluster, since the new value for the quorum will be
propogated through the cluster. This new quorum value should then be stored
in the SYSGEN parameter QUORUM on each cluster node, so that it remains in
effect after the nodes reboot.

When a node that was previously a member of the cluster is ready to rejoin, you
should increase the SYSGEN parameter QUORUM to its original value before
bringing the node back to the cluster. Note that you do not need to use the SET
CLUSTER/QUORUM command to increase the cluster quorum, since the quorum
value will be increased automatically when the node rejoins the cluster.

Examples

1. $ SET CLUSTER/QUORUM

This command instructs the system to calculate the cluster quorum value for
you, since no value is specified as part of the command string. The system
will use the formula: (V+2)/2, described above.

2. $ SET CLUSTER/QUORUM=9

This command sets the cluster quorum to 9, which is the value specified in
the command string.

1–3

SET DEVICE/ACL

SET DEVICE/ACL

Allows you to modify the access control list (ACL) of a device. The /ACL qualifier
is required.

In VMS Version 5.0, the SET DEVICE/ACL command was replaced by SET ACL
/OBJECT_TYPE=DEVICE. For more information on the replacement command
see the OpenVMS DCL Dictionary.

Format

SET DEVICE/ACL[=(ace[,...])] device-name

Restrictions

None.

Parameters

device-name
Specifies a device whose access control list (ACL) is being modified. Wildcard
characters are not allowed in the device name.

(ace[,...])
Specifies one or more access control entries (ACEs) to be modified. When no ACE
is specified, the entire access control list is affected. Separate multiple ACEs
with commas. The specified ACEs are inserted at the top of the ACL unless the
/AFTER qualifier is specified.

Description

The SET DEVICE/ACL command enables you to manipulate the entire access
control list (ACL) of a device, or to create, modify, or delete access control entries
(ACEs) in the ACL of a device. The only valid access to be specified in an ACE
for a device is READ access, which means that the device can be allocated.

To use the SET DEVICE/ACL command, you specify the name of the device whose
ACL you want to manipulate.

The SET DEVICE/ACL command can be used to add ACEs to an ACL. For
example, the following command adds an ACE to the ACL of the terminal device
TTA3 so that no users associated with the identifier SALES have access to that
terminal:

$ SET DEVICE/ACL=(IDENTIFIER=SALES,ACCESS=NONE) TTA3

If the device specified with the SET DEVICE/ACL command does not have an
ACL, one is created.

The SET DEVICE/ACL command provides the following qualifiers to manipulate
ACEs and ACLs:

/AFTER
/DELETE
/LIKE
/NEW
/REPLACE

1–4

SET DEVICE/ACL

You can delete ACEs from an ACL by including the /DELETE qualifier and
specifying the ACEs with the /ACL qualifier. To delete all the ACEs (except those
with the PROTECTED option), include the /DELETE qualifier and specify /ACL
without specifying any ACEs.

You can copy an ACL from one object to another by using the /LIKE qualifier.
The ACL of the object specified with /LIKE replaces the ACL of the device given
with the command.

You can replace existing ACEs in the ACL of the device specified with the
command by using the /REPLACE qualifier. Any ACEs specified with /ACL are
deleted and replaced by those specified with /REPLACE.

The /NEW qualifier is used to delete all ACEs (except those with the
PROTECTED option) before adding any ACEs specified by /ACL, /LIKE, or
/REPLACE.

When referring to existing ACEs with /DELETE, /REPLACE, or /AFTER, the
existing ACE may be abbreviated.

By default, any ACEs (except security alarm ACEs) added to an ACL are placed
at the top of the ACL. Security alarm ACEs are always positioned at the top of
the ACL, regardless of positioning qualifiers. Whenever the system receives a
request for access to a device that has an ACL, the system searches each entry
in the ACL from the first to the last for the first match it can find, and then
stops searching. If another match occurs further down in the ACL, it will have
no effect. Since the position of an ACE in an ACL is so important, you can use
the /AFTER qualifier to correctly position an ACE. When you use the /AFTER
qualifier, any ACEs added will be added after the ACE specified with /AFTER.

The SET DEVICE/ACL command can also be used with the /EDIT qualifier to
invoke the ACL editor. The following qualifiers can be used only when the /EDIT
qualifier has been specified.

/JOURNAL
/KEEP
/MODE
/RECOVER

Qualifiers

/AFTER=ace
Causes all access control entries (ACEs) specified with the /ACL qualifier to be
added after the ACE specified with the /AFTER qualifier. By default, any ACEs
added to the ACL are always placed at the top of the list.

This qualifier cannot be used with the /EDIT qualifier.

/DELETE
Indicates that the access control entries (ACEs) specified with the /ACL qualifier
are to be deleted. If no ACEs are specified with /ACL, the entire ACL is deleted
(except for ACEs with the PROTECTED option). If you specify an ACE that
does not exist, you will be notified that the ACE does not exist, and the delete
operation will continue.

This qualifier cannot be used with the /EDIT qualifier.

/EDIT
Invokes the ACL Editor and allows you to use the /JOURNAL, /KEEP, /MODE, or
/RECOVER qualifiers. Any other qualifiers specified with /EDIT are ignored.

1–5

SET DEVICE/ACL

/JOURNAL[=file-spec]
/NOJOURNAL
Controls whether a journal file is created from the editing session. By default, a
journal file is created if the editing session ends abnormally.

If you omit the file specification, the journal file has the same name as the input
file and a file type of JOU. You can use the /JOURNAL qualifier to specify a
journal file name that is different from the default. No wildcard characters are
allowed in the /JOURNAL file-spec parameter.

You must specify /EDIT in order to use this qualifier.

/KEEP=(option[,...])
Determines whether the journal file or the recovery file will be deleted when the
editing session ends. The options are:

• JOURNAL—saves the journal file for current editing session

• RECOVER—saves the journal file used for restoring the ACL

You can shorten the keywords JOURNAL and RECOVER to J and R, respectively.
If you specify only one option, you can omit the parentheses.

You must specify /EDIT in order to use this qualifier.

/LIKE=object-spec
Indicates that the ACL of the object given with the /LIKE qualifier is to replace
the ACL of the device specified with SET DEVICE/ACL. Any existing ACE (except
those with the PROTECTED option) will be deleted before the ACL specified by
/LIKE is copied.

No wildcard characters are allowed in the /LIKE device-name parameter.

This qualifier cannot be used with the /EDIT qualifier.

/LOG
/NOLOG (default)
Controls whether the SET DEVICE/ACL command displays the device name of
the device that has been affected by the command.

This qualifier cannot be used with the /EDIT qualifier.

/MODE=[NO]PROMPT
Determines whether the ACL editor prompts for field values. By default, the ACL
editor selects prompt mode.

You must specify the /EDIT qualifier to use this qualifier.

/NEW
Indicates that any existing ACE in the ACL of the device specified with SET
DEVICE/ACL (except those with the PROTECTED option) is to be deleted. In
order to use the /NEW qualifier, you must specify a new ACL or ACE with the
/ACL, /LIKE, or /REPLACE qualifier.

This qualifier cannot be used with the /EDIT qualifier.

/RECOVER[=file-spec]
/NORECOVER (default)
Specifies the name of the journal file to be used in a recovery operation. If the file
specification is omitted with /RECOVER, the journal file is assumed to have the

1–6

SET DEVICE/ACL

same name as the input file and a file type of JOU. No wildcard characters are
allowed with the /RECOVER file-spec parameter.

You must specify /EDIT in order to use this qualifier.

/REPLACE=(ace[,...])
Deletes the access control entries (ACEs) specified with the /ACL qualifier and
replaces them with those specified with /REPLACE. Any ACEs specified with the
/ACL qualifier must exist and must be specified in the order in which they appear
in the ACL.

This qualifier cannot be used with the /EDIT qualifier.

Examples

1. $ SET DEVICE/ACL/LIKE=ABCD$ WRKD$

This example replaces the ACL of WRKD$ with the ACL for the device
ABCD$.

2. $ SET DEVICE/ACL/EDIT/JOURNAL=ACL.JOB WORK3:

This SET DEVICE/ACL command invokes the interactive ACL editor and
creates a journal file, named ACL.JOB, if the editing session ends abnormally.
The /EDIT qualifier enables use of the /JOURNAL qualifier.

1–7

SET DIRECTORY/ACL

SET DIRECTORY/ACL

Allows you to modify the access control list (ACL) of one or more directories. The
/ACL qualifier is required.

In VMS Version 5.0 the SET DIRECTORY/ACL command was replaced by SET
ACL/OBJECT_TYPE=FILE. For more information on the replacement command
see the OpenVMS DCL Dictionary.

Format

SET DIRECTORY/ACL[=(ace[,...])] directory-spec[,...]

Restrictions

None.

Parameters

directory-spec[,...]
Specifies one or more directories whose access control list (ACL) is being modified.
Separate multiple directory specifications with commas. Device name and colon
are optional. Wildcard characters are allowed in the directory specifications.
Each directory must be a disk directory on a Files–11 Structure Level 2 formatted
volume.

When the /EDIT qualifier is used, only one directory specification can be given,
and it cannot include any wildcard characters.

(ace[,...])
Specifies one or more access control entries (ACEs) to be modified. When no ACE
is specified, the entire access control list is affected. Separate multiple ACEs
with commas. The specified ACEs are inserted at the top of the ACL unless the
/AFTER qualifier is specified.

Description

The SET DIRECTORY/ACL command enables you to manipulate an entire
access control list (ACL) of one or more directories, or to create, modify, or delete
access control entries (ACEs) in the ACL of one or more directories. To use the
SET DIRECTORY/ACL command, you specify the directory specification of the
directory whose ACL you want to manipulate.

By using wildcard characters in the directory specification to the command, you
can manipulate the ACLs of multiple directories with a single command. The
following qualifiers can be used with wildcard characters to select a subset of the
specified directories:

/BEFORE
/BY_OWNER
/CREATED
/EXCLUDE
/SINCE

You can also use the /CONFIRM qualifier to verify the directory selection.

1–8

SET DIRECTORY/ACL

The SET DIRECTORY/ACL command can be used to add ACEs to an ACL.
For example, the following command adds an ACE to the ACL of the directory
[.CONFIDENTIAL] so that all users associated with the identifier PERSONNEL
are allowed read access to that directory:

$ SET DIRECTORY/ACL=(IDENTIFIER=PERSONNEL,ACCESS=READ) [.CONFIDENTIAL]

If the directory specified with the SET DIRECTORY/ACL command does not have
an ACL, one is created.

The SET DIRECTORY/ACL command provides the following qualifiers to
manipulate ACEs and ACLs:

/AFTER
/DELETE
/LIKE
/NEW
/REPLACE

You can delete ACEs from an ACL by including the /DELETE qualifier and
specifying the ACEs with the /ACL qualifier. To delete all the ACEs (except those
with the PROTECTED option), include the /DELETE qualifier and specify /ACL
without specifying any ACEs.

You can copy an ACL from one object to a directory by using the /LIKE qualifier.
The ACL of the object specified with /LIKE replaces the ACL of the directory
given with the command.

You can replace existing ACEs in the ACL of the directory specified with the
command by using the /REPLACE qualifier. Any ACEs specified with /ACL are
deleted and replaced by those specified with /REPLACE.

The /NEW qualifier is used to delete all ACEs (except those with the
PROTECTED option) before adding any ACEs specified by /ACL, /LIKE, or
/REPLACE.

When referring to existing ACEs with /DELETE, /REPLACE, or /AFTER, the
existing ACE may be abbreviated.

By default, any ACEs (except security alarm ACEs) added to an ACL are placed
at the top of the ACL. Security alarm ACEs are always positioned at the top
of the ACL, regardless of positioning qualifiers. Whenever the system receives
a request for access to a directory that has an ACL, the system searches each
entry in the ACL from the first to the last for the first match it can find and then
stops searching. If another match occurs further down in the ACL, it will have
no effect. Since the position of an ACE in an ACL is so important, you can use
the /AFTER qualifier to correctly position an ACE. When you use the /AFTER
qualifier, any ACEs added will be added after the ACE specified with /AFTER.

The SET DIRECTORY/ACL command can also be used with the /EDIT qualifier
to invoke the ACL editor. When the /EDIT qualifier is specified, only one directory
specification is allowed. When specifying the directory with /EDIT, use the syntax
directory.DIR. The following qualifiers can be used only when the /EDIT qualifier
has been specified.

/JOURNAL
/KEEP
/MODE
/RECOVER

1–9

SET DIRECTORY/ACL

Qualifiers

/AFTER=ace
Causes all access control entries (ACEs) specified with the /ACL qualifier to be
added after the ACE specified with the /AFTER qualifier. By default any ACEs
added to the ACL are always placed at the top of the list.

This qualifier cannot be used with the /EDIT qualifier.

/BEFORE[=time]
Selects only those directories that are dated before the specified time. You can
specify either an absolute time or a combination of absolute and delta times. You
can also use the keywords TODAY, TOMORROW, and YESTERDAY. If no time is
specified, TODAY is assumed.

This qualifier cannot be used with the /EDIT qualifier.

/BY_OWNER[=uic]
Selects one or more directories whose owner user identification code (UIC)
matches the specified owner UIC. If the /BY_OWNER qualifier is specified
without a UIC, the UIC of the current process is assumed.

This qualifier cannot be used with the /EDIT qualifier.

/CONFIRM
/NOCONFIRM (default)
Controls whether a request is issued before each individual SET DIRECTORY
/ACL operation to confirm that the operation should be performed on that
directory.

When the system issues the prompt, you can issue any of the following responses:

YES NO QUIT
TRUE FALSE CTRL/Z

1 0 ALL
<RET>

You can use any combination of upper- and lowercase letters for word responses.
Word responses can be abbreviated to one or more letters (for example, T, TR, or
TRU for TRUE). Affirmative answers are YES, TRUE, and 1. Negative answers
are NO, FALSE, 0, and <RET>. QUIT or CTRL/Z indicates that you want to
stop processing the command at that point. When you respond with ALL, the
command continues to process, but no further prompts are given. If you type a
response other than one of those in the list, the prompt will be reissued.

This qualifier cannot be used with the /EDIT qualifier.

/CREATED
Selects directories based on their dates of creation. This qualifier is relevant only
when used with the /BEFORE or /SINCE qualifier.

This qualifier cannot be used with the /EDIT qualifier.

/DEFAULT
Creates an ACL for the specified files as if the files were newly created. For a
directory file, the /DEFAULT qualifier propagates the entire ACL (except ACEs
with the NOPROPAGATE option) so that a particular access protection can
be propagated throughout a directory tree. For all other files, the /DEFAULT

1–10

SET DIRECTORY/ACL

qualifier propagates the DEFAULT option ACEs in the ACL of the parent
directory to the ACL of the specified files.

The /DEFAULT qualifier uses the ACL of the parent directory of the specified file,
not the current default directory. This qualifier cannot be used with the /EDIT
qualifier.

/DELETE
Indicates that the access control entries (ACEs) specified with the /ACL qualifier
are to be deleted. If no ACEs are specified with /ACL, the entire ACL is deleted
(except for ACEs with the PROTECTED option). If you specify an ACE that does
not exist, you will be notified that the ACE does not exist and the delete operation
will continue.

This qualifier cannot be used with the /EDIT qualifier.

/EDIT
Invokes the ACL Editor and allows you to use the /JOURNAL, /KEEP, /MODE, or
/RECOVER qualifiers. Any other qualifiers specified with /EDIT are ignored. You
can only supply one directory file specification with SET DIRECTORY/ACL/EDIT.

/EXCLUDE=(directory-spec[,...])
Excludes any directories that match the listed directory specifications from the
SET DIRECTORY/ACL operation. If you specify only one directory, you can omit
the parentheses. Wildcard characters are allowed in the directory specifications.
The directory specification cannot contain a device name.

This qualifier cannot be used with the /EDIT qualifier.

/JOURNAL[=file-spec]
/NOJOURNAL
Controls whether a journal file is created from the editing session. By default, a
journal file is created if the editing session ends abnormally.

If you omit the file specification, the journal file has the same name as the input
file and a file type of JOU. You can use the /JOURNAL qualifier to specify a
journal file name that is different from the default. No wildcard characters are
allowed in the /JOURNAL file-spec parameter.

You must specify /EDIT in order to use this qualifier.

/KEEP=(option[,...])
Determines whether the journal file or the recovery file will be deleted when the
editing session ends. The options are:

• JOURNAL—saves the journal file for the current editing session

• RECOVER—saves the journal file used for restoring the ACL

You can shorten the keywords JOURNAL and RECOVER to J and R, respectively.
If you specify only one option, you can omit the parentheses.

You must specify /EDIT in order to use this qualifier.

/LIKE=object-spec
Indicates that the ACL of the object given with the /LIKE qualifier is to replace
the ACL of the directories specified with SET DIRECTORY/ACL. Any existing
ACE (except those with the PROTECTED option) will be deleted before the ACL
specified by /LIKE is copied.

1–11

SET DIRECTORY/ACL

No wildcard characters are allowed in the /LIKE object-spec parameter.

This qualifier cannot be used with the /EDIT qualifier.

/LOG
/NOLOG (default)
Controls whether the SET DIRECTORY/ACL command displays the directory
specification of each directory that has been affected by the command. By default,
no log information is displayed.

This qualifier cannot be used with the /EDIT qualifier.

/MODE=[NO]PROMPT
Determines whether the ACL editor prompts for field values. By default, the ACL
editor selects prompt mode.

You must specify the /EDIT qualifier to use this qualifier.

/NEW
Indicates that any existing ACE in the ACL of the directory specified with SET
DIRECTORY/ACL (except those with the PROTECTED option) is to be deleted.
In order to use the /NEW qualifier, you must specify a new ACL or ACE with the
/ACL, /LIKE, or /REPLACE qualifier.

This qualifier cannot be used with the /EDIT qualifier.

/RECOVER[=file-spec]
/NORECOVER (default)
Specifies the name of the journal file to be used in a recovery operation. If the file
specification is omitted with /RECOVER, the journal file is assumed to have the
same name as the input file and a file type of JOU. No wildcard characters are
allowed with the /RECOVER file-spec parameter.

You must specify /EDIT in order to use this qualifier.

/REPLACE=(ace[,...])
Deletes the access control entries (ACEs) specified with the /ACL qualifier and
replaces them with those specified with /REPLACE. Any ACEs specified with the
/ACL qualifier must exist and must be specified in the order in which they appear
in the ACL.

This qualifier cannot be used with the /EDIT qualifier.

/SINCE[=time]
Selects only those directories that are dated after the specified time. You can
specify either an absolute time or a combination of absolute and delta times. You
can also use the keywords TODAY, TOMORROW, and YESTERDAY. If no time is
specified, TODAY is assumed.

This qualifier cannot be used with the /EDIT qualifier.

Examples

1. $ SET DIRECTORY/ACL/LIKE=[.USER] [.USER.CAPTIVE_ACCOUNTS]

This example replaces the ACL of the directory CAPTIVE_ACCOUNTS with
the ACL for the directory USER.LIS.

1–12

SET DIRECTORY/ACL

2. $ SET DIRECTORY/ACL=(IDENTIFIER=[123,321]+NETWORK,ACCESS=NONE) [.CONFIDENTIAL]

This command adds an ACE that specifies that NETWORK access for user
[123,321] is not allowed for directory CONFIDENTIAL.

3. $ SET DIRECTORY/ACL/EDIT/JOURNAL=ACL.JOB [.PAYROLL]

This SET DIRECTORY/ACL command invokes the interactive ACL editor and
creates a journal file, named ACL.JOB, if the editing session ends abnormally.
The /EDIT qualifier enables use of the /JOURNAL qualifier.

4. $ SET DIRECTORY/ACL/EDIT/RECOVER=ACL.JOB [.PAYROLL]

This command uses the /RECOVER qualifier to restore the editing session
from the previous example after the session ended abnormally.

1–13

SET FILE/ACL

SET FILE/ACL

Allows you to modify the access control list (ACL) of one or more files. The /ACL
qualifier is required.

In VMS Version 5.0, the SET FILE/ACL command was replaced by SET ACL
/OBJECT_TYPE=FILE. For more information on the replacement command see
the OpenVMS DCL Dictionary.

Format

SET FILE/ACL[=(ace[,...])] file-spec[,...]

Restrictions

None.

Parameters

file-spec[,...]
Specifies one or more files whose access control list (ACL) is being modified.
Separate multiple file specifications with commas. Wildcard characters are
allowed in the file specifications. Each file must be a disk file on a Files–11
Structure Level 2 formatted volume.

When the /EDIT qualifier is used, only one file specification can be given, and it
cannot include any wildcard characters.

(ace[,...])
Specifies one or more access control entries (ACEs) to be modified. When no ACE
is specified, the entire access control list is affected. Separate multiple ACEs
with commas. The specified ACEs are inserted at the top of the ACL unless the
/AFTER qualifier is specified.

Description

The SET FILE/ACL command enables you to manipulate an entire access control
list (ACL) of one or more files, or to create, modify, or delete access control entries
(ACEs) in the ACL of one or more files. To use the SET FILE/ACL command, you
specify the file specification of the file whose ACL you want to manipulate.

By using wildcard characters in the file specification to the command, you can
manipulate the ACLs of multiple files with a single command. The following
qualifiers can be used with wildcard characters to select a subset of the specified
files:

/BEFORE
/BY_OWNER
/CREATED
/EXCLUDE
/SINCE

You can also use the /CONFIRM qualifier to verify the file selection.

1–14

SET FILE/ACL

The SET FILE/ACL command is used to add ACEs to an ACL. For example, the
following command adds an ACE to the ACL of the file SALARY85.DAT so that
all users associated with the identifier PERSONNEL are allowed read access to
the file:

$ SET FILE/ACL=(IDENTIFIER=PERSONNEL,ACCESS=READ) SALARY85.DAT

If the file specified with the SET FILE/ACL command does not have an ACL, one
is created.

The SET FILE/ACL command provides the following qualifiers to manipulate
ACEs and ACLs:

/AFTER
/DELETE
/LIKE
/NEW
/REPLACE

You can delete ACEs from an ACL by including the /DELETE qualifier and
specifying the ACEs with /ACL. To delete all the ACEs (except those with the
PROTECTED option), include the /DELETE qualifier and specify /ACL without
specifying any ACEs.

You can copy an ACL from one file to another by using the /LIKE qualifier. The
ACL of the file specified with /LIKE replaces the ACL of the file given with the
command.

You can replace existing ACEs in the ACL of the file specified with the command
by using the /REPLACE qualifier. Any ACEs specified with /ACL are deleted and
replaced by those specified with /REPLACE.

The /NEW qualifier is used to delete all ACEs (except those with the
PROTECTED option) before adding any ACEs specified by /ACL, /LIKE, or
/REPLACE.

When referring to existing ACEs with /DELETE, /REPLACE, or/AFTER, the
existing ACE may be abbreviated.

By default, any ACEs (except security alarm ACE), added to an ACL are placed at
the top of the ACL. Security alarm ACEs are always positioned at the top of the
ACL, regardless of positioning qualifiers. Whenever the system receives a request
for access to a file that has an ACL, the system searches each entry in the ACL
from the first to the last for the first match it can find and then stops searching.
If another match occurs further down in the ACL, it will have no effect. Since the
position of an ACE in an ACL is so important, you can use the /AFTER qualifier
to correctly position an ACE. When you use the /AFTER qualifier, any ACEs
added will be added after the ACE specified with /AFTER.

The SET FILE command can also be used with the /EDIT qualifier to invoke the
ACL editor. When the /EDIT qualifier is specified, only one file specification is
allowed. The following qualifiers can be used only when the /EDIT qualifier has
been specified.

/JOURNAL
/KEEP
/MODE
/RECOVER

1–15

SET FILE/ACL

Qualifiers

/AFTER=ace
Causes all access control entries (ACEs) specified with the /ACL qualifier to be
added after the ACE specified with the /AFTER qualifier. By default, any ACEs
added to the ACL are always placed at the top of the list.

This qualifier cannot be used with the /EDIT qualifier.

/BEFORE[=time]
Selects only those files that are dated before the specified time. You can specify
either an absolute time or a combination of absolute and delta times. You can
also use the keywords TODAY, TOMORROW, and YESTERDAY. If no time is
specified, TODAY is assumed.

This qualifier cannot be used with the /EDIT qualifier.

/BY_OWNER[=uic]
Selects one or more files whose owner user identification code (UIC) matches the
specified owner UIC. If the /BY_OWNER qualifier is specified without a UIC, the
UIC of the current process is assumed.

This qualifier cannot be used with the /EDIT qualifier.

/CONFIRM
/NOCONFIRM (default)
Controls whether a request is issued before each individual SET FILE/ACL
operation to confirm that the operation should be performed on that file.

When the system issues the prompt, you can issue any of the following responses:

YES NO QUIT
TRUE FALSE CTRL/Z
1 0 ALL

<RET>

You can use any combination of upper- and lowercase letters for word responses.
Word responses can be abbreviated to one or more letters (for example, T, TR, or
TRU for TRUE). Affirmative answers are YES, TRUE, and 1. Negative answers
are NO, FALSE, 0, and <RET>. QUIT or CTRL/Z indicates that you want to
stop processing the command at that point. When you respond with ALL, the
command continues to process, but no further prompts are given. If you type a
response other than one of those in the list, the prompt will be reissued.

This qualifier cannot be used with the /EDIT qualifier.

/CREATED
Selects files based on their dates of creation. This qualifier is relevant only when
used with the /BEFORE or /SINCE qualifier.

This qualifier cannot be used with the /EDIT qualifier.

/DEFAULT
Creates an ACL for the specified files as if the files were newly created. For a
directory file, the /DEFAULT qualifier propagates the entire ACL (except ACEs
with the NOPROPAGATE option) so that a particular access protection can
be propagated throughout a directory tree. For all other files, the /DEFAULT

1–16

SET FILE/ACL

qualifier propagates the DEFAULT option ACEs in the ACL of the parent
directory to the ACL of the specified files.

The /DEFAULT qualifier uses the ACL of the parent directory of the specified file,
not the current default directory. This qualifier cannot be used with the /EDIT
qualifier.

/DELETE
Indicates that the access control entries (ACEs) specified with the /ACL qualifier
are to be deleted. If no ACEs are specified with /ACL, the entire ACL is deleted
(except for ACEs with the PROTECTED option). If you specify an ACE that does
not exist with the /ACL qualifier, you will be notified that the ACE does not exist
and the delete operation will continue.

This qualifier cannot be used with the /EDIT qualifier.

/EDIT
Invokes the ACL Editor and allows you to use the /JOURNAL, /KEEP, /MODE, or
/RECOVER qualifiers. Any other qualifiers specified with /EDIT are ignored. You
can only supply one file specification with SET FILE/ACL/EDIT.

/EXCLUDE=(file-spec[,...])
Excludes any files that match the listed file specifications from the SET FILE
/ACL operation. If you specify only one file, you can omit the parentheses.
Wildcard characters are allowed in the file specifications. However, you cannot
use relative version numbers to exclude a specific version. The file specification
can contain a directory specification; however, the file specification cannot contain
a device name.

This qualifier cannot be used with the /EDIT qualifier.

/JOURNAL[=file-spec]
/NOJOURNAL
Controls whether a journal file is created from the editing session. By default, a
journal file is created if the editing session ends abnormally.

If you omit the file specification, the journal file has the same name as the input
file and a file type of JOU. You can use the /JOURNAL qualifier to specify a
journal file name that is different from the default. No wildcard characters are
allowed in the /JOURNAL file-spec parameter.

You must specify /EDIT in order to use this qualifier.

/KEEP=(option[,...])
Determines whether the journal file or the recovery file will be deleted when the
editing session ends. The options are:

• JOURNAL—saves the journal file for current editing session

• RECOVER—saves the journal file used for restoring the ACL

You can shorten the keywords JOURNAL and RECOVER to J and R, respectively.
If you specify only one option, you can omit the parentheses.

You must specify /EDIT in order to use this qualifier.

1–17

SET FILE/ACL

/LIKE=file-spec
Indicates that the ACL of the file given with the /LIKE qualifier is to replace the
ACL of the files specified with SET FILE/ACL. Any existing ACE (except those
with the PROTECTED option) will be deleted before the ACL specified by /LIKE
is copied.

No wildcard characters are allowed in the /LIKE file-spec parameter.

This qualifier cannot be used with the /EDIT qualifier.

/LOG
/NOLOG (default)
Controls whether the SET FILE/ACL command displays the file specification of
each file that has been affected by the command.

This qualifier cannot be used with the /EDIT qualifier.

/MODE=[NO]PROMPT
Determines whether the ACL editor prompts for field values. By default, the ACL
editor selects prompt mode.

You must specify the /EDIT qualifier to use this qualifier.

/NEW
Indicates that any existing ACE in the ACL of a file specified with SET FILE/ACL
(except those with the PROTECTED option) is to be deleted. In order to use the
/NEW qualifier, you must specify a new ACL or ACE with the /ACL, /LIKE, or
/REPLACE qualifier.

This qualifier cannot be used with the /EDIT qualifier.

/RECOVER[=file-spec]
/NORECOVER (default)
Specifies the name of the journal file to be used in a recovery operation. If the file
specification is omitted with /RECOVER, the journal file is assumed to have the
same name as the input file and a file type of JOU. No wildcard characters are
allowed with the /RECOVER file-spec parameter.

You must specify /EDIT in order to use this qualifier.

/REPLACE=(ace[,...])
Deletes the access control entries (ACEs) specified with the /ACL qualifier and
replaces them with those specified with /REPLACE. Any ACEs specified with the
/ACL qualifier must exist and must be specified in the order in which they appear
in the ACL.

This qualifier cannot be used with the /EDIT qualifier.

/SINCE[=time]
Selects only those files that are dated after the specified time. You can specify
either an absolute time or a combination of absolute and delta times. You can
also use the keywords TODAY, TOMORROW, and YESTERDAY. If no time is
specified, TODAY is assumed.

This qualifier cannot be used with the /EDIT qualifier.

1–18

SET FILE/ACL

Examples

1. $ SET FILE/ACL/LIKE=USER.LIS CAPTIVE_ACCOUNTS.LIS

This example replaces the ACL of the file CAPTIVE_ACCOUNTS.LIS with
the ACL for the file USER.LIS.

2. $ SET FILE/ACL=(IDENTIFIER=[123,321]+NETWORK,ACCESS=NONE) *.*

This command adds an ACE that specifies that NETWORK access for
user [123,321] is not allowed for each file in the default directory.

3. $ SET FILE/ACL=(IDENTIFIER=[SALES,FRANK],ACCESS=READ)/DELETE *.*

This SET FILE/ACL command deletes the specified ACE from all files in the
default directory.

4. $ SET FILE/ACL/EDIT/JOURNAL=ACL.JOB PASSWORD_2.DAT

This SET FILE/ACL command invokes the interactive ACL editor and creates
a journal file, ACL.JOB, if the editing session ends abnormally. The /EDIT
qualifier enables use of the /JOURNAL qualifier.

5. $ SET FILE/ACL/EDIT/RECOVER=ACL.JOB PASSWORD_2.DAT

This command uses the /RECOVER qualifier to restore the editing session
from the previous example after the session ended abnormally.

1–19

SET QUEUE/ENTRY

SET QUEUE/ENTRY

Changes the current status or attributes of a job that is not currently executing
in a queue. The /ENTRY qualifier is required.

In VMS Version 5.0, the SET QUEUE/ENTRY command was replaced by SET
ENTRY. For more information on the replacement command see the OpenVMS
DCL Dictionary.

Format

SET QUEUE/ENTRY=entry-number queue-name[:]

Restrictions

Requires operator (OPER) privilege or execute (E) access to the specified queue.
If you have D access to the specified job, you can alter the attributes for that job.

Parameters

entry-number
Specifies the entry number of the job you want to change.

queue-name[:]
Specifies the name of the queue in which the specified job is entered.

Description

The SET QUEUE/ENTRY command allows you to change the status or attributes
of a job that has been submitted to a printer or batch queue, as long as the job is
not currently executing. (You cannot affect individual files within a multifile job
with the SET/QUEUE/ENTRY command.)

The qualifiers enable you to specify different attributes or delete attributes. Some
qualifiers apply to both batch and print jobs. Others are restricted to either batch
jobs or print jobs. The defaults for all the SET QUEUE/ENTRY qualifiers are the
attributes and status that the job has before you issue the SET QUEUE/ENTRY
command.

The system assigns a unique entry number to each queued print or batch job in
the system. The PRINT and SUBMIT commands display the job number when
they successfully queue a job for processing. You can issue the SHOW QUEUE
command to refresh your memory about a job’s entry number. Use the job entry
number to specify which job you want to change.

Qualifiers

/AFTER=time
/NOAFTER
Requests that the specified job be held until after a specific time. If the specified
time has already passed, the job is queued for immediate processing.

You can specify either an absolute time or a combination of absolute and delta
times.

1–20

SET QUEUE/ENTRY

/BURST[=keyword]
/NOBURST
Controls whether a burst page is included at the beginning of a print job. A
burst page precedes a flag page and contains the same information. However, it
is printed over the perforation between the burst page and the flag page. The
printing on the perforation makes it easy to separate individual print jobs.

When you specify /BURST, you need not specify /FLAG; a flag page will
automatically follow the burst page.

You can specify one of the following keywords:

ALL All printed files contain a burst page.
ONE The first printed file contains a burst page.

Use the /[NO]BURST qualifier to override the installation-defined defaults that
have been set for the printer queue you are using.

/CHARACTERISTICS=(characteristic[,...])
/NOCHARACTERISTICS
Enables you to change the characteristics desired for the job. If you specify only
one characteristic, you can omit the parentheses. Codes for characteristics can be
either names or values from 0 to 127 and are installation-defined. Use the SHOW
QUEUE/CHARACTERISTICS command to see which characteristics have been
defined for your system. Use the SHOW QUEUE/FULL command to see which
characteristics are available on a particular queue.

When you include the /CHARACTERISTICS qualifier with the SET QUEUE
/ENTRY command, all the characteristics you specify must also be specified for
the queue that will be executing the job. If not, the job will remain pending in
the queue until the queue characteristics are changed or you delete the entry
with the DELETE/ENTRY command. You need not specify every characteristic of
a queue with the SET QUEUE/ENTRY command as long as the ones you specify
are a subset of the characteristics set for that queue. The job will also run if no
characteristics are specified.

Specification of a characteristic for a queue does not prevent jobs that do not
specify that characteristic from being executed.

/CLI=filename
Enables you to specify a different command language interpreter (CLI)
to use in processing the job. The file name specifies that the CLI be
SYS$SYSTEM:filename.EXE. If you do not specify the /CLI qualifier, the job
is run by the CLI specified in the user’s authorization record, or whatever CLI
was specified when the job was originally submitted to the queue.

/COPIES=n
Specifies the number of copies to print. The n parameter can be any number from
1 to 255.

When you use the /COPIES qualifier with the SET QUEUE/ENTRY command,
the number of copies can apply only to the entire job. You cannot use this
qualifier to specify different numbers of copies for individual files within a
multifile job.

/CPUTIME=option
Defines a CPU time limit for the batch job. You can specify a delta time, the
value 0, or the keyword NONE or INFINITE for n.

1–21

SET QUEUE/ENTRY

When you need less CPU time than authorized, use the /CPUTIME qualifier to
override the base queue value established by the system manager or the value
authorized in your user authorization file. Specify 0 or INFINITE to request an
infinite amount of time. Specify NONE when you want the CPU time to default
to your user authorization file (UAF) value or the limit specified on the queue.
Note that you cannot request more time than permitted by the base queue limits
or your own UAF.

/FEED
/NOFEED
Controls whether form feeds are inserted into print jobs when the printer nears
the end of a page. The number of lines per form can be reset by the /FORM
qualifier. You can suppress this automatic form feed (without affecting any of
the other carriage control functions that are in place) by using the /NOFEED
qualifier.

When you use the /FEED qualifier with the SET QUEUE/ENTRY command,
the qualifier applies to all files in the print job. You cannot use this qualifier to
specify form feeds for individual files within a multi-file job.

/FLAG[=keyword]
/NOFLAG
Controls whether a flag page is printed preceding a print job. The flag page
contains the name of the user submitting the job, the job entry number, and other
information about the job. You can specify one of the following keywords:

ALL Prints a flag page before each file in the job
ONE Prints a flag page before the first file in the job

Use the /[NO]FLAG qualifier to override the installation-defined defaults that
have been set for the printer queue you are using.

/FORM=type
Specifies the name of the form that you want for the print job.

Specify the form type using a numeric value or alphanumeric code. Form
types can refer to the width, length, or type of paper. Codes for form types are
installation-defined. You can use the SHOW QUEUE/FORM command to find out
the form types available for your system. The SHOW QUEUE/FULL command
tells you which form is set for a specific queue.

If you specify a form type different from that of the queue, your job remains
pending until the form type of the queue is set equal to the form type of the job
or you delete the job with the DELETE/ENTRY command. You can use the SET
QUEUE/ENTRY to change the form type of your job to match that of the queue
so your job can be printed. In order to have the form type for the queue changed,
request that the system manager stop the queue, physically change the form type
of the printer, and restart the queue specifying the new form type.

/HEADER
/NOHEADER
Controls whether a heading line is printed at the top of each output page in a
print job.

1–22

SET QUEUE/ENTRY

/HOLD
/NOHOLD
Controls whether or not the job is to be made available for immediate processing
or held for processing later.

If you specify /HOLD, the job is not released for processing until you specifically
release it with the /NOHOLD or /RELEASE qualifier. You can use the SET
QUEUE/ENTRY command to release a job that was previously submitted with a
/HOLD qualifier or you can place a job on hold so that it will run later.

You can use the /NOHOLD qualifier to release jobs that have been held for the
following reasons:

• A job was submitted with the /HOLD qualifier.

• A completed job is being held in a queue that has /RETAIN specified.

• A user-written symbiont has refused a job.

/JOB_COUNT=n
Requests that an entire print job be printed n times, where n is a decimal integer
from 1 to 255. This qualifier overrides the /JOB_COUNT qualifier specified or
defaulted with the PRINT command.

/KEEP
/NOKEEP
Controls whether the batch job log file is deleted after it is printed.

/LOG_FILE=file-spec
/NOLOG_FILE
Controls whether a log file with the specified name is created for the batch job or
whether a log file is created.

When you use the /LOG_FILE qualifier, the system writes the log file to the file
you specify. If you use /NOLOG_FILE, no log file is created. If neither form of the
qualifier has been used for the job, the log file is written to a file in the default
directory that has the same file name as the first command file and a file type of
LOG.

You can use the /LOG_FILE qualifier to specify that the log file be written to
a different device. Logical names in the file specification are translated in the
context of the process that executes the SET QUEUE/ENTRY command. The
process executing the batch job must have access to the device on which the log
file will reside.

If you omit the /LOG_FILE qualifier and specify the /NAME qualifier, the log
file is written to a file having the same file name as that specified by the /NAME
qualifier; the file type is LOG. When you omit the /LOG_FILE qualifier, the
job-name value used with /NAME must be a valid file name.

/LOWERCASE
/NOLOWERCASE
Indicates whether the files must be printed on a printer that can print both
uppercase and lowercase letters. The /NOLOWERCASE qualifier means that
files can be printed on printers supporting only uppercase letters. If all available
printers can print both uppercase and lowercase letters, you do not need to
specify /LOWERCASE.

1–23

SET QUEUE/ENTRY

/NAME=job-name
Defines a name string to identify the job. The name string can have from 1 to 39
characters. The job name is used in the SHOW QUEUE command display. For
batch jobs, the job name is also used for the batch job log file. For print jobs, the
job name is also used on the flag page of the printed output.

If the /NAME qualifier has not been specified for the job, the name string defaults
to the file name of the first, or only, file in the job; the file type is LOG.

/NOCHECKPOINT
For a batch job, erases the value established by the most recently executed SET
RESTART_VALUE command. For a print job, clears the stored checkpoint so that
the job will restart from the beginning.

/NODELETE
Cancels file deletion for a job that was submitted with the /DELETE qualifier.
If no /DELETE qualifier was specified when the job was originally submitted to
the queue, you cannot use the SET QUEUE/ENTRY to establish file deletion at a
later time.

You cannot use the /NODELETE qualifier to specify that individual files in a
multi-file job not be deleted.

/NOTE=string
Allows you to specify a message to appear on the flag page for the print job. The
string can contain up to 255 characters.

/NOTIFY
/NONOTIFY
Controls whether a message is broadcast to any terminal at which you are logged
in, notifying you when your job has been completed or aborted.

/OPERATOR=string
Allows you to specify a message to be sent to the operator. The string can contain
up to 255 characters.

When the job begins execution, the queue pauses and the message is transmitted
to the operator.

/PAGES=([l,]u)
Specifies the number of pages to print for the specified job. You can use the
/PAGES qualifier to print portions of a long file.

When you use the /PAGES qualifier with the SET QUEUE/ENTRY command, the
qualifier can only apply to an entire job. You cannot use this qualifier to specify
different numbers of pages to be printed for individual files within a multi-file
job.

The l (lower) specifier refers to the first page in the group of pages that you want
printed for that job. If you omit the l specifier, the printing starts on the first
page of the job. The u (upper) specifier refers to the last page of the file that
you want printed. When you want to print to the end of the file but do not know
how many pages that will be, you can use "" as the u specifier. You can omit
the parentheses when you specify only a value for u. For example, /PAGES=10
prints the first 10 pages of the job; /PAGES=(5,10) prints pages 5 through 10;
/PAGES=(5,"") starts printing at page 5 and continues until the end of the job is
reached.

1–24

SET QUEUE/ENTRY

/PARAMETERS=(parameter[,...])
Specifies from 1 to 8 optional parameters to be passed to the job. Each parameter
can have as many as 255 characters.

If you specify only one parameter, you can omit the parentheses. The commas
delimit individual parameters. To specify a parameter that contains any special
characters or delimiters, enclose the parameter in quotation marks.

For batch jobs, the parameters define values to be equated to the symbols named
P1 through P8 in each command procedure in the job. The symbols are local to
the specified command procedures.

/PASSALL
/NOPASSALL
Specifies whether the symbiont bypasses all formatting and sends the output QIO
to the driver with format suppressed. All qualifiers affecting formatting, as well
as the /HEADER, /PAGES, and /PAGE_SETUP qualifiers, will be ignored.

When you use the /PASSALL qualifier with the SET QUEUE/ENTRY command,
the qualifier applies to the entire job. You cannot use this qualifier to specify
PASSALL mode for individual files within a multifile job.

/PRINTER[=queue-name]
/NOPRINTER
Controls whether the batch job log is queued for printing when your job is
completed. The /PRINTER qualifier allows you to specify a particular printer
queue.

If you specify /NOPRINTER, /KEEP is assumed.

/PRIORITY=n
Specifies the priority of the job. The priority value must be in the range of 0
through 255, where 0 is the lowest priority and 255 is the highest.

The default value for /PRIORITY is the value of the SYSGEN parameter
DEFQUEPRI. You must have either OPER (operator) or ALTPRI (alter
priority) privilege to raise the priority value above the value of the SYSGEN
parameter MAXQUEPRI. No privilege is needed to set the priority lower than the
MAXQUEPRI value.

/RELEASE
Releases a previously held job for processing. You can use this qualifier to release
jobs that have been held for the following reasons:

• A job was submitted with the /HOLD qualifier.

• A job was submitted with the /AFTER qualifier.

• A completed job is being held in a queue that has /RETAIN specified.

• A user-written symbiont has refused a job.

/REQUEUE=queue-name[:]
Requests that the job be moved from the original queue to the specified queue.

/RESTART
/NORESTART
Specifies whether a batch or print job will be restarted after a system crash or a
STOP/QUEUE/REQUEUE command.

1–25

SET QUEUE/ENTRY

/SETUP=module[,...]
Calls for the specified modules to be extracted from the device control library and
copied to the printer before a job is printed.

When you use the /SETUP qualifier with the SET QUEUE/ENTRY command, the
qualifier applies to the entire job. You cannot use this qualifier to specify different
setup modules for individual files within a multi-file job.

/SPACE
/NOSPACE
Controls whether output is to be double-spaced.

When you use the /SPACE qualifier with the SET QUEUE/ENTRY command, the
qualifier applies to the entire job. You cannot use this qualifier to specify different
spacing for individual files within a multi-file job.

/TRAILER[=keyword]
/NOTRAILER
Controls whether a trailer page is printed at the end of a job. The trailer page
displays the job entry number, as well as information about the user submitting
the job.

When you use the /TRAILER qualifier with the SET QUEUE/ENTRY command,
trailer pages are placed at the end of each file in a multi-file job. You can specify
one of the following keywords:

ALL All printed files contain a trailer page.
ONE The last printed file contains a trailer page.

Use the /[NO]TRAILER qualifier to override the installation-defined defaults that
have been set for the printer queue you are using.

/WSDEFAULT=n
Defines a working set default for a batch job. You can specify a positive integer in
the range 1 through 65,535, 0, or the word NONE for n.

Use this qualifier to override the base queue value established by the system
manager or the value authorized in the user authorization file (UAF), provided
you want to impose a lower value. Specify 0 or NONE if you want the working
set value defaulted to either the UAF value or the working set quota specified on
the queue. You cannot request a value higher than the default.

/WSEXTENT=n
Defines a working set extent for a batch job. You can specify a positive integer in
the range 1 through 65,535, 0, or the word NONE for n.

Use this qualifier to override the base queue value established by the system
manager or the value authorized in the user authorization file (UAF), provided
you want to impose a lower value. Specify 0 or NONE if you want the working
set extent defaulted to either the UAF or the working set extent specified on the
queue. You cannot request a value higher than the default.

/WSQUOTA=n
Defines the maximum working set size for a batch job. This is the working set
quota. You can specify a positive integer in the range 1 through 65,535, 0, or the
word NONE for n.

1–26

SET QUEUE/ENTRY

Use this qualifier to override the base queue value established by the system
manager or the value authorized in the user authorization file (UAF), provided
you want to impose a lower value. Specify 0 or NONE if you want the working
set quota defaulted to either the user authorization file value or the working set
quota specified on the queue. You cannot request a value higher than the default.

Examples

1. $ PRINT/HOLD MYFILE.DAT
Job MYFILE (queue SYS$PRINT, entry 112) holding
.
.
.

$ SET QUEUE/ENTRY=112/RELEASE/JOB_COUNT=3

The PRINT command requests that the file MYFILE.DAT be queued to
the system printer, but placed in a hold status. The SET QUEUE/ENTRY
command releases the file for printing and changes the number of copies of
the job to three.

2. $ SUBMIT WEATHER
Job WEATHER (queue SYS$BATCH, entry 210) pending

$ SUBMIT CLIMATE
Job CLIMATE (queue SYS$BATCH, entry 211) pending

$ SET QUEUE/ENTRY=211/HOLD/NAME=TEMP SYS$BATCH

The two SUBMIT commands queue command procedures for batch processing.
The system assigns them job numbers of 210 and 211, respectively. The SET
QUEUE/ENTRY command places the second job in a hold state and changes
the job name to TEMP, assuming that job 211 had not yet begun execution.

3. $ PRINT/FLAG=ALL/AFTER=20:00 MEMO.MEM, LETTER.MEM, REPORT.MEM/SPACE
Job MEMO (queue SYS$PRINT, entry 172) holding until 20:00
.
.
.

$ SET QUEUE/ENTRY=172 /BURST/NOSPACE/HEADER SYS$PRINT

The PRINT command requests that three files be printed after 8:00 P.M.
on the default printer with flag pages preceding each file. It also requests
that the file REPORT.MEM be double-spaced. Later a SET QUEUE/ENTRY
command is issued. This command calls for a burst page at the beginning of
each file and requests that all files in the job be single-spaced. Headers are
printed on each page of each file in the job.

1–27

SHOW MAGTAPE

SHOW MAGTAPE

Displays the current characteristics and status of a specified magnetic tape
device.

Format

SHOW MAGTAPE device-name[:]

Parameters

device-name[:]
Specifies the name of the magnetic tape device for which you want to display the
characteristics and status.

Description

The SHOW MAGTAPE command displays the current characteristics and
status of a specified magnetic tape device. The display shows the device type,
density, and format (default or normal PDP–11), as well as any of the following
characteristics that currently apply to the device:

Position lost Write-locked
End-of-tape Even parity
End-of-file Odd parity
Beginning-of-tape

Qualifier

/OUTPUT[=filespec]
/NOOUTPUT
Specifies the file to which the display is written; by default, the display is written
to the current SYS$OUTPUT device.

If you enter the /OUTPUT qualifier with no file specification, or if you omit the
file name or the file type, SHOW is the default file name and LIS the default
file type. If you enter a file specification, you may not include any wildcard
characters.

If you enter the /NOOUTPUT qualifier, output is suppressed.

Example

$ SHOW MAGTAPE MTA0:
MTA0: UNKNOWN, DENSITY=800, FORMAT=Normal-11

Odd Parity

The SHOW MAGTAPE command in this example displays the characteristics of
the device MTA0.

1–28

Obsolete DCL Commands and Qualifiers
1.2 Obsolete DCL Command Qualifiers

1.2 Obsolete DCL Command Qualifiers
This section describes obsolete DCL command qualifiers for current DCL
commands. Table 1–2 lists the obsolete command string in the left column,
the version of VMS that superseded the obsolete command string in the center
column, and the current command string in the third column. For example,
INITIALIZE/QUEUE/FLAG was replaced in VMS Version 4.0 by INITIALIZE
/QUEUE/SEPARATE=FLAG.

Table 1–2 Table of Obsolete DCL Command Qualifiers

Obsolete Command String

Made
Obsolete
in Version Current Command String

INITIALIZE/QUEUE/FLAG
/BURST
/PRIORITY
/TERMINAL

4.0
4.0
4.0
5.0

INITIALIZE/QUEUE/SEPARATE=FLAG
/SEPARATE=BURST
/BASE_PRIORITY
/DEVICE=TERMINAL

START/QUEUE/BATCH
/PRIORITY
/TERMINAL

5.0
4.0
5.0

INITIALIZE/QUEUE/BATCH
START/QUEUE/BASE_PRIORITY
INITIALIZE/QUEUE/DEVICE=TERMINAL

1.2.1 Obsolete Qualifiers of the INITIALIZE/QUEUE Command
This section describes the following obsolete qualifiers of the INITIALIZE/QUEUE
command:

• /[NO]BURST

• /[NO]FLAG

• /PRIORITY

• /TERMINAL

1.2.1.1 INITIALIZE/QUEUE/[NO]BURST
The /BURST qualifier of the INITIALIZE/QUEUE command has been replaced
by the /SEPARATE=BURST qualifier. For more information on the replacement
qualifier see the OpenVMS DCL Dictionary.

/BURST
/NOBURST
Controls whether a burst header page is printed for each print job.

Use the /BURST qualifier to print a header page over the paper perforations so
that the page header is visible from the side of a stack of paper. A burst header
uses an extra page for each job but simplifies separating listings.

The default is /NOBURST.

1.2.1.2 INITIALIZE/QUEUE/[NO]FLAG
The /[NO]FLAG qualifier of the INITIALIZE/QUEUE command has been replaced
by the /SEPARATE=FLAG qualifier. For more information on the replacement
qualifier see the OpenVMS DCL Dictionary.

1–29

Obsolete DCL Commands and Qualifiers
1.2 Obsolete DCL Command Qualifiers

/FLAG
/NOFLAG
Specifies whether a header page is printed at the beginning of the first file in
each print job.

The default is /NOFLAG.

1.2.1.3 INITIALIZE/QUEUE/PRIORITY
The /PRIORITY qualifier of the INITIALIZE/QUEUE command has been replaced
by the /BASE_PRIORITY qualifier. For more information on the replacement
qualifier see the OpenVMS DCL Dictionary.

/PRIORITY=n
Specifies the base process priority at which jobs are initiated from a batch
queue. By default, if you omit the qualifier, jobs are initiated at the base priority
established by the DEFPRI system generation parameter.

1.2.1.4 INITIALIZE/QUEUE/TERMINAL
The /TERMINAL qualifier of the INITIALIZE/QUEUE command has been
replaced by the /DEVICE=TERMINAL qualifier. For more information on the
replacement qualifier see the OpenVMS DCL Dictionary.

/TERMINAL
Indicates that a generic queue will be associated with terminal queues instead of
printer queues. The /TERMINAL qualifier allows all jobs entered in the generic
queue to be moved to terminal queues with matching settings.

1.2.2 Obsolete Qualifiers of the START/QUEUE Command
This section describes the following obsolete qualifiers of the START/QUEUE
command:

• /[NO]BATCH

• /PRIORITY

• /TERMINAL

1.2.2.1 START/QUEUE/[NO]BATCH
The /BATCH qualifier of the START/QUEUE command has been replaced by
the INITIALIZE/QUEUE/BATCH command string. For more information on the
replacement command string see the OpenVMS DCL Dictionary.

/BATCH
/NOBATCH (default)
Indicates that you are starting a batch queue. You cannot use the /BATCH
qualifier unless the queue you are starting was initialized as a batch queue. If an
existing queue is a batch queue, you can optionally use the /BATCH qualifier.

1.2.2.2 START/QUEUE/PRIORITY=n
The /PRIORITY qualifier of the START/QUEUE command has been replaced
by the /BASE_PRIORITY qualifier. For more information on the replacement
qualifier see the OpenVMS DCL Dictionary.

1–30

Obsolete DCL Commands and Qualifiers
1.2 Obsolete DCL Command Qualifiers

/PRIORITY=n
Specifies the base process priority at which jobs are initiated from a batch
queue. By default, if you omit the qualifier, jobs are initiated at the base priority
established by the DEFPRI system generation parameter.

1.2.2.3 START/QUEUE/TERMINAL
The /TERMINAL qualifier of the START/QUEUE command has been replaced
by the INITIALIZE/QUEUE/DEVICE=TERMINAL command string. For
more information on the replacement command string see the OpenVMS DCL
Dictionary.

/TERMINAL
/NOTERMINAL
Indicates that a generic queue will be associated with terminal queues instead of
printer queues. The /TERMINAL qualifier allows all jobs entered in the generic
queue to be moved to terminal queues with matching settings.

The /NOTERMINAL qualifier cancels the effect of a previous /TERMINAL setting.

1–31

2
Obsolete System Services

This chapter describes obsolete system services. An obsolete service is one
whose use is no longer recommended by Digital. Most obsolete services are
superseded by current services; however some obsolete services have not been
replaced by new services. Obsolete services are no longer updated.

Digital recommends that you do not use obsolete services when you write new
programs. Old programs that use obsolete services should be updated with
current services when available.

Table 2–1 lists the obsolete services described in this chapter that have been
replaced by current services.

Table 2–1 Obsolete System Services

Obsolete Service Current Service

$BRDCST $BRKTHRU, $BRKTHRUW

$CNTREG $DELTVA

$CRELOG $CRELNM

$DELLOG $DELLNM

$GETCHN $GETDVI, $GETDVIW

$GETDEV $GETDVI, $GETDVIW

$INPUT $QIO,$QIOW

$OUTPUT $QIO,$QIOW

$SNDACC $SNDJBC, $SNDJBCW

$SNDSMB $SNDJBC, $SNDJBCW

$TRNLOG $TRNLNM

Table 2–2 lists the obsolete services described in this chapter that have not been
replaced. Digital strongly recommends that you do not use these obsolete services
in designing new applications.

Table 2–2 Obsolete System Services–Not Replaced

$SETSFM

$SETSSF

2–1

$BRDCST

$BRDCST—Broadcast

The Broadcast service writes a message to one or more terminals.

The Breakthrough ($BRKTHRU) and Breakthrough and Wait ($BRKTHRUW)
services supersede the $BRDCST service. New programs should be written using
$BRKTHRU or $BRKTHRUW, not $BRDCST, and old programs using $BRDCST
should be changed to use $BRKTHRU or $BRKTHRUW.

Format

SYS$BRDCST msgbuf [,devnam] [,flags] [,carcon]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by value) a condition value
in R0. Condition values that can be returned by this service are listed under
‘‘CONDITION VALUES RETURNED.’’

Arguments

msgbuf
VMS Usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor–fixed length string descriptor

Message text to be sent to the specified terminal(s). The msgbuf argument is the
address of a descriptor pointing to this message text.

The $BRDCST service permits the message text to be as long as 16,350 bytes;
however, both the SYSGEN parameter MAXBUF and the caller’s buffered I/O
byte count limit (BYTLM) quota may affect the maximum length of the message
text.

devnam
VMS Usage: device_name
type: character-coded text string
access: read only
mechanism: by descriptor–fixed length string descriptor

Terminal name to which to send the message. The devnam argument is the
address of a character string descriptor pointing to the terminal name.

If this argument is omitted or specified as 0, the message is broadcast to all
terminals.

If the first longword in the descriptor contains a 0, the message is sent to all
terminals that are currently allocated to processes.

2–2

$BRDCST

flags
VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag bit mask specifying (1) positioning options for the message and (2) the
number of screen lines to clear before writing the message (only for terminals
that have set the DEC_CRT characteristic). The flags argument is a longword
value that is the logical OR of each desired flag option and of the number of lines
to be cleared.

Terminals set the DEC_CRT characterististic by issuing the DCL command SET
TERMINAL/DEC_CRT. If a terminal has not set the DEC_CRT characteristic,
$BRDCST positions the message on the screen using the options specified in
flags, but it does not clear any lines before writing the message.

If the flags argument is not specified, $BRDCST positions the message by using
the information supplied in the carcon argument (if specified) or by using the
default carriage control and line feed (if carcon is not specified).

Each flag option has a symbolic name. These symbolic names are defined by the
$BRDCSTDEF macro. The following lists the symbolic name and description of
each flag option.

Flag Option Description

BRDCST$M_SCREEN When specified, $BRDCST writes the message to the top
of the terminal screen, issues a carriage control and line
feed, redisplays the last line of a read operation (if one was
interrupted by the broadcast message), and repositions the
cursor to its position prior to the broadcast message.

BRDCST$M_BOTTOM When BRDCST$M_BOTTOM is specified and when
BRDCST$M_SCREEN is also specified, $BRDCST writes the
message to the bottom of the terminal screen. If BRDCST$M_
SCREEN is not also specified, $BRDCST writes the message to
the line where the cursor is currently positioned.

BRDCST$M_REFRSH When specified, $BRDCST, after writing the message to the
screen, does not redisplay the last line of a read operation that
was interrupted by the broadcast message.

carcon
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Carriage control specifier indicating the carriage control sequence that is to follow
the message that $BRDCST sends to the terminal(s). The carcon argument is a
longword containing the carriage control specifier.

If the carcon argument is not specified, $BRDCST follows the message with a
carriage return and line feed.

2–3

$BRDCST

The carcon argument should only be specified if the BRDCST$M_SCREEN flag
in the flags argument is not set; since if this flag is set, $BRDCST automatically
formats the screen. Refer to the description of this flag in the flags argument for
more information.

Description

The calling process must have OPER privilege to send a message to either more
than one terminal or to a terminal that is allocated to another user.

The $BRDCST service requires system dynamic memory; it also uses the process’s
buffered I/O byte count limit (BYTLM) quota to buffer the message while the
service executes.

The service does not return control to the caller until all specified terminals have
displayed the broadcast message.

The current state of the terminal determines if and when the broadcast message
is displayed on the screen:

1. If the terminal is reading when $BRKTHRU sends the message, the read
operation is suspended, the message is displayed, and then the line that was
being read when the read operation was suspended is redisplayed (equivalent
to the action produced by CTRL/R).

2. If the terminal is writing when $BRKTHRU sends the message, the message
is displayed after the current write operation has completed.

3. The message is not displayed in any of the following cases:

• The terminal has set the NOBROADCAST characteristic, for all images,
or for the image that is currently requesting the broadcast.

• The terminal is in PASSALL mode.

• The terminal’s current operation is read physical block
(IO$_READPBLK function code).

• The terminal’s current operation has specified no echo
(IO$_NOECHO function modifier).

• The terminal’s current operation has specified no format
(IO$_NOFORMAT function modifier).

After the message is displayed, the terminal is returned to the state it was in
prior to receiving the message.

Terminals with the DEC_CRT characteristic can be directed to clear a number
of lines before the message is broadcast. To specify the number of lines, use the
logical OR of the number of lines and the flags mask. For example, to clear four
lines on a DEC_CRT terminal, the following value would be specified:

<#4!BRDCST$M_SCREEN>

2–4

$BRDCST

Condition Values Returned

SS$_NORMAL Service successfully completed.
SS$_ACCVIO The message buffer, message buffer descriptor,

device name string, or device name string
descriptor cannot be read by the caller.

SS$_BADPARAM The message length exceeds 16,350 bytes; the
process’s buffered I/O byte count limit (BYTLM)
quota is insufficient; or the message length
exceeds the value specified by the SYSGEN
parameter MAXBUF.

SS$_DEVOFFLINE The specified terminal is offline, has enabled
PASSALL mode, or is not a terminal.

SS$_EXQUOTA The process has exceeded its buffer space quota
and has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) service.

SS$_INSFMEM Insufficient system dynamic memory is available
to complete the request and the process has
disabled resource wait mode with the Set
Resource Wait Mode ($SETRWM) service.

SS$_NONLOCAL Warning. The device is on a remote node.
SS$_NOPRIV The process does not have the privilege to

broadcast messages.
SS$_NOSUCHDEV Warning. The specified terminal does not exist,

or it cannot receive the message.

2–5

$CNTREG

$CNTREG—Contract Program/Control Region

The Contract Program/Control Region service deletes a specified number of
pages from the current end of the program or control region of a process’s virtual
address space. The deleted pages become inaccessible, and references to them
cause access violations.

Note

Do not use the $CNTREG, or $CRETVA system services in conjunction
with other user-written procedures and/or Digital-supplied procedures
(including run-time library procedures). These system services provide
no means to communicate a change in virtual address space with other
routines. Digital recommends that you use either $EXPREG or the Run-
time Library Procedure Allocate Virtual Memory (LIB$GET_VM) to get
memory. When using $DELTVA, you should take care to only delete pages
that you have specifically created.

Format

SYS$CNTREG pagcnt ,[retadr] ,[acmode] ,[region]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by immediate value) a
condition value in R0. Condition values that can be returned by this service are
listed under ‘‘CONDITION VALUES RETURNED.’’

Arguments

pagcnt
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Number of pages to be deleted from the current end of the program or control
region. The pagcnt argument is a longword specifying this number.

retadr
VMS Usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference

Starting and ending pages of the deleted area. The retadr argument is the
address of a two-longword array to receive the virtual addresses of the starting
page and ending page of the deleted area.

2–6

$CNTREG

acmode
VMS Usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode of the owner of the pages to be deleted. The acmode argument is a
longword containing the access mode. The $PSLDEF macro defines the following
symbols for the four access modes:

Symbol Access mode

PSL$C_KERNEL Kernel mode
PSL$C_EXEC Executive mode
PSL$C_SUPER Supervisor mode
PSL$C_USER User mode

The most privileged access mode used is the access mode of the caller.

region
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Indicator specifying which region of memory (P0 or P1) is to be contracted.
The region argument is a longword containing the indicator. A value of 0 (the
default) indicates that the program region (P0 region) is to be contracted, and a
value of 1 indicates that the control region (P1 region) is to be contracted.

Description

If an error occurs while deleting pages, the retadr argument, if specified,
indicates the range of pages that were successfully deleted before the error
occurred. If no pages were deleted, both longwords in retadr contain a –1.

The $CNTREG service can delete pages only from the current end of the process’s
program or control region. To delete a specific range of pages in either region, use
the Delete Virtual Address Space ($DELTVA) service.

Condition Values Returned

SS$_NORMAL Service successfully completed.
SS$_ACCVIO The retadr argument cannot be written by the

caller.
SS$_ILLPAGCNT The specified page count was less than 1.
SS$_PAGOWNVIO A page in the specified range is owned by a more

privileged access mode.

2–7

$CRELOG

$CRELOG—Create Logical Name

The Create Logical Name service inserts a logical name and its equivalence name
into the process, group, or system logical name table. If the logical name already
exists in the respective table, the new definition supersedes the old.

The Create Logical Name ($CRELNM) service supersedes the $CRELOG service.
New programs should be written using $CRELNM, not $CRELOG, and old
programs that use $CRELOG should be converted to use $CRELNM.

Format

SYS$CRELOG [tblflg] ,lognam ,eqlnam [,acmode]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by value) a condition value
in R0. Condition values that can be returned by this service are listed under
‘‘CONDITION VALUES RETURNED.’’

Arguments

tblflg
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Logical name table into which the newly created logical name is to be placed.
The tblflg argument is a longword value specifying this table. A value of 0 (the
default) specifies the system table; 1, the group table; and 2, the process table.

lognam
VMS Usage: logical_name
type: character-coded text string
access: read only
mechanism: by descriptor–fixed length string descriptor

Name of the logical name to be created. The lognam is the address of a character
string descriptor pointing to the logical name string.

eqlnam
VMS Usage: logical_name
type: character-coded text string
access: read only
mechanism: by descriptor–fixed length string descriptor

Equivalence name string for the logical name. The eqlnam is the address of a
character string descriptor pointing to the equivalence name string.

2–8

$CRELOG

acmode
VMS Usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the logical name table entry. The acmode
argument is a longword containing the access mode. The access mode only
qualifies names in the process logical name table. The $PSLDEF macro defines
the following symbols for the four access modes:

Symbol Access mode

PSL$C_KERNEL Kernel mode
PSL$C_EXEC Executive mode
PSL$C_SUPER Supervisor mode
PSL$C_USER User mode

The most privileged access mode used is the access mode of the caller.

Description

The calling process must have the following:

• GRPNAM privilege to place an entry in the group logical name table

• SYSNAM privilege to place an entry in the system logical name table

Creation of logical names for the group and system logical name tables requires
system dynamic memory.

Logical names can also be created from the command stream, with the DCL
commands ASSIGN, DEFINE, ALLOCATE, and MOUNT.

Note that VMS logical names are case-sensitive.

Condition Values Returned

SS$_NORMAL Service successfully completed. A new name was
entered in the specified logical name table.

SS$_SUPERSEDE Service successfully completed. A new
equivalence name replaced a previous
equivalence name in the specified logical name
table.

SS$_ACCVIO The logical name or equivalence name string or
string descriptor cannot be read by the caller.

SS$_INSFMEM Insufficient system dynamic memory is available
to allocate a group or system logical name table
entry, or the process has exceeded its limit for
process logical name table entries.

2–9

$CRELOG

SS$_IVLOGNAM The logical name or equivalence name string has
a length of 0 or has more than 255 characters.

SS$_IVLOGTAB An invalid logical name table number was
specified.

SS$_NOPRIV The process does not have the privilege to place
an entry in the specified logical name table.

2–10

$DELLOG

$DELLOG—Delete Logical Name

The Delete Logical Name service deletes a logical name and its equivalence name
from the process, group, or system logical name table.

The Delete Logical Name ($DELLNM) service supersedes the $DELLOG service.
New programs should be written using $DELLNM, not $DELLOG, and old
programs that use $DELLOG should be converted to use $DELLNM.

Format

SYS$DELLOG [tblflg] [,lognam] [,acmode]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by value) a condition value
in R0. Condition values that can be returned by this service are listed under
‘‘CONDITION VALUES RETURNED.’’

Arguments

tblflg
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Logical name table flag indicating the table in which the logical name to be
deleted resides. The tblflg argument is a longword value. A value of 0 (the
default) specifies the system table; 1 specifies the group table; and 2 specifies the
process table.

lognam
VMS Usage: logical_name
type: character-coded text string
access: read only
mechanism: by descriptor–fixed length string descriptor

Logical name to be deleted. The lognam argument is the address of a character
string descriptor pointing to the logical name string. If lognam is not specified,
$DELLOG deletes all logical names that the process is privileged to delete, in the
specified table. The maximum length of a logical name is 255 characters.

acmode
VMS Usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode associated with the process logical name table entry. This argument
is used only for deleting names from the process logical name table. The acmode
argument is a longword containing the access mode.

2–11

$DELLOG

The most privileged access mode used is the access mode of the caller; only the
logical name entered at the resulting access mode or a less privileged access mode
is deleted.

Description

The calling process must have the following:

• GRPNAM privilege to delete a logical name from the group logical name table

• SYSNAM privilege to delete a logical name from the system logical name
table

Deletion of a logical name from the group or system table returns storage to
system dynamic memory. Deletion of a logical name from the process table
returns storage to the control region of the process’s virtual address space.

Logical names can be deleted from the command stream with the DEASSIGN
command.

Names in the process logical name table that were created from user mode are
automatically deleted at image exit.

Condition Values Returned

SS$_NORMAL Service successfully completed.
SS$_ACCVIO The lognam argument or the logical name string

cannot be read by the caller.
SS$_IVLOGNAM The logical name string has a length of 0 or

has more than 255 characters. Note that, prior
to Version 4 of VMS, SS$_IVLOGNAM was
returned when the length of a logical name
exceeded 63 characters.

SS$_IVLOGTAB An invalid logical name table number was
specified.

SS$_NOLOGNAM Either (1) the specified logical name does not
exist in the specified logical name table, or (2)
the specified logical name exists in the process
logical name table but the entry was made from
a more privileged access mode.

SS$_NOPRIV The process does not have the privilege to delete
an entry from the specified logical name table.

2–12

$GETCHN

$GETCHN—Get I/O Channel Information

The Get I/O Channel Information service returns information about a device to
which the calling process has assigned an I/O channel. The information returned
consists of either primary or secondary device characteristics, or both.

The Get Device/Volume Information ($GETDVI) service supersedes the
$GETCHN service. New programs should be written using $GETDVI instead
of $GETCHN, and old programs that use $GETCHN should be converted to use
$GETDVI or $GETDVIW.

Format

SYS$GETCHN chan ,[prilen] ,[pribuf] ,[scdlen] ,[scdbuf]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by value) a condition value
in R0. Condition values that can be returned by this service are listed under
‘‘CONDITION VALUES RETURNED.’’

Arguments

chan
VMS Usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Number of the I/O channel assigned to the device. The chan argument is a
longword containing this number.

prilen
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the primary device characteristics that $GETCHN returns to
the caller. The prilen argument is the address of a word into which $GETCHN
writes the length.

pribuf
VMS Usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor–fixed length string descriptor

Buffer into which $GETCHN writes the primary device characteristics. The
pribuf argument is the address of a character string descriptor pointing to this
buffer.

2–13

$GETCHN

If pribuf is specified as 0 (an address of 0), $GETCHN interprets this to mean
that no buffer is specified. This is the default.

scdlen
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the secondary device characteristics that $GETCHN returns to
the caller. The scdlen argument is the address of a word into which $GETCHN
writes the length.

scdbuf
VMS Usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor–fixed length string descriptor

Buffer into which $GETCHN writes the secondary device characteristics. The
scdbuf argument is the address of a character string descriptor pointing to this
buffer.

If scdbuf is specified as 0 (an address of 0), $GETCHN interprets this to mean
that no buffer is specified. This is the default.

Description

The channel number specified in the chan argument must correspond to an
assigned channel.

In most cases, the two sets of characteristics (primary and secondary) returned by
$GETCHN are identical. However, the two sets provide different information in
the following cases:

• If the device has an associated mailbox, the primary characteristics are those
of the assigned device and the secondary characteristics are those of the
associated mailbox.

• If the device is a spooled device, the primary characteristics are those of the
intermediate device and the secondary characteristics are those of the spooled
device.

• If the device represents a logical link on the network, the secondary
characteristics contain information about the link.

2–14

$GETCHN

Note also that the Get I/O Device Information ($GETDEV) service returns the
same information as the $GETCHN service. Both services return information in
a user-supplied buffer. Symbolic names defined in the $DIBDEF macro represent
offsets from the beginning of the buffer. The length of the buffer is defined in the
constant DIB$K_LENGTH, and the field offset names, lengths, and contents are
listed below.

Field Name Length (bytes) Contents

DIB$L_DEVCHAR 4 Device characteristics
DIB$B_DEVCLASS 1 Device class
DIB$B_DEVTYPE 1 Device type
DIB$B_SECTORS 1 Number of sectors per track (disk)
DIB$B_TRACKS 1 Number of tracks per cylinder (disk)
DIB$W_CYLINDERS 2 Number of cylinders on the volume

(disk)
DIB$W_DEVBUFSIZ 2 Device buffer size
DIB$L_DEVDEPEND 4 Device-dependent information
DIB$L_MAXBLOCK 4 Number of logical blocks on the volume

(disk)
DIB$W_UNIT 2 Unit number
DIB$W_DEVNAMOFF 2 Offset to device name string
DIB$L_PID 4 Process identification of device owner
DIB$L_OWNUIC 4 UIC of device owner
DIB$W_VPROT 2 Volume protection mask
DIB$W_ERRCNT 2 Error count
DIB$L_OPCNT 4 Operation count
DIB$W_VOLNAMOFF 2 Offset to volume label string
DIB$W_RECSIZ 2 Blocked record size; valid for magnetic

tapes when DIB$W_VOLNAMOFF is
nonzero

The device name string and volume label string are returned in the buffer
as counted ASCII strings and must be located by using their offsets from the
beginning of the buffer.

Any fields not applicable to a particular device are returned as zeros.

2–15

$GETCHN

Condition Values Returned

SS$_NORMAL Service successfully completed.
SS$_BUFFEROVF Service successfully completed. The device

information returned overflowed the buffer(s)
provided and has been truncated.

SS$_ACCVIO A buffer descriptor cannot be read by the caller,
or a buffer or buffer length cannot be written by
the caller.

SS$_IVCHAN An invalid channel number was specified, that is,
a channel number of 0 or a number larger than
the number of channels available.

SS$_NOPRIV The specified channel is not assigned or was
assigned from a more privileged access mode.

2–16

$GETDEV

$GETDEV—Get I/O Device Information

The Get I/O Device Information service returns information about an I/O
device; the calling process need not have assigned a channel to the device.
The information returned consists of either primary or secondary device
characteristics, or both.

The Get Device/Volume Information ($GETDVI) service supersedes the $GETDEV
service. New programs should be written using $GETDVI instead of $GETDEV,
and old programs that use $GETDEV should be converted to use $GETDVI or
$GETDVIW.

Format

SYS$GETDEV devnam ,[prilen] ,[pribuf] ,[scdlen] ,[scdbuf]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by value) a condition value
in R0. Condition values that can be returned by this service are listed under
‘‘CONDITION VALUES RETURNED.’’

Arguments

devnam
VMS Usage: device_name
type: character-coded text string
access: read only
mechanism: by descriptor–fixed length string descriptor

Name of the device about which information is to be returned. The devnam
argument is the address of a character string descriptor pointing to this device
name string.

prilen
VMS Usage: Word (unsigned)
type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the primary device characteristics that $GETDEV returns to
the caller. The prilen argument is the address of a word into which $GETDEV
writes the length.

pribuf
VMS Usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor–fixed length string descriptor

2–17

$GETDEV

Buffer into which $GETDEV writes the primary device characteristics. The
pribuf argument is the address of a character string descriptor pointing to this
buffer.

If pribuf is specified as 0 (an address of 0), $GETDEV interprets this to mean
that no buffer is specified. This is the default.

scdlen
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the secondary device characteristics that $GETDEV returns to
the caller. The scdlen argument is the address of a word into which $GETDEV
writes the length.

scdbuf
VMS Usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor–fixed length string descriptor

Buffer into which $GETDEV writes the secondary device characteristics. The
scdbuf argument is the address of a character string descriptor pointing to this
buffer.

If scdbuf is specified as 0 (an address of 0), $GETDEV interprets this to mean
that no buffer is specified. This is the default.

Description

In most cases, the two sets of characteristics (primary and secondary) returned
by $GETDEV are identical. However, the two sets provide different information
in the following cases:

• If the device has an associated mailbox, the primary characteristics are those
of the assigned device and the secondary characteristics are those of the
associated mailbox.

• If the device is a spooled device, the primary characteristics are those of the
intermediate device and the secondary characteristics are those of the spooled
device.

• If the device represents a logical link on the network, the secondary
characteristics contain information about the link.

The Get I/O Channel Information ($GETCHN) service returns the same
information as the $GETDEV service and returns it in the same format. Both
services return information in a user-supplied buffer. The $DIBDEF macro
defines symbolic names for the length and contents of this buffer; refer to the
Description section of the $GETCHN service for a list of these symbolic names.

2–18

$GETDEV

Condition Values Returned

SS$_NORMAL Service successfully completed.
SS$_BUFFEROVF Service successfully completed. The device

information returned overflowed the buffer(s)
provided and has been truncated.

SS$_ACCVIO A buffer descriptor cannot be read by the caller,
or a buffer or buffer length cannot be written by
the caller.

SS$_IVDEVNAM No device name was specified, or the device name
string has invalid characters.

SS$_IVLOGNAM The device name string has a length of 0 or has
more than 63 characters.

SS$_NONLOCAL Warning. The device is on a remote system.
SS$_NOSUCHDEV Warning. The specified device does not exist on

the host system.

2–19

$INPUT

$INPUT—Queue Input Request and Wait for Event Flag

$INPUT is a simplified form of the Queue I/O Request and Wait for Event Flag
($QIOW) service. It queues a virtual input operation using the IO$_READVBLK
function code and waits for I/O completion.

$INPUT is not a system service, but rather a macro that may be invoked only by
the VAX MACRO language.

Digital no longer recommends the use of $INPUT, even by VAX MACRO users;
the $QIO or $QIOW services should be used instead.

Format

SYS$INPUT chan ,length ,buffer [,iosb] [,efn]

Returns

type:
access:
mechanism:

Longword condition value. All system services return (by value) a condition value
in R0. Condition values that can be returned by this service are listed under
‘‘CONDITION VALUES RETURNED.’’

Arguments

chan
Number of the I/O channel assigned to the device from which input is to be read.

length
Length of the input buffer.

buffer
Address of the input buffer.

iosb
Address of a quadword I/O status block.

efn
Number of the event flag to be set when the request is complete. The default is
event flag 0.

Description

The $INPUT macro has only one form. Arguments must be specified as for the
$name_S macro form, but ‘‘_S’’ must not be included in the macro call.

Condition Values Returned

Any condition values returned by $QIO

2–20

$OUTPUT

$OUTPUT—Queue Output Request and Wait for Event Flag

$OUTPUT is a simplified form of the Queue I/O Request and Wait for Event
Flag ($QIOW) service. It queues a virtual output operation using the IO$_
WRITEVBLKBLK function code and waits for I/O completion.

$OUTPUT is not a system service, but rather a macro that may be invoked only
by the VAX MACRO language.

Digital no longer recommends the use of $OUTPUT, even by VAX MACRO users;
the $QIO or $QIOW services should be used instead.

Format

SYS$OUTPUT chan ,length ,buffer [,iosb] [,efn]

Returns

type:
access:
mechanism:

Longword condition value. All system services return (by value) a condition value
in R0. Condition values that can be returned by this service are listed under
‘‘CONDITION VALUES RETURNED.’’

Arguments

chan
Number of the I/O channel assigned to the device to which output is to be written.

length
Length of the output buffer.

buffer
Address of the output buffer.

iosb
Address of the quadword I/O status block.

efn
Number of the event flag to be set when the request is complete. The default is
event flag 0.

Description

The $OUTPUT macro has only one form. Arguments must be specified as for the
$name_S macro form, but ‘‘_S’’ must not be included in the macro call.

The $OUTPUT macro supplies a P4 value of hexadecimal 20 to the $QIOW
service. For output to a terminal, this value is a carriage control specifier
indicating the following sequence: line feed, print buffer contents, carriage
return.

2–21

$OUTPUT

Condition Values Returned

Same as those for $QIO

2–22

$SETSFM

$SETSFM—Set System Service Failure Exception Mode

The Set System Service Failure Exception Mode service allows a process to
specify whether VMS should generate a software exception when a system service
returns an error or severe error condition value to the calling process.

The $SETSFM indicates in the condition value it returns whether system service
exception mode was enabled or disabled prior to the call to $SETSFM.

Initially, system service failure exception mode is disabled, so the caller should
explicitly test for successful completion following a system service call.

Format

SYS$SETSFM [enbflg]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

Argument

enbflg
VMS Usage: boolean
type: byte (unsigned)
access: read only
mechanism: by value

Number specifying whether the system service failure exception mode is to be
enabled. The enbflg argument is a byte value. The value 1 specifies that the
system service failure exception mode is enabled. The value 0 (the default)
specifies that the system service failure exception mode is disabled.

Description

When enabled, a software exception is generated when a system service returns
an error or severe error condition value. System service failure exceptions are
generated only if the service call originated from user mode. You can call the
$SETSFM service, however, from any access mode.

If enabled, system service failure exception mode remains enabled until explicitly
disabled or until the image exits. You can specify a condition handler in the first
longword of the procedure call stack or with the Set Exception Vector ($SETEXV)
service. If you do not specify a condition handler, a default system handler is
used. This condition handler causes the image to exit and then displays the exit
status.

The argument list provided to the condition handler contains the code SS$_
SSFAIL in the condition name argument of the signal array.

2–23

$SETSFM

For an explanation and examples of condition handling routines, the format
of the argument lists passed to the condition handler, and a discussion of
the appropriate actions a condition handler may take, see the OpenVMS
Programming Interfaces: Calling a System Routine.

Condition Values Returned

SS$_WASCLR The service completed successfully. Failure
exceptions were previously disabled.

SS$_WASSET The service completed successfully. Failure
exceptions were previously enabled.

2–24

$SETSSF

$SETSSF—Set System Services Filter

The Set System Services Filter service inhibits user mode calls to certain system
services. The $SETSSF service cannot inhibit the following services:

$ASCTIM $BINTIM $EXIT $FAO
$FAOL $PUTMSG $UNWIND

Format

SYS$SETSSF [mask]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

Argument

mask
VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Category of system services that are to be inhibited for user mode calls. The
mask argument is a longword value of which only the first byte is significant.
The first byte is a bit vector wherein a bit, when set, specifies a category of system
service to be inhibited. Only bits 0 and 1 are used; bits 2 to 7 are reserved.

When bit 0 is set, all system services, including user-written system services, are
inhibited except those listed previously.

When bit 1 is set, all system services, including user-written system services, are
inhibited except the following and those listed previously.

$ADJSTK $CRETVA $DELTVA $GETMSG
$SETSFM

Bit 1 inhibits fewer system services than bit 0. Specifically, bit 1 does not inhibit
the system services required by condition-handling and image-rundown services,
whereas bit 0 does.

Description

To call $SETSSF successfully, the access mode of the caller must be equal to
or more privileged than supervisor mode access, and the SYSGEN parameter
SSINHIBIT must be set when the system is bootstrapped.

2–25

$SETSSF

If a system service that has been inhibited is called from user mode, one of the
following two condition values is returned:

SS$_INHCHME You called a disabled executive mode system service.
SS$_INHCHMK You called a disabled kernel mode system service.

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$_NOPRIV The process does not have the privilege to call

the service.

2–26

$SNDACC

$SNDACC—Send Message to Accounting Manager

The Send Message to Accounting Manager service controls accounting log activity
and allows a process to write an arbitrary data message into the accounting log
file.

The Send to Job Controller ($SNDJBC) service supersedes the $SNDACC
service. New code should be written using $SNDJBC (or $SNDJBCW) instead of
$SNDACC, and old code using $SNDACC should be converted to use $SNDJBC
or $SNDJBCW.

Format

SYS$SNDACC msgbuf ,[chan]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by value) a condition value
in R0. Condition values that can be returned by this service are listed under
‘‘CONDITION VALUES RETURNED.’’

Argument

msgbuf
VMS Usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor–fixed length string descriptor

Message buffer specifying the message type and message. The msgbuf argument
is the address of a character string descriptor pointing to the message buffer.

The first word in the message buffer must specify a message type. These message
types have symbolic names, which are defined by the $ACCDEF macro. Some
message types require that data follow the message type code in the message
buffer, while other message types require no data at all. The following lists each
message type and describes the nature of the data, if any, that must follow that
type.

$SNDACC Message Types

ACC$K_INSMESG
This message type directs $SNDACC to insert a message in the accounting
log file. Following the message type in the buffer is the message text itself.
$SNDACC precedes the message with a default header when the message is
written to the accounting log file.

ACC$K_NEWFILE
This message type directs $SNDACC to close the current accounting log file
and to open a new accounting log file. OPER privilege is required to issue this
request. No data follows the message type in the buffer.

2–27

$SNDACC

ACC$K_ENABACC
This message type enables accounting for all types of jobs. OPER privilege is
required to issue this request. No data follows the message type in the buffer.

ACC$K_DISAACC
This message type disables accounting for all types of jobs. OPER privilege is
required to issue this request. No data follows the message type in the buffer.

ACC$K_ENABSEL
This message type enables accounting for certain types of jobs. OPER privilege is
required to issue this request. In the buffer, the message type is followed by one
or more 1-byte job type codes that define the types of job for which accounting
is to be enabled. The list of job type codes must be terminated with a byte
containing 0. The following job type codes are defined by the $ACCDEF macro:

Type Code Job Type

ACC$K_BATTRM Batch job
ACC$K_INSMSG User message
ACC$K_INTTRM Interactive job
ACC$K_LOGTRM Login failure
ACC$K_PRCTRM Noninteractive process, subprocess, or detached process
ACC$K_PRTJOB Print job

ACC$K_DISASEL
This message type disables accounting for certain types of jobs. OPER privilege
is required to issue this request. In the buffer, the message type is followed by
one or more 1-byte job type codes that define the types of job for which accounting
is to be disabled. The list of job type codes must be terminated with a byte
containing 0. The list of job type codes appears under the description of the
ACC$K_ENABSEL message type code.

chan
VMS Usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Channel number of the mailbox to which $SNDACC writes the completion status
of the operation. The chan argument is a longword containing this number.

If the chan argument is not specified or is specified as 0, $SNDACC does not
return the completion status. The completion status is lost if insufficient buffer
space exists, if the message is too long, or if the mailbox no longer exists when
$SNDACC attempts to return the status.

The $SNDACC returns the completion status to the mailbox in the following
format:

2–28

$SNDACC

Bits Description

0–15 In this word $SNDACC writes the code MSG$_ACCRSP, indicating
that this mailbox has been written to by $SNDACC. This code is
defined by the $MSGDEF macro.

16–31 0
32–63 Completion status code. These codes are defined by the

$JBCMSGDEF macro and are listed under ‘‘Condition Values
Returned in the Mailbox’’ at the end of the $SNDACC description.

Description

The calling process must have OPER privilege to: (1) create a new log; or (2)
enable or disable accounting.

The $SNDACC service requires system dynamic memory.

The accounting log file is located on the system disk in
SYS$MANAGER:ACCOUNTNG.DAT. The file is sequentially organized and
contains variable-length records.

The general procedure for writing a call to this service is as follows:

1. Construct the message buffer and place its final length in the first word of the
buffer descriptor.

2. Call the $SNDACC service.

3. Check the status code returned in R0 for successful completion.

4. Issue a read request to the mailbox specified, if any.

5. When the read completes, check the status code returned in the mailbox for
successful completion.

By default, the system writes a record into the accounting log file whenever a
job terminates. Termination records are written for interactive users, batch jobs,
noninteractive processes, login failures, and print jobs.

The $SNDACC service allows users to write additional data into the accounting
log and allows privileged users to disable or enable all accounting for particular
types of jobs.

Condition Values Returned

SS$_NORMAL Successful completion.
SS$_ACCVIO The message buffer or buffer descriptor cannot

be read by the caller.
SS$_BADPARAM The specified message has a length of 0 or has

more than 196 characters.
SS$_DEVNOTMBX The channel specified is not assigned to a

mailbox.

2–29

$SNDACC

SS$_INSFMEM Insufficient system dynamic memory is available
to complete the service.

SS$_IVCHAN An invalid channel number was specified, that is,
a channel number of 0 or a number larger than
the number of channels available.

SS$_NOPRIV The caller does not have write access to the
specified mailbox.

Condition Values Returned in the Mailbox

JBC$_NORMAL Successful completion.
JBC$_NOOPER The caller does not have the necessary OPER

privilege for the requested operation.
JBC$_INVFUNCOD The specified message type code is invalid.
JBC$_INVITMCOD The specified job type code is invalid.
JBC$_INVMSGBUF The message buffer is not large enough to

contain all required fields.
JBC$_INVPARLEN The message text is more than 255 characters.

Example

$ACCDEF
ACCMSG: .WORD 0 ; mailbox channel number
MESSAGE: ; character string descriptor

.WORD ENDRQ-REQUEST ; size of request

.WORD 0

.ADDRESS - ; address of request
REQUEST

REQUEST: ; message buffer for $SNDACC
.WORD ACC$K_ENABSEL ; selectively enable:
.BYTE ACC$K_BATTRM ; batch jobs
.BYTE ACC$K_PRTJOB ; print jobs
.BYTE 0 ; end of message buffer

ENDRQ:
.
.
.

$CREMBX_S - ; create mailbox for message
chan=ACCMSG

.

.

.
$SNDACC_S -

msgbuf=MESSAGE, - ; address of descriptor
chan=ACCMSG ; mailbox channel for data

The above example shows a segment of a program used to selectively enable
accounting for batch jobs and print jobs.

2–30

$SNDSMB

$SNDSMB—Send Message to Symbiont Manager

The Send Message to Symbiont Manager service allows a user to create and
manage queues, as well as the jobs in those queues.

The Send to Job Controller ($SNDJBC) service supersedes the $SNDSMB
service. New code should be written using $SNDJBC (or $SNDJBCW) instead of
$SNDSMB, and old code using $SNDSMB should be converted to use $SNDJBC
or $SNDJBCW.

Format

SYS$SNDSMB msgbuf ,[chan]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by value) a condition value
in R0. Condition values that can be returned by this service are listed under
‘‘CONDITION VALUES RETURNED.’’

Arguments

msgbuf
VMS Usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor–fixed length string descriptor

Address of a character string descriptor that points to the message buffer. The
user constructs a message buffer for each $SNDSMB request. The first 2-byte
field of the buffer specifies the request type; additional fields specify other
required information; the last field specifies other optional information.

The size and content of the message buffer varies depending on the $SNDSMB
request. The Description section contains a list of $SNDSMB request types and,
for each type, shows the content and format of the message buffer including
allowable options. The Description section also contains a list describing each
option.

chan
VMS Usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Number of the channel assigned to the mailbox that is to receive the reply from
$SNDSMB. If no channel number is specified or if it is specified as 0 (the default),
$SNDSMB does not reply.

2–31

$SNDSMB

If the chan argument is specified, the symbiont manager returns one quadword
of information to the mailbox. This information is formatted as follows:

Bits Contents

0–15 MSG$_SMBRSP. This name, which is defined by the $MSGDEF
macro, indicates that the message is from the symbiont manager.

16–31 The job entry number (or jobid). The symbiont manager assigns a
jobid to each batch or print job.

32–63 Status code. This status code describes the actual results of
the symbiont operation. These status codes are defined by the
$JBCMSGDEF macro, which is located in SYS$LIBRARY:LIB.MLB.
A list of these status codes appears under ‘‘Condition Values
Returned in the Mailbox’’.
Note that, in contrast to these status codes, the status codes
returned in R0 describe the call to $SNDSMB (whether it was
successful, ill-formed, and so on).

If the mailbox cannot handle the message because either (1) there is insufficient
buffer space, (2) the message is too long, or (3) the mailbox no longer exists
when the reply is sent, then the response is lost.

Description

The Send Message To Symbiont Manager service requires system dynamic
memory.

The general procedure for using this service is as follows:

1. Construct the message buffer and place its final length in the first word of the
buffer descriptor.

2. Issue the $SNDSMB service.

3. Check the return status code from the service to ensure successful completion.

4. Issue a read request to the specified mailbox, if any.

5. When the read completes, check that the operation was successfully
performed.

$SNDSMB Request Types and Message Buffer Formats
This section lists each $SNDSMB request type, describes the operation it
designates, shows the content and format of the message buffer for the request
type, and lists the options that may be specified with the request type.

2–32

$SNDSMB

The format of the message buffer for each request type is described in terms of
required and optional fields. Some of the items for required fields are used for
several request types; rather than repeat the syntactical description of a required
item for each request type, the syntactical description is given once here:

Queue name The total length of this field must be 16 bytes. The
first byte contains the length of the queue name string
(maximum 15 characters). Successive bytes contain the
queue name string, one character per byte. Unused bytes
are filled with any characters to bring the total length of
the field to 16 bytes.

Device name The total length of this field must be 16 bytes. The contents
of this field is actually supplied by RMS; the user need only
copy to the message buffer 16 bytes beginning at offset
NAM$T_DVI of the RMS Name Block (NAM).

File ID The total length of this field must be 6 bytes. The contents
of this field is actually supplied by RMS; the user need
only copy to the message buffer 6 bytes beginning at offset
NAM$W_FID of the RMS Name Block (NAM).

Dir ID The total length of this field must be 6 bytes. The contents
of this field is actually supplied by RMS; the user need
only copy to the message buffer 6 bytes beginning at offset
NAM$W_DID of the RMS Name Block (NAM).

File name The total length of this field must be 20 bytes. It is not
used.

Job name The total length of this field must be 10 bytes. The first
byte contains the length of the job name string (maximum
9 characters). Successive bytes contain the job name string,
one character per byte. Unused bytes are filled with any
characters to bring the total length of the field to 10 bytes.

If an option is specified in the message buffer, it must be specified after all
required fields. If the option requires a data value, that value must immediately
follow the option in the message buffer.

After all options and their data values (if any) have been specified in the message
buffer, an option code of 0 may be entered in the message buffer. The zero option
code indicates the end of all options (and the end of the message buffer).

SMR$K_ABORT
This request stops the current job on a specified queue and starts the next job in
that queue.

Required fields in the message buffer:

SMR$K_ABORT 2-byte request type
Queue name 16-byte name of the queue whose current job is to be

stopped

Optional contents of the message buffer (valid only for output queues):

SMO$K_REQDEST SMO$K_REQPRIO SMO$K_REQUEUE

SMR$K_ADDFIL
This request adds a file to a job that was created by the SMR$K_CREJOB
request.

2–33

$SNDSMB

Required fields in the message buffer:

SMR$K_ADDFIL 2-byte request type
Device name 16-byte device name that identifies the device on which

the file resides
File ID 6-byte file identification of the file
Dir ID 6-byte directory identification of the file
File name 20-byte unused field

Optional contents of the message buffer:

SMO$K_COPIES SMO$K_BRSTPAG SMO$K_DELETE
SMO$K_DOUBLE SMO$K_FILESIZ SMO$K_FLAGPAG
SMO$K_NOBRSTPAG SMO$K_NOFEED SMO$K_NOFLAGPAG
SMO$K_PAGCNT SMO$K_PAGHDR

SMR$K_ALTER
This request changes the attributes of a previously queued job and then requeues
the job.

Required fields in the message buffer:

SMR$K_ALTER 2-byte request type
Queue name 16-byte queue name that identifies the queue on which

the job is queued
Job ID 2-byte job entry number; this identifier was returned by

$SNDSMB on a previous call when the job, which is now
to be altered, was initially queued

Optional contents of the message buffer:

SMO$K_CPULIM SMO$K_DQCHAR SMO$K_DESTQUE
SMO$K_FORMTYPE SMO$K_HOLD SMO$K_JOBCOPY
SMO$K_JOBNAME SMO$K_JOBPRI SMO$K_LOWER
SMO$K_NOCPULM SMO$K_NOLOWER SMO$K_NOWSDFT
SMO$K_NOWSEXTNT SMO$K_NOWSQUO SMO$K_RLSTIM
SMO$K_WSDEFLT SMO$K_WSEXTNT SMO$K_WSQUOTA

SMR$K_CLSJOB
This request closes the current job and enters it on the queue specified in the
SMR$K_CREJOB request. SMR$K_CLSJOB works in tandem with SMR$K_
CREJOB. For example, the user creates a job with the SMR$K_CREJOB request,
adds files to the job with the SMR$K_ADDFIL request, and closes the job with
the SMR$K_CLSJOB request.

Required fields in the message buffer:

SMR$K_CLSJOB 2-byte request type

No options are allowed.

SMR$K_CREJOB
This request creates a job on a specified queue. It is used to create a job
consisting of a number of files and is used in tandem with SMR$K_ADDFIL
and SMR$K_CLSJOB. See the description of SMR$K_CLSJOB above.

2–34

$SNDSMB

Required fields in the message buffer:

SMR$K_CREJOB 2-byte request type
Queue name 16-byte name of the queue that identifies the queue on

which the job is to be queued

Optional contents of the message buffer:

SMO$K_CPULIM SMO$K_DQCHAR SMO$K_FORMTYPE
SMO$K_HOLD SMO$K_JOBCOPY SMO$K_JOBNAME
SMO$K_JOBPRI SMO$K_KEEPLOG SMO$K_LOGFNAM
SMO$K_LOGQNAM SMO$K_LOWER SMO$K_NOCPULM
SMO$K_NOKEEPLOG SMO$K_NOLOG SMO$K_NOLOWER
SMO$K_NONOTFY SMO$K_NOSPOOL SMO$K_NOTIFY
SMO$K_NOWSDFT SMO$K_NOWSEXTNT SMO$K_NOWSQUO
SMO$K_PARAMS SMO$K_RLSTIM SMO$K_WSDEFLT
SMO$K_WSEXTNT SMO$K_WSQUOTA

SMR$K_DELETE
This request deletes a queue.

Required fields in the message buffer:

SMR$K_DELETE 2-byte request type
Queue name 16-byte name of the queue to be deleted

No options are allowed.

SMR$K_ENTER
This request enters a single file in a queue. Use SMR$K_CREJOB to enter more
than one file in a queue.

Required fields in the message buffer:

SMR$K_ENTER 2-byte request type
Queue name 16-byte name that identifies the queue in which the file

is to be queued
Device name 16-byte device name that identifies the device on which

the file resides
File ID 6-byte file identification of the file
Dir ID 6-byte directory identification of the file (required only if

the file is to be deleted after processing)
File name 20-byte unused field

Optional contents of the message buffer:

SMO$K_BRSTPAG SMO$K_COPIES SMO$K_CPULIM
SMO$K_DELETE SMO$K_DOUBLE SMO$K_DQCHAR
SMO$K_FILESIZ SMO$K_FLAGPAG SMO$K_FORMTYPE
SMO$K_HOLD SMO$K_JOBCOPY SMO$K_JOBNAME
SMO$K_JOBPRI SMO$K_KEEPLOG SMO$K_LOGFNAM
SMO$K_LOGQNAM SMO$K_LOWER SMO$K_NOBRSTPAG

2–35

$SNDSMB

SMO$K_NOCPULM SMO$K_NOFEED SMO$K_NOFLAGPAG
SMO$K_NOKEEPLOG SMO$K_NOLOG SMO$K_NOLOWER
SMO$K_NONOTFY SMO$K_NOSPOOL SMO$K_NOTIFY
SMO$K_NOWSDFT SMO$K_NOWSEXTNT SMO$K_NOWSQUO
SMO$K_PAGCNT SMO$K_PAGHDR SMO$K_PARAMS
SMO$K_RLSTIM SMO$K_WSDEFLT SMO$K_WSEXTNT
SMO$K_WSQUOTA

SMR$K_INITIAL
This request initializes or reinitializes a queue.

Required fields in the message buffer:

SMR$K_INITIAL 2-byte request type
Queue name 16-byte name of the queue to be initialized or

reinitialized

Optional contents of the message buffer:

SMO$K_CURDQCHAR SMO$K_CURFORM SMO$K_DCPULM
SMO$K_DEFBRST SMO$K_DEFFLAG SMO$K_DETJOB
SMO$K_DISWAP SMO$K_GENDEV SMO$K_GENPRT
SMO$K_INIPRI SMO$K_JOBLIM SMO$K_MCPULM
SMO$K_NODCPULM SMO$K_NODEFBRST SMO$K_NODEFFLAG
SMO$K_NODISWAP SMO$K_NOGENDEV SMO$K_NOGENPRT
SMO$K_NOMCPULM SMO$K_NOTRMDEV SMO$K_NOWSDFLT
SMO$K_NOWSQUTA SMO$K_NOWSXTNT SMO$K_SMBNAME
SMO$K_TRMDEV SMO$K_WSDFLT SMO$K_WSQUTA
SMO$K_WSXTANT

SMR$K_MERGE
This request deletes jobs from one queue (the source queue) and requeues them
in another queue (the destination queue).

Required fields in the message buffer:

SMR$K_MERGE 2-byte request type
Destination queue name 16-byte name that identifies the queue to

which the jobs are to be requeued
Source queue name 16-byte name that identifies the queue from

which the jobs are to be deleted

No options are allowed.

SMR$K_PAUSE
This request pauses the execution of jobs in a specified queue.

Required fields in the message buffer:

SMR$K_PAUSE 2-byte request type
Queue name 16-byte name of the queue that is to be paused

No options are allowed.

2–36

$SNDSMB

SMR$K_REDIRECT
This request assigns a logical queue (the source queue) to an execution queue (the
destination queue).

Required fields in the message buffer:

SMR$K_REDIRECT 2-byte request type
Destination queue name 16-byte name that identifies the execution

queue to which a logical queue is to be
assigned

Source queue name 16-byte name that identifies the logical queue
which is to be assigned to the execution queue;
if the source queue name field contains all
binary zeros, the request revokes a previous
assignment of the queue specified in the
destination queue name field

No options are allowed.

SMR$K_RELEASE
This request releases a job that was put on hold by specifying the SMO$K_HOLD
option with either the SMR$K_CREJOB or SMR$K_ENTER request types.

Required fields in the message buffer:

SMR$K_RELEASE 2-byte request type
Queue name 16-byte queue name field that identifies the queue in

which the job is held
Job ID 2-byte job entry number; this identifier was returned by

$SNDSMB on a previous call when the job, which is now
to be released, was initially put on hold

No options are allowed.

SMR$K_RMVJOB
This request removes a job from a queue.

Required fields in the message buffer:

SMR$K_RMVJOB 2-byte request type
Queue name 16-byte queue name that identifies the queue from which

to remove the job
Job ID 2-byte job entry number; this identifier was returned by

$SNDSMB on a previous call when the job, which is now
to be removed, was initially queued

No options are allowed.

SMR$K_START
This request enables printing on a device, resumes printing on a paused device,
restarts printing on a stopped device, or starts a batch queue.

Required fields in the message buffer:

SMR$K_START 2-byte request type
Queue name 16-byte name of the queue to be started

2–37

$SNDSMB

Optional contents of the message buffer:

SMO$K_CURDQCHAR SMO$K_CURFORM SMO$K_DCPULM
SMO$K_DEFBRST SMO$K_DEFFLAG SMO$K_DETJOB
SMO$K_DISWAP SMO$K_GENDEV SMO$K_GENPRT
SMO$K_INIPRI SMO$K_JOBLIM SMO$K_MCPULM
SMO$K_NEXTJOB SMO$K_NODCPULM SMO$K_NODEFBRST
SMO$K_NODEFFLAG SMO$K_NOGENDEV SMO$K_NOGENPRT
SMO$K_NOMCPULM SMO$K_NOTRMDEV SMO$K_NOWSDFLT
SMO$K_NOWSQUTA SMO$K_NOWSXTNT SMO$K_SMBNAME
SMO$K_SPCCNT SMO$K_TOPOFILE SMO$K_TRMDEV
SMO$K_WSDFLT SMO$K_WSQUTA SMO$K_WSXTANT

SMR$K_STOP
This request stops the execution of jobs in a queue.

Required fields in the message buffer:

SMR$K_STOP 2-byte request type
Queue name 16-byte name of the queue to be stopped

No options are allowed.

SMR$K_SYNCJOB
This request waits for a job to complete and then returns the 8-byte completion
message. The status code contained in the second longword of the completion
message is the completion status of the job.

Required fields in the message buffer (only one of either the job id or job name
fields is required; if both are specified, the job id field is used):

SMR$K_SYNCJOB 2-byte request type
Queue name 16-byte name of the queue in which the job is queued
Job ID 2-byte job entry number that identifies the job for which

to await completion; this identifier was returned by
$SNDSMB on a previous call when the job was initially
queued

Job name 10-byte job name

$SNDSMB Options
The following lists each $SNDSMB option. If an option requires that a data value
also be specified, the format of the required data is described.

If an option is specified in the message buffer, it must be specified after all
required fields. If the option requires a data value, that value must be specified
in the message buffer immediately following its associated option.

After all options and their data values (if any) have been specified in the message
buffer, an option code of 0 may be entered in the message buffer. The zero option
code indicates the end of all options (and the end of the message buffer).

2–38

$SNDSMB

SMO$K_BRSTPAG
SMO$K_NOBRSTPAG
SMO$K_BRSTPAG specifies that a burst page be printed.

SMO$K_NOBRSTPAG specifies that a burst page not be printed.

No data value is required.

SMO$K_COPIES
SMO$K_COPIES specifies the number of copies of the file to be printed. The
required 1-byte data field specifies the desired number.

SMO$K_CPULIM
SMO$K_NOCPULIM
SMO$K_CPULIM specifies the CPU time limit for a batch job. The required data
field is an unsigned longword containing the desired number of 10 millisecond
units.

SMO$K_NOCPULIM specifies that no CPU time limit is to be applied to the
batch job. No data field is required.

SMO$K_CURDQCHAR
SMO$K_CURDQCHAR specifies the current queue characteristics. The required
16-byte data field contains a 128-bit mask. Each bit corresponds to a queue
characteristic; set bits indicate that the corresponding characteristic is desired.

SMO$K_CURFORM
SMO$K_CURFORM specifies the form number currently on the printer. The
required 1-byte data field specifies this form number.

SMO$K_DCPULM
SMO$K_NODCPULM
SMO$K_DCPULM specifies the default CPU time limit for batch jobs originating
from a queue. The required data field is an unsigned longword containing the
desired number of 10 millisecond units. This number must be less than or equal
to the maximum CPU time limit (specified by
SMO$K_MCPULM).

SMO$K_NODCPULM specifies that no default CPU time limit is to be applied to
batch jobs originating from a queue. No data field is required.

SMO$K_DEFBRST
SMO$K_NODEFBRST
SMO$K_DEFBRST specifies that by default a printing queue should print a burst
page. No data field is required.

SMO$K_NODEFBRST specifies that by default a printing queue should not print
a burst page. No data field is required.

SMO$K_DEFFLAG
SMO$K_NODEFFLAG
SMO$K_DEFFLAG specifies that by default a printing queue should print a flag
page. No data field is required.

SMO$K_NODEFFLAG specifies that by default a printing queue should not print
a flag page. No data field is required.

2–39

$SNDSMB

SMO$K_DELETE
SMO$K_DELETE specifies that a file be deleted after printing. The DIR ID field
of the request is required.

SMO$K_DESTQUE
SMO$K_DESTQUE specifies the name of a new queue in which to put a job. The
required data field is a counted string containing the name of the queue.

SMO$K_DETJOB
SMO$K_DETJOB specifies that a queue is defined as a batch queue. No data
field is required.

SMO$K_DISWAP
SMO$K_NODISWAP
SMO$K_DISWAP disables the swapping of all batch jobs in a queue. No data
field is required.

SMO$K_NODISWAP enables the swapping of all batch jobs in a queue. No data
field is required.

SMO$K_DOUBLE
SMO$K_DOUBLE specifies that all print jobs be double-spaced. No data field is
required.

SMO$K_DQCHAR
SMO$K_DQCHAR specifies characteristics that a device queue must have before
a job in it can be dequeued. The required 16-byte data field is a 128-bit bit mask,
where each bit corresponds to a characteristic.

SMO$K_FILESIZ
SMO$K_FILESIZ specifies the size of a file. The required data field is an
unsigned longword that specifies the number of blocks in the file.

SMO$K_FLAGPAG
SMO$K_NOFLAGPAG
SMO$K_FLAGPAG specifies that a flag page be printed with a job. No data field
is required.

SMO$K_NOFLAGPAG specifies that a flag page not be printed with a job. No
data field is required.

SMO$K_FORMTYPE
SMO$K_FORMTYPE specifies the form number. The required 1-byte data field
contains the form number.

SMO$K_GENDEV
SMO$K_NOGENDEV
SMO$K_GENDEV defines a queue as a generic queue. No data field is required.

SMO$K_NOGENDEV defines a queue as an execution queue. No data field is
required.

SMO$K_GENPRT
SMO$K_NOGENPRT
SMO$K_GENPRT allows processing of jobs entered in a generic queue by this
execution queue. No data field is required.

2–40

$SNDSMB

SMO$K_NOGENPRT disallows processing of jobs entered in a generic queue by
this execution queue. No data field is required.

SMO$K_HOLD
SMO$K_HOLD specifies that a job be held until it is explicitly released. No data
field is required.

SMO$K_INIPRI
SMO$K_INIPRI specifies the base priority of a batch job. The required 1-byte
data field contains a priority value from 0 to 15.

SMO$K_JOBCOPY
SMO$K_JOBCOPY specifies that a job be repeated. The required 1-byte data
field contains a number specifying how many times the job is to be repeated.

SMO$K_JOBLIM
SMO$K_JOBLIM specifies the maximum number of jobs that can be executed
simultaneously in a batch queue. The required 1-byte data field contains this
number.

SMO$K_JOBNAM
SMO$K_JOBNAM specifies the job name. The required data field is a counted
ASCII string from 1 to 39 bytes.

SMO$K_JOBPRI
SMO$K_JOBPRI specifies priority for the queueing of a job. The required 1-byte
data field contains a priority value from 0 through 255.

SMO$K_KEEPLOG
SMO$K_NOKEEPLOG
SMO$K_KEEPLOG specifies that the log file not be deleted after printing a batch
job. No data field is required.

SMO$K_NOKEEPLOG specifies that the log file be deleted after printing a batch
job. No data field is required.

SMO$K_LOGFNAM
SMO$K_LOGFNAM specifies the name of a log file for a job. The required data
field contains a counted string specifying the name.

SMO$K_LOGQNAM
SMO$K_LOGQNAM specifies the name of a queue to which a batch job log file
is to be spooled. The required data field contains a counted string specifying the
name.

SMO$K_LOWER
SMO$K_NOLOWER
SMO$K_LOWER specifies that a printer must be equipped with lowercase
characters. No data field is required.

SMO$K_NOLOWER specifies that a printer need not be equipped with lowercase
characters. No data field is required.

2–41

$SNDSMB

SMO$K_MCPULM
SMO$K_NOMCPULM
SMO$K_MCPULM specifies the maximum CPU time for batch jobs. The required
data field is an unsigned longword containing the desired number
of 10 millisecond units of CPU time.

SMO$K_NOMCPULM specifies that no maximum CPU time is to be applied to
batch jobs. No data field is required.

SMO$K_NEXTJOB
SMO$K_NEXTJOB terminates the current job and starts printing the next job in
the queue. No data field is required.

SMO$K_NOFEED
SMO$K_NOFEED cancels automatic form feed for print jobs. No data field is
required.

SMO$K_NOLOG
SMO$K_NOLOG specifies that no log file be kept for a batch job. No data field is
required.

SMO$K_NOSPOOL
SMO$K_NOSPOOL specifies that a batch job log file not be spooled when the
batch job completes. No data field is required.

SMO$K_NOTIFY
SMO$K_NONOTIFY
SMO$K_NOTIFY specifies that the user be notified (via BROADCAST) when a
job has completed. No data field is required.

SMO$K_NONOTIFY specifies that the user is not to be notified when a job has
completed. No data field is required.

SMO$K_PAGCNT
SMO$K_PAGCNT specifies the number of pages to print. The required 2-byte
data field contains the number.

SMO$K_PAGHDR
SMO$K_PAGHDR specifies that a page heading be printed on the top of each
output page. No data field is required.

SMO$K_PARAMS
SMO$K_PARAMS specifies parameters for a batch job. The required data field
consists of one or more counted ASCII strings, terminated by 0.

SMO$K_REQDEST
SMO$K_REQDEST specifies the name of a queue in which to place jobs that have
been requeued using SMO$K_REQUEUE. The required data field is a counted
ASCII string.

SMO$K_REQPRIO
SMO$K_REQPRIO specifies a new priority for a job when the job is requeued
using SMO$K_REQUEUE. The required data field is a priority value from 0 to
255.

2–42

$SNDSMB

SMO$K_REQUEUE
SMO$K_REQUEUE places an aborted print job back in the queue. No data field
is required.

SMO$K_RLSTIM
SMO$K_RLSTIM specifies a time at which to release a held job. The required
data field is a quadword containing a binary time value.

SMO$K_SMBNAME
SMO$K_SMBNAME specifies the name of a print symbiont for jobs originating
from this queue. The required data field is a counted ASCII string containing the
file name of the symbiont image.

SMO$K_SPCCNT
SMO$K_SPCCNT restarts the current job at some number of pages either
previous to or subsequent to the page at which the job stopped. The required
data field is a signed word containing the plus or minus page count.

SMO$K_TOPOFILE
SMO$K_TOPOFILE restarts the current job at the top of the file. No data field is
required.

SMO$K_TRMDEV
SMO$K_NOTRMDEV
SMO$K_TRMDEV specifies that a generic queue can place jobs in terminal
queues. No data field is required.

SMO$K_NOTRMDEV specifies that a generic queue can place jobs in printer
queues. No data field is required.

SMO$K_WSDEFLT
SMO$K_NOWSDFT
SMO$K_WSDEFLT specifies the default working set size for a batch job. The
default working set size must be less than or equal to the working set quota
(SMO$K_WSQUOTA). The required data field is an unsigned word containing the
number of pages.

SMO$K_NOWSDFT specifies that no working set default size be applied to this
job. No data field is required.

SMO$K_WSDFLT
SMO$K_NOWSDFLT
SMO$K_WSDFLT specifies the default working set size for jobs originating
from this queue. The default working set size must be less than or equal to the
working set quota (SMO$K_WSQUTA). The required data field is an unsigned
word containing the number of pages.

SMO$K_NOWSDFLT specifies that no default working set size is specified for
jobs originating from this queue. No data field is required.

SMO$K_WSEXTNT
SMO$K_NOWSEXTNT
SMO$K_WSEXTNT specifies the working set extent for this batch job. The
required data field is an unsigned word containing the number of pages.

SMO$K_NOWSEXTNT specifies that no working set extent is specified for this
batch job. No data field is required.

2–43

$SNDSMB

SMO$K_WSQUOTA
SMO$K_NOWSQUO
SMO$K_WSQUOTA specifies the working set quota for this batch job. The
required data field is an unsigned word containing the number of pages.

SMO$K_NOWSQUO specifies that no working set quota be applied to this job.
No data field is required.

SMO$K_WSQUTA
SMO$K_NOWSQUTA
SMO$K_WSQUTA specifies the working set quota for jobs originating from this
batch queue. The required data field is an unsigned word containing the number
of pages.

SMO$K_NOWSQUTA specifies that no working set quota is specified for jobs
originating from this batch queue. No data field is required.

SMO$K_WSXTANT
SMO$K_NOWSXTNT
SMO$K_WSXTANT specifies the default working set extent for jobs originating
from this batch queue. The required data field is an unsigned word containing
the number of pages.

SMO$K_NOWSXTNT specifies that no working set extent be applied to jobs
originating from this batch queue. No data field is required.

The working set default size, the working set quota and the working set extent
(maximum size) are included in each user record in the system user authorization
file (UAF), and can be specified for individual jobs and/or for all jobs in a given
queue.

A CPU time limit for the process is included in each user record in the system
user authorization file (UAF). You can also specify any or all of the following: a
CPU time limit for individual jobs, a default CPU time limit for all jobs in a given
queue, and a maximum CPU time limit for all jobs in a given queue.

Condition Values Returned

SS$_NORMAL Service successfully completed.
SS$_ACCVIO The message buffer or buffer descriptor cannot

be read by the caller.
SS$_BADPARAM The specified message has a length of 0 or has

more than 1000 characters.
SS$_DEVNOTMBX The specified channel is not assigned to a

mailbox.
SS$_INSFMEM Insufficient system dynamic memory is available

to complete the service, and the process has
disabled resource wait mode with the Set
Resource Wait Mode ($SETRWM) service.

SS$_IVCHAN An invalid channel number was specified; that is,
a channel number of 0 or a number larger than
the number of channels available.

SS$_NOPRIV The caller does not have write access to the
specified mailbox.

2–44

$SNDSMB

Condition Values Returned in the Mailbox

JBC$_NORMAL Normal successful completion.
JBC$_DELACCESS The file protection of the specified file, which was

entered with the delete option, does not allow
delete access to the caller.

JBC$_EMPTYJOB The open job cannot be closed because it contains
no files.

JBC$_EXECUTING The parameters of the specified job cannot be
modified because the job is currently executing.

JBC$_INCDSTQUE The type of the specified destination queue is
inconsistent with the requested operation.

JBC$_INCOMPLETE The requested queue management operation
cannot be executed because a previously
requested queue management operation has
not yet completed.

JBC$_INCQUETYP The type of the specified queue is inconsistent
with the requested operation.

JBC$_INVDSTQUE The destination queue name is not syntactically
valid.

JBC$_INVFUNCOD The $SNDSMB request type is invalid.
JBC$_INVITMCOD An optional item is invalid for the specified

request type.
JBC$_INVMSGBUF The message buffer is invalid because either it is

not long enough to contain all required fields or
an option extends beyond the end of the buffer.

JBC$_INVPARLEN The length of a string specified with a $SNDSMB
option is outside the valid range for that option.

JBC$_INVPARVAL A specified option is outside the valid range.
JBC$_INVQUENAM The queue name is not syntactically valid.
JBC$_JOBQUEDIS The request cannot be executed because the

system job queue manager has not been started.
JBC$_NODSTQUE The specified destination queue does not exist.
JBC$_NOOPENJOB The requesting process did not open a job with

the SJC$_CREATE_JOB function.
JBC$_NOPRIV The queue protection denies access to the queue

for the specified operation.
JBC$_NOQUESPACE The system job queue file was full and could not

be extended.
JBC$_NORESTART The specified job cannot be requeued because it

was not defined to be restartable.
JBC$_NOSUCHFORM The specified form does not exist.
JBC$_NOSUCHJOB The specified job does not exist.
JBC$_NOSUCHQUE The specified queue does not exist.

2–45

$SNDSMB

JBC$_NOTASSIGN The specified queue cannot be deassigned
because it is not assigned.

JBC$_REFERENCED The specified queue cannot be deleted because of
existing references by other queues or jobs.

JBC$_STARTED The specified queue cannot be started because it
is already running.

Example

$SMRDEF
REQUEST: ; start of message buffer

.WORD SMR$K_ALTER ; alter queue
QUEUE: .ASCIC /SYS$PRINT______/ ; name of queue padded

; with spaces
RJOBID: .WORD 0 ; destination of job identifier
OPT: .BYTE SMO$K_JOBPRI ; alter the priority
NEWPRI: .BYTE 4 ; destination of priority

; (default value of 4)
.BYTE 0 ; end of message buffer
.
.
.

MOVW JOBID,RJOBID ; move job identifier to buffer
MOVB R6,NEWPRI ; R6 has new priority
$SNDSMB_S -

MSGBUF=REQUEST, -
CHAN=MBXCHAN

The above example shows a segment of a program used to alter the priority of a
job in the queue SYS$PRINT.

2–46

$TRNLOG

$TRNLOG—Translate Logical Name

The Translate Logical Name service searches the logical name tables for a
specified logical name and returns an equivalence name string into a user-
specified buffer; the search is not iterative. The process, group, and system
logical name tables are searched in that order.

The Translate Logical Name ($TRNLNM) service supersedes the $TRNLOG
service. New programs should be written using $TRNLNM, not $TRNLOG, and
old programs that use $TRNLOG should be converted to use $TRNLNM.

Format

SYS$TRNLOG lognam ,[rsllen] ,rslbuf ,[table]
,[acmode] ,[dsbmsk]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by value) a condition value
in R0. Condition values that can be returned by this service are listed under
‘‘CONDITION VALUES RETURNED.’’

Arguments

lognam
VMS Usage: logical_name
type: character-coded text string
access: read only
mechanism: by descriptor–fixed length string descriptor

Name of the logical name to be translated. The lognam is the address of a
character string descriptor pointing to the logical name string.

rsllen
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the equivalence name to which the logical name translates.
The rsllen argument is the address of a word to receive this length.

rslbuf
VMS Usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor–fixed length string descriptor

Buffer into which $TRNLOG writes the equivalence name. The rslbuf argument
is the address of a character string descriptor pointing to this buffer.

2–47

$TRNLOG

table
VMS Usage: byte_unsigned
type: byte (unsigned)
access: write only
mechanism: by reference

Logical name table in which the equivalence name was found. The table
argument is the address of a byte into which $TRNLOG writes a value. The
value 0 specifies the system logical name table; 1, the group table; and 2, the
process table.

acmode
VMS Usage: access_mode
type: byte (unsigned)
access: write only
mechanism: by reference

Access mode associated with the logical name and equivalence name. The
acmode argument is the address of a byte into which $TRNLOG writes this
access mode. The $PSLDEF macro defines the symbols for the four access modes.
The contents of this byte is valid only if the equivalence name was found in the
process logical name table (table 2).

dsbmsk
VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Logical name tables that are not to be searched by $TRNLOG. The dsbmsk
argument is a longword bit vector wherein a bit, when set, disables the search
of the corresponding logical name table. Bit 0 corresponds to the system logical
name table; bit 1, to the group logical name table; and bit 2, to the process logical
name table.

If dsbmsk is not specified or is specified as 0 (the default), all three logical name
tables are searched.

Description

If the first character of a specified logical name is an underscore character (_), no
translation is performed. However, the underscore character is removed from the
string and the modified string is returned in the output buffer.

2–48

$TRNLOG

Condition Values Returned

SS$_NORMAL Service successfully completed. An equivalence
name was returned.

SS$_NOTRAN Service successfully completed. An equivalence
name was not found; the logical name was
returned in the buffer.

SS$_ACCVIO The logical name string or string descriptor
cannot be read by the caller; or the output
length, output buffer, or table or access mode
field cannot be written by the caller.

SS$_IVLOGNAM The specified logical name string has a length of
0 or has more than 255 characters.

SS$_RESULTOVF The buffer was too small to receive the returned
string.

2–49

3
Obsolete RTL Routines and Notation

This chapter describes obsolete RTL routines and the Run-Time Library
argument notation commonly known as dot notation. An obsolete routine is
a routine that has been superseded by a more efficient or more flexible routine.
Obsolete routines are no longer updated.

Section 3.1 through Section 3.4 describe RTL routines by functional groups.
Section 3.5 contains a complete description of each obsolete RTL routine.

Digital recommends that you use current routines when you write new programs.
Old programs which use obsolete routines should be updated to make future
maintenance easier.

3.1 Obsolete FOR$ Routines
Table 3–1 displays the obsolete FOR$ routines described in this chapter and the
current OTS$ routines that have replaced them.

Table 3–1 Table of Obsolete RTL Routines

Obsolete Routine New Routine

FOR$CNV_OUT_I OTS$CVT_L_TI

FOR$CNV_OUT_L OTS$CVT_L_TL

FOR$CNV_OUT_O OTS$CVT_L_TO

FOR$CNV_OUT_Z OTS$CVT_L_TZ

FOR$CNV_IN_I OTS$CVT_TI_L

FOR$CNV_IN_L OTS$CVT_TL_L

FOR$CNV_IN_O OTS$CVT_TO_L

FOR$CNV_IN_DEFG OTS$CVT_T_Z

FOR$CNV_IN_Z OTS$CVT_TZ_L

The obsolete FOR$ routines listed in the first column of Table 3–1 were the
original routines. FOR$ routines were written to support conversion and I/O
functions in FORTRAN. As more languages evolved that also needed these types
of services, the FOR$ routines were rewritten as OTS$ routines. OTS$ routines
are generic routines and are language independent. Therefore, a BASIC compiler
can call an OTS$ routine, but may not call the equivalent FOR$ routine. It is
interesting to note that even the FORTRAN compiler now uses the OTS$ entry
points rather than the FOR$ entry points.

The FOR$ and OTS$ routines listed above are equivalent. In fact, each pair not
only performs the same function, but does so using the same code. Each routine
module contains two entry points, one for OTS$ and one for FOR$. These two
entry points lead to a common code path.

3–1

Obsolete RTL Routines and Notation
3.1 Obsolete FOR$ Routines

In some of the routines, however, there is a slight difference between OTS$ and
FOR$. Many of the optional arguments provided in the OTS$ routines are not
provided in their FOR$ equivalents. In each case where the FOR$ routine does
not include optional arguments present in the OTS$ version, the default values of
the optional arguments are used.

Because OTS$ now provides the same services as FOR$, with the added
advantage of being language independent, Digital strongly recommends that you
use only OTS$ routines.

3.2 Obsolete Terminal-Independent Screen Manipulation
Procedures

These obsolete screen manipulation procedures have been superseded by the
SMG$ routines. Digital recommends that you use only SMG$ routines for screen
manipulation.

The obsolete terminal-independent screen procedures were designed to allow
high-level language programs to manipulate output to terminals and files.
Table 3–2 lists these obsolete screen procedures and their functions.

When you write code that uses these procedures, you do not need to know what
kind of terminal will be used when your program runs. They are intended
primarily for controlling output to video terminals, but they also function
predictably if the output device is a hardcopy terminal or a file. The word screen
refers to the screen of a video terminal.

Each of these procedures also has a corresponding SCR$ entry point, where
scalar input arguments are passed by immediate value. For example, if you use
SCR$SET_CURSOR rather than LIB$SET_CURSOR, you must pass the line
number and column number by immediate value.

Note

These procedures set the terminal type to correspond to the type specified
by the /DEVICE_TYPE qualifier of the SET TERMINAL command.

Table 3–2 The Terminal-Independent Screen Procedures

Entry Point Function

LIB$SCREEN_INFO
SCR$SCREEN_INFO

Returns terminal specifications to your program

LIB$DOWN_SCROLL
SCR$DOWN_SCROLL

Moves the cursor up one line, or scrolls down if at top

LIB$ERASE_LINE
SCR$ERASE_LINE

Erases all of the character positions on the screen from the
specified cursor position to the end of the line

LIB$ERASE_PAGE
SCR$ERASE_PAGE

Erases all of the character positions on the screen from the
specified cursor position to the end of the screen

LIB$SET_CURSOR
SCR$SET_CURSOR

Sets the cursor to the specified position on the screen

(continued on next page)

3–2

Obsolete RTL Routines and Notation
3.2 Obsolete Terminal-Independent Screen Manipulation Procedures

Table 3–2 (Cont.) The Terminal-Independent Screen Procedures

Entry Point Function

LIB$SET_SCROLL
SCR$SET_SCROLL

Establishes a scrolling region

LIB$UP_SCROLL
SCR$UP_SCROLL

Moves the cursor down one line, or scrolls up if at bottom

LIB$GET_SCREEN
SCR$GET_SCREEN

Accepts input from a terminal and puts it into a user-
specified buffer

LIB$PUT_LINE
SCR$PUT_LINE

Displays the specified text at the current cursor position
followed by a specified number of line advances

LIB$PUT_SCREEN
SCR$PUT_SCREEN

Puts specified text to the screen beginning at a specified
line and column

LIB$SET_OUTPUT
SCR$SET_OUTPUT

Creates a channel to the specified terminal or buffer

LIB$STOP_OUTPUT
SCR$STOP_OUTPUT

Closes the channel to the specified terminal or buffer

LIB$PUT_BUFFER
SCR$PUT_BUFFER

Puts the current buffer to the screen or to the previous
buffer

LIB$SET_BUFFER
SCR$SET_BUFFER

Sets or clears buffer mode

3.2.1 Obtaining Screen Information
LIB$SCREEN_INFO determines information about the terminal currently being
used and places it in a storage area that you provide. The following information
is available:

• Special terminal characteristics

– Digital video terminal

– Hardcopy terminal, unknown terminal type, or file

– ANSI terminal (VT100-compatible)

– The terminal has Advance Video Option

– The terminal understands REGIS graphics

– The terminal is a block mode terminal

• Type of terminal

– Unknown type (=SET TERMINAL/DEVICE_TYPE=UNKNOWN)

– VT52 (=SET TERMINAL/DEVICE_TYPE=VT52)

– VT100 (=SET TERMINAL/DEVICE_TYPE=VT100)

– Or any of the other VMS terminal types

• Line width

• Lines per page

3–3

Obsolete RTL Routines and Notation
3.2 Obsolete Terminal-Independent Screen Manipulation Procedures

3.2.2 Positioning the Cursor on the Screen
Screen procedures let you customize interactive input and output by manipulating
the cursor, erasing parts of the screen display, and setting the scrolling region.
You can also cause the screen to scroll up or down a specified number of lines.
Furthermore, you can write programs that perform many of these functions
without knowing what type of Digital terminal will be used. If the terminal is
unable to perform a particular function, it will usually ignore the procedure call
and continue, without issuing an error message.

These procedures use the following conventions:

• The top line of a screen is line number one.

• The leftmost column of a screen is column number one.

• When the line and column arguments are optional, you must specify both
agruments or neither.

These procedures are designed to display the information you have passed
to them as accurately as possible. If you commit a formatting error, such as
entering too much text for the display area or moving the cursor to an invalid
position, you do not want your program to exit. Therefore, the screen procedures
ignore such errors rather than treat them as fatal. For example:

• The screen procedures do not check for cursor position specifications that
exceed the maximum number of lines or columns for the terminal.

• The screen procedures do not insert carriage returns in order to cause lines to
wrap.

• The screen procedures do not try to prevent the loss of text characters, when
text is positioned beyond the screen boundaries.

3.2.2.1 Controlling Input from and Output to the Screen
Three procedures let your program control I/O to and from the screen.

• LIB$GET_SCREEN reads an input string from SYS$INPUT into a
destination text string. The destination string can be fixed-length or dynamic.
You can supply two optional arguments to this procedure:

prompt-str Specifies text string to be displayed on the terminal before the
procedure accepts the contents of the screen as input.

out-len Will contain the actual number of characters written into the
destination string.

• LIB$PUT_SCREEN displays the contents of the specified text string on the
screen. This procedure accepts three optional arguments:

line-no, col-no The line number and column number at which the displayed text will
begin. If you specify one of these arguments, you must specify both.

flags A longword value that specifies the special graphics attributes, such
as blinking and reverse video, available on some terminals. Currently,
only the first four bits of the longword are used. Table 3–3 indicates
the binary value corresponding to each combination of screen attributes
currently available.

• LIB$PUT_LINE displays a single line of text on the screen and then moves
the cursor. Its arguments specify the address of the text and the number
of lines to move the cursor. The second argument is a signed value. If it is
negative, the cursor moves upward after the line is displayed.

3–4

Obsolete RTL Routines and Notation
3.2 Obsolete Terminal-Independent Screen Manipulation Procedures

By default, the cursor moves to the beginning of the next line. The effect is
the same as a carriage return and line feed.

Table 3–3 Screen Attributes

Binary value Decimal value Attributes

0000 0 None

0001 1 Bold

0010 2 Reverse Video

0011 3 Bold, Reverse Video

0100 4 Blinking

0101 5 Blinking, Bolded

0110 6 Blinking, Reverse Video

0111 7 Blinking, Reverse Video, Bolded

1000 8 Underlined

1001 9 Underlined, Bolded

1010 10 Underlined, Reverse Video

1011 11 Underlined, Reverse Video, Bolded

1100 12 Underlined, Blinking

1101 13 Underlined, Blinking, Bolded

1110 14 Underlined, Blinking, Reverse Video

1111 15 Underlined, Blinking, Reverse Video,
Bolded

LIB$SET_OUTPUT allows you to direct output to a terminal or file other than
the default output device, SYS$OUTPUT. This procedure can be used to allow
a single process to display information on multiple terminals. To do this, your
program calls LIB$SET_OUTPUT once for each terminal, before sending output.
You can also use it to direct output to a file.

The first time you call this procedure, you must use all the arguments in order
to set up the channel to the device or file. After this, you can simply use the file
specification or device name for each call and user routines and user arguments,
if any.

If you call LIB$SET_OUTPUT with no arguments, the output goes to
SYS$OUTPUT, the default process output stream.

LIB$STOP_OUTPUT can be used to close the output stream established by
LIB$SET_OUTPUT. If you do not call LIB$STOP_OUTPUT, the channel will be
freed automatically when the image exits.

LIB$STOP_OUTPUT is useful, for example, if you wish to make multiple versions
of a single file. If you call LIB$SET_OUTPUT, several times to send output to a
file and do not call LIB$STOP_OUTPUT, the original file will be overwritten. All
of the output except the last version will be lost. If you call LIB$STOP_OUTPUT
after each call to LIB$SET_OUTPUT, however, LIB$SET_OUTPUT will open a
new version of the file each time, and all of the output will be preserved.

3–5

Obsolete RTL Routines and Notation
3.2 Obsolete Terminal-Independent Screen Manipulation Procedures

3.2.2.2 Buffering Screen I/0
Normally, when your program displays text on the terminal, the Queue I/O
($QIO) system service is called at least once for each call to a screen procedure.
However, buffer mode may also be used with the screen procedures to format
output to a hardcopy file or terminal.

The use of buffer mode involves four steps:

1. You set up an area of storage to act as the buffer.

2. You establish buffer mode in your program by calling LIB$SET_BUFFER.

3. The program calls other screen procedures, such as LIB$PUT_SCREEN.
Instead of displaying text on the screen, these procedures put the text into
the buffer.

4. The program writes the contents of the buffer on the screen by calling
LIB$PUT_BUFFER. This is normally done when enough information has
accumulated to fill the screen.

The amount of data that fills the screen cannot always be determined ahead
of time. For this reason, when the data overflows the buffer, $QIO is called
automatically to display the buffer’s contents. Then LIB$SET_BUFFER sets the
buffer data size to zero and continues the current buffer mode by placing new
data in the current buffer.

Modular programs can use screen buffering at several levels. That is, a procedure
can establish buffer mode, then call another procedure which also establishes
buffer mode, and so on.

Each procedure that calls LIB$SET_BUFFER to establish buffer mode must also
set aside storage for a buffer. However, only one buffer is active at a time. When
a called procedure establishes a buffer, LIB$SET_BUFFER copies the contents
of the previously established buffer into the current one, and sets the previous
buffer to ‘‘empty.’’

A pointer to the buffer established previously is available to the called procedure.
You can access this pointer by declaring a longword to contain it and by passing
it as an argument to LIB$SET_BUFFER or LIB$PUT_BUFFER. If you call
LIB$SET_BUFFER using the address of the previous buffer as an argument, this
address is saved. Then you can use it as an argument for LIB$PUT_BUFFER,
to copy the current buffer back to the calling program’s buffer before returning to
the calling program.

For example, assume that you want to write a procedure A that calls a procedure
B, and that you will use a buffer to accumulate the output from both A and B.
Procedure A performs the following:

1. Calls LIB$SET_BUFFER to establish a buffer called ABUF.

2. Puts text into ABUF.

3. Calls procedure B.

Procedure B performs the following:

1. Declares a longword to save the address of ABUF.

2. Sets up a buffer for itself, called BBUF.

3. Calls LIB$SET_BUFFER, using as arguments BBUF and the address of
ABUF. This establishes buffer mode for procedure B, specifies the new buffer,
and saves the address of ABUF.

3–6

Obsolete RTL Routines and Notation
3.2 Obsolete Terminal-Independent Screen Manipulation Procedures

4. Places into BBUF its own additions to the text.

5. Calls LIB$PUT_BUFFER, using the longword (the address of ABUF) as the
argument. This copies BBUF contents to ABUF.

This call passes the contents of BBUF back to the procedure A’s buffer. At this
point, procedure B returns control to procedure A. Its buffer now contains all the
text generated by both procedures. It then can display the text or pass it up to a
higher level by calling LIB$PUT_BUFFER.

Because of this process of copying the buffer’s contents from one procedure to the
next, the contents of the buffer accumulate from the time that the buffer mode
is first established. This means that when you set up the buffer for the main
procedure, you must make it large enough to contain all the information created
by all of the procedures it calls, not just the output from the called procedure
itself. Otherwise, the data will overflow the buffer, and an automatic $QIO will
occur. Similarly, the calling procedure must set up a buffer large enough to
contain the data that will be buffered by all the procedures called at lower levels,
in addition to its own output.

LIB$SET_BUFFER takes two arguments. The first (required) argument specifies
the buffer being established. The second (optional) argument saves the address
of the previously established buffer. In order to preserve modularity, the main
program in this example uses both of these arguments. Using LIB$SET_BUFFER
and LIB$PUT_BUFFER in pairs also preserves modularity by ensuring that the
contents of the buffer are predictable at any point in the execution of the program.

Calling LIB$PUT_BUFFER with no argument causes the contents of the buffer
to be flushed to the screen. If LIB$PUT_BUFFER is called with the buffer
argument set to zero, buffer mode stops automatically but the current contents
of the buffer are lost. You should call only these procedures with buffer equal
to zero if a situation occurs (such as a call to LIB$STOP or SYS$EXIT) that will
prevent your procedure from returning to its caller and thus printing the contents
of the buffer.

3.2.2.3 Using Screen Procedures with Files and Hardcopy Terminals
The terminal-independent screen procedures will execute if the output device
is a hardcopy terminal or a file instead of a video terminal. The output of a
program on these devices, however, may not be precisely comparable to the same
program’s output on a screen. When the screen procedures are used to output
text to something other than a video screen, they use VMS Record Management
Services (RMS) to format the output, rather than the $QIO system service.
Unlike $QIO, RMS adds a carriage return and line feed to each line.

As with video terminals, you can use the screen procedures to write to a hardcopy
terminal or file either with or without buffering. If you use the procedures
without establishing buffer mode, all features relating to the formatting of the
screen are ignored. The procedures will ignore arguments specifying cursor
position, and all output will be done line by line. For example, LIB$UP_SCROLL
and LIB$DOWN_SCROLL will do nothing, and text displayed by LIB$PUT_
SCREEN and LIB$PUT_LINE will be followed by a carriage return/line feed.

However, if you use the procedures after establishing buffer mode, the output
in the file or on the hardcopy page will look as much as possible like the
corresponding screen display. When you call LIB$SET_BUFFER and specify
a hardcopy device or a file, the procedure establishes its own buffer, equivalent
to a logical ‘‘screen.’’ It then moves the cursor and places text within that buffer
as though the buffer were the screen. The arguments of LIB$PUT_SCREEN that

3–7

Obsolete RTL Routines and Notation
3.2 Obsolete Terminal-Independent Screen Manipulation Procedures

specify bolding and underlining also cause bolding and underlining on hardcopy
terminals and in files; the blinking and reverse video options are ignored.

When your program calls LIB$PUT_BUFFER to display the contents of the
buffer, the procedure scans the buffer from top to bottom, placing each line in the
file or on the hardcopy page and adding a carriage return and line feed. If the
procedure finds more than one blank line at the bottom, it stops the output and
issues a form feed.

Errors that occur during output to hardcopy terminals and files are handled like
other screen formatting errors: the procedures do the best they can to reproduce
the screen display without causing the image to exit. For example, overflow does
not cause the buffer’s contents to be output. Rather, the buffer is displayed only
by a call to LIB$PUT_BUFFER; any text that exceeded the limits of the buffer
is lost. Transfer of information beyond the end of a line causes line wrap; any
text that already exists on the next line is overwritten and lost. If you move
the cursor to a point within the buffer and write text that will overflow, or if
you move the cursor to a point beyond the limits of the buffer, no error message
results. The procedure does the best it can, and the excess text is lost. Because
of this ‘‘best try’’ error handling, you should structure your output carefully when
writing output to hardcopy terminals and files to avoid overflow and line wrap.

3.3 Obsolete PPL$ Routines
Table 3–4 displays the obsolete PPL$ routines described in this chapter and the
current PPL$ routines that have replaced them.

Table 3–4 Table of Obsolete PPL$ Routines

Obsolete Routine New Routine

PPL$FIND_SYNCH_ELEMENT_ID PPL$FIND_OBJECT_ID

PPL$INITIALIZE PPL$CREATE_APPLICATION

3.4 LIB$EMULATE
The functions that were previously performed by LIB$EMULATE are now done
automatically. Although no error will result when you call this routine, it is no
longer necessary to do so.

3.5 Obsolete RTL Routines
This reference section contains obsolete RTL routines.

3–8

Obsolete RTL Routines and Notation
FOR$CNV_OUT_I

FOR$CNV_OUT_I—Convert Signed Integer to Decimal Text

FOR$CNV_OUT_I converts a signed integer to a decimal ASCII text string. This
procedure supports FORTRAN lw and lw.m output.

Format

FOR$CNV_OUT_I value,out-str

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

value
type: longword integer (signed)
access: read only
mechanism: by reference

Signed integer value that FOR$CNV_OUT_I converts to a decimal ASCII text
string. The value argument is the address of this integer value.

out-str
type: character string
access: write only
mechanism: by descriptor, fixed-length

Decimal ASCII text string that FOR$CNV_OUT_I creates when it converts the
signed integer to a decimal ASCII text string. The out-str argument is the
address of a descriptor pointing to this text string. The string is assumed to be
fixed-length (DSC$K_CLASS_S).

Condition Values Returned

SS$_NORMAL Routine successfully completed
OTS$_OUTCONERR Output conversion error. The result would have

exceeded the fixed-length string; the output
string is filled with asterisks.

3–9

Obsolete RTL Routines and Notation
FOR$CNV_OUT_L

FOR$CNV_OUT_L—Convert Integer to Logical Text

FOR$CNV_OUT_L converts an integer to the ASCII text string representation
using FORTRAN L (logical) format.

Format

FOR$CNV_OUT_L value, out-str

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

value
type: longword integer (signed)
access: read only
mechanism: by reference

Signed integer value that FOR$CNV_OUT_L converts to an ASCII text string.
The value argument is the address of this integer value.

out-str
type: character string
access: write only
mechanism: by descriptor, fixed-length

Output string that FOR$CNV_OUT_L creates when it converts the integer value
to an ASCII text string. The out-str argument is the address of a descriptor
pointing to this ASCII text string.

The output string is assumed to be fixed-length (DSC$K_CLASS_S).

The output string consists of (length-1) blanks followed by:

The letter T if bit 0 is set
The letter F if bit 0 is clear

Condition Values Returned

SS$_NORMAL Routine successfully completed.
OTS$_OUTCONERR Output conversion error. The result would have

exceeded the fixed-length string; the output
string is of zero length (DSC$W_LENGTH=0).

3–10

Obsolete RTL Routines and Notation
FOR$CNV_OUT_O

FOR$CNV_OUT_O—Convert Unsigned Integer to Octal Text

FOR$CNV_OUT_O converts an unsigned integer to an octal ASCII text string.
FOR$CNV_OUT_O supports FORTRAN Ow and Ow.m output conversion formats.

Format

FOR$CNV_OUT_O value, out-str

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

value
type: longword integer (signed)
access: read only
mechanism: by reference

Integer value that FOR$CNV_OUT_O converts to an octal ASCII text string. The
value argument is the address of this integer value.

out-str
type: character string
access: write only
mechanism: by descriptor, fixed-length

Output string that FOR$CNV_OUT_O creates when it converts the integer value
to an octal ASCII text string. The out-str argument is the address of a descriptor
pointing to the octal ASCII text string. The string is assumed to be fixed-length
(DSC$K_CLASS_S).

Condition Values Returned

SS$_NORMAL Routine successfully completed.
OTS$_OUTCONERR Output conversion error. The result would have

exceeded the fixed-length string; the output
string is filled with asterisks.

3–11

Obsolete RTL Routines and Notation
FOR$CNV_OUT_Z

FOR$CNV_OUT_Z—Convert Integer to Hexadecimal Text

FOR$CNV_OUT_Z converts an unsigned integer to a hexadecimal ASCII text
string. FOR$CNV_OUT_Z supports FORTRAN Zw and Zw.m output conversion
formats.

Format

FOR$CNV_OUT_Z value, out-str

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

value
type: longword integer (signed)
access: read only
mechanism: by reference

Integer value that FOR$CNV_OUT_Z converts to a hexadecimal ASCII text
string. The value argument is the address of this integer value.

out-str
type: character string
access: write only
mechanism: by descriptor, fixed-length

Output string that FOR$CNV_OUT_Z creates when it converts the integer value
to a hexadecimal ASCII text string. The out-str argument is the address of
a descriptor pointing to this ASCII text string. The string is assumed to be
fixed-length (DSC$K_CLASS_S).

Condition Values Returned

SS$_NORMAL Routine successfully completed.
OTS$_OUTCONERR Output conversion error. The result would have

exceeded the fixed-length string; the output
string is filled with asterisks.

3–12

Obsolete RTL Routines and Notation
FOR$CNV_IN_I

FOR$CNV_IN_I—Convert Signed Integer Text to Integer

FOR$CNV_IN_I converts an ASCII text string representation of a decimal
number to a signed byte, word, or longword integer value.

Format

FOR$CNV_IN_I inp-str, value[,value-size][,flags]

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

inp-str
type: character string
access: read only
mechanism: by descriptor, fixed-length

Input ASCII text string that FOR$CNV_IN_I converts to a signed byte, word, or
longword. The imp-str argument is the address of a descriptor pointing to the
input string.

The syntax of a valid ASCII text input string is:

[+ or -][<integer-digits>]

FOR$CNV_IN_I always ignores leading blanks. A decimal point is assumed at
the right of the input string.

value
type: unspecified
access: write only
mechanism: by reference

Signed byte, word, or longword integer value (depending on value-size) that
FOR$CNV_IN_I creates when it converts the ASCII text string. The value
argument is the address of the integer value.

value-size
type: longword integer (signed)
access: read only
mechanism: by value

Number of bytes occupied by the value that FOR$CNV_IN_I creates when it
converts the ASCII text string to an integer value. Valid values for the value-
size argument are one, two, and four. The contents of value-size determine
whether the integer value that FOR$CNV_IN_I creates is a byte, word, or
longword. If an invalid value is given, FOR$CNV_IN_I returns an error. This is
an optional argument. If omitted, the default is four and FOR$CNV_IN_I returns
a longword integer.

3–13

Obsolete RTL Routines and Notation
FOR$CNV_IN_I

flags
type: longword (unsigned)
access: read only
mechanism: by value

User-supplied flags which FOR$CNV_IN_I uses to determine how blanks and
tabs are interpreted.

Bit Description

0 If set, FOR$CNV_IN_I ignores all blanks. If clear, FOR$CNV_IN_I ignores
leading blanks, but interprets blanks after the first legal character as
zeros.

4 If set, FOR$CNV_IN_I ignores tabs. If clear, FOR$CNV_IN_I interprets
tabs as invalid characters.

This is an optional argument. If omitted, the default is that all bits are set and
FOR$CNV_IN_I ignores blanks and tabs.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
OTS$_INPCONERR Input conversion error; an invalid character in

the input string, or the value overflows byte,
word, or longword, or value-size is invalid;
value is set to zero.

3–14

Obsolete RTL Routines and Notation
FOR$CNV_IN_L

FOR$CNV_IN_L—Convert Logical Text to Integer

FOR$CNV_IN_L converts an ASCII text string representation of a FORTRAN–77
L format to a byte, word, or longword integer value. The result is a longword by
default, but the calling program can specify a byte or a word value instead.

Format

FOR$CNV_IN_L inp-str ,value[,value-size]

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

inp-str
type: character string
access: read only
mechanism: by descriptor, fixed-length

Input string containing an ASCII text representation of a FORTRAN–77 L format
that FOR$CNV_IN_L converts to a byte, word, or longword integer value. The
inp-str argument is the address of a descriptor pointing to the input string.

The syntax of a valid ASCII text input string is:

<zero or more blanks>
< <end of string>

or
< <"." or nothing>

Letter: <"T", "t", "F", or "f">
<zero or more of any character>
<end of string>>>

value
type: unspecified
access: write only
mechanism: by reference

Integer value that FOR$CNV_IN_L creates when it converts the ACSII text input
string. The value argument is the address of this integer value. FOR$CNV_IN_
L returns a minus one as the contents of the value argument if the character
denoted by ‘‘Letter:’’ is ‘‘T’’ or ‘‘t.’’ Otherwise, FOR$CNV_IN_L sets value to zero.

value-size
type: longword integer (signed)
access: read only
mechanism: by value

Number of bytes occupied by the integer value that FOR$CNV_IN_L creates
when it converts the ASCII text input string. The value-size argument contains
the number of bytes. Valid values are one, two, and four. These values determine
whether FOR$CNV_IN_L returns a byte, word, or longword integer value. If
an invalid value is given, FOR$CNV_IN_L returns an error. This is an optional

3–15

Obsolete RTL Routines and Notation
FOR$CNV_IN_L

argument. If omitted, the default is four and FOR$CNV_IN_L returns a longword
integer value.

Condition Values Returned

SS$NORMAL Routine successfully completed.
OTS$_INPCONERR Invalid character in the input string or invalid

value-size; value is set to zero.

3–16

Obsolete RTL Routines and Notation
FOR$CNV_IN_O

FOR$CNV_IN_O—Convert Octal Text to Signed Integer

FOR$CNV_IN_O converts an ASCII text string representation of an unsigned
octal value to an unsigned integer of an arbitrary length. The result is a longword
by default, but the calling program can specify any number of bytes.

Format

FOR$CNV_IN_O inp-str ,value[,value-size][,flags]

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

inp-str
type: character string
access: read only
mechanism: by descriptor, fixed-length

Input string containing an ASCII text string representation of an unsigned octal
value that FOR$CNV_IN_O converts to an unsigned integer. The
inp-str argument is the address of a descriptor pointing to the input string.
The valid input characters are the space and the digits 0 through 7. No sign is
permitted.

value
type: unspecified
access: write only
mechanism: by reference

Integer value that FOR$CNV_IN_O creates when it converts the input string.
The value argument is the address of the unsigned integer value.

value-size
type: longword integer (signed)
access: read only
mechanism: by value

Number of bytes occupied by the unsigned integer value. The value-size
argument contains the number of bytes. If the content of the value-size
argument is zero or a negative number, FOR$CNV_IN_O returns an error.
This is an optional argument. If omitted, the default is four and FOR$CNV_IN_O
returns a longword integer.

flags
type: longword (unsigned)
access: read only
mechanism: by value

User-supplied flags that FOR$CNV_IN_O uses to determine how blanks within
the input string are interpreted. The flags argument contains the user-supplied
flags.

3–17

Obsolete RTL Routines and Notation
FOR$CNV_IN_O

Bit 0 If set, FOR$CNV_IN_O ignores all blanks. If clear, FOR$CNV_IN_O
interprets blanks as zeros.

This is an optional argument. If omitted, the default is that all bits are clear.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
OTS$_INPCONERR Input conversion error. An invalid character,

overflow, or invalid value-size occurred.

3–18

Obsolete RTL Routines and Notation
FOR$CNV_IN_DEFG

FOR$CNV_IN_DEFG—Convert Numeric Text to Floating

FOR$CNV_IN_DEFG converts an ASCII text string representation of a numeric
value to a D_floating value. The routine supports FORTRAN D, E, F, and G input
type conversion as well as similar types for other languages.

Format

FOR$CNV_IN_DEFG inp-str ,value [,digits-in-fract] [,scale-factor] [,flags] [,extbits]

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

inp-str
type: character string
access: read only
mechanism: by descriptor, fixed-length

Input string containing an ASCII text string representation of a numeric value
that FOR$CNV_IN_DEFG converts to a D_floating value. The inp-str argument
is the address of a descriptor pointing to the address of the input string.

The syntax of a valid input string is:

<zero or more blanks>
<"+", "-", or nothing>
<zero or more decimal digits>
<"." or nothing>
<zero or more decimal digits>
<exponent or nothing, where exponent is:

< <<"E", "e". "D", "d", "Q", or "q">
<zero or more blanks>
<"+", "-", or nothing>>>
or
<"+", or "-">>

<zero or more decimal digits>>
<end of string>

There is no difference in semantics between any of the six valid exponent letters
(E, e, D, d, Q, q).

value
type: D_floating
access: write only
mechanism: by reference

Floating-point value that FOR$CNV_IN_DEFG creates when it converts the input
string. The value argument is the address of a D_floating number containing the
value.

digits-in-fract
type: longword (unsigned)
access: read only
mechanism: by value

3–19

Obsolete RTL Routines and Notation
FOR$CNV_IN_DEFG

Number of digits in the fraction if no decimal point is included in the input string.
The digits-in-fract argument contains the number of digits. This is an optional
argument. If omitted, the default is zero.

scale-factor
type: longword integer (signed)
access: read only
mechanism: by value

Scale factor. The scale-factor argument contains the value of the scale factor.
If flags bit 6 is clear, the resultant value is multiplied by 10**factor unless the
exponent is present. If flags bit 6 is set, the scale factor is always applied. This is
an optional argument. If omitted, the default is zero.

flags
type: longword (unsigned)
access: read only
mechanism: by value

User-supplied flags.

Bit 0 If set, FOR$CNV_IN_DEFG ignores blanks. If clear, FOR$CNV_IN_
DEFG interprets blanks as zeros.

Bit 1 If set, FOR$CNV_IN_DEFG allows only E or e exponents. If clear,
FOR$CNV_IN_DEFG allows E, e, D, d, Q, and q exponents. (Bit 1
would be clear for BASIC and set for FORTRAN).

Bit 2 If set, FOR$CNV_IN_DEFG interprets an underflow as an error. If
clear, FOR$CNV_IN_DEFG does not interpret an underflow as an
error.

Bit 3 If set, FOR$CNV_IN_DEFG truncates the value. If clear,
FOR$CNV_IN_DEFG rounds the value.

Bit 4 If set, FOR$CNV_IN_DEFG ignores tabs. If clear, FOR$CNV_IN_
DEFGz interprets tabs as invalid characters.

Bit 5 If set, an exponent must begin with a valid exponent letter. If clear,
the exponent letter may be omitted.

Bit 6 If set, FOR$CNV_IN_DEFG always applies the scale factor. If clear,
FOR$CNV_IN_DEFG applies the scale factor only if there is no
exponent present in the string.

If flags is omitted, all bits are clear.

ext-bits
type: word integer (signed)
access: write only
mechanism: by reference

The extra precision bits. If present, value is not rounded, and the first 8 bits
after truncation are returned as a byte in this argument. This value is suitable
for use as the extension operand in an EMOD instruction.

3–20

Obsolete RTL Routines and Notation
FOR$CNV_IN_DEFG

Condition Values Returned

SS$_NORMAL Routine successfully completed.
OTS$_INPCONERR Input conversion error; an invalid character in

the input string, or the value is outside the range
that can be represented. Value is set to +0.0 (not
reserved operand -0.0).

3–21

Obsolete RTL Routines and Notation
FOR$CNV_IN_Z

FOR$CNV_IN_Z—Convert Hexadecimal Text to Unsigned Integer

FOR$CNV_IN_Z converts an ASCII text string representation of an unsigned
hexadecimal value to an unsigned integer of an arbitrary length. By default, the
result is a longword, but the calling program can specify any number of bytes.

Format

FOR$CNV_IN_Z inp-str ,value[,value-size][,flags]

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

inp-str
type: character string
access: read only
mechanism: by descriptor, fixed-length

Input string containing an ASCII text string representation of an unsigned
hexadecimal value the FOR$CNV_IN_Z converts to an unsigned integer. The
inp-str argument is the address of a descriptor pointing to the input string.
Valid input characters are the space, the digits 0 through 9, and letters A through
F. No sign is permitted. Lowercase letters a through f are acceptable.

value
type: unspecified
access: write only
mechanism: by reference

Integer value created when FOR$CNV_IN_Z converts the input string. The
value argument is the address of the integer value.

value-size
type: longword integer (signed)
access: read only
mechanism: by value

Number of bytes occupied by the integer value. The value-size argument
contains the number of bytes. If the value size is zero or a negative number,
FOR$CNV_IN_Z returns an input conversion error. This is an optional argument.
If omitted, the default is four.

flags
type: longword (unsigned)
access: read only
mechanism: by value

User-supplied flags that FOR$CNV_IN_Z uses to determine how blanks are
interpreted.

3–22

Obsolete RTL Routines and Notation
FOR$CNV_IN_Z

Bit 0 If set, FOR$CNV_IN_Z ignores blanks. If set, FOR$CNV_IN_Z
interprets blanks as zeros.

This is an optional argument. If omitted, the default is that all bits are clear.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
OTS$_INPCONERR Input conversion error. An invalid character,

overflow, or invalid value-size occurred.

3–23

Obsolete RTL Routines and Notation
LIB$DOWN_SCROLL

LIB$DOWN_SCROLL—Down Scroll the Screen (Move Cursor Up One
Line)

LIB$DOWN_SCROLL moves the cursor up one line on the screen. If the cursor is
already at the top line on the screen, all lines move down one line, the top line is
replaced with a blank line, and the data that was on the bottom line is lost. If a
scrolling region is active, then the above logic applies to the top and bottom lines
of the scrolling region.

Format

LIB$DOWN_SCROLL

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Condition Values Returned

SS$_NORMAL Routine sucessfully completed.

Example

CALL LIB$SET_CURSOR (1, 1)
CALL LIB$DOWN_SCROLL ()

This FORTRAN code fragment causes the text on the screen to be scrolled down
one line.

3–24

Obsolete RTL Routines and Notation
LIB$EMULATE

LIB$EMULATE—Emulate Execution of VAX Instructions

LIB$EMULATE is a condition handler that emulates excution of VAX instructions
that are not implemented on the host processor. If LIB$EMULATE can emulate
the instruction, the exception essentially disappears. The instructions emulated
are the G_floating, H_floating, and octaword integer instructions.

Format

LIB$EMULATE sig-args ,mch-args

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

sig-args
type: longword (unsigned)
access: modify
mechanism: by reference, array reference

Signal argument vector. The sig-args argument is the address of an unsigned
longword array containing the signal argument vector.

mch-args
type: longword (unsigned)
access: modify
mechanism: by reference, array reference

Mechanism argument vector. The mch-args argument is the address of an
unsigned longword array containing the mechanism argument vector.

Description

The preferred use of LIB$EMULATE is to establish it as a condition handler by
the appropriate method for the source language. An alternative is provided
for users who do not want to modify the source program. The module
LIB$ESTEMU in SYS$LIBRARY:STARLET.OLB uses LIB$INITIALIZE to
enable LIB$EMULATE as a condition handler before program execution begins.
To use this method, link the program with LIB$ESTEMU as follows:

$ LINK program, SYS$LIBRARY:STARLET/INCLUDE=LIB$ESTEMU

If LIB$EMULATE is established this way, the new instructions will be available
to all of program.

Because of an addition to the VMS operating system, the functions that were
performed by LIB$EMULATE are now done automatically. Therefore, although it
will not cause an error to call this routine, it is never necessary to do so.

3–25

Obsolete RTL Routines and Notation
LIB$EMULATE

Condition Values Returned

SS$_RESIGNAL Resignal condition to next handler. The exception
was not one that LIB$EMULATE could handle.

3–26

Obsolete RTL Routines and Notation
LIB$ERASE_LINE

LIB$ERASE_LINE—Erase Line from Screen

LIB$ERASE_LINE erases all the character positions on the screen from the
specified cursor position to the end of the line.

Format

LIB$ERASE_LINE [line-no ,col-no]

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

line-no
type: word integer (signed)
access: read only
mechanism: by reference

Number of the line at which LIB$ERASE_LINE begins erasing. The line-no
argument is the address of a signed word integer containing this line number. If
omitted, the default is the current line. This is an optional argument. However,
if line-no is specified, col-no must also be specified or you will receive an invalid
argument error.

col-no
type: word integer (signed)
access: read only
mechanism: by reference

Number of the column at which LIB$ERASE_LINE begins erasing. The
col-no argument is the address of a signed word integer containing this column
number. This is an optional argument. If omitted, the default is the current
column. However, if col-no is specified, line-no must also be specified or you will
receive an invalid argument error.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. You must specify both

aruments or no arguments.
LIB$_INVSCRPOS Invalid screen position values. Line-no or

col-no was zero.

Example

ICOL = 42
ILINE = 12
ISTAT = LIB$ERASE_LINE (ILINE,ICOL)

This FORTRAN code fragment erases the screen from column 41 of line 12 to the
end of line 12.

3–27

Obsolete RTL Routines and Notation
LIB$ERASE_PAGE

LIB$ERASE_PAGE—Erase Page from Screen

LIB$ERASE_PAGE erases all the character positions on the screen from the
specified cursor position to the end of the screen.

Format

LIB$ERASE_PAGE [line-no ,col-no]

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

line-no
type: word integer (signed)
access: read only
mechanism: by reference

Number of the line at which LIB$ERASE_PAGE begins erasing. The
line-no argument is the address of a signed word integer containing this line
number. This is an optional argument. If omitted, the default is the current line
number. However, if line-no is specified, col-no must also be specified or you
will receive an invalid argument error.

col-no
type: word integer (signed)
access: read only
mechanism: by reference

Number of the column at which LIB$ERASE_PAGE begins erasing. The col-no
argument is the address of a signed word integer containing this column number.
This is an optional argument. If omitted, the default is the current column
number. However, if col-no is specified, line-no must also be specified or you
will receive an invalid argument error.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. You must specify two

arguments or no arguments.
LIB$_INVSCRPOS Invalid screen position values. Line-no or

col-no was zero.

3–28

Obsolete RTL Routines and Notation
LIB$GET_SCREEN

LIB$GET_SCREEN—Get Text from Screen

LIB$GET_SCREEN reads an input string from SYS$INPUT into a destination
text string. The destination string can be fixed-length or dynamic.

Format

LIB$GET_SCREEN input-text [,prompt-str][,out-len]

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

input-text
type: character string
access: write only
mechanism: by descriptor

Text copied from the screen by LIB$GET_SCREEN. The input-text argument is
the address of a descriptor pointing to the input text.

prompt-str
type: character string
access: read only
mechanism: by descriptor

Prompt displayed by LIB$GET_SCREEN prior to accepting input from the user
terminal. The prompt-str argument is the address of a descriptor pointing to the
prompt string. The prompt is shown on the screen starting at the current cursor
position.

out-len
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters LIB$GET_SCREEN writes into input-text, not counting
padding in the case of a fixed-length string. The out-len argument is the address
of an unsigned word into which LIB$GET_SCREEN writes this number. If
the input string is truncated to the size specified in the input-text descriptor,
out-len is set to this size. Therefore, out-len can always be used by the calling
program to access a valid substring of input-text.

3–29

Obsolete RTL Routines and Notation
LIB$GET_SCREEN

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INPSTRTRU The input string is truncated to the size specified

in the input-text descriptor.
LIB$_INVSTRDES Invalid argment. The descriptor class field is not

a recognized code.
LIB$_SCRBUFOVF Screen buffer overflow.

Condition values returned by RMS.

3–30

Obsolete RTL Routines and Notation
LIB$PUT_BUFFER

LIB$PUT_BUFFER—Put Current Buffer to Screen or to Previous
Buffer

LIB$PUT_BUFFER terminates the current buffering mode, and reverts to the
previous mode as specified by the argument old-buffer.

Format

LIB$PUT_BUFFER [old-buffer]

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

old-buffer
type: longword integer (unsigned)
access: read only
mechanism: by reference

Zero or the address of an area previously used as a screen buffer. The
old-buffer argument is the address of an unsigned longword containing this
value or address. If old-buffer is omitted or contains zero, the contents of the
current screen buffer are displayed on the screen, the data length of the buffer
is set to zero, and buffer mode is terminated. If old-buffer is not zero, it is
assumed to be the address of an area previously used as a screen buffer. The
contents of the current active buffer are copied to this area which then becomes
the new active buffer.

Description

LIB$PUT_BUFFER terminates the current buffering mode.

If the argument is zero or omitted:

• Buffering is terminated

• The contents of the current screen buffer are displayed on the screen

If the argument is not zero:

• Buffering is terminated at the current level

• The value of the argument is taken as the address of a previous screen buffer
to which the data from the current buffer is copied

• The current buffer is set to zero length

• The previous buffer becomes the active buffer

Each modular program should use LIB$SET_BUFFER and LIB$PUT_BUFFER
in pairs.

3–31

Obsolete RTL Routines and Notation
LIB$PUT_BUFFER

LIB$SET_BUFFER establishes the current buffering mode and saves the address
of the previous buffer (if any). LIB$PUT_BUFFER reverts from the current
buffering mode to the previous mode through the use of the previous buffer
address, made available by the corresponding LIB$SET_BUFFER procedure call
from the current modular program.

If buffering was in effect at the time of the call to LIB$SET_BUFFER in this
modular program, the contents of the current buffer are copied to the previous
buffer, and the previous buffer is reestablished as the active buffer. If buffering
was not in effect, buffer mode is terminated and the contents of the buffer are
displayed on the terminal.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_SCRBUFOVF Screen buffer overflow.

3–32

Obsolete RTL Routines and Notation
LIB$PUT_LINE

LIB$PUT_LINE—Put Text to Screen in Line Mode

LIB$PUT_LINE displays the specified text on the screen, beginning at the current
cursor position followed by a specified number of line advances.

Format

LIB$PUT_LINE text [,line-adv][,flags]

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

text
type: character string
access: read only
mechanism: by descriptor

Text that LIB$PUT_LINE writes to the screen. The text argument is the address
of a descriptor pointing to this text.

line-adv
type: longword integer (signed)
access: read only
mechanism: by reference

Number of lines which LIB$PUT_LINE advances the cursor after displaying
the text. The line-adv argument is the address of a signed longword integer
containing this number. If line-adv is negative, the cursor moves upward after
displaying the line; if it is positive, the cursor moves downward. The default
value is one.

flags
type: longword (unsigned)
access: read only
mechanism: by reference

Attributes bit vector used by LIB$PUT_LINE to determine the terminal
characteristics. The flags argument is the address of an unsigned longword
containing the attributes bit vector.

A bit must be set to one to get the desired attribute. Bits are additive. Currently,
these bits are used:

Mnemonic Bit Description

SCR$M_BOLD 0 Bold
SCR$M_REVERSE 1 Reverse Video
SCR$M_BLINK 2 Blinking
SCR$M_UNDERLINE 3 Underscored

3–33

Obsolete RTL Routines and Notation
LIB$PUT_LINE

Description

LIB$PUT_LINE displays the specified text on the screen beginning at the current
cursor position and followed by a specified number of line advances.

Terminal attributes, such as bold, blinking, reverse video, and underscoring, can
be specified by an optional argument.

By default, the cursor moves to the beginning of the next line. The effect is the
same as a carriage return and line feed.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. More than three arguments

were specified.

3–34

Obsolete RTL Routines and Notation
LIB$PUT_SCREEN

LIB$PUT_SCREEN—Put Text to Screen

LIB$PUT_SCREEN displays the specified text on the screen beginning at a
specified line and column. No carriage return or line feed control characters are
inserted.

Format

LIB$PUT_SCREEN text [,line-no,col-no][,flags]

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

text
type: character string
access: read only
mechanism: by descriptor

Text that LIB$PUT_SCREEN writes to the screen. The text argument is the
address of a descriptor pointing to this text.

line-no
type: word integer (signed)
access: read only
mechanism: by reference

Number of the line at which LIB$PUT_SCREEN begins writing the text. The
line-no argument is the address of a signed word integer containing this line
number. This is an optional argument. If omitted, the default is the current line.

col-no
type: word integer (signed)
access: read only
mechanism: by reference

Number of the column at which LIB$PUT_SCREEN begins writing the text. The
col-no argument is the address of a signed word integer containing this column
number. This is an optional argument. If omitted, the default is the current
column.

flags
type: longword (unsigned)
access: read only
mechanism: by reference

Attributes bit vector which LIB$PUT_SCREEN uses to determine the terminal
characteristics. The flags argument is the address of an unsigned longword
containing these flags.

3–35

Obsolete RTL Routines and Notation
LIB$PUT_SCREEN

A bit must be set to one to get the desired attribute. Bits are additive. Currently,
these bits are used:

Mnemonic Bit Description

SCR$M_BOLD 0 Bold
SCR$M_REVERSE 1 Reverse Video
SCR$M_BLINK 2 Blinking
SCR$M_UNDERLINE 3 Underscored

Description

LIB$PUT_SCREEN displays the specified text on the screen beginning at a
specified line and column. No carriage return or line feed control characters are
inserted.

Terminal attributes, such as bold, blinking, reverse video, and underscoring, can
be specified by an optional argument, flags. See Table 3–3 for the possible values
for the flags argument.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. The call to LIB$PUT_

SCREEN specified more than four arguments.
LIB$_INVSCRPOS Invalid screen position values. Line-no or

col-no was zero.

3–36

Obsolete RTL Routines and Notation
LIB$SCREEN_INFO

LIB$SCREEN_INFO—Retrieve Screen Information

LIB$SCREEN_INFO returns a terminal’s characteristics, including flags, device
type, screen width, number of lines per screen, and special characteristics, to your
program.

Format

LIB$SCREEN_INFO flags [,dev-type] [,line-width] [,lines-per-page]

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

flags
type: longword (unsigned)
access: write only
mechanism: by reference

Bit map representing special terminal characteristics. The flags argument is the
address of an unsigned longword containing these flags.

Currently, these bits are used:

Bit Description

0 The terminal is a Digital video terminal.
1 The terminal is a VT100-compatible terminal.
2 The terminal understands REGIS graphic commands.
3 The terminal is a block mode terminal.
4 The terminal has the standard VT100 AVO.

dev-type
type: byte integer (signed)
access: write only
mechanism: by reference

Terminal type. The dev-type argument is the address of a signed byte integer
containing the device type. The terminal types are defined in the VAX System
Services $DCDEF macro.

3–37

Obsolete RTL Routines and Notation
LIB$SCREEN_INFO

Some of the terminal types are:

Type Equivalent DCL Command

Unknown type SET TERMINAL/DEVICE_TYPE=UNKNOWN
VT52 SET TERMINAL/DEVICE_TYPE=VT52
VT100 SET TERMINAL/DEVICE_TYPE=VT100

line-width
type: word integer (signed)
access: write only
mechanism: by reference

Width (in columns) for which the terminal is configured. The line-width
argument is the address of a signed word integer containing the line width.
This corresponds to the value supplied by the DCL command SET TERMINAL
/WIDTH=n.

lines-per-page
type: word integer (signed)
access: write only
mechanism: by reference

Lines (per screen) for which the terminal is configured. The lines-per-page
argument is the address of a signed word integer containing the number of lines
per screen. This corresponds to the value supplied by the DCL command SET
TERMINAL/PAGE=n.

Condition Values Returned

None.

3–38

Obsolete RTL Routines and Notation
LIB$SET_BUFFER

LIB$SET_BUFFER—Set or Clear Screen Buffer Mode

LIB$SET_BUFFER establishes or ends screen buffering.

Format

LIB$SET_BUFFER buffer [,old-buffer]

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

buffer
type: character sring
access: modify
mechanism: by descriptor, fixed-length

Modifiable fixed-length string used as the buffer for storing characters that the
other screen output procedures would normally send to the terminal without
buffering until the next LIB$SET_BUFFER or LIB$PUT_BUFFER procedure
call occurs. The buffer argument is the address of a descriptor pointing to this
buffer. The buffer must be at least 12 bytes long.

If buffer is zero, buffering mode is terminated.

old-buffer
type: longword (unsigned)
access: write only
mechanism: by reference

Previous buffer (if any). The old-buffer argument is the address of a longword
integer containing the previous buffer. The old-buffer is most useful for
subsequent use as an input argument to LIB$PUT_BUFFER.

Description

LIB$SET_BUFFER is called by your program to set up a buffer and initiate the
buffering mode. While in buffer mode, the other screen procedures do not alter
the appearance of the screen. Instead, the output of these procedures is stored in
the buffer set up by LIB$SET_BUFFER.

To display the results of all procedures called since the buffering mode was
entered, your program must call LIB$PUT_BUFFER.

It is sometimes useful, when writing a program with subprogams, to have more
than one buffer initialized at the same time. If you call LIB$SET_BUFFER a
second time, without having called LIB$PUT_BUFFER, a second buffer will be
set up. When using LIB$SET_BUFFER to set up a second buffer, you MUST
specify the old-buffer argument. LIB$SET_BUFFER will write the address
of the old buffer into this argument. Because the second buffer is generally
set up for use within a subprogram, it is good practice to append the contents
of this subprogram buffer to the end of the mainprogram buffer at the end of
the subprogram call. This will ensure that when the contents of the buffer are

3–39

Obsolete RTL Routines and Notation
LIB$SET_BUFFER

written to the screen, the displays will appear in their original order. This is
also the reason that LIB$SET_BUFFER writes the address of that mainprogram
buffer into the old-buffer argument. To append the contents of your subprogram
buffer to the end of the mainprogram buffer, your program must call LIB$PUT_
BUFFER and pass the routine to the old-buffer argument.

When setting up the buffer, it is important to make sure that the buffer will be
large enough to hold the header information, and the terminal commands. You
must allow 12 bytes within the buffer for header information. If your buffer size
is less than 12 bytes, LIB$SET_BUFFER will return immediately with the error
LIB$_SCRBUFOVF, screen buffer overflow.

If your buffer size is greater than 12 bytes, you may still get the LIB$_
SCRBUFOVF error if your program attempts to write text to the buffer which is
larger than the size of the buffer.

The MAXBUF system argument will determine how large a buffer you may
declare. Although MAXBUF varies slightly from system to system, a typical size
is 1500 bytes. Your buffer may not exceed the size of MAXBUF.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$SCRBUFOVF Screen buffer overflow. The buffer is less than 12

bytes long.
LIB$_INVARG Invalid argument. Zero or more than two

arguments were specified.

3–40

Obsolete RTL Routines and Notation
LIB$SET_CURSOR

LIB$SET_CURSOR—Set Cursor to Character Position on Screen

LIB$SET_CURSOR positions the cursor to the specified line and column on the
screen.

Format

LIB$SET_CURSOR line-no ,col-no

Returns

type: longword (unsigned)
access: write only
mechanism: by reference

Arguments

line-no
type: word integer (signed)
access: read only
mechanism: by reference

Number of the line to which LIB$SET_CURSOR moves the cursor. The line-no
argument is the address of a signed word integer containing this line number.

col-no
type: word integer (signed)
access: read only
mechanism: by reference

Number of the column to which LIB$SET_CURSOR moves the cursor. The
col-no argument is the address of a signed word integer containing this column
number.

Description

LIB$SET_CURSOR lets your program control the cursor’s position on the screen
without knowing what type of Digital terminal will be used. If the terminal is
unable to change the cursor’s position, it ignores the procedure call and continues
without issuing an error message.

LIB$SET_CURSOR considers the screen’s top line is line number one and that
its leftmost column is column number one. If you give a value of zero for either of
these arguments, you will receive the error LIB$_INVARG.

Since the terminal-independent screen procedures are designed to display the
information you have passed to them as accurately as possible, they ignore
formatting errors. Thus, LIB$SET_CURSOR does not check for cursor position
specifications that exceed the maximum number of lines or columns for the
terminal.

3–41

Obsolete RTL Routines and Notation
LIB$SET_CURSOR

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. LIB$SET_CURSOR requires

exactly two arguments.
LIB$_INVSCRPOS Invalid screen position values. Line-no or

col-no was zero.

Example

ISTAT = LIB$SET_CURSOR (5, 7)

This FORTAN code fragment moves the cursor to column seven of line five.

3–42

Obsolete RTL Routines and Notation
LIB$SET_OUTPUT

LIB$SET_OUTPUT—Set a Terminal or a Screen Buffer for Output

LIB$SET_OUTPUT establishes a terminal or buffer to receive output.

Format

LIB$SET_OUTPUT [stream] [,file-spec] [,user-routine] [,user-arg] [,old-stream]

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

stream
type: word integer (signed)
access: read only
mechanism: by reference

Stream number, assigned by the caller. The stream argument is the address of a
signed word integer pointing to the stream number. This is an optional argument.
If omitted, the default is 0, SYS$OUTPUT.

file-spec
type: character string
access: read only
mechanism: by descriptor

File specification of the file to which you want LIB$SET_OUTPUT to send the
output. The file-spec argument is the address of a descriptor pointing to the file
specification. This is an optional argument.

user-routine
type: procedure entry mask
access: read only
mechanism: by reference, procedure reference

User-supplied routine. The user-routine argument is the address of the entry
mask to the user routine.

By default, LIB$SET_OUTPUT uses RMS to open the output file. You can open
the file yourself using a user routine. The user routine is also called whenever
LIB$SET_OUTPUT needs to send output to the device or file. Normally,
LIB$SET_OUTPUT does the $QIOs to terminals and the $PUTs to files. The
user routine allows you to do these yourself. For more information on the user
routine, see ‘‘Call Format for a User Routine’’ in the Description Section.

user-arg
type: longword integer (signed)
access: read only
mechanism: by reference

32-bit value passed to the user routine without interpretation. The user-arg
argument is the address of a signed longword integer containing the user
argument.

3–43

Obsolete RTL Routines and Notation
LIB$SET_OUTPUT

old-stream
type: longword integer (signed)
access: write only
mechanism: by reference

Previous stream number. The old-stream argument is the address of a signed
longword integer containing the previous stream number.

Description

This Description section has been divided into two parts:

• Guidelines for Using LIB$SET_OUTPUT

• Call Format for a User Routine

Guidelines for Using LIB$SET_OUTPUT
LIB$SET_OUTPUT allows you to direct output to a terminal or file other than
the default output device, SYS$OUTPUT. If you are sending output to only one
device, SYS$OUTPUT, the call to LIB$SET_OUTPUT is optional. However, by
using LIB$SET_OUTPUT a single process can display information on several
terminals at the same time. To do this, your program calls LIB$SET_OUTPUT
once for each terminal, before it sends any output to the terminals.

You can also use LIB$SET_OUTPUT to direct output to a file. By default,
LIB$SET_OUTPUT uses RMS to open the file, but you can include a user routine
to open the file yourself and output to the file. You also can perform your own
$QIOs to a terminal via this user routine.

The first time you call LIB$SET_OUTPUT, you must use all the arguments. This
sets up the channel to the device or file. On this initial call, LIB$SET_OUTPUT
obtains the device characteristics. If the device type is unknown, the channel is
deassigned. After this, you can use just the file specification or device name along
with the user routine and user argument for each call.

If you call LIB$SET_OUTPUT with no arguments, the output goes to
SYS$OUTPUT, the default process output stream.

LIB$STOP_OUTPUT can be used to close the output stream established by
LIB$SET_OUTPUT. If you do not call LIB$STOP_OUTPUT, the channel will be
freed automatically when the image exits. However, if you do call LIB$STOP_
OUTPUT, you MUST call LIB$SET_OUTPUT afterward to resume output
even if you are using the default, SYS$OUTPUT. If you do not follow a call
to LIB$STOP_OUTPUT with a call to LIB$SET_OUTPUT, you will get a
LIB$INVCHA error.

You should use LIB$STOP_OUTPUT if you wish to make multiple versions of a
single file. Otherwise, if you call LIB$SET_OUTPUT several times to send output
to a file, the original file will be overwritten and all the output except the last
version will be lost. If you call LIB$STOP_OUTPUT after each call to LIB$SET_
OUTPUT, however, LIB$SET_OUTPUT will open a new version of the file each
time, and all of the output will be preserved.

Call Format for a User Routine
LIB$SET_OUTPUT calls the user routine using the format:

user-routine [,user-arg] [,chan] [,output-string] [,stream]

3–44

Obsolete RTL Routines and Notation
LIB$SET_OUTPUT

Arguments

user-arg
type: longword integer (signed)
access: read only
mechanism: by reference

32-bit value that LIB$SET_OUTPUT passes to your user routine without
interpretation. The user-arg argument is the address of a signed longword
integer containing the user argument.

chan
type: word integer (signed)
access: read only
mechanism: by reference

Channel or stream number. The chan argument is the address of a signed word
integer pointing to the channel.

output-string
type: character string
access: read only
mechanism: by descriptor

Output string passed to your user routine by LIB$SET_OUTPUT. The output-
string argument is the address of a descriptor pointing to the output string. This
is an optional argument.

stream
type: longword integer (signed)
access: write only
mechanism: by reference

Previous stream number. The stream argument is the address of a signed
longword integer containing the previous stream number.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

Condition values returned by your user routine.

3–45

Obsolete RTL Routines and Notation
LIB$SET_SCROLL

LIB$SET_SCROLL—Set Scrolling Region

LIB$SET_SCROLL establishes a scrolling region by setting the internal scrolling
region arguments. The cursor position is unchanged.

Format

LIB$SET_SCROLL start-line ,end-line

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

start-line
type: word integer (signed)
access: read only
mechanism: by reference

Starting line of the scrolling region that LIB$SET_SCROLL establishes. The
start-line argument is the address of a signed word integer containing the
starting line.

end-line
type: word integer (signed)
access: read only
mechanism: by reference

Ending line of the scrolling region LIB$SET_SCROLL establishes. The
end-line argument is the address of a signed word integer containing the ending
line.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid arguments. You must specify exactly two

arguments to LIB$SET_SCROLL.

3–46

Obsolete RTL Routines and Notation
LIB$STOP_OUTPUT

LIB$STOP_OUTPUT—Stop Output to a Terminal or Screen Buffer

LIB$STOP_OUTPUT deassigns a terminal or buffer stream established for
output.

Format

LIB$STOP_OUTPUT [chan]

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

chan
type: word integer (signed)
access: read only
mechanism: by reference

Channel number that LIB$STOP_OUTPUT deassigns. The chan argument is
the address of a signed word integer containing this number. This argument is
currently not used.

Description

LIB$STOP_OUTPUT can be used to close an output stream established by
LIB$SET_OUTPUT. If you do not call LIB$STOP_OUTPUT, the channel will be
freed automatically when the image exits.

LIB$STOP_OUTPUT is useful, for example, if you wish to make multiple versions
of a single file. If you call LIB$SET_OUTPUT several times to send output to
a file, and do not call LIB$STOP_OUTPUT, the original file will be overwritten.
All of the output execept the last version will be lost. If you call LIB$STOP_
OUTPUT after each call to LIB$SET_OUTPUT, however, LIB$SET_OUTPUT will
open a new version of the file each time, and all of the output will be preserved.

If the device type is unknown, the channel is deassigned. If a file specification is
given but no user output routine is declared, then the file is opened using RMS.

Condition Values Returned

SS$_NORMAL Routine completed successfully.

3–47

Obsolete RTL Routines and Notation
LIB$UP_SCROLL

LIB$UP_SCROLL—Up Scroll, Move Cursor Down One Line

LIB$UP_SCROLL moves the cursor down one line on the screen.

Format

LIB$UP_SCROLL

Returns

type: longword (unsigned)
access: write only
mechanism: by value

Arguments

None.

Description

LIB$UP_SCROLL moves the cursor down one line on the screen. If the cursor
was already at the bottom line of the screen, all lines are moved up one line.
The information that was on the top line is lost and a blank line appears at the
bottom.

If a scrolling region is active, then the above logic applies to the top and bottom
lines of the scrolling region.

Condition Values Returned

SS$_NORMAL Routine completed successfully.

3–48

Obsolete RTL Routines and Notation
PPL$FIND_SYNCH_ELEMENT_ID

PPL$FIND_SYNCH_ELEMENT_ID—Find Synchronization Element
Identification

Given the name of a spin lock, semaphore, barrier, or event, the Find
Synchronization Element Identification routine returns the identifier of the
associated synchronization element.

Format

PPL$FIND_SYNCH_ELEMENT_ID element-id ,element-name

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

element-id
VMS Usage: identifier
type: longword (unsigned)
access: modify
mechanism: by reference

Element identifier to be returned. The element-id argument is the address of an
unsigned longword that receives the associated identifier.

element-name
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the synchronization element to which the associated identifier is
returned. The element-name argument is the address of a descriptor pointing
to a character string containing the (user-defined) name of the synchronization
element.

Description

Given the name of a spin lock, semaphore, barrier, or event, PPL$FIND_SYNCH_
ELEMENT_ID returns the identifier of an element. An element is any spin
lock, semaphore, barrier, or event previously created and named in a call to
PPL$CREATE_SPIN_LOCK, PPL$CREATE_SEMAPHORE, PPL$CREATE_
BARRIER, or PPL$CREATE_EVENT.

3–49

Obsolete RTL Routines and Notation
PPL$FIND_SYNCH_ELEMENT_ID

Condition Values Returned

PPL$_NORMAL Routine successfully completed.
PPL$_INVARG Invalid argument.
PPL$_INVELENAM Invalid element name, or illegal character string.
PPL$_NOSUCHELE The element you specified does not exist.
PPL$_WRONUMARG Wrong number of arguments.

3–50

Obsolete RTL Routines and Notation
PPL$INITIALIZE

PPL$INITIALIZE—Initialize the PPL$ Facility

The Initialize the PPL$ Facility routine informs the PPL$ facility that the caller
is forming or joining the parallel application. Calling this routine is optional,
because PPL$ initializes itself at the first call to a PPL$ routine.

Format

PPL$INITIALIZE [size]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

size
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Number of pages that PPL$ allocates for its internal data structures. The size
argument is the address of an unsigned longword containing this size value. By
default, PPL$ allocates PPL$K_INIT_SIZE pages (available to user programs
as a link-time constant) for its internal data structures. This initial allocation
provided by PPL$ accommodates a minimum of 32 processes, 8 barriers, 8
semaphores, 4 events, 4 spin locks, and 16 global sections. (These numbers
represent a rough guideline for combinations of PPL$ components. If you have
less than 32 processes, for example, you can have more than 8 barriers, and so
forth.) You can increase this allocation by specifying another value, as in the
following example:

status = PPL$INITIALIZE (3*PPL$K_INIT_SIZE)

The size argument is ignored in all participants other than the ‘‘top’’ participant,
because at the time any subordinate initializes, the size of the PPL$ reserved
area has already been established for that application.

Description

PPL$INITIALIZE informs the PPL$ facility that the caller is forming or joining
the parallel application. This routine initializes internal data structures to
provide the caller with all the PPL$ features. You are not generally required
to call this routine because it is performed automatically when you call any
one of the PPL$ routines listed in the following table. Note that PPL$ does not
automatically initialize when you call routines that require an already created
element. This keeps the overhead of these routines (barrier, semaphore, event,
and spin lock requests) at a minimum.

3–51

Obsolete RTL Routines and Notation
PPL$INITIALIZE

The routines that perform automatic initialization when first called are as follows:

PPL$CREATE_BARRIER PPL$GET_INDEX
PPL$CREATE_EVENT PPL$INDEX_TO_PID
PPL$CREATE_SEMAPHORE PPL$PID_TO_INDEX
PPL$CREATE_SHARED_MEMORY PPL$SPAWN
PPL$CREATE_SPIN_LOCK PPL$STOP
PPL$CREATE_VM_ZONE PPL$UNIQUE_NAME
PPL$FIND_SYNCH_ELEMENT_ID

The size argument determines the amount of space allocated for the supporting
PPL$ data structures. If your application terminates on a call to a PPL$ routine
with the fatal error PPL$_INSVIRMEM, you do not have enough space for the
PPL$ routines to perform the requested operation. This lack of space can occur
because of the following:

1. Your system quotas are not sufficient for the amount of memory requested by
the application.

2. You have requested PPL$ routines for which the default allocation cannot
accommodate the necessary data structures. In this case, you should carefully
consider your use of PPL$ routines. You can increase the PPL$ allocation of
space for internal data structures by specifying a larger value for the size
parameter.

Condition Values Returned

PPL$_NORMAL Normal successful completion.
PPL$_INSVIRMEM Insufficient virtual memory available.
PPL$_WRONUMARG Wrong number of arguments.

Any condition value returned by SYS$CRMPSC.

3–52

4
Obsolete Utilities and Utility Components

This chapter describes obsolete utilities. The first part of the chapter describes
the Disk Quota Utility, which has been superseded by the System Management
(SYSMAN) Utility. The second part of the chapter contains tables and
descriptions of obsolete components in currently supported VMS utilities.

An obsolete utility is a VMS utility that has been superseded by one that is
more flexible or more efficient. Obsolete utilities are no longer updated. An
‘‘obsolete utility component’’ is a component that has been replaced in a currently
supported VMS utility.

4.1 Obsolete Utilities
This section contains a description of the Disk Quota Utility which has been
replaced by the System Management (SYSMAN) Utility.

4–1

DISK QUOTA
DISK QUOTA

DISK QUOTA
The Disk Quota Utility (DISKQUOTA) allows you to allocate disk space to users
and maintain an accurate record of disk use for ODS Level 2 disks.

4.1.1 Establishing Disk Quotas

Using the Disk Quota Utility, you create a quota file for each volume or each
volume set. The quota file records all users allowed to use the disk and shows
their current disk usage as well as their maximum disk allocation. A quota file
has the following format:

UIC Usage Permanent Quota Overdraft Limit
[0,0] 0 333333 3333
[TTD,DAVIS] 15590 333333 3333
[TTD,MORGAN] 1929 333333 3333
[MKT,MORSE] 7650 333333 3333

• The User Identification Code (UIC) of each user entitled to maintain files on
the volume appears in the UIC column.

• The number of disk blocks currently dedicated to a user’s files appears in the
Usage column.

• The maximum number of blocks on the volume that a user’s files can consume
appears in the Permanent Quota column. Once exceeded, the system issues
an error message.

• The number of blocks over the quota that a user’s files can consume appears
in the Overdraft Limit column.

The absolute maximum number of blocks permitted a user on a volume is the
sum of the quota and the overdraft. Only users with the EXQUOTA privilege can
bypass the quota file, but even then, their names are listed in the file without a
maximum allocation.

The quota file, called QUOTA.SYS, is stored in directory [000000] with other
system files and requires one block of disk storage for each 16 entries.

Digital recommends that you do not enable disk quotas on the system volume.

4.1.2 Creating a Quota File

Whether building a quota file for a newly-formatted disk or a disk with existing
files, first invoke the utility and, if necessary, designate the disk volume for which
you are building a quota file. The Disk Quota Utility uses your current default
disk, SYS$DISK, unless you specify another volume with the USE command.

To establish the quota file, enter the CREATE command. The utility sets up the
file QUOTA.SYS in the directory [000000], and inserts an entry called UIC [0,0].
You then use UIC [0,0] to initialize default values for permanent quotas and
overdraft limits, with the command MODIFY
/PERMQUOTA=n /OVERDRAFT=n [0,0].

4–2

DISK QUOTA
DISK QUOTA

Finally, for disks with existing files, enter the REBUILD command so the utility
reads the disk and enters all UICs and their current disk usage into the quota
file. For a newly created disk, use the ADD command to add individual UICs to
the quota file.

4.1.3 Maintaining a Quota File

During normal use of a volume with a quota file, the system automatically
updates the usage counts as users create, delete, extend, and truncate files.

When a user creates new files, usage counts must be below the permanent quota.
If an operation to add new files or expand a current file exceeds the usage count
quota, the system prohibits the operation and issues an error message. A user
can successfully perform a write operation, even if over quota, by trying it a
second time. Operations to extend the file succeed until the usage exceeds the
sum of the quota and the overdraft values.

4.1.4 Disabling a Quota File

The DISABLE command suspends quota operations on a volume. The ENABLE
command lifts the suspension, at which point it is necessary to rebuild the quota
file to update UICs and usage counts.

4.1.5 Listing of Commands

Table 4–1 summarizes the DISKQUOTA commands by format and function. See
the Command Section for a complete description of commands.

Table 4–1 DISKQUOTA Command Summary

Command Function

ADD Adds an entry to the quota file
CREATE Creates a quota file for a volume that does not currently contain one
DISABLE Suspends quota operations on a volume
ENABLE Resumes quota operations on a volume
EXIT Returns the user to DCL command level
HELP Lists the DISKQUOTA commands
MODIFY Changes an entry in the quota file, and initializes the default quota and

overdraft values
REBUILD Reconstructs the usage counts for all entries
REMOVE Deletes an entry from the quota file
SHOW Displays quotas and usage counts
USE Specifies the volume to be acted upon

4–3

DISK QUOTA
DISK QUOTA

Format

RUN SYS$SYSTEM:DISKQUOTA

Parameters

None.

usage summary

To invoke the Disk Quota Utility, enter the following command at the DCL
prompt:

$ RUN SYS$SYSTEM:DISKQUOTA

You can then enter DISKQUOTA commands at the DISKQ> prompt. These
commands follow the standard rules of DCL syntax. To perform DISKQUOTA
operations on a disk other than your current default disk (SYS$DISK), you must
enter the USE command to specify the appropriate disk.

To exit from DISKQUOTA, enter the EXIT command at the DISKQ> prompt or
press CTRL/Z. Either method returns control to the DCL command level.

No privileges are needed to invoke the Disk Quota Utility; however, most
DISKQUOTA commands require write access to the quota file and many
require the SYSPRV privilege, a system UIC, or ownership of the volume.
See the individual command descriptions for details.

4–4

DISK QUOTA

DISKQUOTA Commands

This section describes the following DISKQUOTA commands and provides
examples of their use:

ADD
CREATE
DISABLE
ENABLE
EXIT
HELP
MODIFY
REBUILD
REMOVE
SHOW
USE

4–5

DISK QUOTA
ADD

ADD

Adds an entry to the quota file and initializes the usage count to zero.

This command requires write access to the quota file.

Format

ADD uic

Parameter

uic
Specifies the user identification code (UIC) for which the quota entry is added.
You can specify the UIC in numeric or alphanumeric format.

QUALIFIERS

/PERMQUOTA=quota
Specifies a positive integer that provides the quota for the specified UIC. If you
omit the quota value, the quota defaults to the value of the quota in the entry for
[0,0].

/OVERDRAFT=quota-plus
Specifies a positive integer that provides an overdraft value for the specified UIC.
If you omit the quota-plus value, the overdraft value defaults to the quota-plus in
the entry for [0,0].

Description

The ADD command appends individual entries to the quota file. Unless you
specify the permanent quota and overdraft values, the utility applies the default
values from the UIC entry [0,0]. (UIC [0,0] is the entry that you initialize
immediately after creating a quota file, using the MODIFY command.)

Example

DISKQ> ADD [MKT,MORSE] /PERMQUOTA=200/OVERDRAFT=50

The command in this example sets the permanent quota for UIC [MKT,MORSE]
to 200 disk blocks and the overdraft limit to 50 disk blocks, for an absolute limit
of 250 blocks.

4–6

DISK QUOTA
CREATE

CREATE

Creates a quota file for a volume that does not currently contain one.

This command requires write access to the volume’s master file directory
(MFD), as well as one of the following: the SYSPRV privilege, a system UIC,
or ownership of the volume.

Format

CREATE

PARAMETERS

None.

Qualifiers

None.

Description

The CREATE command creates and enables a quota file for a volume that does
not currently have one.

Only one quota file, [000000]QUOTA.SYS, can be present on any volume or
volume set. As soon as you create a quota file, you should establish default
values for quotas and overdrafts by initializing UIC [0,0] with the MODIFY
command. To have DISKQUOTA read a disk with existing files and build all
UICs and their current usage into the newly-created quota file, use the REBUILD
command.

Example

DISKQ> CREATE

The command in this example creates a new quota file.

4–7

DISK QUOTA
DISABLE

DISABLE

Suspends the maintenance and enforcement of quotas on a volume.

Use of this command requires one of the following: the SYSPRV privilege, a
system UIC, or ownership of the volume.

Format

DISABLE

Parameters

None.

Qualifiers

None.

Description

The DISABLE command suspends the maintenance and enforcement of quotas.
If you enable the quota file at a later point, enter the REBUILD command to
update UIC entries and usage counts.

Example

DISKQ> DISABLE

The command in this example suspends quota enforcement.

4–8

DISK QUOTA
ENABLE

ENABLE

Resumes quota enforcement on a volume.

This command requires one of the following: the SYSPRV privilege, a system
UIC, or ownership of the volume.

Format

ENABLE

Parameters

None.

Qualifiers

None.

Description

The ENABLE command lifts the suspension of quotas on a volume. Whenever
you enable quotas on a volume, use the REBUILD command to update UIC
entries and usage counts.

Example

DISKQ> ENABLE

The command in this example resumes quota enforcement.

4–9

DISK QUOTA
EXIT

EXIT

Terminates the DISKQUOTA session and returns control to the DCL command
level.

Format

EXIT

Parameters

None.

Qualifiers

None.

4–10

DISK QUOTA
HELP

HELP

Lists and describes the DISKQUOTA commands.

Format

HELP [command]

Parameter

command
Specifies the name of a DISKQUOTA command.

Qualifiers

None.

Example

DISKQ> HELP ENABLE

ENABLE

Enable disk quotas on the default volume. The default volume may
be selected by issuing the USE command. Once a quota file is created
on a volume, disk quotas are assumed enabled until explicitly
disabled.

FORMAT:
ENABLE

The command in this example displays information about the ENABLE command.

4–11

DISK QUOTA
MODIFY

MODIFY

Changes an entry in the quota file or initializes default values for quotas and
overdrafts. If a new quota limit is less than the current usage count, the utility
issues a warning message before it implements the new quota.

The MODIFY command requires write access to the quota file.

Format

MODIFY uic

Parameter

uic
Specifies the user identification code (UIC). You can specify the UIC in numeric
or alphanumeric format, and the asterisk wildcard character (*) is permitted.

Qualifiers

/PERMQUOTA=quota
Specifies a positive integer that provides the quota for the specified UIC. If you
omit the quota value, the quota defaults to the value of the quota in the entry for
[0,0].

/OVERDRAFT=quota-plus
Specifies a positive integer that provides an overdraft value for the specified UIC.
If you omit the quota-plus value, the overdraft value defaults to the quota-plus in
the entry for [0,0].

Description

The MODIFY command changes values in the quota file. If you establish a quota
limit that is less than the current usage count, a user can still log in and out, but
cannot create files.

Use the MODIFY command after you have created a quota file to set appropriate
default values for quotas and overdrafts. DISKQUOTA puts an entry into the
newly-created quota file called UIC [0,0] that you initialize to values appropriate
for your site.

Examples

1. DISKQ> MODIFY [0,0] /PERMQUOTA=3000 /OVERDRAFT=300

The command in this example sets the default permanent quota and overdraft
values for the volume by editing the UIC entry [0,0]. If you do not specify a
quota and overdraft, the utility applies these defaults to the UIC.

2. DISKQ> MODIFY [TTD,DAVIS] /PERMQUOTA=900

The command in this example sets the permanent quota for UIC [TTD,DAVIS]
to 900 blocks, while making no change to the overdraft limit.

4–12

DISK QUOTA
REBUILD

REBUILD

Adds entries to the quota file for files created while quotas were not being
enforced, and updates the usage count for all UICs on the volume.

This command requires write access to the quota file, plus one of the following:
the SYSPRV privilege, a system UIC, or ownership of the volume.

Format

REBUILD

Parameters

None.

Qualifiers

None.

Description

The REBUILD command reads the disk, updates usage counts for all existing
entries, and adds new entries. It sets quota and overdraft values of new entries
to the defaults set in UIC [0,0]. While the REBUILD command is executing, file
activity on the volume is frozen. No files can be created, deleted, extended, or
truncated. Use the REBUILD command in the following circumstances:

• After creating a quota file on a volume with existing files.

• When the quota file has been enabled after a period of being disabled. The
command corrects the usage counts and adds any new UICs.

Example

DISKQ> REBUILD

The command in this example reconstructs the usage counts for all entries on the
volume.

4–13

DISK QUOTA
REMOVE

REMOVE

Deletes an entry from the quota file.

This command requires write access to the quota file.

Format

REMOVE uic

Parameter

uic
Specifies the user identification code (UIC). You can specify the UIC in numeric
or alphanumeric format. The asterisk wildcard character (*) is permitted.

Qualifiers

None.

Description

If the usage count for the UIC is not zero, the utility issues a warning message
before it removes the UIC. Files remain on disk, and the user can still log on;
however, any attempt to create files will fail.

The UIC [0,0] entry cannot be removed.

Example

DISKQ> REMOVE [TTD,DAVIS]

The command in this example deletes UIC [TTD,DAVIS] from the quota file.

4–14

DISK QUOTA
SHOW

SHOW

Displays quotas, overdrafts, and usage counts.

This command requires no privileges to show one’s own quota, overdraft, and
usage count, but otherwise it requires read access to the quota file.

Format

SHOW uic

Parameter

uic
Specifies the user identification code (UIC). You can specify the UIC in numeric
or alphanumeric format.

You can use an asterisk wildcard character (*) to specify the UIC as follows:

Command Description

SHOW [TTD,CJ] Show user CJ in group TTD
SHOW [TTD,*] Show all users in group TTD
SHOW [*,CJ] Show all users with a member name of CJ
SHOW [*] Show all entries

Qualifiers

None.

Example

DISKQ> SHOW [ACCT,*]

The command in this example displays quotas, overdrafts, and usage counts for
all users in group ACCT.

4–15

DISK QUOTA
USE

USE

Specifies the volume to be acted upon.

Format

USE device

Parameter

device
Specifies the physical or the logical name of the device for which disk quotas are
being set, modified, or inspected.

Qualifiers

None.

Description

DISKQUOTA works with the default disk, SYS$DISK, unless the USE command
is issued. Use this command during a DISKQUOTA session to switch from one
quota file to another.

Any volume in a volume set can be specified.

Examples

1. DISKQ> USE DMA2:

The command in this example specifies the device by its physical name,
DMA2:.

2. DISKQ> USE X2_RESEARCH_DATA

This command specifies the logical name of the physical device.

4–16

Obsolete Utilities and Utility Components
4.2 Obsolete Components of Current VMS Utilities

4.2 Obsolete Components of Current VMS Utilities
The following tables list obsolete components of currently supported utilities and
the components that replace them.

Utility Obsolete Component Replacement

Runoff .DO INDEX, .PRINT INDEX RUNOFF/INDEX

The .DO INDEX and .PRINT INDEX commands, for in-core indexing, are no
longer supported. RUNOFF/INDEX must be used to generate an .RNX file (index
file) from a .BRN file. The .RNX file can then be .REQUIREd into the document.

Utility Obsolete Component Replacement

Librarian $LBRCTLTBL $LBRCTLDEF

In VAX/VMS Version 3.0 the macro $LBRCTLTBL in STARTLET.MLB defined
certain librarian control table offsets. In VAX/VMS Version 4.0, the new structure
definition translator renamed the macro $LBRCTLTBL to $LBRCTLDEF. If you
have a program that references $LBRCTLTBL, remove the macro reference and
reassemble your program. If for some reason the program does not run, then add
the reference again using the new name, $LBRCTLDEF.

Utility Obsolete Component Replacement

Show Cluster SHOW CLUSTER/REPORT=x SHOW CLUSTER

The /REPORT=x qualifier is now unsupported. The information that was
previously separated into two distinct reports, CLUSTER and LOCAL_PORTS,
can now be displayed on the same screen by using the ADD command.

By default, the output of the SHOW CLUSTER command is the same as
/REPORT=CLUSTER. To generate the LOCAL_PORTS report, (formerly done
with the /REPORT=LOCAL_PORTS qualifier) create an initialization file
containing the following commands:

REMOVE SYSTEMS, MEMBERS
ADD LOCAL_PORTS, ERRORS

4–17

A
Eliminated Features

This appendix lists eliminated DCL commands, utilities, Run-Time Library (RTL)
routines, and miscellaneous components of VMS. Eliminated means that the
feature no longer works and has not been replaced.

A–1

Eliminated Features
Eliminated Features

Eliminated Features
The following table lists features eliminated from VMS:

DCL Commands Eliminated Commands Explanation

SET PROCESS/CPU=[NO]ATTACHED Support for the SET PROCESS
/CPU=[NO]ATTACHED DCL command
has been removed. This command was
part of asymmetric multiprocessing (ASMP)
support designed to help minimize scheduling
inefficiencies. It has no counterpart under
symmetric multiprocessing (SMP).

SET COMMAND/NODELETE The /NODELETE qualifier to the SET
COMMAND command is no longer supported.

Utilities Eliminated Components Explanation

Command Definition SET COMMAND/NODELETE The /NODELETE qualifier to the SET
COMMAND command is no longer supported.

Linker /GSMATCH=NEVER The NEVER keyword to the GSMATCH linker
option is no longer allowed.

/SHAREABLE=COPY The COPY keyword on the options file
qualifier /SHAREABLE is no longer allowed.

UNIVERSAL=* The linker option UNIVERSAL=* is no longer
allowed.

SUMSLP editor The SLP editor is no longer supported.

RTL Routine Eliminated Routine Explanation

SMG$ALLOW_ESCAPE This routine was created solely for the
purpose of translating old application
programs that send escape sequences to
SMG$, and is no longer supported.

Miscellaneous Features Eliminated Feature Explanation

Privileges TMPJNL, PRMJNL The TMPJNL and PRMJNL privileges were
never used by VAX/VMS and have been
removed.

A–2

Index

D
Devices

magnetic tape
displaying characteristics of, 1–28

Disk quota utility, 4–1
ADD subcommand, 4–6
command format, 4–4
command summary, 4–3
CREATE subcommand, 4–7
creating a quota file, 4–2
DISABLE subcommand, 4–8
disabling a quota file, 4–3
ENABLE subcommand, 4–9
establishing disk quotas, 4–2
EXIT subcommand, 4–10
HELP subcommand, 4–11
maintaining a quota file, 4–3
MODIFY subcommand, 4–12
REBUILD subcommand, 4–13
REMOVE subcommand, 4–14
SHOW subcommand, 4–15
USE subcommand, 4–16

E
Eliminated features, A–1
Exception

generating on system service failure, 2–23

F
FOR$CNV_IN_DEFG, 3–19
FOR$CNV_IN_I, 3–13
FOR$CNV_IN_L, 3–15
FOR$CNV_IN_O, 3–17
FOR$CNV_IN_Z, 3–22
FOR$CNV_OUT_I, 3–9
FOR$CNV_OUT_L, 3–10
FOR$CNV_OUT_O, 3–11
FOR$CNV_OUT_Z, 3–12

I
INITIALIZE/QUEUE command, 1–29

/BURST qualifier, 1–29
/FLAG qualifier, 1–29
/PRIORITY qualifier, 1–30
/TERMINAL qualifier, 1–30

L
LIB$DOWN_SCROLL, 3–24
LIB$EMULATE, 3–25
LIB$ERASE_LINE, 3–27
LIB$ERASE_PAGE, 3–28
LIB$GET_SCREEN, 3–29
LIB$PUT_BUFFER, 3–31
LIB$PUT_LINE, 3–33
LIB$PUT_SCREEN, 3–35
LIB$SCREEN_INFO, 3–37
LIB$SET_BUFFER, 3–39
LIB$SET_CURSOR, 3–41
LIB$SET_OUTPUT, 3–43
LIB$SET_SCROLL, 3–46
LIB$STOP_OUTPUT, 3–47
LIB$UP_SCROLL, 3–48

O
Obsolete components of current utilities, 4–17
Obsolete DCL commands, 1–1

obsolete qualifiers, 1–29
SET CLUSTER/QUORUM, 1–2
SET DEVICE/ACL, 1–4
SET DIRECTORY/ACL, 1–8
SET FILE/ACL, 1–14
SET QUEUE/ENTRY, 1–20

Obsolete qualifiers
INITIALIZE/QUEUE command, 1–29
START/QUEUE command, 1–30

Obsolete RTL routines, 3–8
FOR$CNV_IN_DEFG, 3–19
FOR$CNV_IN_I, 3–13
FOR$CNV_IN_L, 3–15
FOR$CNV_IN_O, 3–17
FOR$CNV_IN_Z, 3–22
FOR$CNV_OUT_I, 3–9
FOR$CNV_OUT_L, 3–10

Index–1

Obsolete RTL routines (cont’d)
FOR$CNV_OUT_O, 3–11
FOR$CNV_OUT_Z, 3–12
LIB$DOWN_SCROLL, 3–24
LIB$EMULATE, 3–25
LIB$ERASE_LINE, 3–27
LIB$ERASE_PAGE, 3–28
LIB$GET_SCREEN, 3–29
LIB$PUT_BUFFER, 3–31
LIB$PUT_LINE, 3–33
LIB$PUT_SCREEN, 3–35
LIB$SCREEN_INFO, 3–37
LIB$SET_BUFFER, 3–39
LIB$SET_CURSOR, 3–41
LIB$SET_OUTPUT, 3–43
LIB$SET_SCROLL, 3–46
LIB$STOP_OUTPUT, 3–47
LIB$UP_SCROLL, 3–48

Obsolete system services, 2–1
SYS$BRDCST, 2–2
SYS$CNTREG, 2–6
SYS$CRELOG, 2–8
SYS$DELLOG, 2–11
SYS$GETCHN, 2–13
SYS$GETDEV, 2–17
SYS$INPUT, 2–20
SYS$OUTPUT, 2–21
SYS$SNDACC, 2–27
SYS$SNDSMB, 2–31
SYS$TRNLOG, 2–47

Obsolete utilities, 4–1
Disk quota utility, 4–1

Obsolete utility components, 4–17

P
PPL$FIND_SYNCH_ELEMENT_ID, 3–49
PPL$INITIALIZE, 3–51

S
SET CLUSTER/QUORUM command, 1–2

description, 1–2
examples, 1–3

SET DEVICE/ACL command, 1–4
/AFTER qualifier, 1–5
/DELETE qualifier, 1–5
description, 1–4
/EDIT qualifier, 1–5
examples, 1–7
/JOURNAL qualifier, 1–6
/KEEP qualifier, 1–6
/LIKE qualifier, 1–6
/LOG qualifier, 1–6
/MODE=PROMPT qualifier, 1–6
/NEW qualifier, 1–6
parameters, 1–4
/RECOVER qualifier, 1–7

SET DEVICE/ACL command (cont’d)
/REPLACE qualifier, 1–7

SET DIRECTORY/ACL command, 1–8
/AFTER qualifier, 1–10
/BEFORE qualifier, 1–10
/BY_OWNER qualifier, 1–10
/CONFIRM qualifier, 1–10
/CREATED qualifier, 1–10
/DEFAULT qualifier, 1–11
/DELETE qualifier, 1–11
description, 1–8
/EDIT qualifier, 1–11
examples, 1–12
/EXCLUDE qualifier, 1–11
/JOURNAL qualifier, 1–11
/KEEP qualifier, 1–11
/LIKE qualifier, 1–12
/LOG qualifier, 1–12
/MODE=PROMPT qualifier, 1–12
/NEW qualifier, 1–12
parameters, 1–8
/RECOVER qualifier, 1–12
/REPLACE qualifier, 1–12
/SINCE qualifier, 1–12

SET FILE/ACL command, 1–14
/AFTER qualifier, 1–16
/BEFORE qualifier, 1–16
/BY_OWNER qualifier, 1–16
/CONFIRM qualifier, 1–16
/CREATED qualifier, 1–16
/DEFAULT qualifier, 1–17
/DELETE qualifier, 1–17
description, 1–14
/EDIT qualifier, 1–17
examples, 1–19
/EXCLUDE qualifier, 1–17
/JOURNAL qualifier, 1–17
/KEEP qualifier, 1–18
/LIKE qualifier, 1–18
/LOG qualifier, 1–18
/MODE=PROMPT qualifier, 1–18
/NEW qualifier, 1–18
parameters, 1–14
/RECOVER qualifier, 1–18
/REPLACE qualifier, 1–18
/SINCE qualifier, 1–18

SET QUEUE/ENTRY command, 1–20
/AFTER qualifier, 1–20
/BURST qualifier, 1–21
/CHARACTERISTICS qualifier, 1–21
/CLI qualifier, 1–21
/COPIES qualifier, 1–21
/CPUTIME qualifier, 1–22
description, 1–20
examples, 1–27
/FEED qualifier, 1–22
/FLAG qualifier, 1–22
/FORM qualifier, 1–22

Index–2

SET QUEUE/ENTRY command (cont’d)
/HEADER qualifier, 1–22
/HOLD qualifier, 1–23
/JOB_COUNT qualifier, 1–23
/KEEP qualifier, 1–23
/LOG_FILE qualifier, 1–23
/LOWERCASE qualifier, 1–23
/NAME qualifier, 1–24
/NOCHECKPOINT qualifier, 1–24
/NODELETE qualifier, 1–24
/NOTE qualifier, 1–24
/NOTIFY qualifier, 1–24
/OPERATOR qualifier, 1–24
/PAGES qualifier, 1–24
parameters, 1–20
/PARAMETERS qualifier, 1–25
/PASSALL qualifier, 1–25
/PRINTER qualifier, 1–25
/PRIORITY qualifier, 1–25
/RELEASE qualifier, 1–25
/REQUEUE qualifier, 1–25
/RESTART qualifier, 1–25
/SETUP qualifier, 1–26
/SPACE qualifier, 1–26
/TRAILER qualifier, 1–26
/WSDEFAULT qualifier, 1–26
/WSEXTENT qualifier, 1–26
/WSQUOTA qualifier, 1–27

SHOW MAGTAPE command, 1–28
START/QUEUE command, 1–30

/BATCH qualifier, 1–30
/PRIORITY qualifier, 1–30
/TERMINAL qualifier, 1–31

SYS$BRDCST system service, 2–2
SYS$CNTREG system service, 2–6
SYS$CRELOG system service, 2–8
SYS$DELLOG system service, 2–11
SYS$GETCHN system service, 2–13
SYS$GETDEV system service, 2–17
SYS$INPUT system service, 2–20
SYS$OUTPUT system service, 2–21
SYS$SETSFM, 2–23
SYS$SETSSF, 2–25
SYS$SNDACC system service, 2–27
SYS$SNDSMB system service, 2–31
SYS$TRNLOG system service, 2–47
System service

inhibiting user mode calls to, 2–25
setting failure exception mode, 2–23
setting filter, 2–25

T
Tape device

displaying characteristics of, 1–28

Index–3

