
OpenVMS Alpha System Dump
Analyzer Utility Manual
Order Number: AA–PV6UC–TE

November 1996

This manual explains how to use the System Dump Analyzer (SDA) to
investigate system failures and examine a running OpenVMS system.

Revision/Update Information: This manual supersedes the OpenVMS
Alpha System Dump Analyzer Utility
Manual, Version 6.0

Software Version: OpenVMS Alpha Version 7.1

Digital Equipment Corporation
Maynard, Massachusetts

November 1996

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety
and health of its employees, customers, and the community.

© Digital Equipment Corporation 1996. All rights reserved.

The following are trademarks of Digital Equipment Corporation: Bookreader, DECdirect,
DECwindows, Digital, OpenVMS, OpenVMS Cluster, VAX, VAX DOCUMENT, VAXcluster, VMS, and
the DIGITAL logo.

All other trademarks and registered trademarks are the property of their respective holders.

ZK6135

The OpenVMS documentation set is available on CD–ROM.

Contents

Preface . vii

SDA Description . SDA–1
1 System Management and SDA . SDA–2
1.1 Writing System Dumps . SDA–2
1.1.1 Dump File Style . SDA–3
1.1.2 Controlling the Size of Page Files and Dump Files SDA–4
1.1.3 Writing to the System Dump File . SDA–5
1.1.4 Writing to the Dump File off the System Disk SDA–5
1.1.5 Writing to the System Page File . SDA–6
1.2 Saving System Dumps . SDA–7
1.3 Invoking SDA when Rebooting the System . SDA–7
2 Analyzing a System Dump . SDA–8
2.1 Requirements . SDA–9
2.2 Invoking SDA . SDA–9
2.3 Mapping the Contents of the Dump File . SDA–9
2.4 Building the SDA Symbol Table . SDA–10
2.5 Executing the SDA Initialization File (SDA$INIT) SDA–10
3 Analyzing a Running System . SDA–11
4 SDA Context . SDA–11
5 SDA Command Format . SDA–13
5.1 General Command Format . SDA–13
5.2 Expressions . SDA–13
5.2.1 Radix Operators . SDA–14
5.2.2 Arithmetic and Logical Operators . SDA–14
5.2.3 Precedence Operators . SDA–15
5.2.4 Symbols . SDA–16
6 Investigating System Failures . SDA–20
6.1 General Procedure for Analyzing System Failures SDA–20
6.2 Fatal Bugcheck Conditions . SDA–21
6.2.1 Fatal Exceptions . SDA–21
6.2.2 Illegal Page Faults . SDA–31
7 Inducing a System Failure . SDA–32
7.1 Meeting Crash Dump Requirements . SDA–33
7.2 Procedure for Causing a System Failure . SDA–33

SDA Usage Summary . SDA–34

iii

SDA Qualifiers . SDA–35
/CRASH_DUMP . SDA–36
/OVERRIDE . SDA–37
/RELEASE . SDA–38
/SYMBOL . SDA–39
/SYSTEM . SDA–40

SDA Commands . SDA–41
@ (Execute Command) . SDA–43
ATTACH . SDA–44
COPY . SDA–45
DEFINE . SDA–47
DEFINE/KEY . SDA–49
EVALUATE . SDA–52
EXAMINE . SDA–55
EXIT . SDA–59
FORMAT . SDA–60
HELP . SDA–62
MAP . SDA–63
MODIFY DUMP . SDA–66
READ . SDA–68
REPEAT . SDA–73
SEARCH . SDA–75
SET CPU . SDA–77
SET ERASE_SCREEN . SDA–79
SET FETCH . SDA–80
SET LOG . SDA–82
SET OUTPUT . SDA–83
SET PROCESS . SDA–84
SET RMS . SDA–87
SET SIGN_EXTEND . SDA–90
SHOW ADDRESS . SDA–91
Examples . SDA–92
SHOW BUGCHECK . SDA–93
SHOW CALL_FRAME . SDA–95
SHOW CLUSTER . SDA–97
SHOW CONNECTIONS . SDA–101
SHOW CPU . SDA–103
SHOW CRASH . SDA–106
SHOW DEVICE . SDA–110
SHOW DUMP . SDA–114
SHOW EXECUTIVE . SDA–117
SHOW GLOBAL_SECTION_TABLE . SDA–119
SHOW GSD . SDA–121
SHOW HEADER . SDA–123
SHOW LAN . SDA–124
SHOW LOCK . SDA–134

iv

SHOW MACHINE_CHECK . SDA–137
SHOW PAGE_TABLE . SDA–139
SHOW PFN_DATA . SDA–144
SHOW POOL . SDA–148
SHOW PORTS . SDA–153
SHOW PROCESS . SDA–156
SHOW RESOURCE . SDA–172
SHOW RMD . SDA–176
SHOW RMS . SDA–178
SHOW RSPID . SDA–179
SHOW SPINLOCKS . SDA–181
SHOW STACK . SDA–186
SHOW SUMMARY . SDA–190
SHOW SYMBOL . SDA–193
SHOW WORKING_SET_LIST . SDA–194
SPAWN . SDA–195
VALIDATE PFN_LIST . SDA–197
VALIDATE QUEUE . SDA–198

SDA Extension Commands . SDA–200
CLUE CLEANUP . SDA–201
CLUE CONFIG . SDA–202
CLUE CRASH . SDA–204
CLUE ERRLOG . SDA–207
CLUE HISTORY . SDA–208
CLUE MCHK . SDA–210
CLUE MEMORY . SDA–211
CLUE PROCESS . SDA–219
CLUE STACK . SDA–221
CLUE VCC . SDA–224
CLUE XQP . SDA–226

Index

Figures

SDA–1 Mechanism Array . SDA–23
SDA–2 Signal Array . SDA–25
SDA–3 64-Bit Signal Array . SDA–26
SDA–4 Exception Stack Frame . SDA–27
SDA–5 Stack Following an Illegal Page-Fault Error . SDA–32

v

Tables

SDA–1 The DUMPSTYLE Mask . SDA–3
SDA–2 Comparison of Full and Selective Dump Files SDA–4
SDA–3 SDA Operators . SDA–14
SDA–4 Modules Containing Global Symbols Used by SDA SDA–17
SDA–5 SDA Symbols Defined on Initialization . SDA–17
SDA–6 SDA Symbols Defined by SET CPU Command SDA–18
SDA–7 SDA Symbols Defined by SET PROCESS Command SDA–18
SDA–8 Exception Stack Frame Values . SDA–27
SDA–9 Modules Defining Global Locations Within Executive Image SDA–70
SDA–10 SET RMS Command Keywords for Displaying Process RMS

Information . SDA–87
SDA–11 GSD Fields . SDA–121
SDA–12 Contents of the SHOW LOCK and SHOW PROCESS/LOCKS

Displays . SDA–134
SDA–13 Virtual Page Information in the SHOW PAGE_TABLE Display SDA–141
SDA–14 Type of Virtual Pages . SDA–141
SDA–15 Bits In the PTE . SDA–141
SDA–16 Physical Page Information in the SHOW PAGE_TABLE Display SDA–142
SDA–17 Types of Physical Pages . SDA–142
SDA–18 Location of the Page . SDA–143
SDA–19 Command Options with the /COLOR Qualifier SDA–145
SDA–20 Page Frame Number Information—Line One Fields SDA–145
SDA–21 Page Frame Number Information—Line Two Fields SDA–146
SDA–22 Flags Set in Page State . SDA–147
SDA–23 /TYPE and /SUBTYPE Qualifier Examples . SDA–150
SDA–24 Options for the /WORKING_SET_LIST Qualifier SDA–159
SDA–25 Working Set List Entry Information in the SHOW PROCESS

Display . SDA–160
SDA–26 Process Section Table Entry Information in the SHOW PROCESS

Display . SDA–161
SDA–27 Process I/O Channel Information in the SHOW PROCESS Display . . . SDA–163
SDA–28 Resource Information in the SHOW RESOURCE Display SDA–172
SDA–29 Lock on Resources . SDA–174
SDA–30 RMD Fields . SDA–176
SDA–31 Static Spin Locks . SDA–182
SDA–32 Process Information in the SHOW SUMMARY Display SDA–190
SDA–33 Current State Information . SDA–191
SDA–34 Options for the SHOW WORKING_SET_LIST Command SDA–194

vi

Preface

Intended Audience
The OpenVMS Alpha System Dump Analyzer Utility Manual is intended
primarily for the system programmer who must investigate the causes of system
failures and debug kernel mode code, such as a device driver. An understanding
of data structures is necessary to accurately interpret the results of System Dump
Analyzer (SDA) commands.

This manual also includes such system management information as maintaining
the system resources necessary to capture and store system crash dumps. If you
need to determine the cause of a hung process or improve system performance,
refer to this manual for instructions on using SDA to analyze a running system.

Document Structure
The OpenVMS Alpha System Dump Analyzer Utility Manual includes the
following information:

• An introduction to the functions, features, and key concepts of the System
Dump Analyzer (SDA). This part also includes instructions for maintaining
the optimal environment to analyze system failures.

• Instructions about how to:

Invoke SDA.

Exit from SDA.

Record the output of an SDA session.

• A description of those qualifiers to the ANALYZE command that govern the
behavior of SDA.

• A description of the function, format, and parameters of each SDA command.
It also provides usage examples for each command.

Related Documents
For additional information, refer to the following documents:

• OpenVMS Alpha Version 7.1 Upgrade and Installation Manual

• OpenVMS Calling Standard

• OpenVMS System Manager’s Manual: Essentials

• OpenVMS System Manager’s Manual: Tuning, Monitoring, and Complex
Systems

• OpenVMS Programming Interfaces: Calling a System Routine

• Writing OpenVMS Alpha Device Drivers in C

vii

• OpenVMS AXP Internals and Data Structures

• Alpha Architecture Reference Manual

• MACRO–64 Assembler for OpenVMS AXP Systems Reference Manual

For additional information on OpenVMS products and services, access the Digital
OpenVMS World Wide Web site. Use the following URL:

http://www.openvms.digital.com

Reader’s Comments
Digital welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet openvmsdoc@zko.mts.dec.com

Fax 603 881-0120, Attention: OpenVMS Documentation, ZK03-4/U08

Mail OpenVMS Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Use the following table to order additional documentation or information.
If you need help deciding which documentation best meets your needs, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

DTN: 264−4446

approved distributor

Fax: 603−884−3960

800−267−6215

U.S. Software Supply Business

809−781−0505

Digital Equipment Corporation

Digital Equipment of Canada, Ltd.
Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

8 Cotton Road

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Nashua, NH 03063−1260

Digital Equipment Caribbean, Inc.

DECdirect

Puerto Rico

800−DIGITAL

3 Digital Plaza, 1st Street, Suite 200

800−344−4825

International

P.O. Box 11038
Metro Office Park

Location

Internal Orders

San Juan, Puerto Rico 00910−2138

603−884−4446

Write

Fax: 613−592−1946

Fax

Canada

Call

Fax: 809−749−8300

Local Digital subsidiary or

U.S.A.

ZK−7654A−GE

Fax: 800−234−2298

viii

Conventions

The name of the OpenVMS AXP operating system has been changed to OpenVMS
Alpha. Any references to OpenVMS AXP or AXP are synonymous with OpenVMS
Alpha or Alpha.

VMScluster systems are now referred to as OpenVMS Cluster systems. Unless
otherwise specified, references to OpenVMS Clusters or clusters in this document
are synonymous with VMSclusters.

The following conventions are also used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x or
GOLD x

A sequence such as PF1 x or GOLD x indicates that you must
first press and release the key labeled PF1 or GOLD and then
press and release another key or a pointing device button.

GOLD key sequences can also have a slash (/), dash (–), or
underscore (_) as a delimiter in EVE commands.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

. . . Horizontal ellipsis points in examples indicate one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the choices
in parentheses.

[] In command format descriptions, brackets indicate optional
elements. You can choose one, none, or more than one of the
options. (Brackets are not optional, however, in the syntax
of a directory name in an OpenVMS file specification or
in the syntax of a substring specification in an assignment
statement.)

[|] In command format descriptions, vertical bars separating
items inside brackets indicate that you choose one, none, or
more than one of the options.

{ } In command format descriptions, braces indicate a required
choice of options; you must choose one of the options listed.

ix

{ | } In command format descriptions, vertical bars separating items
inside braces indicate that you choose one item from among
those listed. If you choose no items from among those listed,
you in effect choose the default item, which is indicated by a
(d) after it. However, if there is no default item, then you must
choose one of the options listed.

text style This text style represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

This style is also used to show user input in Bookreader
versions of the manual.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where device-name contains up to five alphanumeric
characters).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace type Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

x

SDA Description
When a system failure occurs, the operating system copies the contents of memory
to a system dump file or the primary page file, recording the hardware context
of each processor in the system as well. The System Dump Analyzer (SDA) is a
utility that allows you to interpret the contents of this file, examine the status
of each processor at the time of the system failure, and investigate the probable
causes of the failure.

You can use SDA commands to perform the following operations:

• Direct (or echo) the output of an SDA session to a file or device (SET OUTPUT
or SET LOG).

• Display the condition of the operating system and the hardware context
of each processor in the system at the time of the system failure (SHOW
CRASH or CLUE CRASH).

• Select a specific processor in a multiprocessing system as the subject of
analysis (SET CPU).

• Select the default size of address data manipulated by the EXAMINE and
EVALUATE commands (SET FETCH).

• Enable or disable the sign extension of 32-bit addresses (SET SIGN_
EXTEND).

• Display the contents of a specific process stack (SHOW STACK or CLUE
STACK).

• Format a call frame from a stack location (SHOW CALL_FRAME).

• Read a set of global symbols into the SDA symbol table (READ).

• Define symbols to represent values or locations in memory and add them to
the SDA symbol table (DEFINE).

• Evaluate an expression in hexadecimal and decimal, interpreting its value as
a symbol, a condition value, a page table entry (PTE), or a processor status
(PS) quadword (EVALUATE).

• Examine the contents of memory locations, optionally interpreting them as
Alpha assembler instructions, a PTE, or a PS (EXAMINE).

• Display device status as reflected in system data structures (SHOW DEVICE).

• Display the contents of the stored machine check frame (SHOW MACHINE_
CHECK or CLUE MCHK) for selected Digital computers.

• Format system data structures (FORMAT).

• Validate the integrity of the links in a queue (VALIDATE QUEUE).

• Display a summary of all processes on the system (SHOW SUMMARY).

• Show the hardware or software context of a process (SHOW PROCESS or
CLUE PROCESS).

• Display the OpenVMS RMS data structures of a process (SHOW PROCESS
with the /RMS qualifier).

• Display memory management data structures (SHOW POOL,
SHOW PFN_DATA, SHOW PAGE_TABLE, or CLUE MEMORY).

SDA–1

SDA Description

• Display lock management data structures (SHOW RESOURCE or SHOW
LOCK).

• Display OpenVMS Cluster management data structures (SHOW CLUSTER,
SHOW CONNECTIONS, SHOW RSPID, or SHOW PORTS).

• Display multiprocessor synchronization information (SHOW SPINLOCKS).

• Display the layout of the executive images (SHOW EXECUTIVE).

• Capture and archive a summary of dump file information in a list file
(CLUE HISTORY).

• Copy the system dump file (COPY).

• Define keys to invoke SDA commands (DEFINE/KEY).

• Search memory for a given value (SEARCH).

Although SDA provides a great deal of information, it does not automatically
analyze all the control blocks and data contained in memory. For this reason,
in the event of system failure, it is extremely important that you save not only
the output provided by SDA commands, but also a copy of the system dump file
written at the time of the failure.

You can also invoke SDA to analyze a running system, using the DCL command
ANALYZE/SYSTEM. Most SDA commands generate useful output when entered
on a running system.

Caution:

Although analyzing a running system may be instructive, you should
undertake such an operation with caution. System context, process
context, and a processor’s hardware context can change during any given
display.

In a multiprocessing environment, it is very possible that, during analysis,
a process running SDA could be rescheduled to a different processor
frequently. Therefore, avoid examining the hardware context of processors
in a running system.

1 System Management and SDA
The system manager must ensure that the system writes a dump file whenever
the system fails. The manager must also see that the dump file is large enough
to contain all the information to be saved, and that the dump file is saved for
analysis. The following sections describe these tasks.

1.1 Writing System Dumps
The operating system attempts to write information into the system dump file
only if the system parameter DUMPBUG is set. (The DUMPBUG parameter is
set by default. To examine and change its value, consult the OpenVMS System
Manager’s Manual: Tuning, Monitoring, and Complex Systems.) If DUMPBUG is
set and the operating system fails, the system manager has the following choices
for writing system dumps:

• Have the system dump file written to either SYSDUMP.DMP (the system
dump file) or to PAGEFILE.SYS (the primary system page file).

SDA–2

SDA Description

• Set the DUMPSTYLE system parameter to 0 or 2 (for dumps containing all
physical memory) or to 1 or 3 (for dumps containing only selected virtual
addresses).

See Section 1.1.1 for more information about the DUMPSTYLE parameter values.

1.1.1 Dump File Style
There are two types of dump files—a physical memory dump (also known as a
full dump), and a dump of selected virtual addresses (also known as a selective
dump). Both full and selective dumps may be produced in either compressed or
uncompressed form. Compressed dumps save disk space and time taken writing
the dump at the expense of a slight increase in time to access the dump with
SDA. The SDA commands COPY/COMPRESS and COPY/DECOMPRESS can be
used to convert an existing dump.

DUMPSTYLE, which specifies the method of writing system dumps, is a 32-
bit mask. Table SDA–1 shows how the bits are defined. Each bit can be set
independently. The value of the SYSGEN parameter is the sum of the values
of the bits that have been set. Remaining or undefined values are reserved to
Digital.

Table SDA–1 The DUMPSTYLE Mask

Bit Value Description

0 0 0= Full dump (SYSGEN default). The entire contents of physical
memory will be written to the dump file.

1= Selective dump. The contents of memory will be written to the
dump file selectively to maximize the usefulness of the dump file while
conserving disk space.

1 2 0= Minimal console output.

1= Full console output (includes stack dump, register contents, and so
on.)

2 4 This bit is ignored on Alpha systems.

3 8 0= Do not compress.

1= Compress.

4-31 Reserved to Digital

In a physical memory dump, the DUMPSTYLE system parameter can be set
to 0,2,8, or 10. Each value provides a full dump; the value of 0 yields an
uncompressed dump with minimal console output; the value of 2 provides
an uncompressed dump with full console output; the value of 8 provides a
compressed dump with minimal console output; and the value of 10 provides
a compressed dump with full console output. A physical memory dump requires
that all physical memory be written to the dump file. This ensures the presence
of all the page table pages required for SDA to emulate translation of system
virtual addresses. These table pages include the level 1 page table of the current
process, the shared level 2 page table that maps the system page table (SPT), and
the level 3 page table pages that constitute the SPT.

In certain system configurations, it may be impossible to preserve the entire
contents of memory in a disk file. For instance, a large memory system or a
system with small disk capacity may not be able to supply enough disk space for
a full memory dump. If the system dump file cannot accommodate all of memory,
information essential to determining the cause of the system failure may be lost.

SDA–3

SDA Description

To preserve those portions of memory that contain information most useful in
determining the causes of system failures, a system manager sets the value
of the DUMPSTYLE system parameter to 1, 3, 9, or 11 to specify a dump of
selected virtual address spaces. Each value provides a selective dump; the
value of 1 yields an uncompressed dump with minimal console output; the value
of 3 provides an uncompressed dump with full console output; the value of 9
provides a compressed with minimal console output; and the value of 11 provides
a compressed with full console output. In a selective dump, related pages of
virtual address space are written to the dump file as a unit called a logical
memory block (LMB). For example, one LMB consists of the system and global
page tables; another is the address space of a particular process. Those LMBs
most likely to be useful in crash dump analysis are written first.

Table SDA–2 compares full and selective style dump files.

Table SDA–2 Comparison of Full and Selective Dump Files

Item Full Selective

Available
Information

Complete contents of physical
memory in use, stored in order
of increasing physical address.

System page table, global page table, system
space memory, and process and control regions
(plus global pages) for all saved processes.

Unavailable
Information

Contents of paged-out memory
at the time of the system failure.

Contents of paged-out memory at the time of the
system failure, process and control regions of
unsaved processes, L1 page tables, and memory
not mapped by a page table.

SDA Command
Limitations

None. The following commands are not useful
for unsaved processes: SHOW PROCESS
/CHANNELS, SHOW PROCESS/IMAGE, SHOW
PROCESS/RMS, SHOW STACK, and SHOW
SUMMARY/IMAGE.

1.1.2 Controlling the Size of Page Files and Dump Files
You can adjust the size of the system page file and dump file using AUTOGEN
(the recommended method) or by using SYSGEN.

AUTOGEN automatically calculates the appropriate sizes for page and dump
files. AUTOGEN invokes the System Generation utility (SYSGEN) to create
or change the files. However, you can control sizes calculated by AUTOGEN
by defining symbols in the MODPARAMS.DAT file. The file sizes specified in
MODPARAMS.DAT are copied into the PARAMS.DAT file during AUTOGEN’s
GETDATA phase. AUTOGEN then makes appropriate adjustments in its
calculations.

Although Digital recommends using AUTOGEN to create and modify page and
dump file sizes, you can use SYSGEN to directly create and change the sizes of
those files.

The sections that follow discuss how you can calculate the size of a dump file.

See the OpenVMS System Manager’s Manual for detailed information about using
AUTOGEN and SYSGEN to create and modify page and dump file sizes.

SDA–4

SDA Description

1.1.3 Writing to the System Dump File
OpenVMS Alpha writes the contents of the error-log buffers, processor registers,
and memory into the system dump file, overwriting its previous contents. If the
system dump file is too small, OpenVMS Alpha cannot copy all memory to the file
when a system failure occurs.

SYS$SYSTEM:SYSDUMP.DMP (SYS$SPECIFIC:[SYSEXE]SYSDUMP.DMP)
is furnished as an empty file in the OpenVMS Alpha software distribution kit.
To successfully store a crash dump, SYS$SYSTEM:SYSDUMP.DMP must be
enlarged to hold all of the page tables required for SDA to emulate system virtual
address translation.

To calculate the correct size for a physical memory dump to
SYS$SYSTEM:SYSDUMP.DMP, use the following formula:

size-in-blocks(SYS$SYSTEM:SYSDUMP.DMP)
= size-in-pages(physical-memory) * blocks-per-page
+ number-of-error-log-buffers * blocks-per-buffer
+ 2

Use the DCL command SHOW MEMORY to determine the total size of physical
memory on your system. There is a variable number of error log buffers in
any given system, depending on the setting of the ERRORLOGBUFFERS
system parameter. The size of each buffer depends on the setting of the
ERLBUFFERPAGES parameter. (See the OpenVMS System Manager’s Manual
for additional information about these parameters.)

1.1.4 Writing to the Dump File off the System Disk
OpenVMS Alpha allows you to write the system dump file to a device other than
the system disk. This is useful in large memory systems and in clusters with
common system disks where sufficient disk space, on one disk, is not always
available to support customer dumpfile requirements. To perform this activity,
the DUMPSTYLE system parameter must be correctly enabled to allow the
bugcheck code to write the system dump file to an alternative device.

The requirements for writing the system dump file off the system disk are the
following:

• The dump device directory structure must resemble the current system disk
structure. The [SYSn.SYSEXE]SYSDUMP.DMP file will reside there, with
the same boot time system root.

You can use AUTOGEN to create this file. In the MODPARAMS.DAT file, the
following symbol prompts AUTOGEN to create the file:

DUMPFILE_DEVICE = nnnddcuuuu

• The dump device cannot be part of a volume set. Digital also strongly
recommends that the dump device not be part of a shadow set.

• The DUMP_DEV environment variable must exist on your system. You
specify the dump device at the console prompt, using the following format:
>>>SET DUMP_DEV device-name[...]

On some CPU types, you can enter a list of devices. The list can include
various alternate paths to the system disk and the dump disk.

By specifying an alternate path DUMP_DEV, the disk can fail over to
the alternate path when the system is running. If the system crashes
subsequently, the bug-check code can use the alternate path by referring
to the contents of DUMP_DEV.

SDA–5

SDA Description

When you enter a list of devices, however, the system disk must come last.

For information on how to write the system dump file to an alternative device
to the system disk, see the OpenVMS System Manager’s Manual: Tuning,
Monitoring, and Complex Systems.

1.1.5 Writing to the System Page File
If SYS$SYSTEM:SYSDUMP.DMP does not exist, the operating system writes
the dump of physical memory into SYS$SYSTEM:PAGEFILE.SYS, the primary
system page file, overwriting the contents of that file.

If the SAVEDUMP system parameter is set, the dump file is retained in
PAGEFILE.SYS when the system is booted after a system failure. If the
SAVEDUMP parameter is not set (clear), which is the default, OpenVMS Alpha
uses the entire page file for paging and any dump written to the page file is
lost. (To examine or change the value of the SAVEDUMP parameter, consult
the OpenVMS System Manager’s Manual: Tuning, Monitoring, and Complex
Systems.)

To calculate the minimum size for a physical memory dump to
SYS$SYSTEM:PAGEFILE.SYS, use the following formula:

size-in-blocks(SYS$SYSTEM:PAGEFILE.SYS)
= size-in-pages(physical-memory) * blocks-per-page
+ number-of-error-log-buffers * blocks-per-buffer
+ 2
+ value of the system parameter RSRVPAGCNT

Note that this formula calculates the minimum size requirement for saving a
physical dump in the system’s page file. Digital recommends that the page file
be a bit larger than this minimum to avoid hanging the system. Also note that
you can only write the dump of physical memory into the primary page file
(SYS$SYSTEM:PAGEFILE.SYS). Secondary page files cannot be used to save
dump file information.

It is not recommended to use a selective dump (DUMPSTYLE=1) style with
PAGEFILE.SYS. If the PAGEFILE.SYS is used for a selective dump, and if the
PAGEFILE.SYS is not large enough to contain all the logical memory blocks, the
dump fills the entire page file and the system may hang on reboot. When selective
dumping is set up, all available space is used to write out the logical memory
blocks. If the page file is large enough to contain all of physical memory, there
is no reason to use selective dumping. A full memory dump (DUMPSTYLE=0)
should be used.

Writing crash dumps to SYS$SYSTEM:PAGEFILE.SYS presumes that you will
later free the space occupied by the dump for use by the pager. Otherwise, your
system may hang during the startup procedure. To free this space, you can do
one of the following:

• Include SDA commands that free dump space in the site-specific startup
command procedure (described in Section 1.3).

• Use the SDA COPY command to copy the dump from
SYS$SYSTEM:PAGEFILE.SYS to another file. Use the SDA COPY command
instead of the DCL COPY command because the SDA COPY command causes
the pages occupied by the dump to be freed from the system’s page file.

SDA–6

SDA Description

• If you do not need to copy the dump elsewhere, issue an ANALYZE
/CRASH_DUMP/RELEASE command. When you issue this command, SDA
immediately releases the pages to be used for system paging, effectively
deleting the dump. Note that this command does not allow you to analyze the
dump before deleting it.

1.2 Saving System Dumps
Every time the operating system writes information to the system dump file,
it writes over whatever was previously stored in the file. The system writes
information to the dump file whenever the system fails or is shut down. For this
reason, the system manager must save the contents of the file after a system
failure has occurred.

The system manager can use the SDA COPY command or the DCL COPY
command. Either command can be used in a site-specific startup procedure, but
the SDA COPY command is preferred because it marks the dump file as copied.
As mentioned earlier, this is particularly important if the dump was written
into the page file, SYS$SYSTEM:PAGEFILE.SYS, because it releases those
pages occupied by the dump to the pager. Another advantage of using the SDA
COPY command is that this command copies only the saved number of blocks
and not necessarily the whole allotted dump file. For instance, if the size of the
SYSDUMP.DMP file is 100,000 blocks and the bugcheck wrote only 60,000 blocks
to the dump file, then DCL COPY would create a file of 100,000 blocks. However,
SDA COPY would generate a file of only 60,000 blocks.

Because system dump files are set to NOBACKUP, the Backup utility (BACKUP)
does not copy them to tape unless you use the qualifier /IGNORE=NOBACKUP
when invoking BACKUP. When you use the SDA COPY command to copy the
system dump file to another file, OpenVMS Alpha does not set the new file to
NOBACKUP.

As shipped by Digital, the file SYS$SYSTEM:SYSDUMP.DMP is protected
against world access. Because a dump file can contain privileged information,
Digital recommends that the system manager not change this default protection.

1.3 Invoking SDA when Rebooting the System
When the system reboots after a system failure, SDA is automatically invoked by
default. SDA archives information from the dump in a history file. In addition,
a listing file with more detailed information about the system failure is created
in the directory pointed to by the logical name CLUE$COLLECT. (Note that
the default directory is SYS$ERRORLOG unless you redefine the logical name
CLUE$COLLECT in the procedure SYS$MANAGER:SYLOGICALS.COM.) The
file name is in the form CLUE$node_ddmmyy_hhmm.LIS where the timestamp
(hhmm) corresponds to the system failure time and not the time when the file
was created.

Directed by commands in a site-specific file, SDA can take additional steps to
record information about the system failure. They include the following:

• Copying the contents of the dump file to another file. This information is
otherwise lost at the next system shutdown or failure when the system saves
information only about that shutdown or failure.

• Supplementing the contents of the list file containing the output of specific
SDA commands.

SDA–7

SDA Description

If the logical name CLUE$SITE_PROC points to a valid and existing
command file, it will be executed as part of the CLUE HISTORY command
when you reboot. If used, this file should contain only valid SDA commands.

Generated by a set sequence of commands, the CLUE list file contains only
an overview of the failure and is unlikely to provide enough information to
determine the cause of the failure. Digital, therefore, recommends that you
always copy the dump file.

The following example shows SDA commands that can make up your site-specific
command file to produce a more complete SDA listing after each system failure,
and to save a copy of the dump file:

!
! SDA command file, to be executed as part of the system
! bootstrap from within CLUE. Commands in this file can
! be used to save the dump file after a system bugcheck, and
! to execute any additional SDA commands.
!

! Note that the logical name DMP$ must have been defined
! within SYS$MANAGER:SYLOGICALS.COM
!
READ/EXEC ! read in the executive images’ symbol tables
COPY DMP$:SAVEDUMP.DMP ! copy and save dump file
SHOW STACK ! display the stack
!

The SDA commands in this site-specific command file are executed first and then
the CLUE HISTORY command is executed by default. See the reference section
on CLUE HISTORY for details on the summary information that is generated
and stored in the CLUE list file by the CLUE HISTORY command.

To point to your site-specific file, add a line such as the following to the file
SYS$MANAGER:SYLOGICALS.COM:

$ DEFINE/SYSTEM CLUE$SITE_PROC SYS$MANAGER:SAVEDUMP.COM

In this example, the site-specific file is named SAVEDUMP.COM.

The CLUE list file can be printed immediately or saved for later examination.

SDA is invoked and executes the specified commands only when the system boots
immediately after a system failure. If the system is booting for any other reason
(such as a normal system shutdown and reboot), SDA exits.

If CLUE files occupy more space than the threshold allows (the default is 5000
blocks), the oldest files will be deleted until the threshold limit is reached. The
threshold limit can be customized with the CLUE$MAX_BLOCK logical name.

To prevent the running of CLUE at system startup, define the logical
CLUE$INHIBIT in the SYLOGICALS.COM file as /SYS TRUE.

2 Analyzing a System Dump
SDA performs certain tasks before bringing a dump into memory, presenting its
initial displays, and accepting command input. These tasks include the following:

• Verifying that the process invoking it is suitably privileged to read the dump
file

• Using RMS to read in pages from the dump file

SDA–8

SDA Description

• Building the SDA symbol table from the files SDA$READ_DIR:SYS$BASE_
IMAGE.EXE and SDA$READ_DIR:REQSYSDEF.STB

• Executing the commands in the SDA initialization file

For detailed information on investigating system failures, see Section 6.

2.1 Requirements
To analyze a dump file, your process must have read access both to the file that
contains the dump and to copies of SDA$READ_DIR:SYS$BASE_IMAGE.EXE
and SDA$READ_DIR:REQSYSDEF.STB (the required subset of the symbols in
the file SYSDEF.STB). SDA reads these tables by default.

2.2 Invoking SDA
If your process can access the files listed in Section 2.1, you can issue the DCL
command ANALYZE/CRASH_DUMP to invoke SDA. If you do not specify the
name of a dump file in the command, SDA prompts you:

$ ANALYZE/CRASH_DUMP
_Dump File:

The default file specification is as follows:

SYS$DISK:[default-dir]SYSDUMP.DMP

SYS$DISK and [default-dir] represent the disk and directory specified in your
last SET DEFAULT command.

If you are rebooting after a system failure, SDA is automatically invoked. See
Section 1.3.

2.3 Mapping the Contents of the Dump File
SDA first attempts to map the contents of physical memory as stored in the
specified dump file. To do this, it must first locate the system page table (SPT)
among its contents. The SPT contains one entry for each page of system virtual
address space.

• If SDA cannot find the SPT in the dump file, it displays the following
message:

%SDA-E-SPTNOTFND, system page table not found in dump file

If that error message is displayed, you cannot analyze the crash dump, but
must take steps to ensure that any subsequent dump can be analyzed. To do
this, you must adjust the DUMPSTYLE system parameter as discussed in
Section 1.1.1 or increase the size of the dump file as indicated in Section 1.1.2.

• If SDA finds the SPT in an incomplete dump, the following message is
displayed:

%SDA-W-SHORTDUMP, the dump only contains m out of n blocks of physical memory

Under certain conditions, some memory locations might not be saved in the
system dump file. Additionally, if a bugcheck occurs during system initialization,
the contents of the register display may be unreliable. The symptom of such a
bugcheck is a SHOW SUMMARY display that shows no processes or only the
swapper process.

SDA–9

SDA Description

If you use an SDA command to access a virtual address that has no corresponding
physical address, SDA generates the following error message:

%SDA-E-NOTINPHYS, ’location’: virtual data not in physical memory

When analyzing a selective dump file, if you use an SDA command to access a
virtual address that has a corresponding physical address not saved in the dump
file, SDA generates the following error message:

%SDA-E-MEMNOTSVD, memory not saved in the dump file

2.4 Building the SDA Symbol Table
After locating and reading the system dump file, SDA attempts to read the system
symbol table file into the SDA symbol table. If SDA cannot find SDA$READ_
DIR:SYS$BASE_IMAGE.EXE—or is given a file that is not a system symbol
table in the /SYMBOL qualifier to the ANALYZE command—it displays a fatal
error and exits. SDA also reads into its symbol table a subset of SDA$READ_
DIR:SYSDEF.STB, called SDA$READ_DIR:REQSYSDEF.STB. This subset
provides SDA with the information needed to access some of the data structures
in the dump.

When SDA finishes building its symbol table, SDA displays a message identifying
itself and the immediate cause of the system failure. In the following example,
the cause of the system failure was the deallocation of a bad page file address.

OpenVMS Alpha System Dump Analyzer

Dump taken on 27-MAR-1993 11:22:33.92
BADPAGFILD, Bad page file address deallocated

2.5 Executing the SDA Initialization File (SDA$INIT)
After displaying the system failure summary, SDA executes the commands in the
SDA initialization file, if you have established one. SDA refers to its initialization
file by using the logical name SDA$INIT. If SDA cannot find the file defined as
SDA$INIT, it searches for the file SYS$LOGIN:SDA.INIT.

This initialization file can contain SDA commands that read symbols into SDA’s
symbol table, define keys, establish a log of SDA commands and output, or
perform other tasks. For instance, you may want to use an SDA initialization file
to augment SDA’s symbol table with definitions helpful in locating system code. If
you issue the following command, SDA includes those symbols that define many
of the system’s data structures, including those in the I/O database:

READ SDA$READ_DIR:filename

You may also find it helpful to define those symbols that identify the modules in
the images that make up the executive by issuing the following command:

READ/EXECUTIVE SDA$READ_DIR:

After SDA has executed the commands in the initialization file, it displays its
prompt as follows:

SDA>

This prompt indicates that you can use SDA interactively and enter SDA
commands.

An SDA initialization file may invoke a command procedure with the @ command.
However, such command procedures cannot invoke other command procedures.

SDA–10

SDA Description

3 Analyzing a Running System
Occasionally, OpenVMS Alpha encounters an internal problem that hinders
system performance without causing a system failure. By allowing you to
examine the running system, SDA enables you to search for the solution without
disturbing the operating system. For example, you may be able to use SDA to
examine the stack and memory of a process that is stalled in a scheduler state,
such as a miscellaneous wait (MWAIT) or a suspended (SUSP) state.

If your process has change-mode-to-kernel (CMKRNL) privilege, you can invoke
SDA to examine the system. Use the following DCL command:

$ ANALYZE/SYSTEM

SDA attempts to load SDA$READ_DIR:SYS$BASE_IMAGE.EXE and
SDA$READ_DIR:REQSYSDEF.STB. It then executes the contents of any
existing SDA initialization file, as it does when invoked to analyze a crash
dump (see Sections 2.4 and 2.5, respectively). SDA subsequently displays its
identification message and prompt, as follows:

OpenVMS Alpha System Analyzer

SDA>

This prompt indicates that you can use SDA interactively and enter SDA
commands. When analyzing a running system, SDA sets its process context to
that of the process running SDA.

If you are analyzing a running system, consider the following:

• When used in this mode, SDA does not map the entire system, but instead
retrieves only the information it needs to process each individual command.
To update any given display, you must reissue the previous command.

Caution:

When using SDA to analyze a running system, carefully interpret its
displays. Because system states change frequently, it is possible that the
information SDA displays may be inconsistent with the current state of
the system.

• Certain SDA commands are illegal in this mode, such as SHOW CPU and
SET CPU. Use of these commands results in the following error message:

%SDA-E-CMDNOTVLD, command not valid on the running system

• The SHOW CRASH command, although valid, does not display the contents
of any of the processor’s set of hardware registers. Also, the Time of System
Crash information refers to the time at which the ANALYZE/SYSTEM
command was given.

4 SDA Context
When you invoke SDA to analyze either a crash dump or a running system, SDA
establishes a default context for itself from which it interprets certain commands.

SDA–11

SDA Description

When you are analyzing a uniprocessor system, SDA’s context is solely process
context, which means SDA can interpret its process-specific commands in the
context of either the process current on the uniprocessor or some other process
in another scheduling state. When SDA is initially invoked to analyze a crash
dump, SDA’s process context defaults to that of the process that was current
at the time of the system failure. When you invoke SDA to analyze a running
system, SDA’s process context defaults to that of the current process, that is, the
one executing SDA. To change SDA’s process context, issue any of the following
commands:

SET PROCESS process-name
SET PROCESS/ADDRESS=pcb-address
SET PROCESS/INDEX=nn
SET PROCESS/SYSTEM
SHOW PROCESS process-name
SHOW PROCESS/ADDRESS=pcb-address
SHOW PROCESS/INDEX=nn
SHOW PROCESS/SYSTEM

When you invoke SDA to analyze a crash dump from a multiprocessing system
with more than one active CPU, SDA maintains a second dimension of context—
its CPU context—that allows it to display certain processor-specific information.
This information includes the reason for the bugcheck exception, the currently
executing process, the current IPL, and the spin locks owned by the processor.
When you invoke SDA to analyze a multiprocessor’s crash dump, its CPU context
defaults to that of the processor that induced the system failure. When you are
analyzing a running system, CPU context is not accessible to SDA. Therefore, the
SET CPU and SHOW CPU commands are not permitted.

You can change the SDA CPU context by using any of the following commands:

SET CPU cpu-id
SHOW CPU cpu-id
SHOW CRASH
SHOW MACHINE_CHECK cpu-id

Changing CPU context involves an implicit change in process context in either of
the following ways:

• If there is a current process on the CPU made current, SDA process context
is changed to that of that CPU’s current process.

• If there is no current process on the CPU made current, SDA process context
is undefined and no process-specific information is available until SDA
process context is set to that of a specific process.

Changing process context can require a switch of CPU context as well. For
instance, if you issue a SET PROCESS command for a process that was current
at the time of a system failure on another CPU, SDA will automatically change
its CPU context to that of the CPU on which that process was current. The
following commands can have this effect if the process-name, pcb-address, or
index number (nn) refers to a current process:

SET PROCESS process-name
SET PROCESS/ADDRESS=pcb-address
SET PROCESS/INDEX=nn
SET PROCESS/SYSTEM
SHOW PROCESS process-name
SHOW PROCESS/ADDRESS=pcb-address

SDA–12

SDA Description

SHOW PROCESS/INDEX=nn
SHOW PROCESS/SYSTEM

5 SDA Command Format
The following sections describe the format of SDA commands and the expressions
you can use with SDA commands.

5.1 General Command Format
SDA uses a command format similar to that used by the DCL interpreter. Issue
commands in the following format:

command-name[/qualifier...] [parameter][/qualifier...] [!comment]

The command-name is an SDA command. Each command tells the utility to
perform a function. Commands can consist of one or more words, and can be
abbreviated to the number of characters that make the command unique. For
example, SH stands for SHOW, and SE stands for SET.

The parameter is the target of the command. For example, SHOW PROCESS
RUSKIN tells SDA to display the context of the process RUSKIN. The command
EXAMINE 80104CD0;40 displays the contents of 40 bytes of memory, beginning
with location 80104CD0.

When you supply part of a file specification as a parameter, SDA assumes
default values for the omitted portions of the specification. The default device is
SYS$DISK, the device specified in your most recent SET DEFAULT command.
The default directory is the directory specified in the most recent SET DEFAULT
command. See the OpenVMS DCL Dictionary for a description of the DCL
command SET DEFAULT.

The qualifier modifies the action of an SDA command. A qualifier is always
preceded by a slash (/). Several qualifiers can follow a single parameter or
command name, but each must be preceded by a slash. Qualifiers can be
abbreviated to the shortest string of characters that uniquely identifies the
qualifier.

The comment consists of text that describes the command; this comment is
not actually part of the command. Comments are useful for documenting SDA
command procedures. When executing a command, SDA ignores the exclamation
point and all characters that follow it on the same line.

5.2 Expressions
You can use expressions as parameters for some SDA commands, such as
SEARCH and EXAMINE. To create expressions, use any of the following
elements:

• Numerals

• Radix operators

• Arithmetic and logical operators

• Precedence operators

• Symbols

Numerals are one possible component of an expression. The following sections
describe the use of the other components.

SDA–13

SDA Description

5.2.1 Radix Operators
Radix operators determine which numeric base SDA uses to evaluate
expressions. You can use one of the three radix operators to specify the radix
of the numeric expression that follows the operator:

• ^X (hexadecimal)

• ^O (octal)

• ^D (decimal)

The default radix is hexadecimal. SDA displays hexadecimal numbers with
leading zeros and decimal numbers with leading spaces.

5.2.2 Arithmetic and Logical Operators
There are two types of arithmetic and logical operators, both of which are listed
in Table SDA–3.

• Unary operators affect the value of the expression that follows them.

• Binary operators combine the operands that precede and follow them.

In evaluating expressions containing binary operators, SDA performs logical
AND, OR, and XOR operations, and multiplication, division, and arithmetic
shifting before addition and subtraction. Note that the SDA arithmetic operators
perform integer arithmetic on 64-bit operands.

Table SDA–3 SDA Operators

Operator Action

Unary Operators

Performs a logical NOT of the expression.

+ Makes the value of the expression positive.

– Makes the value of the expression negative.

@ Evaluates the following expression as an address, then uses the contents of that
address as value.

^Q When used with the unary operator @, it specifies the size of field to be used as
an address is a quadword 1.

^L When used with the unary operator @, it specifies the size of field to be used as
an address is a longword2.

^W When used with the unary operator @, it specifies the size of field to be used as
an address is a word3.

^B When used with the unary operator @, it specifies the size of field to be used as
an address is a byte4.

1The command SET FETCH QUADWORD provides the same effect on all subsequent uses of unary
operator @ as if ^Q were added each time. That is, SET FETCH is making it the default. For an
example of the use of ^Q, see the SET FETCH command.
2The command SET FETCH LONGWORD provides the same effect on all subsequent uses of unary
operator @ as if ^L were added each time. That is, SET FETCH is making it the default. For an
example of the use of ^L, see the SET FETCH command.
3The command SET FETCH WORD provides the same effect on all subsequent uses of unary operator
@ as if ^W were added each time. That is, SET FETCH is making it the default. For an example of
the use of ^W, see the SET FETCH command.
4The command SET FETCH BYTE provides the same effect on all subsequent uses of unary operator
@ as if ^B were added each time. That is, SET FETCH is making it the default. For an example of
the use of ^B, see the SET FETCH command.

(continued on next page)

SDA–14

SDA Description

Table SDA–3 (Cont.) SDA Operators

Operator Action

Unary Operators

^P When used with the unary operator @, it specifies a physical address5.

^V When used with the unary operator @, it specifies a virtual address6.

G Adds FFFFFFFF 8000000016 to the value of the expression7.

H Adds 7FFE000016 to the value of the expression8.

I Fills the leading digits of the following hexadecimal number with hex value of F.
For example:

SDA> eval i80000000
Hex = FFFFFFFF.80000000 Decimal = -2147483648 G

SYS$PUBLIC_VECTORS_NPRO

Binary Operators

+ Addition

– Subtraction

* Multiplication

& Logical AND

| Logical OR

\ Logical XOR

/ Division9

@ Arithmetic shifting

"." Catenates two 32-bit values into a 64-bit value. For example:

SDA> eval fe.50000
Hex = 000000FE00050000 Decimal = 1090922020864

5The command SET FETCH PHYSICAL provides the same effect on all subsequent uses of unary
operator @ as if ^P were added each time. That is, SET FETCH is making it the default. For an
example of the use of ^P, see the SET FETCH command.
6The command SET FETCH VIRTUAL provides the same effect on all subsequent uses of unary
operator @ as if ^V were added each time. That is, SET FETCH is making it the default. For an
example of the use of ^V, see the SET FETCH command.
7The unary operator G corresponds to the first virtual address in system space. For example, the
expression GD40 can be used to represent the address FFFFFFFF 80000D4016.
8The unary operator H corresponds to a convenient base address in P1 space (7FFE000016). You can
therefore refer to an address such as 7FFE2A6416 as H2A64.
9In division, SDA truncates the quotient to an integer, if necessary, and does not retain a remainder.

5.2.3 Precedence Operators
SDA uses parentheses as precedence operators. Expressions enclosed in
parentheses are evaluated first. SDA evaluates nested parenthetical expressions
from the innermost to the outermost pairs of parentheses.

SDA–15

SDA Description

5.2.4 Symbols
A symbol can represent a few different types of values. It can represent a
constant, a data address, a procedure descriptor address, or a routine address.
Constants are usually offsets of a particular field in a data structure; however,
they can also represent constant values such as the BUG$_xxx symbols.

All address symbols identify memory locations. SDA generally does not
distinguish among different types of address symbols. However, for a symbol
identified as the name of a procedure descriptor, SDA takes an additional step
of creating an associated symbol to name the code entry point address of the
procedure. It forms the code entry point symbol name by appending _C to the
name of the procedure descriptor.

Also, SDA substitutes the code entry point symbol name for the procedure
descriptor symbol when you enter the following command:

SDA> EXAMINE/INSTRUCTION procedure descriptor

For example, enter the following command:

SDA> EXAMINE/INSTRUCTION SCH$QAST

SDA displays the following information:

SCH$QAST_C: SUBQ SP,#X40,SP

Now enter the EXAMINE command but do not specify the /INSTRUCTION
qualifier, as follows:

SDA> EXAMINE SCH$QAST

SDA displays the following information:

SCH$QAST: 0000002C.00003009 ".0..,..."

This display shows the contents of the first two longwords of the procedure
descriptor.

Note that there are no routine address symbols on Alpha systems, except for
those in MACRO-64 assembly language modules. Therefore, SDA creates a
routine address symbol for every procedure descriptor it has in its symbol table.
The new symbol name is the same as for the procedure descriptor except that it
has an _C appended to the end of the name.

Sources for SDA Symbols
SDA can get its information from the following places:

• Images (.EXE files)

• Image symbol table files (.STB files)

• Object files

SDA also defines symbols to access registers and to access common data
structures.

The only images with symbols are shareable images and executive images. These
images contain only universal symbols, such as constants and addresses.

The image symbol table files are produced by the linker with the /SYMBOLS
qualifier. These files normally only contain universal symbols, as do the
executable images. However, if the SYMBOL_TABLE=GLOBALS linker option is
specified, the .STB file also contains all global symbols defined in the image. See
the OpenVMS Linker Utility Manual for more information.

SDA–16

SDA Description

Object files can contain global constant values. An object file used with SDA
typically contains symbol definitions for data structure fields. Such an object file
can be generated by compiling a MACRO-32 source module that invokes specific
macros. The macros, which are typically defined in SYS$LIBRARY:LIB.MLB or
STARLET.MLB, define symbols that correspond to data structure field offsets.
The macro $UCBDEF, for example, defines offsets for fields within a unit control
block (UCB). OpenVMS Alpha provides a number of such object modules in
SDA$READ_DIR, as listed in Table SDA–4. For compatibility with OpenVMS
VAX, the modules’ file types have been renamed to .STB.

Table SDA–4 Modules Containing Global Symbols Used by SDA

File Contents

DCLDEF.STB Symbols for the DCL interpreter

DECDTMDEF.STB Symbols for transaction processing

IMGDEF.STB Symbols for the image activator

IODEF.STB I/O database structure symbols

NETDEF.STB Symbols for DECnet data structures

REQSYSDEF.STB Required symbols for SDA

RMSDEF.STB Symbols that define RMS internal and user data structures and
RMS$_xxx completion codes

SCSDEF.STB Symbols that define data structures for system communications
services

SYSDEF.STB Symbols that define system data structures, including the I/O
database

Table SDA–5 lists symbols that SDA defines automatically on initialization.

Table SDA–5 SDA Symbols Defined on Initialization

ASN Address space number

AST Both the asynchronous system trap status and enable registers:
AST<3:0> = AST enable; AST<7:4> = AST status

ESP Executive stack pointer

FEN Floating-point enable

FP Frame pointer (R29)

FP0-FP30 Floating-point registers 0-30

FPCR Floating-point control register

G FFFFFFFF.8000000016, the base address of system space

H 00000000.7FFE000016, a base address in P1 space

I FFFFFFFF.FFFFFFFF16 fills the leading digits of a hexadecimal
number with the value of F

KSP Kernel stack pointer

PC Program counter

PS Processor status

PTBR Page table base register

(continued on next page)

SDA–17

SDA Description

Table SDA–5 (Cont.) SDA Symbols Defined on Initialization

R0 through R29 Integer registers

SP Current stack pointer of a process

SSP Supervisor stack pointer

USP User stack pointer

After a SET CPU command is issued (for analyzing a crash dump only), the
symbols defined in Table SDA–6 are set for that CPU.

Table SDA–6 SDA Symbols Defined by SET CPU Command

IPL Interrupt priority level register

PCBB Process context block base register

PRBR Processor base register (CPU database address)

SCBB System control block base register

SISR Software interrupt status register

After a SET PROCESS command is issued, the symbols listed in Table SDA–7
are defined for that CPU.

Table SDA–7 SDA Symbols Defined by SET PROCESS Command

ARB Address of access rights block

JIB Address of job information block

KTB Address of the kernel thread block

ORB Address of object rights block

PCB Address of process control block

PHD Address of process header

Other SDA commands, such as SHOW DEVICE and SHOW CLUSTER, predefine
additional symbols.

SDA Symbol Initialization
On initialization, SDA reads the universal symbols defined by SYS$BASE_
IMAGE.EXE. For every procedure descriptor address symbol found, a routine
address symbol is created (with _C appended to the symbol name).

SDA then reads the object file REQSYSDEF.STB. This file contains data structure
definitions that are required for SDA to run correctly. It uses these symbols to
access some of the data structures in the crash dump file or on the running
system.

Finally, SDA initializes the process registers defined in Table SDA–7 and executes
a SET CPU command, defining the symbols as well.

SDA–18

SDA Description

Use of SDA Symbols
There are two major uses of the address type symbols. First, the EXAMINE
command employs them to find the value of a known symbol. For example,
EXAMINE CTL$GL_PCB finds the PCB for the current process. Then, certain
SDA commands (such as EXAMINE, SHOW STACK, and FORMAT) use them to
symbolize addresses when generating output.

When the code for one of these commands needs a symbol for an address, it calls
the SDA symbolize routine. The symbolize routine tries to find the symbol in
the symbol table whose address is closest to, but not greater than the requested
address. This means, for any given address, the routine may return a symbol of
the form symbol_name+offset. If, however, the offset is greater than 0FFF16, it
fails to find a symbol for the address.

As a last resort, the symbolize routine checks to see if this address falls within a
known memory range. Currently, the only known memory ranges are those used
by the OpenVMS Alpha executive images. SDA searches through the executive
loaded image list (LDRIMG data structure) to see if the address falls within any
of the image sections. If SDA does find a match, it returns one of the following
types of symbols:

executive_image_name+offset
executive_image_name_image_section+offset

The first form is for nonsliced images. The offset is the same as the image
offset as defined in the map file.

The second form is for a sliced executive image. The image sections are not in
adjacent locations in memory, so the image section name is needed to find where
this address is within the map file. You can also use the MAP command on the
address to get the image offset as defined in the map file.

The constants in the SDA symbol table are usually used to display a data
structure with the FORMAT command. For example, the PHD offsets are
defined in SYSDEF.STB; you can display all the fields of the PHD by entering the
following commands:

SDA> READ SDA$READ_DIR:SYSDEF.STB

SDA> FORMAT/TYPE=PHD phd_address

Symbols and Address Resolution
In OpenVMS Alpha, executive and user images are loaded into dynamically
assigned address space. To help you associate a particular virtual address with
the image whose code has been loaded at that address, SDA provides several
features:

• The SHOW EXECUTIVE command

• The symbolization of addresses, described in the previous section

• The READ command

• The SHOW PROCESS command with the /IMAGES qualifier

• The MAP command

The OpenVMS Alpha executive consists of two base images, SYS$BASE_
IMAGE.EXE and SYS$PUBLIC_VECTORS.EXE, and a number of other
separately loadable images. Some of these images are loaded on all systems,
while others support features unique to particular system configurations.
Executive images are mapped into system space during system initialization.

SDA–19

SDA Description

By default, a typical executive image is not mapped at contiguous virtual
addresses. Instead, its nonpageable image sections are loaded into a reserved
set of pages with other executive images’ nonpageable sections. The pageable
sections of a typical executive image are mapped contiguously into a different
part of system space. An image mapped in this manner is said to be sliced. A
particular system may have system parameters defined that disable executive
image slicing altogether.

Each executive image is described by a data structure called a loadable image
data block (LDRIMG). The LDRIMG specifies whether the image has been
sliced. If the image is sliced, the LDRIMG indicates the beginning of each image
section and the size of each section. All the LDRIMGs are linked together in a
list that SDA scans to determine what images have been loaded and into what
addresses they have been mapped. The SHOW EXECUTIVE command displays a
list of all images that are included in the OpenVMS Alpha executive.

Each executive image is a shareable image whose universal symbols are defined
in the SYS$BASE_IMAGE.EXE symbol vector. On initialization, SDA reads this
symbol vector and adds its universal symbols to the SDA symbol table.

Executive image .STB files define additional symbols within an executive image
that are not defined as universal symbols and thus are not in the SYS$BASE_
IMAGE.EXE symbol vector (see Sources for SDA Symbols in this section). You
can enter a READ/EXECUTIVE command to read symbols defined in all executive
image .STB files into the SDA symbol table, or a READ/IMAGE=filespec command
to read the .STB for a specified image only.

To obtain a display of all images mapped within a process, execute a SHOW
PROCESS/IMAGE command. See the description of the SHOW PROCESS
command for additional information about displaying the hardware and software
context of a process.

You can also identify the image name and offset that correspond to a specified
address with the MAP command. With the information obtained from the MAP
command, you can then examine the image map to locate the source module and
program section offset corresponding to an address.

6 Investigating System Failures
This section discusses how the operating system handles internal errors, and
suggests procedures that can aid you in determining the causes of these errors. It
illustrates, through detailed analysis of a sample system failure, how SDA helps
you find the causes of operating system problems.

For a complete description of the commands discussed in the sections that
follow, refer to the last part of this document, where all the SDA commands are
discussed in alphabetical order.

6.1 General Procedure for Analyzing System Failures
When the operating system detects an internal error so severe that normal
operation cannot continue, it signals a condition known as a fatal bugcheck and
shuts itself down. A specific bugcheck code describes each fatal bugcheck.

To resolve the problem, you must find the reason for the bugcheck. Many failures
are caused by errors in user-written device drivers or other privileged code not
supplied by Digital. To identify and correct these errors, you need a listing of the
code in question.

SDA–20

SDA Description

Occasionally, a system failure is the result of a hardware failure or an error in
code supplied by Digital. A hardware failure requires the attention of Digital
Services. To diagnose an error in code supplied by Digital, you need listings of
that code, which are available from Digital.

Start the search for the error by analyzing the CLUE list file that was created by
default when the system failed. This file contains an overview of the system
failure, which can assist you in finding the line of code that signaled the
bugcheck. CLUE CRASH displays the content of the program counter (PC)
in the list file. The content of the PC is the address of the next instruction after
the instruction that signaled the bugcheck.

However, some bugchecks are caused by unexpected exceptions. In such cases,
the address of the instruction that caused the exception is more informative than
the address of the instruction that signaled the bugcheck. The address of the
instruction that caused the exception is located on the stack. You can obtain this
address by using the SHOW STACK command to display the contents of the stack
or by using the CLUE CRASH command to display the system state at time of
exception. See Section 6.2 for information on how to proceed for several types of
bugchecks.

Once you have found the address of the instruction that caused the bugcheck
or exception, find the module in which the failing instruction resides. Use the
MAP command to determine whether the instruction is part of a device driver or
another executive image. Alternatively, the SHOW EXECUTIVE command shows
the location and size of each of the images that make up the OpenVMS Alpha
executive.

If the instruction that caused the bugcheck is not part of a driver or executive
image, examine the linker’s map of the module or modules you are debugging to
determine whether the instruction that caused the bugcheck is in your program.

To determine the general cause of the system failure, examine the code that
signaled the bugcheck or the instruction that caused the exception.

6.2 Fatal Bugcheck Conditions
There are many possible conditions that can cause OpenVMS Alpha to issue
a bugcheck. Normally, these occasions are rare. When they do occur, they are
often fatal exceptions or illegal page faults occurring within privileged code. This
section describes the symptoms of several common bugchecks. A discussion of
other exceptions and condition handling in general appears in the OpenVMS
Programming Concepts Manual.

6.2.1 Fatal Exceptions
An exception is fatal when it occurs while either of the following conditions exists:

• The process is executing above IPL 2 (IPL$_ASTDEL).

• The process is executing in a privileged (kernel or executive) processor access
mode and has not declared a condition handler to deal with the exception.

When the system fails, the operating system reports the approximate cause of the
system failure on the console terminal. SDA displays a similar message when you
issue a SHOW CRASH command. For instance, for a fatal exception, SDA can
display one of these messages:

SDA–21

SDA Description

FATALEXCPT, Fatal executive or kernel mode exception

INVEXCEPTN, Exception while above ASTDEL

SSRVEXCEPT, Unexpected system service exception

UNXSIGNAL, Unexpected signal name in ACP

When a FATALEXCPT, INVEXCEPTN, SSRVEXCEPT, or UNXSIGNAL bugcheck
occurs, two argument lists, known as the mechanism and signal arrays, are
placed on the stack.

Figure SDA–1 illustrates the mechanism array, which is made up entirely of
quadwords. The first quadword of this array indicates the number of quadwords
in this array; this value is always 2C16. These quadwords are used by the
procedures that search for a condition handler and report exceptions.

SDA–22

SDA Description

Figure SDA–1 Mechanism Array

mechanism_args quadword aligned

MCH_ARGS

MCH_FLAGS

MCH_FRAME

MCH_DEPTH

MCH_RESVD1

MCH_DADDR

MCH_ESF_ADDR

MCH_SIG_ADDR

MCH_SAVR0_HIGH

MCH_SAVR1_HIGH

:0

:4

:8

:16

:20

:24

:32

:40

:48

:56

:64

MCH_SAVR0_LOW

MCH_SAVR0

MCH_SAVR1

MCH_SAVR1_LOW

ZK−4645A−GE

Integer registers 17−27

Floating registers 11−29

:160

:168

:176

:184

:344

CHF$S_CHFDEF2 = 360

MCH_SAVR16

MCH_SAVR28

MCH_SAVF0

MCH_SAVF1

MCH_SAVF30

MCH_SAVF10

:352
MCH_SIG64_ADDR

SDA–23

SDA Description

Symbolic offsets into the mechanism array are defined as follows. The SDA
SHOW STACK command identifies the elements of the mechanism array on the
stack using these symbols.

Offset Meaning

CHF$IS_MCH_ARGS Number of quadwords that follow. In a mechanism
array, this value is always 2B16.

CHF$IS_MCH_FLAGS Flag bits for related argument mechanism
information.

CHF$PH_MCH_FRAME Address of the FP (frame pointer) of the
establisher’s call frame.

CHF$IS_MCH_DEPTH Depth of the OpenVMS Alpha search for a
condition handler.

CHF$PH_MCH_DADDR Address of the handler data quadword, if the
exception handler data field is present.

CHF$PH_MCH_ESF_ADDR Address of the exception stack frame (see
Figure SDA–4).

CHF$PH_MCH_SIG_ADDR Address of the signal array (see Figure SDA–2).

CHF$IH_MCH_SAVRnn Contents of the saved integer registers at the time
of the exception. The following registers are saved:
R0, R1, and R16 to R28 inclusive.

CHF$FH_MCH_SAVFnn If the process was using floating point, contents of
the saved floating-point registers at the time of the
exception. The following registers are saved: F0,
F1, and F10 to F30 inclusive.

CHF$PH_MCH_SIG64_ADDR Address of the 64-bit signal array (see
Figure SDA–3).

The signal array appears somewhat farther down the stack. This array
comprises all longwords so that the structure is VAX compatible. A signal
array describes the exception that occurred. It contains an argument count, the
exception code, zero or more exception parameters, the PC, and the PS. Therefore,
the size of a signal array can vary from exception to exception. Although there
are several possible exception conditions, access violations are most common.
Figure SDA–2 shows the signal array for an access violation.

SDA–24

SDA Description

Figure SDA–2 Signal Array

31 0

Vector count (n)

Condition value

Additional arguments (or none)

PC

PS

:CHF$IS_SIG_ARGS

:CHF$L_SIG_NAME

ZK−4643A−GE

n

For access violations, the signal array is set up as follows:

Value Meaning

Vector list length Number of longwords that follow. For access violations, this
value is always 5.

Condition value Exception code. The value 0C16 represents an access violation.
You can identify the exception code by using the SDA command
EVALUATE/CONDITION_VALUE or SHOW CRASH.

Additional arguments These can include a reason mask and a virtual address.

In the longword mask if bit 0 of the longword is set, the failing
instruction (at the PC saved below) caused a length violation.
If bit 1 is set, it referred to a location whose page table entry is
in a ‘‘no access’’ page. Bit 2 indicates the type of access used by
the failing instruction: it is set for write and modify operations
and clear for read operations.

The virtual address represents the low-order 32 bits of the
virtual address that the failing instruction tried to reference.

PC PC whose execution resulted in the exception.

PS PS at the time of the exception.

SDA–25

SDA Description

The 64-bit signal array also appears further down the stack. This array
comprises all quadwords and is not VAX compatible. It contains the same data
as the signal array, and the Figure SDA–3 shows the 64-bit signal array for an
access violation. The SDA SHOW STACK command uses the CHF64$ symbols
listed in the figure to identify the 64-bit signal array on the stack.

Figure SDA–3 64-Bit Signal Array

ZK−8960A−GE

Vector count (n) :CHF64L_SIG_ARGSSS_SIGNAL_64 (2604) 16

Condition value

Additional arguments (or none)

PC

PS

:CHF64$Q_SIG_NAME

063

n

For access violations, the 64-bit signal array is set up as follows:

Value Meaning

Vector list length Number of quadwords that follow. For access violations, this
value is always 5.

Condition value Exception code. The value 0C16 represents an access violation.
You can identify the exception code by using the SDA command
EVALUATE/CONDITION_VALUE or SHOW CRASH.

Additional arguments These can include a reason mask and a virtual address.

In the quadword mask if bit 0 of the quadword is set, the
failing instruction (at the PC saved below) caused a length
violation. If bit 1 is set, it referred to a location whose page
table entry is in a ‘‘no access’’ page. Bit 2 indicates the type
of access used by the failing instruction: it is set for write and
modify operations and clear for read operations.

PC PC whose execution resulted in the exception.

PS PS at the time of the exception.

SDA–26

SDA Description

Figure SDA–4 illustrates the exception stack frame, which comprises all
quadwords.

Figure SDA–4 Exception Stack Frame

:0
R2

R3

R4

R5

R6

R7

PC

PS

:8

:16

:24

:32

:40

:48

:56

ZK−6788A−GE

63 0

The values contained in the exception stack frame are defined as follows:

Table SDA–8 Exception Stack Frame Values

Value Contents

INTSTK$Q_R2 Contents of R2 at the time of the exception

INTSTK$Q_R3 Contents of R3 at the time of the exception

INTSTK$Q_R4 Contents of R4 at the time of the exception

INTSTK$Q_R5 Contents of R5 at the time of the exception

INTSTK$Q_R6 Contents of R6 at the time of the exception

INTSTK$Q_R7 Contents of R7 at the time of the exception

INTSTK$Q_PC PC whose execution resulted in the exception

INTSTK$Q_PS PS at the time of the exception (except high-order bits)

The SDA SHOW STACK command identifies the elements of the exception stack
frame on the stack using these symbols.

If OpenVMS Alpha encounters a fatal exception, you can find the code that
signaled it by examining the PC in the signal array. Use the SHOW CRASH or
CLUE CRASH command to display the PC and the instruction stream around the
PC to locate the exception.

The following display shows the SDA output in response to SHOW CRASH and
SHOW STACK commands for an SSRVEXCEPT bugcheck. It illustrates the
mechanism array, signal arrays, and exception stack frame previously described.

SDA–27

SDA Description

OpenVMS (TM) Alpha system dump analyzer
...analyzing a selective memory dump...

Dump taken on 30-AUG-1996 13:13:46.83
SSRVEXCEPT, Unexpected system service exception

SDA> SHOW CRASH
Time of system crash: 30-AUG-1996 13:13:46.83

Version of system: OpenVMS (TM) Alpha Operating System, Version X6AF-FT2

System Version Major ID/Minor ID: 3/0

System type: DEC 3000 Model 400

Crash CPU ID/Primary CPU ID: 00/00

Bitmask of CPUs active/available: 00000001/00000001

CPU bugcheck codes:
CPU 00 -- SSRVEXCEPT, Unexpected system service exception

System State at Time of Exception

Exception Frame:

R2 = 00000000.00000003
R3 = FFFFFFFF.80C63460 EXCEPTION_MON_NPRW+06A60
R4 = FFFFFFFF.80D12740 PCB
R5 = 00000000.000000C8
R6 = 00000000.00030038
R7 = 00000000.7FFA1FC0
PC = 00000000.00030078
PS = 00000000.00000003

00000000.00030068: STQ R27,(SP)
00000000.0003006C: BIS R31,SP,FP
00000000.00030070: STQ R26,#X0010(SP)
00000000.00030074: LDA R28,(R31)

PC => 00000000.00030078: LDL R28,(R28)
00000000.0003007C: BEQ R28,#X000007
00000000.00030080: LDQ R26,#XFFE8(R27)
00000000.00030084: BIS R31,R26,R0
00000000.00030088: BIS R31,FP,SP

PS =>
MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD
0 00 00000000000 00 0 0 KERN 0 USER

Signal Array

Length = 00000005
Type = 0000000C
Arg = 00000000.00010000
Arg = 00000000.00000000
Arg = 00000000.00030078
Arg = 00000000.00000003

%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual address=0000000000000000,
PC=0000000000030078, PS=00000003

Saved Scratch Registers in Mechanism Array
--
R0 = 00000000.00020000 R1 = 00000000.00000000 R16 = 00000000.00020004
R17 = 00000000.00010050 R18 = FFFFFFFF.FFFFFFFF R19 = 00000000.00000000
R20 = 00000000.7FFA1F50 R21 = 00000000.00000000 R22 = 00000000.00010050
R23 = 00000000.00000000 R24 = 00000000.00010051 R25 = 00000000.00000000
R26 = FFFFFFFF.8010ACA4 R27 = 00000000.00010050 R28 = 00000000.00000000

SDA–28

SDA Description

CPU 00 Processor crash information

CPU 00 reason for Bugcheck: SSRVEXCEPT, Unexpected system service exception

Process currently executing on this CPU: SYSTEM

Current image file: 31DKB0:[SYS0.][SYSMGR]X.EXE;1

Current IPL: 0 (decimal)

CPU database address: 80D0E000

CPUs Capabilities: PRIMARY,QUORUM,RUN

General registers:

R0 = 00000000.00000000 R1 = 00000000.7FFA1EB8 R2 = FFFFFFFF.80D0E6C0
R3 = FFFFFFFF.80C63460 R4 = FFFFFFFF.80D12740 R5 = 00000000.000000C8
R6 = 00000000.00030038 R7 = 00000000.7FFA1FC0 R8 = 00000000.7FFAC208
R9 = 00000000.7FFAC410 R10 = 00000000.7FFAD238 R11 = 00000000.7FFCE3E0
R12 = 00000000.00000000 R13 = FFFFFFFF.80C6EB60 R14 = 00000000.00000000
R15 = 00000000.009A79FD R16 = 00000000.000003C4 R17 = 00000000.7FFA1D40
R18 = FFFFFFFF.80C05C38 R19 = 00000000.00000000 R20 = 00000000.7FFA1F50
R21 = 00000000.00000000 R22 = 00000000.00000001 R23 = 00000000.7FFF03C8
R24 = 00000000.7FFF0040 AI = 00000000.00000003 RA = FFFFFFFF.82A21080
PV = FFFFFFFF.829CF010 R28 = FFFFFFFF.8004B6DC FP = 00000000.7FFA1CA0
PC = FFFFFFFF.82A210B4 PS = 18000000.00000000

Processor Internal Registers:

ASN = 00000000.0000002F ASTSR/ASTEN = 0000000F
IPL = 00000000 PCBB = 00000000.003FE080 PRBR = FFFFFFFF.80D0E000
PTBR = 00000000.00001136 SCBB = 00000000.000001DC SISR = 00000000.00000000
VPTB = FFFFFFFC.00000000 FPCR = 00000000.00000000 MCES = 00000000.00000000

CPU 00 Processor crash information

KSP = 00000000.7FFA1C98
ESP = 00000000.7FFA6000
SSP = 00000000.7FFAC100
USP = 00000000.7AFFBAD0

No spinlocks currently owned by CPU 00

SDA–29

SDA Description

SDA> SHOW STACK
Current Operating Stack (KERNEL):

00000000.7FFA1C78 18000000.00000000
00000000.7FFA1C80 00000000.7FFA1CA0
00000000.7FFA1C88 00000000.00000000
00000000.7FFA1C90 00000000.7FFA1D40

SP => 00000000.7FFA1C98 00000000.00000000
00000000.7FFA1CA0 FFFFFFFF.829CF010 EXE$EXCPTN
00000000.7FFA1CA8 FFFFFFFF.82A2059C EXCEPTION_MON_PRO+0259C
00000000.7FFA1CB0 00000000.00000000
00000000.7FFA1CB8 00000000.7FFA1CD0
00000000.7FFA1CC0 FFFFFFFF.829CEDA8 EXE$SET_PAGES_READ_ONLY+00948
00000000.7FFA1CC8 00000000.00000000
00000000.7FFA1CD0 FFFFFFFF.829CEDA8 EXE$SET_PAGES_READ_ONLY+00948
00000000.7FFA1CD8 00000000.00000000
00000000.7FFA1CE0 FFFFFFFF.82A1E930 EXE$CONTSIGNAL_C+001D0
00000000.7FFA1CE8 00000000.7FFA1F40
00000000.7FFA1CF0 FFFFFFFF.80C63780 EXE$ACVIOLAT
00000000.7FFA1CF8 00000000.7FFA1EB8
00000000.7FFA1D00 00000000.7FFA1D40
00000000.7FFA1D08 00000000.7FFA1F00
00000000.7FFA1D10 00000000.7FFA1F40
00000000.7FFA1D18 00000000.00000000
00000000.7FFA1D20 00000000.00000000
00000000.7FFA1D28 00000000.00020000 SYS$K_VERSION_04
00000000.7FFA1D30 00000005.00000250 BUG$_NETRCVPKT
00000000.7FFA1D38 829CE050.000008F8 BUG$_SEQ_NUM_OVF

CHF$IS_MCH_ARGS 00000000.7FFA1D40 00000000.0000002C
CHF$PH_MCH_FRAME 00000000.7FFA1D48 00000000.7AFFBAD0
CHF$IS_MCH_DEPTH 00000000.7FFA1D50 FFFFFFFF.FFFFFFFD
CHF$PH_MCH_DADDR 00000000.7FFA1D58 00000000.00000000
CHF$PH_MCH_ESF_ADDR 00000000.7FFA1D60 00000000.7FFA1F00
CHF$PH_MCH_SIG_ADDR 00000000.7FFA1D68 00000000.7FFA1EB8
CHF$IH_MCH_SAVR0 00000000.7FFA1D70 00000000.00020000 SYS$K_VERSION_04
CHF$IH_MCH_SAVR1 00000000.7FFA1D78 00000000.00000000
CHF$IH_MCH_SAVR16 00000000.7FFA1D80 00000000.00020004 UCB$M_LCL_VALID+00004
CHF$IH_MCH_SAVR17 00000000.7FFA1D88 00000000.00010050 SYS$K_VERSION_16+00010
CHF$IH_MCH_SAVR18 00000000.7FFA1D90 FFFFFFFF.FFFFFFFF
CHF$IH_MCH_SAVR19 00000000.7FFA1D98 00000000.00000000
CHF$IH_MCH_SAVR20 00000000.7FFA1DA0 00000000.7FFA1F50
CHF$IH_MCH_SAVR21 00000000.7FFA1DA8 00000000.00000000
CHF$IH_MCH_SAVR22 00000000.7FFA1DB0 00000000.00010050 SYS$K_VERSION_16+00010
CHF$IH_MCH_SAVR23 00000000.7FFA1DB8 00000000.00000000
CHF$IH_MCH_SAVR24 00000000.7FFA1DC0 00000000.00010051 SYS$K_VERSION_16+00011
CHF$IH_MCH_SAVR25 00000000.7FFA1DC8 00000000.00000000
CHF$IH_MCH_SAVR26 00000000.7FFA1DD0 FFFFFFFF.8010ACA4 AMAC$EMUL_CALL_NATIVE_C+000A4
CHF$IH_MCH_SAVR27 00000000.7FFA1DD8 00000000.00010050 SYS$K_VERSION_16+00010
CHF$IH_MCH_SAVR28 00000000.7FFA1DE0 00000000.00000000

00000000.7FFA1DE8 00000000.00000000
00000000.7FFA1DF0 00000000.00000000
00000000.7FFA1DF8 00000000.00000000
00000000.7FFA1E00 00000000.00000000
00000000.7FFA1E08 00000000.00000000
00000000.7FFA1E10 00000000.00000000
00000000.7FFA1E18 00000000.00000000
00000000.7FFA1E20 00000000.00000000
00000000.7FFA1E28 00000000.00000000
00000000.7FFA1E30 00000000.00000000
00000000.7FFA1E38 00000000.00000000
00000000.7FFA1E40 00000000.00000000
00000000.7FFA1E48 00000000.00000000
00000000.7FFA1E50 00000000.00000000
00000000.7FFA1E58 00000000.00000000
00000000.7FFA1E60 00000000.00000000
00000000.7FFA1E68 00000000.00000000

SDA–30

SDA Description

00000000.7FFA1E70 00000000.00000000
00000000.7FFA1E78 00000000.00000000
00000000.7FFA1E80 00000000.00000000
00000000.7FFA1E88 00000000.00000000
00000000.7FFA1E90 00000000.00000000
00000000.7FFA1E98 00000000.00000000

CHF$PH_MCH_SIG64_ADDR 00000000.7FFA1EA0 00000000.7FFA1ED0
00000000.7FFA1EA8 00000000.00000000
00000000.7FFA1EB0 00000000.7FFA1F50
00000000.7FFA1EB8 0000000C.00000005
00000000.7FFA1EC0 00000000.00010000 SYS$K_VERSION_07
00000000.7FFA1EC8 00000003.00030078 SYS$K_VERSION_01+00078

CHF$L_SIG_ARGS 00000000.7FFA1ED0 00002604.00000005 UCB$M_TEMPLATE+00604
CHF$L_SIG_ARG1 00000000.7FFA1ED8 00000000.0000000C

00000000.7FFA1EE0 00000000.00010000 SYS$K_VERSION_07
00000000.7FFA1EE8 00000000.00000000
00000000.7FFA1EF0 00000000.00030078 SYS$K_VERSION_01+00078
00000000.7FFA1EF8 00000000.00000003

INTSTK$Q_R2 00000000.7FFA1F00 00000000.00000003
INTSTK$Q_R3 00000000.7FFA1F08 FFFFFFFF.80C63460 EXCEPTION_MON_NPRW+06A60
INTSTK$Q_R4 00000000.7FFA1F10 FFFFFFFF.80D12740 PCB
INTSTK$Q_R5 00000000.7FFA1F18 00000000.000000C8
INTSTK$Q_R6 00000000.7FFA1F20 00000000.00030038 SYS$K_VERSION_01+00038
INTSTK$Q_R7 00000000.7FFA1F28 00000000.7FFA1FC0
INTSTK$Q_PC 00000000.7FFA1F30 00000000.00030078 SYS$K_VERSION_01+00078
INTSTK$Q_PS 00000000.7FFA1F38 00000000.00000003
Prev SP (7FFA1F40) ==> 00000000.7FFA1F40 00000000.00010050 SYS$K_VERSION_16+00010

00000000.7FFA1F48 00000000.00010000 SYS$K_VERSION_07
00000000.7FFA1F50 FFFFFFFF.8010ACA4 AMAC$EMUL_CALL_NATIVE_C+000A4
00000000.7FFA1F58 00000000.7FFA1F70
00000000.7FFA1F60 00000000.00000001
00000000.7FFA1F68 FFFFFFFF.800EE81C RM_STD$DIRCACHE_BLKAST_C+005AC
00000000.7FFA1F70 FFFFFFFF.80C6EBA0 SCH$CHSEP+001E0
00000000.7FFA1F78 00000000.829CEDE8 EXE$SIGTORET
00000000.7FFA1F80 00010050.00000002 SYS$K_VERSION_16+00010
00000000.7FFA1F88 00000000.00020000 SYS$K_VERSION_04
00000000.7FFA1F90 00000000.00030000 SYS$K_VERSION_01
00000000.7FFA1F98 FFFFFFFF.800A4D64 EXCEPTION_MON_NPRO+00D64
00000000.7FFA1FA0 00000000.00000003
00000000.7FFA1FA8 FFFFFFFF.80D12740 PCB
00000000.7FFA1FB0 00000000.00010000 SYS$K_VERSION_07
00000000.7FFA1FB8 00000000.7AFFBAD0
00000000.7FFA1FC0 00000000.7FFCF880 MMG$IMGHDRBUF+00080
00000000.7FFA1FC8 00000000.7B0E9851
00000000.7FFA1FD0 00000000.7FFCF818 MMG$IMGHDRBUF+00018
00000000.7FFA1FD8 00000000.7FFCF938 MMG$IMGHDRBUF+00138
00000000.7FFA1FE0 00000000.7FFAC9F0
00000000.7FFA1FE8 00000000.7FFAC9F0
00000000.7FFA1FF0 FFFFFFFF.80000140 SYS$PUBLIC_VECTORS_NPRO+00140
00000000.7FFA1FF8 00000000.0000001B

.

.

.

6.2.2 Illegal Page Faults
OpenVMS Alpha signals a PGFIPLHI bugcheck when a page fault occurs while
the interrupt priority level (IPL) is greater than 2 (IPL$_ASTDEL). When
OpenVMS Alpha fails because of an illegal page fault, it displays the following
message on the console terminal:

PGFIPLHI, Page fault with IPL too high

SDA–31

SDA Description

When an illegal page fault occurs, the stack appears as pictured in
Figure SDA–5.

Figure SDA–5 Stack Following an Illegal Page-Fault Error

ZK−6787A−GE

MMG$PAGEFAULT Stack Frame

SCH$PAGEFAULT Saved Scratch Registers

Exception Stack Frame

Previous Stack Content

The stack contents are as follows:

MMG$PAGEFAULT Stack
Frame

Stack frame built at entry to MMG$PAGEFAULT,
the page fault exception service routine. The frame
includes the contents of the following registers at the
time of the page fault: R3, R8, R11 to R15, R29 (frame
pointer)

SCH$PAGEFAULT Saved
Scratch Registers

Contents of the following registers at the time of the
page fault: R0, R1, R16 to R28

Exception Stack Frame Exception stack frame (see Figure SDA–4)

Previous Stack Content Contents of the stack prior to the illegal page-fault
error

When you analyze a dump caused by a PGFIPLHI bugcheck, the SHOW STACK
command identifies the exception stack frame using the symbols shown in
Table SDA–8. The SHOW CRASH or CLUE CRASH command displays the
instruction that caused the page fault and the instructions around it.

7 Inducing a System Failure
If the operating system is not performing well and you want to create a dump
you can examine, you must induce a system failure. Occasionally, a device driver
or other user-written, kernel-mode code can cause the system to execute a loop of
code at a high priority, interfering with normal system operation. This loop can
occur even though you have set a breakpoint in the code if the loop is encountered
before the breakpoint. To gain control of the system in such circumstances, you
must cause the system to fail and then reboot it.

If the system has suspended all noticeable activity and is hung, see the examples
of causing system failures in Section 7.2.

If you are generating a system failure in response to a system hang, be sure to
record the PC and PS as well as the contents of the integer registers at the time
of the system halt.

SDA–32

SDA Description

7.1 Meeting Crash Dump Requirements
The following requirements must be met before the operating system can write a
complete crash dump:

• You must not halt the system until the console dump messages have been
printed in their entirety and the memory contents have been written to the
crash dump file. Be sure to allow sufficient time for these events to take place
or make sure that all disk activity has stopped before using the console to
halt the system.

• There must be a crash dump file in SYS$SPECIFIC:[SYSEXE]: named either
SYSDUMP.DMP or PAGEFILE.SYS.

This dump file must be either large enough to hold the entire contents
of memory (as discussed in Section 1.1.1) or, if the DUMPSTYLE system
parameter is set, large enough to accommodate a subset or compressed dump
(also discussed in Section 1.1.1).

If SYSDUMP.DMP is not present, the operating system attempts to write
crash dumps to PAGEFILE.SYS. In this case, the SAVEDUMP system
parameter must be 1 (the default is 0).

• The DUMPBUG system parameter must be 1 (the default is 1).

7.2 Procedure for Causing a System Failure
This section tells you how to enter the XDelta utility (XDELTA) to force a system
failure.

Before you can use XDELTA, it must be loaded at system startup. To load
XDELTA during system bootstrap, you must set bit 1 in the boot flags. See the
OpenVMS Alpha Version 7.1 Upgrade and Installation Manual for information
about booting with the XDelta utility.

Put the system in console mode by pressing Ctrl/P or the Halt push button. Enter
the following commands at the console prompt to enter XDELTA:

>>> DEPOSIT SIRR E
>>> CONTINUE

Once you have entered XDELTA, use any valid XDELTA commands to examine
register or memory locations, step through code, or force a system failure (by
entering ;C under XDELTA). See the OpenVMS Delta/XDelta Debugger Manual
for more information about using XDELTA.

If you did not load XDELTA, you can force a system crash by entering console
commands that make the system incur an exception at high IPL. At the console
prompt, enter commands to set the program counter (PC) to an invalid address
and the PS to kernel mode at IPL 31 before continuing. This results in a forced
INVEXCEPTN-type bugcheck. Some Digital computers employ the console
command CRASH (which will force a system failure) while other systems require
that you manually enter the commands.

Enter the following commands at the console prompt to force a system failure:

>>> DEPOSIT PC FFFFFFFFFFFFFF00
>>> DEPOSIT PS 1F00
>>> CONTINUE

For more information, refer to the hardware manuals that accompanied your
computer.

SDA–33

SDA Usage Summary

The System Dump Analyzer (SDA) utility helps determine the causes of system
failures. This utility is also useful for examining the running system.

Format

ANALYZE {/CRASH_DUMP [/RELEASE] [/OVERRIDE] filespec | /SYSTEM}
[/SYMBOL = system-symbols-table]

Command Parameter
filespec
Name of the file that contains the dump you want to analyze. At least one field
of the filespec is required, and it can be any field. The default filespec is the
highest version of SYSDUMP.DMP in your default directory.

Description
By default, the System Dump Analyzer is automatically invoked when you reboot
the system after a system failure.

To analyze a system dump interactively, invoke SDA by issuing the following
command:

$ ANALYZE/CRASH_DUMP filespec

If you do not specify filespec, SDA prompts you for it.

To analyze a crash dump, your process must have the privileges necessary for
reading the dump file. This usually requires system privilege (SYSPRV), but
your system manager can, if necessary, allow less privileged processes to read
the dump files. Your process needs change-mode-to-kernel (CMKRNL) privilege
to release page file dump blocks, whether you use the /RELEASE qualifier or the
SDA COPY command.

Invoke SDA to analyze a running system by issuing the following command:

$ANALYZE/SYSTEM

To examine a running system, your process must have change-mode-to-kernel
(CMKRNL) privilege. You cannot specify filespec when using the /SYSTEM
qualifier.

To send all output from SDA to a file, use the SDA command SET OUTPUT,
specifying the name of the output file. The file produced is 132 columns wide and
is formatted for output to a printer. To later redirect the output to your terminal,
use the following command:

SDA> SET OUTPUT SYS$OUTPUT

To send a copy of all the commands you type and all the output those commands
produce to a file, use the SDA command SET LOG, specifying the name of the
log file. The file produced is 132 columns wide and is formatted for output to a
printer.

To exit from SDA, use the EXIT command. Note that the EXIT command also
causes SDA to exit from display mode. Thus, if SDA is in display mode, you must
use the EXIT command twice: once to exit from display mode, and a second time
to exit from SDA.

SDA–34

SDA Usage Summary

SDA Qualifiers
The following qualifiers described in this section determine whether the object of
an SDA session is a crash dump or a running system. They also help create the
environment of an SDA session.

/CRASH_DUMP
/OVERRIDE
/RELEASE
/SYMBOL
/SYSTEM

SDA–35

SDA Qualifiers
/CRASH_DUMP

/CRASH_DUMP

Invokes SDA to analyze the specified dump file.

Format

/CRASH_DUMP filespec

Parameter

filespec
Name of the crash dump file to be analyzed. The default file specification is:

SYS$DISK:[default-dir]SYSDUMP.DMP

SYS$DISK and [default-dir] represent the disk and directory specified in your
last SET DEFAULT command. If you do not specify filespec, SDA prompts you
for it.

Description

See Section 2 for additional information on crash dump analysis. You cannot
specify the /SYSTEM qualifier when you include the /CRASH_DUMP qualifier in
the ANALYZE command.

Examples

1. $ ANALYZE/CRASH_DUMP SYS$SYSTEM:SYSDUMP.DMP
$ ANALYZE/CRASH SYS$SYSTEM

These commands invoke SDA to analyze the crash dump stored in
SYS$SYSTEM:SYSDUMP.DMP.

2. $ ANALYZE/CRASH SYS$SYSTEM:PAGEFILE.SYS

This command invokes SDA to analyze a crash dump stored in the system
page file.

SDA–36

SDA Qualifiers
/OVERRIDE

/OVERRIDE

Invokes SDA when used with the /CRASH_DUMP qualifier to analyze the
specified dump file when a corruption or other problem prevents normal
invocation of SDA with ANALYZE/CRASH_DUMP command.

Format

/CRASH_DUMP/OVERRIDE filespec

Parameter

filespec
Name of the crash dump file to be analyzed. The default file specification is:

SYS$DISK:[default-dir]SYSDUMP.DMP

SYS$DISK and [default-dir] represent the disk and directory specified in your
last SET DEFAULT command. If you do not specify filespec, SDA prompts you
for it.

Description

See Section 2 for additional information on crash dump analysis. Note that when
SDA is invoked with /OVERRIDE that not all the commands in Section 2 can be
used. Commands that can be used are as follows:

• Output control commands such as SET OUTPUT and SET LOG

• Dump file related commands such as SHOW DUMP and CLUE ERRLOG

Commands that cannot be used are as follows:

• Commands that access memory addresses within the dump file such as
EXAMINE and SHOW SUMMARY

• You cannot specify the /RELEASE qualifier when you include the /OVERRIDE
qualifier in the ANALYZE/CRASH_DUMP command.

Examples

1. $ ANALYZE/CRASH_DUMP/OVERRIDE SYS$SYSTEM:SYSDUMP.DMP
$ ANALYZE/CRASH SYS$SYSTEM

These commands invoke SDA to analyze the crash dump stored in
SYS$SYSTEM:SYSDUMP.DMP.

SDA–37

SDA Qualifiers
/RELEASE

/RELEASE

Invokes SDA to release those blocks in the specified system page file occupied by
a crash dump.

Requires CMKRNL (change-mode-to-kernel) privilege.

Format

/RELEASE filespec

Parameter

filespec
Name of the system page file (SYS$SYSTEM:PAGEFILE.SYS). Because the
default file specification is SYS$DISK:[default-dir]SYSDUMP.DMP, you must
identify the page file explicitly. SYS$DISK and [default-dir] represent the disk
and directory specified in your last DCL command SET DEFAULT. If you do not
specify filespec, SDA prompts you for it.

Description

Use the /RELEASE qualifier to release from the system page file those blocks
occupied by a crash dump. When invoked with the /RELEASE qualifier, SDA
immediately deletes the dump from the page file and allows no opportunity to
analyze its contents.

When you specify the /RELEASE qualifier in the ANALYZE command, do the
following:

1. Use the /CRASH_DUMP qualifier.

2. Include the name of the system page file (SYS$SYSTEM:PAGEFILE.SYS) as
the filespec.

If you do not specify the system page file or the specified page file does not
contain a dump, SDA generates the following messages:

%SDA-E-BLKSNRLSD, no dump blocks in page file to release, or not page file
%SDA-E-NOTPAGFIL, specified file is not the page file

You cannot specify the /OVERRIDE qualifier when you include the /RELEASE
qualifier in the ANALYZE/CRASH_DUMP command.

Example

$ ANALYZE/CRASH_DUMP/RELEASE SYS$SYSTEM:PAGEFILE.SYS
$ ANALYZE/CRASH/RELEASE PAGEFILE.SYS

These commands invoke SDA to release to the page file those blocks in
SYS$SYSTEM:PAGEFILE.SYS occupied by a crash dump.

SDA–38

SDA Qualifiers
/SYMBOL

/SYMBOL

Specifies an alternate system symbol table for SDA to use.

Format

/SYMBOL =system-symbol-table

Parameter

system-symbol-table
File specification of the OpenVMS Alpha SDA system symbol table required
by SDA to analyze a system dump. The specified system-symbol-table must
contain those symbols required by SDA to find certain locations in the executive
image.

If you do not specify the /SYMBOL qualifier, SDA uses SDA$READ_
DIR:SYS$BASE_IMAGE.EXE to load system symbols into the SDA symbol
table. When you specify the /SYMBOL qualifier, SDA assumes the default disk
and directory to be SYS$DISK: that is, the disk and directory specified in your
last DCL command SET DEFAULT. If you specify a file for this parameter that is
not a system symbol table, SDA exits with a fatal error.

Description

The /SYMBOL qualifier allows you to specify a system symbol table to load into
the SDA symbol table. You can use the /SYMBOL qualifier whether you are
analyzing a system dump or a running system.

The /SYMBOL qualifier can be used with the /CRASH_DUMP and /SYSTEM
qualifiers. It is ignored when /OVERRIDE or /RELEASE is specified.

Example

$ ANALYZE/CRASH_DUMP/SYMBOL=SDA$READ_DIR:SYS$BASE_IMAGE.EXE SYS$SYSTEM

This command invokes SDA to analyze the crash dump stored in
SYS$SYSTEM:SYSDUMP.DMP, using the base image in SDA$READ_DIR.

SDA–39

SDA Qualifiers
/SYSTEM

/SYSTEM

Invokes SDA to analyze a running system.

Requires CMKRNL (change-mode-to-kernel) privilege.

Format

/SYSTEM

Parameters

None.

Description

See Section 3 to use SDA to analyze a running system.

You cannot specify the /CRASH_DUMP, /OVERRIDE, or /RELEASE qualifiers
when you include the /SYSTEM qualifier in the ANALYZE command.

Example

$ ANALYZE/SYSTEM

This command invokes SDA to analyze the running system.

SDA–40

SDA Commands

SDA Commands

The following SDA commands, which are described in this section, can be used to
analyze a system dump or a running system. SDA CLUE extension commands,
which can summarize information provided by certain SDA commands and
provide additional detail for some SDA commands, are described in the following
section.

@ (Execute Command)
ATTACH
COPY
DEFINE
DEFINE/KEY
EVALUATE
EXAMINE
EXIT
FORMAT
HELP
MAP
MODIFY DUMP
READ
REPEAT
SEARCH
SET CPU
SET ERASE_SCREEN
SET FETCH
SET LOG
SET OUTPUT
SET PROCESS
SET RMS
SET SIGN_EXTEND
SHOW ADDRESS
SHOW BUGCHECK
SHOW CALL_FRAME
SHOW CLUSTER
SHOW CONNECTIONS
SHOW CPU
SHOW CRASH
SHOW DEVICE
SHOW DUMP
SHOW EXECUTIVE
SHOW GLOBAL_SECTION_TABLE
SHOW GSD
SHOW HEADER
SHOW LAN
SHOW LOCK
SHOW MACHINE_CHECK
SHOW PAGE_TABLE
SHOW PFN_DATA
SHOW POOL
SHOW PORTS
SHOW PROCESS
SHOW RESOURCE
SHOW RMD
SHOW RMS

SDA–41

SDA Commands

SHOW RSPID
SHOW SPINLOCKS
SHOW STACK
SHOW SUMMARY
SHOW SYMBOL
SHOW WORKING_SET_LIST
SPAWN
VALIDATE PFN_LIST
VALIDATE QUEUE

SDA–42

SDA Commands
@ (Execute Command)

@ (Execute Command)

Causes SDA to execute SDA commands contained in a file. Use this command to
execute a set of frequently used SDA commands.

Format

@filespec

Parameter

filespec
Name of a file that contains the SDA commands to be executed. The default file
type is .COM.

Example

SDA> @USUAL

The Execute command executes the following commands, as contained in a file
named USUAL.COM:

SET OUTPUT LASTCRASH.LIS
SHOW CRASH
SHOW PROCESS
SHOW STACK
SHOW SUMMARY

This command procedure first makes the file LASTCRASH.LIS the destination
for output generated by subsequent SDA commands. Next, the command
procedure sends to the file information about the system failure and its context, a
description of the process executing at the time of the process, the contents of the
stack on which the failure occurred, and a list of the processes active on the CPU
that failed.

An EXIT command within a command procedure terminates the procedure at
that point, as would an end-of-file.

Command procedures cannot be nested.

SDA–43

SDA Commands
ATTACH

ATTACH

Switches control of your terminal from your current process to another process in
your job (for example, one created with the SDA SPAWN command).

Format

ATTACH [/PARENT] process-name

Parameter

process-name
Name of the process to which you want to transfer control.

Qualifier

/PARENT
Transfers control of the terminal to the current process parent process. When you
specify this qualifier, you cannot specify the process-name parameter.

Examples

1. SDA> ATTACH/PARENT

This ATTACH command attaches the terminal to the parent process of the
current process.

2. SDA> ATTACH DUMPER

This ATTACH command attaches the terminal to a process named DUMPER
in the same job as the current process.

SDA–44

SDA Commands
COPY

COPY

Copies the contents of the dump file to another file.

Format

COPY [/qualifier...] output-filespec

Parameter

output-filespec
Name of the device, directory, and file to which SDA copies the dump file. The
default file specification is:

SYS$DISK:[default-dir]filename.DMP

SYS$DISK and [default-dir] represent the disk and directory specified in your
last DCL command SET DEFAULT. You must specify a file name.

Qualifiers

/COMPRESS
Causes SDA to compress dump data as it is writing a copy. If the dump being
analyzed is already compressed, then SDA does a normal COPY, issuing an
informational message indicating that it is ignoring the /COMPRESS request.

/DECOMPRESS
Causes SDA to decompress dump data as it is writing a copy. If the dump being
analyzed is already decompressed, then SDA does a normal COPY, issuing an
informational message indicating that it is ignoring the /DECOMPRESS request.

Description

Each time the system fails, it copies the contents of memory and the hardware
context of the current process (as directed by the DUMPSTYLE parameter) into
the file SYS$SYSTEM:SYSDUMP.DMP (or the page file), overwriting its contents.
Each time the system is shut down normally, it overwrites the dump file with
error log messages that have not yet been written to the error log file. If you do
not save this crash dump elsewhere, it will be overwritten the next time that the
system fails or is shut down.

The COPY command allows you to preserve a crash dump by copying its contents
to another file. It is generally useful to invoke SDA during system initialization
(from within SYS$MANAGER:SYSTARTUP_VMS.COM) to execute the COPY
command. This ensures that a copy of the dump file is made only after the
system has failed.

The COPY command does not affect the contents of the file containing the dump
being analyzed.

If you are using the page file (SYS$SYSTEM:PAGEFILE.SYS) as the dump file
instead of SYSDUMP.DMP, use the COPY command to explicitly release the
blocks of the page file that contain the dump, thus making them available for
page. Although the copy operation succeeds, the release operation requires that
your process have change-mode-to-kernel (CMKRNL) privilege. Once the dump
pages have been released from the page file, the dump information in these pages

SDA–45

SDA Commands
COPY

may be lost. Perform subsequent analysis upon the copy of the dump created by
the COPY command.

If you press Ctrl/T while using the COPY command, the system displays how
much of the file has been copied.

Example

SDA> COPY SYS$CRASH:SAVEDUMP

The COPY command copies the dump file into the file
SYS$CRASH:SAVEDUMP.DMP.

SDA–46

SDA Commands
DEFINE

DEFINE

Assigns a value to a symbol.

Format

DEFINE [/qualifier...] symbol-name [=] expression

Parameters

symbol-name
Name, containing from 1 to 31 alphanumeric characters, that identifies the
symbol. See Section 5.2.4 for a description of SDA symbol syntax and a list of
default symbols.

expression
Definition of the symbol’s value. See Section 5.2 for a discussion of the
components of SDA expressions.

Qualifier

/PD
Defines a symbol as a procedure descriptor (PD). It also defines the routine
address symbol corresponding to the defined symbol (the routine address symbol
has the same name as the defined symbol, only with _C appended to the symbol
name). See Section 5.2.4 for more information about symbols.

Description

The DEFINE command causes SDA to evaluate an expression and then assign
its value to a symbol. Both the DEFINE and EVALUATE commands perform
computations to evaluate expressions. DEFINE adds symbols to the SDA symbol
table but does not display the results of the computation. EVALUATE displays
the result of the computation but does not add symbols to the SDA symbol table.

Examples

1. SDA> DEFINE BEGIN = 80058E00
SDA> DEFINE END = 80058E60
SDA> EXAMINE BEGIN:END

In this example, DEFINE defines two addresses, called BEGIN and END.
These symbols serve as reference points in memory, defining a range of
memory locations for the EXAMINE command to inspect.

2. SDA> DEFINE NEXT = @PC
SDA> EXAMINE/INSTRUCTION NEXT
NEXT: HALT

The symbol NEXT defines the address contained in the program counter, so
that the symbol can be used in an EXAMINE/INSTRUCTION command.

SDA–47

SDA Commands
DEFINE

3. SDA> DEFINE VEC SCH$GL_PCBVEC
SDA> EXAMINE VEC
SCH$GL_PCBVEC: 00000000.8060F2CC " Ìò‘....."
SDA>

After the value of global symbol SCH$GL_PCBVEC has been assigned to
the symbol VEC, the symbol VEC is used to examine the memory location or
value represented by the global symbol.

4. SDA> DEFINE/PD VEC SCH$QAST
SDA> EXAMINE VEC
SCH$QAST: 0000002C.00003008 ".0..,..."
SDA> EXAMINE VEC_C
SCH$QAST_C: B75E0008.43C8153E ">. ÈC..^ ·"
SDA>

In this example, the DEFINE/PD command defines not only the symbol VEC,
but also the corresponding routine address symbol (VEC_C).

SDA–48

SDA Commands
DEFINE/KEY

DEFINE/KEY

Associates an SDA command with a terminal key.

Format

DEFINE/KEY [/qualifier...] key-name command

Parameters

key-name
Name of the key to be defined. You can define the following keys under SDA:

Key Name Key Designation

PF1 LK201, VT100, VT52 Red
PF2 LK201, VT100, VT52 Blue
PF3 LK201, VT100, VT52 Black
PF4 LK201, VT100
KP0 . . . KP9 Keypad 0–9
PERIOD Keypad period
COMMA Keypad comma
MINUS Keypad minus
ENTER Keypad ENTER
UP Up arrow
DOWN Down arrow
LEFT Left arrow
RIGHT Right arrow
E1 LK201 Find
E2 LK201 Insert Here
E3 LK201 Remove
E4 LK201 Select
E5 LK201 Prev Screen
E6 LK201 Next Screen
HELP LK201 Help
DO LK201 Do
F7 . . . F20 LK201 Function keys

command
SDA command to define a key. The command must be enclosed in quotation
marks (" ").

Qualifiers

/KEY
Defines a key as an SDA command. To issue the command, press the defined key
and the Return key. If you use the /TERMINATE qualifier as well, you do not
have to press the Return key.

SDA–49

SDA Commands
DEFINE/KEY

/PD
Defines a symbol as a procedure descriptor (PD). Also defines the routine address
symbol corresponding to the defined symbol (the routine address symbol has the
same name as the defined symbol, only with _C appended to the symbol name.)

/SET_STATE=state-name
Causes the key being defined to create a key state change rather than issue an
SDA command. When you use the /SET_STATE qualifier, you supply the name of
a key state in place of the key-name parameter. In addition, you must define the
command parameter as a pair of quotation marks (" ").

For example, you can define the PF1 key as the GOLD key and use the /IF_
STATE=GOLD qualifier to allow two definitions for the other keys, one in the
GOLD state and one in the non-GOLD state. For more information on using
the /IF_STATE qualifier, see the DEFINE/KEY command in the OpenVMS DCL
Dictionary: A–M.

/TERMINATE
/NOTERMINATE
Causes the key definition to include termination of the command, which causes
SDA to execute the command when the defined key is pressed. Therefore, you
do not have to press the Return key after you press the defined key if the
/TERMINATE qualifier is specified.

Description

The DEFINE/KEY command causes an SDA command to be associated with
the specified key, in accordance with any of the specified qualifiers described
previously.

If the symbol or key is already defined, SDA replaces the old definition with the
new one. Symbols and keys remain defined until you exit from SDA.

Examples

1. SDA> DEFINE/KEY PF1 "SHOW STACK"
SDA> PF1 SHOW STACKRETURN

Process stacks (on CPU 00)

Current operating stack (KERNEL):

The DEFINE/KEY command defines PF1 as the SHOW STACK command.
When the PF1 key is pressed, SDA displays the command and waits for you
to press the Return key.

SDA–50

SDA Commands
DEFINE/KEY

2. SDA> DEFINE/KEY/TERMINATE PF1 "SHOW STACK"
SDA> PF1 SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):

00000000.7FF95D00 00000000.0000000B
00000000.7FF95D08 FFFFFFFF.804395C8 MMG$TBI_DATA_64+000B8
00000000.7FF95D10 00000000.00000000
00000000.7FF95D18 0000FE00.00007E04

SP => 00000000.7FF95D20 00000000.00000800 IRP$M_EXTEND
00000000.7FF95D28 00000001.000002F7 UCB$B_PI_FKB+0000B
00000000.7FF95D30 FFFFFFFF.804395C8 MMG$TBI_DATA_64+000B8
00000000.7FF95D38 00000002.00000000

.

.

.

The DEFINE/KEY command defines PF1 as the SDA SHOW STACK
command. The /TERMINATE qualifier causes SDA to execute the
SHOW STACK command without waiting for you to press the Return key.

3. SDA> DEFINE/KEY/SET_STATE="GREEN" PF1 ""
SDA> DEFINE/KEY/TERMINATE/IF_STATE=GREEN PF3 "SHOW STACK"
SDA> PF1 PF3 SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):

.

.

.

The first DEFINE/KEY command defines PF1 as a key that sets a command
state GREEN. The trailing pair of quotation marks is required syntax,
indicating that no command is to be executed when this key is pressed.

The second DEFINE command defines PF3 as the SHOW STACK command,
but using the /IF_STATE qualifier, makes the definition valid only when the
command state is GREEN. Thus, the user must press PF1 before pressing
PF3 to issue the SHOW STACK command. The /TERMINATE qualifier
causes the command to execute as soon as the PF3 key is pressed.

SDA–51

SDA Commands
EVALUATE

EVALUATE

Computes and displays the value of the specified expression in both hexadecimal
and decimal. Alternative evaluations of the expression are available with the use
of the qualifiers defined for this command.

Format

EVALUATE [{/CONDITION_VALUE | /PS | /PTE | /SYMBOLS | /TIME}] expression

Parameter

expression
SDA expression to be evaluated. Section 5.2 describes the components of SDA
expressions.

Qualifiers

/CONDITION_VALUE
Displays the message that the $GETMSG system service obtains for the value of
the expression.

/PS
Evaluates the specified expression in the format of a processor status.

/PTE
Interprets and displays the expression as a page table entry (PTE). The individual
fields of the PTE are separated and an overall description of the PTE’s type is
provided.

/SYMBOLS
Specifies that all symbols known to be equal to the evaluated expression are to
be listed in alphabetical order. The default behavior of the EVALUATE command
displays only the first several symbols.

/TIME
Interprets and displays the expression as a 64-bit time value. Positive values are
interpreted as absolute time; negative values are interpreted as delta time.

Description

If the expression is equal to the value of a symbol in the SDA symbol table, that
symbol is displayed. If no symbol with this value is known, the next lower valued
symbol is displayed with an appropriate offset unless the offset is extremely
large. The DEFINE command adds symbols to the SDA symbol table but does
not display the results of the computation. EVALUATE displays the result of the
computation but does not add symbols to the SDA symbol table.

If no qualifier is specified, the EVALUATE command interprets and displays the
expression as hexadecimal and decimal values.

SDA–52

SDA Commands
EVALUATE

Examples

1. SDA> EVALUATE -1
Hex = FFFFFFFF.FFFFFFFF Decimal = -1 I

The EVALUATE command evaluates a numeric expression, displays the
value of that expression in hexadecimal and decimal notation, and displays a
symbol that has been defined to have an equivalent value.

2. SDA> EVALUATE 1
Hex = 00000000.00000001 Decimal = 1 CHF$M_CALEXT_CANCEL

CHF$M_FPREGS_VALID
CHF$V_CALEXT_LAST
IRP$M_BUFIO
IRP$M_CLN_READY

|
(remaining symbols suppressed by default)

The EVALUATE command evaluates a numeric expression and displays the
value of that expression in hexadecimal and decimal notation. This example
also shows the symbols that have the displayed value. A finite number of
symbols are displayed by default.

3. SDA> DEFINE TEN = A
SDA> EVALUATE TEN
Hex = 00000000.0000000A Decimal = 10 IRP$B_TYPE

IRP$S_FMOD
IRP$V_MBXIO
TEN
UCB$B_TYPE
|

(remaining symbols suppressed by default)

This example shows the definition of a symbol named TEN. The EVALUATE
command then shows the value of the symbol.

Note that A, the value assigned to the symbol by the DEFINE command,
could be a symbol. When SDA evaluates a string that can be either a symbol
or a hexadecimal numeral, it first searches its symbol table for a definition of
the symbol. If SDA finds no definition for the string, it evaluates the string
as a hexadecimal number.

4. SDA> EVALUATE (((TEN * 6) + (-1/4)) + 6)
Hex = 00000000.00000042 Decimal = 66

This example shows how SDA evaluates an expression of several terms,
including symbols and rational fractions. SDA evaluates the symbol,
substitutes its value in the expression, and then evaluates the expression.
Note that the fraction -1/4 is truncated to 0.

5. SDA> EVALUATE/CONDITION 80000018
%SYSTEM-W-EXQUOTA, exceeded quota

This example shows the output of an EVALUATE/CONDITION command.

SDA–53

SDA Commands
EVALUATE

6. SDA> EVALUATE/PS 0B03
MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD
0 00 00000000000 0B 0 0 KERN 0 USER

SDA interprets the entered value 0B03 as though it were a processor status
(PS) and displays the resulting field values.

7. SDA> EVALUATE/PTE 0BCDFFEE

3 3 2 2 2 1 1 1
1 0 9 7 0 8 6 5 7 6 0
+-+-+--+--------------+-+-+---+-+---------------+-+-----------+-+
|0|0|00| 005E |0|X| 02|1| FF |X| 37 |0|
+-+-+--+--------------+-+-+---+-+---------------+-+-----------+-+
| 00000000 |
+---+
Global PTE: Owner = S, Read Prot = KESU, Write Prot = KESU, CPY = 0

GPT Index = 00000000

The EVALUATE/PTE command displays the expression ABCDFFEE as a
page table entry (PTE) and labels the fields. It also describes the status of
the page.

8. SDA>EVALUATE/TIME 009A9A4C.843DBA9F
10-OCT-1996 15:59:44.02

This example shows the use of the EVALUATE/TIME command.

SDA–54

SDA Commands
EXAMINE

EXAMINE

Displays either the contents of a location or range of locations in physical memory,
or the contents of a register. Use location parameters to display specific locations
or use qualifiers to display entire process and system regions of memory.

Format

EXAMINE [/qualifier[,...]] [location]

Parameter

location
Location in memory to be examined. A location can be represented by any valid
SDA expression. (See Section 5.2 for additional information about expressions.)
To examine a range of locations, the following syntax is used:

m:n Range of locations to be examined, from m to n
m;n Range of locations to be examined, starting at m and continuing for n

bytes

The default location that SDA uses is initially 0 in the program region (P0) of the
process that was executing at the time the system failed (if you are examining
a crash dump) or your process (if you are examining the running system).
Subsequent uses of the EXAMINE command with no parameter specified increase
the last address examined by 8. Use of the /INSTRUCTION qualifier increases
the default address by 4. To examine memory locations of other processes, you
must use the SET PROCESS command.

Qualifiers

/ALL
Examines all the locations in the program, and control regions and parts of
the writable system region, displaying the contents of memory in hexadecimal
longwords. Do not specify parameters when you use this qualifier.

/CONDITION_VALUE
Examines the specified longword, displaying the message the $GETMSG system
service obtains for the value in the longword.

/INSTRUCTION
Translates the specified range of memory locations into assembly instruction
format. Each symbol in the EXAMINE expression that is defined as a procedure
descriptor is replaced with the code entry point address of that procedure, unless
you also specify the /NOPD qualifier.

/NOPD
Can be used with the /INSTRUCTION qualifier to override treating symbols
as procedure descriptors. The qualifier can be placed immediately after the
/INSTRUCTION qualifier, or following a symbol name.

/NOSUPPRESS
Inhibits the suppression of zeros when displaying memory with one of the
following qualifiers: /ALL, /P0, /P1, /SYSTEM.

SDA–55

SDA Commands
EXAMINE

/P0
Displays the entire program region for the default process. Do not specify
parameters when you use this qualifier.

/P1
Displays the entire control region for the default process. Do not specify
parameters when you use this qualifier.

/PD
Causes the EXAMINE command to treat the location specified in the EXAMINE
command as a procedure descriptor (PD). PD can also be used to qualify symbols.

/PHYSICAL
Examines physical addresses. The /PHYSICAL qualifier cannot be used in
combination with the /P0, /P1, or /SYSTEM qualifiers.

/PS
Examines the specified quadword, displaying its contents in the format of
a processor status. This qualifier must precede any parameters used in the
command line.

/PTE
Interprets and displays the specified quadword as a page table entry (PTE). The
display separates individual fields of the PTE and provides an overall description
of the PTE’s type.

/SYSTEM
Displays portions of the writable system region. Do not specify parameters when
you use this qualifier.

/TIME
Examines the specified quadword, displaying its contents in the format of a
system-date-and-time quadword.

Description

The following sections describe how to use the EXAMINE command.

Examining Locations
When you use the EXAMINE command to look at a location, SDA displays the
location in symbolic notation (symbolic name plus offset), if possible, and its
contents in hexadecimal and ASCII formats:

SDA> EXAMINE G6605C0
806605C0: 64646464.64646464 "dddddddd"

If the ASCII character that corresponds to the value contained in a byte is not
printable, SDA displays a period (.). If the specified location does not exist in
memory, SDA displays this message:

%SDA-E-NOTINPHYS, address : virtual data not in physical memory

SDA–56

SDA Commands
EXAMINE

To examine a range of locations, you can designate starting and ending locations
separated by a colon. For example:

SDA> EXAMINE G40:G200

Alternatively, you can specify a location and a length, in bytes, separated by a
semicolon. For example:

SDA> EXAMINE G400;16

When used to display the contents of a range of locations, the EXAMINE
command displays six columns of information:

• Each of the first four columns represents a longword of memory, the contents
of which are displayed in hexadecimal format.

• The fifth column lists the ASCII value of each byte in each longword displayed
in the previous four columns.

• The sixth column contains the address of the first, or rightmost, longword
in each line. This address is also the address of the first, or leftmost,
character in the ASCII representation of the longwords. Thus, you read
the hexadecimal dump display from right to left, and the ASCII display from
left to right.

If a series of virtual addresses does not exist in physical memory, SDA displays a
message specifying the range of addresses that were not translated.

If a range of virtual locations contains only zeros, SDA displays this message:

Zeros suppressed from ’loc1 ’ to ’loc2 ’

Decoding Locations
You can translate the contents of memory locations into instruction format by
using the /INSTRUCTION qualifier. This qualifier causes SDA to display the
location in symbolic notation (if possible) and its contents in instruction format.
The operands of decoded instructions are also displayed in symbolic notation. The
location must be longword assigned.

Examining Memory Regions
You can display an entire region of virtual memory by using one or more of the
qualifiers /ALL, /SYSTEM, /P0, and /P1 with the EXAMINE command.

Other Uses
Other uses of the EXAMINE command appear in the following examples.

SDA–57

SDA Commands
EXAMINE

Examples

1. SDA> EXAMINE/PS 7FF95E78
MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD
0 00 00000000000 08 0 0 KERN 0 EXEC

This example shows the display produced by the EXAMINE/PS command.

2. SDA>EXAMINE/PTE @^QMMG$GG_L1_BASE

3 3 2 2 2 1 1 1
1 0 9 7 0 8 6 5 7 6 0

+-+-+--+--------------+-+-+---+-+---------------+-+-----------+-+
|0|1|00| 0000 |0|X| 00|0| 11 |X| 04 |1|
+-+-+--+--------------+-+-+---+-+---------------+-+-----------+-+
| 00000C37 |
+---+
Valid PTE: Read Prot = K---, Write Prot = K---

Owner = K, Fault on = -E--, ASM = 00, Granularity Hint = 00
CPY = 00 PFN = 00000C37

The EXAMINE/PTE command displays and formats the level 1 page table
entry at FFFFFFFF.FF7FC000.

SDA–58

SDA Commands
EXIT

EXIT

Exits from an SDA display or exits from the SDA utility.

Format

EXIT

Parameters

None.

Qualifiers

None.

Description

If SDA is displaying information on a video display terminal—and if that
information extends beyond one screen—SDA displays a screen overflow
prompt at the bottom of the screen:

Press RETURN for more.
SDA>

If you want to discontinue the current display at this point, enter the EXIT
command. If you want SDA to execute another command, enter that command.
SDA discontinues the display as if you entered EXIT, and then executes the
command you entered.

When the SDA> prompt is not immediately preceded by the screen overflow
prompt, entering EXIT causes your process to cease executing the SDA utility.
When issued within a command procedure (either the SDA initialization file or a
command procedure invoked with the execute command (@)), EXIT causes SDA to
terminate execution of the procedure and return to the SDA prompt.

SDA–59

SDA Commands
FORMAT

FORMAT

Displays a formatted list of the contents of a block of memory.

Format

FORMAT [/TYPE=block-type] location [/PHYSICAL]

Parameter

location
Location of the beginning of the data block. The location can be given as any
valid SDA expression.

Qualifiers

/TYPE=block-type
Forces SDA to characterize and format a data block at location as the specified
type of data structure. The /TYPE qualifier thus overrides the default behavior
of the FORMAT command in determining the type of a data block, as described
in the Description section. The block-type can be the symbolic prefix of any data
structure defined by the operating system.

/PHYSICAL
Specifies that the location given is a physical address.

Description

The FORMAT command performs the following actions:

• Characterizes a range of locations as a system data block

• Assigns, if possible, a symbol to each item of data within the block

• Displays all the data within the block

Normally, you use the FORMAT command without the /TYPE qualifier. Used in
this manner, it examines the byte in the structure that contains the type of the
structure. In most OpenVMS Alpha data structures, this byte occurs at an offset
of 0A16 into the structure. If this byte does not contain a valid block type, the
FORMAT command displays the following message:

%SDA-E-INVBLKTYP, invalid block type in specified block

However, if this byte does contain a valid block type, SDA checks the next byte
(offset 0B16) for a secondary block type. When SDA has determined the type of
block, it searches for the symbols that correspond to that type of block.

If SDA cannot find the symbols associated with the block type it has found (or
that you specified in the /TYPE qualifier), it issues this message:

%SDA-E-NOSYMBOLS, no "block-type" symbols found to format this block

If you receive this message, you may want to read additional symbols into
the SDA symbol table and retry the FORMAT command. Many symbols that
define OpenVMS Alpha data structures are contained within SDA$READ_
DIR:SYSDEF.STB. Thus, you would issue the following command:

SDA> READ SDA$READ_DIR:SYSDEF.STB

SDA–60

SDA Commands
FORMAT

If SDA issues the same message again, try reading additional symbols.
Table SDA–4 lists additional modules provided by the OpenVMS operating
system. Alternatively, you can create your own object modules with the MACRO-
32 Compiler for OpenVMS Alpha.

Certain OpenVMS Alpha data structures do not contain a block type at offset
0A16. If this byte contains information other than a block type—or the byte
does not contain a valid block type—SDA either formats the block in a totally
inappropriate way, based on the contents of 0A16 and 0B16, or displays this
message:

%SDA-E-INVBLKTYP, invalid block type in specified block

To format such a block, you must reissue the FORMAT command, using the
/TYPE qualifier to designate a block-type.

The FORMAT command produces a 3-column display:

• The first column shows the virtual address of each item within the block.

• The second column lists each symbolic name associated with a location within
the block.

• The third column shows the contents of each item in hexadecimal format.

Example

SDA>READ SDA$READ_DIR:SYSDEF.STB
%SDA-I-READSYM, 913 symbols read from SYS$COMMON:[SYS$LDR]SYSDEF.STB
SDA>FORMAT G41F818
FFFFFFFF.8041F818 UCB$L_FQFL 8041F818 UCB

UCB$L_MB_MSGQFL
UCB$L_RQFL
UCB$W_MB_SEED
UCB$W_UNIT_SEED

FFFFFFFF.8041F81C UCB$L_FQBL 8041F818 UCB
UCB$L_MB_MSGQBL
UCB$L_RQBL

FFFFFFFF.8041F820 UCB$W_SIZE 0110
FFFFFFFF.8041F822 UCB$B_TYPE 10
FFFFFFFF.8041F823 UCB$B_FLCK 2C
FFFFFFFF.8041F824 UCB$L_ASTQFL 00000000

UCB$L_FPC
UCB$L_MB_W_AST
UCB$T_PARTNER

.

.

.

The READ command loads into SDA’s symbol table the symbols from
SDA$READ_DIR:SYSDEF.STB. The FORMAT command displays the data
structure that begins at G41F81816, a unit control block (UCB). If a field has
more than one symbolic name, all such names are displayed. Thus, the field that
starts at 8041F82416 has four designations: UCBL_ASTQFL, UCBL_FPC,
UCB$L_MB_W_AST, and UCB$T_PARTNER.

The contents of each field appear to the right of the symbolic name of the field.
Thus, the contents of UCB$L_FQBL are 8041F81816.

SDA–61

SDA Commands
HELP

HELP

Displays information about the SDA utility, its operation, and the format of its
commands.

Format

HELP [command-name]

Parameter

command-name
Command for which you need information.

You can also specify the following keywords in place of command-name:

Keyword Function

CPU_CONTEXT Describes the concept of CPU context as it governs
the behavior of SDA.

EXECUTE_COMMAND Describes the use of @ file to execute SDA commands
contained in a file.

EXPRESSIONS Prints a description of SDA expressions.
INITIALIZATION Describes the circumstances under which SDA

executes an initialization file when first invoked.
OPERATION Describes how to operate SDA at your terminal and

by means of the site-specific startup procedure.
PROCESS_CONTEXT Describes the concept of process context as it governs

the behavior of SDA.
SYMBOLS Describes the symbols used by SDA.

Qualifiers

None.

Description

The HELP command displays brief descriptions of SDA commands and concepts
on the terminal screen (or sends these descriptions to the file designated in a SET
OUTPUT command). You can request additional information by specifying the
name of a topic in response to the Topic? prompt.

If you do not specify a parameter in the HELP command, it lists those commands
and topics for which you can request help, as follows:

Information available:

ATTACH CLUE COPY CPU_Context DEFINE EVALUATE EXAMINE
Execute_Command EXIT Expressions FORMAT HELP
Initialization MAP Operation Process_Context READ
REPEAT SEARCH SET SHOW SPAWN Symbols VALIDATE

Topic?

SDA–62

SDA Commands
MAP

MAP

Transforms an address into an offset in a particular image.

Format

MAP address

Parameter

address
Address to be identified.

Qualifiers

None.

Description

The MAP command identifies the image name and offset corresponding to an
address. With this information, you can examine the image map to locate the
source module and program section offset corresponding to an address. MAP
searches for the specified address in executive images first. It then checks
activated images in process space to include those images installed using the
/RESIDENT qualifier of the Install utility. Finally, it checks all image-resident
sections in system space.

If the address cannot be found, MAP displays the following message:

%SDA-E-NOTINIMAGE, Address not within a system/installed image

Examples

1. SDA> MAP G90308
Image Base End Image Offset
SYS$VM
Nonpaged read only 80090000 800ABA00 00000308

Examining the image map identified by this MAP command (SYS$VM.MAP)
shows that image offset 308 falls within psect EXEC$HI_USE_PAGEABLE_
CODE because the psect goes from offset 0 to offset 45D3:

Psect Name Module Name Base End Length Align
---------- ----------- ---- --- ------ -----

$CODE$ 00000000 00000000 00000000 (0.) QUAD 3 . . .
BUGCHECK_CODES 00000000 00000000 00000000 (0.) QUAD 3

$GLOBAL$ 00000000 00000000 00000000 (0.) QUAD 3 . . .
BUGCHECK_CODES 00000000 00000000 00000000 (0.) QUAD 3

$LINK$ 00000000 00000000 00000000 (0.) QUAD 3 . . .
BUGCHECK_CODES 00000000 00000000 00000000 (0.) QUAD 3

OWN 00000000 00000000 00000000 (0.) QUAD 3 . . .
BUGCHECK_CODES 00000000 00000000 00000000 (0.) QUAD 3

$PLIT$ 00000000 00000000 00000000 (0.) QUAD 3 . . .
BUGCHECK_CODES 00000000 00000000 00000000 (0.) QUAD 3

. LITERAL . 00000000 00000000 00000000 (0.) QUAD 3 . . .
BUGCHECK_CODES 00000000 00000000 00000000 (0.) QUAD 3

SDA–63

SDA Commands
MAP

. BLANK . 00000000 00000000 00000000 (0.) OCTA 4 . . .
SYS$DOINIT 00000000 00000000 00000000 (0.) OCTA 4
EXECUTE_FAULT 00000000 00000000 00000000 (0.) OCTA 4
GSD_ROUTINES 00000000 00000000 00000000 (0.) OCTA 4
IOLOCK 00000000 00000000 00000000 (0.) OCTA 4

.

.

.
EXEC$HI_USE_PAGEABLE_CODE 00000000 000045D3 000045D4 (17876.) 2 ** 5 . . .

SYSCREDEL 00000000 0000149B 0000149C (5276.) 2 ** 5
SYSCRMPSC 000014A0 000045D3 00003134 (12596.) 2 ** 5

EXEC$NONPAGED_CODE 000045E0 0001B8B3 000172D4 (94932.) 2 ** 5 . . .
EXECUTE_FAULT 000045E0 0000483B 0000025C (604.) 2 ** 5
IOLOCK 00004840 000052E7 00000AA8 (2728.) 2 ** 5
LOCK_SYSTEM_PAGES

.

.

.

Specifically, image offset 308 is located within source module SYSCREDEL.
Therefore, to locate the corresponding code, you would look in SYSCREDEL
for offset 308 in psect EXEC$HI_USE_PAGEABLE_CODE.

2. SDA> MAP G550000
Image Base End Image Offset
SYS$DKDRIVER 80548000 80558000 00008000

In this example, the MAP command identifies the address as an offset into
an executive image that is not sliced. The base and end addresses are the
boundaries of the image.

3. SDA> MAP G550034
Image Base End Image Offset
SYS$DUDRIVER

Nonpaged read/write 80550000 80551400 00008034

In this example, the MAP command identifies the address as an offset into an
executive image that is sliced. The base and end addresses are the boundaries
of the image section that contains the address of interest.

4. SDA> MAP GF0040
Image Resident Section Base End Image Offset
MAILSHR 800F0000 80119000 00000040

The MAP command identifies the address as an offset into an image-resident
section residing in system space.

5. SDA> MAP 12000
Activated Image Base End Image Offset
MAIL 00010000 000809FF 00002000

The MAP command identifies the address as an offset into an activated image
residing in process-private space.

SDA–64

SDA Commands
MAP

6. SDA> MAP B2340
Compressed Data Section Base End Image Offset
LIBRTL 000B2000 000B6400 00080340

The MAP command identifies the address as being within a compressed
data section. When an image is installed with the Install utility using the
/RESIDENT qualifier, the code sections are mapped in system space. The data
sections are compressed into process-private space to reduce null pages or
holes in the address space left by the absence of the code section. The SHOW
PROCESS/IMAGE display shows how the data has been compressed; the
MAP command searches this information to map an address in a compressed
data section to an offset in an image.

7. SDA> MAP 7FC06000
Shareable Address Data Section Base End Image Offset
LIBRTL 7FC06000 7FC16800 00090000

The MAP command identifies the address as an offset into a shareable
address data section residing in P1 space.

8. SDA> MAP 7FC26000
Read-Write Data Section Base End Image Offset
LIBRTL 7FC26000 7FC27000 000B0000

The MAP command identifies the address as an offset into a read-write data
section residing in P1 space.

9. SDA> MAP 7FC36000
Shareable Read-Only Data Section Base End Image Offset
LIBRTL 7FC36000 7FC3F600 000C0000

The MAP command identifies the address as an offset into a shareable
read-only data section residing in P1 space.

10. SDA> MAP 7FC56000
Demand Zero Data Section Base End Image Offset
LIBRTL 7FC56000 7FC57000 000E0000

The MAP command identifies the address as an offset into a demand zero
data section residing in P1 space.

SDA–65

SDA Commands
MODIFY DUMP

MODIFY DUMP

Allows a given byte, word, longword, or quadword in the dump to be modified.

Format

MODIFY DUMP {/BLOCK=n/OFFSET=n | /NEXT} [/CONFIRM=n]
{/BYTE | /WORD | /LONGWORD (d) | /QUADWORD}

Parameter

value
The new value deposited in the specified location in the dump file.

Qualifiers

/BLOCK=n
Block number to be modified. Required unless the /NEXT qualifier is given.

/OFFSET=n
Byte offset within block to be modified. Required unless the /NEXT qualifier is
given.

/CONFIRM=n
Checks existing contents of location to be modified.

/NEXT
Indicates that the byte(s) immediately following the location altered by the
previous MODIFY DUMP command is/are to be modified. Is used instead of the
/BLOCK=n and /OFFSET=n qualifiers.

/BYTE
Indicates that only a single byte is to be replaced.

/WORD
Indicates that a word is to be replaced.

/LONGWORD
Indicates that a longword is to be replaced. This is the default.

/QUADWORD
Indicates that a quadword is to be replaced.

Description

The MODIFY DUMP command is used on a dump file that cannot be analyzed
without specifying the /OVERRIDE qualifier on the ANALYZE/CRASH_DUMP
command. The MODIFY DUMP command corrects the problem that prevents
normal analysis of a dump file. The MODIFY DUMP command can only be used
when SDA has been invoked with the ANALYZE/CRASH_DUMP/ OVERRIDE
command.

SDA–66

SDA Commands
MODIFY DUMP

Important

This command is not intended for general use. It is provided for the
benefit of Digital support personnel when investigating crash dumps that
cannot be analyzed in other ways.

Note that if the block being modified is part of the dump header, the error
log buffers, or the compression map, the changes made are not seen when the
appropriate SHOW DUMP command is issued, unless you first exit from SDA
and then reissue the ANALYZE/CRASH_DUMP command.

The MODIFY DUMP command sets a bit in the dump header to indicate that
the dump has been modified. Subsequent ANALYZE/CRASH_DUMP commands
issued to that file produce the following warning message:

%SDA-W-DUMPMOD, dump has been modified

Example

SDA> MODIFY DUMP/BLOCK=10/OFFSET=100/WORD FF

This example shows the dump file modified with word value of 0000 at offset 100
in block 00000010 replaced by 00FF.

SDA> MODIFY DUMP/BLOCK=10/OFFSET=100/WORD 0/CONFIRM=EE

This example shows that the actual word value of 00FF at offset 100 in
block 00000010 does not match given value of 00EE. The following message
is displayed:

%SDA-E-NOMATCH, expected value does not match value in dump; dump not updated

SDA> MODIFY DUMP/BLOCK=10/OFFSET=100/WORD 0/CONFIRM=FF

This example shows the dump file modified with a word value of 00FF at offset
100 in block 00000010 replaced by 0000.

SDA–67

SDA Commands
READ

READ

Loads the global symbols contained in the specified file into the SDA symbol
table.

Format

READ [/LOG | /NOLOG | /RELOCATE =expression | /SYMVA=expression]
{/EXECUTIVE [directory spec] | /FORCE filespec
| /IMAGE filespec | filespec}

Parameters

directory-spec
The directory-spec is the name of the directory containing the loadable images
of the executive. This parameter defaults to SDA$READ_DIR which is a search
list of SYS$LOADABLE_IMAGES and SYS$LIBRARY.

filespec
Name of the device, directory, and file that contains the file from which you
want to read global symbols. The filespec defaults to SYS$DISK:[default-
dir]filename.type, where SYS$DISK and [default-dir] represent the disk and
directory specified in your last DCL command SET DEFAULT. If no type has been
given in filespec, SDA first tries .STB and then .EXE.

If no device or directory is given in the file specification, and the file specification
is not found in SYS$DISK:[default_dir], then SDA attempts to open the file
SDA$READ_DIR:filename.type. If no type has been given in filespec, SDA first
tries .STB and then .EXE.

If the file name is the same as that of an execlet or image, but the symbols in the
file are not those of the execlet or image, then you must use the /FORCE qualifier,
and optionally /RELOCATE and /SYMVA qualifiers, to tell SDA how to interpret
the symbols in the file.

Qualifiers

/EXECUTIVE directory-spec
Reads into the SDA symbol table all global symbols and global entry points
defined within all loadable images that make up the executive. For all the
execlets in the system, SDA reads the .STB or .EXE files in the requested
directory.

/FORCE filespec
Forces SDA to read the symbols file, regardless of what other information or
qualifiers are specified. If you do not specify the /FORCE qualifier, SDA may not
read the symbols file if the specified filespec matches the image name in either
the executive loaded images or the current processes activated image list, and one
of the following conditions is true:

• The image has a symbols vector (is a shareable image), and a symbols vector
was not specified with the /SYMVA or /IMAGE qualifier.

• The image is sliced, and slicing information was not provided with the
/IMAGE qualifier.

SDA–68

SDA Commands
READ

• The shareable or executive image is not loaded at the same address it was
linked at, and the relocation information was not provided with either the
/IMAGE or /RELOCATE qualifier.

The use of /FORCE [/SYMVA=addr][/RELOCATE=addr] file spec is a variant of
the /IMAGE qualifier and avoids fixing up the symbols to match an image of the
same name.

/IMAGE filespec
Searches the executive loaded image list and the current process activated image
list for the image specified by filespec. If the image is found, the symbols are
read in using the image symbol vector (if there is one) and either slicing or
relocation information.

This is the preferred way to read in the .STB files produced by the linker.
These .STB files contain all universal and global symbols, unless SYMBOL_
TABLE=GLOBAL is in the linker options file, in which case the .STB file contains
global symbols only.

/LOG
/NOLOG
The /LOG qualifier causes SDA to output the %SDA-I-READSYM message for
each symbol table file it reads. This is the default. The /LOG qualifier can be
specified with any other combination of parameter and qualifier.

The /NOLOG qualifier suppresses the output of the %SDA-I-READSYM messages.
The /NOLOG qualifier can be specified with any other combination of parameter
and qualifier.

/RELOCATE=expression
Changes the relative addresses of the symbols to absolute addresses by adding
the value of expression to the value of each symbol in the symbol-table file to be
read. This qualifier changes those addresses to absolute addresses in the address
space into which the dump is mapped.

The relocation only applies to symbols with the relocate flag set. All universal
symbols must be found in the symbol vector for the image. All constants are read
in without any relocation.

If the image is sliced (image sections are placed in memory at different relative
offsets than how the image is linked), then the /RELOCATE qualifier does not
work. SDA compares the file name used as a parameter to the READ command
against all the image names in the executive loaded image list and the current
processes activated image list. If a match is found, and that image contains a
symbol vector, an error results. At this point you can either use the /FORCE
qualifier or the /IMAGE qualifier to override the error.

/SYMVA=expression
Informs SDA whether the absolute symbol vector address is for a shareable
image (SYS$PUBLIC_VECTORS.EXE) or base system image (SYS$BASE_
IMAGE.EXE). All symbols found in the file with the universal flag are found by
referencing the symbol vector (that is, the symbol value is a symbol vector offset).

SDA–69

SDA Commands
READ

Description

The READ command symbolically identifies locations in memory and the
definitions used by SDA for which the default files (SDA$READ_DIR:SYS$BASE_
IMAGE.EXE and SDA$READ_DIR:REQSYSDEF.STB) provide no definition. In
other words, the required global symbols are located in modules and symbol
tables that have been compiled and/or linked separately from the executive. SDA
extracts no local symbols from the files.

The file specified in the READ command can be the output of a compiler or
assembler (for example, an .OBJ file).

Note

READ can read both OpenVMS VAX and OpenVMS Alpha format files.
READ should not be used to read OpenVMS VAX format files that
contain VAX specific symbols, as this might change the behavior of other
OpenVMS Alpha SDA commands.

Most often the file is provided in SYS$LOADABLE_IMAGES. Many SDA
applications, for instance, need to load the definitions of system data structures
by issuing a READ command specifying SYSDEF.STB. Others require the
definitions of specific global entry points within the executive image.

Table SDA–4 lists the files that OpenVMS Alpha provides in SYS$LOADABLE_
IMAGES that define data structure offsets.

Table SDA–9 lists the files in SYS$LOADABLE_IMAGES that define global
locations within executive images.

Table SDA–9 Modules Defining Global Locations Within Executive Image

File Contents

DDIF$RMS_EXTENSION.EXE Support for Digital Document
Interchange Format (DDIF) file
operations.

ERRORLOG.STB Error-logging routines and system
services

EXCEPTION.STB Bugcheck and exception-handling
routines and those system services
that declare condition and exit
handlers

EXEC_INIT.STB Initialization code
F11BXQP.STB File system support
IMAGE_MANAGEMENT.STB Image activator and the related

system services
IO_ROUTINES.STB $QIO system service, related

system services (for example,
$CANCEL and $ASSIGN), and
supporting routines

(continued on next page)

SDA–70

SDA Commands
READ

Table SDA–9 (Cont.) Modules Defining Global Locations Within Executive
Image

File Contents

LOCKING.STB Lock management routines and
system services

LOGICAL_NAMES.STB Logical name routines and system
services

MESSAGE_ROUTINES.STB System message routines and
system services (including
$SNDJBC and $GETTIM)

PROCESS_MANAGEMENT.STB Scheduler, report system event,
and supporting routines and
system services

RECOVERY_UNIT_SERVICES.STB Recovery unit system services
RMS.STB Global symbols and entry points

for RMS
SECURITY.STB Security management routines

and system services
SHELLxxK.STB Process shell
SYS$xxDRIVER.EXE Run-time device drivers
SYS$CPU_ROUTINES_xxx.EXE Processor-specific data and

initialization routines
SYS$NETWORK_SERVICES.EXE DECnet support
SYS$PUBLIC_VECTORS.EXE1 System service vector base image
SYS$VCC.STB Virtual I/O cache
SYS$VM.STB System pager and swapper, along

with their supporting routines,
and management system services

SYSDEVICE.STB Mailbox driver and null driver
SYSGETSYI.STB Get System Information system

service ($GETSYI)
SYSLDR_DYN.STB Dynamic executive image loader
SYSLICENSE.STB Licensing system service

($LICENSE)
SYSTEM_PRIMITIVES*.STB Miscellaneous basic system

routines, including those that
allocate system memory, maintain
system time, create fork processes,
and control mutex acquisition

SYSTEM_SYNCHRONIZATION*.STB Routines that enforce
synchronization

1This file is located in SYS$LIBRARY.

SDA–71

SDA Commands
READ

Examples

1. SDA> READ SDA$READ_DIR:SYSDEF.STB
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYSEXE]SYSDEF.STB;1

The READ command causes SDA to add all the global symbols in SDA$READ_
DIR:SYSDEF.STB to the SDA symbol table. Such symbols are useful when you
are formatting an I/O data structure, such as a unit control block or an I/O
request packet.

2. SDA> SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):

00000000.7FF95CD0 FFFFFFFF.80430CE0 SCH$STATE_TO_COM+00040
00000000.7FF95CD8 00000000.00000000
00000000.7FF95CE0 FFFFFFFF.81E9CB04 LNM$SEARCH_ONE_C+000E4
00000000.7FF95CE8 FFFFFFFF.8007A988 PROCESS_MANAGEMENT_NPRO+0E988

SP =>00000000.7FF95CF0 00000000.00000000
00000000.7FF95CF8 00000000.006080C1
00000000.7FF95D00 FFFFFFFF.80501FDC
00000000.7FF95D08 FFFFFFFF.81A5B720

.

.

.

SDA> READ/IMAGE SYS$LOADABLE_IMAGES:PROCESS_MANAGEMENT
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]PROCESS_MANAGEMENT.STB;1
SDA> SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):

00000000.7FF95CD0 FFFFFFFF.80430CE0 SCH$FIND_NEXT_PROC
00000000.7FF95CD8 00000000.00000000
00000000.7FF95CE0 FFFFFFFF.81E9CB04 LNM$SEARCH_ONE_C+000E4
00000000.7FF95CE8 FFFFFFFF.8007A988 SCH$INTERRUPT+00068

SP =>00000000.7FF95CF0 00000000.00000000
00000000.7FF95CF8 00000000.006080C1
00000000.7FF95D00 FFFFFFFF.80501FDC
00000000.7FF95D08 FFFFFFFF.81A5B720

.

.

.

The initial SHOW STACK command contains an address that SDA resolves
into an offset from the PROCESS_MANAGEMENT executive image. The READ
command loads the corresponding symbols into the SDA symbol table such that
the reissue of the SHOW STACK command subsequently identifies the same
location as an offset within a specific process management routine.

SDA–72

SDA Commands
REPEAT

REPEAT

Repeats execution of the last command issued. On terminal devices, the KP0 key
performs the same function as the REPEAT command.

Format

REPEAT

Parameters

None.

Qualifiers

None.

Description

The REPEAT command is useful for stepping through a linked list of data
structures, or for examining a sequence of memory locations.

Example

SDA> SHOW CALL_FRAME
Call Frame Information

Stack Frame Procedure Descriptor
Flags: Base Register = FP, Jacket, Native

Procedure Entry: FFFFFFFF.80080CE0 MMG$RETRANGE_C+00180
Return address on stack = FFFFFFFF.8004CF30 EXCEPTION_NPRO+00F30

Registers saved on stack

7FF95E80 FFFFFFFF.FFFFFFFD Saved R2
7FF95E88 FFFFFFFF.8042DBC0 Saved R3 EXCEPTION_NPRW+03DC0
7FF95E90 FFFFFFFF.80537240 Saved R4
7FF95E98 00000000.00000000 Saved R5
7FF95EA0 FFFFFFFF.80030960 Saved R6 MMG$IMGRESET_C+00200
7FF95EA8 00000000.7FF95EC0 Saved R7
7FF95EB0 FFFFFFFF.80420E68 Saved R13 MMG$ULKGBLWSL E
7FF95EB8 00000000.7FF95F70 Saved R29

.

.

.
SDA> SHOW CALL_FRAME/NEXT_FP

SDA–73

SDA Commands
REPEAT

Call Frame Information

Stack Frame Procedure Descriptor
Flags: Base Register = FP, Jacket, Native

Procedure Entry: FFFFFFFF.80F018D0 IMAGE_MANAGEMENT_PRO+078D0
Return address on stack = FFFFFFFF.8004CF30 EXCEPTION_NPRO+00F30

Registers saved on stack

7FF95F90 FFFFFFFF.FFFFFFFB Saved R2
7FF95F98 FFFFFFFF.8042DBC0 Saved R3 EXCEPTION_ NPRW+03DC0
7FF95FA0 00000000.00000000 Saved R5
7FF95FA8 00000000.7FF95FC0 Saved R7
7FF95FB0 FFFFFFFF.80EF8D20 Saved R13 ERL$DEVINF O+00C20
7FF95FB8 00000000.7FFA0450 Saved R29

.

.

.
SDA> REPEAT
Call Frame Information

Stack Frame Procedure Descriptor
Flags: Base Register = FP, Jacket, Native

Procedure Entry: FFFFFFFF.80F016A0 IMAGE_MANAGEMENT_PRO+076A0
Return address on stack = 00000000.7FF2451C

Registers saved on stack

7FFA0470 00000000.7FEEA890 Saved R13
7FFA0478 00000000.7FFA0480 Saved R29

.

.

.

The first SHOW CALL_FRAME displays the call frame indicated by the current
FP value. Because the /NEXT_FP qualifier to the instruction displays the call
frame indicated by the saved FP in the current call frame, you can use the
REPEAT command to repeat the SHOW CALL_FRAME/NEXT_FP command and
follow a chain of call frames.

SDA–74

SDA Commands
SEARCH

SEARCH

Scans a range of memory locations for all occurrences of a specified value.

Format

SEARCH [/qualifier] range[=]expression

Parameters

range
Location in memory to be searched. A location can be represented by any valid
SDA expression. To search a range of locations, use the following syntax:

m:n Range of locations to be searched, from m to n
m;n Range of locations to be searched, starting at m and continuing for n bytes

expression
Indication of the value for which SDA is to search. SDA evaluates the
expression and searches the specified range of memory for the resulting
value. For a description of SDA expressions, see Section 5.2.

Qualifiers

/LENGTH={QUADWORD | LONGWORD | WORD | BYTE}
Specifies the size of the expression value that the SEARCH command uses for
matching. If you do not specify the /LENGTH qualifier, the SEARCH command
uses a longword length by default.

/MASK=n
Allows the SEARCH command finer qranularity in its matches. It compares only
the given bits of a byte, word, longword, or quadword. To compare bits when
matching, you set the bits in the mask; to ignore bits when matching, you clear
the bits in the mask.

/STEPS={QUADWORD | LONGWORD | WORD | BYTE}
Specifies the step factor of the search through the specified memory range. After
the SEARCH command has performed the comparison between the value of
expression and memory location, it adds the specified step factor to the address
of the memory location. The resulting location is the next location to undergo the
comparison. If you do not specify the /STEPS qualifier, the SEARCH command
uses a step factor of a longword.

/PHYSICAL
Specifies that the addresses used to define the range of locations to be searched
are physical addresses.

Description

SEARCH displays each location as each value is found. If you press Ctrl/T
while using the SEARCH command, the system displays how far the search has
progressed.

SDA–75

SDA Commands
SEARCH

Examples

1. SDA> SEARCH GB81F0;500 60068
Searching from FFFFFFFF.800B81F0 to FFFFFFFF.800B86F0 in LONGWORD steps for 00060068...
Match at FFFFFFFF.800B8210
SDA>

The SEARCH command finds the value 0060068 in the longword at
FFFFFFFF.800B8210.

2. SDA> SEARCH/STEPS=BYTE 80000000;1000 6
Searching from FFFFFFFF.80000000 to FFFFFFFF.80001000 in BYTE steps for 00000006...
Match at FFFFFFFF.80000A99
SDA>

The SEARCH command finds the value 00000006 in the longword at
FFFFFFFF.80000A99.

3. SDA> SEARCH/LENGTH=WORD 80000000;2000 6
Searching from FFFFFFFF.80000000 to FFFFFFFF.80002000 in LONGWORD steps for 0006...
Match at FFFFFFFF.80000054
Match at FFFFFFFF.800001EC
Match at FFFFFFFF.800012AC
Match at FFFFFFFF.800012B8
SDA>

The SEARCH command finds the value 0006 in the longword locations
FFFFFFFF.80000054, FFFFFFFF.800001EC, FFFFFFFF.800012AC, and
FFFFFFFF.800012B8.

4. SDA> SEARCH/MASK=FF000000 80000000;2000 80000000
Searching from FFFFFFFF.80000000 to FFFFFFFF.80001FFF in LONGWORD steps for 80000000...
Match at FFFFFFFF.80001000
SDA>

The SEARCH command finds the value 80 in the upper byte of longword at
FFFFFFFF.80001000, regardless of the contents of the lower three bytes.

SDA–76

SDA Commands
SET CPU

SET CPU

Selects a processor to become the SDA current CPU.

Format

SET CPU cpu-id

Parameter

cpu-id
Numeric value from 0016 to 1F16 indicating the identity of the processor to be
made the current CPU. If you specify a value outside this range or a cpu-id of a
processor that was not active at the time of the system failure, SDA displays the
following message:

%SDA-E-CPUNOTVLD, CPU not booted or CPU number out of range

Qualifiers

None.

Description

When you invoke SDA to examine a system dump, the SDA current CPU context
defaults to that of the processor that caused the system to fail. When analyzing a
system failure from a multiprocessing system, you may find it useful to examine
the context of another processor in the configuration.

The SET CPU command changes the current SDA CPU context to that of the
processor indicated by cpu-id. The CPU specified by this command becomes the
current CPU for SDA until you exit from SDA or change SDA CPU context by
issuing one of the following commands:

SET CPU cpu-id
SHOW CPU cpu-id
SHOW CRASH
SHOW MACHINE_CHECK cpu-id

The following commands also change SDA CPU context if the process-name,
pcb-address, or index number (nn) refers to a current process:

SET PROCESS process-name
SET PROCESS/ADDRESS=pcb-address
SET PROCESS/INDEX=nn
SET PROCESS/SYSTEM
SHOW PROCESS process-name
SHOW PROCESS/ADDRESS=pcb-address
SHOW PROCESS/INDEX=nn
SHOW PROCESS/SYSTEM

SDA–77

SDA Commands
SET CPU

Changing CPU context can cause an implicit change in process context under the
following circumstances:

• If there is a current process on the CPU made current, SDA changes its
process context to that of that CPU’s current process.

• If there is no current process on the CPU made current, SDA process context
is undefined and no process-specific information is available until you set SDA
process context to that of a specific process.

See Section 4 for further discussion on the way in which SDA maintains its
context information.

You cannot use the SET CPU command when examining the running system with
SDA.

SDA–78

SDA Commands
SET ERASE_SCREEN

SET ERASE_SCREEN

Enables or disables the automatic clearing of the screen before each new page of
SDA output.

Format

SET ERASE_SCREEN {ON | OFF}

Parameter

ON
Enables the screen to be erased before SDA outputs a new heading. This setting
is the default.

OFF
Disables the erasing of the screen.

Qualifiers

None.

Description

SDA’s usual behavior is to erase the screen and then show the data. By setting
the OFF parameter, the clear screen action is replaced by a blank line. This
action does not affect what’s written to a file when the SET LOG or SET OUTPUT
commands are used.

Examples

1. SDA> SET ERASE_SCREEN ON

The clear screen action is now enabled.

2. SDA>SET ERASE_SCREEN OFF

The clear screen action is disabled.

SDA–79

SDA Commands
SET FETCH

SET FETCH

Sets the default size of address data manipulated by the EXAMINE and
EVALUATE commands.

Format

SET FETCH [{QUADWORD | LONGWORD | WORD | BYTE}][,][{PHYSICAL | VIRTUAL}]

Parameter

QUADWORD
Sets the default size to 8 bytes.

LONGWORD
Sets the default size to 4 bytes.

WORD
Sets the default size to 2 bytes.

BYTE
Sets the default size to 1 byte.

PHYSICAL
Sets the default access method to physical addresses.

VIRTUAL
Set the default access method to virtual addresses.

Note

One and only one parameter out of each group can be specified. If both
size and access method are to be changed, the two parameters should be
separated by spaces and/or a comma. A comma may only be included if a
parameter from both groups is specified. See examples 5 and 6.

Qualifiers

None.

Description

Sets the default size of address data manipulated by EXAMINE and EVALUATE
commands. SDA uses the current default size unless it is overridden by use of
the ^Q, ^L, ^W, or ^B qualifier on the @ unary operator in an expression.

This command also can set the default access method for address data
manipulated by EXAMINE and EVALUATE commands. SDA uses the current
default access method unless it is overridden by use of the ^P or ^V qualifier on
the @ unary operator in an expression.

SDA–80

SDA Commands
SET FETCH

Examples

1. SDA> EXAMINE MMG$GQ_SHARED_VA_PTES
MMG$GQ_SHARED_VA_PTES: FFFFFFFD.FF7FE000 ".‘a....."

This shows the location’s contents of a 64-bit virtual address.

2. SDA>SET FETCH LONG
SDA>EXAMINE @MMG$GQ_SHARED_VA_PTES
%SDA-E-NOTINPHYS, FFFFFFFF.FF7FE000 : virtual data not in physical memory

This shows a failure because the SET FETCH LONG causes SDA to assume
it should take the lower 32 bits of the location’s contents as a longword value,
sign extend them, and use that value as an address.

3. SDA>EXAMINE @^QMMG$GQ_SHARED_VA_PTES
FFFFFFFD.FF7FE000: 000001D0.40001119 "...@..."

This shows the correct results by overriding the SET FETCH LONG with the
^Q qualifier on the @ operator. SDA takes the full 64-bits of the location’s
contents and uses that value as an address.

4. SDA>SET FETCH QUAD
SDA>EXAMINE @MMG$GQ_SHARED_VA_PTES
FFFFFFFD.FF7FE000: 000001D0.40001119 "...@..."

This shows the correct results by changing the default fetch size to a
quadword.

5. SDA>SET FETCH /PHYSICAL
SDA>EXAMINE /PHYSICAL @0

This command uses the contents of the physical location 0 as the physical
address of the location to be examined.

6. SDA>SET FETCH QUADWORD, PHYSICAL

This command sets the default fetch size and default access method at the
same time.

SDA–81

SDA Commands
SET LOG

SET LOG

Initiates or discontinues the recording of an SDA session in a text file.

Format

SET [NO]LOG filespec

Parameter

filespec
Name of the file in which you want SDA to log your commands and their output.
The default filespec is SYS$DISK:[default_dir]filename.LOG, where SYS$DISK
and [default-dir] represent the disk and directory specified in your last DCL
command SET DEFAULT. You must specify a file name.

Qualifiers

None.

Description

The SET LOG command echoes the commands and output of an SDA session to a
log file. The SET NOLOG command terminates this behavior.

The following differences exist between the SET LOG command and the SET
OUTPUT command:

• When logging is in effect, your commands and their results are still displayed
on your terminal. The SET OUTPUT command causes the displays to be
redirected to the output file such that they no longer appear on the screen.

• If an SDA command requires that you press Return to produce successive
screens of display, the log file produced by SET LOG will record only those
screens that are actually displayed. SET OUTPUT, however, sends the entire
output of all SDA commands to its listing file.

• The SET LOG command produces a log file with a default file type of .LOG;
the SET OUTPUT command produces a listing file whose default file type is
.LIS.

• The SET LOG command does not record output from the HELP command
in its log file. The SET OUTPUT command can record HELP output in its
listing file.

• The SET LOG command does not record SDA error messages in its log file.
The SET OUTPUT command can record SDA error messages in its listing file.

• The SET OUTPUT command generates a table of contents, each item of
which refers to a display written to its listing file. SET OUTPUT also
produces running heads for each page of output. The SET LOG command
does not produce these items in its log file.

Note that, if you have used the SET OUTPUT command to redirect output to a
listing file, you cannot use a SET LOG command to direct the same output to a
log file.

SDA–82

SDA Commands
SET OUTPUT

SET OUTPUT

Redirects output from SDA to the specified file or device.

Format

SET OUTPUT [/INDEX | /NOINDEX] filespec

Parameter

filespec
Name of the file to which SDA is to send the output generated by its commands.
The default filespec is SYS$DISK:[default_dir]filename.LIS, where SYS$DISK
and [default-dir] represent the disk and directory specified in your last DCL
command SET DEFAULT. You must specify a file name.

Qualifiers

/INDEX
/NOINDEX
The /INDEX qualifer causes SDA to include an index page at the beginning of the
output file. This is the default. The /NOINDEX qualifier causes SDA to omit the
index page from the output file.

Description

When you use the SET OUTPUT command to send the SDA output to a file or
device, SDA continues displaying the SDA commands that you enter but sends
the output generated by those commands to the file or device you specify. (See the
description of the SET LOG command for a list of differences between the SET
LOG and SET OUTPUT commands.)

When you finish directing SDA commands to an output file and want to return to
interactive display, issue the following command:

SDA> SET OUTPUT SYS$OUTPUT

If you use the SET OUTPUT command to send the SDA output to a listing file,
SDA builds a table of contents that identifies the displays you selected and places
the table of contents at the beginning of the output file. The SET OUTPUT
command formats the output into pages and produces a running head at the top
of each page.

SDA–83

SDA Commands
SET PROCESS

SET PROCESS

Selects a process to become the SDA current process.

Format

SET PROCESS {/ADDRESS=pcb-address | process-name | /ID=nn |
/INDEX=nn | /SYSTEM}

Parameter

process-name
Name of the process to become the SDA current process. The process-name is
a string containing up to 15 uppercase or lowercase characters; numerals, the
dollar sign ($), and the underscore (_) can also be included in the string. If
you include characters other than these, you must enclose the entire string in
quotation marks (" ").

Qualifiers

/ADDRESS=pcb-address
Specifies the process control block (PCB) address of a process in order to display
information about the process.

/ID=nn
/INDEX=nn
Specifies the process for which information is to be displayed by its index into
the system’s list of software process control blocks (PCBs), or by its process
identification. You can supply the following values for nn:

• The process index itself

• The process identification (PID) or extended PID longword, from which SDA
extracts the correct index

To obtain these values for any given process, issue the SDA command SHOW
SUMMARY. The /ID=nn and /INDEX=nn qualifiers can be used interchangeably.

/SYSTEM
Specifies the new current process by the system process control block (PCB). The
system PCB and process header (PHD) parallel the data structures that describe
processes. They contain the system working set list, global section table, and
other systemwide data.

Description

When you issue an SDA command such as EXAMINE, SDA displays the contents
of memory locations in its current process. To display any information about
another process, you must change the current process with the SET PROCESS
command.

When you invoke SDA to analyze a crash dump, the process context defaults
to that of the process that was current at the time of the system failure. If the
failure occurred on a multiprocessing system, SDA sets the CPU context to that
of the processor that caused the system to fail. The process context is set to that
of the process that was current on that processor.

SDA–84

SDA Commands
SET PROCESS

When you invoke SDA to analyze a running system, its process context defaults
to that of the current process, that is, the one executing SDA.

The SET PROCESS command changes the current SDA process context to that
of the process indicated by process-name, pcb-address, or /INDEX=nn. The
process specified by this command becomes the current process for SDA until
you exit from SDA or change SDA process context by issuing one of the following
commands:

SET PROCESS process-name
SET PROCESS/ADDRESS=pcb-address
SET PROCESS/INDEX=nn
SET PROCESS/SYSTEM
SHOW PROCESS process-name
SHOW PROCESS/ADDRESS=pcb-address
SHOW PROCESS/INDEX=nn
SHOW PROCESS/SYSTEM

When you analyze a crash dump from a multiprocessing system, changing process
context may require a switch of CPU context as well. For instance, if you issue
a SET PROCESS command for a process that is current on another CPU, SDA
automatically changes its CPU context to that of the CPU on which that process
is current. The following commands can have this effect if process-name,
pcb-address, or index number (nn) refers to a current process:

SET PROCESS process-name
SET PROCESS/ADDRESS=pcb-address
SET PROCESS/INDEX=nn
SET PROCESS/SYSTEM
SHOW PROCESS process-name
SHOW PROCESS/ADDRESS=pcb-address
SHOW PROCESS/INDEX=nn
SHOW PROCESS/SYSTEM

See Section 4 for further discussion on the way in which SDA maintains its
context information.

SDA–85

SDA Commands
SET PROCESS

Example

SDA> SHOW PROCESS
Process index: 0012 Name: ERRFMT Extended PID: 00000052

Process status: 02040001 RES,PHDRES,INTER

status2: 00000001 QUANTUM_RESCHED

PCB address 80D772CO JIB address 80556600
PHD address 80477200 Swapfile disk address 01000F01
KTB vector address 80D775AC HWPCB address 81260080
Callback vector address 00000000 Termination mailbox 0000
Master internal PID 00010004 Subprocess count 0
Creator extended PID 00000000 Creator internal PID 00000000
Previous CPU Id 00000000 Current CPU Id 00000000
Previous ASNSEQ 0000000000000001 Previous ASN 000000000000002E
Initial process priority 4 Delete pending count 0
open files allowed left 100 Direct I/O count/limit 150/150
UIC [00001,000004] Buffered I/O count/limit 149/150
Abs time of last event 0069D34E BUFIO byte count/limit 99424/99808
AST’s remaining 247 # of threads 1
Swapped copy of LEFC0 00000000 Timer entries allowed left 63
Swapped copy of LEFC1 00000000 Active page table count 4
Global cluster 2 pointer 00000000 Process WS page count 32
Global cluster 3 pointer 00000000 Global WS page count 31

This SHOW PROCESS command shows the current process to be ERRFMT, and
displays information from its PCB and job information block (JIB).

SDA–86

SDA Commands
SET RMS

SET RMS

Changes the options shown by the SHOW PROCESS/RMS command.

Format

SET RMS =(option[,...])

Parameter

option
Data structure or other information to be displayed by the SHOW PROCESS/RMS
command. Table SDA–10 lists those keywords that may be used as options.

Table SDA–10 SET RMS Command Keywords for Displaying Process RMS
Information

Keyword Meaning

[NO]ALL[:ifi]1 All control blocks (default)
[NO]ASB Asynchronous save block
[NO]BDB Buffer descriptor block
[NO]BDBSUM BDB summary page
[NO]BLB Buffer lock block
[NO]BLBSUM Buffer lock summary page
[NO]CCB Channel control block
[NO]DRC Directory cache
[NO]FAB File access block
[NO]FCB File control block
[NO]FWA File work area
[NO]GBD Global buffer descriptor
[NO]GBDSUM GBD summary page
[NO]GBH Global buffer header
[NO]GBSB Global buffer synchronization block
[NO]IDX Index descriptor
[NO]IFAB[:ifi]1 Internal FAB
[NO]IFB[:ifi]1 Internal FAB
[NO]IRAB Internal RAB
[NO]IRB Internal RAB
[NO]JFB Journaling file block
[NO]NAM Name block
[NO]NWA Network work area
[NO]RAB Record access block

1The optional parameter ifi is an internal file identifier. The default ifi (ALL) is all the files the
current process has opened.

(continued on next page)

SDA–87

SDA Commands
SET RMS

Table SDA–10 (Cont.) SET RMS Command Keywords for Displaying Process
RMS Information

Keyword Meaning

[NO]RLB Record lock block
[NO]RU Recovery unit structures, including the recovery unit block

(RUB), recovery unit stream block (RUSB), and recovery
unit file block (RUFB)

[NO]SFSB Shared file synchronization block
[NO]WCB Window control block
[NO]XAB Extended attribute block
[NO]* Current list of options displayed by the SHOW RMS

command

The default option is option=ALL:ALL,NOPIO, designating for display by the
SHOW PROCESS/RMS command all structures for all files related to the process
image I/O.

To list more than one option, enclose the list in parentheses and separate options
by commas. You can add a given data structure to those displayed by ensuring
that the list of keywords begins with the asterisk (*) symbol. You can delete
a given data structure from the current display by preceding its keyword with
‘‘NO.’’

Qualifiers

None.

Description

The SET RMS command determines the data structures to be displayed by the
SHOW PROCESS/RMS command. (See the examples included in the discussion
of the SHOW PROCESS command for information provided by various displays.)
You can examine the options that are currently selected by issuing a SHOW RMS
command.

SDA–88

SDA Commands
SET RMS

Examples

1. SDA> SHOW RMS
RMS Display Options: IFB,IRB,IDX,BDB,BDBSUM,ASB,CCB,WCB,FCB,FAB,RAB,NAM,XAB,RLB,
BLB,BLBSUM,GBD,GBH,FWA,GBDSUM,JFB,NWA,RU,DRC,SFSB,GBSB

Display RMS structures for all IFI values.

SDA> SET RMS=IFB
SDA> SHOW RMS

RMS Display Options: IFB

Display RMS structures for all IFI values.

The first SHOW RMS command shows the default selection of data structures
that are displayed in response to a SHOW PROCESS/RMS command. The SET
RMS command selects only the IFB to be displayed by subsequent SET/PROCESS
commands.

2. SDA> SET RMS=(*,BLB,BLBSUM,RLB)
SDA> SHOW RMS

RMS Display Options: IFB,RLB,BLB,BLBSUM

Display RMS structures for all IFI values.

The SET RMS command adds the BLB, BLBSUM, and RLB to the list of data
structures currently displayed by the SHOW PROCESS/RMS command.

3. SDA> SET RMS=(*,NORLB,IFB:05)
SDA> SHOW RMS

RMS Display Options: IFB,BLB,BLBSUM
Display RMS structures only for IFI=5.

The SET RMS command removes the RLB from those data structures displayed
by the SHOW PROCESS/RMS command and causes only information about the
file with the ifi of 5 to be displayed.

4. SDA> SET RMS=(*,PIO)

The SET RMS command indicates that the data structures designated for display
by SHOW PROCESS/RMS be associated with process-permanent I/O instead of
image I/O.

SDA–89

SDA Commands
SET SIGN_EXTEND

SET SIGN_EXTEND

Enables or disables the sign extension of 32-bit addresses.

Format

SET SIGN_EXTEND {ON | OFF}

Parameters

on
Enables automatic sign extension of 32-bit addresses with bit 31 set. This is the
default.

off
Disables automatic sign extension of 32-bit addresses with bit 31 set.

Qualifiers

None.

Description

The 32-bit S0/S1 addresses need to be sign extended to access 64-bit S0/S1 space.
To do this, specify explicitly sign-extended addresses, or set the sign extend to on,
which is the default.

However, to access addresses in P2 space, addresses must not be sign extended.
To do this, specify explicitly a zero in front of the address, or set the sign extend
to off.

Examples

1. SDA> set sign_extend on
SDA> examine 80400000
FFFFFFFF.80400000: 23DEFF90.4A607621

This shows the SET SIGN_EXTEND command as ON.

2. SDA>set sign_extend off
SDA> examine 80400000
%SDA-E-NOTINPHYS, 00000000.80400000: virtual data not in physical memory

This shows the SET SIGN_EXTEND command as OFF.

SDA–90

SDA Commands
SHOW ADDRESS

SHOW ADDRESS

Displays the page table related information about a memory address.

Format

SHOW ADDRESS address

Parameters

address
Displays the requested address.

Qualifier

/PHYSICAL
Indicates that a physical address has been given. The SHOW ADDRESS
command displays the virtual address that maps to the given physical address.

Description

The SHOW ADDRESS command displays the region of memory which contains
the memory address. It also shows all the page table entries (PTEs) that map the
page, and can show the range of addresses mapped by the given address if it is
the address of a PTE.

When the /PHYSICAL qualifier is given, the SHOW ADDRESS command displays
the virtual address that maps to the given physical address. This provides the
user with a way to use SDA commands that do not have a /PHYSICAL qualifier
when only the physical address of a memory location is known.

SDA–91

SDA Commands
Examples

Examples

1. SDA> SHOW ADDRESS 80000000

FFFFFFFF80000000 is an S0/S1 address

Mapped by Level-3 PTE at: FFFFFFFD.FFE00000
Mapped by Level-2 PTE at: FFFFFFFD.FF7FF800
Mapped by Level-1 PTE at: FFFFFFFD.FF7FDFF0
Mapped by Selfmap PTE at: FFFFFFFD.FF7FDFF0

Also mapped in SPT window at: FFFFFFFF.FFDF0000

The SHOW ADDRESS command in this example shows where the address
80000000 is mapped at different page table entry levels.

2. SDA> SHOW ADDRESS 0

00000000.00000000 is a P0 address

Mapped by Level-3 PTE at: FFFFFFFC.00000000
Mapped by Level-2 PTE at: FFFFFFFD.FF000000
Mapped by Level-1 PTE at: FFFFFFFD.FF7FC000
Mapped by Selfmap PTE at: FFFFFFFD.FF7FDFF0

The SHOW ADDRESS command in this example shows where the address 0 is
mapped at different page table entry levels.

3. SDA> SHOW ADDRESS FFFFFFFD.FF000000

FFFFFFFDFF000000 is the address of a process-private Level-2 PTE

Mapped by Level-1 PTE at: FFFFFFFD.FF7FC000
Mapped by Selfmap PTE at: FFFFFFFD.FF7FDFF0

Range mapped at level 2: FFFFFFFC.00000000 to FFFFFFFC.00001FFF (1 page)
Range mapped at level 3: 00000000.00000000 to 00000000.007FFFFF (1024 pages)

The SHOW ADDRESS command in this example shows where the address
FFFFFFFD.FF7FC000 is mapped at page table entry and the range mapped by
the PTE at this address.

4. SDA> SHOW ADDRESS/PHYSICAL 0
Physical address 00000000.00000000 is mapped to system-space address FFFFFFFF.828FC000

The SHOW ADDRESS command in this example shows physical address
00000000.00000000 mapped to system-space address FFFFFFFF.828FC000.

5. SDA> SHOW ADDRESS/PHYSICAL 029A6000
Physical address 00000000.029A6000 is mapped to process-space address 00000000.00030000
(process index 0024)

The SHOW ADDRESS command in this example shows physical address
00000000.029A6000 mapped to process-space address 00000000.00030000
(process index 0024)

SDA–92

SDA Commands
SHOW BUGCHECK

SHOW BUGCHECK

Displays the following bugcheck codes: value, name and text.

Format

SHOW BUGCHECK {/ALL (d) | name | number}

Parameters

name
Displays the named bugcheck code.

number
Displays the requested bugcheck code.

The parameters name and number, and the qualifier /ALL are all mutually
exclusive.

Qualifier

/ALL
Displays complete list of all the bugcheck codes and texts of number and name.
It is the default.

Description

The SHOW BUGCHECK command displays the bugcheck codes that consist of
value, name, and text.

Examples

1. SDA> show bugcheck 100
0100 DIRENTRY ACP failed to find same directory entry

The SHOW BUGCHECK command in this example shows the requested
bugcheck by number.

2. SDA> show bugcheck decnet
08D0 DECNET DECnet detected a fatal error

The SHOW BUGCHECK command in this example shows the requested
bugcheck by name.

3. SDA> show bugcheck

BUGCHECK codes and texts

0008 ACPMBFAIL ACP failure to read mailbox
0010 ACPVAFAIL ACP failure to return virtual address space
0018 ALCPHD Allocate process header error
0020 ALCSMBCLR ACP tried to allocate space already allocated

.

.

.

SDA–93

SDA Commands
SHOW BUGCHECK

The SHOW BUGCHECK command in this example shows the requested
bugcheck by displaying all codes.

SDA–94

SDA Commands
SHOW CALL_FRAME

SHOW CALL_FRAME

Displays the locations and contents of the longwords representing a procedure
call frame.

Format

SHOW CALL_FRAME {[starting-address] | /NEXT_FP}

Parameter

starting-address
Expression representing the starting address of the procedure call frame to be
displayed. The default starting-address is the longword contained in the FP
register of the SDA current process.

Qualifier

/NEXT_FP
Displays the procedure call frame starting at the address stored in the FP
longword of the last call frame displayed by this command. You must have issued
a SHOW CALL_FRAME command previously in the current SDA session in order
to use the /NEXT_FP qualifier to the command.

Description

Whenever a procedure is called, information is stored on the stack of the calling
routine in the form of a procedure call frame. The SHOW CALL_FRAME
command displays the locations and contents of the call frame. The starting
address of the call frame is determined from the specified starting address, the
/NEXT_FP qualifier, or by default. The default starting address is contained in
the SDA current process FP register.

When using the SHOW CALL_FRAME/NEXT_FP command to follow a chain of
call frames, SDA signals the end of the chain by this message:

%SDA-E-NOTINPHYS, 00000000 : not in physical memory

This message indicates that the saved FP in the previous call frame has a zero
value.

Example

SDA> SHOW CALL_FRAME
Call Frame Information

Stack Frame Procedure Descriptor
Flags: Base Register = FP, No Jacket, Native

Procedure Entry: FFFFFFFF.837E9F10 EXCEPTION_PRO+01F10
Return address on stack = FFFFFFFF.837E8A1C EXE$CONTSIGNAL_C+0019C

SDA–95

SDA Commands
SHOW CALL_FRAME

Registers saved on stack

7FF95F98 FFFFFFFF.FFFFFFFB Saved R2
7FF95FA0 FFFFFFFF.8042AEA0 Saved R3 EXCEPTION_NPRW+040A0
7FF95FA8 00000000.00000002 Saved R5
7FF95FB0 FFFFFFFF.804344A0 Saved R13 SCH$CLREF+00188
7FF95FB8 00000000.7FF9FC00 Saved R29

.

.

.
SDA> SHOW CALL_FRAME/NEXT_FP
Call Frame Information

Stack Frame Procedure Descriptor
Flags: Base Register = FP, No Jacket, Native

Procedure Entry: FFFFFFFF.800FA388 RMS_NPRO+04388
Return address on stack = FFFFFFFF.80040BFC EXCEPTION_NPRO+00BFC

Registers saved on stack

7FF99F60 FFFFFFFF.FFFFFFFD Saved R2
7FF99F68 FFFFFFFF.80425BA0 Saved R3 EXCEPTION_NPRW+03DA0
7FF99F70 FFFFFFFF.80422020 Saved R4 EXCEPTION_NPRW+00220
7FF99F78 00000000.00000000 Saved R5
7FF99F80 FFFFFFFF.835C24A8 Saved R6 RMS_PRO+004A8
7FF99F88 00000000.7FF99FC0 Saved R7
7FF99F90 00000000.7FF9FDE8 Saved R8
7FF99F98 00000000.7FF9FDF0 Saved R9
7FF99FA0 00000000.7FF9FE78 Saved R10
7FF99FA8 00000000.7FF9FEBC Saved R11
7FF99FB0 FFFFFFFF.837626E0 Saved R13 EXE$OPEN_MESSAGE+00088
7FF99FB8 00000000.7FF9FD70 Saved R29
.

.

.
SDA> SHOW CALL_FRAME/NEXT_FP
Call Frame Information

Stack Frame Procedure Descriptor
Flags: Base Register = FP, No Jacket, Native

Procedure Entry: FFFFFFFF.835C2438 RMS_PRO+00438
Return address on stack = FFFFFFFF.83766020 EXE$OPEN_MESSAGE_C+00740

Registers saved on stack

7FF9FD88 00000000.7FF9FDA4 Saved R2
7FF9FD90 00000000.7FF9FF00 Saved R3
7FF9FD98 00000000.7FFA0050 Saved R29

The SHOW CALL_FRAME commands in this SDA session follow a chain of call
frames from that specified in the FP of the SDA current process.

SDA–96

SDA Commands
SHOW CLUSTER

SHOW CLUSTER

Displays connection manager and system communications services (SCS)
information for all nodes in a cluster.

Format

SHOW CLUSTER {[{/ADDRESS=n | /CSID=csid | /NODE=name}] | /SCS}

Parameters

None.

Qualifiers

/ADDRESS=n
Displays only the OpenVMS Cluster system information for a specific OpenVMS
Cluster member node, given the address of the cluster system block (CSB) for the
node. This is mutually exclusive with the /CSID and /NODE qualifiers.

/CSID=csid
Displays only the OpenVMS Cluster system information for a specific OpenVMS
Cluster member node. The value csid is the cluster system identification number
(CSID) of the node to be displayed. You can find the CSID for a specific node in
a cluster by examining the CSB list display of the SHOW CLUSTER command.
Other SDA displays refer to a system’s CSID. For instance, the SHOW LOCK
command indicates where a lock is mastered or held by CSID. This is mutually
exclusive with the /ADDRESS=n and /NODE qualifiers.

/NODE=name
Displays only the OpenVMS Cluster system information for a specific OpenVMS
Cluster member node, given its SCS node name. This is mutually exclusive with
the /ADDRESS=n and /CSID qualifiers.

/SCS
Displays a view of the cluster as seen by SCS.

Description

The SHOW CLUSTER command provides a view of the OpenVMS Cluster system
from either the perspective of the connection manager (the default behavior), or
from the perspective of the port driver(s) (if the /SCS qualifier is used).

OpenVMS Cluster as Seen by the Connection Manager
The SHOW CLUSTER command provides a series of displays.

The OpenVMS Cluster summary display supplies the following information:

• Number of votes required for a quorum

• Number of votes currently available

• Number of votes allocated to the quorum disk

• Status summary indicating whether or not a quorum is present

SDA–97

SDA Commands
SHOW CLUSTER

The CSB list displays information about the OpenVMS Cluster system blocks
(CSBs) currently in operation; there is one CSB assigned to each node of the
cluster. For each CSB, the CSB list displays the following information:

• Address of the CSB

• Name of the OpenVMS Cluster node it describes

• CSID associated with the node

• Number of votes (if any) provided by the node

• State of the CSB

• Status of the CSB

For information about the state and status of nodes, see the description of the
ADD command in the OpenVMS System Management Utilities Reference Manual.

The cluster block display includes information recorded in the cluster block
(CLUB), including a list of activated flags, a summary of quorum and vote
information, and other data that applies to the cluster from the perspective of the
node for which the SDA is being run.

The cluster failover control block display provides detailed information
concerning the cluster failover control block (CLUFCB), and the cluster quorum
disk control block display provides detailed information from the cluster
quorum disk control block (CLUDCB).

Subsequent displays provide information for each CSB listed previously in the
CSB list display. Each display shows the state and flags of a CSB, as well as
other specific node information. (See the OpenVMS System Management Utilities
Reference Manual for information about the flags for OpenVMS Cluster nodes.)

If any of the qualifiers /ADDRESS=n, /CSID=csid, or /NODE=name are specified,
then the SHOW CLUSTER command displays only the information from the CSB
of the specified node.

OpenVMS Cluster as Seen by the Port Driver
The SHOW CLUSTER/SCS command provides a series of displays.

The SCS listening process directory lists those processes that are listening for
incoming SCS connect requests. For each of these processes, this display records
the following information:

• Address of its directory entry

• Connection ID

• Name

• Explanatory information, if available

The SCS systems summary display provides the system block (SB) address,
node name, system type, system ID, and the number of connection paths for each
SCS system. An SCS system can be a OpenVMS Cluster member, HSC, UDA, or
other such device.

Subsequent displays provide detailed information for each of the system blocks
and the associated path blocks. The system block displays include the maximum
message and datagram sizes, local hardware and software data, and SCS
poller information. Path block displays include information that describes the
connection, including remote functions and other path-related data.

SDA–98

SDA Commands
SHOW CLUSTER

Example

SDA> SHOW CLUSTER
OpenVMS Cluster data structures

--- OpenVMS Cluster Summary ---

Quorum Votes Quorum Disk Votes Status Summary
------ ----- ----------------- --------------

2 2 1 qf_dynvote,qf_vote,quorum

--- CSB list ---

Address Node CSID Votes State Status
------- ---- ---- ----- ----- ------

805FA780 FLAM5 00010006 0 local member,qf_same,qf_noaccess
8062C400 ROMRDR 000100ED 1 open member,qf_same,qf_watcher,qf_active
8062C780 VANDQ1 000100EF 0 open member,qf_same,qf_noaccess

--- Cluster Block (CLUB) 805FA380 ---

Flags: 16080005 cluster,qf_dynvote,init,qf_vote,qf_newvote,quorum

Quorum/Votes 2/2 Last transaction code 02
Quorum Disk Votes 1 Last trans. number 596
Nodes 3 Last coordinator CSID 000100EF
Quorum Disk 1DIA0 Last time stamp 31-DEC-1992
Found Node SYSID 00000000FC03 17:26:35
Founding Time 3-JAN-1993 Largest trans. id 00000254

21:04:21 Resource Alloc. retry 0
Index of next CSID 0007 Figure of Merit 00000000
Quorum Disk Cntrl Block 805FADC0 Member State Seq. Num 0203
Timer Entry Address 00000000 Foreign Cluster 00000000
CSP Queue empty

--- Cluster Failover Control Block (CLUFCB) 805FA4C0 ---

Flags: 00000000

Failover Step Index 00000037 CSB of Synchr. System 8062C780
Failover Instance ID 00000254

--- Cluster Quorum Disk Control Block (CLUDCB) 805FADC0 ---

State : 0002 qs_rem_act
Flags : 0100 qf_noaccess
CSP Flags : 0000

Iteration Counter 0 UCB address 00000000
Activity Counter 0 TQE address 805FAE00
Quorum file LBN 00000000 IRP address 00000000

Watcher CSID 000100ED

--- FLAM5 Cluster System Block (CSB) 805FA780 ---

State: 0B local
Flags: 070260AA member,qf_same,qf_noaccess,selected,local,status_rcvd,send_status
Cpblty: 00000000
SWVers: 7.0
HWName: DEC 3000 Model 400

SDA–99

SDA Commands
SHOW CLUSTER

Quorum/Votes 1/0 Next seq. number 0000 Send queue 00000000
Quor. Disk Vote 1 Last seq num rcvd 0000 Resend queue 00000000
CSID 00010006 Last ack. seq num 0000 Block xfer Q. 805FA7D8
Eco/Version 0/23 Unacked messages 0 CDT address 00000000
Reconn. time 00000000 Ack limit 0 PDT address 00000000
Ref. count 2 Incarnation 1-JAN-1993 TQE address 00000000
Ref. time 31-AUG-1992 00:00:00 SB address 80421580

17:26:35 Lock mgr dir wgt 0 Current CDRP 00000001

--- ROMRDR Cluster System Block (CSB) 8062C400 ---

State: 01 open
Flags: 0202039A member,qf_same,cluster,qf_active,selected,status_rcvd
Cpblty: 00000000
SWVers: 7.0
HWName: DEC 3000 Model 400

Quorum/Votes 2/1 Next seq. number B350 Send queue 00000000
Quor. Disk Vote 1 Last seq num rcvd E786 Resend queue 00000000
CSID 000100ED Last ack. seq num B350 Block xfer Q. 8062C458
Eco/Version 0/22 Unacked messages 1 CDT address 805E8870
Reconn. time 00000000 Ack limit 3 PDT address 80618400
Ref. count 2 Incarnation 19-AUG-1992 TQE address 00000000
Ref. time 19-AUG-1992 16:15:00 SB address 8062C140

16:17:08 Lock mgr dir wgt 0 Current CDRP 00000000

--- VANDQ1 Cluster System Block (CSB) 8062C780 ---

State: 01 open
Flags: 020261AA member,qf_same,qf_noaccess,cluster,selected,status_rcvd
Cpblty: 00000000
SWVers: 7.0
HWName: DEC 3000 Model 400

Quorum/Votes 1/0 Next seq. number 32B6 Send queue 00000000
Quor. Disk Vote 1 Last seq num rcvd A908 Resend queue 00000000
CSID 000100EF Last ack. seq num 32B6 Block xfer Q. 8062C7D8
Eco/Version 0/23 Unacked messages 1 CDT address 805E8710
Reconn. time 00000000 Ack limit 3 PDT address 80618400
Ref. count 2 Incarnation 17-AUG-1992 TQE address 00000000
Ref. time 19-AUG-1992 15:37:06 SB address 8062BCC0

16:21:22 Lock mgr dir wgt 0 Current CDRP 00000000

--- SWPCTX Cluster System Block (CSB) 80D3B1C0 ---

State: 0B local
Flags: 030A60AA member,qf_same,qf_noaccess,selected,send_ext_status,local,status_rcvd
Cpblty: 00000037 rm8sec,vcc,dts,cwcreprc,threads
SWVers: V7.0
HWName: DEC 3000 Model 400

Quorum/Votes 1/1 Next seq. number 0000 Send queue 00000000
Quor. Disk Vote 1 Last seq num rcvd 0000 Resend queue 00000000
CSID 00010001 Last ack. seq num 0000 Block xfer Q. 80D3B218
Eco/Version 0/26 Unacked messages 0 CDT address 00000000
Reconn. time 00000000 Ack limit 0 PDT address 00000000
Ref. count 2 Incarnation 12-JUL-1996 TQE address 00000000
Ref. time 16-JUL-1996 15:36:17 SB address 80C50800

16:15:48 Lock mgr dir wgt 0 Current CDRP 00000001

This example illustrates the default output of the SHOW CLUSTER command.

SDA–100

SDA Commands
SHOW CONNECTIONS

SHOW CONNECTIONS

Displays information about all active connections between System
Communications Services (SCS) processes or a single connection.

Format

SHOW CONNECTIONS [{/ADDRESS=cdt-address | /NODE=name | /SYSAP=name}]

Parameters

None.

Qualifiers

/ADDRESS=cdt-address
Displays information contained in the connection descriptor table (CDT) for a
specific connection. You can find the cdt-address for any active connection on
the system in the CDT summary page display of the SHOW CONNECTIONS
command. In addition, CDT addresses are stored in many individual data
structures related to SCS connections. These data structures include class driver
request packets (CDRPs) and unit control blocks (UCBs) for class drivers that use
SCS, and cluster system blocks (CSBs) for the connection manager.

/NODE=name
Displays all CDTs associated with the specified remote SCS node name.

/SYSAP=name
Displays all CDTs associated with the specified local SYSAP.

Description

The SHOW CONNECTIONS command provides a series of displays.

The CDT summary page lists information regarding each connection on the
local system, including the following:

• CDT address

• Name of the local process with which the CDT is associated

• Connection ID

• Current state

• Name of the remote node (if any) to which it is currently connected

The CDT summary page concludes with a count of CDTs that are free and
available to the system.

SHOW CONNECTIONS next displays a page of detailed information for each
active CDT listed previously.

SDA–101

SDA Commands
SHOW CONNECTIONS

Example

SDA> SHOW CONNECTIONS

--- CDT Summary Page ---

CDT Address Local Process Connection ID State Remote Node
----------- ------------- ------------- ----- -----------

805E7ED0 SCS$DIRECTORY FF120000 listen
805E8030 MSCP$TAPE FF120001 listen
805E8190 VMS$VMScluster FF120002 listen
805E82F0 MSCP$DISK FF120003 listen
805E8450 SCA$TRANSPORT FF120004 listen
805E85B0 MSCP$DISK FF150005 open VANDQ1
805E8710 VMS$VMScluster FF120006 open VANDQ1
805E8870 VMS$VMScluster FF120007 open ROMRDR
805E89D0 MSCP$DISK FF120008 open ROMRDR
805E8C90 VMS$DISK_CL_DRVR FF12000A open ROMRDR
805E8DF0 VMS$DISK_CL_DRVR FF12000B open VANDQ1
805E8F50 VMS$TAPE_CL_DRVR FF12000C open VANDQ1

Number of free CDT ’s: 188

--- Connection Descriptor Table (CDT) 80C44850 ---

State: 0001 listen Local Process: MSCP$TAPE
Blocked State: 0000

Local Con. ID 899F0003 Datagrams sent 0 Message queue 80C4488C
Remote Con. ID 00000000 Datagrams rcvd 0 Send Credit Q. 80C44894
Receive Credit 0 Datagram discard 0 PB address 00000000
Send Credit 0 Message Sends 0 PDT address 00000000
Min. Rec. Credit 0 Message Recvs 0 Error Notify 822FFCC0
Pend Rec. Credit 0 Mess Sends NoFP 0 Receive Buffer 00000000
Initial Rec. Credit 0 Mess Recvs NoFP 0 Connect Data 00000000
Rem. Sta. 000000000000 Send Data Init. 0 Aux. Structure 00000000
Rej/Disconn Reason 0 Req Data Init. 0 Fast Recvmsg Rq 00000000
Queued for BDLT 0 Bytes Sent 0 Fast Recvmsg PM 00000000
Queued Send Credit 0 Bytes rcvd 0 Change Affinity 00000000

Total bytes map 0

--- Connection Descriptor Table (CDT) 805E8030 ---

State: 0001 listen Local Process: MSCP$TAPE
Blocked State: 0000

Local Con. ID FF120001 Datagrams sent 0 Message queue 805E8060
Remote Con. ID 00000000 Datagrams rcvd 0 Send Credit Q. 805E8068
Receive Credit 0 Datagram discard 0 PB address 00000000
Send Credit 0 Messages Sent 0 PDT address 00000000
Min. Rec. Credit 0 Messages Rcvd. 0 Error Notify 804540D0
Pend Rec. Credit 0 Send Data Init. 0 Receive Buffer 00000000
Initial Rec. Credit 0 Req Data Init. 0 Connect Data 00000000
Rem. Sta. 000000000000 Bytes Sent 0 Aux. Structure 00000000
Rej/Disconn Reason 0 Bytes rcvd 0
Queued for BDLT 0 Total bytes map 0
Queued Send Credit 0

.

.

.

This example shows the default output of the SHOW CONNECTIONS command.

SDA–102

SDA Commands
SHOW CPU

SHOW CPU

Displays information about the state of a processor at the time of the system
failure.

Format

SHOW CPU [cpu-id]

Parameter

cpu-id
Numeric value from 00 to 1F16 indicating the identity of the processor for which
context information is to be displayed. If you specify a value outside this range,
or you specify the cpu-id of a processor that was not active at the time of the
system failure, SDA displays the following message:

%SDA-E-CPUNOTVLD, CPU not booted or CPU number out of range

If you use the cpu-id parameter, the SHOW CPU command performs an implicit
SET CPU command, making the processor indicated by cpu-id the current CPU
for subsequent SDA commands. (See the description of the SET CPU command
and Section 4 for information on how this can affect the CPU context—and
process context—in which SDA commands execute.)

Qualifiers

None.

Description

The SHOW CPU command displays system failure information about the
processor specified by cpu-id or, by default, the SDA current CPU, as defined
in Section 4. You cannot use the SHOW CPU command when examining the
running system with SDA.

The SHOW CPU command produces several displays. First, there is a brief
description of the system failure and its environment that includes the following:

• Reason for the bugcheck.

• Name of the currently executing process. If no process has been scheduled on
this processor, SDA displays the following message:

Process currently executing: no processes currently scheduled on the processor

• File specification of the image executing within the current process (if there is
a current process).

• Interrupt priority level (IPL) of the processor at the time of the system
failure.

Next, the general registers display shows the contents of the processor’s integer
registers (R0 to R30), and the AI, RA, PV, FP, PC, and PS at the time of the
system failure.

SDA–103

SDA Commands
SHOW CPU

The processor registers display consists of the following parts:

• Common processor registers

• Processor-specific registers

• Stack pointers

The first part of the processor registers display includes registers common to all
Alpha processors, which are used by the operating system to maintain the current
process virtual address space, system space, or other system functions. This part
of the display includes the following registers:

• Hardware privileged context block base register (PCBB)

• System control block base register (SCBB)

• Software interrupt summary register (SISR)

• Address space number register (ASN)

• AST summary register (ASTSR)

• AST enable register (ASTEN)

• Interrupt priority level register (IPL)

• Processor priority level register (PRBR)

• Page table base register (PTBR)

• Virtual page table base register (VPTB)

• Floating point control register (FPCR)

• Machine check error summary register (MCES)

The last part of the display includes the four stack pointers: the pointers of
the kernel, executive, supervisor, and user stacks (KSP, ESP, SSP, and USP,
respectively).

The SHOW CPU command concludes with a listing of the spin locks, if any,
owned by the processor at the time of the system failure, reproducing some of the
information given by the SHOW SPINLOCKS command. The spinlock display
includes the following information:

• Name of the spin lock.

• Address of the spinlock data structure (SPL).

• IPL and rank of the spin lock.

• Number of processors waiting for this processor to release the spin lock.

• Indication of the depth of this processor’s ownership of the spin lock. A
number greater than 1 indicates that this processor has nested acquisitions of
the spin lock.

SDA–104

SDA Commands
SHOW CPU

Example

SDA> SHOW CPU
CPU 00 Processor crash information

CPU 00 reason for Bugcheck: UNXINTEXC, Unexpected interrupt or exception

Process currently executing on this CPU: UETCLIG00master

Current image file: 1DKB400:[SYS64.SYSCOMMON.][SYSTEST]UETCLIG00.EXE;1

Current IPL: 13 (decimal)

CPU database address: 805AE000

General registers:

R0 = 00000000.00000001 R1 = 00000000.0000003B R2 = FFFFFFFF.8004FF88
R3 = FFFFFFFF.80428070 R4 = 00000000.00000001 R5 = 00000000.00000D04
R6 = 00000000.7FF78BE6 R7 = 00000000.00000064 R8 = FFFFFFFF.806CEA96
R9 = 00000000.00000030 R10 = 00000000.00002270 R11 = 00000000.0C040087
R12 = 00000000.00000001 R13 = FFFFFFFF.80435270 R14 = FFFFFFFF.80434AE0
R15 = FFFFFFFF.80403200 R16 = 00000000.00000410 R17 = 00000000.00000001
R18 = 00000000.000005D0 R19 = 00000000.000000EA R20 = FFFFFFFF.80403200
R21 = FFFFFFFF.8040C810 R22 = 00000000.000000FA R23 = FFFFFFFF.8040C7F0
R24 = FFFFFFFF.8040C7E0 AI = 00000000.00000000 RA = 00000000.00000014
PV = 00000000.0000003B R28 = 00000000.0000003B FP = 00000000.7FF95D00
PC = FFFFFFFF.80050020 PS = 00000000.00000D04

Processor Internal Registers:

ASN = 00000000.00000000 ASTSR/ASTEN = 00000000
IPL = 00000008 PCBB = 00000000.0140C080 PRBR = FFFFFFFF.80C0C000
PTBR = 00000000.000000B8 SCBB = 00000000.00000250 SISR = 00000000.00000000
VPTB = FFFFFFFC.00000000 FPCR = 00000000.00000000 MCES = 00000000.00000000

KSP = 00000000.7FF95A00
ESP = 00000000.7FF9A000
SSP = 00000000.7FFA04C0
USP = 00000000.7EE719F0

Spinlocks currently owned by CPU 00

SCHED ADDRESS 80427880
Ownership Depth 00000001 Rank 00000012
CPUs Waiting 00000000 Index 00000032

This example shows the default output of the SHOW CPU command.

SDA–105

SDA Commands
SHOW CRASH

SHOW CRASH

In the analysis of a system failure, displays information about the state of the
system at the time of the failure. In the analysis of a running system, provides
information identifying the system.

Format

SHOW CRASH [/CPU=n]

Parameters

None.

Qualifier

/CPU=n
Allows exception data to be displayed from CPUs other than the one considered
as the crash CPU when more than one CPU crashes simultaneously.

Description

The SHOW CRASH command has two different manifestations, depending on
whether it is issued in the analysis of a running system or a system failure.

In either case, if the SDA current CPU context is not that of the processor that
signaled the bugcheck, the SHOW CRASH command performs an implicit SET
CPU command to make that processor the SDA current CPU. (See the description
of the SET CPU command and Section 4 for a discussion of how this can affect
the CPU context—and process context—in which SDA commands execute.)

When used during the analysis of a running system, the SHOW CRASH command
produces a display that describes the system and the version of OpenVMS Alpha
that it is running. The system crash information display contains the following
information:

• Date and time that the ANALYZE/SYSTEM command was issued (titled
‘‘Time of system crash’’ in the display)

• Name and version number of the operating system

• Major and minor IDs of the operating system

• Identity of the Alpha system, including an indication of its cluster
membership

• CPU ID of the primary CPU

• Exception display for fatal system bugchecks or PGFIPLHI bugchecks

When used during the analysis of a system failure, the SHOW CRASH command
produces several displays that identify the system and describe its state at the
time of the failure.

The system crash information display in this context provides the following
information:

• Date and time of the system failure.

• Name and version number of the operating system.

SDA–106

SDA Commands
SHOW CRASH

• Major and minor IDs of the operating system.

• Identity of the system.

• CPU IDs of both the primary CPU and the CPU that initiated the bugcheck.
In an Alpha uniprocessor system, these IDs are identical.

• For each active processor in the system, the name of the bugcheck that caused
the system failure. Generally, there will be only one significant bugcheck in
the system. All other processors typically display the following as their reason
for taking a bugcheck:

CPUEXIT, Shutdown requested by another CPU

Subsequent screens of the SHOW CRASH command display information about
the state of each active processor on the system at the time of the system failure.
The information in these screens is identical to that produced by the SHOW CPU
command, including the general-purpose registers, processor-specific registers,
stack pointers, and records of spinlock ownership. The first such screen presents
information about the processor that caused the failure; others follow according to
the numeric order of their CPU IDs.

Examples

1. SDA> SHOW CRASH
System crash information

Time of system crash: 24-JAN-1995 10:16:12.71

Version of system: OpenVMS Alpha VERSION 7.0

System Version Major ID/Minor ID: 1/0

System type: Flamingo/EV4

Crash CPU ID/Primary CPU ID: 00/00

Bitmask of CPUs active/available: 00000001/00000001

CPU bugcheck codes:
CPU 00 -- SSRVEXCEPT, Unexpected system service exception

System State at Time of Exception

Exception Frame:

R2 = 00000000.00001200
R3 = FFFFFFFF.80425BA0
R4 = FFFFFFFF.80422020
R5 = FFFFFFFF.80444C88
R6 = 00000000.7FFD0080
R7 = 00000000.00000000
PC = FFFFFFFF.8010D480
PS = 30000000.0000000A

%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual address=0000000000000008,
PC=FFFFFFFF8010D480, PS=0000000A

SDA–107

SDA Commands
SHOW CRASH

Saved Registers in Mechanism Array

R0 = 00000000.7FFD01E8 R1 = 00000000.00000000 R16 = 00000000.7FFD008C
R17 = 00000000.00000001 R18 = 00000000.00000000 R19 = 00000000.00000000
R20 = 00000000.00000001 R21 = 00000000.7FFF0140 R22 = 00000000.00000002
R23 = 00000000.00000008 R24 = 00000000.00000000 R25 = 00000000.00000003
R26 = FFFFFFFF.8010974C R27 = 00000000.000001FF R28 = 00000000.000001FF

CPU 00 reason for Bugcheck: SSRVEXCEPT, Unexpected system service exception

Process currently executing on this CPU: SERVER_001C

Current IPL: 0 (decimal)

CPU database address: 805AE000

General registers:

R0 = 00000000.00000004 R1 = FFFFFFFF.80405C30 R2 = 00000000.00001200
R3 = FFFFFFFF.80425BA0 R4 = FFFFFFFF.80422020 R5 = FFFFFFFF.80444C88
R6 = 00000000.7FFD0080 R7 = 00000000.00000000 R8 = 00000000.7FF9FDF0
R9 = 00000000.00000000 R10 = 00000000.00000002 R11 = 00000000.7FFD0080
R12 = 00000000.00000008 R13 = FFFFFFFF.8044DB78 R14 = 00000000.7FFD0080
R15 = 00000000.7FEE1C20 R16 = 00000000.000003C0 R17 = 00000000.7FF99C80
R18 = 00000000.7FF99E40 R19 = FFFFFFFF.80425F28 R20 = 00000000.00000001
R21 = 00000000.7FFF0140 R22 = FFFFFFFF.8335C000 R23 = 00000000.7FF9A000
R24 = 00000000.7FFF0028 AI = 00000000.00000002 RA = FFFFFFFF.837E9F3C
PV = FFFFFFFF.80405C30 R28 = FFFFFFFF.837E8810 FP = 00000000.7FF99C10
PC = FFFFFFFF.80002010 PS = 00000000.00000009

Processor Internal Registers:

ASN = 00000000.00000000 ASTEN/ASTSR = 0000000F
IPL = 00000000 PCBB = 00000000.02F28080 PRBR = FFFFFFFF.805AE000
PTBR = 00000000.000012DA SCBB = 00000000.00000500 SISR = 00000000.00000000
VPTB = FFFFFFFC.00000000 FPCR = 00000000.00000000 MCEX = 00000000.00000000

KSP = 00000000.7FF96000
ESP = 00000000.7FF99BF8
SSP = 00000000.7FF9FD70
USP = 00000000.7FE6B780

No spinlocks currently owned by CPU 00

This long display reflects the output of the SHOW CRASH command within the
analysis of a system failure.

2. SDA> SHOW CRASH
System crash information

Time of system crash: 19-JAN-1995 10:16:12.71

Version of system: OpenVMS Alpha VERSION 7.0

System Version Major ID/Minor ID: 1/0

System type: Flamingo/EV4

Crash CPU ID/Primary CPU ID: 00/00

Bitmask of CPUs active/available: 00000001/00000001

SDA–108

SDA Commands
SHOW CRASH

CPU bugcheck codes:
CPU 00 -- PGFIPLHI, Page fault with IPL too high

System State at Time of Page Fault:

Page fault for address 00000000 7FFAB000 occured at IPL: 18
Memory management flags: 80000000 00000000 (data write)

Exception Frame:

R2 = 00000000.7FFF0200
R3 = 00000000.00000000
R4 = FFFFFFFF.805DC700
R5 = 00000000.7FF8C000
R6 = FFFFFFFF.808C4F40
R7 = 00000000.00000000
PC = FFFFFFFF.80BB4A2C EXE$PRCDELMSG_C+005FC
PS = 30000000.00000200

FFFFFFFF.80BB4A1C: BLE R0,#X000009
FFFFFFFF.80BB4A20: BIS R31,R1,R17
FFFFFFFF.80BB4A24: ADDQ R2,#X04,R16
FFFFFFFF.80BB4A28: BIS R31,R0,R25

PC => FFFFFFFF.80BB4A2C: INSQUEL/D
FFFFFFFF.80BB4A30: LDQ R24,#X0078(R13)
FFFFFFFF.80BB4A34: BIS R31,R25,R0
FFFFFFFF.80BB4A38: SUBL R0,#X01,R0
FFFFFFFF.80BB4A3C: ADDL R1,R24,R1

PS =>
MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD
0 30 00000000000 02 0 0 KERN 0 KERN

This display reflects the output of a SHOW CRASH command within the analysis
of a PGFIPLHI bugcheck.

SDA–109

SDA Commands
SHOW DEVICE

SHOW DEVICE

Displays a list of all devices in the system and their associated data structures,
or displays the data structures associated with a given device or devices.

Format

SHOW DEVICE {[device-name] | /ADDRESS=ucb-address}

Parameter

device-name
Device or devices for which data structures are to be displayed. There are several
uses of the device-name parameter.

To Display the Structures
For . . . Action

All devices in the system Do not specify a device-name (for example,
SHOW DEVICE).

A single device Specify an entire device-name (for example,
SHOW DEVICE VTA20).

All devices of a certain type
on a single controller

Specify only the device type and controller
designation (for example, SHOW DEVICE RTA
or SHOW DEVICE RTB).

All devices of a certain type
on any controller

Specify only the device type (for example, SHOW
DEVICE RT).

All devices whose names
begin with a certain
character or character string

Specify the character or character string (for
example, SHOW DEVICE D).

All devices on a single node
or HSC

Specify only the node name or HSC name (for
example, SHOW DEVICE GREEN$).

Qualifier

/ADDRESS=ucb-address
Indicates the device for which data structure information is to be displayed by the
address of its unit control block (UCB). The /ADDRESS qualifier is an alternate
method of supplying a device name to the SHOW DEVICE command. If both the
device-name parameter and the /ADDRESS qualifier appear in a single SHOW
DEVICE command, SDA responds only to the parameter or qualifier that appears
first.

Description

The SHOW DEVICE command produces several displays taken from system data
structures that describe the devices in the system configuration.

If you use the SHOW DEVICE command to display information for more than
one device or one or more controllers, it initially produces the DDB (device data
block) list display to provide a brief summary of the devices for which it renders
information in subsequent screens.

SDA–110

SDA Commands
SHOW DEVICE

Information in the DDB list appears in five columns, the contents of which are
as follows:

• Address of the device data block (DDB)

• Controller name

• Name of the ancillary control process (ACP) associated with the device

• Name of the device driver

• Address of the driver prologue table (DPT)

The SHOW DEVICE command then produces a display of information pertinent
to the device controller. This display includes information gathered from the
following structures:

• Device data block (DDB)

• Primary channel request block (CRB)

• Interrupt dispatch block (IDB)

• Driver dispatch table (DDT)

If the controller is an HSC controller, SHOW DEVICE also displays information
from its system block (SB) and each path block (PB).

Many of these structures contain pointers to other structures and driver routines.
Most notably, the DDT display points to various routines located within driver
code, such as the start I/O routine, unit initialization routine, and cancel I/O
routine.

For each device unit subject to the SHOW DEVICE command, SDA displays
information taken from its unit control block, including a list of all I/O request
packets (IRPs) in its I/O request queue. For certain mass storage devices, SHOW
DEVICE also displays information from the primary class driver data block
(CDDB), the volume control block (VCB), and the ACP queue block (AQB). For
units that are part of a shadow set, SDA displays a summary of shadow set
membership.

As it displays information for a given device unit, SHOW DEVICE defines the
following symbols as appropriate:

Symbol Meaning

UCB Address of unit control block
SB Address of system block
ORB Address of object rights block
DDB Address of device data block
DDT Address of driver dispatch table
CRB Address of channel request block
AMB Associated mailbox UCB pointer
IRP Address of I/O request packet
2P_UCB Address of alternate UCB for dual-pathed device
LNM Address of logical name block for mailbox
PDT Address of port descriptor table

SDA–111

SDA Commands
SHOW DEVICE

Symbol Meaning

CDDB Address of class driver descriptor block for MSCP served device
2P_CDDB Address of alternate CDDB for MSCP served device
RWAITCNT Resource wait count for MSCP served device
VCB Address of volume control block for mounted device

If you are examining a driver-related system failure, you may find it helpful to
issue a SHOW STACK command after the appropriate SHOW DEVICE command,
examining the stack for any of these symbols. Note, however, that although the
SHOW DEVICE command defines those symbols relevant to the last device unit
it has displayed, and redefines symbols relevant to any subsequently displayed
device unit, it does not undefine symbols. (For instance, SHOW DEVICE DUA0
defines the symbol PDT, but SHOW DEVICE MBA0 does not undefine it, even
though the PDT structure is not associated with a mailbox device.) In order to
maintain the accuracy of such symbols that appear in the stack listing, use the
DEFINE command to modify the symbol name. For example:

SDA> DEFINE DUA0_PDT PDT
SDA> DEFINE MBA0_UCB UCB

See the descriptions of the READ and FORMAT commands for additional
information on defining and examining the contents of device data structures.

Examples

1. SDA>SHOW DEVICE/ADDRESS=8041E540
OPA0 VT300_Series UCB address 8041E540

Device status: 00000010 online
Characteristics: 0C040007 rec,ccl,trm,avl,idv,odv

00000200 nnm

Owner UIC [000001 ,000004] Operation count 160 ORB address 8041E4E8
PID 00010008 Error count 0 DDB address 8041E3F8

Class/Type 42/70 Reference count 2 DDT address 8041E438
Def. buf. size 80 BOFF 00000001 CRB address 8041E740
DEVDEPEND 180093A0 Byte count 0000012C I/O wait queue 8041E5AC
DEVDEPND2 FB101000 SVAPTE 80537B80
DEVDEPND3 00000000 DEVSTS 00000001
FLCK index 3A
DLCK address 8041E880

*** I/O request queue is empty ***

This example reproduces the SHOW DEVICE display for a single device unit,
OPA0. Whereas this display lists information from the UCB for OPA0, including
some addresses of key data structures and a list of pending I/O requests for the
unit, it does not display information about the controller or its device driver. To
display the latter information, specify the device-name as OPA (for example,
SHOW DEVICE OPA).

SDA–112

SDA Commands
SHOW DEVICE

2. SDA> SHOW DEVICE DU
I/O data structures

DDB list

Address Controller ACP Driver DPT
------- ---------- -------- ------------ ---

80D0B3C0 BLUES$DUA F11XQP SYS$DKDRIVER 807735B0
8000B2B8 RED$DUA F11XQP SYS$DKDRIVER 807735B0
80D08BA0 BIGTOP$DUA F11XQP SYS$DKDRIVER 807735B0
80D08AE0 TIMEIN$DUA F11XQP SYS$DKDRIVER 807735B0

.

.

.
Press RETURN for more.

.

.

.

This excerpt from the output of the SHOW DEVICE DU command illustrates
the format of the DDB list display. In this case, the DDB list concerns itself
with those devices whose device type begins with DU. It displays devices of these
types attached to various HSCs (RED$ and BLUES$) and systems in a cluster
(BIGTOP$ and TIMEIN$).

SDA–113

SDA Commands
SHOW DUMP

SHOW DUMP

Displays formatted information of the header, error log buffers, logical memory
blocks (LMBs), compression data, and dump summary. It can also be used to
display hexadecimal information of individual blocks.

Format

SHOW DUMP {/ALL | /BLOCK[=m[{: | ;}n]] | [/COMPRESSION_MAP[=m[:n]]
| /ERROR_LOGS | /HEADER | /LMB[={ALL | n}] | /SUMMARY]}

Parameter

None

Qualifiers

/ALL
Displays the equivalent to specifying all the /SUMMARY, /HEADER, /ERROR_
LOGS, /COMPRESSION_MAP, and /LMB=ALL qualifiers.

/BLOCK[=m[{: | ;}n]]
Displays a hexadecimal dump of one or more blocks. Ranges can be expressed by
using the following syntax:

no value Displays next block
m Displays single block
m:n Displays a range of blocks from m to n, inclusive
m;n Displays a range of blocks starting at m and continuing for n

blocks

/COMPRESSION_MAP[=m[:n]]
Displays details of the compression data. Levels of detail can be expressed by
using the following syntax:

no value Displays a summary of all compression map blocks
m Displays contents of a single compression map block
m:n Displays details of single compression map entry

/ERROR_LOGS
Displays a summary of the error log buffers.

/HEADER
Displays the formatted contents of the dump header.

/LMB[={ALL | n}]
Displays the formatted contents of logical memory block (LMB) headers and
the virtual address (VA) ranges within the LMB. LMBs to be displayed can be
expressed by using the following syntax:

no value Displays next LMB
n Displays LMB at block n of the dump
ALL Displays all LMBs

SDA–114

SDA Commands
SHOW DUMP

/SUMMARY
Displays a summary of the dump. This is the default.

Description

The SHOW DUMP command displays information about the structure of the
dump file. It displays the header, the error log buffers, the compression map, and
in the case of a selective dump, the logical memory block (LMB) headers. This
command is provided for use when troubleshooting dump analysis problems.

Example

SDA >SHOW DUMP/SUMMARY

Summary of dump file DKA300:[SYS0.SYSEXE]SYSDUMP.DMP;8
--
Dump type: Compressed selective
Size of dump file: 000203A0/000203A0 (132000./132000.)
Highest VBN written: 0000D407 (54279.)
Uncompressed equivalent: 0001AF1C (110364.)
Compression ratio: 2.03:1 (49.2%)

Uncomp Uncomp
Dump file section VBN Blocks VBN blocks

-- ---------- -------- ------- --------
Dump header 00000001 00000002
Error log buffers 00000003 00000020
Compression map 00000023 00000010
LMB 0000 (PT space) 00000033 00000038 00000033 000000D2
LMB 0001 (S0/S1 space) 0000006B 0000621B 00000105 000095A5
LMB 0002 (S2 space) 00006286 000001A3 000096AA 00000352
LMB 0003 (Page tables of key process "SYSTEM") 00006429 00000005 000099FC 00000062
LMB 0004 (Memory of key process "SYSTEM") 0000642E 00000071 00009A5E 00000342

.

.

.
LMB 0003 (Page tables of key process "NETACP") 0000697B 00000009 0000AE14 00000052
LMB 0004 (Memory of key process "NETACP") 00006984 000013F7 0000AE66 00001F42
LMB 0005 (Key global pages) 00007D7B 000002BA 0000CDA8 00000312
LMB 0006 (Page tables of process "DTWM") 00008035 00000013 0000D0BA 00000082
LMB 0007 (Memory of process "DTWM") 00008048 000013A3 0000D13C 000022E4

.

.

.
LMB 0006 (Page tables of process "Milord_FTA1:") 0000C5E3 00000005 00019A44 00000062
LMB 0007 (Memory of process "Milord_FTA1:") 0000C5E8 00000074 00019AA6 00000222
LMB 0008 (Remaining global pages) 0000C65C 00000DAC 00019CC8 00001255

This example of the SHOW DUMP/SUMMARY command gives a summary of the
dump.

SDA> SHOW DUMP/HEADER

Dump header

Header field Meaning Value

-------------------- --------------------------------------- -----------------

SDA–115

SDA Commands
SHOW DUMP

DMP$W_FLAGS Flags 0FC1
DMP$V_OLDDUMP: Dump has been analyzed
DMP$V_WRITECOMP: Dump write was completed
DMP$V_ERRLOGCOMP: Error log buffers written
DMP$V_DUMP_STYLE: Selective dump

Verbose messages
Dump off system disk
Compressed

DMP$B_FLAGS2 Additional flags 09
DMP$V_COMPRESSED: Dump is compressed
DMP$V_ALPHADUMP: This is an OpenVMS Alpha dump

DMP$Q_SYSIDENT System version "X69G-FT1"
DMP$Q_LINKTIME Base image link date/time " 8-JUN-1996 02:07:27.31"
DMP$L_SYSVER Base image version 03000000
DMP$W_DUMPVER Dump version 0704

DMP$L_DUMPBLOCKCNT Count of blocks dumped for memory 0000D3D5
DMP$L_NOCOMPBLOCKCNT Uncompressed blocks dumped for memory 0001AEEA
DMP$L_SAVEPRCCNT Number of processes saved 00000014

.

.

.

EMB$Q_CR_TIME Crash date/time " 3-JUL-1996 09:30:13.36"
EMB$L_CR_CODE Bugcheck code "SSRVEXCEPT"
EMB$B_CR_SCS_NAME Node name "SWPCTX "
EMB$T_CR_HW_NAME Model name "DEC 3000 Model 400"
EMB$T_CR_LNAME Process name "SYSTEM"

DMP$L_CHECKSUM Dump header checksum 439E5E91

This example of the SHOW DUM/HEADER command shows the information in
the header.

SDA–116

SDA Commands
SHOW EXECUTIVE

SHOW EXECUTIVE

Displays the location and size of each loadable image that makes up the
executive.

Format

SHOW EXECUTIVE

Parameters

None.

Qualifiers

None.

Description

The executive consists of two base images and a number of other executive
images.

The base image called SYS$BASE_IMAGE.EXE contains:

• Symbol vectors for universal executive routines and data cells

• Procedure descriptors for universal executive routines

• Globally referenced data cells

The base image called SYS$PUBLIC_VECTORS.EXE contains:

• Symbol vectors for system service procedures

• Procedure descriptors for system services

• Transfer routines for system services

The base images are the pathways to routines and system service procedures in
the other executive images.

The SHOW EXECUTIVE command lists the location and size of each executive
image. It can enable you to determine whether a given memory address falls
within the range occupied by a particular image. (Table SDA–9 describes the
contents of each executive image.)

SHOW EXECUTIVE also displays the nonzero length image section base address
and length. The base address and length are blank for sliced loadable executive
images.

By default, SDA displays each location within an executive image as an
offset from the beginning of one of the loadable images; for instance,
EXCEPTION+00282. Similarly, those symbols that represent system services
point to the transfer routine in SYS$PUBLIC_VECTORS.EXE and not to the
actual system service procedure. When tracing the course of a system failure
through the listings of modules contained within a given executive image, you
may find it useful to load into the SDA symbol table all global symbols and global
entry points defined within one or all executive images. See the description of the
READ command for additional information.

SDA–117

SDA Commands
SHOW EXECUTIVE

The SHOW EXECUTIVE command usually shows all components of the
executive, as illustrated in the following example. In rare circumstances, you
may obtain a partial listing. For instance, once it has loaded the EXCEPTION
module (in the INIT phase of system initialization), the system can successfully
post a bugcheck exception and save a crash dump before loading all the executive
images normally loaded.

Example

SDA> SHOW EXECUTIVE
OpenVMS Alpha Executive Layout

Image Base End Length SymVec

SYSWSDRIVER
Nonpaged read only 802DE000 802DF400 00001400
Nonpaged read/write 80CB2600 80CB2E00 00000800
Linked 1-OCT-1995 13:07 LDRIMG 80DEEA00

SYS$IKDRIVER
Nonpaged read only 802D2000 802DC800 0000A800
Nonpaged read/write 80CB1000 80CB2600 00001600
Linked 1-OCT-1995 13:56 LDRIMG 80DE9840

SYS$IMDRIVER
Nonpaged read only 802CC000 802D0A00 00004A00
Nonpaged read/write 80CB0400 80CB1000 00000C00
Linked 1-OCT-1995 13:56 LDRIMG 80DE9580

SYS$INDRIVER
Nonpaged read only 802BC000 802CAA00 0000EA00
Nonpaged read/write 80CAF400 80CB0400 00001000
Linked 1-OCT-1995 13:57 LDRIMG 80DE9100

SYS$RTTDRIVER
Nonpaged read only 802B8000 802BB600 00003600
Nonpaged read/write 80CAEA00 80CAF400 00000A00
Linked 30-SEP-1995 22:17 LDRIMG 80DE4A00

SYS$CTDRIVER
Nonpaged read only 802AC000 802B6C00 0000AC00
Nonpaged read/write 80CACE00 80CAEA00 00001C00
Linked 30-SEP-1995 22:10 LDRIMG 80DE4440

NDDRIVER
Nonpaged read only 802A8000 802AB600 00003600
Nonpaged read/write 80CAC400 80CAC300 00000A00
Linked 30-SEP-1995 22:14 LDRIMG 80D143CO

NETDRIVER
Nonpaged read only 80290000 802A7800 00017800
nonpaged read/write 80CA9A00 80CAC400 00002A00
Paged read only 8028E000 8028E200 00000200
Linked 30-SEP-1995 22:12 LDRIMG 80D13E80

SYS$SODRIVER
Nonpaged read only 8028A000 8028DC00 00003C00
Nonpaged read/write 80CA8800 80CA9A00 00001200
Linked 30-SEP-1995 22:14 LDRIMG 80DBEAC0

SYS$YRDRIVER
Nonpaged read only 80282000 80288200 00006200

The SHOW EXECUTIVE command displays the location and length of executive
images.

SDA–118

SDA Commands
SHOW GLOBAL_SECTION_TABLE

SHOW GLOBAL_SECTION_TABLE

Displays information contained in the global section table.

Format

SHOW GLOBAL_SECTION_TABLE or SHOW GST [/QUALIFIER]

Parameter

None

Qualifiers

/SECTION_INDEX=n
Displays only the global section table entry for the specified section.

Description

Displays the entire contents of the global section table, unless the qualifier
/SECTION_INDEX is specified. This command is equivalent to SHOW PROCESS
/PROCESS_SECTION_TABLE/SYSTEM. See the SHOW PROCESS command
and Table SDA–26 for more information.

SDA–119

SDA Commands
SHOW GLOBAL_SECTION_TABLE

SDA> SHOW GST

Global Section Table
−−−−−−−−−−−−−−−−−−−−

Global section table information
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 Last entry allocated 0187
 First free entry 0000

Global section table
−−−−−−−−−−−−−−−−−−−−
INDEX ADDRESS SECT/GPTE ADDR PAGELETS WINDOW VBN CCB/GSD REFCNT FLINK BLINK FLAGS
0001 80D09FD8 FFFFFFFF.82A24000 00000069 80D202C0 00000003 00000000 00000007 0000 0000
0002 80D09FB0 FFFFFFFF.82FE0000 00000160 80D73B80 00000428 00000000 00000016 0000 0000
0003 80D09F88 FFFFFFFF.82A5A000 0000005F 80D206C0 0000014F 00000000 00000006 0000 0000
0004 80D09F60 FFFFFFFF.829A8000 00000001 80D73B80 0000058B 00000000 00000001 0000 0000 WRT CRF
0005 80D09F38 FFFFFFFF.82A6E000 00000009 80D21080 00000027 00000000 00000001 0000 0000
0006 80D09F10 FFFFFFFF.82998000 00000008 80D73D00 00000005 00000000 00000001 0000 0000
0007 80D09EE8 FFFFFFFF.82A76000 0000009B 80D21240 0000015A 00000000 0000000A 0000 0000
0008 80D09EC0 FFFFFFFF.829B0000 00000013 80D73EC0 00000003 00000000 00000002 0000 0000
000A 80D09E70 FFFFFFFF.8300C000 00000228 80D74080 00000002 00000000 00000015 0000 0000 WRT CRF
000B 80D09E48 FFFFFFFF.82AB0000 00000012 80D25280 000000A0 00000000 00000002 0000 0000
000C 80D09E20 FFFFFFFE.00052010 000001C2 80D88900 0000006F 81782030 00000000 000C 000C GBL
 NAME = INS$81781FC0_003
000D 80D09DF8 FFFFFFFF.82ABA000 00000059 80D26880 00000043 00000000 00000006 0000 0000
000E 80D09DD0 FFFFFFFE.00052108 00000021 80D90E40 0000000E 81782EB0 00000000 000E 000E GBL
 NAME = INS$81782E30_003
000F 80D09DA8 FFFFFFFF.82ACE000 00000025 80D27E40 00000022 00000000 00000003 0000 0000
0010 80D09D80 FFFFFFFE.00052130 00000058 80D90F80 0000001B 81783280 00000000 0010 0010 GBL
 NAME = INS$81783210_003
0011 80D09D58 FFFFFFFF.82ADA000 000001C7 80D2B100 00000046 00000000 0000001D 0000 0000
0012 80D09D30 FFFFFFFE.00052170 000000AE 80D91BC0 00000038 81783690 00000000 0012 0012 GBL
 NAME = INS$81783620_003
0013 80D09D08 FFFFFFFF.82B22000 00000029 80D2C6C0 00000007 00000000 00000003 0000 0000
0014 80D09CE0 FFFFFFFE.000521D8 0000002F 80D92000 0000000E 81783A80 00000000 0014 0014 GBL
 NAME = INS$81783A10_003
0015 80D09CB8 FFFFFFFE.00052200 00000161 80D92300 000000B4 81783EA0 00000000 0015 0015 GBL
 NAME = INS$81783E20_003
0016 80D09C90 FFFFFFFF.82B36000 0000005C 80D2E440 00000024 00000000 00000006 0000 0000
0017 80D09C68 FFFFFFFE.000522C8 00000170 80D92300 00000267 81783EF0 00000000 0017 0017 GBL
 NAME = INS$81783E20_008
0018 80D09C40 FFFFFFFF.82B46000 000000AB 80D2FA00 0000006B 00000000 0000000B 0000 0000

ZK−8829A−GE

 .
 .
 .

SDA–120

SDA Commands
SHOW GSD

SHOW GSD

Displays information contained in the global section descriptors.

Format

SHOW GSD [/QUALIFIERS]

Parameter

None

Qualifiers

/ADDRESS=n
Displays a specific global section descriptor entry, given its address.

/ALL
Displays information in all the global section descriptors; that is, the system,
group, and deleted global section descriptors. This qualifier is the default.

/SYSTEM
Displays information in the system global section descriptors.

/GROUP
Displays information in the group global section descriptors.

/DELETED
Displays information in the deleted (that is, delete pending) global section
descriptors.

Description

The SHOW GSD displays information that resides in the global section
descriptors. Table SDA–11 shows the fields and their meaning.

Table SDA–11 GSD Fields

Field Meaning

ADDRESS Gives the address of the global section descriptor.
NAME Gives the name of the global section.
GSTX Gives the global section table index.
FLAGS Gives the settings of flags for specified global section, as a

hexadecimal number, then key flag bits are also displayed by
name.

BASEPFN† Gives physical page frame number at which the section starts.
PAGES† Gives number of pages (not pagelets) in section.
REFCNT† Gives number of times this global section is mapped.

†This field only applies to PFN mapped global sections.

SDA–121

SDA Commands
SHOW GSD

SDA SHOW GSD

817DAF30 SECIDX_422
817DAE60 SECIDX_421

02DD
02DC
02DB
02DA
0000
0000
02D6
02D5

SECDIX_420817DAD90
SECDIX_419

0082C3C9
008A83CD
0088C3CD
008883DC
0001C3C1
0001C3C1
0080C3CD
008083CD

SECIDX_418
817DACC0

SECIDX_417

WRT AMOD=USER PERM

SECIDX_412

817DABE0

SECIDX_411

DZRO WRT AMOD=USER PAGFIL

817DAB00

DZRO WRT AMOD=USER PERM PAGFIL

817DA890

DZRO WRT AMOD=USER PAGFIL

817DA850

AMOD=USER PERM

 .

AMOD=USER PERM

 .

DZRO WRT AMOD=USER PERM

 .

DZRO WRT AMOD=USER

00000B0B
00000B0B

00000002
00000002

00000000
00000000

System Global Section Descriptor List
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−
−−−−−−−−−−PFNMAP−−−−−−−−−−

ZK−8830A−GE

ADDRESS NAME GSTX FLAGS REFCNTPAGESBASEPFN

SDA–122

SDA Commands
SHOW HEADER

SHOW HEADER

Displays the header of the dump file.

Format

SHOW HEADER

Parameters

None.

Qualifiers

None.

Description

The SHOW HEADER command produces a 10-column display, each line of which
displays both the hexadecimal and ASCII representation of the contents of
the dump file header in 32-byte intervals. Thus, the first eight columns, when
read right to left, represent the hexadecimal contents of 32 bytes of the header;
the ninth column, when read left to right, records the ASCII equivalent of the
contents. (Note that the period [.] in this column indicates an ASCII character
that cannot be displayed.)

After it displays the contents of the first header block, the SHOW HEADER
command displays the hexadecimal contents of the saved error log buffers.

See the OpenVMS AXP Internals and Data Structures manual for a discussion of
the information contained in the dump file header.

SDA> SHOW HEADER

Dump file header
−−−−−−−−−−−−−−−−
00000000 7FFA6000 00000000 7FFA1C98 00000000 0000187C 08090FC1 00000004 Á...|.........ú......‘ú 00000000
00001FFF 0000000D 00002000 80D0A000 00000000 7AFFBAD0 00000000 7FFAC100 .Áú.....Ðº.z......Ð............. 00000020
0000B162 00000000 00000001 00000000 00040704 FCFFFFFF 03000000 80C13670 p6Á........ü................b±.. 00000040
00000000 00000400 00000008 00000000 3154462D 31393658 00000011 00000000 X691−FT1................ 00000060
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000080
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000A0
FF7FC000 FFFFFFFD FF000000 80C220F0 00000000 00000000 00000000 00000000 ð Â.....ý....À...... 000000C0
.
.
.

Saved error log messages
−−−−−−−−−−−−−−−−−−−−−−−−
0004FFF9 0000040B 00000001 00000000 00000070 80D0B000 80D0A00C 00000000 Ð..°Ð.p.......ù........... 80D0A000
B4510020 60030000 00000000 00000020 20585443 50575308 00000000 00020000 SWPCTX ‘ .Q´ 80D0A020
30303320 43454412 00000002 00000000 3154462D 31393658 0000009A 2C31075A Z.1,....X691−FT1.........DEC 300 80D0A040
000000AA 59EC7C0A 00000000 00000000 00000000 00303034 206C6564 6F4D2030 0 Model 400..............|ì Yª ... 80D0A060
20585443 50575308 00000000 00020000 0004FFF9 0000040B 00000001 00000000 ù............SWPCTX 80D0A080
3154462D 31393658 0001009A 2C3107FD 1DDB0040 60030000 00000000 00000020 ‘ @.Û.ý.1,....X691−FT1 80D0A0A0
00000000 00303034 206C6564 6F4D2030 30303320 43454412 00000003 00000000 DEC 3000 Model 400..... 80D0A0C0
4B442458 54435057 530A0064 000001AB 00000000 00010001 00000000 00000000 «...d..SWPCTX$DK 80D0A0E0
.
.
. ZK−8861A−GE

The SHOW HEADER command displays the contents of the dump file’s header.
Ellipses indicate hexadecimal information omitted from the display.

SDA–123

SDA Commands
SHOW LAN

SHOW LAN

Displays information contained in various local area network (LAN) data
structures.

Format

SHOW LAN [/qualifier[,...]]

Parameters

None.

Qualifiers

/CLIENT=name
Specifies that information be displayed for the specified client. Valid client
designators are SCA, DECNET, LAT, MOPRC, TCPIP, DIAG, ELN, BIOS, LAST,
USER, ARP, MOPDL, LOOP, BRIDGE, DNAME, ENCRY, DTIME, and LTM.
The /CLIENT, /DEVICE, and /UNIT qualifiers are synonymous and mutually
exclusive.

/CLUEXIT
Specifies that cluster protocol information be displayed.

/COUNTERS
Specifies that the LAN station block (LSB) and unit control block (UCB) counters
be displayed.

/CSMACD
Specifies that Carrier Sense Multiple Access with Collision Detect (CSMA/CD)
information for the LAN be displayed. By default, both CSMA/CD and Fiber
Distributed Data Interface (FDDI) information is displayed.

/DEVICE=name
Specifies that information be displayed for the specified device, unit, or client.
For each LAN adapter on the system there is one device and multiple users of
that device called units or clients. Device designators are specified in the format
XXdn, where XX is the type of device, d is the device letter, and n is the unit
number. The device letter and unit number are optional. The first unit, which
is always present, is the template unit. These are specified as indicated in this
example, for a DEMNA which is called EX:

/DEVICE=EX—display all EX devices on the system
/DEVICE=EXA—display the first EX device only
/DEVICE=EXA0—display the first EXA unit
/DEVICE=SCA—display SCA unit
/DEVICE=LAT—display LAT units

Valid client names are listed in the /CLIENT=name qualifier. The /CLIENT,
/DEVICE, and /UNIT qualifiers are synonymous and mutually exclusive.

/ELAN
Specifies information from an Emulated LAN (ELAN) that runs over an
asynchronous transfer mode (ATM) network. The /ELAN qualifier displays
the LAN station Block (LSB) address, device state, and the LSB fields pertinent

SDA–124

SDA Commands
SHOW LAN

to an ELAN for both the parent ATM device and the ELAN psuedo-device drivers.
It also specifies the name, description, parent device, state, and LAN emulation
client (LEC) attributes of the ELAN.

The qualifier /ELAN used with the device qualifier (/LAN/device=ELA) will only
display information for the specified device or psuedo-device.

/ERRORS
Specifies that the LSB and UCB error counters be displayed.

/FDDI
Specifies that Fiber Distributed Data Interface (FDDI) information for the LAN
be displayed. By default, both CSMA/CD and FDDI information is displayed.

/FULL
Specifies that all information from the LAN, LSB, and UCB data structures be
displayed.

/ICOUNTERS
Specifies internal counters of the drivers by displaying the internal counters. If
the /ICOUNTERS qualifier is used with the /DEVICE qualifier, the /ICOUNTERS
specifies the internal counters of a specific driver.

/QUEUE
Specifies a listing of all queues, whether their status is valid or invalid, and
all elements of the queues. If the /QUEUE qualifier is used with the /DEVICE
qualifier, the /QUEUE specifies a specific queue.

/SUMMARY
Specifies that only a summary of LAN information (a list of flags, LSBs, UCBs,
and base addresses) be printed. This is the default.

/TIMESTAMPS
Specifies the print time information (such as start and stop times and error times)
from the device and unit data structures. SDA displays the data in chronological
order.

/UNIT=name
Specifies that information be displayed for the specified unit. See the descriptions
for /CLIENT=name and /DEVICE=name qualifiers.

/VCI
Specifies the VMS Communication Interface Block (VCIB) for each LAN device
with an active VCI user. If the /VCI qualifier is used with the /DEVICE qualifier,
the VCIB is only displayed for the specified device.

Description

The SHOW LAN command displays information contained in various local area
network (LAN) data structures. By default, or when the /SUMMARY qualifier is
specified, SHOW LAN displays a list of flags, LSBs, UCBs, and base addresses.
When the /FULL qualifier is specified, SHOW LAN displays all information found
in the LAN, LSB, and UCB data structures.

SDA–125

SDA Commands
SHOW LAN

Examples

1. SDA> SHOW LAN/FULL

LAN Data Structures

-- LAN Information Summary 23-MAY-1996 13:07:52 --

LAN flags: 00000004 LAN_INIT

LAN block address 80DB7140 Timer DELTA time 10000000
Number of stations 2 DAT sequence number 1
LAN module version 1 First SVAPTE FFDF60F0
LANIDEF version 51 Number of PTEs 3
LANUDEF version 26 SVA of first page 8183C000
First LSB address 80DCA980

-- LAN CSMACD Network Management 23-MAY-1996 13:07:52 --

Creation time None Times created 0
Deletion time None Times deleted 0
Module EAB 00000000 Latest EIB 00000000
Port EAB 00000000
Station EAB 00000000
NM flags: 00000000

-- LAN FDDI Network Management 23-MAY-1996 13:07:52 --

Creation time None Times created 0
Deletion time None Times deleted 0
Module EAB 00000000 Link EAB 00000000
Port EAB 00000000 PHY port EAB 00000000
Station EAB 00000000 Module EIB 00000000
NM flags: 00000000

LAN Data Structures

-- ESA Device Information 23-MAY-1996 13:07:52 --

LSB address 80DCA980 Driver code address 80CAE838
Driver version 00000001.07010037 Device1 code address 00000000
Device1 version 00000000.00000000 Device2 code address 00000000
Device2 version 00000000.00000000 LAN code address 80CAFA00
LAN version 00000001.07010112 DLL type CSMACD
Device name EY_NITC2 MOP name MXE
MOP ID 94 HW serial Not supplied
HW version 00000000 Promiscuous mode OFF
Controller mode NORMAL Promiscuous UCB 00000000
Internal loopback OFF All multicast state OFF
Hardware address 08-00-03-DE-00-12 CRC generation mode ON
Physical address AA-00-04-00-88-FE Full Duplex Enable OFF
Active unit count 1 Full Duplex State OFF
Line speed 10

Flags: 00000000
Char: 00000000
Status: 00000003 RUN,INITED

LAN Data Structures

-- ESA Device Information (cont) 23-MAY-1996 13:07:52 --

SDA–126

SDA Commands
SHOW LAN

Put rcv ptr/index 00000000 Get rcv ptr/index 00000015
Put xmt ptr/index 80DCB620 Get xmt ptr/index 80DCB620
Put cmd ptr/index 00000000 Get cmd ptr/index 00000000
Put uns ptr/index 00000000 Get uns ptr/index 00000000
Put smt ptr/index 00000000 Get smt ptr/index 00000000
RBufs owned by dev 0 Rcv packet limit 32
XEnts owned by dev 0 XEnts owned by host 4
CEnts owned by dev 0 Transmit timer 0
UEnts owned by dev 0 Control timer 0
SEnts owned by dev 0 Periodic SYSID timer 599
Current rcv buffers 17 Ring unavail timer 0
Rqst MAX rcv buffers 32 USB timer 26
Rqst MIN rcv buffers 16 Receive alignment 0
Curr MAX rcv buffers 32 Receive buffer size 1518
Curr MIN rcv buffers 16 Min 1st chain segment 0
FILL rcv buffers 16 Min transmit length 0
ADD rcv buffers 32 Dev xmt header size 0

LAN Data Structures

-- ESA Device Information (cont) 23-MAY-1996 13:07:52 --

Last receive 23-MAY 13:07:51 Last transmit 23-MAY 13:07:50
ADP address 80D4B280 IDB address 80DCA880
DAT stage 00000000 DAT xmt status 0000003C.003C0001
DAT number started 1 DAT xmt complete 23-MAY 13:07:19
DAT number failed 0 DAT rcv found None
DAT VCRP 80DCBB80 DAT UCB 00000000
Mailbox enable flag 0 CRAM read comman 00000000
CSR base phys addr 00000000.00000000 CRAM write comma 00000000
Mailboxes in use 0 Media UNDF
2nd LW status flags 00000000

LAN Data Structures

-- ESA Network Management Information 23-MAY-1996 13:07:52 --

Creation time None Create count 0
Deletion time None Enable count 0
Enabled time None Number of ports 0
Disabled time None Events logged 0
EIB address 00000000 NMgmt assigned addr None
LLB address 00000000 Station name itmlst 00000000
LHB address 00000000 Station itmlst len 0
First LPB address 00000000

LAN Data Structures

-- ESA Fork Information 23-MAY-1996 13:07:52 --

ISR FKB sched 23-MAY 13:07:51 ISR FKB in use flag FREE
ISR FKB time 23-MAY 13:07:51 ISR FKB count 200
IPL8 FKB sched 23-MAY 13:07:20 IPL8 FKB in use flag FREE
IPL8 FKB time 23-MAY 13:07:20 IPL8 FKB count 1
RESET FKB sched None RESET FKB in use flag FREE
RESET FKB time None RESET FKB count 0
NM FKB sched None NM FKB in use flag FREE
NM FKB time None NM FKB count 0
Fork status code 0

SDA–127

SDA Commands
SHOW LAN

LAN Data Structures

-- ESA Queue Information 23-MAY-1996 13:07:52 --
Control hold queue 80DCACF0 Status: Valid, empty
Control request queue 80DCACF8 Status: Valid, empty
Control pending queue 80DCAD00 Status: Valid, empty
Transmit request queue 80DCACE8 Status: Valid, empty
Transmit pending queue 80DCAD18 Status: Valid, empty
Receive buffer list 80DCAD38 Status: Valid, 17 elements
Receive pending queue 80DCAD20 Status: Valid, empty
Post process queue 80DCAD08 Status: Valid, empty
Delay queue 80DCAD10 Status: Valid, empty
Auto restart queue 80DCAD28 Status: Valid, empty
Netwrk mgmt hold queue 80DCAD30 Status: Valid, empty

-- ESA Multicast Address Information 23-MAY-1996 13:07:52 --

AB-00-00-04-00-00

-- ESA Unit Summary 23-MAY-1996 13:07:52 --

UCB UCB Addr Fmt Value Client State
--- -------- --- ----- ------ -----------
ESA0 80D4F6C0
ESA1 80E35400 Eth 60-03 DECNET 0017 STRTN,LEN,UNIQ,STRTD

LAN Data Structures

-- ESA Counters Information 23-MAY-1996 13:07:52 --

Octets received 596 Octets sent 230
PDUs received 8 PDUs sent 5
Mcast octets received 596 Mcast octets sent 138
Mcast PDUs received 8 Mcast PDUs sent 3
Unrec indiv dest PDUs 0 PDUs sent, deferred 0
Unrec mcast dest PDUs 1 PDUs sent, one coll 0
Data overruns 0 PDUs sent, mul coll 0
Unavail station buffs 0 Excessive collisions 0
Unavail user buffers 0 Late collisions 0
CRC errors 0 Carrier check failure 0
Alignment errors 0 Last carrier failure None
Rcv data length err 0 Coll detect chk fail 5
Frame size errors 0 Short circuit failure 0
Frames too long 0 Open circuit failure 0
Seconds since zeroed 34 Transmits too long 0
Station failures 0 Send data length err 0

LAN Data Structures

-- ESA Counters Information (cont) 23-MAY-1996 13:07:52 --

SDA–128

SDA Commands
SHOW LAN

No work transmits 0 Ring avail transitions 0
Buffer_Addr transmits 0 Ring unavail transitions 0
SVAPTE/BOFF transmits 0 Loopback sent 0
Global page transmits 0 System ID sent 0
Bad PTE transmits 0 ReqCounters sent 0
Restart pending counter 0 Internal counters size 40
+00 MCA not enabled 187 +2C Generic (or unused) 00000000
+04 Xmt underflows 0 +30 Generic (or unused) 00000000
+08 Rcv overflows 0 +34 Generic (or unused) 00000000
+0C Memory errors 0 +38 Generic (or unused) 80DCAD18
+10 Babbling errors 0 +3C Generic (or unused) 80DCAD18
+14 Local buffer errors 0 +40 Generic (or unused) 004E0840
+18 LANCE interrupts 202 +44 Generic (or unused) 61616161
+1C Xmt ring <31:0> 00000000 +48 Generic (or unused) 61616161
+20 Xmt ring <63:32> 00000000 +4C Generic (or unused) 61616161
+24 Soft errors handled 0 +50 Generic (or unused) 61616161
+28 Generic (or unused) 00000000 +54 Generic (or unused) 61616161

LAN Data Structures

-- ESA Error Information 23-MAY-1996 13:07:52 --

Fatal error count 0 Last error CSR 00000000
Fatal error code None Last fatal error None
Prev error code None Prev fatal error None
Transmit timeouts 0 Last USB time None
Control timeouts 0 Last UUB time None
Restart failures 0 Last CRC time None
Power failures 0 Last CRC srcadr None
Bad PTE transmits 0 Last length erro None
Loopback failures 0 Last exc collisi None
System ID failures 0 Last carrier fai None
ReqCounters failures 0 Last late collis None

LAN Data Structures

-- ESA0 Template Unit Information 23-MAY-1996 13:07:52 --

LSB address 80DCA980 Error count 0
VCIB address 00000000 Parameter mask 00000000
Stop IRP address 00000000 Promiscuous mode OFF
Restart IRP address 00000000 All multicast mode OFF
LAN medium CSMACD Source Routing mode TRANSPARENT
Packet format Ethernet Access mode EXCLUSIVE
Eth protocol type 00-00 Shared user DES None
802E protocol ID 00-00-00-00-00 Padding mode ON
802.2 SAP 00 Automatic restart DISABLED
802.2 Group SAPs 00,00,00,00 Allow prom client ON
Controller mode NORMAL Can change address OFF
Internal loopback OFF 802.2 service User
CRC generation mode ON Rcv buffers to save 1
Functional Addr mod ON Minimum rcv buffers 4
Hardware address 08-00-03-DE-00-12 User transmit FC/AC ON
Physical address FF-FF-FF-FF-FF-FF User receive FC/AC OFF

LAN Data Structures

-- ESA1 60-03 (DECNET) Unit Information 23-MAY-1996 13:07:52 --

SDA–129

SDA Commands
SHOW LAN

LSB address 80DCA980 Error count 0
VCIB address 00000000 Parameter mask 00DA8695
Stop IRP address 80E047C0 Promiscuous mode OFF
Restart IRP address 00000000 All multicast mode OFF
LAN medium CSMACD Source Routing mode TRANSPARENT
Packet format Ethernet Access mode EXCLUSIVE
Eth protocol type 60-03 Shared user DES None
802E protocol ID 00-00-00-00-00 Padding mode ON
802.2 SAP 00 Automatic restart DISABLED
802.2 Group SAPs 00,00,00,00 Allow prom client ON
Controller mode NORMAL Can change address OFF
Internal loopback OFF 802.2 service User
CRC generation mode ON Rcv buffers to save 10
Functional Addr mod ON Minimum rcv buffers 4
Hardware address 08-00-03-DE-00-12 User transmit FC/AC ON
Physical address AA-00-04-00-88-FE User receive FC/AC OFF

LAN Data Structures

-- ESA1 60-03 (DECNET) Unit Information (cont) 23-MAY-1996 13:07:52 --

Last receive 23-MAY 13:07:47 Starter’ s PID 0001000F
Last transmit 23-MAY 13:07:50 Maximum header size 16
Last start attempt 23-MAY 13:07:20 Maximum buffer size 1498
Last start done 23-MAY 13:07:20 Rcv quota charged 15040
Last start failed None Default FC value 00
MCA match enabled 01 Default AC value 00
Last MCA filtered AB-00-00-04-00-00 Maintenance state ON

UCB status: 00000017 STRTN,LEN,UNIQ,STRTD

Receive IRP queue 80E356E8 Status: Valid, 1 element
Receive pending queue 80E356E0 Status: Valid, empty

Multicast address table, embedded:
AB-00-00-04-00-00

LAN Data Structures

-- ESA1 60-03 (DECNET) Counters Information 23-MAY-1996 13:07:52 --

Octets received 483 Octets sent 180
PDUs received 7 PDUs sent 3
Mcast octets received 483 Mcast octets sent 180
Mcast PDUs received 7 Mcast PDUs sent 3
Unavail user buffer 0 Multicast not enabled 0
Last UUB time None User buffer too small 0

The SHOW LAN/FULL command displays information for all LAN, LSB, and
UCB data structures.

2. SDA> SHOW LAN/TIME

-- LAN History Information 12-FEB-1995 11:08:48 --

SDA–130

SDA Commands
SHOW LAN

12-FEB 11:08:47.92 ESA Last receive
12-FEB 11:08:47.92 ESA Last fork scheduled
12-FEB 11:08:47.92 ESA Last fork time
12-FEB 11:08:47.77 ESA5 LAST Last receive
12-FEB 11:08:47.72 ESA3 LAT Last receive
12-FEB 11:08:41.25 ESA Last transmit
12-FEB 11:08:41.25 ESA5 LAST Last transmit
12-FEB 11:08:40.02 ESA2 DECnet Last receive
12-FEB 11:08:39.14 ESA2 DECnet Last transmit
12-FEB 11:08:37.39 ESA3 LAT Last transmit
12-FEB 10:19:25.31 ESA Last unavail user buffer
12-FEB 10:19:25.31 ESA2 DECnet Last unavail user buffer
11-FEB 14:10:20.09 ESA5 LAST Last start completed
11-FEB 14:10:02.16 ESA3 LAT Last start completed
11-FEB 14:09:58.44 ESA2 DECnet Last start completed
11-FEB 14:09:57.44 ESA Last DAT transmit

The SHOW LAN/TIME command displays print time information from device
and unit data structures.

3. SDA>SHOW LAN/VCI/DEVICE=ICB

-- ICB VCI Information 17-APR-1996 14:22:07 --

LSB address = 80A1D580
Device state = 00000003 RUN,INITED

-- ICB2 80-41 (LAST) VCI Information 17-APR-1996 14:22:07 --

VCIB address = 8096F238
CLIENT flags: 00000001 RCV_DCB
LAN flags: 00000004 LAN_INIT
DLL flags: 00000005 XMT_CHAIN,PORT_STATUS
UCB status: 00000015 STRTN,UNIQ,STRTD

VCI ID LAST VCI version 00010001
UCB address 80A4C5C0 DP VCRP address 00000000
Hardware address 00-00-93-08-52-CF LDC address 80A1D720
Physical address 00-00-93-08-52-CF LAN medium TR
Transmit available 80A1D670 Outstanding operations 0
Maximum receives 0 Outstanding receives 0
Max xmt size 4444 Header size 52
Build header rtn 808BF230 Report event rtn 86327130
XMT initiate rtn 808BF200 Transmit complete rtn 86326D80
XMT frame rtn 808BF210 Receive complete rtn 86326A80

-- ICB2 80-41 (LAST) VCI Information (cont) 17-APR-1996 14:22:07 --

Portmgmt initiate rtn 808BF0C0 Portmgmt complete rtn 86327100
Monitor request rtn 00000000 Monitor transmit rtn 00000000
Monitor flags 00000000 Monitor receive rtn 00000000
Port usable 00000000 Port unusable 00000000

The SHOW LAN/VCI/DEVICE=ICB command displays the VCIB for a Token
Ring device (ICB) which has an active VCI user (LAST).

4. SDA>SHOW LAN/ELAN

-- HCA Emulated LAN LSB Information 17-APR-1996 14:08:02 --

LSB address = 8098D200
Device state = 00000101 RUN,RING_AVAIL

SDA–131

SDA Commands
SHOW LAN

Driver CM VC setup adr 808986A0 Driver CM VC teardown adr 80898668
NIPG CM handle adr 8096C30C NIPG CM SVC handle 00000000
NIPG CM agent handle adr 809B364C NIPG CM mgr lineup handle 809B394C
NIPG CM ILMI IO handle 809B378C MIB II handle adr 809B94CC
MIB handle adr 809B3ACC Queue header for EL LSBs 00000000
DEC MIB handle adr 809BBD8C NIPG current TQEs used 00000000
Count of allocated TQEs 0000000D NIPG current pool used 0000D2C0
NIPG pool allocations 00075730

-- ELA Emulated LAN LSB Information 17-APR-1996 14:08:02 --

LSB address = 80AB08C0
Device state = 00000001 RUN

ELAN name = ELAN 1
ELAN description = ATM ELAN
ELAN parent = HCA0
ELAN state = 00000001 ACTIVE

MAX transmit size MTU_1516 ELAN media type LAN_802_3
LEC attr buff adr 80AB1FC0 LEC attr buff size 00000328
Event mask 00000000 PVC identifer 00000000
Extended sense 00000000

-- ELA Emulated LAN LEC Attributes 17-APR-1996 14:08:02 --

LAN type 00000000 LAN MTU 00000001
Proxy flag 00000000 Control timeout 0000000A
Max UF count 00000001 Max UF time 00000001
VCC timeout 000004B0 Max retry count 00000002
LEC id 00000002 Forw delay time 0000000F
Flush timeout 00000004 Path switch delay 00000006
SM state 00000070 Illegal CTRL frames 00000000
CTRL xmt failures 00000000 CTRL frames sent 0000000C
CTRL frames_rcvd 00000012 LEARPs sent 00000000
LEARPS rcvd 00000000 UCASTs sent direct 00000000
UCASTs flooded 00000006 UCASTs discarded 00000001
NUCASTs sent 00000000
Local ESI 00000000.00000000
BUS ATM addr 3999990000000008002BA57E80.AA000302FF12.00
LES ATM addr 3999990000000008002BA57E80.AA000302FF14.00
My ATM addr 3999990000000008002BA57E80.08002B2240A0.00

The SHOW LAN/ELAN command displays information for the parent ATM
device (HCA) driver and the ELAN psuedo-device (ELA) driver.

5. SDA>SHOW LAN/ELAN/DEV=ELA

-- ELA Emulated LAN LSB Information 17-APR-1996 14:08:22 --

LSB address = 80AB08C0
Device state = 00000001 RUN

ELAN name = ELAN 1
ELAN description = ATM ELAN
ELAN parent = HCA0
ELAN state = 00000001 ACTIVE

MAX transmit size MTU_1516 ELAN media type LAN_802_3
LEC attr buff adr 80AB1FC0 LEC attr buff size 00000328
Event mask 00000000 PVC identifer 00000000
Extended sense 00000000

-- ELA Emulated LAN LEC Attributes 17-APR-1996 14:08:22 --

SDA–132

SDA Commands
SHOW LAN

LAN type 00000000 LAN MTU 00000001
Proxy flag 00000000 Control timeout 0000000A
Max UF count 00000001 Max UF time 00000001
VCC timeout 000004B0 Max retry count 00000002
LEC id 00000002 Forw delay time 0000000F
Flush timeout 00000004 Path switch delay 00000006
SM state 00000070 Illegal CTRL frames 00000000
CTRL xmt failures 00000000 CTRL frames sent 0000000C
CTRL frames_rcvd 00000012 LEARPs sent 00000000
LEARPS rcvd 00000000 UCASTs sent direct 00000000
UCASTs flooded 00000006 UCASTs discarded 00000001
NUCASTs sent 00000000
Local ESI 00000000.00000000
BUS ATM addr 3999990000000008002BA57E80.AA000302FF12.00
LES ATM addr 3999990000000008002BA57E80.AA000302FF14.00
My ATM addr 3999990000000008002BA57E80.08002B2240A0.00

The SHOW LAN/ELAN/DEVICE=ELA command displays information for the
ELAN psuedo-device (ELA) driver only.

6. SDA> SHOW LAN/ELAN/DEVICE=HCA

-- HCA Emulated LAN LSB Information 17-APR-1996 14:08:25 --

LSB address = 8098D200
Device state = 00000101 RUN,RING_AVAIL

Driver CM VC setup adr 808986A0 Driver CM VC teardown adr 80898668
NIPG CM handle adr 8096C30C NIPG CM SVC handle 00000000
NIPG CM agent handle adr 809B364C NIPG CM mgr lineup handle 809B394C
NIPG CM ILMI IO handle 809B378C MIB II handle adr 809B94CC
MIB handle adr 809B3ACC Queue header for EL LSBs 00000000
DEC MIB handle adr 809BBD8C NIPG current TQEs used 00000000
Count of allocated TQEs 0000000D NIPG current pool used 0000D2C0
NIPG pool allocations 000757B2

The SHOW LAN/ELAN/DEVICE=HCA command displays information for the
ATM device (HCA) driver only.

SDA–133

SDA Commands
SHOW LOCK

SHOW LOCK

Displays information about all lock management locks in the system, or about a
specified lock.

Format

SHOW LOCK {lock-id | /ADDRESS=n | /ALL (d) | /CACHED | /NAME=name}

Parameter

lock-id
Name of a specific lock.

Qualifiers

/ADDRESS=n
Displays a specific lock, given the address of the lock block.

/ALL
Lists all locks that exist in the system. This is the default behavior of the SHOW
LOCK command.

/CACHED
Displays locks that are no longer valid. The memory for these locks is kept
around so that later requests for locks can use them. Cached locks are not
displayed in the other SHOW LOCK commands.

/NAME=name
Displays a specified lock with the given name.

Description

The SHOW LOCK command displays the information described in Table SDA–12
for each lock management lock in the system, or for the lock indicated by lock-id.
(Use the SHOW SPINLOCKS command to display information about spin locks.)
You can obtain a similar display for the locks owned by a specific process by
issuing the appropriate SHOW PROCESS/LOCKS command. See the OpenVMS
Programming Concepts Manual for additional information.

You can display information about the resource to which a lock is queued by
issuing the SHOW RESOURCE command specifying the resource’s lock-id.

Table SDA–12 Contents of the SHOW LOCK and SHOW PROCESS/LOCKS
Displays

Display Element Description

Process Index1 Index in the PCB array to a pointer to the process
control block (PCB) of the process that owns the lock.

Name1 Name of the process that owns the lock.

1This display element is produced only by the SHOW PROCESS/LOCKS command.

(continued on next page)

SDA–134

SDA Commands
SHOW LOCK

Table SDA–12 (Cont.) Contents of the SHOW LOCK and SHOW PROCESS
/LOCKS Displays

Display Element Description

Extended PID1 Clusterwide identification of the process that owns the
lock.

Lock ID Identification of the lock.
PID Systemwide identification of the lock.
Flags Information specified in the request for the lock.
Par. ID Identification of the lock’s parent lock.
Granted at Lock mode at which the lock was granted.
Sublocks Identification numbers of the locks that the lock owns.
LKB Address of the lock block (LKB). If a blocking AST

has been enabled for this lock, the notation ‘‘BLKAST’’
appears next to the LKB address.

Resource Dump of the resource name. The two leftmost columns
of the dump show its contents as hexadecimal values,
the least significant byte being represented by the
rightmost two digits. The rightmost column represents
its contents as ASCII text, the least significant byte
being represented by the leftmost character.

Status Status of the lock, information used internally by the
lock manager.

Length Length of the resource name.
Mode Processor access mode of the namespace in which the

resource block (RSB) associated with the lock resides.
Owner Owner of the resource. Certain resources owned by the

operating system list ‘‘System’’ as the owner. Resources
owned by a group have the number (in octal) of the
owning group in this field.

Copy Indication of whether the lock is mastered on the local
system or is a process copy.

1This display element is produced only by the SHOW PROCESS/LOCKS command.

Example

SDA> SHOW LOCK
Lock database

Lock id: 01000001 PID: 00000000 Flags: NOQUEUE SYNCSTS SYSTEM
Par. id: 00000000 SUBLCKs: 0 CVTSYS
LKB: 80C9FD40 BLKAST: 00000000
PRIORTY: 0000

Granted at EX 00000000-FFFFFFFF

Resource: 5F535953 24535953 SYS$SYS_ Status: NOQUOTA
Length 16 00000000 FF854449 ID......
Exec. mode 00000000 00000000
System 00000000 00000000

Local copy

SDA–135

SDA Commands
SHOW LOCK

Lock database

Lock id: 05000002 PID: 00000000 Flags: VALBLK CONVERT SYNCSTS
Par. id: 0100000E SUBLCKs: 0 CVTSYS
LKB: 80CD0D40 BLKAST: 00000000
PRIORTY: 0000

Granted at NL 00000000-FFFFFFFF

Resource: 09C27324 42313146 F11B$sÂ. Status: NOQUOTA
Length 10 00000000 00000000
Kernel mode 00000000 00000000
System 00000000 00000000

Process copy of lock 010002C0 on system 00010016 (FLAMS)

Lock database

Lock id: 02000003 PID: 00000000 Flags: VALBLK CONVERT SYNCSTS
Par. id: 00000000 SUBLCKs: 0 NOQUOTA CVTSYS
LKB: 80D317C0 BLKAST: 00000000
PRIORTY: 0000

Granted at CR 00000000-FFFFFFFF

Resource: 4153445F 24535953 SYS$_DSA Status: NOQUOTA
Length 10 00000000 00003A32 2:......
Kernel mode 00000000 00000000
System 00000000 00000000

Process copy of lock 0D000304 on system 00010014 (ROMRDR)

.

.

.
SDA> SHOW RESOURCE/LOCK=280009
Resource database

Address of RSB: 80D31D00 GGMODE: NL Status: VALID
Parent RSB: 00000000 CGMODE: NL
Sub-RSB count: 0 FGMODE: NL
Lock Count: 1 CSID: 00010014 (ROMRDR)
BLKAST count: 0 RQSEQNM: 0000

Resource: 4153445F 24535953 SYS$_DSA Valblk: 00000000 00000019
Length 10 00000000 00003A32 2:...... 00000000 00000000
Kernel mode 00000000 00000000
System 00000000 00000000 Seqnum: 00000011

Granted queue (Lock ID / Gr mode / Range):
02000003 CR 00000000-FFFFFFFF

Conversion queue (Lock ID / Gr mode / Range -> Rq mode / Range):
*** EMPTY QUEUE ***

Waiting queue (Lock ID / Rq mode / Range):
*** EMPTY QUEUE ***

This SDA session shows the output of the SHOW LOCK command for several
locks. The SHOW RESOURCE command, executed for the last displayed lock,
verifies that the lock is in the resource’s granted queue. (See Table SDA–28
for a full explanation of the contents of the display of the SHOW RESOURCE
command.)

SDA–136

SDA Commands
SHOW MACHINE_CHECK

SHOW MACHINE_CHECK

Displays the contents of the stored machine check frame. This command is valid
for the DEC 4000 Alpha, DEC 7000 Alpha, and DEC 10000 Alpha computers only.

Format

SHOW MACHINE_CHECK [/FULL] [cpu-id]

Parameter

cpu-id
Numeric value from 00 to 1F16 indicating the identity of the processor for which
context information is to be displayed. This parameter changes the SDA current
CPU (the default) to the CPU specified with cpu-id. If you specify a value outside
this range, or you specify the cpu-id of a processor that was not active at the
time of the system failure, SDA displays the following message:

%SDA-E-CPUNOTVLD, CPU not booted or CPU number out of range

If you use the cpu-id parameter, the SHOW MACHINE_CHECK command
performs an implicit SET CPU command, making the processor indicated by
cpu-id the current CPU for subsequent SDA commands. (See the description of
the SET CPU command and Section 4 for information on how this can affect the
CPU context—and process context—in which SDA commands execute.)

Qualifier

/FULL
Specifies that a detailed version of the machine check information be displayed.
This is currently identical to the default summary display.

Description

The SHOW MACHINE_CHECK command displays the contents of the stored
machine check frame. A separate frame is allocated at boot time for every CPU
in a multiple-CPU system. This command is valid for the DEC 4000 Alpha, DEC
7000 Alpha, and DEC 10000 Alpha computers only.

If no qualifier is specified, a summary version of the machine check frame is
displayed.

The default cpu-id is the SDA current CPU.

SDA–137

SDA Commands
SHOW MACHINE_CHECK

Examples

1. SDA> SHOW MACHINE_CHECK
CPU 00 Stored Machine Check Crash Data

Processor specific information:

Exception address: FFFFFFFF.800B0250 Exception Summary: 00000000.00000000
Pal base address: 00000000.00008000 Exception Mask: 00000000.00000000
HW Interrupt Request: 00000000.00000342 HW Interrupt Ena: 00000001.FFC01CE0
MM_CSR 00000000.00003640 ICCSR: 00000002.381F0000
D-cache address: 00000007.FFFFFFFF D-cache status: 00000000.000002E0
BIU status: 00000000.00000050 BIU address [7..0]: 00000000.000060E0
BIU control: 00000008.50006447 Fill Address: 00000000.00006120
Single-bit syndrome: 00000000.00000000 Processor mchck VA: 00000000.00006190
A-box control: 00000000.0000040E B-cache TAG: 00106100.83008828

System specific information:

Garbage bus info: 00200009 00000038 Device type: 000B8001
LCNR: 00000001 Memory error: 00000000
LBER: 00000009 Bus error synd 0,1: 00000000 00000000
Bus error cmd: 00048858 00AB1C88 Bus error synd 2,3: 00000000 0000002C
LEP mode: 00010010 LEP lock address: 00041108

The SHOW MACHINE_CHECK command in this SDA display shows the contents
of the stored machine check frame.

2. SDA> SHOW MACHINE_CHECK 1

CPU 01 Stored Machine Check Crash Data

Processor specific information:

Exception address: FFFFFFFF.800868A0 Exception Summary: 00000000.00000000
Pal base address: 00000000.00008000 Exception Mask: 00000000.00000000
HW Interrupt Request: 00000000.00000342 HW Interrupt Ena: 00000000.1FFE1CE0
MM_CSR 00000000.00005BF1 ICCSR: 00000000.081F0000
D-cache address: 00000007.FFFFFFFF D-cache status: 00000000.000002E0
BIU status: 00000000.00000050 BIU address [7..0]: 00000000.000063E0
BIU control: 00000008.50006447 Fill Address: 00000000.00006420
Single-bit syndrome: 00000000.00000000 Processor mchck VA: 00000000.00006490
A-box control: 00000000.0000040E B-cache TAG: 35028EA0.50833828

System specific information:

Garbage bus info: 00210001 00000038 Device type: 000B8001
LCNR: 00000001 Memory error: 00000080
LBER: 00040209 Bus error synd 0,1: 00000000 00000000
Bus error cmd: 00048858 00AB1C88 Bus error synd 2,3: 00000000 0000002C
LEP mode: 00010010 LEP lock address: 00041108

The SHOW MACHINE_CHECK command in this SDA display shows the contents
of the stored machine check frame for cpu-id 01.

SDA–138

SDA Commands
SHOW PAGE_TABLE

SHOW PAGE_TABLE

Displays a range of system page table entries, the entire system page table, or
the entire global page table.

Format

SHOW PAGE_TABLE {range | /FREE | /GLOBAL | /GPT | /PT
| /S0S1 (d) | /SPTW | /ALL | option}
{/L1 | /L2 | /L3 (d)}

Parameter

range
Range of virtual addresses for which SDA is to display page table entries. You
can express a range using the following syntax:

m Displays the single page table entry tht corresponds to virtual address m
m:n Displays the page table entries that correspond to the range of virtual

addresses from m to n
m;n Displays the page table entries that correspond to a range of n bytes

starting at virtual address m

Qualifiers

/FREE
Causes the free starting addresses of blocks of free page table entries in the
specified range to be displayed.

/GLOBAL
Lists the global page table.

/GPT
Specifies the portion of page table space that maps the global page table as the
address range.

/L1
Lists the L1 page table entries for the portion of memory specified.

/L2
Lists the L2 page table entries for the portion of memory specified.

/L3
Lists the L3 page table entries for the portion of memory specified. This qualifier
is the default level.

/PT
Specifies page table space as the address range as viewed from system context.

/S0S1
Specifies S0 and S1 space as the address range. The default portion of memory.

/S2
Specifies S2 space as the address range.

SDA–139

SDA Commands
SHOW PAGE_TABLE

/SPTW
Displays the contents of the system page table window.

/ALL
Displays the equivalent to all of /S0S1, /S2, /SPTW, /PT, /GPT, and /GLOBAL.

Option

= ALL
Displays with the SHOW PAGE = All command the page table entries for
all shared (system) addresses, without regard to the section of memory being
referenced. This option can be qualified only by one of the /L1, /L2, or /L3
qualifiers.

Note

The /L1, /L2, and /L3 qualifiers are ignored when use with the /FREE,
/GLOBAL, and /SPTW qualifiers.

Description

For each virtual address displayed by the SHOW PAGE_TABLE command, the
first eight columns of the listing provide the associated page table entry and
describe its location, characteristics, and contents. SDA obtains this information
from the system page table. Table SDA–13 describes the information displayed
by the SHOW PAGE_TABLE command.

SDA–140

SDA Commands
SHOW PAGE_TABLE

Table SDA–13 Virtual Page Information in the SHOW PAGE_TABLE Display

Value Meaning

MAPPED
ADDRESS

Virtual address that marks the base of the virtual page.

PTE
ADDRESS

Virtual address of the page table entry that maps the virtual
page.

PTE Contents of the page table entry, a quadword that describes a
system virtual page.

TYPE Type of virtual page. Table SDA–14 shows the eight types and
their meanings.

READ A code, derived from bits in the PTE, that designates the
processor access modes (kernel, executive, supervisor, or user)
for which read access is granted.

WRIT A code, derived from bits in the PTE, that designates the
processor access modes (kernel, executive, supervisor, or user)
for which write access is granted.

BITS Letters that represent the setting of a bit or a combination
of bits in the PTE. These bits indicate attributes of a page.
Table SDA–15 shows the codes and their meanings.

GH Contents of granularity hint bits.

Table SDA–14 Type of Virtual Pages

Type Meaning

VALID Valid page (in main memory)
TRANS Transitional page (between main memory and page lists)
DZERO Demand-allocated, zero-filled page
PGFIL Page within a paging file
STX Section table’s index page
GPTX Index page for a global page table
IOPAG Page in I/O address space
NXMEM Page not represented in physical memory. The page frame

number (PFN) of this page is not mapped by any of the system’s
memory controllers. This indicates an error condition.

Table SDA–15 Bits In the PTE

Code Meaning

A Address space match is set.
M Page has been modified.
L Page is locked into a working set.
K Owner can access the page in kernel mode.
E Owner can access the page in executive mode.
S Owner can access the page in supervisor mode.
U Owner can access the page in user mode.

SDA–141

SDA Commands
SHOW PAGE_TABLE

If the virtual page has been mapped to a physical page, the last six columns
of the listing include information from the page frame number (PFN) database
Otherwise, the section is left blank. Table SDA–16 describes the physical page
information displayed by the SHOW PAGE_TABLE command.

Table SDA–16 Physical Page Information in the SHOW PAGE_TABLE Display

Category Meaning

PGTYP Type of physical page. Table SDA–17 shows the types of
physical page.

LOC Location of the page within the system. Table SDA–18 shows
the 10 types with their meaning.

BAK Place to find information on this page when all links to this
PTE are broken: either an index into a process section table or
the number of a virtual block in the paging file.

REFCNT Number of references being made to this page.
FLINK Forward link within PFN database that points to the next

physical page; this longword also acts as the count of the
number of processes that are sharing this global section.

BLINK Backward link within PFN database; also acts as an index into
the working set list.

Table SDA–17 Types of Physical Pages

Page Type Meaning

PROCESS Page is part of process space.
SYSTEM Page is part of system space.
GLOBAL Page is part of a global section.
PPGTBL Page is part of a process page table.
PHD1 Page is part of a process PHD.
PPT(Ln)1 Page is a process page table page at level n.
SPT(Ln)1 Page is a system page table page at level n.
GPGTBL Page is part of a global page table.
GBLWRT Page is part of a global, writable section.
SHPT2 Page is part of a shared page table.
UNKNOWN Unknown.

1These page types are variants of the PPGTBL page type.
2The SHPT page type is a variant of the GBLWRT page type.

SDA–142

SDA Commands
SHOW PAGE_TABLE

Table SDA–18 Location of the Page

Location Meaning

ACTIVE Page is in a working set.
MFYLST Page is in the modified-page list.
FRELST Page is in the free-page list.
BADLST Page is in the bad-page list.
RELPND Release of the page is pending.
RDERR Page has had an error during an attempted read operation.
PAGOUT Page is being written into a paging file.
PAGIN Page is being brought into memory from a paging file.
ZROLST Page is in the zeroed-page list.
UNKNWN Page is in unknown list.

SDA indicates pages are inaccessible by displaying one of the following messages:

------- 1 null page: VA FFFFFFFE.00064000 PTE FFFFFFFD.FF800190

------- 974 null pages: VA FFFFFFFE.00064000 PTE FFFFFFFD.FF800190
-to- FFFFFFFE.007FE000 -to- FFFFFFFD.FF801FF8

In this case, the page table entries are not in use (page referenced is inaccessible)

------- 1 entry not in memory: VA FFFFFFFE.00800000 PTE FFFFFFFD.FF802000

------- 784384 entries not in memory: VA FFFFFFFE.00800000 PTE FFFFFFFD.FF802000
-to- FFFFFFFF.7F7FE000 -to- FFFFFFFD.FFDFDFF8

In this case, the page table entries to not exist (PTE itself is enaccessible)

------- 1 free PTE: VA FFFFFFFF.7F800000 PTE FFFFFFFD.FFDFEOOO

------- 1000 free PTEs: VA FFFFFFFF.7F800000 PTE FFFFFFFD.FFDFE000
-to- FFFFFFFF.7FFCE000 -to- FFFFFFFD.FFDFFF38

In this case, the page table entries are in the list of free system pages

In each case, "VA" is the MAPPED ADDRESS of the skipped entry, and "PTE" is
the PTE ADDRESS of the skipped entry.

SDA–143

SDA Commands
SHOW PFN_DATA

SHOW PFN_DATA

Displays information that is contained in the page lists and PFN database.

Format

SHOW_PFN_DATA {[/qualifier] | pfn [{:end-pfn | ;length}]}

Parameters

pfn
Page frame number (PFN) of the physical page for which information is to be
displayed.

length
Specifies the length of the PFN list to be displayed. When you specify the length
parameter, a range of PFNs is displayed. This range starts at the PFN specified
by the pfn parameter and contains the number of entries specified by the length
parameter.

end-pfn
Specifies the last PFN to be displayed. When you specify the end-pfn parameter,
a range of PFNs is displayed. This range starts at the PFN specified by the pfn
parameter and ends with the PFN specified by the end-pfn parameter.

Qualifiers

/ADDRESS=<PFN-entry-address>
Displays the PFN database entry at the address specified. The address specified
is rounded to the nearest entry address so if you have an address that points to
one of the fields of the entry, the correct database entry will still be found.

/ALL
Displays the free-page list, modified-page list, and bad-page list. This is the
default behavior of the SHOW PFN_DATA command. SDA precedes each list
with a count of the pages it contains and its low and high limits.

/BAD
Displays the bad-page list. SDA precedes the list with a count of the pages it
contains, its low limit, and its high limit.

/COLOR [={n | ALL}]
Displays data on page coloring. Table SDA–19 shows the command options
available with this qualifier.

SDA–144

SDA Commands
SHOW PFN_DATA

Table SDA–19 Command Options with the /COLOR Qualifier

Options Meaning

/COLOR with no value Displays a summary of the lengths of the colored
page lists for both free pages and zeroed pages.

/COLOR=n where n is a color
number

Displays the data in the PFN lists (for the
specified color) for both free and zeroed pages.

/COLOR=ALL Displays the data in the PFN lists (for all colors),
for both free and zeroed free pages.

/COLOR=n or /COLOR=ALL
with /FREE or /ZERO

Displays only the data in the PFN list (for
the specified color or all colors), for either
free or zeroed free pages as appropriate. The
qualifiers /BAD and /MODIFIED are ignored
with /COLOR=n and /COLOR=ALL.

/COLOR without an option
specified together with one or
more of /FREE, /ZERO, /BAD,
or /MODIFIED

Displays the color summary in addition to the
display of the requested list(s).

For more information on page coloring, see OpenVMS System Management
Utilities Reference Manual: M–Z.

/FREE
Displays the free-page list. SDA precedes the list with a count of the pages it
contains, its low limit, and its high limit.

/MODIFIED
Displays the modified-page list. SDA precedes the list with a count of the pages
it contains, its low limit, and its high limit.

/SYSTEM
Displays the entire PFN database in order by page frame number, starting at
PFN 0000.

/ZERO
Displays the contents of the zeroed free page list.

Description

For each page frame number it displays, the SHOW PFN_DATA command lists
information used in translating physical page addresses to virtual page addresses.
The display has two lines of information. Table SDA–20 shows the first line’s
fields; Table SDA–21 shows the second line’s fields.

Table SDA–20 Page Frame Number Information—Line One Fields

Item Contents

PFN Page frame number.
DB ADDRESS Address of PFN structure for this page.

(continued on next page)

SDA–145

SDA Commands
SHOW PFN_DATA

Table SDA–20 (Cont.) Page Frame Number Information—Line One Fields

Item Contents

PT PFN PFN of the page page table page that maps this page.
BAK Place to find information on this page when all links

to this PTE are broken: either an index into a process
section table or the number of a virtual block in the
paging file.

FLINK Forward link within PFN database that points to the next
physical page; this longword also acts as the count of the
number of processes that are sharing this global section.

BLINK Backward link within PFN database; also acts as an index
into the working set list.

SWP/BO Either a swap file page number or a buffer object reference
count, depending on a flag set in the page state field.

LOC Location of the page within the system. Table SDA–18
shows the location with their 10 types and meaning.

FLAGS Displays in text form the flags that are set in page state.
Table SDA–22 shows the possible flags and their meaning.

Table SDA–21 Page Frame Number Information—Line Two Fields

Item Contents

Blank
PTE ADDRESS System virtual address of the page table entry that

describes the virtual page mapped into this physical page.
If no virtual page is mapped into this physical page then
"<no backpointer>" is displayed.

Blank
Blank
Blank
Blank
REFCNT Number of references being made to this page.
PAGETYP Type of physical page. See Table SDA–17 for the types of

physical pages and their meanings.
FLAGS If the page is a page table page, then the contents of

the PRN$W_PT_VAL_CNT, PFN$W_PT_LCK_CNT, and
PFN$W_PT_WIN_CNT fields are displayed. The format is
as follows:

VALCNT = nnnn
LCKCNT = nnnn
WINCNT = nnnn

SDA–146

SDA Commands
SHOW PFN_DATA

Table SDA–22 Flags Set in Page State

Flag Meaning

BUFOBJ Set if any buffer objects reference this page.
COLLISION Empty collision queue when page read is complete.
BADPAG Bad page.
RPTEVT Report event on I/O completion.
DELCON Delete PFN when REFCNT=0.
MODIFY Dirty page (modified).
UNAVAILABLE PFN is unavailable. Most likely a console page.

SDA–147

SDA Commands
SHOW POOL

SHOW POOL

Displays the contents of the nonpaged dynamic storage pool and the paged
dynamic storage pool. You can display part or all of each pool. If no range or
qualifiers are specified, the default is SHOW POOL/ALL. Optionally, it displays
the nonpaged pool history ring buffer.

Format

SHOW POOL {{range | /ALL (d) | /BAP | /NONPAGED | /PAGED}
[/FREE | /HEADER | /SUMMARY | /TYPE=block-type |
/SUBTYPE=block-type] | /RING_BUFFER | /STATISTICS
[{/NONPAGED | /BAP}]}

Parameter

range
Range of virtual addresses in pool that SDA is to examine. You can express a
range using the following syntax:

m:n Range of virtual addresses in pool from m to n
m;n Range of virtual addresses in pool starting at m and continuing for n bytes

Qualifiers

/ALL
Displays the entire contents of memory, except for those portions of memory that
are free (available). This is the default behavior of the SHOW POOL command.

/BAP
Displays the contents of the bus-addressable dynamic storage pool currently in
use.

/FREE
Displays the entire contents, both allocated and free, of the specified region or
regions of pool. Use the /FREE qualifier with a range to show all of the used and
free pool in the given range.

/HEADER
Displays only the first 16 longwords of each data block found within the specified
region or regions of pool.

/NONPAGED
Displays the contents of the nonpaged dynamic storage pool currently in use.

/PAGED
Displays the contents of the paged dynamic storage pool currently in use.

/RING_BUFFER
Displays the contents of the nonpaged pool history ring buffer if pool checking has
been enabled. Entries are displayed in reverse chronological order; that is, most
to least recent. This qualifier is mutually exclusive of all other SHOW POOL
qualifiers.

SDA–148

SDA Commands
SHOW POOL

/STATISTICS
Displays usage statistics about each lookaside list. For each list, its queue header
address, packet size, attempts, fails, and deallocations are displayed. This can be
further qualified by using /NONPAGED, or /BAP to only display statistics for a
specified pool area.

/SUBTYPE=block-type
Displays the blocks within the specified region or regions of pool that are of the
indicated block-type. If SDA finds no blocks of that subtype in the pool region,
it displays a blank screen, followed by an allocation summary of the region. For
information on block-type, see block-type in the Description section.

/SUMMARY
Displays only an allocation summary for each specified region of pool.

/TYPE=block-type
Displays the blocks within the specified region or regions of pool that are of the
indicated block-type. If SDA finds no blocks of that type in the pool region, it
displays a blank screen, followed by an allocation summary of the region. For
information on block-type, see block-type in the Description section.

Note

Some qualifiers cannot be used in the same command as some other
qualifiers. Regard the first group of qualifiers (/FREE, etc) as filter
qualifiers, the second group of qualifiers (/range, etc) as range specifying
qualifiers, and the third group as additional exclusive qualifiers.

Description

The SHOW POOL command displays information about the contents of any
specified region of pool in an 8-column format. The contents of the full display,
from left to right, are listed as follows:

Column 1 contains the type of control block that starts at the virtual address in
pool indicated in column 2. If SDA cannot interpret the block type, it displays a
block type of ‘‘UNKNOWN.’’ Column 3 lists the number of bytes (in decimal) of
memory allocated to the block.

The remaining columns contain a dump of the contents of the block, in 4-longword
intervals, until the block is complete. Columns 4 through 7 display, from right
to left, the contents in hexadecimal; column 8 displays, from left to right, the
contents in ASCII. If the ASCII value of a byte is not a printing character, SDA
displays a period (.) instead.

For each region of pool it examines, the SHOW POOL command displays an
allocation summary. The summary displays the range of addresses used by this
region of pool, the address of the header for the free list for this region of pool,
and, where applicable, the address of the array of headers for the lookaside lists
for this region of pool. Following this is a 4-column table which lists, in column
2, the types of control block identified in the region and records the number of
each in column 1. The last two columns represent the amount of the pool region
occupied by each type of control block: column 3 records the total number of
bytes, and column 4 records the percentage. The summary concludes with an
indication of the number of bytes used within the particular pool region, as well

SDA–149

SDA Commands
SHOW POOL

as the number of bytes remaining. It provides an estimate of the percentage of
the region that has been allocated.

Block-type
Each block of pool has a type field (a byte containing a value in the range of
0-255). Many of these type values have names associated that are defined in
$DYNDEF in SYS$LIBRARY:LIB.MLB. The block-type specified in the /TYPE
qualifier of the SHOW POOL command can either be the value of the pool type or
its associated name.

Some pool block-types have an additional subtype field (also a byte containing
a value in the range of 0-255), many of which also have names associated. The
block-type specified in the /SUBTYPE qualifier of the SHOW POOL command can
either be the value of the pool type or its associated name. However, if given as
a value, a /TYPE qualifier (giving a value or name) must also be specified. Note
also that /TYPE and /SUBTYPE are interchangeable if the block-type is given by
name. Table SDA–23 shows several examples.

Table SDA–23 /TYPE and /SUBTYPE Qualifier Examples

/TYPE and /SUBTYPE Qualifiers Meaning

/TYPE = CI All CI blocks regardless of subtype
/TYPE = CI_MSG All CI blocks with subtype CI_MSG
/TYPE = MISC/SUBTYPE = 120 All MISC blocks with subtype 120
/TYPE = 0/SUBTYPE = 0 All blocks with TYPE and SUBTYPE both

zero

SDA–150

SDA Commands
SHOW POOL

Examples

1. SDA> SHOW POOL G0BADE00;260
Non-paged dynamic storage pool

Dump of blocks allocated from non-paged pool

CIMSG FFFFFFFF.80BADE00 144
001000DA 003C0090 0000A900 00036FF0 .o........<.....
D9B3001C 00000000 A0B5001D 35E60017 ...5............
41414141 00000600 65EA0004 00000600e....AAAA
41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA
41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA

.

.

.
UNKNOWN FFFFFFFF.80BADE90 112

41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA
41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA
41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA
41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA

.

.

.
CIDG FFFFFFFF.80BADED0 144

807708BB 003B0090 0004D7E0 000008F0;...w.
61616161 61616161 61616161 016CE87C ..l.aaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa

.

.

.
UNKNOWN FFFFFFFF.80BADF60 64

61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa

.

.

.
CIDG FFFFFFFF.80BADFA0 144

807708BB 003B0090 0003FFC0 0004B1B0;...w.
61616161 61616161 61616161 016CE94C L.l.aaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa

.

.

.
UNKNOWN FFFFFFFF.80BAE030 48

61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa

Start End Length
----------------- ----------------- -----------------
FFFFFFFF.80D0E000 FFFFFFFF.80ECE000 00000000.001C0000

Free list header: FFFFFFFF.80C0593C
Lookaside list header array: FFFFFFFF.80C50378

SDA–151

SDA Commands
SHOW POOL

Summary of Non-Paged Pool contents

3 UNKNOWN = 176 (29%)
2 CIDG = 288 (48%)
1 CIMSG = 144 (24%)

Total space used = 608 out of 608 total bytes, 0 bytes left

Total space utilization = 100%

This example examines 608 (26016) bytes of nonpaged pool, starting at address
80BADE0016, which happens to be the starting address of the CIMSG block listed
in the example’s output. SDA attempts to identify allocated blocks as it proceeds
through the specified region of pool, and displays an allocation summary when it
completes the listing.

2. SDA> SHOW POOL/PAGED/HEADER
Paged dynamic storage pool

Dump of blocks allocated from paged pool

RSHT FFFFFFFF.8024FE00 528
802DC710 00380210 00000000 FFFFFF808...-.

LNM FFFFFFFF.80250010 96
8015B847 00400060 802D75A0 00000000u-.‘ .@.G...

LNM FFFFFFFF.80250070 48
8015B847 01400030 802500A0 802D7400 .t-...%.0.@.G...

LNM FFFFFFFF.802500A0 96
8015B847 02400060 802DC170 80250070 p.%.p.-.‘ .@.G...

LNM FFFFFFFF.80250100 48
8015B847 00400030 802DC510 802E1B60 ‘-.0.@.G...

.

.

.

The SHOW POOL/PAGED/HEADER command displays only the name of each
block allocated from paged pool, its starting address, its size, and the first 4
longwords of its contents.

SDA–152

SDA Commands
SHOW PORTS

SHOW PORTS

Displays those portions of the port descriptor table (PDT) that are port
independent.

Format

SHOW PORTS [/qualifier[,...]]

Parameters

None.

Qualifiers

/ADDRESS=pdt-address
Displays the specified port descriptor table (PDT). You can find the pdt-address
for any active connection on the system in the PDT summary page display
of the SHOW PORTS command. This command also defines the symbol PE_
PDT. The connection descriptor table (CDT) addresses are also stored in many
individual data structures related to System Communications Services (SCS)
connections; for instance, in the path block displays of the SHOW CLUSTER/SCS
command.

/BUS=bus-address
Displays bus (LAN device) structure data.

/CHANNEL=channel-address
Displays channel (CH) data.

/DEVICE
Displays the network path description for a channel.

/MESSAGE
Displays the message data associated with a virtual circuit (VC).

/NODE=node
Shows only the virtual circuit block associated with the specific node. When you
use the /NODE qualifier, you must also specify the address of the PDT using the
/ADDRESS qualifier.

/VC=vc-address
Displays the virtual circuit data.

Description

The SHOW PORTS command provides port-independent information from the
port descriptor table (PDT) for those CI ports with full System Communications
Services (SCS) connections. This information is used by all SCS port drivers.

Note that the SHOW PORTS command does not display similar information
about UDA ports, BDA ports, and similar controllers.

SDA–153

SDA Commands
SHOW PORTS

The SHOW PORTS command also defines symbols for PEDRIVER based on the
cluster configuration. These symbols include the following information:

• Virtual circuit (VC) control blocks for each of the remote systems

• Bus data structure for each of the local LAN adapters

• Some of the data structures used by both PEDRIVER and the LAN drivers

The following symbols are defined automatically:

• VC_nodename—Example: VC_NODE1, address of the local node’s virtual
circuit to node NODE1.

• CH_nodename—The preferred channel for the virtual circuit. For example,
CH_NODE1, address of the local node’s preferred channel to node NODE1.

• BUS_busname—Example: BUS_ETA, address of the local node’s bus
structure associated with LAN adapter ETA0.

• PE_PDT—Address of PEDRIVER’s port descriptor table.

• MGMT_VCRP_busname—Example: MGMT_VCRP_ETA, address of the
management VCRP for bus ETA.

• HELLO_VCRP_busname—Example: HELLO_VCRP_ETA, address of the
HELLO message VCRP for bus ETA.

• VCIB_busname—Example: VCIB_ETA, address of the VCIB for bus ETA.

• UCB_LAVC_busname—Example: UCB_LAVC_ETA, address of the LAN
device’s UCB used for the local-area OpenVMS Cluster protocol.

• UCB0_LAVC_busname—Example: UCB0_LAVC_ETA, address of the LAN
device’s template UCB.

• LDC_LAVC_busname—Example: LDC_LAVC_ETA, address of the LDC
structure associated with LAN device ETA.

• LSB_LAVC_busname—Example: LSB_LAVC_ETA, address of the LSB
structure associated with LAN device ETA.

These symbols equate to system addresses for the corresponding data structures.
You can use these symbols, or an address, after the equal sign in SDA commands.

The SHOW PORTS command produces several displays. The initial display, the
PDT summary page, lists the PDT address, port type, device name, and driver
name for each PDT. Subsequent displays provide information taken from each
PDT listed on the summary page.

You can use the /ADDRESS qualifier to the SHOW PORTS command to produce
more detailed information about a specific port. The first display of the SHOW
PORTS/ADDRESS command duplicates the last display of the SHOW PORTS
command, listing information stored in the port’s PDT. Subsequent displays list
information about the port blocks and virtual circuits associated with the port.

SDA–154

SDA Commands
SHOW PORTS

Example

SDA> SHOW PORTS/ADDRESS=80618400

--- Port Descriptor Table (PDT) 80618400 ---

Type: 03 pe
Characteristics: 0000

--- Port Block 80618BC0 ---

Status: 0001 authorize
VC Count: 3
Secs Since Last Zeroed: 18635

SBUF Size 516 LBUF Size 1848 Next Refork 1863571
SBUF Count 9 LBUF Count 1 Forks Count 217383
SBUF Max 768 LBUF Max 384 Refork Count 0
SBUF Quo 11 LBUF Quo 1 SCS Messages 198478
SBUF Miss 9 LBUF Miss 249 VC Queue Cnt 12308
SBUF Allocs 205551 LBUF Allocs 598 TQE Received 18635
SBUFs In Use 0 LBUFs In Use 0 Timer Done 18635
Peak SBUF In Use 9 Peak LBUF In Use 2 RWAITQ Count 781
SBUF Queue Empty 0 LBUF Queue Empty 0 LDL Buf/Msg 6218
TR SBUF Queue Empty 0
No SBUF for ACK 0

Bus Addr Bus LAN Address Error Count Last Error Time of Last Error
-------- --- ----------------- ----------- ---------- -----------------------
80619280 LCL 00-00-00-00-00-00 0
806198C0 ESA AA-00-04-00-C7-FF 0

--- Virtual Circuit (VC) Summary ---

VC Addr Node SCS ID Lcl ID Status Summary Last Event Time
-------- -------- ------ ------ ----------------- -----------------------
8062A240 FLAM5 65479 223/DF open,path 31-AUG-1995 17:30:17.05
8062BA40 VANDQ1 64894 222/DE open,path 31-AUG-1995 17:30:18.87
8062BEC0 ROMRDR 64515 221/DD open,path 31-AUG-1995 17:30:19.07

This example illustrates the output produced by the SHOW PORTS command for
the PDT at address 80618400.

SDA–155

SDA Commands
SHOW PROCESS

SHOW PROCESS

Displays the software and hardware context of any process in the balance set.

Format

SHOW PROCESS {[process-name] | ALL | /ADDRESS=pcb_address | /ID=nn
| /INDEX=nn | /SYSTEM}
[/ALL | /BUFFER_OBJECTS | /CHANNEL | /IMAGES | /LOCKS |
/PAGE_TABLES | /PCB | /PHD | /PROCESS_SECTION_TABLE
[/SECTION_INDEX=id] | RDE [=id] | /REGIONS [=id]
| /REGISTERS | /RMS [=option[,...]]
| /SEMAPHORE | /SYSTEM | /THREADS | /WORKING_SET_LIST]

Parameters

ALL
Shows information about all processes that exist in the system.

process-name
Name of the process for which information is to be displayed. Use of the process-
name parameter, the /ADDRESS qualifier, the /INDEX qualifier, or the /SYSTEM
qualifier causes the SHOW PROCESS command to perform an implicit SET
PROCESS command, making the indicated process the current process for
subsequent SDA commands. You can determine the names of the processes in the
system by issuing a SHOW SUMMARY command.

The process-name can contain up to 15 letters and numerals, including the
underscore (_) and dollar sign ($). If it contains any other characters, you must
enclose the process-name in quotation marks (" ").

Qualifiers

/ADDRESS=pcb-address
Specifies the process control block (PCB) address of a process in order to display
information about the process.

/ALL
Displays all information shown by the following qualifiers:

/PCB
/PHD
/REGISTERS
/WORKING_SET_LIST
/PROCESS_SECTION_TABLE
/PAGE_TABLES
/CHANNEL
/BUFFER_OBJECTS
/IMAGES
/RMS

/BUFFER_OBJECTS
Displays all the buffer objects that a process has created.

/CHANNEL
Displays information about the I/O channels assigned to the process.

SDA–156

SDA Commands
SHOW PROCESS

/IMAGES
Displays the address of the image control block, the start and end addresses of
the image, the activation code, the protected and shareable flags, the image name,
and the major and minor IDs of the image. The /IMAGES qualifier also displays
the base, end, image offset, and section type for installed resident images in use
by this process.

See the OpenVMS Linker Utility Manual and the Install utility chapter in the
OpenVMS System Management Utilities Reference Manual for more information
on images installed using the /RESIDENT qualifier.

/ID=nn
/INDEX=nn
Specifies the process for which information is to be displayed by its index into
the system’s list of software process control blocks (PCBs), or by its process
identification (ID). You can supply the following values for nn:

• The process index itself

• The process identification (PID) or extended PID longword, from which SDA
extracts the correct index

To obtain these values for any given process, issue the SDA command SHOW
SUMMARY. The /ID=nn and /INDEX=nn qualifiers can be used interchangeably.

/LOCKS
Displays the lock management locks owned by the current process.

The /LOCKS qualifier produces a display similar in format to that produced by
the SHOW LOCKS command. See Table SDA–12 for additional information.

/PAGE_TABLES {range | /P0 (d) | /P1 | /P2 | /PT | /RDE=ID | /REGIONS=id | =ALL}
{/L1 | /L2 | /L3 (d)}
Displays the page tables of the process P0 (process), P1 (control), P2, or PT (page
table) region, or, optionally, page table entries for a range of addresses. The page
table entries at the level specified by /L1, /L2, or /L3 (the default) are displayed.

The /RDE=id or /REGIONS=id displays the page tables for the address range
of the specified address region. When no ID is specified, the page tables are
displayed for all the process-permanent and user-defined regions.

You can express a range using the following syntax:

m Displays the single page table entry that corresponds to virtual address m
m:n Displays the page table entries that correspond to the range of virtual

addresses from m to n
m;n Displays the page table entries that correspond to a range of n bytes,

starting at virtual address m
=ALL Displays the entire page table for the process from address zero to the end

of process-private page table space by using /PAGE_TABLES=ALL.

/PCB
Displays the information contained in the process control block (PCB). This is the
default behavior of the SHOW PROCESS command.

/PHD
Lists the information included in the process header (PHD).

SDA–157

SDA Commands
SHOW PROCESS

/PROCESS_SECTION_TABLE [/SECTION_INDEX=id]
Lists the information contained in the process section table (PST). The
/SECTION_INDEX=id qualifier used with /PROCESS_SECTION_TABLE displays
the process section table entry for the specified section.

/RDE [=id
/REGIONS [=id]
Lists the information contained in the process region table for the specified
region. If no region is specified, the entire table is displayed, including the
process-permanent regions. The qualifiers /RDE [=id] and /REGIONS [=id] may
be used interchangeably.

/REGISTERS
Lists the hardware context of the process, as reflected in the process registers
stored in the hardware privileged context block (HWPCB), its kernel stack, and
possibly, in its PHD.

/RMS[=option[,...]]
Displays certain specified RMS data structures for each image I/O or process
permanent I/O file the process has open. To display RMS data structures for
process-permanent files, specify the PIO option to this qualifier.

SDA determines the structures to be displayed according to either of the following
methods:

• If you provide the name of a structure or structures in the option parameter,
SHOW PROCESS/RMS displays information from only the specified
structures. (See Table SDA–10 for a list of keywords that may be supplied as
options.)

• If you do not specify an option, SHOW PROCESS/RMS displays the current
list of options as shown by the SHOW RMS command and set by the SET
RMS command.

/SEMAPHORE
Displays the Inner Mode Semaphore for a multithreaded process.

/SYSTEM
Displays the system process control block. Use of the process-name parameter,
the /INDEX qualifier, or the /SYSTEM qualifier causes the SHOW PROCESS
command to perform an implicit SET PROCESS command, making the indicated
process the current process for subsequent SDA commands. (See the description
of the SET PROCESS command and Section 4 for information on how this can
affect the process context—and CPU context—in which SDA commands execute.)
The system PCB and process header (PHD) parallel the data structures that
describe processes. They contain the system working set, global section table,
global page table, and other systemwide data.

/THREADS
Displays the software and hardware context of all the threads associated with the
current process.

/WORKING_SET_LIST [={ PPT | PROCESS | LOCKED | GLOBAL | MODIFIED | n}]

Displays the contents of the requested entries of the working set list for the
process. If no option is specified, then all working set list entries are displayed.

SDA–158

SDA Commands
SHOW PROCESS

Table SDA–24 shows the options available with SHOW PROCESS/WORKING_
SET_LIST.

Table SDA–24 Options for the /WORKING_SET_LIST Qualifier

Options Results

PPT Displays process page table pages.
PROCESS Displays process private pages.
LOCKED Displays pages locked into the process’s working set.
GLOBAL Displays global pages currently in the working set of the

process.
MODIFIED Displays working set list entries marked modified.
n Displays a specific working set list entry, where n is the working

set list index (WSLX) of the entry of interest.

Description

The SHOW PROCESS command displays information about the process specified
by process-name, the process specified in the /INDEX qualifier, the system
process, or all processes. The SHOW PROCESS command performs an implicit
SET PROCESS command under certain uses of its qualifiers and parameters,
as noted previously. By default, the SHOW PROCESS command produces
information about the SDA current process, as defined in Section 4.

The default of the SHOW PROCESS command provides information taken from
the software process control block (PCB). This is the first display provided by
the /ALL qualifier and the only display provided by the /PCB qualifier. This
information describes the following characteristics of the process:

• Software context

• Condition-handling information

• Information on interprocess communication

• Information on counts, quotas, and resource usage

Among the displayed information are the process PID, EPID, priority, job
information block (JIB) address, and process header (PHD) address. SHOW
PROCESS also describes the resources owned by the process, such as event flags
and mutexes. The ‘‘State’’ field records the process current scheduling state; in a
multiprocessing system, the display indicates the CPU ID of any process whose
state is CUR.

The SHOW PROCESS/ALL command displays additional process-specific
information, also provided by several of the individual qualifiers to the command.

The process header display, also produced by the /PHD qualifier, provides
information taken from the PHD, which is swapped into memory when the
process becomes part of the balance set. Each item listed in the display reflects a
quantity, count, or limit for the process use of the following resources:

• Process memory

• The pager

• The scheduler

• Asynchronous system traps

SDA–159

SDA Commands
SHOW PROCESS

• I/O activity

• CPU activity

The process registers display, also produced by the /REGISTERS qualifier,
describes the process hardware context, as reflected in its registers.

There are two places where a process hardware context is stored:

• If the process is currently executing on a processor in the Alpha system
(that is, in the CUR scheduling state), its hardware context is contained in
that processor’s registers. (That is, the process registers and the processor’s
registers contain identical values, as illustrated by a SHOW CPU command
for that processor or a SHOW CRASH command if the process was current at
the time of the system failure).

• If the process is not executing, its privileged hardware context is stored in the
part of the PHD known as the HWPCB. Its integer register context is stored
on its kernel stack. Its floating-point registers are stored in its PHD.

The process registers display first lists those registers stored in the HWPCB,
kernel stack, and PHD (‘‘Saved process registers’’). If the process to be displayed
is currently executing on a processor in the Alpha system, the display then lists
the processor’s registers (‘‘Active registers for the current process’’). In each
section, the display lists the registers in the following groups:

• Integer registers (R0 through R29)

• Special-purpose registers (PC and PS)

• Stack pointers (KSP, ESP, SSP, and USP)

• Page table base register (PTBR)

• AST enable and summary registers (ASTEN and ASTSR)

• Address space number register (ASN)

The working set information and working set list displays, also produced by
the /WORKING_SET_LIST qualifier, describe those virtual pages that the process
can access without a page fault. After a brief description of the size, scope, and
characteristics of the working set list itself, SDA displays information for each
entry in the working set list as shown in Table SDA–25.

Table SDA–25 Working Set List Entry Information in the SHOW PROCESS
Display

Column Contents

INDEX Index into the working set list at which information for this entry
can be found

ADDRESS Virtual address of the page that this entry describes
(continued on next page)

SDA–160

SDA Commands
SHOW PROCESS

Table SDA–25 (Cont.) Working Set List Entry Information in the SHOW
PROCESS Display

Column Contents

STATUS Three columns that list the following status information:

• Page status of VALID

• Type of physical page (See Table SDA–17)

• Indication of whether the page is locked into the working set

When SDA locates one or more unused working set entries, or entries that do not
match the specified option, it issues the following message:

--- n entries not displayed

In this message, n is the number (in decimal) of contiguous entries not displayed.

The process section table information and process section table displays,
also produced by the /PROCESS_SECTION_TABLE qualifier, list each entry in
the process section table (PST) and display the offsets to, and the indices of, the
first free entry and last used entry.

SDA displays the information listed in Table SDA–26 for each PST entry.

Table SDA–26 Process Section Table Entry Information in the SHOW PROCESS
Display

Part Definition

INDEX Index number of the entry. Entries in the process section
table begin at the highest location in the table, and the table
expands toward lower addresses.

ADDRESS Address of the process section table entry.
SECTION
ADDRESS

Virtual address that marks the beginning of the first page of
the section described by this entry.

PAGELETS Length of the process section. This is in units of pagelets,
except for a PFN-mapped section in which the units are pages.

WINDOW Address of the window control block on which the section file
is open.

VBN Virtual block number. The number of the file’s virtual block
that is mapped into the section’s first page.

CCB Address of the channel control block on which the section file
is open.

REFCNT Number of pages of this section that are currently mapped.
FLINK Forward link. The pointer to the next entry in the PST list.
BLINK Backward link. The pointer to the previous entry in the PST

list.
FLAGS Flags that describe the access that processes have to the

process section.

The P0 page table, P1 page table, and P2 page table displays, also produced
by the /PAGE_TABLES qualifier, display listings of the process page table entries

SDA–161

SDA Commands
SHOW PROCESS

in the same format as that produced by the SHOW PAGE_TABLE command (see
Tables SDA–13 through Table SDA–18.)

The process active channels display, the last produced by SHOW PROCESS
/ALL and the only one produced by the /CHANNEL qualifier, displays the
following information for each I/O channel assigned to the process:

Column Contents

Channel Number of the channel
Window Address of the window control block (WCB) for

the file if the device is a file-oriented device; zero
otherwise

Status Status of the device: ‘‘Busy’’ if the device has an
I/O operation outstanding; blank otherwise

Device/file accessed Name of the device and, if applicable, name of
the file being accessed on that device

The information listed under the heading ‘‘Device/file accessed’’ varies from
channel to channel and from process to process. SDA displays certain information
according to the conditions listed in Table SDA–27.

SDA–162

SDA Commands
SHOW PROCESS

Table SDA–27 Process I/O Channel Information in the SHOW PROCESS
Display

Information Displayed1 Type of Process

dcuu: SDA displays this information for devices that are not
file structured, such as terminals, and for processes that
do not open files in the normal way.

dcuu:filespec SDA displays this information only if you are examining
a running system, and only if your process has enough
privilege to translate the file-id into the filespec.

dcuu:(file-id)filespec SDA displays this information only when you are
examining a dump. The filespec corresponds to the
file-id on the device listed. If you are examining a dump
from your own system, the filespec is probably valid. If
you are examining a dump from another system, the
filespec is probably meaningless in the context of your
system.

dcuu:(file-id) The file-id no longer points to a valid filespec, as when
you look at a dump from another system; or the process
in which you are running SDA does not have enough
privilege to translate the file-id into the corresponding
filespec.

section file Indicates that the file in question is mapped into the
processes’ memory.

1This table uses the following conventions to identify the information displayed:
dcuu:(file-id)filespec
where:
dcuu: is the name of the device.
file-id is the RMS file identification.
filespec is the full file specification, including directory name.

SDA–163

SDA Commands
SHOW PROCESS

Examples

1. SDA> SHOW PROCESS

Process index: 001A Name: VERIFICATION Extended PID: 0000051A

Process status: 22040023 RES,PHDRES,INTER
status2: 00000001 QUANTUM_RESCHED

PCB address 80613240 JIB address 805B1B40
PHD address 80C3A000 Swapfile disk address 00000000
KTB vector address 80D775AC HWPCB address 81260080
Callback vector address 00000000 Termination mailbox 0000
Master internal PID 0005001A Subprocess count 0
Creator extended PID 00000000 Creator internal PID 00000000
Previous CPU Id 00000000 Current CPU Id 00000000
Previous ASNSEQ 0000000000000001 Previous ASN 000000000000002E
Initial process priority 4 Delete pending count 0
open files allowed left 100 Direct I/O count/limit 150/150
UIC [00001,000004] Buffered I/O count/limit 149/150
Abs time of last event 005D9941 BUFIO byte count/limit 32128/32128
ASTs remaining 247 # of threads 1
Swapped copy of LEFC0 00000000 Timer entries allowed left 20
Swapped copy of LEFC1 00000000 Active page table count 0
Global cluster 2 pointer 00000000 Process WS page count 250
Global cluster 3 pointer 00000000 Global WS page count 0

Extended PID: 00000052 Thread index: 0000

Current capabilities: System: 0000000C QUORUM,RUN

User: 00000000

Permanent capabilities: System: 0000000C QUORUM,RUN
User: 00000000

Current affinities: 00000000
Permanent affinities: 00000000
Thread status: 02040001

status2: 00000001

KTB address 80D772C0 HWPCB address 81260080
PKTA address 7FFEFFC0 Callback vector address 00000000
Internal PID 00010012 Callback error 00000000
Extended PID 00000052 Current CPU id 00000000
State LEF Flags 00000000
Base priority 4 Current priority 9
Waiting EF cluster 0 Event flag wait mask DFFFFFFF
CPU since last quantum FFF1 Mutex count 0
ASTs active NONE

The SHOW PROCESS command displays information taken from the software
PCB of VERIFICATION, the SDA current process. According to the ‘‘State’’ field
in the display, process VERIFICATION is current.

2. SDA> SHOW PROCESS/ALL

Process index: 001A Name: VERIFICATION Extended PID: 0000051A

Process status: 22040023 RES,PHDRES,INTER
status2: 00000001 QUANTUM_RESCHED

SDA–164

SDA Commands
SHOW PROCESS

PCB address 80613240 JIB address 805B1B40
PHD address 80C3A000 Swapfile disk address 00000000
KTB vector address 80D775AC HWPCB address 81260080
Callback vector address 00000000 Termination mailbox 0000
Master internal PID 0005001A Subprocess count 0
Creator extended PID 00000000 Creator internal PID 00000000
Previous CPU Id 00000000 Current CPU Id 00000000
Previous ASNSEQ 0000000000000001 Previous ASN 000000000000002E
Initial process priority 4 Delete pending count 0
open files allowed left 100 Direct I/O count/limit 150/150
UIC [00001,000004] Buffered I/O count/limit 149/150
Abs time of last event 005D9941 BUFIO byte count/limit 32128/32128
ASTs remaining 247 # of threads 1
Swapped copy of LEFC0 00000000 Timer entries allowed left 20
Swapped copy of LEFC1 00000000 Active page table count 0
Global cluster 2 pointer 00000000 Process WS page count 250
Global cluster 3 pointer 00000000 Global WS page count 0

Extended PID: 00000052 Thread index: 0000

Current capabilities: System: 0000000C QUORUM,RUN

User: 00000000

Permanent capabilities: System: 0000000C QUORUM,RUN
User: 00000000

Current affinities: 00000000
Permanent affinities: 00000000
Thread status: 02040001

status2: 00000001

KTB address 80D772C0 HWPCB address 81260080
PKTA address 7FFEFFC0 Callback vector address 00000000
Internal PID 00010012 Callback error 00000000
Extended PID 00000052 Current CPU id 00000000
State LEF Flags 00000000
Base priority 4 Current priority 9
Waiting EF cluster 0 Event flag wait mask DFFFFFFF
CPU since last quantum FFF1 Mutex count 0
ASTs active NONE

Saved process registers

R0 = 00000000.00000001 R1 = 00000000.00000000 R2 = FFFFFFFF.80C8FEB0
R3 = 00000000.7FFCF680 R4 = 00000000.0000001D R5 = 00000000.7FFCF680
R6 = 00000000.7FFCE4C0 R7 = 00000000.7FFAC9F0 R8 = 00000000.7B015EB8
R9 = 00000000.7FFAC410 R10 = 00000000.7FFAD238 R11 = 00000000.7FFCE3E0
R12 = 00000000.00000000 R13 = FFFFFFFF.80C68AC0 R14 = 00000000.00000000
R15 = 00000000.7B0A17A0 R16 = FFFFFFFF.80C05F18 R17 = FFFFFFFF.80D772C0
R18 = 00000000.00000002 R19 = 00000000.00000001 R20 = 00000000.7FFF0010
R21 = FFFFFFFD.FF7FE000 R22 = FFFFFFFF.800CCFC8 R23 = 00000000.7FFA1FC0
R24 = 00000000.7B015EB8 R25 = 00000000.00000005 R26 = 00000000.00000FD2
R27 = FFFFFFFF.80C652A0 R28 = 00000000.7B0A17A0 FP = 00000000.7FFAC280
PC = FFFFFFFF.800CCFC8 PS = 00000000.00000012
KSP = 00000000.7FFA1EF0 ESP = 00000000.7FFA6000 SSP = 00000000.7FFAC270
USP = 00000000.7B013AF0 PTBR = 00000000.00000552
AST{SR/EN} = 0000000F ASN = 00000000.0000002E

Extended PID: 00000052 Thread index: 0000

Process header

SDA–165

SDA Commands
SHOW PROCESS

First free P0 VA 00000000.00000000 Accumulated CPU time 00000014
First free P1 VA 00000000.7B012000 Subprocess quota 10
First free P2 VA 00000000.80000000 ASTs enabled KESU
Free page file pages 3027 ASN sequence # 0000000000000001
Page fault cluster size 4 AST limit 250
Page table cluster size 1 Process header index 0001
Flags 00000084 Backup address vector 0005AFE8
Direct I/O count 27 PTs having locked WSLEs 2
Buffered I/O count 86 PTs having valid WSLEs 4
Limit on CPU time 00000000 Active page tables 4
Maximum page file count 3125 Maximum active PTs 3
Total page faults 262 Guaranteed fluid WS pages 20
File limit 100 Extra dynamic WS entries 94
Timer queue limit 20 Current page file template 00000000
Local event flag cluster 0 C0000001 Local event flag cluster 1 80000000
Page Table Base Register 00000552 Virtual PT Base FFFFFFFC.00000000

Process page file assignments

PROCIDX SYSIDX REFCNT

0 3 40 Current assignment
1 0 0
2 0 0
3 0 0

Remaining reserved pages 20 Total reserved pages 20

Extended PID: 00000052 Thread index: 0000

Working set information

First WSL entry 00000001 Current authorized working set size 250
First locked entry 00000007 Default (initial) working set size 125
First dynamic entry 00000009 Maximum working set allowed (quota) 250
Last entry replaced 00000079
Last entry in list 000000D3

Working set list

INDEX ADDRESS STATUS

00000001 FFFFFFFD.FF7FC000 VALID PPT(L1) WSLOCK
00000002 FFFFFFFD.FF000000 VALID PPT(L2) WSLOCK
00000003 FFFFFFFC.001FE000 VALID PPT(L3) WSLOCK
00000004 00000000.7FFA0000 VALID PROCESS MODIFIED WSLOCK
00000005 00000000.7FFF0000 VALID PROCESS WSLOCK
00000006 FFFFFFFF.81260000 VALID PHD WSLOCK

SDA–166

SDA Commands
SHOW PROCESS

Locked entries:
00000007 00000000.7B108000 VALID PROCESS WSLOCK
00000008 00000000 7B10A000 VALID PROCESS WSLOCK

Dynamic entries:
00000009 00000000.7B054000 VALID GLOBAL
0000000A 00000000.7B0B0000 VALID GLOBAL
0000000B FFFFFFFC.001EC000 VALID PPT(L3) WSLOCK
0000000C 00000000.7B0D0000 VALID GLOBAL
0000000D 00000000.7B0C4000 VALID GLOBAL
0000000E 00000000.7B0C0000 VALID GLOBAL
0000000F 00000000.7FFA4000 VALID PROCESS
00000010 00000000.7FFD0000 VALID PROCESS
00000011 00000000.7FF96000 VALID PROCESS
00000012 00000000.7B0C6000 VALID GLOBAL
00000013 00000000.7B0DC000 VALID GLOBAL
00000014 00000000.7B0E4000 VALID GLOBAL
00000015 00000000.7B0E6000 VALID GLOBAL
00000016 00000000.7B0DE000 VALID GLOBAL
00000017 00000000.7FFAA000 VALID PROCESS
00000018 00000000.7B0E2000 VALID GLOBAL
00000019 00000000.7FFCE000 VALID PROCESS
0000001A 00000000.7B0D2000 VALID GLOBAL
0000001B 00000000.7B13E000 VALID PROCESS
0000001C 00000000.7B140000 VALID PROCESS
0000001D 00000000.7B0EA000 VALID GLOBAL
0000001E 00000000.7B0CE000 VALID GLOBAL
0000001F 00000000.7B068000 VALID GLOBAL
00000020 00000000.7B0CC000 VALID GLOBAL
00000021 00000000.7B07C000 VALID GLOBAL
00000022 00000000.7B07E000 VALID GLOBAL
00000023 00000000.7B084000 VALID GLOBAL
00000024 00000000.7B086000 VALID GLOBAL
00000025 00000000.7FFB8000 VALID PROCESS
00000026 00000000.7B144000 VALID PROCESS
00000027 FFFFFFFC.00000000 VALID PPT(L3)
00000028 00000000.7FF88000 VALID PROCESS
00000029 00000000.7FFBA000 VALID PROCESS

---- 8 entries not displayed

00000032 00000000.7FF8A000 VALID PROCESS

---- 6 entries not displayed

00000039 00000000.7B0D6000 VALID GLOBAL
0000003A 00000000.7B0D8000 VALID GLOBAL

---- 3 entries not displayed

0000003E 00000000.7B0DA000 VALID GLOBAL

---- 8 entries not displayed

00000047 00000000.7B066000 VALID GLOBAL
00000048 00000000.7B104000 VALID PROCESS
00000049 00000000.7B0B8000 VALID GLOBAL
0000004A 00000000.7B07A000 VALID GLOBAL

---- 11 entries not displayed

00000056 00000000.7B13A000 VALID PROCESS
00000057 00000000.7B13C000 VALID PROCESS

SDA–167

SDA Commands
SHOW PROCESS

---- 81 entries not displayed

000000A9 00000000.7FFEE000 VALID PROCESS
000000AA 00000000.7B142000 VALID PROCESS

000000AB 00000000.7FFB0000 VALID PROCESS
000000AC 00000000.7B0FE000 VALID PROCESS
000000AD 00000000.7B09E000 VALID PROCESS
000000AE 00000000.7B0A0000 VALID PROCESS
000000AF 00000000.7B0A2000 VALID PROCESS
000000B0 00000000.7B0A4000 VALID PROCESS
000000B1 00000000.7B100000 VALID PROCESS

---- 18 entries not displayed

000000C4 00000000.7B138000 VALID PROCESS

ZK−8863A−GE

Process section table
−−−−−−−−−−−−−−−−−−−−−

INDEX ADDRESS SECTION ADDRESS PAGELETS WINDOW VBN CCB REFCNT FLINK BLINK FLAGS

0001 815D5FD8 00000000.00010000 00000001 80D234C0 00000003 7FF96020 00000000 0003 0002 CRF WRT AMOD=KRNL
0002 815D5FB0 00000000.00030000 00000001 80D234C0 00000004 7FF96020 00000001 0001 0003 AMOD=KRNL
0003 815D5F88 00000000.00040000 00000001 80D234C0 00000005 7FF96020 00000000 0002 0001 CRF WRT AMOD=KRNL

P0 Space
−−−−−−−−

 MAPPED ADDRESS PTE ADDRESS PTE TYPE READ WRIT BITS GH PGTYP LOC BAK REFCNT FLINK BLINK

 −−−−−−−− 8 null pages: VA 00000000.00000000 PTE FFFFFFFC.00000000
 −to− 00000000.0000E000 −to− FFFFFFFC.00000038

00000000.00010000 FFFFFFFC.00000040 000003E7.00160F09 VALID KESU NONE M−U− 0 PROCESS ACTIVE 03000000.00000000 0001 00000000 00000034

 −−−−−−−− 7 null pages: VA 00000000.00012000 PTE FFFFFFFC.00000048
 −to− 00000000.0001E000 −to− FFFFFFFC.00000078

00000000.00020000 FFFFFFFC.00000080 0000046E.0016FF09 VALID KESU KESU M−U− 0 PROCESS ACTIVE 03000000.00000000 0001 00000000 00000037

 −−−−−−−− 7 null pages: VA 00000000.00022000 PTE FFFFFFFC.00000088
 −to− 00000000.0002E000 −to− FFFFFFFC.000000B8

00000000.00030000 FFFFFFFC.000000C0 0000015C.00060F01 VALID KESU NONE −−U− 0 PROCESS ACTIVE 00000002.00090000 0001 00000000 00000036

 −−−−−−−− 7 null pages: VA 00000000.00032000 PTE FFFFFFFC.000000C8
 −to− 00000000.0003E000 −to− FFFFFFFC.000000F8

00000000.00040000 FFFFFFFC.00000100 0000014D.00163F09 VALID KESU KE−− M−U− 0 PROCESS ACTIVE 03000000.00000000 0001 00000000 00000032

 −−−−−−−− 991 null pages: VA 00000000.00042000 PTE FFFFFFFC.00000108
 −to− 00000000.007FE000 −to− FFFFFFFC.00001FF8

 −−−−−−−− 130048 entries not in memory: VA 00000000.00800000 PTE FFFFFFFC.00002000
 −to− 00000000.3FFFE000 −to− FFFFFFFC.000FFFF8

P1 Space
−−−−−−−−

 MAPPED ADDRESS PTE ADDRESS PTE TYPE READ WRIT BITS GH PGTYP LOC BAK REFCNT FLINK BLINK

 −−−−−−−− 119808 entries not in memory: VA 00000000.40000000 PTE FFFFFFFC.00100000
 −to− 00000000.7A7FE000 −to− FFFFFFFC.001E9FF8

 −−−−−−−− 1020 null pages: VA 00000000.7A800000 PTE FFFFFFFC.001EA000
 −to− 00000000.7AFF6000 −to− FFFFFFFC.001EBFD8

00000000.7AFF8000 FFFFFFFC.001EBFE0 00000000.0006FF00 DZERO KESU KESU −−U− 0
00000000.7AFFA000 FFFFFFFC.001EBFE8 000003B4.0016FF09 VALID KESU KESU M−U− 0 PROCESS ACTIVE 03000000.00000000 0001 00000000 00000033
00000000.7AFFC000 FFFFFFFC.001EBFF0 00001F3C.00147709 VALID KES− KES− M−S− 0 PROCESS ACTIVE 03000000.00000000 0001 00000000 00000029

...

00000000.7FFEE000 FFFFFFFC.001FFFB8 00000D68.0010FF09 VALID KESU KESU M−K− 0 PROCESS ACTIVE 03000000.00000000 0001 00000000 00000035
00000000.7FFF0000 FFFFFFFC.001FFFC0 00001EA3.10103F09 VALID KESU KE−− MLK− 0 PROCESS ACTIVE 03000000.00000000 0001 00000000 00000005

 −−−−−−−− 7 null pages: VA 00000000.7FFF2000 PTE FFFFFFFC.001FFFC8
 −to− 00000000.7FFFE000 −to− FFFFFFFC.001FFFF8

SDA–168

SDA Commands
SHOW PROCESS

ZK−8865A−GE

P2 Space
−−−−−−−−

 MAPPED ADDRESS PTE ADDRESS PTE TYPE READ WRIT BITS GH PGTYP LOC BAK REFCNT FLINK BLINK

 −−−−−−−− 1071382528 entries not in memory: VA 00000000.80000000 PTE FFFFFFFC.00200000
 −to− FFFFFFFB.FFFFE000 −to− FFFFFFFD.FEFFFFF8

PT Space
−−−−−−−−

 MAPPED ADDRESS PTE ADDRESS PTE TYPE READ WRIT BITS GH PGTYP LOC BAK REFCNT FLINK BLINK

FFFFFFFC.00000000 FFFFFFFD.FF000000 00000DD2.40101309 VALID KE−− K−−− M−K− 0 PPT(L3) ACTIVE 03000000.00000000 0001 00000004 00000019

 −−−−−−−− 244 null pages: VA FFFFFFFC.00002000 PTE FFFFFFFD.FF000008
 −to− FFFFFFFC.001E8000 −to− FFFFFFFD.FF0007A0

FFFFFFFC.001EA000 FFFFFFFD.FF0007A8 00001AB0.40101309 VALID KE−− K−−− M−K− 0 PPT(L3) ACTIVE 03000000.00000000 0001 00000003 000000CB
FFFFFFFC.001EC000 FFFFFFFD.FF0007B0 0000182E.40101309 VALID KE−− K−−− M−K− 0 PPT(L3) ACTIVE 03000000.00000000 0001 00000031 0000005B

 −−−−−−−− 8 null pages: VA FFFFFFFC.001EE000 PTE FFFFFFFD.FF0007B8
 −to− FFFFFFFC.001FC000 −to− FFFFFFFD.FF0007F0

FFFFFFFC.001FE000 FFFFFFFD.FF0007F8 00000CE9.40001309 VALID KE−− K−−− −LK− 0 PPT(L3) ACTIVE 03000000.00000000 0001 00000014 00000003

 −−−−−−−− 768 null pages: VA FFFFFFFC.00200000 PTE FFFFFFFD.FF000800
 −to− FFFFFFFC.007FE000 −to− FFFFFFFD.FF001FF8

 −−−−−−−− 1045504 entries not in memory: VA FFFFFFFC.00800000 PTE FFFFFFFD.FF002000
 −to− FFFFFFFD.FEFFE000 −to− FFFFFFFD.FF7FBFF8

FFFFFFFD.FF000000 FFFFFFFD.FF7FC000 0000134D.40001109 VALID K−−− K−−− −−K− 0 PPT(L2) ACTIVE 03000000.00000000 0001 00000004 00000002

 −−−−−−−− 1021 null pages: VA FFFFFFFD.FF002000 PTE FFFFFFFD.FF7FC008
 −to− FFFFFFFD.FF7FA000 −to− FFFFFFFD.FF7FDFE8

FFFFFFFD.FF7FC000 FFFFFFFD.FF7FDFF0 00000F6B.40001109 VALID K−−− K−−− −−K− 0 PPT(L1) ACTIVE 00000000.815D4000 0001 00000001 00000001

Process active channels

Channel Window Status Device/file accessed
------- ------ ------ --------------------
0010 00000000 DKB400:
0040 00000000 Busy OPA0:
0060 00000000 OPA0:
0090 80D83BC0 DKB400:(390,17,0)(section file)
00A0 80D8AF40 DKB400:(3888,39,0)(section file)

Process activated images

IMCB Start End Sym Vect Type Image Name Major ID, Minor ID
-------- -------- -------- -------- --------- ------------------------------

7FF88480 00010000 000401FF 00000000 MAIN X 0,0
7FF8A4A0 80C03378 80C04E08 80C03378 GLBL SYS$PUBLIC_VECTORS 93,1959106

Total images = 2 Pages allocated = 24

Process Buffered Objects

ADDRESS ACMODE SEQUENCE REFCNT PID PAGCNT BASE PVA BASE SVA
-------- ------ -------- -------- -------- -------- ---------- ----- --
No buffer objects for this proces

The SHOW PROCESS/ALL command displays information taken from the PCB
of process VERIFICATION, and then proceeds to display the process header,
the process registers, the process section table, the page tables of the process,
images activated, and information about the I/O channels owned by the process.
These displays may also be obtained by the /PCB, /PHD, /REGISTERS, /RDE,

SDA–169

SDA Commands
SHOW PROCESS

/PROCESS_SECTION_TABLE, /P0, /P1, /P2, /PT, /IMAGES, and /CHANNEL
qualifiers, respectively.

ZK−8864A−GE

 MAPPED ADDRESS PTE ADDRESS PTE TYPE READ WRIT BITS GH PGTYP LOC BAK REFCNT FLINK BLINK

 −−−−−−−− 8 null pages: VA 00000000.00000000 PTE FFFFFFFC.00000000
 −to− 00000000.0000E000 −to− FFFFFFFC.00000038

00000000.00010000 FFFFFFFC.00000040 000003E7.00160F09 VALID KESU NONE M−U− 0 PROCESS ACTIVE 03000000.00000000 0001 00000000 00000034

 −−−−−−−− 7 null pages: VA 00000000.00012000 PTE FFFFFFFC.00000048
 −to− 00000000.0001E000 −to− FFFFFFFC.00000078

00000000.00020000 FFFFFFFC.00000080 0000046E.0016FF09 VALID KESU KESU M−U− 0 PROCESS ACTIVE 03000000.00000000 0001 00000000 00000037

 −−−−−−−− 7 null pages: VA 00000000.00022000 PTE FFFFFFFC.00000088
 −to− 00000000.0002E000 −to− FFFFFFFC.000000B8

00000000.00030000 FFFFFFFC.000000C0 0000015C.00060F01 VALID KESU NONE −−U− 0 PROCESS ACTIVE 00000002.00090000 0001 00000000 00000036

 −−−−−−−− 7 null pages: VA 00000000.00032000 PTE FFFFFFFC.000000C8
 −to− 00000000.0003E000 −to− FFFFFFFC.000000F8

00000000.00040000 FFFFFFFC.00000100 0000014D.00163F09 VALID KESU KE−− M−U− 0 PROCESS ACTIVE 03000000.00000000 0001 00000000 00000032

 −−−−−−−− 991 null pages: VA 00000000.00042000 PTE FFFFFFFC.00000108
 −to− 00000000.007FE000 −to− FFFFFFFC.00001FF8

 −−−−−−−− 130048 entries not in memory: VA 00000000.00800000 PTE FFFFFFFC.00002000
 −to− 00000000.3FFFE000 −to− FFFFFFFC.000FFFF8

PO page table

3. SDA> SHOW PROCESS/PAGE_TABLES/ADDRESS=805E7980

−−−−−−−−−−−−−

This example displays the page tables of a process whose PCB address is
805E7980.

4. SDA>SHOW PROCESS/BUFFER_OBJECTS

Process Buffered Objects

ADDRESS ACMODE SEQUENCE REFCNT PID PAGCNT BASE PVA BASE SVA
-------- ------ -------- -------- -------- -------- ----------------- --------
805E4580 User 00000008 00000001 00010020 00000001 00000000.00020000 826BC000
805E7880 User 00000009 00000001 00010020 00000001 00000000.00020000 826BE000
8057AEC0 User 0000000A 00000001 00010020 00000001 00000000.00020000 826C0000
805E6EC0 User 0000000B 00000001 00010020 00000001 00000000.00020000 82764000

The SHOW PROCESS/BUFFER_OBJECTS command displays all the buffered
objects that a process has created.

5. SDA>SHOW PROCESS/IMAGES

Process activated images

SDA–170

SDA Commands
SHOW PROCESS

IMCB Start End Sym Vect Type Image Name Major ID,Minor ID
-------- -------- -------- -------- ------------ -----------------------------
7FF78810 00010000 001107FF 00000000 MAIN SDA 0,0
7FF789B0 001E6000 002263FF 001E80B0 GLBL SHR LBRSHR 2,9
7FF76480 001A4000 001E43FF 001A4950 GLBL SHR SCRSHR 1,2900
7FF785A0 00112000 001A27FF 00186AE0 GLBL SHR SMGSHR 1,104
7FF78060 7FC06000 7FC67FFF 7FC144B0 GLBL SHR LIBRTL 1,1

Base End ImageOff Section Type
80400000 80481C00 00000000 System Resident Code
7FC06000 7FC16800 00090000 Shareable Address Data
7FC26000 7FC27000 000B0000 Read-Write Data
7FC36000 7FC3F600 000C0000 Shareable Read-Only Data
7FC46000 7FC46200 000D0000 Read-Write Data
7FC56000 7FC57000 000E0000 Demand Zero Data
7FC66000 7FC67400 000F0000 Read-Write Data

7FF78330 7FC76000 7FCA7FFF 7FC86000 GLBL SHR LIBOTS 1,3
Base End ImageOff Section Type

80482000 8048FA00 00020000 System Resident Code
7FC76000 7FC78600 00000000 Shareable Read-Only Data
7FC86000 7FC87C00 00010000 Shareable Address Data
7FCA6000 7FCA6200 00030000 Read-Write Data

7FF78130 80810110 8081C770 80810110 GLBL SYS$BASE_IMAGE 114,15303694
7FF784D0 80802A18 80803FF8 80802A18 GLBL SYS$PUBLIC_VECTORS 114,15295276

Total images = 8 Pages allocated = 344

The SHOW PROCESS/IMAGES command displays the address of the image
control block; the start and end addresses of the image; the activation code; the
protected and shareable flags; the image name; the major and minor IDs of the
image; and the base, end, image offset, and section type for installed resident
images.

SDA–171

SDA Commands
SHOW RESOURCE

SHOW RESOURCE

Displays information about all resources in the system, or about a resource
associated with a specific lock.

Format

SHOW RESOURCE {/ADDRESS=n | /ALL (d) | /CACHED
| /LOCKID=lock-id | /NAME=resource-name}

Parameters

None.

Qualifiers

/ADDRESS=n
Displays information from the resource block at the specified address.

/ALL
Displays information from all resource blocks (RSBs) in the system. This is the
default behavior of the SHOW RESOURCE command.

/CACHED
Displays resource blocks that are no longer valid. The memory for these resources
is kept around so that later requests for resources can use them.

/LOCKID=lock-id
Displays information on the resource associated with the lock with the specified
lock-id.

/NAME=resource-name
Displays information about a specific resource.

Description

The SHOW RESOURCE command displays the information listed in
Table SDA–28 for each resource in the system or for the specific resource
associated with the specified lock-id.

Table SDA–28 Resource Information in the SHOW RESOURCE Display

Field Contents

Address of RSB Address of the resource block (RSB) that describes this
resource.

Parent RSB Address of the RSB that is the parent of this RSB. This
field is 00000000 if the RSB itself is a parent block.

Sub-RSB count Number of RSBs of which this RSB is the parent. This
field is 0 if the RSB has no sub-RSBs.

Lock Count The total count of all locks on the resource.
(continued on next page)

SDA–172

SDA Commands
SHOW RESOURCE

Table SDA–28 (Cont.) Resource Information in the SHOW RESOURCE Display

Field Contents

BLKAST count Number of locks on this resource that have requested a
blocking AST.

GGMODE Indication of the most restrictive mode in which a lock
on this resource has been granted. Table SDA–29 shows
the fields and values and their meanings. They are shown
in order from the least restrictive mode to the most
restrictive.
For information on conflicting and incompatible lock
modes, see the OpenVMS System Services Reference
Manual.

CGMODE Indication of the most restrictive lock mode to which a
lock on this resource is waiting to be converted. This does
not include the mode for which the lock at the head of the
conversion queue is waiting.

FGMODE Indication of the full-range grant mode.
CSID Cluster system identification number (CSID) and name of

the node that owns the resource.
RQSEQNM Sequence number of the request.
Status The contents of the resource block status field.
Resource Dump of the name of this resource, as stored at the end

of the RSB. The first two columns are the hexadecimal
representation of the name, with the least significant
byte represented by the rightmost two digits in the
rightmost column. The third column contains the ASCII
representation of the name, the least significant byte
being represented by the leftmost character in the column.
Periods in this column represent values that correspond
to nonprinting ASCII characters.

Valblk Hexadecimal dump of the 16-byte block value block
associated with this resource.

Seqnum Sequence number associated with the resource’s value
block. If the number indicates that the value block is not
valid, the words ‘‘Not valid’’ appear to the right of the
number.

Granted queue List of locks on this resource that have been granted. For
each lock in the list, SDA displays the number of the lock
and the lock mode in which the lock was granted.

Conversion queue List of locks waiting to be converted from one mode
to another. For each lock in the list, SDA displays
the number of the lock, the mode in which the lock
was granted, and the mode to which the lock is to be
converted.

(continued on next page)

SDA–173

SDA Commands
SHOW RESOURCE

Table SDA–28 (Cont.) Resource Information in the SHOW RESOURCE Display

Field Contents

Waiting queue List of locks waiting to be granted. For each lock in the
list, SDA displays the number of the lock and the mode
requested for that lock.

Length Length in bytes of the resource name.
Mode Processor mode of the namespace in which this RSB

resides.
Owner Owner of the resource. Certain resources, owned by

the operating system, list ‘‘System’’ as the owner. Locks
owned by a group have the number (in octal) of the
owning group in this field.

Table SDA–29 Lock on Resources

Value Meaning

NL Null mode.
CR Concurrent-read mode.
CW Concurrent-write mode.
PR Protected-read mode.
PW Protected-write mode.
EX Exclusive mode.

Example

SDA> SHOW RESOURCE
Resource database

Address of RSB: 80D93D80 GGMODE: NL Status: VALID
Parent RSB: 80D73980 CGMODE: NL
Sub-RSB count: 0 FGMODE: NL
Lock Count: 1 CSID: 00000000 (MYNODE)
BLKAST count: 0 RQSEQNM: 0000

Resource: 1C477324 42313146 F11B$sG. Valblk: 00000001 00000001
Length 10 00000000 00000000 00000000 00000000
Kernel mode 00000000 00000000
System 00000000 00000000 Seqnum: 00001304

Granted queue (Lock ID / Gr mode / Range):
50000076 NL 00000000-FFFFFFFF

Conversion queue (Lock ID / Gr mode / Range -> Rq mode / Range):
*** EMPTY QUEUE ***

Waiting queue (Lock ID / Rq mode / Range):
*** EMPTY QUEUE ***

Resource database

Address of RSB: 80D990C0 GGMODE: NL Status: VALID
Parent RSB: 80D73980 CGMODE: NL
Sub-RSB count: 0 FGMODE: NL
Lock Count: 1 CSID: 00000000 (MYNODE)
BLKAST count: 0 RQSEQNM: 0000

SDA–174

SDA Commands
SHOW RESOURCE

Resource: 1D357324 42313146 F11B$s5. Valblk: 00000001 00000001
Length 10 00000000 00000000 00000000 00000000
Kernel mode 00000000 00000000
System 00000000 00000000 Seqnum: 00000002

Granted queue (Lock ID / Gr mode / Range):
040006A3 NL 00000000-FFFFFFFF

Conversion queue (Lock ID / Gr mode / Range -> Rq mode / Range):
*** EMPTY QUEUE ***

Waiting queue (Lock ID / Rq mode / Range):
*** EMPTY QUEUE ***

.

.

.

The SHOW RESOURCE command displays information taken from the RSBs of
all resources in the system. For instance, the RSB at 80D93D8016 is a parent
block with no sub-RSBs.

SDA–175

SDA Commands
SHOW RMD

SHOW RMD

Displays information contained in the reserved memory descriptors. Reserved
memory is used within the system by memory-resident global sections.

Format

SHOW RMD [/QUALIFIERS]

Parameter

None

Qualifiers

/ADDRESS=n
Displays a specific reserved memory descriptor entry, given its address.

/ALL
Displays information in all the reserved memory descriptors. This qualifier is the
default.

Description

The SHOW RMD displays information that resides in the reserved memory
descriptors. Table SDA–30 shows the fields and their meaning.

Table SDA–30 RMD Fields

Field Meaning

ADDRESS Gives the address of the reserved memory descriptor.
NAME Gives the name of the reserved memory descriptor.
FLAGS Gives the settings of flags for specified reserved memory

descriptor, as a hexadecimal number, then key flag bits are
also displayed by name.

GROUP Gives the UIC group that owns the reserved memory. This is
given as -S- for system global reserved memory.

PFN Gives starting page number of the reserved memory.
COUNT Gives the number of pages reserved.
IN_USE Gives the number of pages in use.
ZERO_PFN Gives the next page number to be zeroed.

SDA–176

SDA Commands
SHOW RMD

Example

SDA> SHOW RMD
Reserved Memory Descriptor List

ADDRESS NAME GROUP PFN COUNT IN_USE ZERO_PFN FLAGS

80D21200 MILORD2 -S- 00000000 00000100 00000000 00000000 00000000
80D21100 MILORD1 -S- 00000A00 00000080 00000000 00000A00 00000001 ALLOC
80D21280 MILORD2 -S- 00000000 00000001 00000000 00000000 00000040 PAGE_TABLES
80D21180 MILORD1 -S- 00000180 00000001 00000000 00000180 00000041 ALLOC PAGE_TABLES

SDA–177

SDA Commands
SHOW RMS

SHOW RMS

Displays the RMS data structures selected by the SET RMS command to be
included in the default display of the SHOW PROCESS/RMS command.

Format

SHOW RMS

Parameters

None.

Qualifiers

None.

Description

The SHOW RMS command lists the names of the data structures selected for the
default display of the SHOW PROCESS/RMS command.

For a description of the significance of the options listed in the SHOW RMS
display, see the description of the SET RMS command and Table SDA–10.

For an illustration of the information displayed by the SHOW PROCESS/RMS
command, see the examples included in the description of the SHOW PROCESS
command.

Examples

1. SDA> SHOW RMS

RMS Display Options: IFB,IRB,IDX,BDB,BDBSUM,ASB,CCB,WCB,FCB,FAB,RAB,NAM,
XAB,RLB,BLB,BLBSUM,GBD,GBH,FWA,GBDSUM,JFB,NWA,RU,DRC,SFSB,GBSB
Display RMS structures for all IFI values.

The SHOW RMS command displays the full set of options available for
display by the SHOW PROCESS/RMS command. SDA, by default, selects the
full set of RMS options at the beginning of an analysis.

2. SDA> SET RMS=(IFAB,CCB,WCB)
SDA> SHOW RMS

RMS Display Options: IFB,CCB,WCB
Display RMS structures for all IFI values.

The SET RMS command establishes the IFB, CCB, and WCB as the
structures to be displayed when the SHOW PROCESS/RMS command is
issued. The SHOW RMS command verifies this selection of RMS options.

SDA–178

SDA Commands
SHOW RSPID

SHOW RSPID

Displays information about response IDs (RSPIDs) of all System Communications
Services (SCS) connections or, optionally, a specific SCS connection.

Format

SHOW RSPID [/CONNECTION=cdt-address]

Parameters

None.

Qualifier

/CONNECTION=cdt-address
Displays RSPID information for the specific SCS connection whose connection
descriptor table (CDT) address is provided in cdt-address. You can find the
cdt-address for any active connection on the system in the CDT summary
page display of the SHOW CONNECTIONS command. CDT addresses are also
stored in many individual data structures related to SCS connections. These data
structures include class driver request packets (CDRPs) and unit control blocks
(UCBs) for class drivers that use SCS and cluster system blocks (CSBs) for the
connection manager.

Description

Whenever a local system application (SYSAP) requires a response from a remote
SYSAP, a unique number, called an RSPID, is assigned to the response by the
local system. The RSPID is transmitted in the original request (as a means of
identification), and the remote SYSAP returns the same RSPID in its response to
the original request.

The SHOW RSPID command displays information taken from the response
descriptor table (RDT), which lists the currently open local requests that require
responses from SYSAPs at a remote node. For each RSPID, SDA displays the
following information:

• RSPID value

• Address of the class driver request packet (CDRP), which generally represents
the original request

• Address of the CDT that is using the RSPID

• Name of the local process using the RSPID

• Remote node from which a response is required (and has not yet been
received)

SDA–179

SDA Commands
SHOW RSPID

Examples

1. SDA> SHOW RSPID

--- Summary of Response Descriptor Table (RDT) 805E6F18 ---

RSPID CDRP Address CDT Address Local Process Name Remote Node
----- ------------ ----------- ------------------ -----------

39D00000 8062CC80 805E8710 VMS$VMScluster VANDQ1
EE210001 80637260 805E8C90 VMS$DISK_CL_DRVR ROMRDR
EE240002 806382E0 805E8DF0 VMS$DISK_CL_DRVR VANDQ1
EE440003 806393E0 805E8F50 VMS$TAPE_CL_DRVR VANDQ1
5DB90004 80636BC0 805E8870 VMS$VMScluster ROMRDR
5C260005 80664040 805E8870 VMS$VMScluster ROMRDR
38F80006 80664A80 805E8710 VMS$VMScluster VANDQ1

This example shows the default output for the SHOW RSPID command.

2. SDA> SHOW RSPID/CONNECTION=805E8F50

--- Summary of Response Descriptor Table (RDT) 805E6F18 ---

RSPID CDRP Address CDT Address Local Process Name Remote Node
----- ------------ ----------- ------------------ -----------

EE440003 806393E0 805E8F50 VMS$TAPE_CL_DRVR VANDQ1

This example shows the output for a SHOW RSPID/CONNECTION command.

SDA–180

SDA Commands
SHOW SPINLOCKS

SHOW SPINLOCKS

Displays the multiprocessing synchronization data structures.

Format

SHOW SPINLOCKS {[name] | /ADDRESS=expression | /INDEX=expression}
[/OWNED | /DYNAMIC | /STATIC] [{/BRIEF | /FULL}]

Parameter

name
Name of the spin lock, fork lock, or device lock structure to be displayed. Device
lock names are of the form [node$]lock, where node optionally indicates the
OpenVMS Cluster node name (allocation class) and lock indicates the device and
controller identification (for example, HAETAR$DUA).

Qualifiers

/ADDRESS=expression
Displays the lock at the address specified in expression. You can use the
/ADDRESS qualifier to display a specific device lock; however, the name of the
device lock is listed as ‘‘Unknown’’ in the display.

/BRIEF
Produces a condensed display of the lock information displayed by default by
the SHOW SPINLOCKS command, including the following: address, spinlock
name or device name, IPL or device IPL, rank, index, ownership depth, number
of waiting CPUs, CPU ID of the owner CPU, and interlock status (depth of
ownership).

/DYNAMIC
Displays information for all device locks in the system.

/FULL
Displays full descriptive and diagnostic information for each displayed spin lock,
fork lock, or device lock.

/INDEX=expression
Displays the system spin lock whose index is specified in expression. You cannot
use the /INDEX qualifier to display a device lock.

/OWNED
Displays information for all spin locks, fork locks, and device locks owned by the
SDA current CPU. If a processor does not own any spin locks, SDA displays the
following message:

No spinlocks currently owned by CPU xx

The xx represents the CPU ID of the processor.

/STATIC
Displays information for all system spin locks and fork locks.

SDA–181

SDA Commands
SHOW SPINLOCKS

Description

The SHOW SPINLOCKS command displays status and diagnostic information
about the multiprocessing synchronization structures known as spin locks.

A static spin lock is a spin lock whose data structure is permanently assembled
into the system. Static spin locks are accessed as indexes into a vector of
longword addresses called the spin lock vector, the address of which is
contained in SMP$AR_SPNLKVEC. System spin locks and fork locks are static
spin locks. Table SDA–31 lists the static spin locks.

A dynamic spin lock is a spin lock that is created based on the configuration
of a particular system. One such dynamic spin lock is the device lock SYSMAN
creates when configuring a particular device. This device lock synchronizes access
to the device’s registers and certain UCB fields. The system creates a dynamic
spin lock by allocating space from nonpaged pool, rather than assembling the lock
into the system as it does in creating a static spin lock.

See the Writing OpenVMS Alpha Device Drivers in C for a full discussion of the
role of spin locks in maintaining synchronization of kernel mode activities in a
multiprocessing environment.

Table SDA–31 Static Spin Locks

Name Description

QUEUEAST Fork lock for queuing ASTs at IPL 6
FILSYS Lock on file system structures
LCKMGR Lock on all lock manager structures
IOLOCK8/SCS Fork lock for executing a driver fork process at IPL 8
TX_SYNCH Transaction processing lock
TIMER Lock for adding and deleting timer queue entries and

searching the timer queue
PORT Template structure for dynamic spinlocks for ports with

multiple devices
IO_MISC Miscellaneous short term I/O locks
MMG Lock on memory management, PFN database, swapper,

modified page writer, and creation of per-CPU database
structures

SCHED Lock on process control blocks (PCBs), scheduler database,
and mutex acquisition and release structures

IOLOCK9 Fork lock for executing a driver fork process at IPL 9
IOLOCK10 Fork lock for executing a driver fork process at IPL 10
IOLOCK11 Fork lock for executing a driver fork process at IPL 11
MAILBOX Lock for sending messages to mailboxes
POOL Lock on nonpaged pool database
PERFMON Lock for I/O performance monitoring

(continued on next page)

SDA–182

SDA Commands
SHOW SPINLOCKS

Table SDA–31 (Cont.) Static Spin Locks

Name Description

INVALIDATE Lock for system space translation buffer (TB) invalidation
HWCLK Lock on hardware clock database, including the quadword

containing the due time of the first timer queue entry
(EXE$GQ_1ST_TIME) and the quadword containing the
system time (EXE$GQ_SYSTIME)

MEGA Lock for serializing access to fork-wait queue
EMB/MCHECK Lock for allocating and releasing error-logging buffers and

synchronizing certain machine error handling

For each spin lock, fork lock, or device lock in the system, SHOW SPINLOCKS
provides the following information:

• Name of the spin lock (or device name for the device lock)

• Address of the spinlock data structure (SPL)

• The owner CPU’s CPU ID

• IPL at which allocation of the lock is synchronized on a local processor

• Number of nested acquisitions of the spin lock by the processor owning the
spin lock (‘‘Ownership Depth’’)

• Rank of the spin lock

• Number of processors waiting to obtain the spin lock

• Spinlock index (for static spin locks only)

• Timeout interval for spinlock acquisition (in terms of 10 milliseconds)

SHOW SPINLOCKS/BRIEF produces a condensed display of this same
information.

If the system under analysis was executing with full-checking multiprocessing
enabled (according to the setting of the MULTIPROCESSING system parameter),
SHOW SPINLOCKS/FULL adds to the spinlock display the last eight PCs at
which the lock was acquired or released. If applicable, SDA also displays the PC
of the last release of multiple, nested acquisitions of the lock.

If no spin lock name, address, or index is given, then information is displayed for
all applicable spin locks.

SDA–183

SDA Commands
SHOW SPINLOCKS

Examples

1. SDA> SHOW SPINLOCKS
System static spinlock structures

EMB Address 80424480
Owner CPU ID None DIPL 0000001F
Ownership Depth 00000000 Rank 00000000
CPUs Waiting 00000000 Index 00000020
Timeout Interval 000186A0

EMB Address 80424480
Owner CPU ID None DIPL 0000001F
Ownership Depth 00000000 Rank 00000000
CPUs Waiting 00000000 Index 00000020
Timeout Interval 000186A0

MEGA Address 80424500
Owner CPU ID None DIPL 00000016
Ownership Depth 00000000 Rank 00000002
CPUs Waiting 00000000 Index 00000022
Timeout Interval 000186A0

HWCLK Address 80424580
Owner CPU ID None DIPL 00000016
Ownership Depth 00000000 Rank 00000004
CPUs Waiting 00000000 Index 00000024
Timeout Interval 000186A0

.

.

.
System dynamic spinlock structures

OPA Address 8041E880
Owner CPU ID None DIPL 00000014
Ownership Depth 00000000 Rank FFFFFFFF
CPUs Waiting 00000000
Timeout Interval 000186A0

MBA Address 80424780
Owner CPU ID None DIPL 0000000B
Ownership Depth 00000000 Rank 0000000C
CPUs Waiting 00000000 Index 0000002C
Timeout Interval 000186A0

NLA Address 80424780
Owner CPU ID None DIPL 0000000B
Ownership Depth 00000000 Rank 0000000C
CPUs Waiting 00000000 Index 0000002C
Timeout Interval 000186A0

PKI Address 80552800
Owner CPU ID None DIPL 00000014
Ownership Depth 00000000 Rank FFFFFFFF
CPUs Waiting 00000000
Timeout Interval 000186A0

.

.

.

This excerpt illustrates the default output of the SHOW SPINLOCKS command.

SDA–184

SDA Commands
SHOW SPINLOCKS

2. SDA> SHOW SPINLOCKS/BRIEF
Address Spnlck Name IPL Rank Index Depth #Waiting Ownr CPU Interlock

--

8041F400 EMB 001F 00000000 00000020 00000000 00000000 None Free
8041F400 EMB 001F 00000000 00000020 00000000 00000000 None Free
8041F480 MEGA 001F 00000002 00000022 00000000 00000000 None Free
8041F500 HWCLK 0016 00000004 00000024 00000000 00000000 None Free
8041F580 INVALIDATE 0015 00000006 00000026 00000000 00000000 None Free
8041F600 PERFMON 000F 00000008 00000028 00000000 00000000 None Free
8041F680 POOL 000B 0000000A 0000002A 00000000 00000000 None Free
8041F700 MAILBOX 000B 0000000C 0000002C 00000000 00000000 None Free
8041F780 IOLOCK11 000B 0000000E 0000002E 00000000 00000000 None Free
8041F800 IOLOCK10 000A 0000000F 0000002F 00000000 00000000 None Free
8041F880 IOLOCK9 0009 00000010 00000030 00000000 00000000 None Free
8041F900 SCHED 0008 00000012 00000032 00000000 00000000 None Free
8041F980 MMG 0008 00000014 00000034 00000000 00000000 None Free
8041FA00 IO_MISC 0008 00000016 00000036 00000000 00000000 None Free
8041FA80 TIMER 0008 00000018 00000038 00000000 00000000 None Free
8041FB00 TX_SYNCH 0008 00000019 00000039 00000000 00000000 None Free
8041FB80 SCS 0008 0000001A 0000003A 00000000 00000000 None Free
8041FC00 FILSYS 0008 0000001C 0000003C 00000000 00000000 None Free
8041FC80 QUEUEAST 0006 0000001E 0000003E 00000000 00000000 None Free
80419880 PIPERA$OPA 0015 FFFFFFFF 00000000 00000000 None Free
8041F700 PIPERA$MBA 000B 0000000C 0000002C 00000000 00000000 None Free
8041F700 PIPERA$NLA 000B 0000000C 0000002C 00000000 00000000 None Free
805E9900 PIPERA$DKB 0016 FFFFFFFF 00000000 00000000 None Free
805E9E80 PIPERA$PKB 0015 FFFFFFFF 00000000 00000000 None Free
8041FB80 PIPERA$FTA 0008 0000001A 0000003A 00000000 00000000 None Free
805B9400 PIPERA$PKA 0015 FFFFFFFF 00000000 00000000 None Free
805BBC00 PIPERA$DKA 0016 FFFFFFFF 00000000 00000000 None Free
805BC780 PIPERA$ESA 0015 FFFFFFFF 00000000 00000000 None Free
805BE080 PIPERA$TTA 0015 FFFFFFFF 00000000 00000000 None Free
805BEB00 PIPERA$SOA 0015 FFFFFFFF 00000000 00000000 None Free
8041FB80 PIPERA$NET 0008 0000001A 0000003A 00000000 00000000 None Free
8041FB80 PIPERA$NDA 0008 0000001A 0000003A 00000000 00000000 None Free
8041FB80 PIPERA$RTA 0008 0000001A 0000003A 00000000 00000000 None Free
8041FB80 PIPERA$RTB 0008 0000001A 0000003A 00000000 00000000 None Free
8041FB80 PIPERA$LTA 0008 0000001A 0000003A 00000000 00000000 None Free
8041FB80 PIPERA$RTC 0008 0000001A 0000003A 00000000 00000000 None Free
8041FB80 PIPERA$PDA 0008 0000001A 0000003A 00000000 00000000 None Free

This excerpt illustrates the condensed form of the display produced in the first
example.

SDA–185

SDA Commands
SHOW STACK

SHOW STACK

Displays the location and contents of the process stacks (of the SDA current
process) and the system stack.

Format

SHOW STACK {range | /ALL | [/EXECUTIVE | /INTERRUPT | /KERNEL
| /SUPERVISOR | /SYSTEM | /USER]} {/LONG | /QUAD (d)}

Parameter

range
Range of memory locations you want to display in stack format. You can express
a range using the following syntax:

m:n Range of virtual addresses from m to n
m;n Range of virtual addresses starting at m and continuing for n bytes

Qualifiers

/ALL
Displays the locations and contents of the four process stacks for the current SDA
process and the system stack.

/EXECUTIVE
Shows the executive stack for the SDA current process.

/INTERRUPT
The interrupt stack does not exist in OpenVMS Alpha. This qualifier shows the
system stack and is retained for compatibility with OpenVMS VAX.

/KERNEL
Shows the kernel stack for the SDA current process.

/LONG
Displays longword width stacks. If this qualifier is not specified, SDA by default
displays quadword width stacks.

/QUAD
Displays quadword width stacks. This is the default.

/SUPERVISOR
Shows the supervisor stack for the SDA current process.

/SYSTEM
Shows the system stack.

/USER
Shows the user stack for the SDA current process.

SDA–186

SDA Commands
SHOW STACK

Description

The SHOW STACK command, by default, displays the stack that was in use when
the system failed, or, in the analysis of a running system, the current operating
stack. For a process that became the SDA current process as the result of a SET
PROCESS command, the SHOW STACK command by default shows its current
operating stack.

The various qualifiers to the command can display any of the four per-process
stacks for the SDA current process, as well as the system stack for the SDA
current CPU.

You can define SDA process and CPU context by using the SET CPU, SHOW
CPU, SHOW CRASH, SET PROCESS, and SHOW PROCESS commands as
indicated in their command descriptions. A complete discussion of SDA context
control appears in Section 4.

SDA provides the following information in each stack display:

Section Contents

Identity of stack SDA indicates whether the stack is a process stack (user,
supervisor, executive, or kernel) or the system stack.

Stack pointer The stack pointer identifies the top of the stack. The
display indicates the stack pointer by the symbol SP =>.

Stack address SDA lists all the virtual addresses that the operating
system has allocated to the stack. The stack addresses
are listed in a column that increases in increments of
8 bytes (one quadword), unless you specify the /LONG
qualifier in which case addresses are listed in increments
of 4 (one longword).

Stack contents SDA lists the contents of the stack in a column to the
right of the stack addresses.

Symbols SDA attempts to display the contents of a location
symbolically, using a symbol and an offset.
If the address cannot be symbolized, this column is left
blank.

Canonical stack When displaying the kernel stack of a non-current process
in a crash dump, SDA identifies the stack locations used
by the scheduler to store the register contents of the
process.

If a stack is empty, the display shows the following:

SP => (STACK IS EMPTY)

SDA–187

SDA Commands
SHOW STACK

Example

SDA> SHOW STACK

Current Operating Stack (SYSTEM):
FFFFFFFF.8244BD08 FFFFFFFF.800600FC SCH$REPORT_EVENT_C+000FC
FFFFFFFF.8244BD10 00000000.00000002
FFFFFFFF.8244BD18 00000000.00000005
FFFFFFFF.8244BD20 FFFFFFFF.8060C7C0

SP => FFFFFFFF.8244BD28 FFFFFFFF.8244BEE8
FFFFFFFF.8244BD30 FFFFFFFF.80018960 EXE$HWCLKINT_C+00260
FFFFFFFF.8244BD38 00000000.000001B8
FFFFFFFF.8244BD40 00000000.00000050
FFFFFFFF.8244BD48 00000000.00000210 UCB$N_RSID+00002
FFFFFFFF.8244BD50 00000000.00000000
FFFFFFFF.8244BD58 00000000.00000000
FFFFFFFF.8244BD60 FFFFFFFF.804045D0 SCH$GQ_IDLE_CPUS
FFFFFFFF.8244BD68 FFFFFFFF.8041A340 EXE$GL_FKWAITFL+00020
FFFFFFFF.8244BD70 00000000.00000250 UCB$T_MSGDATA+00034
FFFFFFFF.8244BD78 00000000.00000001

CHF$IS_MCH_ARGS FFFFFFFF.8244BD80 00000000.0000002B
CHF$PH_MCH_FRAME FFFFFFFF.8244BD88 FFFFFFFF.8244BFB0
CHF$IS_MCH_DEPTH FFFFFFFF.8244BD90 80000000.FFFFFFFD G
CHF$PH_MCH_DADDR FFFFFFFF.8244BD98 00000000.00001600 CTL$C_CLIDATASZ+00060
CHF$PH_MCH_ESF_ADDR FFFFFFFF.8244BDA0 FFFFFFFF.8244BF40
CHF$PH_MCH_SIG_ADDR FFFFFFFF.8244BDA8 FFFFFFFF.8244BEE8
CHF$IH_MCH_SAVR0 FFFFFFFF.8244BDB0 FFFFFFFF.8041FB00 SMP$RELEASEL+00640
CHF$IH_MCH_SAVR1 FFFFFFFF.8244BDB8 00000000.00000000
CHF$IH_MCH_SAVR16 FFFFFFFF.8244BDC0 00000000.0000000D
CHF$IH_MCH_SAVR17 FFFFFFFF.8244BDC8 0000FFF0.00007E04
CHF$IH_MCH_SAVR18 FFFFFFFF.8244BDD0 00000000.00000000
CHF$IH_MCH_SAVR19 FFFFFFFF.8244BDD8 00000000.00000001
CHF$IH_MCH_SAVR20 FFFFFFFF.8244BDE0 00000000.00000000
CHF$IH_MCH_SAVR21 FFFFFFFF.8244BDE8 FFFFFFFF.805AE4B6 SISR+0006E
CHF$IH_MCH_SAVR22 FFFFFFFF.8244BDF0 00000000.00000001
CHF$IH_MCH_SAVR23 FFFFFFFF.8244BDF8 00000000.00000010
CHF$IH_MCH_SAVR24 FFFFFFFF.8244BE00 00000000.00000008
CHF$IH_MCH_SAVR25 FFFFFFFF.8244BE08 00000000.00000010
CHF$IH_MCH_SAVR26 FFFFFFFF.8244BE10 00000000.00000001
CHF$IH_MCH_SAVR27 FFFFFFFF.8244BE18 00000000.00000000
CHF$IH_MCH_SAVR28 FFFFFFFF.8244BE20 FFFFFFFF.804045D0 SCH$GQ_IDLE_CPUS

FFFFFFFF.8244BE28 30000000.00000300 UCB$L_PI_SVA
FFFFFFFF.8244BE30 FFFFFFFF.80040F6C EXE$REFLECT_C+00950
FFFFFFFF.8244BE38 18000000.00000300 UCB$L_PI_SVA
FFFFFFFF.8244BE40 FFFFFFFF.804267A0 EXE$CONTSIGNAL+00228
FFFFFFFF.8244BE48 00000000.7FFD00A8 PIO$GW_IIOIMPA
FFFFFFFF.8244BE50 00000003.00000000
FFFFFFFF.8244BE58 FFFFFFFF.8003FC20 EXE$CONNECT_SERVICES_C+00920
FFFFFFFF.8244BE60 FFFFFFFF.8041FB00 SMP$RELEASEL+00640
FFFFFFFF.8244BE68 00000000.00000000
FFFFFFFF.8244BE70 FFFFFFFF.8042CD50 SCH$WAIT_PROC+00060
FFFFFFFF.8244BE78 00000000.0000000D
FFFFFFFF.8244BE80 0000FFF0.00007E04
FFFFFFFF.8244BE88 00000000.00000000
FFFFFFFF.8244BE90 00000000.00000001
FFFFFFFF.8244BE98 00000000.00000000
FFFFFFFF.8244BEA0 FFFFFFFF.805AE4B6 SISR+0006E
FFFFFFFF.8244BEA8 00000000.00000001
FFFFFFFF.8244BEB0 00000000.00000010
FFFFFFFF.8244BEB8 00000000.00000008
FFFFFFFF.8244BEC0 00000000.00000010
FFFFFFFF.8244BEC8 00000000.00000001
FFFFFFFF.8244BED0 00000000.00000000
FFFFFFFF.8244BED8 FFFFFFFF.804045D0 SCH$GQ_IDLE_CPUS
FFFFFFFF.8244BEE0 00000000.00000001

SDA–188

SDA Commands
SHOW STACK

CHF$L_SIG_ARGS FFFFFFFF.8244BEE8 0000000C.00000005
CHF$L_SIG_ARG1 FFFFFFFF.8244BEF0 FFFFFFFC.00010000 SYS$K_VERSION_08

FFFFFFFF.8244BEF8 00000300.FFFFFFFC UCB$L_PI_SVA
FFFFFFFF.8244BF00 00000002.00000001
FFFFFFFF.8244BF08 00000000.0000000C
FFFFFFFF.8244BF10 00000000.00000000
FFFFFFFF.8244BF18 00000000.FFFFFFFC
FFFFFFFF.8244BF20 00000008.00000000
FFFFFFFF.8244BF28 00000000.00000001
FFFFFFFF.8244BF30 00000008.00000000
FFFFFFFF.8244BF38 00000000.FFFFFFFC

INTSTK$Q_R2 FFFFFFFF.8244BF40 FFFFFFFF.80404668 SCH$GL_ACTIVE_PRIORITY
INTSTK$Q_R3 FFFFFFFF.8244BF48 FFFFFFFF.8042F280 SCH$WAIT_KERNEL_MODE
INTSTK$Q_R4 FFFFFFFF.8244BF50 FFFFFFFF.80615F00
INTSTK$Q_R5 FFFFFFFF.8244BF58 00000000.00000000
INTSTK$Q_R6 FFFFFFFF.8244BF60 FFFFFFFF.805AE000
INTSTK$Q_R7 FFFFFFFF.8244BF68 00000000.00000000
INTSTK$Q_PC FFFFFFFF.8244BF70 00000000.FFFFFFFC
INTSTK$Q_PS FFFFFFFF.8244BF78 30000000.00000300 UCB$L_PI_SVA

FFFFFFFF.8244BF80 FFFFFFFF.80404668 SCH$GL_ACTIVE_PRIORITY
FFFFFFFF.8244BF88 00000000.7FFD00A8 PIO$GW_IIOIMPA
FFFFFFFF.8244BF90 00000000.00000000
FFFFFFFF.8244BF98 FFFFFFFF.8042CD50 SCH$WAIT_PROC+00060
FFFFFFFF.8244BFA0 00000000.00000044
FFFFFFFF.8244BFA8 FFFFFFFF.80403C30 SMP$GL_FLAGS

Prev SP (8244BFB0) => FFFFFFFF.8244BFB0 FFFFFFFF.8042CD50 SCH$WAIT_PROC+00060
FFFFFFFF.8244BFB8 00000000.00000000
FFFFFFFF.8244BFC0 FFFFFFFF.805EE040
FFFFFFFF.8244BFC8 FFFFFFFF.8006DB54 PROCESS_MANAGEMENT_NPRO+0DB54
FFFFFFFF.8244BFD0 FFFFFFFF.80404668 SCH$GL_ACTIVE_PRIORITY
FFFFFFFF.8244BFD8 FFFFFFFF.80615F00
FFFFFFFF.8244BFE0 FFFFFFFF.8041B220 SCH$RESOURCE_WAIT
FFFFFFFF.8244BFE8 00000000.00000044
FFFFFFFF.8244BFF0 FFFFFFFF.80403C30 SMP$GL_FLAGS
FFFFFFFF.8244BFF8 00000000.7FF95E00

The SHOW STACK command displays a system stack. The data shown above the
stack pointer may not be valid. Note that the mechanism array, signal array, and
exception frame symbols displayed on the left will appear only for INVEXCEPTN,
FATALEXCPT, UNXSIGNAL, and SSRVEXCEPT bugchecks.

SDA–189

SDA Commands
SHOW SUMMARY

SHOW SUMMARY

Displays a list of all active processes and the values of the parameters used in
swapping and scheduling these processes.

Format

SHOW SUMMARY [/IMAGE | /THREAD]

Parameters

None.

Qualifiers

/IMAGE
Causes SDA to display, if possible, the name of the image being executed within
each process.

/THREAD
Displays information on all the current threads associated with the current
process.

Description

The SHOW SUMMARY command displays the information in Table SDA–32 for
each active process in the system.

Table SDA–32 Process Information in the SHOW SUMMARY Display

Column Contents

Extended PID The 32-bit number that uniquely identifies the process
Indx Index of this process into the PCB array
Process name Name assigned to the process
Username Name of the user who created the process
State Current state of the process. Table SDA–33 shows the 14

states and their meanings.
Pri Current scheduling priority of the process
PCB/KTB Address of the process control block or address of the kernel

thread block
PHD/FRED Address of the process header or address of the floating-point

registers and execution data block
Wkset Number (in decimal) of pages currently in the process

working set

SDA–190

SDA Commands
SHOW SUMMARY

Table SDA–33 Current State Information

State Meaning

COM Computable and resident in memory.
COMO Computable, but outswapped.
CUR Currently executing.
CEF Waiting for a common event flag.
LEF Waiting for a local event flag.
LEFO Outswapped and waiting for a local event flag.
HIB Hibernating.
HIBO Hibernating and outswapped.
SUSP Suspended.
SUSPO Suspended and outswapped.
PFW Waiting for a page that is not in memory (page-fault wait).
FPG Waiting to add a page to its working set (free-page wait).
COLPG Waiting for a page collision to be resolved (collided-page wait);

this usually occurs when several processes cause page faults on
the same shared page.

MWAIT Miscellaneous wait.
RWxxx Waiting for system resource xxx.

SDA–191

SDA Commands
SHOW SUMMARY

Example

SDA> SHOW SUMMARY
Current process summary

Extended Indx Process name Username State Pri PCB/KTB PHD/FRED Wkset
-- PID -- ---- --------------- ----------- ------- --- -------- -------- ------
00000041 0001 SWAPPER HIB 16 80C641D0 80C63E00 0
00000045 0005 IPCACP SYSTEM HIB 10 80DC0780 81266000 39
00000046 0006 ERRFMT SYSTEM HIB 8 80DC2240 8126C000 57
00000047 0007 OPCOM SYSTEM HIB 8 80DC3340 81272000 31
00000048 0008 AUDIT_SERVER AUDIT$SERVER HIB 10 80D61280 81278000 152
00000049 0009 JOB_CONTROL SYSTEM HIB 10 80D620C0 8127E000 50
0000004A 000A SECURITY_SERVER SYSTEM HIB 10 80DC58C0 81284000 253
0000004B 000B TP_SERVER SYSTEM HIB 10 80DC8900 8128A000 75
0000004C 000C NETACP DECNET HIB 10 80DBFE00 8125A000 78
0000004D 000D EVL DECNET HIB 6 80DCA080 81290000 76
0000004E 000E REMACP SYSTEM HIB 8 80DE4E00 81296000 14
00000050 0010 DECW$SERVER_0 SYSTEM HIB 8 80DEF940 812A2000 739
00000051 0011 DECW$LOGINOUT <login> LEF 4 80DF0F00 812A8000 273
00000052 0012 SYSTEM SYSTEM LEF 9 80D772C0 81260000 75

The SHOW SUMMARY command describes all active processes in the system at
the time of the system failure. Note that there was no process in the in the CUR
state at the time of the failure.

SDA–192

SDA Commands
SHOW SYMBOL

SHOW SYMBOL

Displays the hexadecimal value of a symbol and, if the value is equal to an
address location, the contents of that location.

Format

SHOW SYMBOL [/ALL] symbol-name

Parameter

symbol-name
Name of the symbol to be displayed. You must provide a symbol-name.

Qualifier

/ALL
Displays information on all symbols whose names begin with the characters
specified in symbol-name.

Description

The SHOW SYMBOL/ALL command is useful for determining the values of
symbols that belong to a symbol set, as illustrated in the following examples.

Examples

1. SDA> SHOW SYMBOL G
G = FFFFFFFF.80000000 : 6BFA8001.201F0104

The SHOW SYMBOL command evaluates the symbol G as 8000000016 and
displays the contents of address 8000000016 as 201F010416.

2. SDA> SHOW SYMBOL/ALL BUG

Symbols sorted by name

BUG$L_BUGCHK_FLAGS = FFFFFFFF.804031E8 : 00000000.00000001
BUG$L_FATAL_SPSAV = FFFFFFFF.804031F0 : 00000000.00000001
BUG$REBOOT = FFFFFFFF.8042E320 : 00000000.00001808
BUG$REBOOT_C = FFFFFFFF.8004f4D0 : 47FB041D.47FD0600

.

.

.
Symbols sorted by value

BUG$REBOOT_C = FFFFFFFF.8004f4D0 :47FB041D.47FD0600
BUG$L_BUGCHK_FLAGS = FFFFFFFF.804031E8 :00000000.00000001
BUG$L_FATAL_SPSAV = FFFFFFFF.804031F0 :00000000.00000001
BUG$REBOOT = FFFFFFFF.8042E320 :00000000.00001808

.

.

.

This example shows the display produced by the SHOW SYMBOL/ALL
command. SDA searches its symbol table for all symbols that begin with the
string ‘‘BUG’’ and displays the symbols and their values. Although certain
values equate to memory addresses, it is doubtful that the contents of those
addresses are actually relevant to the symbol definitions in this instance.

SDA–193

SDA Commands
SHOW WORKING_SET_LIST

SHOW WORKING_SET_LIST

Displays the system working set list and retains the current process context.

Format

SHOW WORKING_SET_LIST [={GPT | SYSTEM | LOCKED | n}]

Parameters

None.

Qualifiers

None.

Description

The SHOW WORKING_SET_LIST command displays the contents of requested
entries in the system working set list. If no option is given, all working set
list entries are displayed. Table SDA–34 shows the options available with
SHOW WORKING_SET_LIST. The SHOW WORKING_SET_LIST command is
equivalent to the SHOW PROCESS/SYSTEM/WORKING_SET_LIST command.
See the SHOW PROCESS command and Table SDA–25 for more information.

Table SDA–34 Options for the SHOW WORKING_SET_LIST Command

Options Results

GPT Displays only working set list entries that are for global page
table pages.

SYSTEM Displays only working set list entries for pageable system pages.
LOCKED Displays only working set list entries for pageable system pages

that are locked in the system working set.
n Displays a specific working set entry, where n is the working set

list index (WSLX) of the entry of interest.

SDA–194

SDA Commands
SPAWN

SPAWN

Creates a subprocess of the process currently running SDA, copying the context
of the current process to the subprocess and, optionally, executing a specified
command within the subprocess.

Format

SPAWN [/qualifier[,...]] [command]

Parameter

command
Name of the command that you want the subprocess to execute.

Qualifiers

/INPUT=filespec
Specifies an input file containing one or more command strings to be executed
by the spawned subprocess. If you specify a command string with an input file,
the command string is processed before the commands in the input file. Once
processing is complete, the subprocess is terminated.

/NOLOGICAL_NAMES
Specifies that the logical names of the parent process are not to be copied to the
subprocess. The default behavior is that the logical names of the parent process
are copied to the subprocess.

/NOSYMBOLS
Specifies that the DCL global and local symbols of the parent process are not
to be passed to the subprocess. The default behavior is that these symbols are
passed to the subprocess.

/NOTIFY
Specifies that a message is to be broadcast to SYS$OUTPUT when the subprocess
completes processing or aborts. The default behavior is that such a message is
not sent to SYS$OUTPUT.

/NOWAIT
Specifies that the system is not to wait until the subprocess is completed before
allowing more commands to be specified. This qualifier allows you to specify new
commands while the spawned subprocess is running. If you specify /NOWAIT,
use /OUTPUT to direct the output of the subprocess to a file to prevent more than
one process from simultaneously using your terminal.

The default behavior is that the system waits until the subprocess is completed
before allowing more commands to be specified.

/OUTPUT=filespec
Specifies an output file to which the results of the SPAWN operation are written.
To prevent output from the spawned subprocess from being displayed while
you are specifying new commands, specify an output other than SYS$OUTPUT
whenever you specify /NOWAIT. If you omit the /OUTPUT qualifier, output is
written to the current SYS$OUTPUT device.

SDA–195

SDA Commands
SPAWN

/PROCESS=process-name
Specifies the name of the subprocess to be created. The default name of the
subprocess is USERNAME_n, where USERNAME is the user name of the parent
process. The variable n represents the subprocess number.

Example

SDA> SPAWN
$ MAIL

.

.

.
$ DIR

.

.

.
$ LO

Process SYSTEM_1 logged out at 5-JAN-1993 15:42:23.59
SDA>

This example uses the SPAWN command to create a subprocess that issues DCL
commands to invoke the Mail utility. The subprocess then lists the contents of a
directory before logging out to return to the parent process executing SDA.

SDA–196

SDA Commands
VALIDATE PFN_LIST

VALIDATE PFN_LIST

Validates that the page counts on lists are correct.

Format

VALIDATE PFN_LIST {/ALL (d) | [/BAD | /FREE | /MODIFIED | /ZERO]}

Parameters

None

Qualifiers

/ALL
Validates all the PFN lists: bad, free, modified, and zero.

/BAD
Validates the bad page list.

/FREE
Validates the free page list.

/MODIFIED
Validates the modified page list.

/ZERO
Validates the zero page list.

Description

The VALIDATES PFN_LIST command validates the specified PFN list(s) bit
counting the number of entries in the list and comparing that to the running
count of entries for each list maintained by the system.

Examples

1. SDA> VALIDATES PFN_LIST/ALL
Free list: expected 445 pages, found 0 pages

excluding zeroded free list with expected size 116 pages
Zeroed free list validated: 116 pages
Modified list validated: 311 pages
Bad page list validated: 0 pages

2. SDA>VALIDATES PFN_LIST/FREE
Free list: expected 445 pages, found 0 pages

excluding zeroed free list with expected size 116 pages

SDA–197

SDA Commands
VALIDATE QUEUE

VALIDATE QUEUE

Validates the integrity of the specified queue by checking the pointers in the
queue.

Format

VALIDATE QUEUE [address]
[/LIST | /QUADWORD | /SELF_RELATIVE | /SINGLY_LINKED]

Parameter

address
Address of an element in a queue.

If you specify the period (.) as the address, SDA uses the last evaluated
expression as the queue element’s address.

If you do not specify an address, the VALIDATE QUEUE command determines
the address from the last issued VALIDATE QUEUE command in the current
SDA session.

If you do not specify an address, and no queue has previously been specified,
SDA displays the following error message:

%SDA-E-NOQUEUE, no queue has been specified for validation

Qualifiers

/LIST
Displays address of each element in the queue.

/QUADWORD
Allows the validate operation to occur on queues with linked lists of quadword
addresses.

/SELF_RELATIVE
Specifies that the selected queue is a self-relative queue. Other processes cannot
insert or remove queue entries while the current process is doing so.

/SINGLY_LINKED
Allows validation of queues that have no backward pointers.

Description

The VALIDATE QUEUE command uses the forward, and optionally, backward
pointers in each element of the queue to make sure that all such pointers are
valid and that the integrity of the queue is intact. If the queue is intact, SDA
displays the following message:

Queue is complete, total of n elements in the queue

In these messages, n represents the number of entries the VALIDATE QUEUE
command has found in the queue.

SDA–198

SDA Commands
VALIDATE QUEUE

If SDA discovers an error in the queue, it displays one of the following error
messages:

Error in forward queue linkage at address nnnnnnnn after tracing x elements
Error comparing backward link to previous structure address (nnnnnnnn)
Error occurred in queue element at address oooooooo after tracing pppp elements

These messages can appear frequently when the VALIDATE QUEUE command
is used within an SDA session that is analyzing a running system. In a running
system, the composition of a queue can change while the command is tracing its
links, thus producing an error message.

If there are no entries in the queue, SDA displays this message:

The queue is empty

Examples

1. SDA> VALIDATE QUEUE/SELF_RELATIVE IOC$GQ_POSTIQ
Queue is complete, total of 159 elements in the queue

This example validates the self-relative queue IOC$GQ_POSTIQ. The
validation is successful and determines that there are 159 IRPs in the list.

2. SDA> validate queue/quad FFFFFFFF80D0E6CO/list
Entry Address Flink Blink
----- ------- ------ -----
Header FFFFFFFF80D0E6CO FFFFFFFF80D03780 FFFFFFFF80D0E800

1. FFFFFFFF80D0E790 FFFFFFFF80D0E7CO FFFFFFFF80D0E6C0
2. FFFFFFFF80D0E800 FFFFFFFF80D0E6C0 FFFFFFFF80D0E7C0

Queue is complete, total of 3 elements in the queue

This example shows the validation of quadword elements in a list.

3. SDA> validate queue/sing exe$gl_nonpaged+4
Queue is zero-terminated, total of 95 elements in the queue

This example shows the validation of singly linked elements in the queue.
The forward link of the final element is zero instead of being a pointer back
to the queue header.

SDA–199

SDA Extension Commands

SDA Extension Commands

The SDA CLUE (Crash Log Utility Extractor) extension commands can
summarize information provided by certain standard SDA commands and
provide additional detail for some SDA commands. These SDA CLUE commands
can interpret the contents of the dump to perform additonal analysis.

All CLUE commands can be used when analyzing crash dumps; the only CLUE
commands that are not allowed when analyzing a running system are CLUE
CRASH, CLUE ERRLOG, CLUE HISTORY, and CLUE STACK.

When rebooting after a system failure, CLUE commands by default automatically
analyze and save summary information from the crash dump file in CLUE history
and listing files. This information includes the following:

• Crash dump summary information

• System configuration

• Stack decoder

• Page and swap files

• Memory management statistics

• Process DCL recall buffer

• Active XQP processes

• XQP cache header

For additional information on the contents of the CLUE listing file, see the
reference section on CLUE HISTORY.

The following SDA CLUE extension commands are described in this section:

CLUE CLEANUP
CLUE CONFIG
CLUE CRASH
CLUE ERRLOG
CLUE HISTORY
CLUE MCHK
CLUE MEMORY
CLUE PROCESS
CLUE STACK
CLUE VCC
CLUE XQP

SDA–200

SDA Extension Commands
CLUE CLEANUP

CLUE CLEANUP

Performs housekeeping operations to conserve disk space.

Format

CLUE CLEANUP

Parameters

None.

Qualifiers

None.

Description

CLUE CLEANUP performs housekeeping operations to conserve disk space. To
avoid filling up the system disk with listing files generated by CLUE, CLUE
CLEANUP is run during system startup to check the overall disk space used by
all CLUE$*.LIS files.

If the CLUE$COLLECT:CLUE$*.LIS files occupy more space than the logical
CLUE$MAX_BLOCKS allows, then the oldest files are deleted until the threshold
is reached. If this logical name is not defined, a default value of 5,000 disk blocks
is assumed. A value of zero disables housekeeping and no check on the disk space
is performed.

Example

SDA> CLUE CLEANUP
%CLUE-I-CLEANUP, housekeeping started...
%CLUE-I-MAXBLOCK, maximum blocks allowed 5000 blocks
%CLUE-I-STAT, total of 4 CLUE files, 192 blocks.
%CLUE-I-DEL, deleting DISK$X6AF_G5N:[SYSCOMMON.SYSERR]CLUE$_010193_0000.LIS;1 (78 blocks)

In this example, the CLUE CLEANUP command displays that the total number
of blocks of disk space used by CLUE files does not exceed the maximum number
of blocks allowed. No files are deleted.

SDA–201

SDA Extension Commands
CLUE CONFIG

CLUE CONFIG

Displays the system, memory, and device configurations.

Format

CLUE CONFIG

Parameters

None.

Qualifiers

None.

Description

CLUE CONFIG displays the system, memory, and device configurations.

Example

SDA> CLUE CONFIG
System Configuration:

System Information:
System Type ALPHAbook 1 Primary CPU ID 00
Cycle Time 8.6 nsec (115 MHz) Pagesize 8192 Byte

Memory Configuration:
Cluster PFN Start PFN Count Range (MByte) Usage
#03 0 256 0.0 MB - 2.0 MB Console
#04 256 7935 2.0 MB - 63.9 MB System
#05 8191 1 63.9 MB - 64.0 MB Console

Per-CPU Slot Processor Information:
CPU ID 00 CPU State rc,pa,pp,cv,pv,pmv,pl
CPU Type LCA Pass 2 (21066) Halt PC 00000000.20000000
PAL Code 5.56 Halt PS 00000000.00001F00
CPU Revision Halt Code 00000000.00000000
Serial Number "Bootstrap or Powerfail"
Console Vers V4.6-29

SDA–202

SDA Extension Commands
CLUE CONFIG

Adapter Configuration:

TR Adapter ADP Hose Bus BusArrayEntry Node Device Name / HW-Id
-- ----------- -------- ---- -------------------- ---- -------------------------
1 KA1504 80D6F680 0 BUSLESS_SYSTEM
2 PCI 80D6F880 0 PCI

80D6FBE8 PKA: 6 NCR 53C810 SCSI
80D6FC20 7 SATURN
80D6FC58 8 PCMCIA_PD6729

3 ISA 80D6FE80 0 ISA
80D70098 0 EISA_SYSTEM_BOARD
80D700D0 AUA: 1 PCXBJ
80D70108 GQA: 2 AlphaBOOK-1 LCD (WD90C24A)
80D70140 HEA: 3 H8 AlphaBook-I uProc

4 XBUS 80D70440 0 XBUS
80D70618 0 MOUS
80D70650 1 KBD
80D70688 TTA: 2 NS16450 Serial Port
80D706C0 LRA: 3 Line Printer (parallel port)
80D706F8 DVA: 4 Floppy

5 PCMCIA 80D71040 0 PCMCIA
80D71218 EOA: 0 3Com Etherlink III

SDA–203

SDA Extension Commands
CLUE CRASH

CLUE CRASH

Displays a crash dump summary.

Format

CLUE CRASH

Parameters

None.

Qualifiers

None.

Description

CLUE CRASH displays a crash dump summary, which includes the following
items:

• Bugcheck type

• Current process and image

• Failing PC and PS

• Executive image section name and offset

• General registers

• Failing instructions

• Exception frame, signal and mechanism arrays (if available)

Example

SDA> CLUE CRASH
Crash Time: 30-AUG-1996 13:13:46.83
Bugcheck Type: SSRVEXCEPT, Unexpected system service exception
Node: SWPCTX (Standalone)
CPU Type: DEC 3000 Model 400
VMS Version: X6AF-FT2
Current Process: SYSTEM
Current Image: 31DKB0:[SYS0.][SYSMGR]X.EXE;1
Failing PC: 00000000.00030078 SYS$K_VERSION_01+00078
Failing PS: 00000000.00000003
Module: X
Offset: 00030078

Boot Time: 30-AUG-1996 09:06:22.00
System Uptime: 0 04:07:24.83
Crash/Primary CPU: 00/00
System/CPU Type: 0402
Saved Processes: 18
Pagesize: 8 KByte (8192 bytes)
Physical Memory: 64 MByte (8192 PFNs, contiguous memory)
Dumpfile Pagelets: 98861 blocks
Dump Flags: olddump,writecomp,errlogcomp,dump_style
Dump Type: raw,selective
EXE$GL_FLAGS: poolpging,init,bugdump
Paging Files: 1 Pagefile and 1 Swapfile installed

SDA–204

SDA Extension Commands
CLUE CRASH

Stack Pointers:
KSP = 00000000.7FFA1C98 ESP = 00000000.7FFA6000 SSP = 00000000.7FFAC100
USP = 00000000.7AFFBAD0

General Registers:
R0 = 00000000.00000000 R1 = 00000000.7FFA1EB8 R2 = FFFFFFFF.80D0E6C0
R3 = FFFFFFFF.80C63460 R4 = FFFFFFFF.80D12740 R5 = 00000000.000000C8
R6 = 00000000.00030038 R7 = 00000000.7FFA1FC0 R8 = 00000000.7FFAC208
R9 = 00000000.7FFAC410 R10 = 00000000.7FFAD238 R11 = 00000000.7FFCE3E0
R12 = 00000000.00000000 R13 = FFFFFFFF.80C6EB60 R14 = 00000000.00000000
R15 = 00000000.009A79FD R16 = 00000000.000003C4 R17 = 00000000.7FFA1D40
R18 = FFFFFFFF.80C05C38 R19 = 00000000.00000000 R20 = 00000000.7FFA1F50
R21 = 00000000.00000000 R22 = 00000000.00000001 R23 = 00000000.7FFF03C8
R24 = 00000000.7FFF0040 AI = 00000000.00000003 RA = FFFFFFFF.82A21080
PV = FFFFFFFF.829CF010 R28 = FFFFFFFF.8004B6DC FP = 00000000.7FFA1CA0
PC = FFFFFFFF.82A210B4 PS = 18000000.00000000

Exception Frame:
R2 = 00000000.00000003 R3 = FFFFFFFF.80C63460 R4 = FFFFFFFF.80D12740
R5 = 00000000.000000C8 R6 = 00000000.00030038 R7 = 00000000.7FFA1FC0
PC = 00000000.00030078 PS = 00000000.00000003

Signal Array: 64-bit Signal Array:
Arg Count = 00000005 Arg Count = 00000005
Condition = 0000000C Condition = 00000000.0000000C
Argument #2 = 00010000 Argument #2 = 00000000.00010000
Argument #3 = 00000000 Argument #3 = 00000000.00000000
Argument #4 = 00030078 Argument #4 = 00000000.00030078
Argument #5 = 00000003 Argument #5 = 00000000.00000003

Mechanism Array:
Arguments = 0000002C Establisher FP = 00000000.7AFFBAD0
Flags = 00000000 Exception FP = 00000000.7FFA1F00
Depth = FFFFFFFD Signal Array = 00000000.7FFA1EB8
Handler Data = 00000000.00000000 Signal64 Array = 00000000.7FFA1ED0
R0 = 00000000.00020000 R1 = 00000000.00000000 R16 = 00000000.00020004
R17 = 00000000.00010050 R18 = FFFFFFFF.FFFFFFFF R19 = 00000000.00000000
R20 = 00000000.7FFA1F50 R21 = 00000000.00000000 R22 = 00000000.00010050
R23 = 00000000.00000000 R24 = 00000000.00010051 R25 = 00000000.00000000
R26 = FFFFFFFF.8010ACA4 R27 = 00000000.00010050 R28 = 00000000.00000000

System Registers:
Page Table Base Register (PTBR) 00000000.00001136
Processor Base Register (PRBR) FFFFFFFF.80D0E000
Privileged Context Block Base (PCBB) 00000000.003FE080
System Control Block Base (SCBB) 00000000.000001DC
Software Interrupt Summary Register (SISR) 00000000.00000000
Address Space Number (ASN) 00000000.0000002F
AST Summary / AST Enable (ASTSR_ASTEN) 00000000.0000000F
Floating-Point Enable (FEN) 00000000.00000000
Interrupt Priority Level (IPL) 00000000.00000000
Machine Check Error Summary (MCES) 00000000.00000000
Virtual Page Table Base Register (VPTB) FFFFFFFC.00000000

Failing Instruction:
SYS$K_VERSION_01+00078: LDL R28,(R28)

SDA–205

SDA Extension Commands
CLUE CRASH

Instruction Stream (last 20 instructions):
SYS$K_VERSION_01+00028: LDQ R16,#X0030(R13)
SYS$K_VERSION_01+0002C: LDQ R27,#X0048(R13)
SYS$K_VERSION_01+00030: LDA R17,(R28)
SYS$K_VERSION_01+00034: JSR R26,(R26)
SYS$K_VERSION_01+00038: LDQ R26,#X0038(R13)
SYS$K_VERSION_01+0003C: BIS R31,SP,SP
SYS$K_VERSION_01+00040: BIS R31,R26,R0
SYS$K_VERSION_01+00044: BIS R31,FP,SP
SYS$K_VERSION_01+00048: LDQ R28,#X0008(SP)
SYS$K_VERSION_01+0004C: LDQ R13,#X0010(SP)
SYS$K_VERSION_01+00050: LDQ FP,#X0018(SP)
SYS$K_VERSION_01+00054: LDA SP,#X0020(SP)
SYS$K_VERSION_01+00058: RET R31,(R28)
SYS$K_VERSION_01+0005C: BIS R31,R31,R31
SYS$K_VERSION_01+00060: LDA SP,#XFFE0(SP)
SYS$K_VERSION_01+00064: STQ FP,#X0018(SP)
SYS$K_VERSION_01+00068: STQ R27,(SP)
SYS$K_VERSION_01+0006C: BIS R31,SP,FP
SYS$K_VERSION_01+00070: STQ R26,#X0010(SP)
SYS$K_VERSION_01+00074: LDA R28,(R31)
SYS$K_VERSION_01+00078: LDL R28,(R28)
SYS$K_VERSION_01+0007C: BEQ R28,#X000007
SYS$K_VERSION_01+00080: LDQ R26,#XFFE8(R27)
SYS$K_VERSION_01+00084: BIS R31,R26,R0
SYS$K_VERSION_01+00088: BIS R31,FP,SP

SDA–206

SDA Extension Commands
CLUE ERRLOG

CLUE ERRLOG

Extracts the error log buffers from the dump file and places them into the binary
file called CLUE$ERRLOG.SYS.

Format

CLUE ERRLOG

Parameters

None.

Qualifiers

None.

Description

CLUE ERRLOG extracts the error log buffers from the dump file and places them
into the binary file called CLUE$ERRLOG.SYS.

These buffers contain messages not yet written to the error log file at the time
of the failure. When you analyze a failure on the same system on which it
occurred, you can run the Error Log utility on the actual error log file to see
these error log messages. When analyzing a failure from another system, use the
CLUE ERRLOG command to create a file containing the failing system’s error
log messages just prior to the failure. System failures are often triggered by
hardware problems, so determining what, if any, hardware errors occurred prior
to the failure can help you troubleshoot a failure.

You can define the logical CLUE$ERRLOG to any file specification if you want
error log information written to a file other than CLUE$ERRLOG.SYS.

Example

SDA> CLUE ERRLOG

Sequence Date Time
-------- ----------- -----------

128 11-MAY-1994 00:39:31.30
129 11-MAY-1994 00:39:32.12
130 11-MAY-1994 00:39:44.83
131 11-MAY-1994 00:44:38.97 * Crash Entry

The CLUE ERRLOG command diplays the sequence, date, and time of each error
log buffer extracted from a dump file in the file CLUE$ERRLOG.SYS.

SDA–207

SDA Extension Commands
CLUE HISTORY

CLUE HISTORY

Updates history file and generates crash dump summary output.

Format

CLUE HISTORY [/qualifier]

Parameters

None.

Qualifier

/OVERRIDE
Allows execution of this command even if the dump file has already been analyzed
(DMP$V_OLDDUMP bit set).

Description

This command updates the history file pointed to by the logical name
CLUE$HISTORY with a one-line entry and the major crash dump summary
information. If CLUE$HISTORY is not defined, a file CLUE$HISTORY.DAT in
your default directory will be created.

In addition, a listing file with summary information about the system failure is
created in the directory pointed to by CLUE$COLLECT. The file name is of the
form CLUE$node_ddmmyy_hhmm.LIS where the timestamp (hhmm) corresponds
to the system failure time and not the time when the file was created.

The listing file contains summary information collected from the following SDA
commands:

• CLUE CRASH

• CLUE CONFIG

• CLUE MEMORY/FILES

• CLUE MEMORY/STATISTIC

• CLUE PROCESS/RECALL

• CLUE XQP/ACTIVE

Refer to the reference section for each of these commands to see examples of the
displayed information.

The logical name CLUE$FLAG controls how much information is written to the
listing file.

• Bit 0—Include crash dump summary

• Bit 1—Include system configuration

• Bit 2—Include stack decoding information

• Bit 3—Include page and swap file usage

• Bit 4—Include memory management statistics

• Bit 5—Include process DCL recall buffer

SDA–208

SDA Extension Commands
CLUE HISTORY

• Bit 6—Include active XQP process information

• Bit 7—Include XQP cache header

If this logical name is undefined, all bits are set by default internally and all
information is written to the listing file. If the value is zero, no listing file is
generated. The value has to be supplied in hexadecimal form (for example,
DEFINE CLUE$FLAG 81 will include the crash dump summary and the XQP
cache header information).

If the logical name CLUE$SITE_PROC points to a valid and existing file, it will
be executed as part of the CLUE HISTORY command (for example, automatic
saving of the dump file during system startup). If used, this file should contain
only valid SDA commands.

Refer to Section 1.3 for more information on site-specific command files.

SDA–209

SDA Extension Commands
CLUE MCHK

CLUE MCHK

This command is obsolete.

Format

CLUE MCHK

Parameters

None.

Qualifiers

None.

Description

The CLUE MCHK command has been withdrawn. Issuing the command produces
the following output, explaining the correct way to obtain MACHINECHECK
information from a crash dump.

Please use the following commands in order to extract the errorlog buffers from
the dumpfile header and analyze the machine check entry:

$ analyze/crash sys$system:sysdump.dmp
SDA> clue errlog
SDA> exit
$ diagnose clue$errlog

SDA–210

SDA Extension Commands
CLUE MEMORY

CLUE MEMORY

Displays memory- and pool-related information.

Format

CLUE MEMORY [/qualifier[,...]]

Parameters

None.

Qualifiers

/FILES
Displays information about page and swap file usage.

/FREE [/FULL]
Validates and displays dynamic nonpaged free packet list queue.

/GH [/FULL]
Displays information about the granularity hint regions.

/LAYOUT
Decodes and displays much of the system virtual address space layout.

/LOOKASIDE
Validates the lookaside list queue heads and counts the elements for each list.

/STATISTIC
Displays systemwide performance data such as page fault, I/O, pool, lock
manager, MSCP, and file system cache.

Description

The CLUE MEMORY command displays memory- and pool-related information.

Examples

1. SDA> CLUE MEMORY/FILES
Paging File Usage (blocks):

Swapfile (Index 1) Device DKB0:

PFL Address FFFFFFFF.80D74A80 UCB Address FFFFFFFF.80D53940
Free Blocks 4992 Reservable Blocks 4992
Total Size (blocks) 10112 Flags inited
Paging Usage (processes) 0 Swap Usage (processes) 5
Alloc Size SWPINC (pages) 64 Largest Chunk (pages) 184
Chunks GEQ SWPINC 3 Chunks LT SWPINC 0

Pagefile (Index 3) Device DKB0:
PFL Address FFFFFFFF.80D74600 UCB Address FFFFFFFF.80D53940
Free Blocks 108208 Reservable Blocks 37808
Total Size (blocks) 139008 Flags inited
Paging Usage (processes) 21 Swap Usage (processes) 0
Alloc Size SWPINC (pages) 64 Largest Chunk (pages) 6576
Chunks GEQ SWPINC 2 Chunks LT SWPINC 1

Summary: 1 Pagefile and 1 Swapfile installed

SDA–211

SDA Extension Commands
CLUE MEMORY

This example shows the display produced by the CLUE MEMORY/FILES
command.

2. SDA> CLUE MEMORY/FREE/FULL
Non-Paged Dynamic Storage Pool - Variable Free Packet Queue:
--

CLASSDR FFFFFFFF.80D157C0 : 64646464 64646464 00000040 80D164C0 ÀdÑ.@...dddddddd

CLASSDR FFFFFFFF.80D164C0 : 64646464 64646464 00000080 80D17200 .rÑ.....dddddddd

CLASSDR FFFFFFFF.80D17200 : 64646464 64646464 00000080 80D21AC0 À.Ò.....dddddddd

CLASSDR FFFFFFFF.80D21AC0 : 64646464 64646464 00000080 80D228C0 À(Ò.....dddddddd

VCC FFFFFFFF.80D228C0 : 801CA5E8 026F0040 00000040 80D23E40 @>Ò.@...@.o.è¥..

CLASSDR FFFFFFFF.80D23E40 : 64646464 64646464 00000040 80D24040 @@Ò.@...dddddddd

CLASSDR FFFFFFFF.80D24040 : 64646464 64646464 00000040 80D26FC0 ÀoÒ.@...dddddddd

CLASSDR FFFFFFFF.80D26FC0 : 64646464 64646464 00000080 80D274C0 ÀtÒ.....dddddddd

CLASSDR FFFFFFFF.80D274C0 : 64646464 64646464 00000040 80D2E200 .âÒ.@...dddddddd

CLASSDR FFFFFFFF.80D2E200 : 64646464 64646464 00000080 80D2E440 @äÒ.....dddddddd

CLASSDR FFFFFFFF.80D2E440 : 64646464 64646464 00000040 80D2F000 .Ò.@...dddddddd

CLASSDR FFFFFFFF.80D2F000 : 64646464 64646464 00000080 80D2F400 .ôÒ.....dddddddd
.
.
.

CLASSDR FFFFFFFF.80E91D40 : 64646464 64646464 00000500 80E983C0 À.é.....dddddddd

CLASSDR FFFFFFFF.80E983C0 : 64646464 64646464 00031C40 00000000@...dddddddd

Free Packet Queue, Status: Valid, 174 elements

Largest free chunk: 00031C40 (hex) 203840 (dec) bytes
Total free dynamic space: 0003D740 (hex) 251712 (dec) bytes

The CLUE MEMORY/FREE/FULL command validates and displays dynamic
nonpaged free packet list queue.

3. SDA> CLUE MEMORY/GH/FULL
Granularity Hint Regions - Huge Pages:

Execlet Code Region Pages/Slices
Base/End VA FFFFFFFF.80000000 FFFFFFFF.80356000 Current Size 427/ 427
Base/End PA 00000000.00400000 00000000.00756000 Free / 0
Total Size 00000000.00356000 3.3 MB In Use / 427
Bitmap VA/Size FFFFFFFF.80D17CC0 00000000.00000040 Initial Size 512/ 512
Slice Size 00000000.00002000 Released 85/ 85
Next free Slice 00000000.000001AB

SDA–212

SDA Extension Commands
CLUE MEMORY

Image Base End Length
SYS$PUBLIC_VECTORS FFFFFFFF.80000000 FFFFFFFF.80001A00 00001A00
SYS$BASE_IMAGE FFFFFFFF.80002000 FFFFFFFF.8000D400 0000B400
SYS$CNBTDRIVER FFFFFFFF.8000E000 FFFFFFFF.8000F000 00001000
SYS$NISCA_BTDRIVER FFFFFFFF.80010000 FFFFFFFF.8001FA00 0000FA00
SYS$ESBTDRIVER FFFFFFFF.80020000 FFFFFFFF.80022400 00002400
SYS$OPDRIVER FFFFFFFF.80024000 FFFFFFFF.80027C00 00003C00
SYSTEM_DEBUG FFFFFFFF.80028000 FFFFFFFF.80050200 00028200
SYSTEM_PRIMITIVES FFFFFFFF.80052000 FFFFFFFF.80089000 00037000
SYSTEM_SYNCHRONIZATION FFFFFFFF.8008A000 FFFFFFFF.80095400 0000B400
ERRORLOG FFFFFFFF.80096000 FFFFFFFF.80099200 00003200
SYS$CPU_ROUTINES_0402 FFFFFFFF.8009A000 FFFFFFFF.800A3A00 00009A00
EXCEPTION_MON FFFFFFFF.800A4000 FFFFFFFF.800BC800 00018800
IO_ROUTINES_MON FFFFFFFF.800BE000 FFFFFFFF.800E2000 00024000
SYSDEVICE FFFFFFFF.800E2000 FFFFFFFF.800E5C00 00003C00
PROCESS_MANAGEMENT_MON FFFFFFFF.800E6000 FFFFFFFF.8010B000 00025000
SYS$VM FFFFFFFF.8010C000 FFFFFFFF.80167200 0005B200
SHELL8K FFFFFFFF.80168000 FFFFFFFF.80169200 00001200
LOCKING FFFFFFFF.8016A000 FFFFFFFF.8017BE00 00011E00
MESSAGE_ROUTINES FFFFFFFF.8017C000 FFFFFFFF.80182A00 00006A00
LOGICAL_NAMES FFFFFFFF.80184000 FFFFFFFF.80186C00 00002C00
F11BXQP FFFFFFFF.80188000 FFFFFFFF.80190400 00008400
SYSLICENSE FFFFFFFF.80192000 FFFFFFFF.80192400 00000400
IMAGE_MANAGEMENT FFFFFFFF.80194000 FFFFFFFF.80197A00 00003A00
SECURITY FFFFFFFF.80198000 FFFFFFFF.801A0E00 00008E00
SYSGETSYI FFFFFFFF.801A2000 FFFFFFFF.801A3A00 00001A00
SYS$TRANSACTION_SERVICES FFFFFFFF.801A4000 FFFFFFFF.801C5000 00021000
SYS$UTC_SERVICES FFFFFFFF.801C6000 FFFFFFFF.801C7000 00001000
SYS$VCC_MON FFFFFFFF.801C8000 FFFFFFFF.801D4E00 0000CE00
SYS$IPC_SERVICES FFFFFFFF.801D6000 FFFFFFFF.80214A00 0003EA00
SYSLDR_DYN FFFFFFFF.80216000 FFFFFFFF.80219200 00003200
SYS$MME_SERVICES FFFFFFFF.8021A000 FFFFFFFF.8021B000 00001000
SYS$TTDRIVER FFFFFFFF.8021C000 FFFFFFFF.8022FE00 00013E00
SYS$PKCDRIVER FFFFFFFF.80230000 FFFFFFFF.80240400 00010400
SYS$DKDRIVER FFFFFFFF.80242000 FFFFFFFF.80251600 0000F600
RMS FFFFFFFF.80252000 FFFFFFFF.802C5E00 00073E00
SYS$GXADRIVER FFFFFFFF.802C6000 FFFFFFFF.802CE000 00008000
SYS$ECDRIVER FFFFFFFF.802CE000 FFFFFFFF.802D1000 00003000
SYS$LAN FFFFFFFF.802D2000 FFFFFFFF.802D8E00 00006E00
SYS$LAN_CSMACD FFFFFFFF.802DA000 FFFFFFFF.802E6600 0000C600
SYS$MKDRIVER FFFFFFFF.802E8000 FFFFFFFF.802F1C00 00009C00
SYS$YRDRIVER FFFFFFFF.802F2000 FFFFFFFF.802F9600 00007600
SYS$SODRIVER FFFFFFFF.802FA000 FFFFFFFF.802FF000 00005000
SYS$INDRIVER FFFFFFFF.80300000 FFFFFFFF.8030EA00 0000EA00
NETDRIVER FFFFFFFF.80310000 FFFFFFFF.80310200 00000200
NETDRIVER FFFFFFFF.80312000 FFFFFFFF.80329E00 00017E00
SYS$IMDRIVER FFFFFFFF.8032A000 FFFFFFFF.8032EA00 00004A00
SYS$IKDRIVER FFFFFFFF.80330000 FFFFFFFF.8033AC00 0000AC00
NDDRIVER FFFFFFFF.8033C000 FFFFFFFF.8033F800 00003800
SYS$WSDRIVER FFFFFFFF.80340000 FFFFFFFF.80341600 00001600
SYS$CTDRIVER FFFFFFFF.80342000 FFFFFFFF.8034D200 0000B200
SYS$RTTDRIVER FFFFFFFF.8034E000 FFFFFFFF.80351800 00003800
SYS$FTDRIVER FFFFFFFF.80352000 FFFFFFFF.80354200 00002200

Execlet Data Region Pages/Slices
Base/End VA FFFFFFFF.80C00000 FFFFFFFF.80CC0000 Current Size 96/ 1536
Base/End PA 00000000.00800000 00000000.008C0000 Free / 11
Total Size 00000000.000C0000 0.7 MB In Use / 1525
Bitmap VA/Size FFFFFFFF.80D17D00 00000000.00000100 Initial Size 128/ 2048
Slice Size 00000000.00000200 Released 32/ 512
Next free Slice 00000000.000005F5

SDA–213

SDA Extension Commands
CLUE MEMORY

Image Base End Length
SYS$PUBLIC_VECTORS FFFFFFFF.80C00000 FFFFFFFF.80C05000 00005000
SYS$BASE_IMAGE FFFFFFFF.80C05000 FFFFFFFF.80C25E00 00020E00
SYS$CNBTDRIVER FFFFFFFF.80C25E00 FFFFFFFF.80C26200 00000400
SYS$NISCA_BTDRIVER FFFFFFFF.80C26200 FFFFFFFF.80C29400 00003200
SYS$ESBTDRIVER FFFFFFFF.80C29400 FFFFFFFF.80C29800 00000400
SYS$OPDRIVER FFFFFFFF.80C29800 FFFFFFFF.80C2A200 00000A00
SYSTEM_DEBUG FFFFFFFF.80C2A200 FFFFFFFF.80C4E400 00024200
SYSTEM_PRIMITIVES FFFFFFFF.80C4E400 FFFFFFFF.80C58200 00009E00
SYSTEM_SYNCHRONIZATION FFFFFFFF.80C58200 FFFFFFFF.80C5A000 00001E00
ERRORLOG FFFFFFFF.80C5A000 FFFFFFFF.80C5A600 00000600
SYS$CPU_ROUTINES_0402 FFFFFFFF.80C5A600 FFFFFFFF.80C5CA00 00002400
EXCEPTION_MON FFFFFFFF.80C5CA00 FFFFFFFF.80C64C00 00008200
IO_ROUTINES_MON FFFFFFFF.80C64C00 FFFFFFFF.80C6AA00 00005E00
SYSDEVICE FFFFFFFF.80C6AA00 FFFFFFFF.80C6B600 00000C00
PROCESS_MANAGEMENT_MON FFFFFFFF.80C6B600 FFFFFFFF.80C72600 00007000
SYS$VM FFFFFFFF.80C72600 FFFFFFFF.80C79000 00006A00
SHELL8K FFFFFFFF.80C79000 FFFFFFFF.80C7A000 00001000
LOCKING FFFFFFFF.80C7A000 FFFFFFFF.80C7BA00 00001A00
MESSAGE_ROUTINES FFFFFFFF.80C7BA00 FFFFFFFF.80C7D000 00001600
LOGICAL_NAMES FFFFFFFF.80C7D000 FFFFFFFF.80C7E200 00001200
F11BXQP FFFFFFFF.80C7E200 FFFFFFFF.80C7FA00 00001800
SYSLICENSE FFFFFFFF.80C7FA00 FFFFFFFF.80C7FE00 00000400
IMAGE_MANAGEMENT FFFFFFFF.80C7FE00 FFFFFFFF.80C80600 00000800
SECURITY FFFFFFFF.80C80600 FFFFFFFF.80C83000 00002A00
SYSGETSYI FFFFFFFF.80C83000 FFFFFFFF.80C83200 00000200
SYS$TRANSACTION_SERVICES FFFFFFFF.80C83200 FFFFFFFF.80C89E00 00006C00
SYS$UTC_SERVICES FFFFFFFF.80C89E00 FFFFFFFF.80C8A200 00000400
SYS$VCC_MON FFFFFFFF.80C8A200 FFFFFFFF.80C8BC00 00001A00
SYS$IPC_SERVICES FFFFFFFF.80C8BC00 FFFFFFFF.80C91000 00005400
SYSLDR_DYN FFFFFFFF.80C91000 FFFFFFFF.80C92200 00001200
SYS$MME_SERVICES FFFFFFFF.80C92200 FFFFFFFF.80C92600 00000400
SYS$TTDRIVER FFFFFFFF.80C92600 FFFFFFFF.80C94C00 00002600
SYS$PKCDRIVER FFFFFFFF.80C94C00 FFFFFFFF.80C96A00 00001E00
SYS$DKDRIVER FFFFFFFF.80C96A00 FFFFFFFF.80C99800 00002E00
RMS FFFFFFFF.80C99800 FFFFFFFF.80CAAC00 00011400
RECOVERY_UNIT_SERVICES FFFFFFFF.80CAAC00 FFFFFFFF.80CAB000 00000400
SYS$GXADRIVER FFFFFFFF.80CAB000 FFFFFFFF.80CAF000 00004000
SYS$ECDRIVER FFFFFFFF.80CAF000 FFFFFFFF.80CAFC00 00000C00
SYS$LAN FFFFFFFF.80CAFC00 FFFFFFFF.80CB0800 00000C00
SYS$LAN_CSMACD FFFFFFFF.80CB0800 FFFFFFFF.80CB1800 00001000
SYS$MKDRIVER FFFFFFFF.80CB1800 FFFFFFFF.80CB3000 00001800
SYS$YRDRIVER FFFFFFFF.80CB3000 FFFFFFFF.80CB3C00 00000C00
SYS$SODRIVER FFFFFFFF.80CB3C00 FFFFFFFF.80CB4E00 00001200
SYS$INDRIVER FFFFFFFF.80CB4E00 FFFFFFFF.80CB5E00 00001000
NETDRIVER FFFFFFFF.80CB5E00 FFFFFFFF.80CB8800 00002A00
SYS$IMDRIVER FFFFFFFF.80CB8800 FFFFFFFF.80CB9400 00000C00
SYS$IKDRIVER FFFFFFFF.80CB9400 FFFFFFFF.80CBAA00 00001600
NDDRIVER FFFFFFFF.80CBAA00 FFFFFFFF.80CBB400 00000A00
SYS$WSDRIVER FFFFFFFF.80CBB400 FFFFFFFF.80CBBC00 00000800
SYS$CTDRIVER FFFFFFFF.80CBBC00 FFFFFFFF.80CBD800 00001C00
SYS$RTTDRIVER FFFFFFFF.80CBD800 FFFFFFFF.80CBE200 00000A00
SYS$FTDRIVER FFFFFFFF.80CBE200 FFFFFFFF.80CBEA00 00000800
11 free Slices FFFFFFFF.80CBEA00 FFFFFFFF.80CC0000 00001600

S0/S1 Executive Data Region Pages/Slices
Base/End VA FFFFFFFF.80D00000 FFFFFFFF.80ECA000 Current Size 229/ 229
Base/End PA 00000000.00900000 00000000.00ACA000 Free / 0
Total Size 00000000.001CA000 1.7 MB In Use / 229
Bitmap VA/Size FFFFFFFF.80D17E00 00000000.00000020 Initial Size 229/ 229
Slice Size 00000000.00002000 Released 0/ 0
Next free Slice 00000000.00000007

SDA–214

SDA Extension Commands
CLUE MEMORY

Item Base End Length
System Header FFFFFFFF.80D00000 FFFFFFFF.80D0A000 0000A000
Error Log Allocation Buffers FFFFFFFF.80D0A000 FFFFFFFF.80D0C000 00002000
Nonpaged Pool (initial size) FFFFFFFF.80D0E000 FFFFFFFF.80ECA000 001BC000

Resident Image Code Region Pages/Slices
Base/End VA FFFFFFFF.80400000 FFFFFFFF.80C00000 Current Size 1024/ 1024
Base/End PA 00000000.00C00000 00000000.01400000 Free / 223
Total Size 00000000.00800000 8.0 MB In Use / 801
Bitmap VA/Size FFFFFFFF.80D17E20 00000000.00000080 Initial Size 1024/ 1024
Slice Size 00000000.00002000 Released 0/ 0
Next free Slice 00000000.00000321

Image Base End Length
LIBRTL FFFFFFFF.80400000 FFFFFFFF.8049EA00 0009EA00
LIBOTS FFFFFFFF.804A0000 FFFFFFFF.804AEC00 0000EC00
CMA$TIS_SHR FFFFFFFF.804B0000 FFFFFFFF.804B2600 00002600
DPML$SHR FFFFFFFF.804B4000 FFFFFFFF.8050B600 00057600
DECC$SHR FFFFFFFF.8050C000 FFFFFFFF.80657000 0014B000
SECURESHRP FFFFFFFF.80658000 FFFFFFFF.80676000 0001E000
SECURESHR FFFFFFFF.80676000 FFFFFFFF.8068C000 00016000
SECURESHR FFFFFFFF.8068C000 FFFFFFFF.8068C200 00000200
LBRSHR FFFFFFFF.8068E000 FFFFFFFF.806A3E00 00015E00
DECW$TRANSPORT_COMMON FFFFFFFF.806A4000 FFFFFFFF.806B0C00 0000CC00
CDE$UNIX_ROUTINES FFFFFFFF.806B2000 FFFFFFFF.806C1E00 0000FE00
DECW$XLIBSHR FFFFFFFF.806C2000 FFFFFFFF.80781C00 000BFC00
DECW$XTLIBSHRR5 FFFFFFFF.80782000 FFFFFFFF.807C7600 00045600
DECW$XMLIBSHR12 FFFFFFFF.807C8000 FFFFFFFF.8096AE00 001A2E00
DECW$MRMLIBSHR12 FFFFFFFF.8096C000 FFFFFFFF.80994200 00028200
DECW$DXMLIBSHR12 FFFFFFFF.80996000 FFFFFFFF.80A40400 000AA400
223 free Slices FFFFFFFF.80A42000 FFFFFFFF.80C00000 001BE000

S2 Executive Data Region Pages/Slices
Base/End VA FFFFFFFE.00000000 FFFFFFFE.00050000 Current Size 40/ 8
Base/End PA 00000000.00350000 00000000.003A0000 Free / 0
Total Size 00000000.00050000 0.3 MB In Use / 8
Bitmap VA/Size FFFFFFFF.80D17EA0 00000000.00000008 Initial Size 40/ 8
Slice Size 00000000.0000A000 Released 0/ 0
Next free Slice 00000000.00000008

Item Base End Length
PFN Database FFFFFFFE.00000000 FFFFFFFE.00050000 00050000

The CLUE MEMORY/GH/FULL command displays data structures that describe
huge pages.

SDA–215

SDA Extension Commands
CLUE MEMORY

4. SDA> CLUE MEMORY/LAYOUT
System Virtual Address Space Layout:

Item Base End Length
System Virtual Base Address FFFFFFFE.00000000
PFN Database FFFFFFFE.00000000 FFFFFFFE.00050000 00050000
Permanent Mapping of System L1PT FFFFFFFE.00050000 FFFFFFFE.00052000 00002000
Global Page Table (GPT) FFFFFFFE.00052000 FFFFFFFE.00063608 00011608
Lock ID Table FFFFFFFF.7FFD0000 FFFFFFFF.80000000 00030000
Execlet Code Region FFFFFFFF.80000000 FFFFFFFF.80400000 00400000
Resident Image Code Region FFFFFFFF.80400000 FFFFFFFF.80C00000 00800000
System Header FFFFFFFF.80D00000 FFFFFFFF.80D0A000 0000A000
Error Log Allocation Buffers FFFFFFFF.80D0A000 FFFFFFFF.80D0C000 00002000
Nonpaged Pool (initial size) FFFFFFFF.80D0E000 FFFFFFFF.80ECA000 001BC000
Nonpaged Pool Expansion Area FFFFFFFF.80ECA000 FFFFFFFF.815BC000 006F2000
Execlet Data Region FFFFFFFF.80C00000 FFFFFFFF.80D00000 00100000
Fork Buffers Secondary to Primary FFFFFFFF.82982000 FFFFFFFF.82984000 00002000
Erase Pattern Buffer Page FFFFFFFF.82990000 FFFFFFFF.82992000 00002000
63 Balance Slots - 3 pages each FFFFFFFF.815C0000 FFFFFFFF.8173A000 0017A000
Paged Pool FFFFFFFF.8173A000 FFFFFFFF.81820000 000E6000
System Control Block (SCB) FFFFFFFF.81820000 FFFFFFFF.81828000 00008000
Restart Parameter Block (HWRPB) FFFFFFFF.8186E000 FFFFFFFF.81872000 00004000
Erase Pattern Page Table Page FFFFFFFF.82992000 FFFFFFFF.82994000 00002000
Posix Cloning Parent Page Mapping FFFFFFFF.829D0000 FFFFFFFF.829D2000 00002000
Posix Cloning Child Page Mapping FFFFFFFF.829D2000 FFFFFFFF.829D4000 00002000
Swapper Process Kernel Stack FFFFFFFF.82A8C000 FFFFFFFF.82A8E000 00002000
Swapper Map FFFFFFFF.82AA2000 FFFFFFFF.82AA8000 00006000
Idle Loop’ s Mapping of Zero Pages FFFFFFFF.82A8E000 FFFFFFFF.82A90000 00002000
PrimCPU Machine Check Logout Area FFFFFFFF.8296A000 FFFFFFFF.8296C000 00002000
PrimCPU Sys Context Kernel Stack FFFFFFFF.82966000 FFFFFFFF.82968000 00002000
Tape Mount Verification Buffer FFFFFFFF.81824000 FFFFFFFF.81828000 00004000
Mount Verification Buffer FFFFFFFF.82980000 FFFFFFFF.82982000 00002000
Demand Zero Optimization Page FFFFFFFF.82C60000 FFFFFFFF.82C62000 00002000
Executive Mode Data Page FFFFFFFF.82C62000 FFFFFFFF.82C64000 00002000
System Space Expansion Region FFFFFFFF.84000000 FFFFFFFF.FFDF0000 7BDF0000
System Page Table Window FFFFFFFF.FFDF0000 FFFFFFFF.FFFF0000 00200000
N/A Space FFFFFFFF.FFFF0000 FFFFFFFF.FFFFFFFF 00010000

The CLUE MEMORY/LAYOUT command decodes and displays the system virtual
address space layout.

SDA–216

SDA Extension Commands
CLUE MEMORY

5. SDA> CLUE MEMORY/LOOKASIDE
Non-Paged Dynamic Storage Pool - Lookaside List Queue Information:
--
Listhead Addr: FFFFFFFF.80C50400 Size: 64 Status: Valid, 11 elements
Listhead Addr: FFFFFFFF.80C50408 Size: 128 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50410 Size: 192 Status: Valid, 29 elements
Listhead Addr: FFFFFFFF.80C50418 Size: 256 Status: Valid, 3 elements
Listhead Addr: FFFFFFFF.80C50420 Size: 320 Status: Valid, 7 elements
Listhead Addr: FFFFFFFF.80C50428 Size: 384 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50430 Size: 448 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50438 Size: 512 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50440 Size: 576 Status: Valid, 6 elements
Listhead Addr: FFFFFFFF.80C50448 Size: 640 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50450 Size: 704 Status: Valid, 5 elements
Listhead Addr: FFFFFFFF.80C50458 Size: 768 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50460 Size: 832 Status: Valid, empty
Listhead Addr: FFFFFFFF.80C50468 Size: 896 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50470 Size: 960 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50478 Size: 1024 Status: Valid, 6 elements
Listhead Addr: FFFFFFFF.80C50480 Size: 1088 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50488 Size: 1152 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50490 Size: 1216 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50498 Size: 1280 Status: Valid, 2 elements
Listhead Addr: FFFFFFFF.80C504A0 Size: 1344 Status: Valid, 2 elements
Listhead Addr: FFFFFFFF.80C504A8 Size: 1408 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504B0 Size: 1472 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504B8 Size: 1536 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504C0 Size: 1600 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504C8 Size: 1664 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504D0 Size: 1728 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504D8 Size: 1792 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504E0 Size: 1856 Status: Valid, empty
Listhead Addr: FFFFFFFF.80C504E8 Size: 1920 Status: Valid, empty
Listhead Addr: FFFFFFFF.80C504F0 Size: 1984 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504F8 Size: 2048 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50500 Size: 2112 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50508 Size: 2176 Status: Valid, 15 elements
Listhead Addr: FFFFFFFF.80C50510 Size: 2240 Status: Valid, empty
Listhead Addr: FFFFFFFF.80C50518 Size: 2304 Status: Valid, 1 element

.

.

.

Total free space: 00016440 (hex) 91200 (dec) bytes

The CLUE MEMORY/LOOKASIDE command summarizes the state of
nonpageable lookaside lists. For each list, an indication of whether the queue
is well formed is given. If a queue is not well formed or is invalid, messages
indicating what is wrong with the queue are displayed. This command is
analogous to the SDA command VALIDATE QUEUE.

These messages can also appear frequently when the VALIDATE QUEUE
command is used within an SDA session that is analyzing a running system. In
a running system, the composition of a queue can change while the command is
tracing its links, thus producing an error message.

SDA–217

SDA Extension Commands
CLUE MEMORY

6. SDA> CLUE MEMORY/STATISTIC
Memory Management Statistics:

Pagefaults: Non-Paged Pool:
Total Page Faults 32181 Successful Exp Attempts 0
Total Page Reads 13017 Unsuccessful Exp Attempts 0
I/O’ s to read Pages 6131 Expansion Failures 0
Modified Pages Written 1984 Failed Pages Accumulator 0
I/O’ s to write Mod Pages 31 Total Alloc Requests 3357
Demand Zero Faults 10068 Failed Alloc Requests 0
Global Valid Faults 6191 Paged Pool:
Modified Faults 5724 Total Failures 0
Read Faults 0 Failed Pages Accumulator 0
Execute Faults 1834 Total Alloc Requests 1633

Failed Alloc Requests 0

Direct I/O 13619 Cur Mapped Gbl Sections 391
Buffered I/O 72046 Max Mapped Gbl Sections 392
Split I/O 875 Cur Mapped Gbl Pages 7236
Hits 14595 Max Mapped Gbl Pages 7257
Logical Name Transl 207730 Maximum Processes 21
Dead Page Table Scans 0 Sched Zero Pages Created 0

Distributed Lock Manager: Local Incoming Outgoing
$ENQ New Lock Requests 77626 0 0
$ENQ Conversion Requests 104843 0 0
$DEQ Dequeue Requests 77395 0 0
Blocking ASTs 12 0 0
Directory Functions 0 0
Deadlock Messages 0 0

$ENQ Requests that Wait 136 Deadlock Searches Performed 2
$ENQ Requests not Queued 5 Deadlocks Found 0

File System Cache: Current SYSGEN Param Hits Misses Hitrate
File Header Cache (ACP_HDRCACHE = 126) 4753 1265 78.9%
Storage Bitmap Cache (ACP_MAPCACHE = 31) 11 6 64.7%
Directory Data Cache (ACP_DIRCACHE = 126) 12174 534 95.7%
Directory LRU (ACP_DINDXCACHE= 31) 11158 175 98.4%
FID Cache (ACP_FIDCACHE = 64) 95 2 97.9%
Extent Cache (ACP_EXTCACHE = 64) 116 4 96.6%
Quota Cache (ACP_QUOCACHE = 65) 0 0 0.0%

Volume Synch Locks 341 Window Turns 60
Volume Synch Locks Wait 0 Currently Open Files 313
Dir/File Synch Locks 19681 Total Count of OPENs 3038
Dir/file Synch Locks Wait 73 Total Count of ERASE QIOs 8
Access Locks 0
Free Space Cache Wait 17

Global Pagefile Quota 1426 GBLPAGFIL (SYSGEN) Limit 1664

The CLUE MEMORY/STATISTIC command displays systemwide performance
data such as page fault, I/O, pool, lock manager, MSCP, and file system cache.

SDA–218

SDA Extension Commands
CLUE PROCESS

CLUE PROCESS

Displays process-related information from the current process context.

Format

CLUE PROCESS [/qualifier[,...]]

Parameters

None.

Qualifiers

/BUFFER [/ALL]
Displays the buffer objects for the current process. If the /ALL qualifier is
specified, then the buffer objects for all processes (that is, all existing buffer
objects) are displayed.

/LAYOUT
Displays the process P1 virtual address space layout.

/LOGICAL
Displays the process logical names and equivalence names, if they can be
accessed.

/RECALL
Displays the DCL recall buffer, if it can be accessed.

Description

The CLUE PROCESS command displays process-related information from the
current process context. Much of this information is in pageable address space
and thus may not be present in a dump file.

Examples

1. SDA> CLUE PROCESS/LOGICAL

Process Logical Names:

"SYS$OUTPUT" = "_CLAWS$LTA5004:"
"SYS$OUTPUT" = "_CLAWS$LTA5004:"
"SYS$DISK" = "WORK1:"
"BACKUP_FILE" = "_65DUA6"
"SYS$PUTMSG" = "...À...À.."
"SYS$COMMAND" = "_CLAWS$LTA5004:"
"TAPE_LOGICAL_NAME" = "_1MUA3:"
"TT" = "LTA5004:"
"SYS$INPUT" = "_$65$DUA6:"
"SYS$INPUT" = "_CLAWS$LTA5004:"
"SYS$ERROR" = "21C00303.LOG"
"SYS$ERROR" = "_CLAWS$LTA5004:"
"ERROR_FILE" = "_65DUA6"

The CLUE PROCESS/LOGICAL command displays logical names for each
running process.

SDA–219

SDA Extension Commands
CLUE PROCESS

2. SDA> CLUE PROCESS/RECALL
Process DCL Recall Buffer:

Index Command
1 ana/sys
2 @login
3 mc sysman io auto /log
4 show device d
5 sea <.x>*.lis clue$
6 tpu <.x>*0914.lis
7 sh log *hsj*
8 xd <.x>.lis
9 mc ess$ladcp show serv

10 tpu clue_cmd.cld
11 ana/sys

The CLUE PROCESS/RECALL command displays a listing of the DCL
commands that have been executed most recently.

SDA–220

SDA Extension Commands
CLUE STACK

CLUE STACK

Identifies and displays the current stack. Use the SDA command SHOW STACK
to display and decode the whole stack for the more common bugcheck types.

Format

CLUE STACK

Parameters

None.

Qualifiers

None.

Description

The CLUE STACK command identifies and displays the current stack together
with the upper and lower stack limits. In case of a FATALEXCPT, INVEXCEPTN,
SSRVEXCEPT, UNXSIGNAL, or PGFIPLHI bugcheck, CLUE STACK tries to
decode the whole stack.

Examples

1. SDA> CLUE STACK
Stack Decoder:

Normal Process Kernel Stack:
Stack Pointer FFFFFFFF.7FF91D58
Stack Limits (low) FFFFFFFF.7FF90000

(high) FFFFFFFF.7FF92000

CLUE STACK identifies and displays the current stack together with the upper
and lower stack limits.

2. SDA> CLUE STACK
Stack Decoder:

Normal Process Kernel Stack:
Stack Pointer 00000000.7FFA1C98
Stack Limits (low) 00000000.7FFA0000

(high) 00000000.7FFA2000

SSRVEXCEPT Stack:

Stack Pointer SP => 00000000.7FFA1C98

Information saved by Bugcheck:
a(Signal Array) 00000000.7FFA1C98 00000000.00000000

EXE$EXCPTN[E] Temporary Storage:
EXE$EXCPTN[E] Stack Frame:
PV 00000000.7FFA1CA0 FFFFFFFF.829CF010 EXE$EXCPTN

Entry Point FFFFFFFF.82A21000 EXE$EXCPTN_C
return PC 00000000.7FFA1CA8 FFFFFFFF.82A2059C SYS$CALL_HANDL_C+0002C
saved R2 00000000.7FFA1CB0 00000000.00000000
saved FP 00000000.7FFA1CB8 00000000.7FFA1CD0

SDA–221

SDA Extension Commands
CLUE STACK

SYS$CALL_HANDL Temporary Storage:
00000000.7FFA1CC0 FFFFFFFF.829CEDA8 SYS$CALL_HANDL
00000000.7FFA1CC8 00000000.00000000

SYS$CALL_HANDL Stack Frame:
PV 00000000.7FFA1CD0 FFFFFFFF.829CEDA8 SYS$CALL_HANDL

Entry Point FFFFFFFF.82A20570 SYS$CALL_HANDL_C
00000000.7FFA1CD8 00000000.00000000

return PC 00000000.7FFA1CE0 FFFFFFFF.82A1E930 CHF_REI+000DC
saved FP 00000000.7FFA1CE8 00000000.7FFA1F40

Fixed Exception Context Area:
Linkage Pointer 00000000.7FFA1CF0 FFFFFFFF.80C63780 EXCEPTION_MON_NPRW+06D80
a(Signal Array) 00000000.7FFA1CF8 00000000.7FFA1EB8
a(Mechanism Array) 00000000.7FFA1D00 00000000.7FFA1D40
a(Exception Frame) 00000000.7FFA1D08 00000000.7FFA1F00
Exception FP 00000000.7FFA1D10 00000000.7FFA1F40
Unwind SP 00000000.7FFA1D18 00000000.00000000
Reinvokable FP 00000000.7FFA1D20 00000000.00000000
Unwind Target 00000000.7FFA1D28 00000000.00020000 SYS$K_VERSION_04
#Sig Args/Byte Cnt 00000000.7FFA1D30 00000005.00000250 BUG$_NETRCVPKT
a(Msg)/Final Status 00000000.7FFA1D38 829CE050.000008F8 BUG$_SEQ_NUM_OVF

Mechanism Array:
Flags/Arguments 00000000.7FFA1D40 00000000.0000002C
a(Establisher FP) 00000000.7FFA1D48 00000000.7AFFBAD0
reserved/Depth 00000000.7FFA1D50 FFFFFFFF.FFFFFFFD
a(Handler Data) 00000000.7FFA1D58 00000000.00000000
a(Exception Frame) 00000000.7FFA1D60 00000000.7FFA1F00
a(Signal Array) 00000000.7FFA1D68 00000000.7FFA1EB8
saved R0 00000000.7FFA1D70 00000000.00020000 SYS$K_VERSION_04
saved R1 00000000.7FFA1D78 00000000.00000000
saved R16 00000000.7FFA1D80 00000000.00020004 UCB$M_NI_PRM_MLT+00004
saved R17 00000000.7FFA1D88 00000000.00010050 SYS$K_VERSION_16+00010
saved R18 00000000.7FFA1D90 FFFFFFFF.FFFFFFFF
saved R19 00000000.7FFA1D98 00000000.00000000
saved R20 00000000.7FFA1DA0 00000000.7FFA1F50
saved R21 00000000.7FFA1DA8 00000000.00000000
saved R22 00000000.7FFA1DB0 00000000.00010050 SYS$K_VERSION_16+00010
saved R23 00000000.7FFA1DB8 00000000.00000000
saved R24 00000000.7FFA1DC0 00000000.00010051 SYS$K_VERSION_16+00011
saved R25 00000000.7FFA1DC8 00000000.00000000
saved R26 00000000.7FFA1DD0 FFFFFFFF.8010ACA4 AMAC$EMUL_CALL_NATIVE_C+000A4
saved R27 00000000.7FFA1DD8 00000000.00010050 SYS$K_VERSION_16+00010
saved R28 00000000.7FFA1DE0 00000000.00000000
FP Regs not valid [...............]
a(Signal64 Array) 00000000.7FFA1EA0 00000000.7FFA1ED0
SP Align = 10(hex) [...............]

Signal Array:
Arguments 00000000.7FFA1EB8 00000005
Condition 00000000.7FFA1EBC 0000000C
Argument #2 00000000.7FFA1EC0 00010000 LDRIMG$M_NPAGED_LOAD
Argument #3 00000000.7FFA1EC4 00000000
Argument #4 00000000.7FFA1EC8 00030078 SYS$K_VERSION_01+00078
Argument #5 00000000.7FFA1ECC 00000003

64-bit Signal Array:
Arguments 00000000.7FFA1ED0 00002604.00000005
Condition 00000000.7FFA1ED8 00000000.0000000C
Argument #2 00000000.7FFA1EE0 00000000.00010000 LDRIMG$M_NPAGED_LOAD
Argument #3 00000000.7FFA1EE8 00000000.00000000
Argument #4 00000000.7FFA1EF0 00000000.00030078 SYS$K_VERSION_01+00078
Argument #5 00000000.7FFA1EF8 00000000.00000003

SDA–222

SDA Extension Commands
CLUE STACK

Interrupt/Exception Frame:
saved R2 00000000.7FFA1F00 00000000.00000003
saved R3 00000000.7FFA1F08 FFFFFFFF.80C63460 EXCEPTION_MON_NPRW+06A60
saved R4 00000000.7FFA1F10 FFFFFFFF.80D12740 PCB
saved R5 00000000.7FFA1F18 00000000.000000C8
saved R6 00000000.7FFA1F20 00000000.00030038 SYS$K_VERSION_01+00038
saved R7 00000000.7FFA1F28 00000000.7FFA1FC0
saved PC 00000000.7FFA1F30 00000000.00030078 SYS$K_VERSION_01+00078
saved PS 00000000.7FFA1F38 00000000.00000003 IPL INT CURR PREV
SP Align = 00(hex) [...............] 00 0 Kern User

Stack Frame:
PV 00000000.7FFA1F40 00000000.00010050 SYS$K_VERSION_16+00010

Entry Point 00000000.00030060 SYS$K_VERSION_01+00060
00000000.7FFA1F48 00000000.00010000 LDRIMG$M_NPAGED_LOAD

return PC 00000000.7FFA1F50 FFFFFFFF.8010ACA4 AMAC$EMUL_CALL_NATIVE_C+000A4
saved FP 00000000.7FFA1F58 00000000.7FFA1F70

Stack (not decoded):
00000000.7FFA1F60 00000000.00000001
00000000.7FFA1F68 FFFFFFFF.800EE81C RM_STD$DIRCACHE_BLKAST_C+005AC

Stack Frame:
PV 00000000.7FFA1F70 FFFFFFFF.80C6EBA0 EXE$CMKRNL

Entry Point FFFFFFFF.800EE6C0 EXE$CMKRNL_C
00000000.7FFA1F78 00000000.829CEDE8 EXE$SIGTORET
00000000.7FFA1F80 00010050.00000002
00000000.7FFA1F88 00000000.00020000 SYS$K_VERSION_04
00000000.7FFA1F90 00000000.00030000 SYS$K_VERSION_01

return PC 00000000.7FFA1F98 FFFFFFFF.800A4D64 __RELEASE_LDBL_EXEC_SERVICE+00284
saved R2 00000000.7FFA1FA0 00000000.00000003
saved R4 00000000.7FFA1FA8 FFFFFFFF.80D12740 PCB
saved R13 00000000.7FFA1FB0 00000000.00010000 LDRIMG$M_NPAGED_LOAD
saved FP 00000000.7FFA1FB8 00000000.7AFFBAD0

Interrupt/Exception Frame:
saved R2 00000000.7FFA1FC0 00000000.7FFCF880 MMG$IMGHDRBUF+00080
saved R3 00000000.7FFA1FC8 00000000.7B0E9851
saved R4 00000000.7FFA1FD0 00000000.7FFCF818 MMG$IMGHDRBUF+00018
saved R5 00000000.7FFA1FD8 00000000.7FFCF938 MMG$IMGHDRBUF+00138
saved R6 00000000.7FFA1FE0 00000000.7FFAC9F0
saved R7 00000000.7FFA1FE8 00000000.7FFAC9F0
saved PC 00000000.7FFA1FF0 FFFFFFFF.80000140 SYS$CLREF_C
saved PS 00000000.7FFA1FF8 00000000.0000001B IPL INT CURR PREV
SP Align = 00(hex) [...............] 00 0 User User

CLUE STACK displays and decodes the current stack if it is one of the more
popular and known bugcheck types. In this case, CLUE STACK trys to decode
the whole INVEXCEPTN stack.

SDA–223

SDA Extension Commands
CLUE VCC

CLUE VCC

Displays virtual I/O cache-related information.

Format

CLUE VCC [/qualifier[,...]]

Parameters

None.

Qualifiers

/CACHE
Decodes and displays the cache lines that are used to correlate the file virtual
block numbers (VBNs) with the memory used for caching. Note that the cache
itself is not dumped in a selective dump. Use of this qualifier with a selective
dump produces the following message:

%CLUE-I-VCCNOCAC, Cache space not dumped because DUMPSTYLE is selective

/LIMBO
Walks through the limbo queue (LRU order) and displays information for the
cached file header control blocks (FCBs).

/STATISTIC
Displays statistical and performance information related to the virtual I/O cache.

/VOLUME
Decodes and displays the cache volume control blocks (CVCB).

Examples

1. SDA> CLUE VCC/STATISTIC
Virtual I/O Cache Statistics:

Cache State pak,on,img,data,enabled
Cache Flags on,protocol_only
Cache Data Area 80855200

Total Size (pages) 400 Total Size (MBytes) 3.1 MB
Free Size (pages) 0 Free Size (MBytes) 0.0 MB
Read I/O Count 34243 Read I/O Bypassing Cache 3149
Read Hit Count 15910 Read Hit Rate 46.4%
Write I/O Count 4040 Write I/O Bypassing Cache 856
IOpost PID Action Rtns 40829 IOpost Physical I/O Count 28
IOpost Virtual I/O Count 0 IOpost Logical I/O Count 7
Read I/O past File HWM 124 Cache Id Mismatches 44
Count of Cache Block Hits 170 Files Retained 100

Cache Line LRU 82B11220 82B11620 Oldest Cache Line Time 00001B6E
Limbo LRU Queue 80A97E3C 80A98B3C Oldest Limbo Queue Time 00001B6F
Cache VCB Queue 8094DE80 809AA000 System Uptime (seconds) 00001BB0

SDA–224

SDA Extension Commands
CLUE VCC

2. SDA> CLUE VCC/VOLUME
Virtual I/O Cache - Cache VCB Queue:

CacheVCB RealVCB LockID IRP Queue CID LKSB Ocnt State
-------- -------- -------- ----------------- ---- ---- ---- ---------------
8094DE80 80A7E440 020007B2 8094DEBC 8094DEBC 0000 0001 0002 on
809F3FC0 809F97C0 0100022D 809F3FFC 809F3FFC 0000 0001 0002 on
809D0240 809F7A40 01000227 809D027C 809D027C 0000 0001 0002 on
80978B80 809F6C00 01000221 80978BBC 80978BBC 0000 0001 0002 on
809AA000 809A9780 01000005 809AA83C 809AA03C 0007 0001 0002 on

3. SDA> CLUE VCC/LIMBO
Virtual I/O Cache - Limbo Queue:

CFCB CVCB FCB CFCB IOerrors FID (hex)

-------- -------- -------- -Status- -------- --------------
80A97DC0 809AA000 80A45100 00000200 00000000 (076B,0001,00)
80A4E440 809AA000 809CD040 00000200 00000000 (0767,0001,00)
80A63640 809AA000 809FAE80 00000200 00000000 (0138,0001,00)
80AA2540 80978B80 80A48140 00000200 00000000 (0AA5,0014,00)
80A45600 809AA000 80A3AC00 00000200 00000000 (0C50,0001,00)
80A085C0 809AA000 809FA140 00000200 00000000 (0C51,0001,00)
80A69800 809AA000 809FBA00 00000200 00000000 (0C52,0001,00)
80951000 809AA000 80A3F140 00000200 00000000 (0C53,0001,00)
80A3E580 809AA000 80A11A40 00000200 00000000 (0C54,0001,00)
80A67F80 809AA000 80978F00 00000200 00000000 (0C55,0001,00)
809D30C0 809AA000 809F4CC0 00000200 00000000 (0C56,0001,00)
809D4B80 809AA000 8093E540 00000200 00000000 (0C57,0001,00)
[......]
80A81600 809AA000 8094B2C0 00000200 00000000 (0C5D,0001,00)
80AA3FC0 809AA000 80A2DEC0 00000200 00000000 (07EA,000A,00)
80A98AC0 809AA000 8093C640 00000200 00000000 (0C63,0001,00)

4. SDA> CLUE VCC/CACHE

Virtual I/O Cache - Cache Lines:

CL VA CVCB CFCB FCB CFCB IOerrors FID (hex)
-------- -------- -------- -------- -------- -Status- -------- ------------
82B11200 82880000 809D0240 809D7000 80A01100 00000200 00000000 (006E,0003,00)
82B15740 82AAA000 809AA000 80A07A00 80A24240 00000000 00000000 (0765,0001,00)
82B14EC0 82A66000 809AA000 80A45600 80A3AC00 00000200 00000000 (0C50,0001,00)
82B12640 82922000 809D0240 809D7000 80A01100 00000200 00000000 (006E,0003,00)
82B123C0 8290E000 809AA000 80A45600 80A3AC00 00000200 00000000 (0C50,0001,00)
82B13380 8298C000 809D0240 809D7000 80A01100 00000200 00000000 (006E,0003,00)
82B15A40 82AC2000 809AA000 80A45600 80A3AC00 00000200 00000000 (0C50,0001,00)
82B15F40 82AEA000 809D0240 809D7000 80A01100 00000200 00000000 (006E,0003,00)
82B12AC0 82946000 809D0240 809D7000 80A01100 00000200 00000000 (006E,0003,00)
82B12900 82938000 809D0240 809D7000 80A01100 00000200 00000000 (006E,0003,00)
82B10280 82804000 809AA000 80A45600 80A3AC00 00000200 00000000 (0C50,0001,00)
82B122C0 82906000 809AA000 80A1AC00 80A48000 00000000 00000000 (0164,0001,00)
82B14700 82A28000 809AA000 809FFEC0 809F8DC0 00000004 00000000 (07B8,0001,00)
82B11400 82890000 809AA000 80A113C0 80A11840 00000000 00000000 (00AF,0001,00)
[......]
82B11380 8288C000 809AA000 809DA0C0 809C99C0 00002000 00000000 (00AB,0001,00)
82B130C0 82976000 809AA000 809DA0C0 809C99C0 00002000 00000000 (00AB,0001,00)
82B11600 828A0000 809AA000 809DA0C0 809C99C0 00002000 00000000 (00AB,0001,00)

SDA–225

SDA Extension Commands
CLUE XQP

CLUE XQP

Displays XQP-related information.

Format

CLUE XQP [/qualifier[,...]]

Parameters

None.

Qualifiers

/ACTIVE [/FULL]
Displays all active XQP processes.

/AQB
Displays any current I/O request packets (IRPs) waiting at the interlocked queue.

/BFRD=index
Displays the buffer descriptor (BFRD) referenced by the index specified. The
index is identical to the hash value.

/BFRL=index
Displays the buffer lock block descriptor (BFRL) referenced by the index specified.
The index is identical to the hash value.

/BUFFER=(n,m) [/FULL]
Displays the BFRDs for a given pool. Specify either 0, 1, 2 or 3, or a combination
of these in the parameter list.

/CACHE_HEADER
Displays the block buffer cache header.

/FCB=address [/FULL]
Displays all file header control blocks (FCBs) with a nonzero DIRINDX for a
given volume. If no address is specified, the current volume of the current process
is used.

The address specified can also be either a valid volume control block (VCB), unit
control block (UCB), or window control block (WCB) address.

/FILE=address
Decodes and displays file header (FCB), window (WCB), and cache information
for a given file. The file can be identified by either its FCB or WCB address.

/GLOBAL
Displays the global XQP area for a given process.

/LBN_HASH=lbn
Calculates and displays the hash value for a given logical block number (LBN).

SDA–226

SDA Extension Commands
CLUE XQP

/LIMBO
Searches through the limbo queue and displays FCB information from available,
but unused file headers.

/LOCK=lockbasis
Displays all file system serialization, arbitration, and cache locks found for the
specified lockbasis.

/THREAD=n
Displays the XQP thread area for a given process. The specified thread number
is checked for validity. If no thread number is specified, the current thread is
displayed. If no current thread, but only one single thread is in use, then that
thread is displayed. If more than one thread exists or an invalid thread number
is specified, then a list of currently used threads is displayed.

/VALIDATE=(n,m)
Performs certain validation checks on the block buffer cache to detect corruption.
Specify 1, 2, 3, 4, or a combination of these in the parameter list. If an
inconsistency is found, a minimal error message is displayed. If you add the
/FULL qualifier, additional information is displayed.

Description

The CLUE XQP command displays XQP information. XQP is part of the I/O
subsystem.

Examples

1. SDA> CLUE XQP/CACHE_HEADER
Block Buffer Cache Header:

Cache_Header 8437DF90 BFRcnt 000005D2 FreeBFRL 843916A0
Bufbase 8439B400 BFRDbase 8437E080 BFRLbase 8438F7E0
Bufsize 000BA400 LBNhashtbl 84398390 BFRLhashtbl 84399BC8
Realsize 000D78A0 LBNhashcnt 0000060E BFRLhashcnt 0000060E

Pool #0 #1 #2 #3
Pool_LRU 8437E5C0 84385F40 84387E90 8438EEB0

8437F400 84385D60 8438AC80 8438EE20
Pool_WAITQ 8437DFE0 8437DFE8 8437DFF0 8437DFF8

8437DFE0 8437DFE8 8437DFF0 8437DFF8
Waitcnt 00000000 00000000 00000000 00000000
Poolavail 00000094 00000252 00000251 00000094
Poolcnt 00000095 00000254 00000254 00000095

AmbigQFL 00000000 Process_Hits 00000000 Cache_Serial 00000000
AmbigQBL 00000000 Valid_Hits 00000000 Cache_Stalls 00000000
Disk_Reads 00000000 Invalid_Hits 00000000 Buffer_Stalls 00000000
Disk_Writes 00000000 Misses 00000000

The SDA command CLUE XQP/CACHE_HEADER displays the block buffer cache
header.

2. SDA> CLUE XQP/VALIDATE=(1,4)
Searching BFRD Array for possible Corruption...
Searching Lock Basis Hashtable for possible Corruption...

In this example, executing the CLUE XQP/VALIDATE=1,4 command indicated
that no corruption was detected in either the BFRD Array or the Lock Basis
Hashtable.

SDA–227

Index

A
Access rights block, SDA–18
Access violations, SDA–24, SDA–25
ACP (ancillary control process), SDA–111
Addition operator (+), SDA–15
/ADDRESS=<PFN-entry-address> qualifier,

SDA–144
/ADDRESS=n, SDA–176
/ADDRESS=n, SDA–121
/ADDRESS=n qualifier, SDA–172
Addresses

examining, SDA–55
Address operator (@), SDA–14
Address operator (^B), SDA–14
Address operator (^L), SDA–14
Address operator (^Q), SDA–14
Address operator (^W), SDA–14
/ADDRESS qualifier, SDA–97, SDA–101,

SDA–110, SDA–153
in SET PROCESS command, SDA–84
in SHOW PROCESS command, SDA–156

Address space number (ASN), SDA–17
/ALLn qualifier, SDA–121, SDA–176
/ALL qualifier, SDA–55, SDA–93, SDA–114,

SDA–134, SDA–140, SDA–144, SDA–148,
SDA–156, SDA–172, SDA–186, SDA–193,
SDA–197

ANALYZE command
/CRASH_DUMP qualifier, SDA–9, SDA–34,

SDA–36
/OVERRIDE qualifier, SDA–37
/RELEASE qualifier, SDA–38
/SYMBOL qualifier, SDA–39
/SYSTEM qualifier, SDA–2, SDA–34, SDA–40

AND operator (&), SDA–15
AQB (ACP queue block), SDA–112
/AQB qualifier, SDA–226
ARB symbol, SDA–18
Arithmetic operators, SDA–14
Arithmetic shifting operator (@), SDA–15
ASB (asynchronous save block), SDA–87
ASN register

displaying, SDA–104
ASN symbol, SDA–17

ASTEN register
displaying, SDA–104

ASTs (asynchronous system traps), SDA–17
ASTSR register

displaying, SDA–104
AST symbols, SDA–17
At sign (@) as shifting operator, SDA–43
ATTACH command, SDA–44

B
Backup utility (BACKUP)

copying system dump file, SDA–7
/BAD qualifier, SDA–144, SDA–197
/BAP qualifier, SDA–148
BDB (buffer descriptor block), SDA–87
BDB summary page (BDBSUM), SDA–87
/BFRD qualifier, SDA–226
/BFRL qualifier, SDA–226
Binary operators, SDA–15
BLB (buffer lock block), SDA–87
BLB summary page (BLBSUM), SDA–87
/BLOCK[=m[{: | ;}n]] qualifier, SDA–114
/BRIEF qualifier, SDA–181
/BUFFER_OBJECTS qualifier, SDA–156
Bugcheck

code, SDA–20
fatal conditions, SDA–21 to SDA–32
halt/restart, SDA–9
handling routines

global symbols, SDA–70
reasons, SDA–107

/BUS qualifier, SDA–153

C
/CACHED qualifier, SDA–134, SDA–172
/CACHE qualifier, SDA–224
/CACHE_HEADER qualifier, SDA–226
Call frames

displaying in SDA, SDA–95
following a chain, SDA–95

Cancel I/O routine, SDA–111
CCB (channel control block)

displaying in SDA, SDA–87

Index–1

CDDB (class driver data block), SDA–112
CDRP (class driver request packet), SDA–101,

SDA–179
CDT (connection descriptor table), SDA–101,

SDA–179
/CHANNEL qualifier, SDA–153, SDA–156,

SDA–162
/CLIENT qualifier, SDA–124
CLUB (cluster block), SDA–98
CLUDCB (cluster quorum disk control block),

SDA–98
CLUE$SITE_PROC logical name, SDA–209
CLUE CLEANUP command, SDA–201
CLUE commands

archiving information, SDA–7
CLUE CONFIG command, SDA–202
CLUE CRASH command, SDA–21, SDA–204
CLUE ERRLOG command, SDA–207
CLUE HISTORY command, SDA–208
CLUE MCHK command, SDA–210
CLUE MEMORY command, SDA–211
CLUE PROCESS command, SDA–219
CLUE STACK command, SDA–221
CLUE VCC command, SDA–224
/CLUEXIT qualifier, SDA–124
CLUE XQP command, SDA–226
CLUFCB (cluster failover control block), SDA–98
Compressed data section, SDA–65
/COMPRESSION_MAP[=m[:n]] qualifier,

SDA–114
/COMPRESS qualifier, SDA–45
Condition-handling routines

global symbols, SDA–70
Condition values

evaluating, SDA–52
examining, SDA–55

/CONDITION_VALUE qualifier, SDA–52
Connection manager

displaying SDA information, SDA–97
/CONNECTION qualifier, SDA–179
Connections

displaying SDA information, SDA–101,
SDA–153, SDA–179

Contents of stored machine check frames
displaying in SDA, SDA–137

Context
SDA CPU, SDA–12
SDA process, SDA–12

Control blocks
formatting, SDA–60

Control region, SDA–17
examining, SDA–56

Control region operator (H), SDA–15
COPY command, SDA–6, SDA–7, SDA–45
/COUNTERS qualifier, SDA–124
/CPU=n qualifier, SDA–106

CPU context
changing, SDA–85
displaying, SDA–103
using SET CPU to change, SDA–77
using SHOW CPU to change, SDA–103
using SHOW CRASH to change, SDA–106
using SHOW PROCESS to change, SDA–156

CPU ID
See CPU identification number

CPU identification number, SDA–103
Crash dumps

See also System failures
file headers, SDA–123
headers, SDA–123
incomplete, SDA–9
short, SDA–9

/CRASH_DUMP qualifier, SDA–9
CRB (channel request block), SDA–111
CREATE command, SDA–6
CSBs (cluster system blocks), SDA–98, SDA–101
CSID (cluster system identification number),

SDA–97, SDA–173
/CSID qualifier, SDA–97
/CSMACD qualifier, SDA–124
Current stack pointer, SDA–18

D
Data structures

formatting, SDA–60
global symbols, SDA–17
stepping through a linked list, SDA–73

DCLDEF.STB file, SDA–17
DCL interpreter

global symbols, SDA–17
DDB (device data block), SDA–111
DDIF$RMS_EXTENSION.EXE file, SDA–70
DDT (driver dispatch table), SDA–111
DECDTMDEF.STB file, SDA–17
Decimal value of an expression, SDA–52
DECnet data structures

global symbols, SDA–17
/DECOMPRESS qualifier, SDA–45
DEFINE command, SDA–47, SDA–49
/DELETED qualifier, SDA–121
Device driver routines

address, SDA–111
/DEVICE qualifier, SDA–124, SDA–153
Devices

displaying SDA information, SDA–110
Division operator (/), SDA–15
DPT (driver prologue table), SDA–111
DUMPBUG system parameter, SDA–2, SDA–33
Dump file

analyzing, SDA–34
copying the contents, SDA–45
displaying a summary of, SDA–204

Index–2

Dump file (cont’d)
displaying machine check information,

SDA–210
displaying memory with CLUE MEMORY,

SDA–211
displaying process information, SDA–219
displaying the current stack, SDA–221
displaying virtual I/O cache, SDA–224
displaying XQP information, SDA–226
extracting errorlog buffers, SDA–207
purging files using CLUE CLEANUP,

SDA–201
saving output, SDA–208
using CLUE CONFIG, SDA–202

Dump file information
saving automatically, SDA–7

DUMPSTYLE system parameter, SDA–4
DUMP subset, SDA–4
/DYNAMIC qualifier, SDA–181

E
/ELAN qualifier, SDA–125
ERRORLOG.STB file, SDA–70
ERRORLOGBUFFERS system parameter, SDA–6
Error logging

global symbols, SDA–70
routines, SDA–70

Error log messages, SDA–207
/ERRORS qualifier, SDA–125
/ERROR_LOGS qualifier, SDA–114
ESP symbol, SDA–17
EVALUATE command, SDA–52
EXAMINE command, SDA–55
EXCEPTION.STB file

global symbols, SDA–70
Exception-handling routines

global symbols, SDA–70
Executive images

contents, SDA–70, SDA–117
global symbols, SDA–68

/EXECUTIVE qualifier, SDA–68, SDA–186
Executive stack pointer, SDA–17
EXEC_INIT.STB file, SDA–70
EXIT command, SDA–59
Exiting from SDA, SDA–59
Expressions, SDA–13

evaluating, SDA–52

F
F11BXQP.STB file, SDA–70
FABs (file access blocks), SDA–87
Fatal exceptions, SDA–21
FATALEXCPT bugcheck, SDA–22
FCB (file control block), SDA–87

/FDDI qualifier, SDA–125
FEN symbol, SDA–17
/FILE qualifier, SDA–226
/FILES qualifier, SDA–211
File systems

global symbols, SDA–70
Floating-point control register, SDA–17
Floating-point enable, SDA–17
Floating-point registers, SDA–17
/FORCE qualifier, SDA–68
FORMAT command, SDA–60
FPCR register

displaying, SDA–104
FPCR symbol, SDA–17
FP symbol, SDA–17
Frame pointers, SDA–17
/FREE qualifier, SDA–139, SDA–145, SDA–148,

SDA–197
/FULL qualifier, SDA–125, SDA–137, SDA–181
FWA (file work area), SDA–87

G
GBD (global buffer descriptor)

summary page, SDA–87
GBH (global buffer header), SDA–87
GBSB (global buffer synchronization block),

SDA–87
Global page tables

displaying, SDA–139
/GLOBAL qualifier, SDA–139, SDA–226
G operator, SDA–15
/GPT qualifier, SDA–139
/GROUP qualifer, SDA–121
G symbol, SDA–17

H
/HEADER qualifier, SDA–114, SDA–148
Headers

crash dump, SDA–123
HELP command, SDA–62

recording output, SDA–82
Hexadecimal value of an expression, SDA–52
H operator, SDA–15
H symbol, SDA–17

I
I/O databases

displaying SDA information, SDA–110
global symbols, SDA–17

/ICOUNTERS qualifier, SDA–125
/ID=nn qualifier, SDA–157

in SET PROCESS command, SDA–84
IDB (interrupt dispatch block), SDA–111

Index–3

IDX (index descriptor), SDA–87
IFAB (internal file access block), SDA–87
IFI (internal file identifier), SDA–87
Image activator

global symbols, SDA–17, SDA–70
/IMAGE qualifier, SDA–69, SDA–190
/IMAGES qualifier, SDA–157
IMAGE_MANAGEMENT.STB file

global symbols, SDA–70
IMGDEF.STB file, SDA–17
/INDEX, SDA–83
/INDEX=nn qualifier, SDA–157
/INDEX qualifier, SDA–84, SDA–181
Initialization code

global symbols, SDA–70
/INPUT qualifier, SDA–195
/INSTRUCTION qualifier, SDA–55
Interlocked queues

validating, SDA–198
/INTERRUPT qualifier, SDA–186
INVEXCEPTN bugcheck, SDA–22
Invoking SDA by default, SDA–7
IODEF.STB file, SDA–17
IO_ROUTINES.STB file

global symbols, SDA–70
IPL$_ASTDEL file

PGFIPLHI bugcheck, SDA–31
IPL register

displaying, SDA–104
IPL symbol, SDA–18
IRAB (internal record access block), SDA–87
IRP (I/O request packet), SDA–111
I symbol, SDA–17

J
JFB (journaling file block), SDA–87
JIBs (job information blocks), SDA–159
JIB symbol, SDA–18
Job information block

See JIB

K
/KERNEL qualifier, SDA–186
Kernel stacks

displaying contents, SDA–186
pointer, SDA–17

Kernel threads block, SDA–18
/KEY qualifier, SDA–49
Keys

defining for SDA, SDA–49
KSP symbol, SDA–17
KTB symbol, SDA–18

L
/L1 qualifier, SDA–139
/L2 qualifier, SDA–139
/L3 qualifier, SDA–139
/LAYOUT qualifier, SDA–211, SDA–219
/LBN_HASH qualifier, SDA–226
/LIMBO qualifier, SDA–224, SDA–227
Linker map

use in crash dump analysis, SDA–21
Linking two 32-bit values ("."), SDA–15
/LIST qualifier, SDA–198
LKB (lock block), SDA–135
/LMB[={ALL | n}], SDA–114
Location in memory

examining, SDA–55
SDA default, SDA–55
translating to instruction, SDA–55

/LOCKID qualifier, SDA–172
LOCKING.STB file, SDA–71
Lock management routines

global symbols, SDA–71
Lock manager

displaying SDA information, SDA–134
/LOCK qualifier, SDA–227
Locks

displaying SDA information, SDA–172
/LOCKS qualifier, SDA–157
Logical operators, SDA–14, SDA–15

AND operator (&), SDA–15
NOT operator (#), SDA–14
OR operator (|), SDA–15
XOR operator (\), SDA–15

/LOGICAL qualifier, SDA–219
LOGICAL_NAMES.STB file

global symbols, SDA–71
/LOG qualifier, SDA–69
/LONG qualifier, SDA–186
Lookaside lists

displaying contents, SDA–148
/LOOKASIDE qualifier, SDA–211

M
Machine check frames

displaying in SDA, SDA–137
MAP command, SDA–63
MCES register

displaying, SDA–104
Mechanism arrays, SDA–22
Memory

examining, SDA–55
formatting, SDA–60
locations

decoding, SDA–57
examining, SDA–56

region

Index–4

Memory
region (cont’d)

examining, SDA–57
/MESSAGE qualifier, SDA–153
MESSAGE_ROUTINES.STB file

global symbols, SDA–71
/MODIFIED qualifier, SDA–145, SDA–197
MODIFY DUMP command, SDA–66
Multiplication operator (*), SDA–15
Multiprocessing

global symbols, SDA–71
Multiprocessors

analyzing crash dumps, SDA–12
displaying synchronization structures,

SDA–181

N
/NAME qualifier, SDA–134, SDA–172
NAMs (name blocks), SDA–87
Negative operator (–), SDA–14
NETDEF.STB file, SDA–17
/NEXT_FP qualifier, SDA–95
/NODE qualifier, SDA–97, SDA–101, SDA–153
/NOINDEX, SDA–83
/NOLOGICAL_NAMES qualifier, SDA–195
/NOLOG qualifier, SDA–69
Nonpaged dynamic storage pool

displaying contents, SDA–148
/NONPAGED qualifier, SDA–148
/NOPD qualifier, SDA–55
/NOSUPPRESS qualifier, SDA–55
/NOSYMBOLS qualifier, SDA–195
/NOTIFY qualifier, SDA–195
NOT operator (#), SDA–14
/NOWAIT qualifier, SDA–195
NWA (network work area), SDA–87

O
Object rights block, SDA–18
OpenVMS Cluster environments

displaying SDA information, SDA–97
OpenVMS RMS

See RMS
Operators (mathematical), SDA–14

precedence of, SDA–14, SDA–15
ORB symbol, SDA–18
OR operator (|), SDA–15
/OUTPUT qualifier, SDA–195
/OVERRIDE qualifier, SDA–208
/OWNED qualifier, SDA–181

P
/P0 qualifier, SDA–56
P0 region

examining, SDA–56
/P1 qualifier, SDA–56
P1 region

examining, SDA–56
Paged dynamic storage pool

displaying contents, SDA–148
/PAGED qualifier, SDA–148
Page faults

illegal, SDA–31
Page files

See also SYS$SYSTEM:PAGEFILE.SYS file
Page table base register, SDA–17
Page tables

displaying, SDA–139, SDA–157
/PAGE_TABLES qualifier, SDA–157
Parentheses (())

as precedence operator, SDA–15
/PARENT qualifier, SDA–44
PB (path block), SDA–111
PCBB register, SDA–18

displaying, SDA–104
PCBB symbol, SDA–18
/PCB qualifier, SDA–157
PCBs (process control blocks), SDA–18

displaying, SDA–157
hardware, SDA–160
specifying the address of, SDA–84, SDA–156

PCB symbol, SDA–18
PCs (program counters), SDA–17

in a crash dump, SDA–21
PC symbol, SDA–17
/PD qualifier, SDA–47, SDA–50, SDA–56
PDT (port descriptor table), SDA–153
PFN (page frame number)

See PFN database
PFN database, SDA–142, SDA–144

displaying, SDA–144
PGFIPLHI bugcheck, SDA–31
PHD (process header)

displaying, SDA–157
/PHD qualifier, SDA–157
PHD symbol, SDA–18
Physical address operator (^P), SDA–15
/PHYSICAL qualifier, SDA–56, SDA–60, SDA–75
PID numbers, SDA–157
Port drivers

displaying SDA information, SDA–97
Ports

displaying SDA information, SDA–153
Positive operator (+), SDA–14

Index–5

PRBR register
displaying, SDA–104

PRBR symbol, SDA–18
Precedence operators, SDA–15
Privileges

to analyze a crash dump, SDA–34
to analyze a running system, SDA–11, SDA–34

Process context
changing, SDA–78, SDA–84, SDA–106,

SDA–156
Process control blocks

See PCBs
Process control region, SDA–17

operator (H), SDA–15
Processes

channel, SDA–156
displaying

SDA information, SDA–156, SDA–190
examining hung, SDA–11
image, SDA–190
listening, SDA–98
lock, SDA–157
scheduling state, SDA–160, SDA–191
spawning a subprocess, SDA–195

Process headers, SDA–18
Process indexes, SDA–157
Process names, SDA–156
Processor base registers, SDA–18
Processor context

changing, SDA–77, SDA–85, SDA–103,
SDA–106, SDA–156

Processor status
See PS

/PROCESS qualifier, SDA–196
PROCESS_MANAGEMENT.STB file

global symbols, SDA–71
/PROCESS_SECTION_TABLE qualifier, SDA–158
Program region

examining, SDA–56
PS (processor status)

evaluating, SDA–52
examining, SDA–56

/PS qualifier, SDA–52, SDA–56
PS symbol, SDA–17
PST (process section table)

displaying, SDA–158
PTBR register

displaying, SDA–104
PTBR symbol, SDA–17
/PTE qualifier, SDA–52, SDA–56
PTEs (Page table entries)

evaluating, SDA–52
examining, SDA–56

/PT qualifier, SDA–139

Q
/QUAD qualifier, SDA–186
/QUADWORD qualifier, SDA–198
/QUEUE qualifier, SDA–125
Queues

stepping through, SDA–73
validating, SDA–198

Quorum, SDA–97

R
RABs (record access blocks), SDA–87
Radixes

default, SDA–14
Radix operators, SDA–14
/RDE [=id] qualifier, SDA–158
RDT (response descriptor table), SDA–179
READ command, SDA–69

SYS$DISK, SDA–70
/RECALL qualifier, SDA–219
Recovery unit system services

global symbols, SDA–71
RECOVERY_UNIT_SERVICES.STB file

global symbols, SDA–71
/REGIONS [=id] qualifier, SDA–158
Registers

displaying, SDA–103, SDA–158
integer, SDA–18

/REGISTERS qualifier, SDA–158
/RELOCATE qualifier, SDA–69
REPEAT command, SDA–73
Report system event

global symbols, SDA–71
REQSYSDEF.STB file, SDA–17
Resident images, SDA–157, SDA–171
/RESIDENT qualifier

installing an image, SDA–65
Resources

displaying SDA information, SDA–172
/RING_BUFFER qualifier, SDA–148
RLB (record lock block), SDA–88
RMS

data structures shown by SDA, SDA–87
displaying data structures, SDA–158, SDA–178
global symbols, SDA–17, SDA–71

RMS.STB file, SDA–71
RMSDEF.STB file, SDA–17
/RMS qualifier, SDA–158
RSB (resource block), SDA–135, SDA–172
RSPID (response ID)

displaying SDA information, SDA–179
RUB (recovery unit block), SDA–88
RUFB (recovery unit file block), SDA–88
RUSB (recovery unit stream block), SDA–88

Index–6

S
S0 region

examining, SDA–56
/S0S1 qualifier, SDA–139
/S2 qualifier, SDA–139
SAVEDUMP system parameter, SDA–6, SDA–33
SB (system block), SDA–98, SDA–111
SCBB register

displaying, SDA–104
SCBB symbol, SDA–18
Scheduler

global symbols, SDA–71
SCS (System Communications Services)

displaying SDA information, SDA–97, SDA–98,
SDA–101, SDA–153, SDA–179

global symbols, SDA–17
SCSDEF.STB file, SDA–17
/SCS qualifier, SDA–97
SDA$INIT logical name, SDA–10
SDA$READ_DIR:REQSYSDEF.STB file, SDA–9,

SDA–10
SDA$READ_DIR:SYS$BASE_IMAGE.EXE file,

SDA–9, SDA–10
SDA$READ_DIR:SYSDEF.STB file, SDA–10
SDA command format, SDA–13
SDA current CPU, SDA–12, SDA–77, SDA–85,

SDA–103, SDA–106, SDA–156, SDA–187
SDA current process, SDA–12, SDA–78, SDA–84,

SDA–106, SDA–156, SDA–187
SDA symbol table

building, SDA–10
expanding, SDA–10

SEARCH command, SDA–75
Section type, SDA–157, SDA–171
/SECTION_INDEX=n qualifier, SDA–119
SECURITY.STB file

global symbols, SDA–71
Self-relative queue

validating, SDA–198
/SELF_RELATIVE qualifier, SDA–198
/SEMAPHORE qualifier, SDA–158
SET CPU command, SDA–12, SDA–77

analyzing a running system, SDA–11
SET ERASE_SCREEN command, SDA–79
SET FETCH command, SDA–80
SET LOG command, SDA–82

compared with SET OUTPUT command,
SDA–82

SET NOLOG command, SDA–82
SET OUTPUT command, SDA–83

compared with SET LOG command, SDA–82
/INDEX, SDA–83
/NOINDEX, SDA–83

SET PROCESS command, SDA–12, SDA–84

SET RMS command, SDA–87
SET SIGN_EXTEND command, SDA–90
/SET_STATE qualifier, SDA–50
SFSB (shared file synchronization block), SDA–88
Shadow set

displaying SDA information, SDA–112
Shareable address data section, SDA–65
SHOW ADDRESS command, SDA–91
SHOW BUGCHECK command, SDA–93
SHOW CALL_FRAME command, SDA–95
SHOW CLUSTER command, SDA–97
SHOW CONNECTIONS command, SDA–101
SHOW CPU command, SDA–12, SDA–77,

SDA–103
analyzing a running system, SDA–11

SHOW CRASH command, SDA–12, SDA–21,
SDA–77, SDA–106

analyzing a running system, SDA–11
SHOW DEVICE command, SDA–21, SDA–110
SHOW DUMP command, SDA–114
SHOW EXECUTIVE command, SDA–117
SHOW GLOBAL_SECTION_TABLE command,

SDA–119
SHOW GSD command, SDA–121
SHOW HEADER command, SDA–123
SHOW LAN command, SDA–124
SHOW LOCK command, SDA–134
SHOW MACHINE_CHECK command, SDA–12,

SDA–137
SHOW MEMORY command, SDA–5
SHOW PAGE_TABLE command, SDA–139
SHOW PFN_DATA command, SDA–144
SHOW POOL command, SDA–148
SHOW PORTS command, SDA–153
SHOW PROCESS/ALL command, SDA–159
SHOW PROCESS command, SDA–85, SDA–156
SHOW PROCESS command, SDA–85
SHOW PROCESS/LOCKS command, SDA–134
SHOW PROCESS/RMS command, SDA–178

selecting display options, SDA–88
SHOW RESOURCE command, SDA–134,

SDA–172
SHOW RMD command, SDA–176
SHOW RMS command, SDA–178
SHOW RSPID command, SDA–179
SHOW SPINLOCKS command, SDA–182
SHOW STACK command, SDA–186
SHOW SUMMARY command, SDA–156,

SDA–190
SHOW SYMBOL command, SDA–193
SHOW WORKING SET LIST command, SDA–194
Signal array, SDA–24
/SINGLY_LINKED qualifier, SDA–198
SISR register

displaying, SDA–104
SISR symbol, SDA–18

Index–7

Site-specific startup command procedure, SDA–8,
SDA–209

releasing page file blocks, SDA–6
Software interrupt status register, SDA–18
SPAWN command, SDA–195
Spin locks

displaying SDA information, SDA–181
owned, SDA–104

SP symbol, SDA–18
SPT (system page table)

displaying, SDA–139
in system dump file, SDA–5

/SPTW qualifier, SDA–140
SSP symbol, SDA–18
SSRVEXCEPT bugcheck, SDA–22
Stack frames

displaying in SDA, SDA–95
following a chain, SDA–95

Stacks
displaying contents, SDA–186

Start I/O routine, SDA–111
/STATIC qualifier, SDA–181
/STATISTIC qualifier, SDA–211, SDA–224
/STATISTICS qualifier, SDA–149
Subprocesses, SDA–195
Subtraction operator (–), SDA–15
/SUBTYPE=block-type qualifier, SDA–149
/SUMMARY qualifier, SDA–115, SDA–125,

SDA–149
/SUPERVISOR qualifier, SDA–186
Supervisor stack

displaying contents, SDA–186
pointer to, SDA–18

Symbols
defining

for SDA, SDA–47
evaluating, SDA–193
listing, SDA–193
loading into the SDA symbol table, SDA–69
name, SDA–47
representing executive modules, SDA–117
user-defined, SDA–47

SYMBOLS qualifier
for SDA EVALUATE command, SDA–52

/SYMBOLS qualifier, SDA–52
Symbol table files

reading into SDA symbol table, SDA–70
Symbol tables

See also SDA symbol table, System symbol
table

specifying an alternate SDA, SDA–39
/SYMVA qualifier, SDA–69
SYS$DISK

as SDA output, SDA–83
global read, SDA–70

SYS$LOADABLE_IMAGES:SYS.EXE file
contents, SDA–70

SYS$SYSTEM:PAGEFILE.SYS file, SDA–33
See also System dump files
as dump file, SDA–6
releasing blocks containing a crash dump,

SDA–38
SYS$SYSTEM:SYS.EXE file, SDA–68

contents, SDA–117
SYS$SYSTEM:SYSDEF.STB file, SDA–11
SYS$SYSTEM:SYSDUMP.DMP file, SDA–33

See also System dump files
protection, SDA–7
size of, SDA–5

SYSAP (system application), SDA–179
/SYSAP qualifier, SDA–101
SYSDEVICE.STB file

global symbols, SDA–71
SYSGETSYI.STB file

global symbols, SDA–71
SYSLDR_DYN.STB file

global symbols, SDA–71
SYSLICENSE.STB file

global symbols, SDA–71
System Communications Services (SCS)

See SCS
System control block base register, SDA–18
System dump files, SDA–2 to SDA–7

mapping physical memory to, SDA–9
requirements for analysis, SDA–9

System failures
analyzing, SDA–20
causing, SDA–32 to SDA–34
diagnosing from PC contents, SDA–21
summary, SDA–106

System hang, SDA–32
System images

contents, SDA–70, SDA–117
global symbols, SDA–68

System management
creating a crash dump file, SDA–2

System message routines
global symbols, SDA–71

System page file
as dump file, SDA–6
releasing blocks containing a crash dump,

SDA–38
System PCB (process control block)

displaying, SDA–158
System processes, SDA–84
/SYSTEM qualifier, SDA–56, SDA–84, SDA–121,

SDA–145, SDA–158, SDA–186
System region

examining, SDA–56
Systems

analyzing running, SDA–2, SDA–11, SDA–34
investigating performance problems, SDA–11

Index–8

System space base address, SDA–17
System space operator (G), SDA–15
System symbol table, SDA–9
System time quadword

examining, SDA–56
SYSTEM_PRIMITIVES.STB file

global symbols, SDA–71
SYSTEM_SYNCHRONIZATION_xxx.STB file

global symbols, SDA–71

T
Terminal keys

defining for SDA, SDA–49
/TERMINATE qualifier, SDA–50
/THREAD qualifier, SDA–190, SDA–227
/THREADS qualifier, SDA–158
/TIME qualifer

for SDA EVALUATE command, SDA–52
/TIME qualifier, SDA–52, SDA–56
/TIMESTAMPS qualifier, SDA–125
Transaction processing

global symbols, SDA–17
/TYPE qualifier, SDA–60, SDA–149

U
UCB (unit control block), SDA–101
Unary operator, SDA–14 to SDA–15
/UNIT qualifier, SDA–125
UNXSIGNAL bugcheck, SDA–22
/USER qualifier, SDA–186
User stacks

displaying contents, SDA–186
pointer, SDA–18

USP symbol, SDA–18

V
VALIDATE PFN_LIST command, SDA–197
/VALIDATE qualifier, SDA–227
VALIDATE QUEUE command, SDA–198
VCB (volume control block), SDA–112
/VCI qualifier, SDA–125
/VC qualifier, SDA–153
Virtual address operator (^V), SDA–15
/VOLUME qualifier, SDA–224
Votes, SDA–97
VPTB register

displaying, SDA–104

W
WCB (window control block), SDA–88
/WORKING_SET_LIST qualifier, SDA–159

X
XABs (extended attribute blocks), SDA–88
XOR operator (\), SDA–15

Z
/ZERO command, SDA–145
/ZERO qualifier, SDA–197

Index–9

