HP OpenVMS Utility Routines
Manual

Order Number: BA554-90011

July 2006

This manual describes the OpenVMS utility routines, a set of routines
that provide a programming interface to various OpenVMS utilities.

Revision/Update Information: This manual supersedes the HP
OpenVMS Utility Routines Manual,
OpenVMS Alpha Version 7.3.

Software Version: OpenVMS 164 Version 8.3
OpenVMS Alpha Version 8.3

Hewlett-Packard Company
Palo Alto, California

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP

products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

ZK4493
The HP OpenVMS documentation set is available on CD.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface XVii
1 Introduction to Utility Routines
2 Access Control List (ACL) Editor Routine
2.1 Introduction to the ACL Editor Routine. ACL-1
2.2 Using the ACL Editor Routine: An Example ACL-1
2.3 ACL Editor Routine ACL-2
ACLEDITEEDIT ... ACL-3
3 Backup (BACKUP) Routine
3.1 Introduction to the Backup APl BCK-1
3.2 Using the Backup API: An Example BCK-2
3.3 Backup APl BCK-3
BACKUPSSTART . . . e e BCK-4
4 Command Language Interface (CLI) Routines
4.1 Introduction to CLI Routines CLI-1
4.2 Using the CLI Routines: An Example CLI-2
4.3 CLIROULINES . . oo e CLI-4
CLISDCL _PARSE CLI-5
CLISDISPATCH . . . CLI-8
CLISGET VALUE e CLI-9
CLISPRESENT .. e CLI-12
5 Common File Qualifier Routines
5.1 Introduction to the Common File Qualifier Routines CQUAL-1
5.2 Using the Common File Qualifier Routines CQUAL-1
5.2.1 Calling UTILSCQUAL _FILE PARSE. CQUAL-2
5.21.1 Specifying Times CQUAL-3
5.2.1.2 Specifying Exclude Pattern Strings CQUAL-3
5.2.2 Calling UTIL$CQUAL _FILE MATCHot CQUAL-3
5221 Specifying Prompts CQUAL-4
5222 Ignoring Qualifiers. CQUAL-4
5.2.3 Calling UTILSCQUAL_FILE END CQUAL-5
5.2.4 Calling UTILSCQUAL_CONFIRM_ACT CQUAL-5
5.2.5 Creating a Command Language Definition File CQUAL-6

5.3

UTILSCQUAL ROULINES oo e e e e CQUAL-10

UTILSCQUAL FILE_PARSE\t ooe et CQUAL-11
UTILSCQUAL FILE_MATCH . .\ttt e CQUAL-13
UTILSCQUAL FILE_END\t tte ettt e CQUAL-17
UTILSCQUAL_CONFIRM ACT . .\ oot ettt oo CQUAL-18

6 Convert (CONVERT) Routines

6.1
6.2
6.3

Introduction to CONVERT Routines CONV-1
Using the CONVERT Routines: Examples CONV-2
CONVERT ROULINES oo e CONV-7
CONVSCONVERT . .o e CONV-8
CONVSPASS FILES e CONV-12
CONVSPASS OPTIONS ... e CONV-15
CONVSRECLAIM .. e CONV-20

7 Data Compression/Expansion (DCX) Routines

7.1
7.1.1
7.1.2
7.2
7.3

Introduction to DCX RoUtiNeS DCX-1
Compression ROULINES DCX-1
Expansion Routines DCX-3

Using the DCX Routines: Examples DCX-3

DCX ROULINES . . .o e DCX-11

DCXSANALYZE _DATA . DCX-12

DCXSANALYZE_DONE e DCX-14

DCXSANALYZE_INIT .. e DCX-15

DCXSCOMPRESS DATA . . o e DCX-18

DCX$COMPRESS DONE e DCX-20

DCXSCOMPRESS INIT e DCX-21

DCXSEXPAND DATA . . DCX-23

DCXSEXPAND DONE e e e e DCX-25

DCXSEXPAND _INIT . .. e DCX-26

DCXSMAKE_MAP . . o DCX-28

8 DEC Text Processing Utility (DECTPU) Routines

8.1
8.1.1
8.1.1.1
8.1.1.2
8.1.2
8.1.3
8.14
8.15
8.2

8.3
8.3.1
8.3.2
8.3.3
8.4

8.5

Introduction to DECTPU Routines. DECTPU-1
Interfaces to Callable DECTPU DECTPU-2
Simplified Callable Interface DECTPU-2
Full Callable Interface DECTPU-2
The DECTPU Shareable Image DECTPU-3
Passing Parameters to Callable DECTPU Routines DECTPU-3
Error Handling i DECTPU-3
Return Values DECTPU-4
Simplified Callable Interface DECTPU-4
Full Callable Interface e DECTPU-5
Main Callable DECTPU Utility Routines. DECTPU-6
Other DECTPU Utility Routines DECTPU-6
User-Written Routines e DECTPU-7
Using the DECTPU Routines: Examples DECTPU-7
Creating and Callinga USER Routine. DECTPU-22

8.5.1
8.5.2
8.6
8.7

The CALL_USER Code DECTPU-23

Linking the CALL_USER Image DECTPU-25
Accessing the USER Routine from DECTPU DECTPU-26
DECTPU ROULINES e e DECTPU-27
TPUSCLEANUP . . DECTPU-28
TPUSCLIPARSE . . . DECTPU-32
TPUSCLOSE_TERMINAL e DECTPU-34
TPUSCONTROL ..o e e e DECTPU-35
TPUSEDIT . .. DECTPU-37
TPUSEXECUTE COMMAND e DECTPU-39
TPUSEXECUTE_INIFILE e DECTPU-40
TPUSFILEIO DECTPU-42
TPUSFILE_PARSE . . . DECTPU-46
TPUSFILE_SEARCH e DECTPU-49
TPUSHANDLER DECTPU-52
TPUSINITIALIZE e e DECTPU-54
TPUSMESSAGE DECTPU-61
TPUSPARSEINFO DECTPU-62
TPUSSIGNAL . .. DECTPU-63
TPUSSPECIFY_ASYNC ACTION e DECTPU-64
TPUSTPU . DECTPU-66
TPUSTRIGGER_ASYNC_ACTION e DECTPU-67
FILEIO .. DECTPU-68
FILE PARSE DECTPU-70
FILE SEARCH e e DECTPU-72
HANDLER DECTPU-75
INITIALIZE e e e e e i DECTPU-76
USER . . . DECTPU-77

9 DECdts Portable Applications Programming Interface

9.1
9.11
9.1.2
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.3
9.4
9.5

DECdts Time Representation. DECdts-1
Absolute Time Representation, DECdts-2
Relative Time Representation DECdts-3

TimMe StruCtUreS o e DECdts-5
The utc Structure. DECdts—6
The tm Structure DECdts—6
The timespec Structure DECdts—7
The reltimespec Structure DECdts—7
The OpenVMS Time Structure. DECdts—7

DECdts APl Header Files DECdts—7

Linking Programs with the DECAts API DECdts-8

DECdts APl Routine Functions DECdts-8

utc_abstime DECdts-13

utc addtime DECdts-15

ULC_anytime DECdts-17

ULC_@NYZONE . . o .ot e e e e e e DECdts—20

ULC_asCanytime DECdts-22

ULC_aSCOMEIMe . . . o DECdts—24

10

vi

9.6

utc_asclocaltime DECdts—26

utc_ascreltime DECdts-28
utc_binreltime DECdts-29
utc bintime DECdts—31
utc_ boundtime DECdts—33
utc_cmpintervaltime DECdts—35
utc_cmpmidtime DECdts—38
Ut _gettime DECdts—41
ULC_getuSertime DECdts—42
ULC_gMEIME . o . DECdts-43
ULC_gMEZONE o DECdts-45
utc_localtime DECdts-48
utc localzone DECdts-50
utc_ mKanytime DECdts-52
utc_mkascreltime DECdts-55
utc_mkasctime DECdts-57
utc_mkbinreltime DECdts-59
utc_mkbintime DECdts—60
utc_mkgmtime DECdts-62
utc_mklocaltime DECdts-64
utc_ mkreltime DECdts—66
utc_ mMKvmMsanytime DECdts—68
utc mMKVMSgMEimMe DECdts—-70
utc_mkvmslocaltime DECdts-71
utc_mulftime DECdts—-73
utc multime DECdts—-75
ULC_PoINtEIMe DECdts-76
ULC Feltime . oo DECdts-78
ULC_Spantime DECdts-80
utc subtime DECdts—82
UtC VMSanNYtime DECdts-84
ULC VMSOMEIME e DECdts—85
utc_ vmslocaltime DECdts—-87
Example Using the DECdts APl Routines DECdts—88

EDT Routines

10.1
10.2
10.3

Introduction to EDT Routines EDT-1
Using the EDT Routines: AnExample EDT-1
EDT ROULINES EDT-2
EDTBEDIT . . EDT-3
FILEIO ... EDT-7
WORKIO . . EDT-11
XL ATE . o e EDT-13

11 Encryption (ENCRYPT) Routines

12

13

11.1 Introduction to Encryption Routines
11.2 AES Encryption Features
11.2.1 AES Key, Flag Mask, and Value.
11.3 How the Routines Work
11.3.1 Encryption Keys.
11.3.1.1 Deleting AES KeyS. . . .ot
11.3.1.2 DES Key and Data Semantics
11.3.2 File Encryption and Decryption
11.4 Maintaining Keys e e
11.5 Operationson Files
11.6 Operations on Records and Blocks
11.7 Routine Descriptions
11.7.1 Specifying Arguments
11.7.2 Bitmasks
11.7.3 Error Handling
ENCRYPTEDECRYPT . . . e
ENCRYPT$DECRYPT_ONE_RECORD
ENCRYPTSDEFINE_KEY e
ENCRYPTSDELETE_KEY e
ENCRYPTSENCRYPT . . .o e
ENCRYPTSENCRYPT_FILE e
ENCRYPT$ENCRYPT ONE RECORD i,
ENCRYPTSFINI e e e
ENCRYPTSGENERATE_KEY
ENCRYPTSINIT ... e
ENCRYPTSSTATISTICS e

File Definition Language (FDL) Routines

12.1 Introduction to FDL ROUTtINES e
12.2 Using the FDL Routines: Examples.
12.3 FDL ROULINESo e e

FDLSCREATE . . .o
FDLSGENERATE . . .
FDLSPARSE . . .o
FDLSRELEASE

Librarian (LBR) Routines

13.1 Introduction to LBR Routines
13.11 Types of Libraries
13.1.2 Structure of Libraries
13.1.2.1 Library Headers.
13.1.2.2 Modules
13.1.2.3 Indexes and Keys
13.1.3 Summary of LBR Routines
13.2 Using the LBR Routines: Examples.
13.2.1 Creating, Opening, and Closing a Text Library
13.2.2 Insertinga Module.
13.2.3 Extractinga Module

Vii

13.2.4 Deletinga Module LBR-17

13.25 Using Multiple Keys and Multiple Indexes LBR-20
13.2.6 Accessing Module Headers LBR-23
13.2.7 Reading Library Headers i LBR-24
13.2.8 Displaying Help Text e LBR-26
13.2.9 Listing and Processing Index Entries. LBR-27
13.3 LBR ROULINES.o LBR-28
LBRECLOSE . . . o LBR-29
LBREDELETE _DATA . . LBR-30
LBRIDELETE_KEY ... LBR-32
LBREFIND LBR-34
LBREFLUSH LBR-36
LBRSGET_HEADER LBR-38
LBRSGET HELP e e LBR-40
LBREGET HISTORY e e LBR-43
LBREGET_INDEX LBR-45
LBRSGET_RECORD e LBR-48
LBRSINI_CONTROL e LBR-50
LBRSINSERT_KEY . .. e LBR-52
LBRILOOKUP_KEY . .. e LBR-54
LBRILOOKUP_TYPE . .. e LBR-56
LBRSMAP_MODULE LBR-58
LBRSOPEN LBR-60
LBRSOUTPUT HELP e LBR-64
LBREPUT_ENDo e LBR-68
LBRSPUT_HISTORY . . . e LBR-69
LBRSPUT_MODULE e LBR-71
LBRIPUT_RECORD e LBR-73
LBREREPLACE _KEY . . LBR-75
LBRERET _RMSSTV . . . LBR-78
LBRSSEARCH LBR-79
LBRSSET INDEX e LBR-82
LBRESET _LOCATE e LBR-84
LBRSSET_MODULE e LBR-85
LBRESET_MOVE LBR-87
LBRSUNMAP_MODULE e LBR-88

14 Lightweight Directory Access Protocol (LDAP) Routines

viii

141 Introduction LDAP-1
141.1 Overview of the LDAP Model LDAP-1
14.1.2 Overview of LDAP APL UsSe LDAP-2
14.1.3 LDAP APl Use on OpenVMS Systems i LDAP-2
14.1.4 64-bit Addressing SUPPOrt LDAP-3
14141 Background LDAP-3
14.1.4.2 Implementation LDAP-4
14.1.4.2.1 Library Symbol Names LDAP-4
14.1.4.2.2 LDAP Data Structures LDAP-4
14.1.4.3 Mixing Pointer Sizes LDAP-6
14.1.5 Multithreading SUpport LDAP-6

15

14.2 Common Data Structures and Memory Handling LDAP-7

14.3 LDAP Error Codeso LDAP-8
14.4 Initializing an LDAP SeSSioNot LDAP-9
14,5 LDAP Session Handle Options i LDAP-10
14.6 Working with Controls LDAP-13
14.7 Authenticating to the Directory LDAP-14
14.8 Closing the Session i e e LDAP-15
14.9 SearChing LDAP-16
14.9.1 Reading and Listing the Childrenofan Entry LDAP-18
14.10 Comparing a Value Againstan Entry LDAP-19
14.11 Modifying an Entry e LDAP-20
14.12 Modifying the Name of an Entry, LDAP-22
1413 Adding an ENtry LDAP-23
14.14 Deleting an Entry LDAP-24
14.15 Extended Operations LDAP-25
14.16 Abandoning an Operationt LDAP-26
14.17 Obtaining Results and Looking Inside LDAP Messages. LDAP-27
14.18 Handling Errors and Parsing Results LDAP-28
14.18.1 Stepping Through a Listof Results LDAP-30
14.19 Parsing Search Results LDAP-31
14.19.1 Stepping Through a Listof Entries LDAP-31
14.19.2 Stepping Through the Attributesofan Entry LDAP-32
14.19.3 Retrieving the Values of an Attribute LDAP-33
14.19.4 Retrieving the Nameof an Entry LDAP-33
14.19.5 Retrieving Controls froman Entry. LDAP-34
14.19.6 Parsing References. LDAP-35
14.20 Encoded ASN.1 Value Manipulation LDAP-35
14.20.1 ENcCoding e LDAP-36
14.20.1.1 Encoding Example LDAP-38
14.20.2 Decoding LDAP-39
14.20.2.1 Decoding Example LDAP-41
14.21 Using LDAP with HP SSL for OpenVMS LDAP-43
14.21.1 HP SSL Certificate Options LDAP-43
14.21.2 Obtaininga Key Pair LDAP-44
14.22 Sample LDAP APIL Code. LDAP-44

LOGINOUT (LGI) Routines

15.1 Introduction to LOGINOUT e LGI-1
15.1.1 The LOGINOUT ProCESS . . v v vttt e e e et e et e e e LGI-1
15.1.2 Using LOGINOUT with External Authentication LGI-2
15.1.3 The LOGINOUT Data Flow LGI-2
152 LOGINOUT Calloutso e e e LGI-3
15.2.1 LOGINOUT Callout Routines LGI-3
15.2.2 LOGINOUT Callback Routines, LGI-3
15.3 Using Callout Routines e LGI-4
15.3.1 Calling Environment LGI-4
15.3.2 Callout Organization e LGI-5
15.3.3 Activating the Callout Routines LGI-6
15.3.4 Callout Interface e LGI-7
15.35 Sample Program LGI-10

15.4 LOGINOUT Callout Routines LGI-14

LGISICR AUTHENTICATE. e LGI-15
LGISICR_ CHKRESTRICT e LGI-18
LGISICR_DECWINIT ... e e e LGI-20
LGISICR_FINISH e LGI-22
LGISICR _IACT START . .. e e e LGI-24
LGISICR _IDENTIFY ... e e LGI-26
LGISICR INIT . . e e LGI-28
LGISICR JOBSTEP e LGI-30
LGISICR _LOGOUT e e e LGI-32
15.5 LOGINOUT Callback Routines LGI-34
LGISICB ACCTEXPIRED e LGI-35
LGISICB_ AUTOLOGIN e e LGI-36
LGISICB CHECK PASS e LGI-37
LGISICB DISUSER e e e LGI-38
LGISICB GET INPUT e e e LGI-39
LGISICB GET SYSPWD e e LGI-40
LGISICB_MODALHOURS e e LGI-41
LGISICB PASSWORD e LGI-42
LGISICB PWDEXPIRED e LGI-44
LGISICB _USERPARSE e LGI-45
LGISICB _USERPROMPT e LGI-46
LGISICB VALIDATE e LGI-47

16 Mail Utility (MAIL) Routines

16.1 MBSSAQES . . v v it i it MAIL-1
16.2 Folders MAIL-2
16.3 Mail Files. MAIL-3
16.4 User Profile Database MAIL-3
16.5 Mail Utility Processing Contexts MAIL-3
16.5.1 Callable Mail Utility Routines MAIL-4
16.5.2 Single and Multiple Threads MAIL-5
16.6 Programming Considerations. MAIL-5
16.6.1 Condition Handling MAIL-6
16.6.2 Item Lists and Item Descriptors MAIL-6
16.6.2.1 Structure of an Item Descriptor MAIL-6
16.6.2.2 Null Item ListS MAIL-7
16.6.2.3 Declaring Item Lists and Item Descriptors MAIL-7
16.6.2.4 Terminatingan Item List. MAIL-7
16.6.3 Action RoUtines MAIL-7
16.7 Managing Mail Files MAIL-8
16.7.1 Opening and Closing Mail Files MAIL-9
16.7.1.1 Using the Default Specification for Mail Files MAIL-9
16.7.1.2 Specifying an Alternate Mail File Specification MAIL-10
16.7.2 Displaying Folder Names i MAIL-11
16.7.3 Purging Mail Files Using the Wastebasket Folder MAIL-11
16.7.3.1 Reclaiming Disk Space. i MAIL-11
16.7.3.2 Compressing Mail Files MAIL-11
16.8 Message Context MAIL-11
16.8.1 Selecting MesSsages MAIL-12

16.8.2 Reading and Printing Messagesottt MAIL-13

16.8.3 Modifying Messages MAIL-13
16.8.4 Copying and Moving MeSSagest MAIL-13
16.8.4.1 Creating Folders MAIL-14
16.8.4.2 Deleting Folders. MAIL-14
16.8.4.3 Creating Mail Files MAIL-14
16.8.5 Deleting MeSsages oot e MAIL-14
16.9 Send Context MAIL-14
16.9.1 Sending New MESSages oottt MAIL-15
16.9.1.1 Creatinga MesSsaget MAIL-15
16.9.1.1.1 Constructing the Message Header MAIL-15
16.9.1.1.2 Constructing the Body of the Message MAIL-15
16.9.1.2 Creatingan Address List MAIL-16
16.9.2 Sending EXisting Messages MAIL-16
16.9.3 Send Action RoUtines MAIL-16
16.9.3.1 Success Action Routines MAIL-16
16.9.3.2 Error Handling Routines o, MAIL-16
16.9.3.3 Aborting a Send Operation MAIL-17
16.10 User Profile Context. MAIL-17
16.10.1 User Profile Entries MAIL-17
16.10.1.1 Adding Entries to the User Profile Database MAIL-18
16.10.1.2 Modifying or Deleting User Profile Entries MAIL-18
16.11 Input Item CodeS oot e MAIL-18
16.12 Output Item Codes. MAIL-21
16.13 Using the MAIL Routines: Examples MAIL-23
16.14 MAIL ROULINESo o e MAIL-31
MAILSMAILFILE BEGIN e MAIL-32
MAILSMAILFILE_CLOSE e MAIL-34
MAILSMAILFILE COMPRESS e MAIL-36
MAILSMAILFILE END e e MAIL-39
MAILSMAILFILE_INFO_FILE MAIL-41
MAILSMAILFILE_MODIFY e MAIL-44
MAILSMAILFILE_OPEN. e MAIL-47
MAILSMAILFILE_PURGE_WASTE i MAIL-50
MAILSMESSAGE_BEGIN e MAIL-53
MAILSMESSAGE_COPY MAIL-55
MAILSMESSAGE_DELETE e MAIL-59
MAILSMESSAGE END e MAIL-61
MAILSMESSAGE _GET e e e MAIL-63
MAILSMESSAGE_INFO e MAIL-68
MAILSMESSAGE_MODIFY e MAIL-72
MAILSMESSAGE_SELECT e MAIL-75
MAILSSEND_ABORT . . . MAIL-78
MAIL$SSEND _ADD_ADDRESS e MAIL-80
MAIL$SEND _ADD_ATTRIBUTE. e MAIL-82
MAILSSEND_ADD BODYPART e MAIL-85
MAILSSEND BEGIN. e MAIL—-88
MAILSSEND_END MAIL-91
MAILSSEND_MESSAGE MAIL-93
MAILSUSER_BEGIN e MAIL-95

Xi

MAILSUSER_DELETE_INFO e MAIL-98

MAILSUSER_END. MAIL-100
MAILSUSER_GET_INFO e MAIL-102
MAILSUSER_SET_INFO e MAIL-106

17 National Character Set (NCS) Utility Routines

171
1711
17.1.2
17.2
17.3

Introduction to NCS Routines NCS-1
List of NCS ROULINES oo e NCS-1
Sample Application Process NCS-2

Using the NCS Utility Routines: Examples NCS-2

NCS ROULINES NCS-6

NCSSCOMPARE NCS-7

NCSSCONVERT e NCS-9

NCSSEND CF e e NCS-11

NCSEEND _CS . .. NCS-12

NCSEGET _CF . . e NCS-13

NCSBGET _CS .. NCS-15

NCSBRESTORE _CFo e NCS-17

NCSERESTORE _CS. ... e e NCS-19

NCSSSAVE CF ... NCS-21

NCSSSAVE CS ... NCS-23

18 Print Symbiont Modification (PSM) Routines

Xii

18.1
18.2
18.2.1
18.2.2
18.2.3
18.2.4
18.2.5
18.3
18.3.1
18.3.2
18.3.2.1
18.3.2.2
18.3.3
18.3.3.1
18.3.4
18.3.4.1
18.3.5
18.3.6
18.3.7
18.4
18.5

Introduction to PSM Routines PSM-1
Print Symbiont Overview PSM-2
Components of the Print Symbiont PSM-2
Creation of the Print Symbiont Process PSM-2
Symbiont Streams PSM-3
Symbiont and Job Controller Functions PSM-3
Print Symbiont Internal Logic PSM-4
Symbiont Modification Procedure. PSM-6
Guidelines and Restrictions PSM-7
Writing an Input Routine. PSM-9
Internal Logic of the Symbiont’s Main Input Routine PSM-9
Symbiont Processing of Carriage Control PSM-10
Writing a Format Routine PSM-11
Internal Logic of the Symbiont’s Main Format Routine PSM-12
Writing an Output Routine i, PSM-12
Internal Logic of the Symbiont’s Main Output Routine PSM-13

Other Function Codes PSM-13
Writing a Symbiont Initialization Routine PSM-14
Integrating a Modified Symbiont PSM-15
Using the PSM Routines: An Example PSM-16
PSM ROULINESo PSM-20
PSMBPRINT .. PSM-21
PSMSREAD_ITEM_DX . .. e PSM-23
PSMSREPLACE PSM-25
PSMSREPORT PSM-30
USER-FORMAT-ROUTINE e PSM-33

USER-INPUT-ROUTINE e PSM-37
USER-OUTPUT-ROUTINE e PSM-43

19 Symbiont/Job Controller Interface (SMB) Routines

191
19.11
19.1.2
19.1.3
19.1.4
19.1.5
19.1.6
19.1.7
19.1.71
19.1.7.2
19.1.8
19.1.9
19.1.10
19.2

20 Sort/M

20.1
20.1.1
20.1.2
20.2
20.21
20.2.2
20.2.2.1
20.2.2.2
20.2.2.3
20.2.2.4
20.2.3
20.3
20.4

Introduction to SMB Routines, SMB-1
Types of Symbiont SMB-1
Symbionts Supplied with the Operating System SMB-1
Symbiont Behavior in the OpenVMS Environment SMB-2
Writing a Symbiont SMB-3
Guidelines for Writinga Symbiont. SMB-3
The Symbiont/Job Controller Interface Routines SMB-4
Choosing the Symbiont Environment. SMB-5

Synchronous Versus Asynchronous Delivery of Requests SMB-5
Single-Streaming Versus Multistreaming. SMB-9
Reading Job Controller Requests SMB-10
Processing Job Controller Requests SMB-10
Responding to Job Controller Requests SMB-13

SMB ROULINESo SMB-13

SMB$CHECK FOR MESSAGE it SMB-14

SMBSINITIALIZE . .o\ttt SMB-15

SMBSREAD MESSAGE SMB-17

SMB$READ_MESSAGE_ITEM e SMB-20

SMBS$SEND_TO_JOBCTL . ..ottt e e e e e e SMB-30

erge (SOR) Routines

High-Performance Sort/Merge (Alpha Only). SOR-1
High-Performance SOR Routine Behavior SOR-2
Using Threads with High-Performance Sort/Merge SOR-3

Introduction to SOR Routines, SOR-4
Arguments to SOR Routines SOR—-4
Interfaces to SOR Routines SOR-5

Sort Operation Using File Interface SOR-5
Sort Operation Using Record Interface SOR-6
Merge Operation Using File Interface SOR-6
Merge Operation Using Record Interface SOR-6
Reentrancy SOR-6

Using the SOR Routines: Examples SOR-8

SOR ROULINES o SOR-27

SORSBEGIN_MERGE e SOR-28

SORSBEGIN_SORT . ..o SOR-35

SOREBDTYPE ..o SOR-41

SORSEND SORT . ..ttt SOR-44

SORSPASS FILES SOR-46

SORSRELEASE REC e SOR-51

SORSRETURN_REC e SOR-53

SOR$SORT_MERGE e SOR-55

SORSSPEC _FILE. SOR-58

SORBST AT . o SOR-60

xiii

21 Traceback Facility (TBK) Routines

211
21.2

21.2.1
21.2.2
21.2.3

21.3

Index

Examples

Xiv

2-1
3-1
4-1

5-1
6-1
6-2
6-3
64
7-1
7-2
8-1
8-2
8-3
8-4
10-1
12-1
12-2
12-3

13-1
13-2
13-3
134
13-5
13-6
13-7
13-8
13-9
13-10
16-1
16-2
16-3

Introduction to TBK Routines
Using TBK Routines—Example

TBK$164_SYMBOLIZE Example—Part1
TBK$164_SYMBOLIZE Example—Part2
TBK$164_SYMBOLIZE Example—Part3

TBK ROULINES . . .ttt e e e e e e
TBKS$I164 SYMBOLIZE e
TBKSALPHA SYMBOLIZE e

Calling the ACL Editor with a VAX BLISS Program
Calling the Backup APl with a VAX C Program

Using the CLI Routines to Retrieve Information About Command
Lines in a Fortran Programt

Using UTILSCQUAL Routines to Process Files
Using the CONVERT Routines in a Fortran Program
Using the CONVERT RoutinesinaCProgram..................
Using the CONV$RECLAIM Routine in a Fortran Program
Using the CONV$RECLAIM Routineina C Program
Compressing a File in a HP Fortran Program
Expanding a Compressed File in a HP Fortran Program...........
Sample VAX BLISS Template for Callable DECTPU
Normal DECTPU Setup in HP Fortran
Building a Callback Item List with HP Fortran.
Specifying a User-Written File 1/0 Routine in VAXC
Using the EDT Routines in a VAX BASIC Program.
Using FDL$CREATE in a Fortran Program
Using FDL$PARSE and FDL$RELEASE ina C Program

Using FDL$PARSE and FDL$GENERATE in a HP Pascal
Program

Creating a New Library Using HP Pascal
Inserting a Module into a Library Using HP Pascal
Extracting a Module from a Library Using HP Pascal
Deleting a Module from a Library Using HP Pascal
Associating Keys with Modules
Listing Keys Associated with a Module
Displaying the Module Header.
Reading Library Headers
Displaying Text froma Help Library
Displaying Index Entries i,
Sendinga File
Displaying Folders
Displaying User Profile Information

CLI-2

CONV-2

DECTPU-7

DECTPU-12
DECTPU-14
DECTPU-17

MAIL-26
MAIL-28

17-1
17-2
18-1

20-1
20-2
20-3
204
20-5

21-1
21-2
21-3

Figures

9-1

9-2

9-3

9-4

9-5

11-1
11-2
13-1
13-2
13-3
151
15-2
16-1
16-2
18-1
18-2
19-1
19-2
19-3

19-4

Using NCS Routines in a HP Fortran for OpenVMS Program NCS-3
Using NCS Routines in a HP C for OpenVMS VAX Program. NCS—4
Using PSM Routines to Supply a Page Header Routine in a VAX

MACRO Program PSM-16
Using SOR Routines to Perform a Merge Using Record Interface in a

HP Fortran Program e SOR-9
Using SOR Routines to Sort Using Mixed Interface in a HP Fortran

Program SOR-13
Using SOR Routines to Merge Three Input Files in a HP Pascal

Program SOR-15
Using SOR Routines to Sort Records from Two Input Files in a HP

Pascal Program SOR-19
Using SOR Routines to Sort Records Using the STABLE Option and

Two Text Keys ina HP C Program, SOR-23
TBK$164_SYMBOLIZE Example—Part 1 TBK-2
TBK$164_SYMBOLIZE Example—Part2 TBK-3
TBK$164_SYMBOLIZE Example—Part3 TBK—6
Time Display Format DECdts-2
Time Display Format Variants. DECdts-3
Relative Time Syntax. e DECdts-4
Time Period Syntaxt DECdts-4
DTS Portable Interface Categories. DECdts—9
OpenVMS Numbering Overlay on FIPS-46 Numbering ENC-7
NBS Numbering Overlay on an OpenVMS Quadword ENC-7
Structure of a Macro, Text, or Help Library LBR-4
Structure of an Object or Shareable Image Library LBR-4
Structure of a User-Developed Library LBR-5
LOGINOUT Callout Routines Data Flow LGI-3
Callout Organization LGI-6
Standard Message Format MAIL-1
Item DesCriptor MAIL-6
Multithreaded Symbiont PSM-3
Symbiont Execution Sequence or Flow of Control PSM-5
Symbionts in the OpenVMS Environment SMB-2
Flowchart for a Single-Threaded, Synchronous Symbiont SMB-6
Flowchart for a Single-Threaded, Asynchronous Symbiont (MAIN

ROULING) . . .o SMB-8
Flowchart for a Single-Threaded, Asynchronous Symbiont (AST

ROULINE) . . . SMB-9

XV

Tables

3-1 Backup API Language Definition Files BCK-2
3-2 BACKUP Option Structure Types, BCK-4
3-3 bckEvent Format BCK-19
3-4 Event Callback Buffer Formats BCK-19
3-5 Control Event Subtypes BCK-22
3-6 bckControl Format BCK-23
5-1 UTILSCQUAL ROULINES oo e e e CQUAL-1
5-2 UTIL$CQUAL_FILE_PARSE Command Line Qualifiers CQUAL-2
5-3 UTILSCQUAL_FILE _PARSE Flagsand Masks CQUAL-11
5-4 Prompting Form Values e CQUAL-19
5-5 Prompt RESpONSES CQUAL-20
6-1 Conversion Statistics Arrayot CONV-9
6-2 CONVERT Qualifiers e CONV-16
6-3 Bucket Reclamation Statistics Array CONV-21
8-1 Valid Masks for the TPUSK_OPTIONS Item Code. DECTPU-58
9-1 Absolute Time Structures. DECdts-5
9-2 Relative Time Structures i DECdts-5
11-1 Comparison of NBS and OpenVMS Numbering Conventions ENC-6
11-2 Routines for Maintaining Keys ENC-8
11-3 ENCRYPTS$DEFINE KEY Flags ENC-18
11-4 ENCRYPTSENCRYPT FILEFlags ENC-26
13-1 Libraries Created by OpenVMS Platforms. LBR-2
13-2 LBR ROULINESo e LBR-5
15-1 LOGINOUT Callouts e LGI-3
15-2 LOGINOUT Callback Routines, LGI-4
15-3 Useful LOGINOUT Internal Variables. LGI-8
16-1 Default Mail Folders i MAIL-2
16-2 User Profile Information MAIL-3
16-3 Levels of Mail Utility Processing MAIL-4
16-4 Callable Mail Utility Routines MAIL—4
16-5 Types of Action Routines i MAIL-8
16-6 Mail File Routines i MAIL-8
16-7 Message ROULINES i e e e MAIL-11
16-8 Send ROULINES MAIL-15
16-9 User Profile Context Routines, MAIL-17
16-10 Input Item Codes MAIL-19
16-11 Output 1tem CodesSo vt MAIL-22
17-1 NCS ROULINES . . .o e e NCS-1
18-1 Routine Codes for Specification to PSM$SREPLACE PSM-14
20-1 High-Performance Sort/Merge: Differences in SOR$ Routine

Behavior. SOR-2
21-1 Values for TBK_API_ PARAM TBK-10
21-2 Values for TBK_API_PARAMon Alpha TBK-14

XVi

Preface

Intended Audience

This manual is intended for programmers who want to invoke and use the
functions provided by OpenVMS utilities.

Document Structure

Chapter 1 introduces the utility routines and lists the documentation format used
to describe each set of utility routines, as well as the individual routines in each
set. Each subsequent chapter contains an introduction to a set of utility routines,
a programming example to illustrate the use of the routines in the set, and a
detailed description of each routine.

This manual presents the following utility routine sets:

Access Control List (ACL) editor routine

Backup API routine

Command Language Interface (CLI) routines
Common File Qualifier routines

Convert (CONVERT) routines

Data Compression/Expansion (DCX) routines
DEC Text Processing Utility (DECTPU) routines

DIGITAL Distributed Time Service (DECdts) Portable Applications
Programming Interface

EDT routines

Encryption (ENCRYPT) routines

File Definition Language (FDL) routines
Librarian (LBR) routines

Lightweight Directory Access Protocol (LDAP) routines
LOGINOUT (LGI) routines

Mail utility (MAIL) routines

National character set (NCS) utility routines
Print Symbiont Modification (PSM) routines
Symbiont/Job Controller Interface (SMB) routines
Sort/Merge (SOR) routines

Traceback facility (TBK) routines

XVii

Related Documents

For information about HP OpenVMS products and services, visit the following
World Wide Web address:

http://www.hp.com/go/openvms

Reader’'s Comments

HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com
Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698
How To Order Additional Documentation

For information about how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Conventions

The following conventions may be used in this manual:

164 Abbreviation representing "HP OpenVMS for Integrity
servers".
Ctrl/x A sequence such as Ctrl/x indicates that you must hold down

the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

Horizontal ellipsis points in examples indicate one of the
following possibilities:

= Additional optional arguments in a statement have been
omitted.

= The preceding item or items can be repeated one or more
times.

= Additional parameters, values, or other information can be
entered.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

xviii

0

[]

{}

bold type

italic text

Example

UPPERCASE TYPE

numbers

In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.

Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

Bold type represents the introduction of a new term. It also
represents the name of an argument, an attribute, or a reason.

Italic text indicates important information, complete titles

of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

This typeface indicates code examples, command examples, and
interactive screen displays. In text, this type also identifies
URLSs, UNIX commands and pathnames, PC-based commands
and folders, and certain elements of the C programming
language.

Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

Xix

1

Introduction to Utility Routines

A set of utility routines performs a particular task or set of tasks. For example,
you can use the Print Symbiont Modification (PSM) routines to modify the print

symbiont and the EDT routines to invoke the EDT editor from a program.

Some of the tasks performed by utility routines can also be performed at the
Digital Command Language (DCL) level (for example, the DCL command EDIT
invokes the EVE editor). While DCL commands invoke utilities that let you
perform tasks at your terminal, you can perform some of these tasks at the
programming level through the use of the utility routines.

When using a set of utility routines that performs the same tasks as the related
utility, you should read the documentation for that utility; doing so will provide
additional information about the tasks the routines can perform as a set. The
following table lists the utilities and their corresponding routines:

Utility or Editor

Utility Routines

Access control list editor

Backup application programming interface
Command Definition Utility

Common File Qualifier routines

Convert and Convert/Reclaim utilities

Data Compression/Expansion (DCX) facility
DEC Text Processing Utility

Digital Distributed Time Service (DECdts) portable
applications programming interface

EDT editor

Encryption routines

File Definition Language facility
Librarian utility

Lightweight Directory Access Protocol (LDAP) application
programming interface

LOGINOUT callout routines

Mail utility

National Character Set utility

Print Symbiont Modification (PSM) facility
Symbiont/Job Controller Interface facility
Sort/Merge utility

Traceback facility

ACL editor routine
Backup API routine
CLI routines
UTIL$SCQUAL routines
CONVERT routines
DCX routines
DECTPU routines
DECdts API routines

EDT routines
ENCRYPT routines
FDL routines
LBR routines
LDAP API routines

LGI routines
MAIL routines
NCS routines
PSM routines
SMB routines
SOR routines
TBK routines

Introduction to Utility Routines 1-1

Introduction to Utility Routines

1-2

When a set of utility routines performs functions that you cannot perform

by invoking a utility, the functions provided by that set of routines is termed

a facility. The following facilities have no other user interface except the
programming interface provided by the utility routines described in this manual:

Facility Utility Routines
Data Compression/Expansion facility DCX routines
Print Symbiont Modification facility PSM routines
Symbiont/Job Controller Interface facility SMB routines
Traceback faciltiy TBK routines

Like all other system routines in the OpenVMS environment, the utility routines
described in this manual conform to the HP OpenVMS Calling Standard. Note
that for stylistic purposes, the calling syntax illustrated for routines documented
in this manual is consistent. However, you should consult your programming
language documentation to determine the appropriate syntax for calling these
routines.

Each chapter of this book documents one set of utility routines. Each chapter has
the following major components, documented as a major heading:

< An introduction to the set of utility routines. This component discusses the
utility routines as a group and explains how to use them.

= One or more programming examples that illustrate how the utility routines
are used.

= A series of descriptions of each utility routine in the set.

Introduction to Utility Routines

2

Access Control List (ACL) Editor Routine

This chapter describes the access control list editor (ACL editor) routine,
ACLEDITS$EDIT. User-written applications can use this callable interface of the
ACL editor to manipulate access control lists (ACLS).

2.1 Introduction to the ACL Editor Routine

The ACL editor is a utility that lets you create and maintain access control lists.
Using ACLs, you can limit access to the following protected objects available to
system users:

= Devices

= Files

= Group global sections
= Logical name tables

e System global sections
= Capabilities (VAX only)
= Common event flag clusters
e Queues

= Resource domains

= Security classes

= \Volumes

The ACL editor provides one callable interface that allows the application
program to define an object for editing.

Note that the application program should declare referenced constants and return
status symbols as external symbols; these symbols will be resolved upon linking
with the utility shareable image.

See the HP OpenVMS Programming Concepts Manual for fundamental
conceptual information on the creation, translation, and maintenance of access
control entries (ACESs).

2.2 Using the ACL Editor Routine: An Example
Example 2-1 shows a VAX BLISS program that calls the ACL editor routine.

Access Control List (ACL) Editor Routine ACL-1

Access Control List (ACL) Editor Routine
2.2 Using the ACL Editor Routine: An Example

Example 2-1 Calling the ACL Editor with a VAX BLISS Program

MODULE MAIN (LANGUAGE (BLISS32), MAIN = STARTUP) =
BEGIN

LIBRARY ’SYSSLIBRARY:LIB';

ROUTINE STARTUP =

BEGIN

LOCAL
STATUS, | Routine return status
ITMLST : BLOCKVECTOR [6, ITM$S_ITEM, BYTE] ;
| ACL editor item list

EXTERNAL LITERAL
ACLEDITS$V_JOURNAL,
ACLEDITS$V_PROMPT MODE,

ACLEDITSC_OBJNAM,
ACLEDITS$C OBJTYP,
ACLEDITSC_OPTIONS;

EXTERNAL ROUTINE

ACLEDITSEDIT : ADDRESSING MODE (GENERAL), ! Main routine
CLISGET VALUE, | Get qualifier value

CLISPRESENT, | See if qualifier present

LIBSPUT OUTPUT, | General output routine

STRSCOPY DX; ! Copy string by descriptor

| Set up the item list to pass back to TPU so it can figure out what to do.

CH$FILL (0, 6*ITM$S ITEM, ITMLST);

ITMLST[0, ITMS$W ITMCOD] = ACLEDITS$C OBJNAM;

ITMLST[0, ITM$W BUFSIZ] = $CHARCOUNT (’'YOUR OBJECT NAME');
")

[_ | _
ITMLST [0, ITMSL BUFADR] = $DESCRIPTOR (’'YOUR OBJECT NAME
ITMLST [1, ITMSW ITMCOD] = ACLEDITS$C OBJTYP;

ITMLST [1, ITMSW BUFSIZ] = 4;

ITMLST[1, ITM$L BUFADR] = UPLIT (ACLSC FILE);

ITMLST [2, ITM$W ITMCOD] = ACLEDITSC OPTIONS;

ITMLST[2, ITM$W BUFSIZ] = 4;

ITMLST [2, ITMSL BUFADR] = UPLIT (1 8 ACLEDITSV_PROMPT MODE OR
1" ACLEDITSV_JOURNAL) ;

RETURN ACLEDITSEDIT (ITMLST);
END; ! End of routine STARTUP

END
ELUDOM

2.3 ACL Editor Routine

This section describes the ACL editor routine.

ACL-2 Access Control List (ACL) Editor Routine

Access Control List (ACL) Editor Routine
ACLEDITS$EDIT

ACLEDIT$EDIT—Edit Access Control List

Format

Returns

Argument

The ACLEDITS$EDIT routine creates and modifies an access control list (ACL)
associated with any protected object.

ACLEDIT$EDIT item_list

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

item_list

OpenVMS usage: item_list_3

type: longword (unsigned)
access: read only
mechanism: by descriptor

Item list used by the callable ACL editor. The item_list argument is the address
of one or more descriptors of arrays, routines, or longword bit masks that control
various aspects of the editing session.

Each entry in an item list is in the standard format shown in the following figure:

Item code Buffer length

Buffer address

Return length address

ZK-5012-GE

Access Control List (ACL) Editor Routine ACL-3

Access Control List (ACL) Editor Routine
ACLEDITS$EDIT

The following table provides a detailed description of each item list entry:

Item Identifier Description
ACLEDIT$C_OBJNAM Specifies the name of the object whose ACL is being edited.
ACLEDIT$C_OBJTYP A longword value that specifies the object type code for the type

or class of the object whose ACL is being edited. These type
codes are defined in $ACLDEF. The default object type is FILE

(ACL$C_FILE).

ACLEDIT$C_OPTIONS Represents a longword bit mask of the various options available
to control the editing session.

Flag

Function

ACLEDIT$V_JOURNAL

ACLEDIT$V_RECOVER

ACLEDIT$V_KEEP_
RECOVER

ACLEDIT$V_KEEP_
JOURNAL

ACLEDIT$V_PROMPT _
MODE

Indicates that the editing session is to
be journaled.

Indicates that the editing session is to
be recovered from an existing journal
file.

Indicates that the journal file used to
recover the editing session is not to be
deleted when the recovery is complete.

Indicates that the journal file used for
the editing session is not to be deleted
when the session ends.

Indicates that the session is to use
automatic text insertion (prompting)
to build new access control list entries
(ACEs).

ACL-4 Access Control List (ACL) Editor Routine

Access Control List (ACL) Editor Routine
ACLEDITS$EDIT

Item Identifier

Description

ACLEDIT$C_BIT_TABLE

ACLEDIT$C_CLSNAM

Specifies a vector of 32 quadword string descriptors of strings that
define the names of the bits present in the access mask. (The first
descriptor defines the name of bit O; the last descriptor defines
the name of bit 31.) These descriptors are used in parsing or
formatting an ACE. The buffer address field of the item descriptor
contains the address of this vector.

A string descriptor that points to the class name of the object
whose ACL is being modified. The following are valid class
names:

- CAPABILITY (VAX only)

- COMMON_EVENT FLAG_CLUSTER
- DEVICE

- FILE

- GROUP_GLOBAL_SECTION
- LOGICAL_NAME_TABLE

- QUEUE

- RESOURCE_DOMAIN

- SECURITY_CLASS

- SYSTEM_GLOBAL_SECTION
- VOLUME

If both OBJTYP and CLSNAM are omitted, the object is assumed
to belong to the FILE class.

Description

Use the ACLEDITS$EDIT routine to create and modify an ACL associated with
any security object.

Under normal circumstances, the application calls the ACL editor to modify an
object's ACL, and control is returned to the application when you finish or abort
the editing session.

If you also want to use a customized version of the ACL editor section file, the
logical name ACLEDTS$SECTION should be defined. See the HP OpenVMS
System Management Utilities Reference Manual for more information.

Condition Values Returned

SS$_ NORMAL
RMS$_xxx

Normal successful completion.

See the OpenVMS Record Management Services
Reference Manual for a description of OpenVMS
RMS status codes.

Access Control List (ACL) Editor Routine ACL-5

Access Control List (ACL) Editor Routine
ACLEDITS$EDIT

TPUS$_XxX See Chapter 8 for a description of the TPU-
specific condition values that may be returned by
ACLEDITS$EDIT.

ACL—-6 Access Control List (ACL) Editor Routine

3

Backup (BACKUP) Routine

This chapter describes the Backup application programming interface (API).
User-written applications can use the Backup API to perform BACKUP
operations.

3.1 Introduction to the Backup API

The Backup API allows application programs to save individual files or the
contents of entire disk volume sets. The Backup API also allows application
programs to get information about files or disk and tape volumes.

In general, the Backup API gives application programs access to (relevant)
BACKUP functions that are available to an interactive user via the DCL
command BACKUP. The application program calls routine BACKUP$START
with an argument that points to a variable-length array, which consists of
option structures to specify the required BACKUP operation. The call to
BACKUPS$START in combination with the option structures in the variable-
length array form the equivalent of a BACKUP command at DCL level.

Each relevant BACKUP qualifier is represented by an option structure or
combination of option structures. Each option structure consists of a longword
that contains the option structure identifier, followed by a value field of 1 to

7 longwords. Each option structure must be quadword-aligned within the
variable-length array. There are six option structure types:

Option Definition
bck_opt_struct_adr 32-bit address
bck_opt_struct_dsc Static string descriptor
bck_opt_struct_dsc64 Reserved for use by HP
bck_opt_struct_dt Date/Time quadword (ADT)
bck_opt_struct_flag Logical bit flags
bck_opt_struct_int 32-bit integer

The option structure types are defined in the language definition files. Table 3-1
lists the language definition files.

Backup (BACKUP) Routine BCK-1

Backup (BACKUP) Routine
3.1 Introduction to the Backup API

Table 3-1 Backup API Language Definition Files

Media Format

(Save Set) Backup Utility Data
Language API Definitions Definitions Structures
BASIC BAPIDEF.BAS BACKDEF.BAS BACKSTRUC.BAS
BLISS BAPIDEF.R32 BACKDEF.R32 BACKSTRUC.R32
C BAPIDEF.H BACKDEF.H BACKSTRUC.H
Fortran BAPIDEF.FOR BACKDEF.FOR BACKSTRUC.FOR
MACRO BAPIDEF.MAR BACKDEF.MAR BACKSTRUC.MAR

See the HP OpenVMS System Management Utilities Reference Manual: A-L
for detailed definitions of the DCL command BACKUP qualifiers. See the
HP OpenVMS System Manager’s Manual, Volume 1: Essentials for detailed
information about using BACKUP. You can also use the Help facility for more
information about the Backup command and its qualifiers.

3.2 Using the Backup APIl: An Example

Example 3-1 shows a VAX C program that calls the Backup API. This program
produces the same result as the following DCL command:

$ BACKUP [.WRK]*.* A.BCK/SAVE

Example 3-1 Calling the Backup API with a VAX C Program

#include <stdio.h>

#include <stdlib.h>

#include <ssdef.h>

#include <descrip.h>

#include "sysS$Sexamples:bapidef.h"

typedef struct buf arg

bck opt struct dsc argl;
bck opt struct dsc arg2;
bck opt struct flag arg3;
bck opt struct flag argé;
bck opt struct flag arg5;

} buf arg;
struct dsc$descriptor
input dsc,
output_dsc,
event type dsc;
buf arg myarg buff;
unsigned int status;

extern unsigned int backup$start (buf arg
unsigned int subtest (void *);

static char input_strl]
static char output str(]

—n [.er] n,.
= "a.bck";

BCK-2 Backup (BACKUP) Routine

*myarg buff);

(continued on next page)

Backup (BACKUP) Routine
3.2 Using the Backup API: An Example

Example 3-1 (Cont.) Calling the Backup API with a VAX C Program

main ()

{

input dsc.dsc$b_dtype =
output dsc.dsc$b dtype = DSC$K DTYPE T;

input dsc.dsc$b class =
output dsc.dsc$b class = DSC$K CLASS S;

input dsc.dsc$w_length = sizeof (input str);
output dsc.dsc$w_length = sizeof (output str);

input dsc.dsc$a pointer = input str;
output dsc.dsc$a pointer = output str;

myarg buff.argl.opt dsc type = BCK OPT K INPUT;
myarg buff.argl.opt dsc = input dsc;

myarg buff.arg2.opt dsc type = BCK OPT K OUTPUT;
myarg buff.arg2.opt dsc = output dsc;

myarg buff.arg3.option type = BCK OPT K SAVE SET OUT;
myarg buff.arg3.opt flag value = TRUE;

myarg buff.arg4.option type = BCK OPT K OPERATION TYPE;
myarg buff.arg4.opt flag value = BCK OP_K SAVE ;

myarg buff.arg5.option type = BCK OPT_K END OPT;
myarg buff.arg5.opt flag value = FALSE;

3.3 Backup API

status = backup$start (&myarg buff);

exit (status);

This section describes the Backup API.

Backup (BACKUP) Routine BCK-3

Backup API

BACKUPS$START

BACKUP$START—Call BACKUP Utility

Format

Returns

Argument

BACKUPS$START is the entry point through which applications invoke the
OpenVMS Backup utility.

BACKUPS$START argument-buffer

OpenVMS usage: COND_VALUE

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Condition values that this routine can return are
listed under Condition Values Returned.

argument-buffer
OpenVMS usage: user-defined array

type: longword (unsigned)
access: read only
mechanism: by reference

Arguments that specify the BACKUP operation to be performed. The
argument-buffer argument is the address of a variable-length array of one

or more Backup API option structures that define the attributes of the requested
BACKUP operation. The variable-length array is terminated by an option
structure of 16 bytes that contains all zeros. Table 3-2 describes the option
structures.

Note

The length of the terminating option structure is 2 longwords (16 bytes).
The first longword identifies the option structure and has a value of 0. It
is recommended that the second longword contain a value of 0.

Table 3—2 BACKUP Option Structure Types

Option Structure Description

BCK_OPT_K _END_OPT Flag that contains all zeros to denote the end of

argument-buffer. This option structure consists
of 2 longwords. The first longword, with a value
of 0, identifies the BCK_OPT_K_END_OPT
option structure. The second longword is ignored
by BACKUP. However it is recommended that the
second longword contain all zeros.

(continued on next page)

BCK-4 Backup (BACKUP) Routine

Backup API
BACKUPS$START

Table 3-2 (Cont.) BACKUP Option Structure Types

Option Structure

Description

BCK_OPT_K_ALIAS

BCK_OPT_K_ASSIST

BCK_OPT_K_BACKUP

BCK_OPT_K_BEFORE_TYPE

Flag that specifies whether to maintain the
previous behavior of multiple processing of alias
and primary file entries.

Values are TRUE (default) or FALSE. (See the
BACKUP qualifier /ALIAS.)

Note: Use of BCK_OPT_K_ALIAS and BCK_
OPT_K_PHYSICAL in the same call results in a
fatal error.

Flag that specifies whether to allow operator
or user intervention if a request to mount a
magnetic tape fails during a BACKUP operation.

Values are TRUE (default) or FALSE.
(See the BACKUP qualifier /ASSIST.)
Flag that specifies whether to select files

according to the BACKUP date written in the
file header record.

Values are TRUE or FALSE. Use this
flag to set the corresponding logical bit
flag for BCK_OPT_K_BEFORE_TYPE and
BCK_OPT_K_SINCE_TYPE.

(See the BACKUP qualifiers /BEFORE, /SINCE,
and /BACKUP.)

Logical bit flags that qualify the date specified
in the BCK_OPT_K_BEFORE_VALUE option
structure. Type can be one of the following:

BCK_OPTYP_BEFORE_K_BACKUP

Selects files last saved or copied by BACKUP
before the date specified. Also selects files
with no BACKUP date.

BCK_OPTYP_BEFORE_K_CREATED
Selects files created before the date specified.
BCK_OPTYP_BEFORE_K_EXPIRED

Selects files that have expired as of the date
specified.
BCK_OPTYP_BEFORE_K_MODIFIED

(Default) Selects files last modified before the
date specified.

BCK_OPTYP_BEFORE_K_SPECIFIED
Reserved for use by HP.

(See the BACKUP qualifiers /BEFORE,
/BACKUP, /ICREATED, /EXPIRED, and
/MODIFIED.)

(continued on next page)

Backup (BACKUP) Routine BCK-5

Backup API
BACKUPS$START

Table 3-2 (Cont.) BACKUP Option Structure Types

Option Structure Description

BCK_OPT_K_BEFORE_VALUE Date-Time Quadword that specifies the date
qualified by BCK_OPT_K_BEFORE_TYPE. You
cannot use delta time.

(See the BACKUP qualifier /BEFORE.)

BCK_OPT_K_BLOCK Integer that specifies the block size in bytes for
data records in the BACKUP save set.
The default block size for magnetic tape is 8,192
bytes. The default block size for disk is 32,256
bytes.
(See the BACKUP qualifier /BLOCK_SIZE.)
BCK_OPT_K_CARTRIDGE_MEDIA_IN? 32-bit descriptor.
Note: Use of BCK_OPT_K_CARTRIDGE_
MEDIA_IN and BCK_OPT_K_CARTRIDGE_
NAME_IN or any of the BCK_OPT_K _
SCRATCH_* option structures in the same call
results in a fatal error.

BCK_OPT_K_CARTRIDGE_NAME_IN! 32-bit descriptor.
Note: Use of BCK_OPT_K_CARTRIDGE_
NAME_IN and BCK_OPT_K_CARTRIDGE_
MEDIA_IN or any of the BCK_OPT_K_
SCRATCH_* option structures in the same call
results in a fatal error.

BCK_OPT_K_CARTRIDGE_SIDE_IN! 32-bit descriptor.
Note: Use of BCK_OPT_K_CARTRIDGE_SIDE_
IN without BCK_OPT_K_CARTRIDGE_NAME_
IN in the same call results in a fatal error.
Note: Use of BCK_OPT_K_CARTRIDGE_SIDE_
IN with any of the BCK_OPT_K_SCRATCH_*
option structures in the same call results in a
fatal error.
BCK_OPT_K_CARTRIDGE_MEDIA_OUT? 32-bit descriptor.
Note: Use of BCK_OPT_K_CARTRIDGE_
MEDIA_OUT and BCK_OPT_K_CARTRIDGE_
NAME_OUT or any of the BCK_OPT_K_
SCRATCH_* option structures in the same call
results in a fatal error.

BCK_OPT_K_CARTRIDGE_NAME_OUT! 32-bit descriptor.
Note: Use of BCK_OPT_K_CARTRIDGE _
NAME_OUT and BCK_OPT_K_CARTRIDGE_
MEDIA_OUT or any of the BCK_OPT_K_
SCRATCH_* option structures in the same call
results in a fatal error.

1Reserved for use by Media Management Extension (MME) layered products.

(continued on next page)

BCK-6 Backup (BACKUP) Routine

Backup API
BACKUPS$START

Table 3-2 (Cont.) BACKUP Option Structure Types

Option Structure

Description

BCK_OPT_K_CARTRIDGE_SIDE_OUT!

BCK_OPT_K_COMMAND
BCK_OPT_K_COMMENT

BCK_OPT_K_COMPARE

BCK_OPT_K_CONFIRM

BCK_OPT_K_CRC

BCK_OPT_K_CREATED

BCK_OPT_K_DCL_INTERFACE
BCK_OPT_K_DELETE

32-bit descriptor.

Note: Use of BCK_OPT_K_CARTRIDGE_
SIDE_OUT without BCK_OPT_K_CARTRIDGE_
NAME_OUT in the same call results in a fatal
error.

Note: Use of BCK_OPT_K_CARTRIDGE_SIDE_
OUT with any of the BCK_OPT_K_SCRATCH_*
option structures in the same call results in a
fatal error.

Reserved for use by HP.

32-bit descriptor that specifies a comment string
to be placed in the output save set.

(See the BACKUP qualifier /COMMENT.)

Flag that specifies whether to compare the entity
specified by BCK_OPT_K_INPUT with the entity
specified by BCK_OPT_K_OUTPUT. Values are
TRUE and FALSE (default).

(See the BACKUP qualifier /COMPARE.)

Flag that specifies whether to prompt for
confirmation before processing each file.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /CONFIRM.)

Flag that specifies whether the software cyclic
redundancy check (CRC) is to be performed.
Values are TRUE (default) and FALSE.

(See the BACKUP qualifier /CRC.)

Flag that specifies whether to select files
according to the creation date written in the
file header record.

Values are TRUE or FALSE.

Use this flag to set the corresponding logical

bit flag for BCK_OPT_K_BEFORE_TYPE and
BCK_OPT_K_SINCE_TYPE.

(See the BACKUP qualifiers /IBEFORE, /SINCE,
and /CREATED.)

Reserved for use by HP.

Flag that specifies whether a copy or backup
operation is to delete the input files from the
input volume when the operation is complete.
Values are TRUE and FALSE (default).

(See the BACKUP qualifier /IDELETE.)

1Reserved for use by Media Management Extension (MME) layered products.

(continued on next page)

Backup (BACKUP) Routine BCK-7

Backup API
BACKUPS$START

Table 3-2 (Cont.) BACKUP Option Structure Types

Option Structure

Description

BCK_OPT_K_DENSITY

BCK_OPT_K_DISMOUNT
BCK_OPT_K_DISPOSITION?

BCK_OPT_K_DRIVE_CLASS_IN?
BCK_OPT_K_DRIVE_CLASS_OUT!
BCK_OPT_K_ENCRYPT?2
BCK_OPT_K_ENCRYPT_USERALG?2
BCK_OPT_K_ENCRYPT_USERKEY?

BCK_OPT_K_ENCRYPT_KEY_VALUE?2

BCK_OPT_K_EVENT_CALLBACK

BCK_OPT_K_EXACT_ORDER

Integer that specifies the recording density of the
output magnetic tape in bits per inch (bits/in).
The density specified must be supported by the
magnetic tape hardware. The default density is
the current density on the output tape drive. (See
the BACKUP qualifier /IDENSITY.)

Note: Use of BCK_OPT_K_DENSITY and BCK_
OPT_K_MEDIA_FORMAT in the same call
results in a fatal error.

Reserved for use by HP.

Logical bit flags. Values are the following:

BCK_OPTYP_DISP_K_KEEP
BCK_OPTYP_DISP_K_RELEASE

32-bit descriptor.

32-bit descriptor.

Flag.

32-bit descriptor.

32-bit descriptor.

Note: Use of BCK_OPT_K_ENCRYPT_
USERKEY and BCK_OPT_K_ENCRYPT_KEY_
VALUE in the same call results in a fatal error.
32-bit descriptor.

Note: Use of BCK_OPT_K_ENCRYPT_KEY_

VALUE and BCK_OPT_K_ENCRYPT_USERKEY
in the same call results in a fatal error.

Address of a routine in the calling application

to be called to process BACKUP events. See the
Description section for detailed information about
event callbacks.

Flag that specifies whether a BACKUP operation
is to accept an exact order of tape volume labels,
preserve an existing volume label, and prevent
previous volumes of a multivolume save operation
from being overwritten.

Values are TRUE (default) and FALSE.

(See the BACKUP qualifier [EXACT_ORDER.)

1Reserved for use by Media Management Extension (MME) layered products.
2Reserved for future use by a security utility or layered product.

BCK-8 Backup (BACKUP) Routine

(continued on next page)

Backup API
BACKUPS$START

Table 3-2 (Cont.) BACKUP Option Structure Types

Option Structure

Description

BCK_OPT_K_EXCLUDE

BCK_OPT_K_EXPIRED

BCK_OPT_K_FAST

BCK_OPT_K_FILE_CALLBACK
BCK_OPT_K_FILEMERGE
BCK_OPT_K_FULL

BCK_OPT_K_GROUP

BCK_OPT_K_HANDLE

32-bit descriptor that specifies the name of

an input file to be excluded from the current
BACKUP save or copy operation. Wildcards

are permitted. Each file specification, whether
wildcarded or not, requires its own BCK_OPT _
K_EXCLUDE option structure (lists are not
supported).

(See the BACKUP qualifier [EXCLUDE.)

Flag that specifies whether to select files
according to the expiration date written in the file
header record.

Values are TRUE or FALSE.

Use this flag to set the corresponding logical

bit flag for BCK_OPT_K_BEFORE_TYPE and
BCK_OPT_K_SINCE_TYPE.

(See the BACKUP qualifiers /IBEFORE, /SINCE,
and /EXPIRED.)

Flag that specifies whether to reduce processing
time by performing a fast file scan of the input
specifier.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /[FAST.)

Reserved for use by HP.

Reserved for use by HP.

Flag that specifies whether to display information
produced by a BCK_OPT_K_LIST value of TRUE
in a format similar to that produced by the DCL
command DIRECTORY/FULL.

Values are TRUE and FALSE (default).

(See the BACKUP qualifiers /LIST and /FULL.)
Integer that specifies the number of backup
blocks or backup buffers BACKUP places in each
redundancy group.

The default is 10 blocks.

(See the BACKUP qualifier /GROUP_SIZE.)

Reserved for use by HP.

(continued on next page)

Backup (BACKUP) Routine BCK-9

Backup API
BACKUPS$START

Table 3-2 (Cont.) BACKUP Option Structure Types

Option Structure

Description

BCK_OPT_K_IGNORE_TYPES

BCK_OPT_K_IMAGE

BCK_OPT_K_INCREMENTAL

BCK_OPT_K_INITIALIZE

BCK_OPT_K_INPUT

BCK-10 Backup (BACKUP) Routine

Logical bit flags that override tape labeling
checks or restrictions placed on files. Values are
one of the following:
BCK_OPTYP_IGNORE_K_ACCESS
Processes files on a tape that is protected by
a volume accessibility character, or a tape

created by HSC Backup. Applies to all tapes
in the save set.

BCK_OPTYP_IGNORE_K_INTERLOCK
Processes files otherwise inaccessible because
of file access conflicts.

BCK_OPTYP_IGNORE_K LABELS

Ignores the contents of the volume header
record. You cannot use this flag if the
BCK_OPTYP_K_EXACT_ORDER option
structure flag value is TRUE.

BCK_OPTYP_IGNORE_K_NOBACKUP
Processes both the file header and

the contents of files marked with the
NOBACKUP option.

(See the BACKUP qualifier /IGNORE.)

Flag that directs that an entire volume or volume
set be processed.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /IMAGE.)

Flag that specifies whether to restore an
incremental save set.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier INCREMENTAL..)
Flag that specifies whether to initialize an entire

output volume, thereby making its previous
contents inaccessible.

Values are TRUE and FALSE (default, except for
image restore and copy operations).

(See the BACKUP qualifier /INITIALIZE.)

32-bit descriptor that specifies a single input-
specifier. You can use wildcards. You must use a
separate BCK_OPT_K_INPUT option structure
for each specification.

(See the BACKUP Format description.)

(continued on next page)

Backup API
BACKUPS$START

Table 3-2 (Cont.) BACKUP Option Structure Types

Option Structure

Description

BCK_OPT_K_INTERCHANGE

BCK_OPT_K_JOURNAL

BCK_OPT_K_JOURNAL_FILE

BCK_OPT_K_LABEL

BCK_OPT_K_LIST

BCK_OPT_K_LIST_FILE

BCK_OPT_K_LOG

Flag that specifies whether to process files in a
manner suitable for data interchange.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier INTERCHANGE.)
Flag that specifies whether a BACKUP journal
file is to be processed. You can specify a journal
file name other than BACKUP.BJL (the default)
with the BCK_OPT_K_JOURNAL_FILE option
structure.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /JJOURNAL..)

32-bit descriptor that specifies the name of a
BACKUP journal file to be processed.

(See the BACKUP qualifier /JJOURNAL.)

32-bit descriptor that specifies the volume label
to be written. To specify more than one label,
use additional BCK_OPT_K_LABEL option
structures.

(See the BACKUP qualifier /LABEL.)

Note: Use of BCK_OPT_K_LABEL with any

BCK_OPT_K_SCRATCH_* option structure in
the same call results in a fatal error.

Flag that specifies whether to process a
BACKUP list file. You can specify a list output
destination other than TTY: (the default) with the
BCK_OPT_K_LIST_FILE option structure.

Values are TRUE and FALSE (default).
(See the BACKUP qualifier /LIST.)

32-bit descriptor that specifies the name of a file
of a BACKUP journal file to be processed.

(See the BACKUP qualifier /LIST.)

Flag that specifies whether to display the file
specification of each file processed. The display is
to SYS$OUTPUT.

Values are TRUE and FALSE (default).
(See the BACKUP qualifier /LOG.)

(continued on next page)

Backup (BACKUP) Routine BCK-11

Backup API
BACKUPS$START

Table 3-2 (Cont.) BACKUP Option Structure Types

Option Structure

Description

BCK_OPT_K_MEDIA_FORMAT

BCK_OPT_K_MODIFIED

BCK_OPT_K_NEW_VERSION

BCK_OPT_K_OPERATION_TYPE

BCK-12 Backup (BACKUP) Routine

Logical bit flags that specify whether data
records are automatically compacted and
blocked together. The tape drive must support
compaction.

Values are one of the following:

BCK_OPTYP_MEDIA_K_COMPACTION
BCK_OPTYP_MEDIA_K_NO_COMPACTION
(default)

(See the BACKUP qualifier MEDIA_FORMAT.)

Note: Use of BCK_OPT_K_MEDIA FORMAT
and BCK_OPT_K_DENSITY in the same call
results in a fatal error.

Flag that specifies whether to select files
according to the modification date written in
the file header record.

Values are TRUE and FALSE.

Use this flag to set the corresponding logical
bit flag for BCK_OPT_K_BEFORE_TYPE and
BCK_OPT_K_SINCE_TYPE.

(See the BACKUP qualifiers /BEFORE, /SINCE,
and /MODIFIED.)

Flag that specifies whether to create a new
version of a file if a file with an identical file
specification already exists at the location to
which the file is being copied or restored.

Values are TRUE and FALSE (default).

Because this qualifier causes version numbers to
change, using it with the BCK_OPT_K_VERIFY
flag set to TRUE can cause unpredictable results.
HP recommends that you not use these two
options in combination.

(See the BACKUP qualifier /NEW_VERSION.)
Logical bit flags that specify the type of BACKUP
operation to be performed.

Values are one of the following:

BCK_OP_K_SAVE (default)
BCK_OP_K_RESTORE
BCK_OP_K_COPY
BCK_OPT_K_LIST
BCK_OPT_K_COMPARE

(continued on next page)

Backup API
BACKUPS$START

Table 3-2 (Cont.) BACKUP Option Structure Types

Option Structure

Description

BCK_OPT_K_OUTPUT

BCK_OPT_K_OVERLAY

BCK_OPT_K_OWNER_IN_VALUE

BCK_OPT_K_OWNER_OUT_TYPE

32-bit descriptor that specifies the name of a
single output-specifier. You can use wildcards.
Each file specification requires a separate
BCK_OPT_K_OUTPUT option structure. Lists
are not supported.

(See BACKUP Format description.)

Flag that specifies whether to overlay (at the
same physical location) an existing file with a file
specification identical to that of the file that is
being copied or restored.
Values are TRUE and FALSE (default).
(See the BACKUP qualifier /OVERLAY.)
Integer that specifies the user identification code
(UIC) of the files to be processed by a BACKUP
input operation. The default is the UIC of the
current process. If you do not include this option
structure, BACKUP processes all files specified
by BCK_OPT_K_INPUT.
(See the BACKUP qualifier /BY_OWNER.)
Logical bit flags to specify the user identification
code (UIC) of restored files.
Values are one of the following:
BCK_OPTYP_OWN_OUT_K_DEFAULT
Sets the owner UIC to the UIC of the current
process (default unless BCK_OPT_K_IMAGE
or BCK_OPT_K_INCREMENTAL is TRUE).
BCK_OPTYP_OWN_OUT_K_ORIGINAL
Retains the owner UIC of the file being
restored (default if BCK_OPT_K_IMAGE or
BCK_OPT_K_INCREMENTAL is TRUE).
BCK_OPTYP_OWN_OUT_K_PARENT
Sets the owner UIC to the owner UIC of the
directory to which the file is being written.
The current process must have the SYSPRV
user privilege, or be the owner of the output
volume, or must have the parent UIC.

(See the BACKUP qualifier /BY_OWNER.)

(continued on next page)

Backup (BACKUP) Routine BCK-13

Backup API
BACKUPS$START

Table 3-2 (Cont.) BACKUP Option Structure Types

Option Structure

Description

BCK_OPT_K_OWNER_OUT_VALUE

BCK_OPT_K_PHYSICAL

BCK_OPT_K_PROTECTION

BCK_OPT_K_RECORD

BCK-14 Backup (BACKUP) Routine

Integer that redefines the UIC of the files written
by a BACKUP restore or copy operation, or
specifies the UIC of an output save set.

If BCK_OPT_K_OUTPUT specifies a save set,
the default is the UIC of the current process. To
specify the UIC of a Files-11 save set, the current
process must have the SYSPRV user privilege, or
must have the UIC specified.

If BCK_OPT_K_OUTPUT specifies files, the UIC
of the output files is set to the UIC specified. To
specify the UIC, the UIC must be that of the
current process, or must have the SYSPRV user
privilege, or the current process must be the
owner of the output device.

(See the BACKUP qualifier /BY_OWNER.)

Flag that specifies that a BACKUP operation is
to ignore any file structure on the input volume
and instead process the volume in terms of logical
blocks.

Values are TRUE and FALSE (default). Note
that output operations on a save set must be
performed with the same physical option as that
used to create the save set. (See the BACKUP
qualifier /PHYSICAL.)

Note: Use of BCK_OPT_K PHYSICAL and
BCK_OPT_K_UNSHELVE or BCK_OPT_K_
ALIAS in the same call results in a fatal error.

Logical bit flags that specify file protection. Bits 0
to 15 of the option structure value field are in the
format of the RMS field XAB$W_PRO. See the
OpenVMS Record Management Services Reference
Manual for information about the format of this
field.

(Also see BACKUP utility qualifier
/PROTECTION.)

Flag that specifies whether to record the current
date and time in the BACKUP date field in each
file header once a file is successfully saved or
copied.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /RECORD.)

(continued on next page)

Backup API
BACKUPS$START

Table 3-2 (Cont.) BACKUP Option Structure Types

Option Structure

Description

BCK_OPT_K_RELEASE_TAPE

BCK_OPT_K_REPLACE

BCK_OPT_K_REWIND
BCK_OPT_K_REWIND_IN

BCK_OPT_K_REWIND_OUT

BCK_OPT_K_SAVE_SET_IN

BCK_OPT_K_SAVE_SET_OUT

Flag that specifies whether to dismount and
unload a tape after a BACKUP save operation
has either reached the end of the tape or has
written and verified the save set.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /RELEASE_TAPE.)
Flag that specifies whether to replace (at a
different physical location), with an identical
version number, an existing file with a file
specification identical to that of the file that
is being copied or restored.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /REPLACE.)

Flag. Reserved for use by HP.

Flag that specifies whether the input device is
a tape drive, and that it is to be rewound to the
beginning-of-tape marker before beginning the
BACKUP operation.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /REWIND.)

Flag that specifies whether the output device is
a tape drive, and that it is to be rewound to the
beginning-of-tape marker and initialized before
beginning the BACKUP operation.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /REWIND.)

Note: Use of BCK_OPT_K_REWIND_OUT with
any BCK_OPT_K_SCRATCH_* option structure
in the same call results in a fatal error.

Flag that indicates whether the input specifier is
a BACKUP save-set file.

Values are TRUE and FALSE (default; indicates
that the input specifier refers to a Files-11 file).
(See the BACKUP qualifier /SAVE_SET.)

Flag that indicates whether the output specifier
specifies a BACKUP save-set file.

Values are TRUE and FALSE (default; indicates
that the output specifier refers to a Files-11 file).
(See the BACKUP qualifier /SAVE_SET.)

(continued on next page)

Backup (BACKUP) Routine BCK-15

Backup API
BACKUPS$START

Table 3-2 (Cont.) BACKUP Option Structure Types

Option Structure Description

BCK_OPT_K_SCRATCH_ASGN _TYPE ! Logical bit flags.
Note: Use of BCK_OPT_K_SCRATCH_ASGN_
TYPE with BCK_OPT_K_LABEL, BCK_OPT_
K_REWIND_OUT, any of the BCK_OPT_K_
CARTRIDGE_* option structures, or any other
BCK_OPT_K_SCRATCH_* option structure in
the same call results in a fatal error.

BCK_OPT_K_SCRATCH_COLLECTION 1 32-bit descriptor.
Note: Use of BCK_OPT_K_SCRATCH_
COLLECTION with BCK_OPT_K_LABEL, BCK_
OPT_K_REWIND_OUT, any of the BCK_OPT_K_
CARTRIDGE_* option structures, or any other
BCK_OPT_K_SCRATCH_* option structure in
the same call results in a fatal error.

BCK_OPT_K_SCRATCH_LOCATION 1 32-bit descriptor.
Note: Use of BCK_OPT_K_SCRATCH_
LOCATION with BCK_OPT_K_LABEL, BCK_
OPT_K_REWIND_OUT, any of the BCK_OPT_K_
CARTRIDGE_* option structures, or any other
BCK_OPT_K_SCRATCH_* option structure in
the same call results in a fatal error.

BCK_OPT_K_SCRATCH_MEDIA_NAME 1 32-bit descriptor.
Note: Use of BCK_OPT_K_SCRATCH_MEDIA_
NAME with BCK_OPT_K_LABEL, BCK_OPT_
K_REWIND_OUT, any of the BCK_OPT_K_
CARTRIDGE_* option structures, or any other
BCK_OPT_K_SCRATCH_* option structure in
the same call results in a fatal error.

BCK_OPT_K SELECT 32-bit descriptor that references the file
specification of a file or files from the input save
set to be processed by the current BACKUP save
or copy operation. Wildcards are permitted. Each
file specification, whether wildcards are used
or not, requires its own BCK_OPT_K SELECT
option structure (lists are not supported).

(See the BACKUP qualifier /SELECT.)

1Reserved for use by Media Management Extension (MME) layered products.

(continued on next page)

BCK-16 Backup (BACKUP) Routine

Backup API
BACKUPS$START

Table 3-2 (Cont.) BACKUP Option Structure Types

Option Structure

Description

BCK_OPT_K_SINCE_TYPE

BCK_OPT_K_SINCE_VALUE

BCK_OPT_K_STORAGE_MANAGEMENT !
BCK_OPT_K_TAPE_EXPIRATION

BCK_OPT_K_TRUNCATE

Logical bit flags that qualify the date specified
in the BCK_OPT_K_SINCE_VALUE option
structure.

Type can be one of the following:
BCK_OPTYP_SINCE_K_BACKUP
Selects files last saved or copied by BACKUP
on or after the date specified. Also selects
files with no BACKUP date.
BCK_OPTYP_SINCE_K_CREATED
Selects files created on or after the date
specified.
BCK_OPTYP_SINCE_K_EXPIRED
Selects files that have expired since the date
specified.
BCK_OPTYP_SINCE_K_MODIFIED
Selects files last modified on or after the date
specified (default).
BCK_OPTYP_SINCE_K_SPECIFIED
Reserved for use by HP.

(See the BACKUP qualifiers /SINCE, /IBACKUP,
/CREATED, /EXPIRED, and /MODIFIED.)
Date-Time Quadword that specifies the date
qualified by BCK_OPTYP_K_SINCE_TYPE. You
cannot use delta time.

(See the BACKUP qualifier /SINCE.)

32-bit descriptor.

ADT (Date-Time) that specifies when the tape
expires.

(See the BACKUP qualifier /TAPE_
EXPIRATION.)

Flag that specifies whether a copy or restore
operation truncates a sequential output file at the
end-of-file (EOF) when creating it.

Values are TRUE and FALSE (default; the size of
the output file is determined by the allocation of
the input file).

(See the BACKUP qualifier TRUNCATE.)

1Reserved for use by Media Management Extension (MME) layered products.

(continued on next page)

Backup (BACKUP) Routine BCK-17

Backup API

BACKUPS$START

Table 3-2 (Cont.) BACKUP Option Structure Types

Option Structure Description

BCK_OPT_K_UNSHELVE Flag that is reserved for use with file-shelving

layered products.
Values are TRUE and FALSE.
Note: Use of BCK_OPT_K_UNSHELVE and

BCK_OPT_K_PHYSICAL in the same call results
in a fatal error.

BCK_OPT_K_VALIDATE_PARAMETERS Reserved for use by HP.
BCK_OPT_K_VERIFY Flag that specifies whether the contents of the

output specifier be compared with the contents of
the input specifier after a save, restore, or copy
operation has been completed.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /VERIFY.)

BCK_OPT_K_VOLUME Integer that specifies the specific disk volume in a

disk volume set to be processed (valid only when
BCK_OPT_K_IMAGE is TRUE).

(See the BACKUP qualifier /VOLUME.)

Description

Application programs call the Backup API to invoke the OpenVMS Backup utility
via a call to the BACKUPS$START routine. There is only one parameter, the
address of an argument buffer that contains a number of option structures that
together define the operation requested of the Backup utility. Most of these option
structures are equivalent, singly or in combination, to the qualifiers available
when invoking the BACKUP utility with the DCL command BACKUP; the call
to the API is analogous to a user entering an interactive command to the Backup
utility.

The call to BACKUPS$START is synchronous; that is, it does not return until the
operation is complete or is terminated by a fatal error. In the case of a fatal error,
the call is aborted.

BACKUP Event Callbacks

An application can request that the BACKUP API notify the application whenever
specific events occur. The application can specify different callback routines to
handle different types of BACKUP events, or one routine to handle all events. To
do so, the application registers the callback routine by including option structure
BCK_OPTYP_K_EVENT _CALLBACK in the call to BACKUP$START. This
option structure specifies an event type (or all events) and the address of a
routine to be called when the event occurs. The application must include one
such option structure for each requested event type. To specify all events, use
BCK_EVENT_K_ALL. Table 3—4 lists the specific event types and identifiers.

A callback routine:

= Is called with one argument; a pointer to a bckEvent data structure that
contains information to enable the application to process the event

BCK-18 Backup (BACKUP) Routine

Backup API
BACKUPS$START

< Returns an unsigned integer status value (of any valid OpenVMS message) in
RO to enable the API to perform proper logging of the event

Note

The API does not currently process the return status of the callback
routine. However, HP strongly recommends that the callback routine
provide the appropriate status in RO when returning control to the API.

The bckEvent structure contains information about the type of event, and also
contains a descriptor of a data structure that contains information to be used to
process the event. The bckEvent structure may point to a bckControl structure
that specifies control aspects of an event that may require user or operator action.

Table 3-3 describes the format of the bckEvent data structure. Table 3-6
describes the format of the bckControl data structure.

Table 3-3 bckEvent Format

Data Type Element Name

Description

struct dsc$descriptor
unsigned int
unsigned int
unsigned int
unsigned int

bckevt r_event_buffer
bckevt | event type
bckevt _|_event subtype
bckevt_g_event_ctx [2]
bckevt | event_handle

Pointer to event data
Event type

Event subtype (if any)
Reserved for use by HP
Reserved for use by HP

Table 3—4 describes the values returned in the bckEvent data structure.

Table 3-4 Event Callback Buffer Formats

Type/Subtype Format Value Returned
BCK _EVENT_K CONTROL bckControl See Table 3-5.
BCK_EVENT_K_ERROR_MSG

(no subtype) bckMsgVect Message vector (use $SPUTMSG to

BCK_EVENT_K_JOURNAL_OPEN

(no subtype) dsc$descriptor

BCK_EVENT_K_JOURNAL_CLOSE

(no subtype) dsc$descriptor

BCK_EVENT_K_JOURNAL_WRITE

(no subtype) 512-byte block

output message to user).

String descriptor (name of file to
create).

String descriptor (name of file to
close).

File descriptor of journal buffer
(condensed journal records, refer to
the BJLDEF structure definition in
the BAPIDEF files).

(continued on next page)

Backup (BACKUP) Routine BCK-19

Backup API
BACKUPS$START

Table 3—4 (Cont.) Event Callback Buffer Formats

Type/Subtype Format Value Returned
BCK_EVENT_K LIST CLOSE
(no subtype) Array of 2 LIST_TOTFILE: Total files listed.
longwords LIST_TOTSIZE: Total blocks listed.

BCK_EVENT_K_LIST_OPEN

TRUE dsc$descriptor

FALSE dsc$descriptor
BCK_EVENT_K_LIST WRITE

BRH$K_SUMMARY BSRBLK

BRH$K _VOLUME BSRBLK

BRH$K_PHYSVOL PVABLK

BRH$K _FILE FARBLK

BCK_EVENT_K_LISTJOUR_WRITE

TRUE bckLisJourblk

FALSE dsc$descriptor

BCK_EVENT_K_LOG

BACKUP$ AECREATED dsc$descriptor
BACKUP$ COMPARED dsc$descriptor
BACKUP$_COPIED dsc$descriptor
BACKUP$_CREATED dsc$descriptor
BACKUP$_CREDIR dsc$descriptor
BACKUP$ HEADCOPIED dsc$descriptor
BACKUPS$_INCDELETE dsc$descriptor
BACKUP$ _NEWSAVSET dsc$descriptor

BCK_EVENT_K_OP_PHASE
BACKUP$_STARTVERIFY Condition Value

BCK-20 Backup (BACKUP) Routine

Note: The application should close
the list file.

File specification of list file to open
(TRUE =1, indicates /FULL listing).

(FALSE = 0).

List BACKUP save set - save set
summary record.

List BACKUP save set - volume
summary record.

List BACKUP save set - physical
volume record.

List BACKUP save set - file record.

Subtype is a condition value that
indicates the type of action that
occurred for the specified file/item.
Obtain message text with the
S$GETMSG system service.

Journal file listing information (TRUE
= 1, indicates a change of volume or
save set).

Journal file listing of file/item
specification string (descriptor)
(FALSE = 0).

String descriptor (file logging).
String descriptor (file logging).
String descriptor (file logging).
String descriptor (file logging).
String descriptor (file logging).
String descriptor (file logging).
String descriptor (file logging).
String descriptor (file logging).

Start of verify operation (obtain
message text with $GETMSG).

(continued on next page)

Table 3—-4 (Cont.) Event Callback Buffer Formats

Backup API
BACKUPS$START

Type/Subtype Format

Value Returned

BACKUP$ STARTDELETE Condition Value
BACKUP$_STARTRECORD Condition Value

BCK_EVENT_K_SAVESET_CLOSE

(no subtype) RMS FOB
BCK_EVENT_K_SAVESET_OPEN
(no subtype) RMS FOB

BCK_EVENT_K_SAVESET READ

(no subtype) BACKUP Buffer
Control Block
(BCBBLK)
BCK_EVENT_K_SAVESET_WRITE
(no subtype) BACKUP Buffer
Control Block
(BCBBLK)

BCK_EVENT_K_STATISTICS
(no subtype) bckMsgVect

BCK_EVENT_K_USER_MSG
(no subtype) bckMsgVect

Start of delete operation (obtain
message text with $GETMSG).

Start of record operation (obtain
message text with $GETMSG).

A BACKUP save set must be closed.

A BACKUP save set must be opened
or created.

A BACKUP save set block/buffer has
been read from the input save set.

A BACKUP save set block/buffer is
ready to be written to the output save
set.

Statistics message; one of the
following message condition values
(use $SPUTMSG to output message to
user):

BACKUP$_STAT_PHYSICAL
BACKUP$_STAT _SAVCOP_ACT
BACKUP$_STAT_INACTIVE
BACKUP$_STAT_COMPARE
BACKUP$_STAT _RESTORE

Message vector (use SPUTMSG to
output message to user).

Backup (BACKUP) Routine BCK—-21

Backup API
BACKUPS$START

Table 3-5 describes the control event subtypes of the BCK_EVENT_K CONTROL
event callback. Table 3—6 describes the format of the bckControl data structure.

Table 3-5 Control Event Subtypes

Format

Subtype Field

Description

BCKEVTST_K_CONFIRM_EVENT

Confirmation is required for compare or copy
operation.

bckCntrl_I_event
bckCntrl_I_function
bckCntrl_a_outmsgvect

bckCntrl_v_response_required
bckCntrl_r_response_buffer

BCKCNTRL_K_CONFIRM_EVENT
Backup operation type (integer value)

Confirmation message (bckMsgVect,
BACKUP$ CNTRL_CONFCOMP or
BACKUP$ _CNTRL_CONFCOPY)

TRUE (response is required)
dsc$descriptor (“Yes/No" string descriptor)

BCKEVTST_K_ASSIST_EVENT

Operator or user assistance is required to
determine continuation/actions.

bckCntrl_I_event

bckCntrl_I_function
bckCntrl_a_outmsgvect
bckCntrl_v_response_required

bckCntrl_r_response_buffer

BCKCNTRL_K_USER_ASSIST_EVENT or
BCKCNTRL_K_OPER_ASSIST _EVENT

Backup operation type (integer value)
bckMsgVect (assist and other messages)

TRUE or FALSE (TRUE = 1, if response is
required)
dsc$descriptor (response string descriptor)

BCKCNTRL_K_RESTART_EVENT

BACKUP operation restart is initiated.

bckCntrl_I_event
bckCntrl_I_function
bckCntrl_a_outmsgvect
bckCntrl_v_response_required
bckCntrl_r_response_buffer

BCKCNTRL_K RESTART_EVENT

Backup operation type (integer value)
bckMsgVect (operation restart message vector)
FALSE (= 0, no response is required)
dsc$descriptor (“Yes/No" string descriptor)

BCK-22 Backup (BACKUP) Routine

Backup API
BACKUPS$START

Control events are described by the Control event subtype, via the bckevt |
event_subtype field in the bckEvent structure. Table 3—6 describes the format of
the bckControl data structure.

Table 3-6 bckControl Format

Data Type

Element Name

Description

unsigned int
unsigned int
bckMsgVect

union {
unsigned int
struct {
unsigned

unsigned
}
}
struct dsc$descriptor

unsigned int
unsigned int

bckCntrl_I_event
bckCntrl_I_function
*bckCntrl_a_outmsgvect

bckCntrl_I_ctlflags
bckCntrl_v_response_required
01

bckCntrl v fill 5: 7
bckCntrl_r_response_buffer

bckCntrl_I_response_status
bckCntrl_I_control_options

Control event type.
Backup operation type.
Output messages and
parameters.

Flags.

Response required = 1.

Filler.

Descriptor for buffer to which
response text is to be written.

Reserved for use by HP.
Reserved for use by HP.

Error Messages

Where possible, the Backup APl emulates the behavior of the interactive
BACKUP utility if you pass a call that contains conflicting qualifiers by:

1. Making a best guess as to your intentions

2. Ignoring the least likely of the conflicting qualifiers

3. Issuing a message that warns of the conflicting qualifiers
4. Processing the BACKUP request

See the HP OpenVMS System Management Utilities Reference Manual: A-L for a
table of valid combinations of BACKUP qualifiers.

Condition Values Returned

SS$ NORMAL

BACKUP$ BADOPTDSC
BACKUP$ BADOPTTYP
BACKUP$ BADOPTVAL
BACKUP$ BADOPTVALQ
BACKUP$_DUPOPT

Normal successful completion.

Invalid callable interface option descriptor.
Invalid callable interface option type.
Invalid callable interface option value.
Invalid callable interface option value.

Previously specified callable interface option type
invalid.

Callable interface required parameter not
specified or invalid.

BACKUP$_NOAPIARGS

Any condition value returned by the OpenVMS Backup utility.

Backup (BACKUP) Routine BCK-23

Backup API
BACKUPS$START

Example

The following C example program demonstrates calling the Backup API to
perform the following DCL commands:

$ BACKUP/LOG/VERIFY/CRC/ALIAS APITESTL IN:* . *;* -
_$ APITEST1 OUT:A.BCK/SAVE SET

$ BACKUP/LOG/VERIFY/CRC/ALIAS APITEST1 OUT:A.BCK/SAVE SET -
_$ APITEST2 OUT:*.*;*

#include <stdio.h>

#include <stdlib.h>

#include <ssdef.h>

#include <descrip.h>

#include "sys$Sexamples:bapidef.h"

/*

** Define a fixed size (simple) structure for specifying the
** BACKUP operation.

*/

typedef struct buf arg

bck opt struct flag argl;
bck opt struct flag arg2;
bck opt struct flag arg3;
bck opt struct flag argé4;
bck opt struct dsc arg5;
bck opt struct dsc argé;
bck opt struct flag arg7;
bck opt struct flag arg8;
bck opt struct adr arg9;
bck opt struct adr argl0;
bck opt struct adr argll;
bck opt struct flag argl2;
bck opt struct flag argl3;
} buf arg;

struct dsc$descriptor
input dsc,
output dsc,
event type dsc;

buf arg myarg buff;

unsigned int status;

extern unsigned int backup$start (buf arg *myarg buff);
unsigned int subtest (bckEvent *param);

static char input str(] = "APITEST1 IN:";
static char output strilf[] "APITEST1 OUT:a.bck";
static char output str2(] "APITEST2 OUT:";

main()
myarg buff.argl.option type = BCK OPT K ALIAS;
myarg buff.argl.opt flag value = TRUE;

myarg buff.arg2.option type = BCK OPT K VERIFY;
myarg buff.arg2.opt flag value = TRUE;

myarg buff.arg3.option type = BCK OPT K CRC;
myarg buff.arg3.opt flag value = TRUE;

BCK-24 Backup (BACKUP) Routine

Backup API
BACKUPS$START

myarg buff.arg4.option type = BCK OPT K LOG;
myarg buff.arg4.opt flag value = TRUE;

myarg buff.arg5.opt _dsc type = BCK OPT K INPUT;

myarg buff.arg5.opt dsc.dscsb dtype = DSCSK DIYPE T;

myarg buff.arg5.opt dsc.dscs$b class = DSCSK CLASS S;

myarg buff.arg5.opt dsc.dscsw length = sizeof (input str) - 1;
myarg buff.arg5.opt dsc.dsc$a pointer = input str;

myarg buff.argé.opt dsc type = BCK OPT K OUTPUT;

myarg buff.arg6.opt dsc.dscsb dtype = DSCSK DIYPE T;

myarg buff.arg6.opt dsc.dscsb class = DSCSK CLASS S;

myarg buff.arg6.opt dsc.dscsw length = sizeof (output strl) - 1;
myarg buff.arg6.opt dsc.dscsa pointer = output strl;

myarg buff.arg7.option type = BCK OPT K SAVE SET OUT;
myarg buff.arg7.opt flag value = TRUE;

myarg buff.arg8.option type = BCK OPT K OPERATION TYPE;
myarg_buff.arg8.opt flag value = BCK OP_K SAVE ;

myarg buff.arg9.opt adr type = BCK OPT K EVENT CALLBACK;
myarg buff.arg9.opt adr attributes = BCK EVENT K LOG;
myarg buff.arg9.opt adr value[0] = (int *)subtest;

myarg buff.arg9.opt adr value[l] = 0;

/*

** Specify that this application will handle user-visible messages.
** (The operation phase, and user/file-logging messages.)

*/

myarg buff.argl0.opt adr type = BCK OPT K EVENT CALLBACK;

myarg buff.argl0O.opt adr attributes = BCK EVENT K OP PHASE;

myarg buff.argl0.opt adr value[0] = (int *)subtest;

myarg buff.argl0.opt adr value[l] = 0;

myarg buff.argll.opt adr type = BCK OPT K EVENT CALLBACK;
myarg buff.argll.opt adr attributes = BCK EVENT K USER MSG;
myarg buff.argll.opt adr value[0] = (int *)subtest;

myarg buff.argll.opt adr value[l] = 0;

/*

** Indicate the end of options that specify the BACKUP operation
** to be performed.

*/

myarg buff.argl2.option type = BCK OPT K END OPT;

myarg buff.argl2.opt flag value = FALSE;

/*

** Notes:

** An extra option structure (# 13) was allocated for testing.
* %

** The DCL command analogous to the following BACKUP API call
** ig illustrated below.

* %

** "8 BACKUP/LOG/VERIFY/CRC/ALIAS APITEST1 IN:*. ;% -U

*% 0 & APITEST1 OUT:a.bck/SAVE SET "

*/
status = backup$start (&myarg buff);
if (! (status & 1))
{
exit (status); /* EXIT if the first part of the test failed. */
}
/*

** Now use the resultant saveset to perform a restore operation.

Backup (BACKUP) Routine BCK-25

Backup API

BACKUPS$START
/*
** Change the input string to specify the saveset, ("output strl").
*/

myarg_buff.arg5.opt dsc.dsc$w length = sizeof (output strl) - 1;
myarg buff.arg5.opt dsc.dsc$a pointer = output strl;

/*

** Change the output string to specify the output device/directory).
*/

myarg_buff.argé.opt dsc.dsc$w length = sizeof (output str2) - 1;
myarg buff.arg6.opt dsc.dsc$a pointer = output str2;

/*

** Change the option to denote it is now an input saveset,

** (not an output saveset).
*/

myarg buff.arg7.option type = BCK OPT_K SAVE SET IN;

/*
** Change the option to specify a restore operation,

** (not a save operation).
*/

myarg buff.arg8.opt flag value = BCK OP_K RESTORE;
/*
** The DCL command analogous to the following BACKUP API call

** ig illustrated below.
* %

** 1S BACKUP/LOG/VERIFY/CRC/ALIAS APITEST1 OUT:a.bck/SAVE SET -"
¥% 0 & APTTEST2 QUT:, *;*"

x/ -

status = backup$start (&myarg buff);

exit (status);

J

unsigned int subtest (bckEvent *param)

printf ("\n BACKUP API Event Type = %d,\n",param->bckevt 1 event type);
printf (" Subtype = %d\n",param->bckevt 1 event subtype);

if (param->bckevt 1 event type == BCK EVENT K LOG)
printf (" BACKUP API LOG Event item:\n %.*s\n",

param->bckevt r event buffer.dsc$w length,
param->bckevt r event buffer.dsc$a pointer);

J

if (param->bckevt 1 event type == BCK EVENT K OP_PHASE)

printf (" BACKUP API Operation Phase Event\n %.*s\n",
param->bckevt r event buffer.dsc$w length,
param->bckevt r event buffer.dsc$a pointer);

J

fflush(stdout) ;

return (1);

BCK-26 Backup (BACKUP) Routine

A

Command Language Interface (CLI) Routines

The command language interface (CLI) routines process command strings

using information from a command table. A command table contains command
definitions that describe the allowable formats for commands. To create or modify
a command table, you must write a command definition file and then process
this file with the Command Definition Utility (the SET COMMAND command).
For information about how to use the Command Definition Utility, see the

HP OpenVMS Command Definition, Librarian, and Message Utilities Manual.

4.1 Introduction to CLI Routines
The CLI routines include the following:
« CLI$DCL_PARSE
e CLI$DISPATCH
e CLI$GET_VALUE
e CLI$SPRESENT

When you use the Command Definition Utility to add a new command to your

process command table or to the DCL command table, use the CLISPRESENT

and CLI$SGET_VALUE routines in the program invoked by the new command.

These routines retrieve information about the command string that invokes the
program.

When you use the Command Definition Utility to create an object module
containing a command table and you link this module with a program, you must
use all four CLI routines. First, use CLI$DCL_PARSE and CLI$DISPATCH

to parse command strings and invoke routines. Then, use CLISPRESENT and
CLI$GET_VALUE within the routines that execute each command.

Note that the application program should declare referenced constants and return
status symbols as external symbols; these symbols are resolved upon linking with
a utility shareable image.

A CLI must be present in order to use the CLI routines. If your application
can be run from a detached process, the application should first verify that a
CLI exists. For information about how to verify that a CLI exists for a process,
see the description of the $GETJPI system service in the HP OpenVMS System
Services Reference Manual.

Note

Do not use the CLI routines to obtain values from foreign commands.
Using a foreign command to activate an image (instead of the SET
COMMAND command) disrupts the building of the DCL parse tables.

Command Language Interface (CLI) Routines CLI-1

Command Language Interface (CLI) Routines
4.2 Using the CLI Routines: An Example

4.2 Using the CLI Routines: An Example

Example 4-1 contains a command definition file (SUBCOMMANDS.CLD) and a
Fortran program (INCOME.FOR). INCOME.FOR uses the command definitions
in SUBCOMMANDS.CLD to process commands. To execute the example, enter
the following commands:

$ SET COMMAND SUBCOMMANDS/OBJECT=SUBCOMMANDS
$ FORTRAN INCOME

$ LINK INCOME, SUBCOMMANDS

$ RUN INCOME

INCOME.FOR accepts a command string and parses it using CLISDCL_PARSE.
If the command string is valid, the program uses CLI$SDISPATCH to execute the
command. Each routine uses CLISPRESENT and CLI$GET_VALUE to obtain
information about the command string.

Example 4-1 Using the CLI Routines to Retrieve Information About Command
Lines in a Fortran Program

kkkkkkkkkkhkkhhkkkhhkkkhhkhhkkhhhkdhkkdhkkhkkdhkkdkkdhx*x

SUBCOMMANDS . CLD

kkkkkkkkkkkkkkkkkhhkkkkhhkkkhkkhhkkdhkkdhkkkhkkdhkkdkkdxx*x

MODULE INCOME SUBCOMMANDS

DEFINE VERB ENTER
ROUTINE ENTER

DEFINE VERB FIX
ROUTINE FIX
QUALIFIER HOUSE NUMBERS, VALUE (LIST)

DEFINE VERB REPORT

ROUTINE REPORT

QUALIFIER OUTPUT, VALUE (TYPE = $FILE,
DEFAULT = "INCOME.RPT")
DEFAULT

kkkhkkkhkkkhhhkkhhhhhhhdhhhdhhhhhhdhhhdhhdhhrdhrddrrdhxs

INCOME. FOR
Kok ok ko kokkokk ok kkkokk ok ok k ok ok ok ok ok k ok ok ok ok k k ok ok ok ok ko kk ok ok ok kK Kk ok ok ok
PROGRAM INCOME
INTEGER STATUS,
2 CLISDCL PARSE,
2 CLISDISPATCH
INCLUDE ’ ($SRMSDEF) '
INCLUDE ' ($STSDEF) '
EXTERNAL INCOME SUBCOMMANDS,
2 LIBSGET INPUT

(continued on next page)

CLI-2 Command Language Interface (CLI) Routines

Command Language Interface (CLI) Routines
4.2 Using the CLI Routines: An Example

Example 4-1 (Cont.) Using the CLI Routines to Retrieve Information About
Command Lines in a Fortran Program

| Write explanatory text

STATUS = LIB$PUT_OUTPUT

2 ('Subcommands: ENTER - FIX - REPORT’)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
STATUS = LIB$PUT_OUTPUT

2 ('Press Ctrl/Z to exit’)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
| Get first subcommand

STATUS = CLI$DCL_PARSE ($VAL (0),

2 INCOME SUBCOMMANDS, ! CLD module

2 LIBSGET INPUT, | Parameter routine
2 LIBSGET INPUT, ! Command routine

2 "INCOME> ') I Command prompt

| Do it until user presses Ctrl/Z
DO WHILE (STATUS .NE. RMS$ EOF)
! If no error on dcl parse
IF (STATUS) THEN
! Dispatch depending on subcommand
STATUS = CLISDISPATCH ()
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
! Do not signal warning again
ELSE IF (IBITS (STATUS, 0, 3) .NE. STSSK WARNING) THEN
CALL LIBSSIGNAL (%VAL (STATUS))
END IF
! Get another subcommand
STATUS = CLISDCL PARSE (%VAL (0),

2 INCOME _SUBCOMMANDS, ! CLD module

2 LIBSGET INPUT, | Parameter routine
2 LIBSGET INPUT, ! Command routine

2 "INCOME> ') ! Command prompt
END DO

END

INTEGER FUNCTION ENTER ()
INCLUDE ' ($SSDEF)’

TYPE *, 'ENTER invoked’
ENTER = SS$ NORMAL

END

INTEGER FUNCTION FIX ()

INTEGER STATUS,

2 CLI$PRESENT,

2 CLISGET VALUE

CHARACTER*15 HOUSE_NUMBER

INTEGER*2 HN SIZE

INCLUDE ' ($SSDEF)’

EXTERNAL CLI$ ABSENT

TYPE *, 'FIX invoked’

! If user types /house numbers=(n,...)
IF (CLISPRESENT (’HOUSE_NUMBERS’)) THEN
! Get first value for /house numbers
STATUS = CLI$GET_VALUE (’HOUSE_NUMBERS’,
2 HOUSE NUMBER,
2 HN SIZE)

(continued on next page)

Command Language Interface (CLI) Routines CLI-3

Command Language Interface (CLI) Routines
4.2 Using the CLI Routines: An Example

Example 4-1 (Cont.) Using the CLI Routines to Retrieve Information About
Command Lines in a Fortran Program

! Do it until the list is depleted
DO WHILE (STATUS)

TYPE *, 'House number = ', HOUSE NUMBER (1:HN SIZE)
STATUS = CLISGET VALUE ('HOUSE_NUMBERS',

2 HOUSE NUMBER,

2 HN SIZE)

END DO

| Make sure termination status was correct
IF (STATUS .NE. %LOC (CLI$ ABSENT)) THEN
CALL LIBSSIGNAL (%VAL (STATUS))

END IF

END IF

FIX = SS$ NORMAL

END

INTEGER FUNCTION REPORT ()
INTEGER STATUS,

2 CLISGET VALUE
CHARACTER*255 FILENAME
INTEGER*2 FN SIZE
INCLUDE ' ($SSDEF) '

TYPE *, 'REPORT entered’

! Get value for /output
STATUS = CLI$GET_VALUE ("OUTPUT',

2 FILENAME,

2 FN SIZE)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
TYPE *, 'Output file: ', FILENAME (1:FN SIZE)
REPORT = SS$ NORMAL

END

4.3 CLI Routines

This section describes the individual CLI routines.

CLI-4 Command Language Interface (CLI) Routines

Command Language (CLI) Routines
CLI$DCL_PARSE

CLI$DCL_PARSE—Parse DCL Command String

Format

Returns

Arguments

The CLI$DCL_PARSE routine supplies a command string to DCL for parsing.
DCL separates the command string into its individual elements according to the
syntax specified in the command table.

CLI$DCL_PARSE [command_string] ,table [,param_routine] [,prompt_routine]
[,prompt_string]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

command_string
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor—fixed length

Character string containing the command to be parsed. The command_string
argument is the address of a descriptor specifying the command string to be
parsed. If the command string includes a comment (delimited by an exclamation
mark), DCL ignores the comment.

If the command string contains a hyphen to indicate that the string is being
continued, DCL uses the routine specified in the prompt_routine argument to
obtain the rest of the string. The command string is limited to 256 characters.
However, if the string is continued with a hyphen, CLI$SDCL_PARSE can prompt
for additional input until the total number of characters is 1024.

If you specify the command_string argument as zero and specify a prompt
routine, then DCL prompts for the entire command string. However, if you
specify the command_string argument as zero and also specify the prompt_
routine argument as zero, DCL restores the parse state of the command string
that originally invoked the image.

CLI$DCL_PARSE does not perform DCL-style symbol substitution on the
command string.

table

OpenVMS usage: address
type: address
access: read only
mechanism: by value

Command Language Interface (CLI) Routines CLI-5

Command Language (CLI) Routines
CLI$DCL_PARSE

Address of the compiled command tables to be used for command parsing. The
command tables are compiled separately by the Command Definition Utility
using the DCL command SET COMMAND/OBJECT and are then linked with
your program. A global symbol is defined by the Command Definition Utility that
provides the address of the tables. The global symbol’'s name is taken from the
module name given on the MODULE statement in the command definition file, or
from the file name if no MODULE statement is present.

param_routine
OpenVMS usage: procedure

type: procedure value
access: read only
mechanism: by reference

Name of a routine to obtain a required parameter not supplied in the command
text. The param_routine argument is the address of a routine containing a
required parameter that was not specified in the command_string argument.

To specify the parameter routine, use the address of LIBSGET_INPUT or the
address of a routine of your own that has the same three-argument calling
format as LIBSGET_INPUT. See the description of LIBSGET_INPUT in the HP
OpenVMS RTL Library (LIB$) Manual for information about the calling format.

If LIBSGET_INPUT returns error status, CLISDCL_PARSE propagates the error
status outward or signals RMS$ _EOF in the cases listed in the Description
section.

You can obtain the prompt string for a required parameter from the command
table specified in the table argument.

prompt_routine
OpenVMS usage: procedure

type: procedure value
access: read only
mechanism: by reference

Name of a routine to obtain all or part of the text of a command. The prompt_
routine argument is the address of a routine to obtain the text or the remaining
text of the command depending on the command_string argument. If you
specify a zero in the command_string argument, DCL uses this routine to
obtain an entire command line. DCL uses this routine to obtain a continued
command line if the command string (obtained from the command_string
argument) contains a hyphen to indicate that the string is being continued.

To specify the prompt routine, use the address of LIB$SGET_INPUT or the
address of a routine of your own that has the same three-argument calling
format as LIB$GET_INPUT. See the description of LIB$GET_INPUT in the HP
OpenVMS RTL Library (LIB$) Manual for information about the calling format.

If LIB$GET_INPUT returns error status, CLI$SDCL_PARSE propagates the error
status outward or signals RMS$_EOF in the cases listed in the Description
section.

prompt_string
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

CLI-6 Command Language Interface (CLI) Routines

Command Language (CLI) Routines
CLI$DCL_PARSE

Character string containing a prompt. The prompt_string argument is the
address of a string descriptor pointing to the prompt string to be passed as the
second argument to the prompt_routine argument.

If DCL is using the prompt routine to obtain a continuation line, DCL inserts
an underscore character before the first character of the prompt string to create
the continuation prompt. If DCL is using the prompt routine to obtain an entire
command line (that is, a zero was specified as the command_string argument),
DCL uses the prompt string exactly as specified.

The prompt string is limited to 32 characters. The string COMMAND?> is the
default prompt string.

Description

The CLI$DCL_PARSE routine supplies a command string to DCL for parsing.
DCL parses the command string according to the syntax in the command table
specified in the table argument.

The CLI$SDCL_PARSE routine can prompt for required parameters if you specify
a parameter routine in the routine call. In addition, the CLI$DCL_PARSE
routine can prompt for entire or continued command lines if you supply the
address of a prompt routine.

If you do not specify a command string to parse and the user enters a null
string in response to the DCL prompt for a command string, CLISDCL_PARSE
immediately terminates and returns the status CLI$_NOCOMD.

If DCL prompts for a required parameter and the user presses Ctrl/Z, CLI$SDCL _
PARSE immediately terminates and returns the status CLI$ NOCOMD,
regardless of whether you specify or do not specify a command string to parse. If
DCL prompts for a parameter that is not required and the user presses Ctrl/Z,
CLI$SDCL_PARSE returns the status CLI$ NORMAL.

Whenever CLI$DCL_PARSE encounters an error, it both signals and returns the
error.

Condition Values Returned

CLI$_INVREQTYP Calling process did not have a CLI to perform
this function, or the CLI did not support the
request.

CLI$_IVKEYW Invalid keyword.

CLI$_IVQUAL Unrecognized qualifier.

CLI$_IVVERB Invalid or missing verb.

CLI$_NOCOMD Routine terminated. You entered a null string in

response to a prompt from the prompt_routine
argument, causing the CLI$SDCL_PARSE routine
to terminate.

CLI$_NORMAL Normal successful completion.
CLI$_ONEVAL List of values not allowed; enter one only.
RMS$_EOF Routine terminated. You pressed Ctrl/Z in

response to a prompt, causing the CLI$DCL _
PARSE routine to terminate.

Command Language Interface (CLI) Routines CLI-7

Command Language (CLI) Routines
CLI$DISPATCH

CLI$DISPATCH—Dispatch to Action Routine

The CLI$SDISPATCH routine invokes the subroutine associated with the verb
most recently parsed by a CLI$SDCL_PARSE routine call.

Format
CLI$DISPATCH [userarg]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value in RO.
The condition value that this routine can return is listed under Condition Values
Returned.
Argument
userarg
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value
Data to be passed to the action routine. The userarg argument is a longword
that contains the data to be passed to the action routine. This data can be used
in any way you want.
Description

The CLI$DISPATCH routine invokes the subroutine associated with the verb
most recently parsed by a CLISDCL_PARSE routine call. If the routine is
successfully invoked, the return status is the status returned by the action
routine. Otherwise, a status of CLI$_INVROUT is returned.

Condition Values Returned

CLI$_INVREQTYP Calling process did not have a CLI to perform
this function or the CLI did not support the
request.

CLI$_INVROUT CLI$DISPATCH unable to invoke the routine.

An invalid routine is specified in the command
table, or no routine is specified.

CLI-8 Command Language Interface (CLI) Routines

Command Language (CLI) Routines
CLI$GET_VALUE

CLI$SGET_VALUE—Get Value of Entity in Command String

The CLI$SGET_VALUE routine retrieves a value associated with a specified
qualifier, parameter, keyword, or keyword path from the parsed command string.

Format
CLI$GET_VALUE entity_desc ,retdesc [,retlength]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.
Arguments
entity_desc
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Character string containing the label (or name if no label is defined) of the entity.
The entity_desc argument is the address of a string descriptor that points to an
entity that may appear on a command line. The entity_desc argument can be
expressed as one of the following:

= A parameter, qualifier, keyword name, or label
= A keyword path

The entity_desc argument can contain qualifiers, parameters, keyword names,
or labels that were assigned with the LABEL clause in the command definition
file. If you used the LABEL clause to assign a label to an entity, you must specify
the label in the entity_desc argument. Otherwise, use the name of the entity.

Use a keyword path to reference keywords used as values of parameters,
qualifiers, or other keywords. A keyword path contains a list of entity names

or labels separated by periods. If the LABEL clause was used to assign a label to
an entity, you must specify the label in the keyword path. Otherwise, you must
use the name of the entity.

The following command string illustrates a situation where keyword paths

are needed to uniquely identify keywords. In this command string, you can

use the same keywords with more than one qualifier. (This is defined in the
command definition file by having two qualifiers refer to the same DEFINE TYPE
statement.)

$ NEWCOMMAND/QUAL1= (START=5,END=10) /QUAL2= (START=2, END=5)

Command Language Interface (CLI) Routines CLI-9

Command Language (CLI) Routines
CLI$GET_VALUE

The keyword path QUAL1.START identifies the START keyword when it is
used with QUALZ; the keyword path QUALZ2.START identifies the keyword
START when it is used with QUAL2. Because the name START is an ambiguous
reference if used alone, the keywords QUAL1 and QUAL2 are needed to resolve
the ambiguity.

You can omit keywords from the beginning of a keyword path if they are not
needed to unambiguously resolve a keyword reference. A keyword path can be no
more than eight names long.

If you use an ambiguous keyword reference, DCL resolves the reference by
checking, in the following order:

1. The parameters in your command definition file, in the order they are listed
2. The qualifiers in your command definition file, in the order they are listed

3. The keyword paths for each parameter, in the order the parameters are listed
4. The keyword paths for each qualifier, in the order the qualifiers are listed

DCL uses the first occurrence of the entity as the keyword path. Note that DCL
does not issue an error message if you provide an ambiguous keyword. However,
because the keyword search order may change in future releases of OpenVMS,
you should never use ambiguous keyword references.

If the entity_desc argument does not exist in the command table, CLISGET _
VALUE signals a syntax error (by means of the signaling mechanism described in
the HP OpenVMS Programming Concepts Manual).

retdesc

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Character string containing the value retrieved by CLISGET _VALUE. The
retdesc argument is the address of a string descriptor pointing to the buffer to
receive the string value retrieved by CLI$SGET_VALUE. The string is returned
using the STR$COPY_DX Run-Time Library routine.

If there are errors in the specification of the return descriptor or in copying the
results using that descriptor, the STR$COPY_DX routine will signal the errors.
For a list of these errors, see the OpenVMS RTL String Manipulation (STR$)

Manual.

retlength

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Word containing the number of characters DCL returns to retdesc. The
retlength argument is the address of the word containing the length of the
retrieved value.

CLI-10 Command Language Interface (CLI) Routines

Description

Command Language (CLI) Routines
CLI$GET_VALUE

The CLISGET_VALUE routine retrieves a value associated with a specified
qualifier, parameter, keyword, or keyword path from the parsed command string.

Note

Only use the CLI$SGET_VALUE routine to retrieve values from parsed
command strings (through DCL or CLI$DCL_PARSE). When you use

a foreign command to activate an image, the DCL parsing process is
interrupted. As a result, CLISGET_VALUE returns either values from
the previously parsed command string or a status of CLI$ ABSENT if it
is the first command string parsed.

You can use the following label names with CLISGET_VALUE to retrieve special

strings:
$VERB

$SLINE

Describes the verb in the command string (the first four letters of the
spelling as defined in the command table, instead of the string that
was actually typed).

Describes the entire command string as stored internally by DCL.
In the internal representation of the command string, multiple
spaces and tabs are removed, alphabetic characters are converted
to uppercase, and comments are stripped. Integers are converted

to decimal. If dates and times are specified in the command string,
DCL fills in any defaulted fields. Also, if date-time strings (such as
YESTERDAY) are used, DCL substitutes the corresponding absolute
time value.

To obtain the values for a list of entities, call CLISGET_VALUE repeatedly until
all values have been returned. After each CLISGET VALUE call, the returned
condition value indicates whether there are more values to be obtained. Call
CLISGET_VALUE until you receive a condition value of CLI$_ABSENT.

When you are using CLI$SGET_VALUE to obtain a list of qualifier or keyword
values, get all values in the list before starting to parse the next entity.

Condition Values Returned

SS$_NORMAL Returned value terminated by a blank or an

end-of-line. This shows that the value is the last,
or only, value in the list.

CLI$_ABSENT No value returned. The value is not present, or

the last value in the list was already returned.

CLI$_COMMA Returned value terminated by a comma. This

shows there are additional values in the list.

CLI$_CONCAT Returned value concatenated to the next value

with a plus sign. This shows there are additional
values in the list.

CLI$_INVREQTYP Calling process did not have a CLI to perform

this function or the CLI did not support the
request.

Command Language Interface (CLI) Routines CLI-11

Command Language (CLI) Routines
CLI$SPRESENT

CLI$SPRESENT—Determine Presence of Entity in Command String

Format

Returns

Argument

The CLISPRESENT routine examines the parsed command string to determine
whether the entity referred to by the entity _desc argument is present.

CLISPRESENT entity_desc

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Conditon Values
Returned.

entity _desc

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Character string containing the label (or name if no label is defined) of the entity.
The entity_desc argument is the address of a string descriptor that points to an
entity that may appear on a command line. An entity can be expressed as one of
the following:

= A parameter, qualifier, or keyword name or label
= A keyword path

A keyword path is used to reference keywords that are accepted by parameters,
qualifiers, or other keywords. A keyword path contains a list of entity names
separated by periods. See the description of the entity_desc argument in the
CLI$SGET_VALUE routine for more information about specifying keyword paths
as arguments for CLI routines.

The entity_desc argument can contain parameter, qualifier, or keyword names,
or can contain labels that were assigned with the LABEL clause in the command
definition file. If the LABEL clause was used to assign a label to a qualifier,
parameter, or keyword, you must specify the label in the entity _desc argument.
Otherwise, you must use the actual name of the qualifier, parameter, or keyword.

If the entity_desc argument does not exist in the command table,
CLI$PRESENT signals a syntax error (by means of the signaling mechanism
described in the HP OpenVMS Programming Concepts Manual).

CLI-12 Command Language Interface (CLI) Routines

Description

Command Language (CLI) Routines
CLISPRESENT

The CLISPRESENT routine examines the parsed command string to determine
whether the entity referred to by the entity _desc argument is present.

When CLISPRESENT tests whether a qualifier is present, the condition value
indicates whether the qualifier is used globally or locally. You can use a global
qualifier anywhere in the command line; you use a local qualifier only after

a parameter. A global qualifier is defined in the command definition file with
PLACEMENT=GLOBAL,; a local qualifier is defined with PLACEMENT=LOCAL.

When you test for the presence of a global qualifier, CLISPRESENT determines
if the qualifier is present anywhere in the command string. If the qualifier

is present in its positive form, CLISPRESENT returns CLI$_PRESENT,; if

the qualifier is present in its negative form, CLISPRESENT returns CLI$_
NEGATED.

You can test for the presence of a local qualifier when you are parsing parameters
that can be followed by qualifiers. After you call CLISGET_VALUE to fetch the
parameter value, call CLISPRESENT to determine whether the local qualifier

is present. If the local qualifier is present in its positive form, CLISPRESENT
returns CLI$_LOCPRES; if the local qualifier is present in its negative form,
CLISPRESENT returns CLI$_LOCNEG.

A positional qualifier affects the entire command line if it appears after the verb
but before the first parameter. A positional qualifier affects a single parameter
if it appears after a parameter. A positional qualifier is defined in the command
definition file with the PLACEMENT=POSITIONAL clause.

To determine whether a positional qualifier is used globally, call CLISPRESENT
to test for the qualifier before you call CLISGET_VALUE to fetch any parameter
values. If the positional qualifier is used globally, CLISPRESENT returns either
CLI$_PRESENT or CLI$_NEGATED.

To determine whether a positional qualifier is used locally, call CLISPRESENT
immediately after a parameter value has been fetched by CLI$SGET_VALUE. The
most recent CLISGET_VALUE call to fetch a parameter defines the context for a
qualifier search. Therefore, CLISPRESENT tests whether a positional qualifier
was specified after the parameter that was fetched by the most recent CLISGET _
VALUE call. If the positional qualifier is used locally, CLISPRESENT returns
either CLI$_LOCPRES or CLI$_LOCNEG.

Condition Values Returned

CLI$_ABSENT Specified entity not present, and it is not present
by default.

CLI$_DEFAULTED Specified entity not present, but it is present by
default.

CLI$_INVREQTYP Calling process did not have a CLI to perform
this function, or the CLI did not support the
request.

CLI$_LOCNEG Specified qualifier present in negated form (with

INO) and used as a local qualifier.

Command Language Interface (CLI) Routines CLI-13

Command Language (CLI) Routines
CLI$SPRESENT

CLI$_LOCPRES
CLI$_NEGATED

CLI$_PRESENT

CLI-14 Command Language Interface (CLI) Routines

Specified qualifier present and used as a local
qualifier.

Specified qualifier present in negated form (with
/NO) and used as a global qualifier.

Specified entity present in the command string.
This status is returned for all entities except
local qualifiers and positional qualifiers that are
used locally.

5

Common File Qualifier Routines

This chapter describes the common file qualifier (UTIL$CQUAL) routines. The
UTILSCQUAL routines allow you to parse the command line for qualifiers
related to certain file attributes, and to match files you are processing against the
selected criteria retrieved from the command line.

5.1 Introduction to the Common File Qualifier Routines

The common file qualifier routines begin with the characters UTILSCQUAL.
Your program calls these routines using the OpenVMS Calling Standard. When
you call a UTIL$CQUAL routine, you must provide all the required arguments.
Upon completion, the routine returns its completion status as a condition value.
Section 5.3 provides detailed descriptions of the routines.

The following table lists the common file qualifier routines.

Table 5-1 UTIL$CQUAL Routines

Routine Name Description

UTIL$CQUAL_FILE_PARSE Parses the command line for the file qualifiers
listed in Table 5-2, and obtains associated values.
Returns a context value that is used when calling
the matching and ending routines.

UTIL$CQUAL_FILE_MATCH Compares the routine file input to the command line
data obtained from the parse routine call.
UTIL$CQUAL_FILE_END Deletes all virtual memory allocated during the

command line parse routine call.

UTIL$CQUAL_CONFIRM_ACT Prompts a user for a response from
SYS$COMMAND.

5.2 Using the Common File Qualifier Routines
Follow these steps to use the common file qualifier routines:

1. Call UTIL$CQUAL_FILE_PARSE to parse the command line for the common
file qualifiers. (See Table 5-2 for a list of the qualifiers.)

2. Call UTIL$CQUAL_FILE_MATCH for each checked file. UTIL$CQUAL_
FILE_MATCH returns an indication that the file is, or is not, to be processed.

3. Call UTIL$SCQUAL_FILE_END to release the virtual memory held by the
common file qualifier package.

You may optionally call UTILSCQUAL_CONFIRM_ACT to ask for user
confirmation without calling the other common qualifier routines.

Common File Qualifier Routines CQUAL-1

Common File Qualifier Routines

5.2 Using the Common File Qualifier Routines

5.2.1 Calling UTILSCQUAL_FILE_PARSE

When you call UTILSCQUAL_FILE_PARSE, specify the qualifiers listed in
Table 5-2 that you want to parse by setting bits in a flags longword and passing
the longword address as the first parameter.

Table 5-2 UTIL$CQUAL_FILE_PARSE Command Line Qualifiers

Qualifier Description

BEFORE= Selects a file before the specified time.

CONFIRM Prompts the user for confirmation.

SINCE= Selects a file on or after the specified time.
MODIFIED Specifies that the file’s revision time (time of last

modification) is used for comparison with the time
specified in either the /BEFORE or /SINCE qualifier.

Specifies that the file’'s creation time is used for
comparison with the time specified in either the
/BEFORE or /SINCE qualifier.

BACKUP Specifies that the file's most recent backup time is used
for comparison with the time specified in either the
/BEFORE or /SINCE qualifier.

EXPIRED Specifies that the file's expiration date is used for
comparison with the time specified in either the
/BEFORE or /SINCE qualifier.

CREATED (default)

BY OWNER= Selects a file based on the file owner’s user identification
code. The default is the UIC of the current process.
EXCLUDE= Selects a file only if it does not match the specification

or list of specifications given with this qualifier.

The following segment from a sample C program shows the flags longword set to
search for the common file qualifiers supported by this package:

input flags = UTIL$M CQF CONFIRM | UTIL$M CQF EXCLUDE |
UTILS$M_CQF BEFORE | UTIL$M CQF SINCE |
UTILSM_CQF CREATED | UTIL$M CQF MODIFTED
UTIL$M_CQF EXPIRED | UTIL$M _CQF BACKUP
UTILSM_CQF BYOWNER;

Optionally, you can provide the flags longword address for UTILSCQUAL_FILE
PARSE to return an indication of what common file qualifiers were present on
the command line. For example, if /CONFIRM is enabled and was found on the
command line, the application can determine if confirmation prompts need to be
built. The following is an example call in C:

status = UTILSCQUAL FILE PARSE (&input flags,
&context,
&output flags) ;

The context variable contains the address of the common file qualifier value
which is used in other common file qualifier routine calls.

CQUAL-2 Common File Qualifier Routines

Common File Qualifier Routines
5.2 Using the Common File Qualifier Routines

5.2.1.1 Specifying Times
The times specified with the /SINCE= and /BEFORE= qualifiers must be in
either absolute or combination time format. When DCL gathers these times from
the command line, it converts truncated time values, combination time values,
and keywords (such as BOOT, LOGIN, TODAY, TOMORROW, or YESTERDAY)
into absolute time format. Files are selected based on the times entered on
the command line, and are compared to the time of the file’s backup date,
creation date (default), expiration date, or last modification date as indicated
by the modifier qualifiers /BACKUP, /CREATED, /EXPIRED, and /MODIFIED
respectively.

For complete information on specifying time values, see the OpenVMS User’s
Manual or the topic DCL_TIPS Date_Time in online help.

5.2.1.2 Specifying Exclude Pattern Strings
Pattern strings are used to exclude specific files from being processed. The
pattern strings may contain a combination of a directory specification, filename,
filetype, and version number. Node names and device names are not permitted.
Relative directory specifications are allowed (such as [.subdirectory] or [-]),
but relative version numbers have no meaning as a pattern string component.
UTIL$CQUAL_FILE_PARSE assumes relative version numbers are a wildcard,
and matches all versions. An FID or DID specification is also not allowed.

To exclude more than one specification, use a comma-separated list enclosed
within parentheses.

5.2.2 Calling UTILSCQUAL_FILE_MATCH

When calling UTIL$CQUAL_FILE_MATCH, specify a file that you want checked
against criteria in the common file qualifier context. The context address was
returned as the first parameter in a prior call to UTILSCQUAL_FILE_PARSE,
and is the first parameter for UTILSCQUAL_FILE_MATCH.

To specify a file, provide either a string descriptor containing the specification or
an RMS FAB. The FAB must contain an NAM block that has been filled in by
RMS, so that comparisons with excluded file specifications can occur. If the FAB
indicates that the file is open, and any of the /BEFORE, /SINCE or /BY_OWNER
qualifiers are to be evaluated, then the appropriate XAB blocks must be in the
XAB chain (XABDAT and XABPRO). The XAB blocks must be filled in by RMS
during the file open.

Note

The files passed in with a DID or an FID specification may cause the
common qualifier package to stop processing if that portion of the file
specification needs to be matched against a pattern string from the
/IEXCLUDE qualifier.

Common File Qualifier Routines CQUAL-3

Common File Qualifier Routines
5.2 Using the Common File Qualifier Routines

5.2.2.1 Specifying Prompts
You can provide one or two prompts when specifying prompts as confirmation
messages. If confirmation is active, at least one prompt string must be
specified. When providing two prompts, use the shorter prompt as the prompt_
string_1 parameter. Table 5-5 lists the valid confirmation prompt responses.
CONDENSED and EXPANDED are used when switching between prompts.

The user responding CONDENSED (or just C) displays the prompt_string_1
string. For a more descriptive or detailed prompt, use prompt_string_2 in your
call. For example, the OpenVMS utilities construct prompts from the short and
long fields of an RMS NAML block. The prompt from the short field is passed
through prompt_string_1, and the prompt from the long field is passed through
prompt_string_2.

You have the option of specifying a prompt routine. The first parameter for the
prompt routine will contain a string descriptor of the prompt to be displayed.
The second parameter will contain the address of a buffer for the user’s response.
You must modify the response buffer to reflect the length of the user’s response.
Table 5-5 lists the valid prompt routine responses. All other responses display an
invalid response warning, and call the prompt routine again.

When two prompts are supplied to UTIL$CQUAL_FILE_MATCH, the optional
parameter current_form can be used to determine which prompt string is
displayed first. Table 54 lists the valid current_form values.

If the value stored in current_form is not in the values listed, then UTIL$K _
CQF_SHORT is assumed. If the value is UTIL$K_CQF_UNSPECIFIED, or

this parameter is absent from the call, then the form stored in the common file
qgualifier database is used. The value currently stored in the common file qualifier
database is the final form active when UTIL$CQUAL_FILE_MATCH returned
from the previous call with the current database context. If there was no previous
call, UTIL$K_CQF_SHORT is stored in the database.

If the current_form parameter can be written to, the final active form is stored
before UTIL$CQUAL_FILE_MATCH returns.

Note

If only one prompt string is provided to UTIL$CQUAL_FILE_MATCH,
the final form will be the form corresponding to that prompt string even
if the user requests the alternate form. For example, if only the short
prompt string is provided and the user requests the long prompt, the user
receives the short prompt. UTIL$K_CQF_SHORT is returned through the
current_form parameter if that parameter is writable.

5.2.2.2 Ignoring Qualifiers

The final parameter, which is also optional, is a flags longword used to ignore
certain qualifier processing when calling UTIL$CQUAL_FILE_MATCH. The
modifier qualifiers for date comparisons (/CREATED, /IMODIFIED, /BACKUP,
and /EXPIRED) cannot be ignored. If either the /SINCE or /BEFORE modifier
qualifiers are active, then the date comparison modifier qualifiers must be active
to determine which dates to compare. For example, to operate on the top two
versions of a file set when confirmation is active, an application can keep track
of the first two instances and prompt the user. Once the application reaches that

CQUAL-4 Common File Qualifier Routines

Common File Qualifier Routines
5.2 Using the Common File Qualifier Routines

number, it sets the UTILSM_CQF_CONFIRM bit in the disable parameter flags
longword, and the user is not prompted for confirmation during that call. The
following is an example call in C:

status = UTILSCQUAL FILE MATCH (&context,
OI
&result desc,
&short prompt,
&long_prompt,

&prompt form,
&ignore flags);

5.2.3 Calling UTILSCQUAL_FILE_END

When calling UTIL$CQUAL_FILE_END, specify the context variable that
contains the common file qualifier database context to be terminated. The
database location was returned in a prior call to UTIL$CQUAL_FILE_PARSE.
The UTILSCQUAL_FILE_END call deallocates all virtual memory held by the
common file qualifier value in the context parameter. The context variable is
zeroed before this routine returns. The following is an example call in C:

status = UTILSCQUAL FILE END (&context);

5.2.4 Calling UTIL$CQUAL_CONFIRM_ACT

Similar to UTIL$CQUAL_FILE_MATCH, the parameter list used when calling
UTIL$CQUAL_CONFIRM_ACT is a subset of the UTIL$CQUAL_FILE_MATCH
parameter list.

When specifying prompts as confirmation messages, you can provide one or two
prompts. At least one prompt string must be specified. When providing two
prompts, use the shorter of the two prompts as the prompt_string_1 parameter.
Table 5-5 lists valid responses to a confirmation prompt, and lists CONDENSED
and EXPANDED to switch between prompts.

The user responding CONDENSED (or just C) causes the prompt_string_1
string to be displayed. To give the user a more descriptive or detailed prompt,
use prompt_string_2 in your call. For example, the OpenVMS utilities construct
prompts from the short and long fields of an RMS NAML block. The prompt from
the short field is passed through prompt_string_1, and the prompt from the long
field is passed through prompt_string_2.

You have the option of specifying a prompt routine. The first parameter for the
prompt routine is a string descriptor of the prompt to be displayed. The second
parameter contains the address of a buffer for the user’s response. You must
modify the response buffer to reflect the length of the user’s response. Table 5-5
lists valid prompt routine responses. All other responses display an invalid
response warning, and call the prompt routine again.

When two prompts are supplied to UTIL$CQUAL_CONFIRM_ACT, the optional
parameter current_form can be used to determine which prompt string is
displayed first. The valid values are listed in Table 5-4. If the value stored is
other than the values listed, UTIL$K_CQF_SHORT is assumed. If the value is
UTIL$K_CQF_UNSPECIFIED or this parameter is absent from the call, then
UTIL$K_CQF_SHORT is used.

Common File Qualifier Routines CQUAL-5

Common File Qualifier Routines
5.2 Using the Common File Qualifier Routines

If the current_form parameter can be written to, the final active form is stored
before UTILSCQUAL_CONFIRM_ACT returns.

Note

If only one prompt string is passed into the UTIL$CQUAL_CONFIRM _
ACT call, the final form will be the form corresponding to that prompt
string even if the user requests the alternate form. For example, if

only the short prompt string is provided and the user requests the long
prompt, the user receives the short prompt again. UTIL$K _CQF_SHORT
is returned through the current_form parameter if that parameter is
writable.

The following is an example call in C:

status = UTILSCQUAL CONFIRM ACT (&short prompt,
&long prompt,
0,
&prompt form);

5.2.5 Creating a Command Language Definition File

For UTIL$CQUAL_FILE_PARSE to function properly, you need the following
Command Language Definition (CLD) file template in the command tables being
examined:

define verb foo
image foo
parameter pl,prompt="File", value(list,impcat,required,type=5infile)
qualifier confirm
qualifier exclude,value(required,list)
qualifier before,value (default=today, type=$datetime)
qualifier since,value(default=today, type=$datetime)
qualifier created
qualifier modified
qualifier expired
qualifier backup
qualifier by owner,value (type=Suic)

For example, if the line qualifier expired was omitted, a call to UTILSCQUAL _
FILE_PARSE would result in:

$ foo *.c
%CLI-F-SYNTAX, error parsing ’'EXPIRED’
-CLI-E-ENTNF, specified entity not found in command tables
$TRACE-F-TRACEBACK, symbolic stack dump follows
image module routine line rel PC abs

Note

A default value for the /SINCE= and /BEFORE= qualifiers is provided in
the CLD file. If you do not require a value, specify a default or you may
not get the desired result.

CQUAL-6 Common File Qualifier Routines

Common File Qualifier Routines
5.2 Using the Common File Qualifier Routines

The following example shows a C program that retrieves files from the command
line, and lists which ones will be processed, if processing is required.

Example 5-1 Using UTIL$CQUAL Routines to Process Files

$ create foo.c
#include <stdio.h>
#include <string.h>

#include <rms.h>

#include <starlet.h>
#include <descrip.h>
#include <libSroutines.h>
#include <libfildef.h>
#include <cliSroutines.h>

#include <cqualdef.h>
#include <utilSroutines.h>

#ifdef NAMLSC BID /* determine if HFS support is here */
#define HFS Support 1

#else

#define HFS Support 0

#endif

#if IHFS Support /* compensate for lack of HFS support */
#define naml$l rsa nam$l rsa

#define naml$b rsl nam$b rsl

#define naml$l long result nam$l rsa

#define naml$l long result size nam$b rsl

#define NAML$C MAXRSS NAM$C MAXRSS

#define LIBSM FIL LONG NAMES 0

#endif

unsigned int input flags;
unsigned int output flags;
unsigned int ignore flags = 0;
unsigned int *context;

char get value [NAM$SC MAXRSS];

char *prompt string = "Confirmation for ";
char *prompt end = " [N] ? ";

char *process =" Will process ";

char *noprocess = " Will not process ";

char short string[NAMSC MAXRSS+80] ;
unsigned int prompt form = 0;

unsigned int status;

struct fabdef *find file context;
unsigned int find file flags;

unsigned short ret length;

SDESCRIPTOR (parm 1, "P1");
SDESCRIPTOR (get _val desc, get value);
SDESCRIPTOR (short prompt, short string);
SDESCRIPTOR (result desc, "");

char long string[NAML$C MAXRSS+80] ;
char outstring[NAMLSC MAXRSS+80];
SDESCRIPTOR (long prompt, long string);

#if HFS Support

struct namldef *nam block;
#else

struct namdef *nam block;
#endif

(continued on next page)

Common File Qualifier Routines CQUAL-7

Common File Qualifier Routines
5.2 Using the Common File Qualifier Routines

Example 5-1 (Cont.) Using UTIL$CQUAL Routines to Process Files

extern UTIL$ QUICONACT; /* external literal */
extern UTIL$ QUIPRO; /* external literal */

int main(void) {

input flags = UTIL$M CQF CONFIRM | UTIL$M CQF EXCLUDE |
UTILSM CQF BEFORE | UTIL$M CQF SINCE |
UTILSM_CQF CREATED | UTIL$M_CQF MODIFIED
UTILSM_CQF EXPIRED | UTIL$M CQF BACKUP
UTILSM_CQF BYOWNER;

if (! (status = UTIL$CQUAL FILE PARSE (&input flags,
&context,
goutput flags) & 1)) {
return status;

find file flags = LIB$M FIL MULTIPLE | LIBS$M FIL LONG NAMES;

get val desc.dsc$w_length = sizeof (get value);

status = cli$get value(&parm 1, &get val desc, &ret length);

result desc.dsc$b class = DSC$K CLASS D;
result desc.dsc$a pointer = 0;

while (status & 1) {
get val desc.dsc$w length = ret length;
while ((status != (int)&UTILS QUIPRO) && /* treat as external literalx/

(LIBSFIND FILE(&get val desc, &result desc,
&find file context, 0, 0, O,
&find file flags) & 1))
#if HFS Support
nam block = find file context->fab$l naml;

#else
nam block = find file context->fab$l nam;
#endif
if ((output flags && UTILS$M CQF CONFIRM) != 0) {
strcpy (short string, prompt string);
strncat (short string, nam block->naml$l rsa,
(int)nam block->namls$b rsl);
strcat (short string, prompt end);
short prompt.dsc$w _length = strlen(short string);
strcpy (long string, prompt string);
strncat (long_string, nam block->naml$l long result,
(int)nam block->naml$l long result size);
strcat (long string, prompt end);
long prompt.dsc$w _length = strlen(long string);

else {
short prompt.dsc$w_length
long prompt.dsc$w length =

= 0;
0;

if ((status = UTILSCQUAL FILE MATCH(&context,

0,

&result desc,

&short prompt,

&long prompt,

&prompt form,

&ignore flags)) & 1) {

strcpy (outstring, process);

(continued on next page)

CQUAL-8 Common File Qualifier Routines

Common File Qualifier Routines
5.2 Using the Common File Qualifier Routines

Example 5-1 (Cont.) Using UTIL$CQUAL Routines to Process Files

else {
strcpy (outstring, noprocess);
if (prompt form == UTIL$K CQF SHORT) {
strncat (outstring, nam block->naml$l rsa,
(int)nam block->naml$b rsl);

else {
strncat (outstring, nam block->naml$l long result,
(int)nam block->naml$l long result size);

printf ("$s\n", outstring);
if (status == (int)&UTILS QUICONACT) { /* treat as external literal*/
output flags &= ~UTILSM CQF CONFIRM;

1

bi
if (status != (int)&UTILS QUIPRO) {
get_val desc.dsc$w_length = sizeof (get_value);
status = clisget value(&parm 1, &get val desc, &ret length);

’

status = UTILSCQUAL FILE END (&context);
return status;

}

$ cc/list foo.c

$ link foo.c

$ set command foo.cld

$ define foo sys$disk:[]foo.exe

$ directory/noexclude

Directory MDA2000: [main]

EDTINI.EDT;1 FOO.BAR;1 F00.C;2
FO00.C;1 FOO0.CLD; 2 FO00.CLD;1
FOO0.EXE; 3 FOO.EXE; 2 FOO.EXE;1
FO0.LIS;1 FO0.0BJ;1 LAST.COM; 1
LOGIN.COM; 1 MAIL.MAI;1 MDAO.DAT;1
NOTE.DAT;1 QUEUE.COM; 1 TPUINI.TPU;1

(continued on next page)

Common File Qualifier Routines CQUAL-9

Common File Qualifier Routines
5.2 Using the Common File Qualifier Routines

Example 5-1 (Cont.) Using UTIL$CQUAL Routines to Process Files

Total of 18 files.
$ foo/exclude=*.c * . *;%*
Will process MDA2000: [main] EDTINI.EDT;1
Will process MDA2000: [main] FOO.BAR;1
Will not process MDA2000: [main] FOO.C;2
Will not process MDA2000: [main] FOO.C;1
Will process MDA2000: [main] FOO.CLD;?2
Will process MDA2000: [main] FOO.CLD;1
Will process MDA2000: [main] FOO.EXE;3
Will process MDA2000: [main] FOO.EXE;2
Will process MDA2000: [main] FOO.EXE;1
Will process MDA2000: [main] FOO.LIS;1
Will process MDA2000: [main] FOO.OBJ;1
Will process MDA2000: [main] LAST.COM;1
Will process MDA2000: [main] LOGIN.COM;1
Will process MDA2000: [main]MAIL.MAI;1
Will process MDA2000: [main]MDAO.DAT;1
Will process MDA2000: [main]NOTE.DAT;1
Will process MDA2000: [main] QUEUE.COM;1
Will process MDA2000: [main] subdir.DIR;1
Will process MDA2000: [main] TPUINI.TPU;1
$ foo/confirm *.*
Confirmation for MDA2000: [main] EDTINI.EDT;1 [N] ? n
Will not process MDA2000: [main] EDTINI.EDT;1
Confirmation for MDA2000: [main] FOO.BAR;1 [N] ? n
Will not process MDA2000: [main] FOO.BAR;1
Confirmation for MDA2000: [main]F00.C;2 [N] ? y
Will process MDA2000: [main] FOO.C;2
Confirmation for MDA2000: [main]FOO.CLD;2 [N] ? g
Will not process MDA2000: [main] FOO.CLD;2
$ foo/since=yesterday/modified/exclude=(*.*;2,1*%) foo.*;*,6 *. com;*
Will process MDA2000: [main] FOO.BAR;1
Will not process MDA2000: [main] FOO.C;2
Will process MDA2000: [main] FOO.C;1
Will not process MDA2000: [main] FOO.CLD;2
Will process MDA2000: [main] FOO.CLD;1
Will process MDA2000: [main] FOO.EXE;3
Will not process MDA2000: [main] FOO.EXE;2
Will process MDA2000: [main] FOO.EXE;1
Will process MDA2000: [main] FOO.LIS;1
Will process MDA2000: [main] FOO.OBJ;1
Will not process MDA2000: [main] LAST.COM;1
Will not process MDA2000: [main] LOGIN.COM;1
Will process MDA2000: [main] QUEUE.COM;1

5.3 UTIL$CQUAL Routines
This section describes the UTIL$CQUAL routines.

CQUAL-10 Common File Qualifier Routines

Common File Qualifier Routines
UTIL$CQUAL_FILE_PARSE

UTIL$CQUAL_FILE_PARSE—Parse the Command Line

The UTIL$CQUAL_FILE_PARSE routine parses the command line for the
common file qualifiers.

Format
UTIL$CQUAL_FILE_PARSE flags ,context [,found_flags]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value in RO.
Condition Values Returned lists condition values that this routine returns.
Arguments
flags
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Longword of bit flags. UTIL$CQUAL_FILE_PARSE scans the command line for
the qualifiers whose associated bit is set in the flags longword. The following
table lists the allowed mask and field specifier values.

Table 5-3 UTIL$CQUAL_FILE PARSE Flags and Masks

Qualifier Mask Value Field Specifier

/CONFIRM UTIL$M_CQF_CONFIRM UTIL$V_CQF_CONFIRM
/EXCLUDE UTIL$SM_CQF_EXCLUDE UTIL$V_CQF_EXCLUDE
/BEFORE UTIL$SM_CQF_BEFORE UTIL$V_CQF BEFORE
/ISINCE UTIL$M_CQF_SINCE UTIL$V_CQF SINCE
/ICREATED UTIL$M_CQF_CREATED UTIL$V_CQF_CREATED
/IMODIFIED UTIL$M_CQF_MODIFIED UTIL$V_CQF _MODIFIED
/EXPIRED UTIL$M_CQF_EXPIRED UTIL$V_CQF EXPIRED
/BACKUP UTIL$M_CQF_BACKUP UTIL$V_CQF BACKUP

/BY OWNER UTIL$M_CQF BYOWNER UTIL$V_CQF BYOWNER

context

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

The address of a longword that receives the common file qualifier database
address. The address of the context variable must be passed to the

Common File Qualifier Routines CQUAL-11

Common File Qualifier Routines
UTIL$CQUAL_FILE PARSE

Description

UTIL$CQUAL_FILE_MATCH and UTIL$CQUAL_FILE_END routines when
they are called.

found_flags

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Longword of bit flags. This optional parameter is the longword address of the
value that indicates which common file qualifiers were present on the command
line. The mask and field specifier values are the same values as the flags
parameter, and are listed in Table 5-3.

Using the CLISPRESENT and CLISGET_VALUE routines, the UTIL$CQUAL _
FILE_PARSE routine searches the command line for the qualifiers specified

in the flags longword. When command line parsing finishes, UTIL$SCQUAL _
FILE_PARSE returns a pointer to the common file qualifier value in the context
parameter.

The context parameter must be used when calling either the UTILSCQUAL _
FILE_MATCH or UTIL$CQUAL_FILE_END routines. If a third parameter is
specified, UTIL$CQUAL_FILE_PARSE returns a longword of flags indicating
which qualifiers were found during the command line parse. The mask and field
specifiers are listed in Table 5-3.

Condition Values Returned

SS$_NORMAL Normal successful completion.

LIB$_INVARG Invalid argument. A bit in the flags parameter
was set without an associated qualifier.

CLI$_INVQUAVAL An unusable value was given on the command

line for any of the following qualifiers:
/EXCLUDE, /BEFORE, /SINCE, or /BY_OWNER
(for example, /BEFORE=mintchip).

SS$_CONFQUAL More than one of the following appeared on the
command line at the same time: /CREATED,
/MODIFIED, /EXPIRED, /BACKUP.

Any unsuccessful return from LIBSGET_VM.

CQUAL-12 Common File Qualifier Routines

Common File Qualifier Routines
UTIL$CQUAL_FILE_MATCH

UTIL$CQUAL_FILE_MATCH—Match a File with Selection Criteria

Format

Returns

Arguments

The UTIL$CQUAL_FILE_MATCH routine matches a file with the selection
criteria.

UTIL$CQUAL_FILE_MATCH context [,user_fab] [,file_name] [,prompt_string_1]
[,prompt_string_2] [,prompt_rtn] [,current_form]
[,disable]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition Values Returned lists condition values that this routine returns.

context

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The longword address that received the common file qualifier database address
from a prior call to UTILSCQUAL_FILE_PARSE.

user_fab

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The FAB address of the file to be evaluated. This FAB must point to a valid NAM
or NAML block. If the file is open and the file header criteria are to be evaluated,
the appropriate XABs (XABPRO or XABDAT) must be chained to the FAB and
properly filled in by RMS. If the file is not open when this routine is called, then
the XAB chain is not necessary, but may be present. This argument is optional.
If it is not present, the file_name parameter must be present. Both arguments
may not be present at the same time.

file_name

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The file name descriptor address of the file to be processed. This parameter can
be used instead of the user_fab argument. Both arguments may not be present
at the same time.

Common File Qualifier Routines CQUAL-13

Common File Qualifier Routines
UTIL$CQUAL_FILE _MATCH

prompt_string_1
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Longword address of a prompt string descriptor. This prompt is used when
prompting to a terminal device and the current prompt form is UTIL$K _CQF_
SHORT.

prompt_string_2
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by descriptor

Longword address of a prompt string descriptor. This prompt is used when
prompting to a terminal device and the current prompt form is UTIL$K_CQF _

LONG.

prompt_rtn

OpenVMS usage: procedure

type: longword (unsigned)
access: function call
mechanism: by value

User-supplied longword routine address used for prompting and accepting input
from the user. The user routine is responsible for end-of-file processing and must
return RMS$_EOF when appropriate.

current_form
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read write
mechanism: by reference

This optional parameter supplies the initial prompt form displayed to the user. If
it contains the value UTIL$K_CQF_UNSPECIFIED, then the form last requested
by the user is used if that form is available. If there was no previous call to
UTILSCQUAL_FILE_MATCH, and the current_form is unspecified, UTIL$K _
CQF_SHORT is assumed.

When exiting UTIL$CQUAL_FILE_MATCH, the current_form parameter
contains the last user requested prompt form. If a previous call to UTIL$CQUAL _
FILE_MATCH requested quit processing or quit confirmation prompting, then
this parameter is not modified.

disable

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Longword of bit flags. This optional parameter specifies which common file
qualifiers are ignored in the current call to UTIL$CQUAL_FILE_MATCH.
Quialifiers that cannot be ignored are /CREATED, /MODIFIED, /EXPIRED, and
IBACKUP).

CQUAL-14 Common File Qualifier Routines

Description

Common File Qualifier Routines
UTIL$CQUAL_FILE_MATCH

UTIL$CQUAL_FILE_MATCH compares the file named in either the user_fab

or file_name parameter (only one can be specified) against criteria specified by
the common file qualifier database pointed to by the context and the disable

parameter flags. UTIL$CQUAL_FILE_MATCH returns a status as to whether
the file does or does not match the criteria.

If a failure occurs during processing, such as those listed in the Abnormal
Completion Codes, the routine quits processing files for the context under

which the failure occurred. A processing failure is the same as receiving a quit
processing response from a user prompt. Any additional calls to this routine with
the context that incurred the processing failure will return UTIL$_QIOPRO. This
applies even if the user responded ALL to a previous confirmation prompt.

For a description of the /CONFIRM prompting, see UTILSCQUAL_CONFIRM _
ACT.

Note

The UTIL$CQUAL_FILE_MATCH current_form parameter is
different from the same parameter in UTILSCQUAL_CONFIRM_ACT.
UTILSCQUAL_FILE_MATCH retains the user’s last requested form
between calls.

Condition Values Returned

Normal Completion Codes:

SS$_NORMAL File matches the criteria and can be processed.

UTIL$_QUICONACT User requests that confirmation prompting cease,
but that other common file qualifier criteria be
applied on subsequent file specifications.

UTIL$ _FILFAIMAT File failed the evaluation, and should not be
processed.
UTIL$QUIPRO User requests that processing stops.

Abnormal Completion Codes:

LIBSINVARG Incorrect parameter list.

SS$_ACCVIO Unable to access one or more of the parameters
(such as the common file database or user_fab).

UTIL$_FILFID File specification contains an FID. Due to file

specification aliases, converting an FID to a file
specification is inappropriate for /EXCLUDE
processing.

UTIL$_FILDID File specification contains a DID. Due to
directory specification aliases, converting a
DID to a directory patch is inappropriate for
/EXCLUDE processing when the directory patch
needs to be compared.

Common File Qualifier Routines CQUAL-15

Common File Qualifier Routines
UTIL$CQUAL_FILE _MATCH

LIB$_INVXAB Invalid XAB chain. A necessary XAB (XABPRO
or XABDAT) is missing from the opened file’s
XAB chain.

Any unsuccessful code from RMS, LIB$SGET_VM, or any unsuccessful return
status from the user-supplied routine (other than RMS$_EOF).

CQUAL-16 Common File Qualifier Routines

Common File Qualifier Routines
UTIL$CQUAL_FILE_END

UTIL$CQUAL_FILE _END—ENd Processing

Format

Returns

Arguments

Description

The UTIL$CQUAL_FILE_END routine returns all allocated virtual memory from
the call to UTILSCQUAL_FILE_PARSE.

UTIL$CQUAL_FILE_END context

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition Values Returned lists condition values that this routine returns.

context

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read write
mechanism: by reference

The longword address that received the common file qualifier database address
from a prior call to UTILSCQUAL_FILE_PARSE.

UTIL$CQUAL_FILE_END deallocates the virtual memory obtained by the
common file qualifier package during the call to UTIL$CQUAL_FILE_PARSE.
The virtual memory held information for calls to UTILSCQUAL_FILE_MATCH.

Condition Values Returned

SS$_NORMAL Normal successful completion.
Any unsuccessful code from LIB$FREE_VM.

Common File Qualifier Routines CQUAL-17

Common File Qualifier Routines
UTIL$CQUAL_CONFIRM_ACT

UTILSCQUAL_CONFIRM_ACT—Ask User for Confirmation

Format

Returns

Arguments

The UTILSCQUAL_CONFIRM_ACT routine prompts the user for confirmation,
using the optional prompt routine if present, and returns an indication of the
user’s response.

UTIL$CQUAL_CONFIRM_ACT [prompt_string_1] [,prompt_string_2] [,prompt_rtn]
[,current_form]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition Values Returned lists condition values that this routine returns.

prompt_string_1
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by descriptor

Longword address of a prompt string descriptor. The prompt is used when
prompting to a terminal device, and the current prompt form is UTIL$K_CQF_
SHORT.

prompt_string_2
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by descriptor

Longword address of a prompt string descriptor. The prompt is used when
prompting to a terminal device, and the current prompt form is UTIL$K_CQF_
LONG.

prompt_rtn

OpenVMS usage: procedure

type: longword (unsigned)
access: function call
mechanism: by value

Longword address of a user-supplied routine for prompting and accepting user
input. The user routine is responsible for end-of-file processing and must return
RMS$_EOF when appropriate.

CQUAL-18 Common File Qualifier Routines

Description

Common File Qualifier Routines
UTIL$CQUAL_CONFIRM_ACT

current_form
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read write
mechanism: by reference

This optional parameter supplies the initial prompt form to be displayed to the
user. If present, this parameter receives the form of the last prompt displayed.
The following table shows the valid prompting form values:

Table 5-4 Prompting Form Values

Value Description

UTIL$K _CQF_SHORT Use prompt_string_1.
UTIL$SK CQF LONG Use prompt_string_2.
UTIL$K_CQF_UNSPECIFIED None specified; use default.

UTIL$CQUAL_CONFIRM_ACT prompts the user for confirmation. You must
supply at least one prompt string to this routine. If you supply both strings, you
should have an expanded and condensed form of the prompt. The condensed form
should be supplied through the prompt_string_1 parameter; the expanded form
through prompt_string 2. The prompt string supplied by prompt_string 1 is
initially used if the prompt_string_1 is present, does not have a length of zero,
and either:

= The current_form parameter is not specified

e The current_form parameter is specified and contains:
— UTIL$K_CQF_SHORT
— UTIL$K_CQF_UNSPECIFIED
— A value greater than UTIL$K_CQF_MAX_FORM

The prompt string supplied by prompt_string_2 is used initially if prompt_
string_2 is present, does not have a length of zero, and either:

= prompt_string_1 is not present or has a length of zero

e The current_form parameter is specified and contains the value UTIL$K _
CQF_LONG

Once the initial form is displayed, the user can switch between the two forms by
responding to the prompt with either CONDENSED or EXPANDED. The user
can only switch to another form if there was a prompt string provided for that
form. Responding with either CONDENSED or EXPANDED causes a reprompt
to occur, even if the current display form was not switched.

If a prompt routine is provided, the routine is called with the address of the
prompt string descriptor in the first parameter, and the string descriptor address
to receive the user’s response in the second parameter. The routine returns a
success status or RMS$_EOF.

Common File Qualifier Routines CQUAL-19

Common File Qualifier Routines
UTIL$CQUAL_CONFIRM_ACT

If an unsuccessful status other than RMS$_EOF is received, then UTIL$CQUAL _
CONFIRM_ACT exits without processing any response in the response buffer
(the second parameter that was passed to the prompt routine). UTIL$CQUAL _
CONFIRM_ACT returns the status received from the user prompt routine. The
prompt routine is responsible for end-of-file processing, and must return RMS$_
EOF when appropriate. If an optional prompt routine is provided, it should be
provided for all calls to UTILSCQUAL_CONFIRM_ACT. Not doing so can cause
unpredictable end-of-file processing.

When the user is prompted, they may respond with the following:

Table 5-5 Prompt Responses

Positive Negative Stop Stop Switch
Response Response Processing Prompting Prompts
YES NO QUIT ALL CONDENSED
TRUE FALSE Ctrliz EXPANDED
1 0
<Return>
Note

Entering ALL assumes that subsequent files are a positive response from
the user, and no further prompting occurs. The routine UTILSCQUAL _
FILE_MATCH properly handles this response. Since UTILSCQUAL _
CONFIRM_ACT does not contain context from a previous call, callers

of this routine should not call UTILSCQUAL_CONFIRM_ACT if the
user has previously responded ALL unless the application needs explicit
confirmation on certain items.

The user can use any combination of uppercase and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for example,
T, TR, or TRU for TRUE), but these abbreviations must be unique.

After a valid response is received from the user, the procedure returns the
current_form parameter. The current_form parameter contains the last form
presented to the user if it was specified and write access is permitted.

Condition Values Returned

SS$ NORMAL Positive answer.

LIB$_NEGANS Negative answer.

UTIL$_QUIPRO Quit processing.

UTIL$ QUICONACT Continue processing, but cease prompting.
LIB$_INVARG Invalid argument list (no prompt strings).
SS$ ACCVIO Access violation (on user routine address).

Any unsuccessful return from RMS, SYS$ASSIGN, $QIOW, or from the user-
supplied routine (other than RMS$_EOF).

CQUAL-20 Common File Qualifier Routines

6

Convert (CONVERT) Routines

This chapter describes the CONVERT routines. These routines perform the
functions of both the Convert and Convert/Reclaim utilities.

6.1 Introduction to CONVERT Routines

The Convert utility copies records from one or more files to an output file,
changing the record format and file organization to that of the output file. You
can invoke the functions of the Convert utility from within a program by calling
the following series of three routines, in this order:

1. CONVS$PASS_FILES
2. CONVS$PASS_OPTIONS
3. CONV$CONVERT

Note that the application program should declare referenced constants and return
status symbols as external symbols; these symbols are resolved upon linking with
the utility shareable image. Also note that File Definition Language (FDL) errors
may be returned to the calling program where applicable.

The Convert/Reclaim utility reclaims empty buckets in Prolog 3 indexed files
so new records can be written in them. You can invoke the functions of the
Convert/Reclaim utility from within a program by calling the CONV$RECLAIM
routine.

While these routines can be invoked within a single thread of a threaded process,
the callable Convert utility is not a reentrant, thread safe utility. Multiple
concurrent invocations of the callable Convert utility interface are not supported.
These routines are not reentrant and cannot be called from the asynchronous
system trap (AST) level. In addition, these routines require ASTs to remain
enabled in order to function properly.

Convert (CONVERT) Routines CONV-1

Convert (CONVERT) Routines
6.2 Using the CONVERT Routines: Examples

6.2 Using the CONVERT Routines: Examples

Example 6-1 shows how to use the CONVERT routines in a Fortran program.

Example 6-1 Using the CONVERT Routines in a Fortran Program

This program calls the routines that perform the
functions of the Convert Utility. It creates an
indexed output file named CUSTDATA.DAT from the

specifications in an FDL file named INDEXED.FDL.
The program then loads CUSTDATA.DAT with records
from the sequential file SEQ.DAT. No exception

file is created. This program also returns the

"BRIEF" CONVERT statistics.

0% X o X X X X

*

Program declarations
IMPLICIT INTEGER*4 (A - Z)

Set up parameter list: number of options, CREATE,
NOSHARE, FAST LOAD, MERGE, APPEND, SORT, WORK FILES,
KEY=0, NOPAD, PAD CHARACTER, NOTRUNCATE,

NOEXIT, NOFIXED CONTROL, FILL BUCKETS, NOREAD CHECK,
NOWRITE CHECK, FDL, and NOEXCEPTION.

E I I 3

INTEGER*4 OPTIONS (19)
1 /18,1,0,1,0,0,1,2,0,0,0,0,0,0,0,0,0,1,0/

Set up statistics list. Pass an array with the
number of statistics that you want. There are four
--- number of files, number of records, exception
records, and good records, in that order.

INTEGER*4 STATSBLK(5) /4,0,0,0,0/

* % % X

* Declare the file names.

CHARACTER IN FILE*7 /’'SEQ.DAT'/,
1 OUT FILE*12 /'CUSTDATA.DAT'/,
1 FDL_FILE*11 /' INDEXED.FDL'/

* Call the routines in their required order.

STATUS = CONVSPASS FILES (IN FILE, OUT FILE, FDL FILE)
IF (.NOT. STATUS) CALL LIBSSTOP (%VAL(STATUS))

STATUS = CONVSPASS OPTIONS (OPTIONS)
IF (.NOT. STATUS) CALL LIBSSTOP (%VAL(STATUS))

STATUS = CONV$CONVERT (STATSBLK)
IF (.NOT. STATUS) CALL LIBSSTOP (%VAL(STATUS))

* Display the statistics information.

WRITE (6,1000) (STATSBLK(I),I=2,5)
1000 FORMAT (1X,'Number of files processed: ’,I5/,

1 1X, 'Number of records: ',I5/,

1 1X, 'Number of exception records: ',I5/,
1 1X, 'Number of valid records: ’,I5)

END

Example 6-2 shows how to use the advanced features of the CONVERT routines
in a C program.

CONV-2 Convert (CONVERT) Routines

Convert (CONVERT) Routines
6.2 Using the CONVERT Routines: Examples

Example 6-2 Using the CONVERT Routines in a C Program
/*

** This module calls the routines that perform the functions
** of the Convert utility. It creates an indexed output file
** named CUSTDATA.DAT from the specifications in an FDL file
** named INDEXED.FDL, and loads CUSTDATA.DAT with records from
** the sequential file SEQ.DAT. No exception file is created.
** This module also returns the CONVERT and SORT statistics

** for each key that is loaded by utilizing the new callback
** feature that is available through the CONVSCONVERT call.

*/

#include <stdio>
#include <descrip>
#include <libSroutines>
#include <convSroutiness>
#include <convdef>
#include <starlet>

/*

** Allocate a statistics block structure using the template provided by

** <convdef.h>. This structure will be passed to the CONVSCONVERT routine

** to receive both the basic and extended statistics from CONVERT. The

*% fields returned to the structure from CONVERT are listed in table 5-1.

* %

** The number of statistics to be returned is passed as the first element

** in the array. The value CONVSK MAX STATISTICS will return the set of

** basic statistics, while the value CONVSK EXT STATISTICS will return all
** gtatistics.

*/

struct conv$statistics stats;

/*

** Main program (CONVSTAT) starts here
*/

int CONVSTAT (void)

SDESCRIPTOR (input file, "SEQ.DAT");
SDESCRIPTOR (output file, "CUSTDATA.DAT");
SDESCRIPTOR (fdl file, "INDEXED.FDL");

void callback();
int stat;

/*

** Allocate an options block structure using the template provided by
** <convdef.h>. This structure will be passed to the CONV$PASS OPTIO

NS

** routine to indicate what options are to be used for the file convert.
** The fields passed to the structure are listed in table 5-2.

*/

struct conv$options param list;

(continued on next page)

Convert (CONVERT) Routines CONV-3

Convert (CONVERT) Routines
6.2 Using the CONVERT Routines: Examples

Example 6-2 (Cont.) Using the CONVERT Routines in a C Program

param list.conv$l options count = CONVSK MAX OPTIONS;
param list.conv$l create

param list.conv$l share

param list.convsl fast

param list.conv$l merge

param list.conv$l append

param list.conv$l sort

param list.conv$l work files
param list.conv$l key

param list.conv$l pad

param list.conv$l pad character
param list.conv$l truncate
param list.conv$l exit

param list.conv$l fixed control
param list.conv$l fill buckets
param list.conv$l read check
param list.conv$l write check
param list.conv$l fdl =
param list.conv$l exception
param list.conv$l prologue =
param list.conv$l ignore prologue
param list.conv$l secondary =

HFHOORFROO0OO0OOO0OO0OOCOONRFEOOR O

/*

** Tnit the number of statistics to be returned

*/

stats.conv$l statistics count = CONVSK EXT STATISTICS;

LIBSINIT TIMER(); /* Start a timer */

/*

** First call to pass all the file names

*/

stat = CONV$PASS FILES (&input file, &output file, &fdl file);
if (!(stat & 1)) return stat;

/*

** Second call to pass particular options chosen as indicated in array.
*/

stat = CONV$PASS OPTIONS (¶m list);

if (!(stat & 1)) return stat;

/*

** Final call to perform actual convert, passing statistics block and
** callback routine address.

*x/

stat = CONVSCONVERT (&stats, 0, &callback);

if (stat & 1)

/*

** Successful Convert! Print out counters from statistics.

*x/

printf ("Number of files processed : %d\n", stats.convsl file count);
printf ("Number of records : %d\n", stats.conv$l record count);
printf ("Number of exception records : %d\n", stats.conv$l except count);
printf ("Number of valid records : %d\n", stats.conv$l valid count);

LIBSSHOW TIMER() ;

return stat; /* success or failure */

(continued on next page)

CONV—4 Convert (CONVERT) Routines

Convert (CONVERT) Routines
6.2 Using the CONVERT Routines: Examples

Example 6-2 (Cont.) Using the CONVERT Routines in a C Program
void callback ()

int status, SYSSASCTIM();
int cvtflg = 1;

static char date[15];
SDESCRIPTOR (out_date, date);

printf ("Statistics for Key : %d\n", stats.conv$l key number);
printf (" Records Sorted : %d\n", stats.conv$l rec out);

printf (" Sort Nodes : %d\n", stats.conv$l nodes);

printf (" Work file allocation : %d\n", stats.convsl wrk alq);
printf (" Initial Sort Runs : %d\n", stats.conv$l ini runs);
printf (" Merge Order : %d\n", stats.conv$l mrg order);
printf (" Merge Passes : %d\n", stats.conv$l mrg passes);
printf (" Sort Direct IO : %d\n", stats.conv$l sort dio count);
printf (" Sort Buffered IO : %d\n", stats.convS$l sort bio count);

if (! (status & 1)) LIBSSTOP (status);

printf (" Sort Elapsed Time : %s\n", date);

status = SYSSASCTIM (0, &out date, &stats.conv$q sort cpu time, cvtflg);
if (!(status & 1)) LIBSSTOP (status);

printf (" Sort Cpu Time : $s\n", date);

printf (" Sort Page Faults : %d\n\n", stats.conv$l sort pf count);
printf (" Load Direct IO : %d\n", stats.conv$l load dio count);
printf (" Load Buffered IO : %d\n", stats.conv$l load bio count);
status = SYSSASCTIM (0, &out date, &stats.conv$q load elapsed time, cvtflg);

if (!(status & 1)) LIBSSTOP (status);

printf (" Load Elapsed Time : $s\n", date);

status = SYSSASCTIM (0, &out date, &stats.conv$q load cpu time, cvtflg);
if (!(status & 1)) LIBSSTOP (status);

printf (" Load Cpu Time : $s\n", date);
printf (" Load Page Faults : %d\n\n", stats.conv$l load pf count);
return;

Example 6-3 shows how to use the CONV$RECLAIM routine in a Fortran
program.

Example 6-3 Using the CONV$RECLAIM Routine in a Fortran Program

This program calls the routine that performs the
function of the Convert/Reclaim utility. It
reclaims empty buckets from an indexed file named
PROL3.DAT. It also returns all the CONVERT/RECLAIM
statistics.

Program declarations

IMPLICIT INTEGER*4 (A - Z)

EE R I I 3

Set up a statistics block. There are four -- data
buckets scanned, data buckets reclaimed, index
buckets reclaimed, total buckets reclaimed.

INTEGER*4 OUTSTATS (5) /4,0,0,0,0/
* Declare the input file.

CHARACTER IN FILE*9 /’'PROL3.DAT'/

(continued on next page)

Convert (CONVERT) Routines CONV-5

Convert (CONVERT) Routines
6.2 Using the CONVERT Routines: Examples

Example 6-3 (Cont.) Using the CONVSRECLAIM Routine in a Fortran Program

* Call the routine.

STATUS = CONVSRECLAIM (IN FILE, OUTSTATS)
IF (.NOT. STATUS) CALL LIB$STOP (%VAL (STATUS))

* Display the statistics.

WRITE (6,1000) (OUTSTATS(I),I=2,5)
1000 FORMAT (1X,'Number of data buckets scanned: ’,I5/,

1 1X, 'Number of data buckets reclaimed: ’,I5/,
1 1X, 'Number of index buckets reclaimed: ’,I5/,
1 1X, 'Total buckets reclaimed: ’,I5)

END

Example 6—4 shows how to use the CONV$RECLAIM routine in a C program.

Example 6—4 Using the CONV$RECLAIM Routine in a C Program
/*

** This module calls the routine that performs the

** function of the CONVERT/RECLAIM utility. It reclaims
** empty buckets from an indexed file named PROL3.DAT.

* %

** This module also returns and prints all of the

** CONVERT/RECLAIM statistics.

*/

#include <stdio>
#include <descrip»

CONVREC ()

$DESCRIPTOR (filename, "PROL3.DAT");/* Provide your file name */
struct { int statistics_count, /* must precede actual statistics */
scanned buckets,
data buckets reclaimed,
index buckets reclaimed,
total buckets reclaimed; } stats = 4 /* 4 statistic arguments */;
int stat;
/*
** Perform actual operation.
*
/
stat = CONVSRECLAIM (&filename, &stats);
if (stat & 1)

** Successful RECLAIM. Now format and print the counts.
*/

printf
printf
printf
printf

"Data buckets scanned : %d\n", stats.scanned buckets);

"Data buckets reclaimed : %d\n", stats.data buckets reclaimed);
"Index buckets reclaimed : $d\n", stats.index buckets reclaimed);
"Total buckets reclaimed : %d\n", stats.total buckets reclaimed);

return stat /* succes or failure */;

CONV-6 Convert (CONVERT) Routines

Convert (CONVERT) Routines
6.3 CONVERT Routines

6.3 CONVERT Routines
This section describes the individual CONVERT routines.

Convert (CONVERT) Routines CONV-7

Convert (CONVERT) Routines
CONV$CONVERT

CONV$CONVERT—Initiate Conversion

Format

Returns

Arguments

The CONV$CONVERT routine uses the Convert utility to perform the actual
conversion begun with CONV$PASS_FILES and CONV$PASS_OPTIONS.
Optionally, the routine can return statistics about the conversion.

Note that the CONV$CONVERT routine may return appropriate File Definition
Language (FDL) error messages to the calling program, where applicable.

CONVSCONVERT [status_block_address] [,flags] [,callback_routine]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

status_block_address
OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by reference

The conversion statistics. The status_block _address argument is the address of
a variable-length array of longwords that receives statistics about the conversion.

You can request conversion statistics using zero-based, symbolic offsets
(CONV$K)) into the variable-length array of longwords that contains the
statistics. The array is defined as a structure (CONVS$STATISTICS) of named
longwords (CONVS$L_) to support access by high-level progamming languages.

Table 6-1 lists the array elements by number and by symbol. The first element
specifies the number of statistics to return by array order. For example, if you
assign the symbol CONVS$L_STATISTICS_COUNT the value 2, the routine
returns the statistics from the first two statistics elements:

e Number of files converted

e Number of records converted

CONV-8 Convert (CONVERT) Routines

Convert (CONVERT) Routines

CONVS$CONVERT
Table 6-1 Conversion Statistics Array
Array
Element Field Name Description
0 CONVS$L_STATISTICS _COUNT Number of statistics
specified
1 CONVS$L_FILE_COUNT Number of files
2 CONV$L_RECORD_COUNT Number of records
3 CONVS$L_EXCEPT_COUNT Number of exception
record
4 CONVS$L_VALID_COUNT Number of valid
records
5 CONVS$L_KEY_NUMBER Most recent key
processed
6 CONVS$L_REC OUT Number of records
sorted
7 CONVS$L_NODES Nodes in sort tree
8 CONVS$L_WRK_ALQ Work file allocation
9 CONVSL_INI_RUNS Initial dispersion runs
10 CONV$L_MRG_ORDER Maximum merge order
11 CONVS$L_MRG_PASSES Number of merge
passes
12 CONVS$L_SORT_DIO_COUNT Sort direct 10
13 CONVS$L_SORT_BIO_COUNT Sort buffered 10
14 CONV$Q_SORT_ELAPSED_TIME Sort elapsed time
15 CONV$Q_SORT_CPU_TIME Sort CPU time
16 CONV$L_SORT_PF_COUNT Number of page faults
for sort
17 CONVS$L_LOAD DIO_COUNT Load direct 10
18 CONVS$L_LOAD BIO_COUNT Load buffered 10
19 CONV$Q _LOAD ELAPSED TIME Load elapsed time
20 CONV$Q_LOAD_CPU_TIME Load CPU time
21 CONVS$L_LOAD_PF_COUNT Number of page faults
for load
flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or masks) that control how the CONV$PASS_FILES fdl_filespec
argument is interpreted and how errors are signaled. The flags argument is
the address of a longword containing control flags (or a mask). If you omit
the flags argument or specify it as zero, no flags are set. The flags and their

meanings are described in the following table:

Convert (CONVERT) Routines CONV-9

Convert (CONVERT) Routines
CONV$CONVERT

Flag Function

CONV$V_FDL_STRING Interprets the fdl_filespec argument supplied
in the call to CONV$PASS FILES as an FDL
specification in string form. By default, this

argument is interpreted as the file name of an

FDL file.

Signals any error. By default, the status code is
returned to the calling image.

CONVS$V_SIGNAL

By default, an error status is returned rather than signaled.

callback_routine
OpenVMS usage: procedure

type: procedure value
access: read only
mechanism: by reference

Name of a user-supplied routine to process the statistics information. The
callback_routine argument is the address of the procedure value of a user-
supplied routine to call at the completion of each key load.

Condition Values Returned

SS$ NORMAL
CONV$_BADBLK
CONV$_BADLOGIC
CONV$_BADSORT
CONV$_CLOSEIN
CONV$_CLOSEOUT
CONV$_CONFQUAL
CONV$_CREA _ERR

CONV$_CREATEDSTM

CONV$_DELPRI
CONV$_DUP
CONV$_EXTN_ERR
CONV$_FATALEXC
CONVS$_FILLIM
CONVS$_IDX_LIM
CONVS$_ILL_KEY
CONVS$_ILL_VALUE
CONVS$_INP_FILES
CONV$_INSVIRMEM
CONV$_KEY
CONV$_LOADIDX
CONV$_NARG

CONV-10 Convert (CONVERT) Routines

Normal successful completion.

Invalid option block.

Internal logic error detected.

Error trying to sort input file.

Error closing file specification as input.
Error closing file specification as output.
Conflicting qualifiers.

Error creating output file.

File specification has been created in stream
format.

Cannot delete primary key.
Duplicate key encountered.
Unable to extend output file.
Fatal exception encountered.
Exceeded open file limit.
Exceeded maximum index level.
Illegal key or value out of range.
Illegal parameter value.

Too many input files.
Insufficient virtual memory.
Invalid record key.

Error loading secondary index n.
Wrong number of arguments.

CONV$_NOKEY
CONV$_NOTIDX
CONV$ _NOTSEQ
CONV$_NOWILD
CONV$_OPENEXC
CONV$_OPENIN
CONV$_OPENOUT
CONV$_ORDER
CONV$_PAD

CONVS$_PLV
CONV$_PROERR
CONV$_PROL_WRT
CONV$ _READERR
CONV$_REX
CONV$_RMS
CONV$_RSK
CONV$_RSZ
CONVS$_RTL
CONVS$_RTS
CONV$_SEQ
CONV$_UDF_BKS
CONV$_UDF_BLK
CONV$_VALERR
CONV$_VFC
CONV$ WRITEERR

Convert (CONVERT) Routines
CONVS$CONVERT

No such key.

File is not an indexed file.

Output file is not a sequential file.

No wildcard permitted.

Error opening exception file specification.
Error opening file specification as input.
Error opening file specification as output.
Routine called out of order.

Packet Assembly/Disassembly (PAD) option
ignored; output record format not fixed.

Unsupported prolog version.

Error reading prolog.

Prolog write error.

Error reading file specification.

Record already exists.

Record caused RMS severe error.

Record shorter than primary key.

Record does not fit in block/bucket.

Record longer than maximum record length.
Record too short for fixed record format file.
Record not in order.

Cannot convert UDF records into spanned file.
Cannot fit UDF records into single block bucket.
Specified value is out of legal range.

Record too short to fill fixed part of VFC record.
Error writing file specification.

Convert (CONVERT) Routines CONV-11

Convert (CONVERT) Routines
CONVS$PASS_FILES

CONV$PASS FILES—Specify Conversion Files

Format

Returns

Arguments

The CONV$PASS_FILES routine specifies a file to be converted using the
CONV$CONVERT routine.

CONVS$PASS_FILES input_filespec ,output_filespec [,fdl_filespec]
[,exception_filespec] [,flags]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

input_filespec
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

The name of the file to be converted. The input_filespec argument is the
address of a string descriptor pointing to the name of the file to be converted.

output_filespec
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

The name of the file that receives the records from the input file. The output_
filespec argument is the address of a string descriptor pointing to the name of
the file that receives the records from the input file.

fdl_filespec

OpenVMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

The name of the FDL file that defines the output file. The fdl_filespec argument
is the address of a string descriptor pointing to the name of the FDL file.

CONV-=12 Convert (CONVERT) Routines

Description

Convert (CONVERT) Routines
CONV$PASS_FILES

exception_filespec
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

The name of the file that receives copies of records that cannot be written to
the output file. The exception_filespec argument is the address of a string
descriptor pointing to this name.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or masks) that control how the fdl_filespec argument is interpreted

and how errors are signaled. The flags argument is the address of a longword
containing the control flags (or mask). If you omit this argument or specify it as
zero, no flags are set. If you specify a flag, it remains in effect until you explicitly
reset it in a subsequent call to a CONVERT routine.

The flags and their meanings are described in the following table:

Flag Function

CONV$V_FDL_STRING Interprets the fdl_filespec argument as an FDL
specification in string form. By default, this
argument is interpreted as a file name of an FDL
file.

CONV$V_SIGNAL Signals any error. By default, the status code is
returned to the calling image.

By default, an error status is returned rather than signaled.

The CONVS$PASS_FILES routine specifies a file to be converted using the
CONVS$CONVERT routine. A single call to CONV$PASS _FILES allows you to
specify an input file, an output file, an FDL file, and an exception file. If you
have multiple input files, you must call CONV$PASS_FILES once for each file.
You need to specify only the input_filespec argument for the additional files, as
follows:

status = CONVSPASS FILES (input filespec)

The additional calls must immediately follow the original call that specified the
output file specification.

Wildcard characters are not allowed in the file specifications passed to the
CONVERT routines.

Convert (CONVERT) Routines CONV-13

Convert (CONVERT) Routines
CONVS$PASS_FILES

Condition Values Returned

SS$_NORMAL
CONVS$_INP_FILES
CONV$_INSVIRMEM
CONV$_NARG
CONV$_ORDER

CONV-14 Convert (CONVERT) Routines

Normal successful completion.
Too many input files.
Insufficient virtual memory.
Wrong number of arguments.
Routine called out of order.

Convert (CONVERT) Routines
CONV$PASS_OPTIONS

CONV$PASS OPTIONS—Specify Processing Options

Format

Returns

Arguments

The CONVS$PASS_OPTIONS routine specifies which qualifiers are to be used by
the Convert utility (CONVERT).

CONV$PASS_OPTIONS [parameter_list_address] [,flags]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

parameter_list_address
OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Address of a variable-length array of longwords used to specify the CONVERT
qualifiers. The array is symbolically defined as a structure (CONV$OPTIONS)
that you can access in one of the following ways:

e As an array of named longwords using zero-based symbols (CONVSL_ ...)
e As an array using zero-based offsets (CONV$K_ ...)

The first longword in the array (CONV$L_OPTIONS_COUNT) specifies the
number of elements in the array, and each remaining element is associated with
a CONVERT qualifier, as shown in Table 6-2. You can use the first element

to assign values to the first n CONVERT qualifiers—where n is the value

of CONVS$L_OPTIONS _COUNT—and take default values for the remaining
qualifiers. For example, to assign values to only the first three qualifiers and to
take the default value for the remaining qualifiers, specify CONV$L_OPTIONS _
COUNT=3. This effectively changes the size of the array to include only the first
three elements, as follows, which have values you specify:

 /CREATE

- /SHARE

e /FAST_LOAD

The remaining qualifiers take the default values depicted in Table 6-2.

To assign individual values to the CONVERT qualifiers, access the array and
specify the desired value (1 or 0). See the OpenVMS Record Management Utilities
Reference Manual for detailed descriptions of the CONVERT qualifiers.

Convert (CONVERT) Routines CONV-15

Convert (CONVERT) Routines
CONV$PASS_OPTIONS

If you do not specify parameter_list_address, your program effectively sends
the routine all of the default values listed in Table 6-2.

Table 6-2 CONVERT Qualifiers

Longword
Element Default Qualifier
Number Symbolic Value Value Default Value
0 CONVSL_OPTIONS_COUNT None Not applicable
1 CONVS$L_CREATE 1 /ICREATE
2 CONVS$L_SHARE 0 INOSHARE
3 CONVS$L_FAST 1 [FAST_LOAD
4 CONVS$L_MERGE 0 INOMERGE
5 CONVS$L_APPEND 0 INOAPPEND
6 CONVS$L_SORT 1 /SORT
7 CONVS$L_WORK_FILES 2 /WORK _
FILES=2
8 CONVS$L_KEY 0 /IKEY=0
9 CONVS$L_PAD 0 INOPAD
10 CONVS$L_PAD_CHARACTER ol Pad character=0
11 CONVSL_TRUNCATE 0 INOTRUNCATE
12 CONVSL_EXIT 0 INOEXIT
13 CONVS$L_FIXED_CONTROL 0 INOFIXED _
CONTROL
14 CONVS$L_FILL_BUCKETS 0 INOFILL
BUCKETS
15 CONVS$L_READ_CHECK 0 INOREAD _
CHECK
16 CONVS$L_WRITE_CHECK 0 INOWRITE_
CHECK
17 CONVS$L_FDL 0 INOFDL
18 CONVS$L_EXCEPTION 0 INOEXCEPTION
19 CONVS$L _PROLOGUE None /IPROLOGUE=n2
20 CONVS$L_IGNORE_PROLOGUE 0 Not applicable
21 CONVS$L_SECONDARY 1 SECONDARY=1

INull character. To specify non-null pad character, insert ASCII value of desired pad character.
2g8ystem or process default setting.

If you specify /EXIT and the utility encounters an exception record, CONVERT
returns with a fatal exception status.

If you specify an FDL file specification in the CONV$PASS_FILES routine,
you must place a 1 in the FDL longword. If you also specify an exceptions file
specification in the CONV$PASS_FILES routine, you must place a 1 in the
EXCEPTION longword. You may specify either, both, or neither of these files,
but the values in the CONV$PASS_ FILES call must match the values in the

parameter list. If they do not, the routine returns an error.

CONV-16 Convert (CONVERT) Routines

Convert (CONVERT) Routines
CONV$PASS_OPTIONS

The PROLOG longword overrides the KEY PROLOG attribute supplied by the
FDL file. If you use the PROLOG longword, enter one of the following values:

= The value 0 (default) specifies the system or process prolog type.

= The value 2 specifies a Prolog 1 or 2 file in all instances, even when
circumstances would allow you to create a Prolog 3 file.

= The value 3 specifies a Prolog 3 file. If a Prolog 3 file is not allowed, you want
the conversion to fail.

If the size of the options block that you pass to CONV$PASS OPTIONS
includes the SECONDARY longword value, then you must specify a value for
the IGNORE_PROLOGUE field.

This field is used in conjunction with the PROLOGUE offset to determine if the
prologue version of the output file is to be taken from a passed FDL, the input
file, the process default or system default, or from the options block itself.

A value of 0 (zero) for the IGNORE_PROLOGUE field indicates that the prologue
version of the output file is to be taken from the PROLOGUE value specified in
the options block.

If the PROLOGUE value in the options block contains a O (zero), the process
default or system default prologue version will be used. This will override the
prologue version specified in an FDL file or in the input file’s characteristics.

A value of 1 (one) for the IGNORE_PROLOGUE field implies that the prologue
version of the output file will come from the FDL file (if specified) or from the
input file’s characteristics.

Convert (CONVERT) Routines CONV-17

Convert (CONVERT) Routines
CONV$PASS_OPTIONS

Description

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or masks) that control how the fdl_filespec argument, used in calls to the
CONVS$PASS_FILES routine, is interpreted and how errors are signaled. The
flags argument is the address of a longword containing the control flags (or a
mask). If you omit this argument or specify it as zero, no flags are set. If you
specify a flag, it remains in effect until you explicitly reset it in a subsequent call
to a CONVERT routine.

The flags and their meanings are described in the following table:

Flag Function

CONV$V_FDL_STRING Interprets the fdl_filespec argument supplied
in the call to CONV$PASS_FILES as an FDL
specification in string form. By default, this
argument is interpreted as the file name of an
FDL file.

FDL$V_SIGNAL Signals any error. By default, the status code is
returned to the calling image.

By default, an error status is returned rather than signaled.

You can use an options array to generate programmatic CONVERT commands.
For example, you can generate the following programmatic CONVERT command
by configuring the options array described by the pseudocode that follows the
example command line:

$ CONVERT/FAST LOAD/SORT/WORK FILES=6/EXIT

OPTIONS ARRAY [12] Allocate a 13-cell array)
OPTIONS[0] = 12 Number of options]

OPTIONS[1] = 1 Specifies the /CREATE option}
OPTIONS[2] = 0 Specifies the /NOSHARE option}
OPTIONS[3] = 1 Specifies the /FAST LOAD option}
OPTIONS[4] = 0 Specifies the /NOMERGE option}
OPTIONS[5] = 0 Specifies the /NOAPPEND option}
OPTIONS[6] = 1 Specifies the /SORT option}
OPTIONS[7] = 6 Specifies the /WORK FILES=6 option}
OPTIONS[8] = 0 Specifies the /KEY=0 option
OPTIONS[9] = 0 Specifies the /NOPAD option
OPTIONS[10] = 0 Specifies the null pad character
OPTIONS[11] = 0 Specifies the /NOTRUNCATE option
OPTIONS[12] = 1 Specifies the /EXIT option}

CONV-18 Convert (CONVERT) Routines

Convert (CONVERT) Routines
CONV$PASS_OPTIONS

Condition Values Returned

SS$_NORMAL Normal successful completion.
CONV$_BADBLK Invalid option block.

CONV$_CONFQUAL Conflicting qualifiers.

CONVS$_INSVIRMEM Insufficient virtual memory.

CONVS$_NARG Wrong number of arguments.
CONV$_OPENEXC Error opening exception file file specification.
CONV$_ORDER Routine called out of order.

Convert (CONVERT) Routines CONV-19

Convert (CONVERT) Routines
CONVS$RECLAIM

CONVS$RECLAIM—Invoke Convert/Reclaim Utility

Format

Returns

Arguments

The CONVSRECLAIM routine invokes the functions of the Convert/Reclaim
utility.

CONVS$RECLAIM input_filespec [,statistics_blk] [,flags] [key_number]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

input_filespec
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Name of the Prolog 3 indexed file to be reclaimed. The input_filespec argument
is the address of a string descriptor pointing to the name of the Prolog 3 indexed
file.

statistics_blk
OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)
access: modify
mechanism: by reference

Bucket reclamation statistics. The statistics_blk argument is the address

of a variable-length array of longwords that receives statistics on the bucket
reclamation. You can choose which statistics you want returned by specifying a
number in the first element of the array. This number determines how many of
the four possible statistics the routine returns.

You can request bucket reclamation statistics using symbolic nhames or numeric
offsets into the variable-length array of longwords that contains the statistics.
The array is defined as a structure of named longwords (RECL$STATISTICS) to
support access by high-level progamming languages.

CONV-=20 Convert (CONVERT) Routines

Convert (CONVERT) Routines
CONVS$RECLAIM

Table 6-3 lists the array elements by number and by symbol. The first element
specifies one or more statistics by array order. For example, if you assign the
symbol RECL$L_STATISTICS COUNT the value 3, the routine returns the
statistics from the first three statistics elements:

e Data buckets scanned
e Data buckets reclaimed

e |ndex buckets reclaimed

Table 6-3 Bucket Reclamation Statistics Array

Array

Element Field Name Description
0 RECLS$L_STATISTICS COUNT Number of statistics specified
1 RECLS$L_SCAN_COUNT Data buckets scanned
2 RECLS$L_DATA_COUNT Data buckets reclaimed
3 RECLS$L_INDEX_COUNT Index buckets reclaimed
4 RECL$L_TOTAL_COUNT Total buckets reclaimed

flags

OpenVMS usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by reference

Flags (or masks) that control how the fdl_filespec argument, used in calls to the
CONVS$PASS_FILES routine, is interpreted and how errors are signaled. The
flags argument is the address of a longword containing control flags (or a mask).
If you omit the flags argument or specify it as zero, no flags are set. The flag is
defined as follows:

CONV$V_SIGNAL Signals any error. By default, the status code is
returned to the calling image.

By default, an error status is returned rather than signaled.

key _number
OpenVMS usage: address

type: longword (unsigned)
access: read only
mechanism: by reference

The optional key_number argument permits the calling program to selectively
reclaim buckets by key number. If the calling program omits this argument or
passes a NULL value in the argument, all buckets are reclaimed, without regard
to key designation. If the calling program passes a valid key number as the value
for this argument, the routine reclaims only the buckets for the specified key.

Convert (CONVERT) Routines CONV-21

Convert (CONVERT) Routines
CONVS$RECLAIM

Condition Values Returned

SS$ NORMAL Normal successful completion.
CONV$_BADLOGIC Internal logic error detected.
CONVS$_INSVIRMEM Insufficient virtual memory.
CONV$_INVBKT Invalid bucket at VBN n.
CONV$_NOTIDX File is not an indexed file.
CONV$_NOWILD No wildcard permitted.
CONV$_OPENIN Error opening file specification as input.
CONV$_PLV Unsupported prolog version.
CONV$_PROERR Error reading prolog.
CONV$_PROL_WRT Prolog write error.
CONV$_READERR Error reading file specification.
CONV$_WRITEERR Error writing output file.

CONV-=22 Convert (CONVERT) Routines

v

Data Compression/Expansion (DCX) Routines

The set of routines described in this chapter comprises the Data
Compression/Expansion (DCX) facility. There is no DCL-level interface to
this facility, nor is there a DCX utility.

7.1 Introduction to DCX Routines

Using the DCX routines described in this chapter, you can decrease the size of
text, binary data, images, and any other type of data. Compressed data uses less
space, but there is a trade-off in terms of access time to the data. Compressed
data must first be expanded to its original state before it is usable. Thus,
infrequently accessed data makes a good candidate for data compression.

The DCX facility provides routines that analyze and compress data records
and expand the compressed records to their original state. In this process, no
information is lost. A data record that has been compressed and then expanded
is in the same state as it was before it was compressed.

Most collections of data can be reduced in size by DCX. However, there is no
guarantee that the size of an individual data record will always be smaller after
compression; in fact, some may grow larger.

The DCX facility allows for the independent analysis, compression, and expansion
of more than one stream of data records at the same time. This capability is
provided by means of a “context variable,” which is an argument in each DCX
routine. Most applications have no need for this capability; for these applications,
there is a single context variable.

Some of the DCX routines make calls to various Run-Time Library (RTL)
routines, for example, LIB$GET_VM. If any of these RTL routines fails, a return
status code indicating the cause of the failure is returned. In such a case, you
must refer to the documentation of the appropriate RTL routine to determine the
cause of the failure. The status codes documented in this chapter are primarily
DCX status codes.

Note also that the application program should declare referenced constants and
return status symbols as external symbols; these symbols are resolved upon
linking with the utility shareable image.

7.1.1 Compression Routines
Compressing a file with the DCX routines involves the following steps:

1. Initialize an analysis work area—Use the DCX$ANALYZE_INIT routine to
initialize a work area for analyzing the records. The first (and, typically, the
only) argument passed to DCX$ANALYZE_INIT is an integer variable for
storing the context value. The DCX facility assigns a value to the context
variable and associates the value with the created work area. Each time you
want to analyze a record in that area, specify the associated context variable.
You can analyze two or more files at once by creating a different work area

Data Compression/Expansion (DCX) Routines DCX-1

Data Compression/Expansion (DCX) Routines
7.1 Introduction to DCX Routines

for each file, giving each area a different context variable, and analyzing the
records of each file in the appropriate work area.

2. Analyze the records in the file—Use the DCX$ANALYZE_DATA routine to
pass each record in the file to an analysis work area. During analysis, the
DCX facility gathers information that DCX$MAKE_MAP uses to create the
compression/expansion function for the file. To ensure that the first byte of
each record is passed to the DCX facility rather than being interpreted as a
carriage control, specify CARRIAGECONTROL = NONE when you open the
file to be compressed.

3. Create the compression/expansion function—Use the DCX$MAKE_MAP
routine to create the compression/expansion function. You pass DCX$MAKE _
MAP a context variable, and DCX$MAKE_MAP uses the information stored
in the associated work area to compute a compression/expansion function for
the records being compressed. If DCX$MAKE_MAP returns a status value of
DCX$_AGAIN, repeat Steps 2 and 3 until DCX$MAKE_MAP returns a status
of DCX$_NORMAL, indicating that a compression/expansion function has
been created.

In Example 7-1, the integer function GET_MAP analyzes each record in

the file to be compressed and invokes DCX$MAKE_MAP to create the
compression/expansion function. The function value of GET_MAP is the
return status of DCX$MAKE_MAP, and the address and length of the
compression/expansion function are returned in the GET_MAP argument list.
The main program, COMPRESS_FILES, invokes the GET_MAP function,
examines its function value, and, if necessary, invokes the GET_MAP function
again (see the ANALYZE DATA program section).

4. Clean up the analysis work area—Use the DCX$ANALYZE_DONE routine
to delete a work area. ldentify the work area to be deleted by passing
DCX$ANALYZE_DONE routine a context variable.

5. Save the compression/expansion function—You cannot expand compressed
records without the compression/expansion function. Therefore, before
compressing the records, write the compression/expansion function to the file
that will contain the compressed records.

If your programming language cannot use an address directly, pass
the address of the compression/expansion function to a subprogram
(WRITE_MAP in Example 7-1). Pass the subprogram the length of the
compression/expansion function as well.

In the subprogram, declare the dummy argument corresponding to the
function address as a one-dimensional, adjustable, byte array. Declare the
dummy argument corresponding to the function length as an integer, and use
it to dimension the adjustable array. Write the function length and the array
containing the function to the file that is to contain the compressed records.
(The length must be stored so that you can read the function from the file
using unformatted 1/O; see Section 7.1.2.)

6. Compress each record—Use the DCX$COMPRESS_INIT routine to initialize
a compression work area. Specify a context variable for the compression area
just as for the analysis area.

Use the DCX$COMPRESS_DATA routine to compress each record. As you
compress each record, use unformatted 1/O to write the compressed record
to the file containing the compression/expansion function. For each record,
write the length of the record and the substring containing the record. See
the COMPRESS DATA section in Example 7-1. (The length is stored with

DCX-2 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
7.1 Introduction to DCX Routines

the substring so that you can read the compressed record from the file using
unformatted 1/O; see Section 7.1.2.)

Use DCX$COMPRESS_DONE to delete the work area created by
DCX$COMPRESS_INIT. Identify the work area to be deleted by passing
DCX$COMPRESS _DATA a context variable. Use LIBSFREE_VM to free the
virtual memory that DCX$MAKE_MAP used for the compression/expansion
function.

7.1.2 Expansion Routines
Expanding a file with the DCX routines involves the following steps:

1.

Read the compression/expansion function—When reading the
compression/expansion function from the compressed file, do not make

any assumptions about the function’s size. The best practice is to read

the length of the function from the compressed file and then invoke the
LIB$GET_VM routine to get the necessary amount of storage for the function.
The LIB$GET_VM routine returns the address of the first byte of the storage
area.

If your programming language cannot use an address directly, pass the
address of the storage area to a subprogram. Pass the subprogram the length
of the compression/expansion function as well.

In the subprogram, declare the dummy argument corresponding to the
storage address as a one-dimensional, adjustable, byte array. Declare the
dummy argument corresponding to the function length as an integer and
use it to dimension the adjustable array. Read the compression/expansion
function from the compressed file into the dummy array. Because the
compression/expansion function is stored in the subprogram, do not return to
the main program until you have expanded all of the compressed records.

Initialize an expansion work area—Use the DCX$EXPAND_INIT routine to
initialize a work area for expanding the records. The first argument passed
to DCX$EXPAND_INIT is an integer variable to contain a context value
(see step 1 in Section 7.1.1). The second argument is the address of the
compression/expansion function.

Expand the records—Use the DCX$EXPAND_DATA routine to expand each
record.

Clean up the work area—Use the DCX$EXPAND_DONE routine to delete
an expansion work area. ldentify the work area to be deleted by passing
DCX$EXPAND_DONE a context variable.

7.2 Using the DCX Routines: Examples

Example 7-1 shows how to use the callable DCX routines to compress a file in a
HP Fortran program.

Example 7-2 expands a compressed file. The first record of the compressed file is
an integer containing the number of bytes in the compression/expansion function.
The second record is the compression/expansion function. The remainder of the
file contains the compressed records. Each compressed record is stored as two
records: an integer containing the length of the record and a substring containing
the record.

Data Compression/Expansion (DCX) Routines DCX-3

Data Compression/Expansion (DCX) Routines
7.2 Using the DCX Routines: Examples

Example 7-1 Compressing a File in a HP Fortran Program

PROGRAM COMPRESS FILES
! COMPRESSION OF FILES

| status variable
INTEGER STATUS,

2 TOSTAT,
2 10 OK,
2 STATUS_OK

PARAMETER (IO OK = 0)
PARAMETER (STATUS OK = 1)

INCLUDE ' ($SFORDEF) '
EXTERNAL DCX$ AGAIN

! context variable

INTEGER CONTEXT

! compression/expansion function
INTEGER MAP,

2 MAP LEN

! normal file name, length, and logical unit number
CHARACTER*256 NORM NAME

INTEGER*2 NORM LEN

INTEGER NORM LUN

! compressed file name, length, and logical unit number
CHARACTER*256 COMP_NAME

INTEGER*2 COMP_LEN

INTEGER COMP_LUN

| Logical end-of-file

LOGICAL EOF

| record buffers; 32764 1s maximum record size
CHARACTER*32764 RECORD,

2 RECORD2
INTEGER RECORD LEN,
2 RECORD2_LEN

| user routine
INTEGER GET MAP,
2 WRITE_MAP

! Library procedures
INTEGER DCX$ANALYZE INIT,
2 DCX$ANALYZE DONE,
DCX$COMPRESS INIT,
DCX$COMPRESS DATA,
DCX$COMPRESS DONE,
LIB$GET INPUT,
LIBSGET LUN,

2 LIBSFREE VM

NN DN NN

! get name of file to be compressed and open it
STATUS = LIBSGET INPUT (NORM NAME,

2 'File to compress: ',

2 NORM_LEN)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
STATUS = LIBSGET LUN (NORM LUN)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
OPEN (UNIT = NORM LUN,

2 FILE = NORM NAME (1:NORM LEN),
2 CARRIAGECONTROL = 'NONE',
2 STATUS = 'OLD’)

(continued on next page)

DCX-4 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
7.2 Using the DCX Routines: Examples

Example 7-1 (Cont.) Compressing a File in a HP Fortran Program

Iokkkokkokkkkkkx

|
! ANALYZE DATA
Iokkkkkokkkkkkx

! initialize work area

STATUS = DCXSANALYZE INIT (CONTEXT)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
| get compression/expansion function (map)
STATUS = GET MAP (NORM_LUN,

2 CONTEXT,
2 MAP,
2 MAP_LEN)

DO WHILE (STATUS .EQ. %$LOC(DCX$ AGAIN))
! go back to beginning of file
REWIND (UNIT = NORM LUN)
| try map again
STATUS = GET MAP (NORM LUN,

2 CONTEXT,

2 MAP,

2 MAP_LEN)
END DO

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
! clean up work area

STATUS = DCXSANALYZE DONE (CONTEXT)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL(STATUS))

kkkkkkkkkkkkk

|

! COMPRESS DATA

1 kkkkkkkkkkkkk

! go back to beginning of file to be compressed
REWIND (UNIT = NORM LUN)

! open file to hold compressed records

STATUS = LIBSGET LUN (COMP_LUN)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL(STATUS))
STATUS = LIBSGET INPUT (COMP NAME,

2 "File for compressed records: ',
2 COMP_LEN)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL(STATUS))
OPEN (UNIT = COMP LUN,

2 FILE = COMP_NAME (1:COMP_LEN),
2 STATUS = 'NEW',
2 FORM = 'UNFORMATTED')

! initialize work area

STATUS = DCX$COMPRESS_INIT (CONTEXT,

2 MAP)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))

| write compression/expansion function to new file
CALL WRITE MAP (COMP_LUN,

2 SVAL (MAP) ,

2 MAP LEN)

(continued on next page)

Data Compression/Expansion (DCX) Routines DCX-5

Data Compression/Expansion (DCX) Routines
7.2 Using the DCX Routines: Examples

Example 7-1 (Cont.) Compressing a File in a HP Fortran Program

! read record from file to be compressed

EOF = .FALSE.
READ (UNIT = NORM LUN,
2 FMT = ' (QIA)II
2 IOSTAT = IOSTAT) RECORD LEN,
2 RECORD (1:RECORD LEN)
IF (IOSTAT .NE. IO OK) THEN
CALL ERRSNS (,,,,STATUS)

IF (STATUS .NE. FOR$ ENDDURREA) THEN
CALL LIBSSIGNAL (%VAL(STATUS))

ELSE
EOF = .TRUE.
STATUS = STATUS OK
END IF

END IF

DO WHILE (.NOT. EOF)
| compress the record
STATUS = DCXSCOMPRESS DATA (CONTEXT,

2 RECORD (1:RECORD_LEN) ,
2 RECORD2,
2 RECORD2_LEN)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
| write compressed record to new file

WRITE (UNIT = COMP_LUN) RECORD2_ LEN

WRITE (UNIT = COMP_LUN) RECORD2 (1:RECORD2_LEN)
! read from file to be compressed

READ (UNIT = NORM LUN,

2 FMT = ' (Q,A)’,
2 IOSTAT = IOSTAT) RECORD LEN,
2 RECORD (1:RECORD_LEN)
IF (IOSTAT .NE. IO OK) THEN
CALL ERRSNS (,,,,STATUS)

IF (STATUS .NE. FOR$ ENDDURREA) THEN
CALL LIBSSIGNAL (%VAL (STATUS))

ELSE
EOF = .TRUE.
STATUS = STATUS_OK
END IF
END IF
END DO

! close files and clean up work area

CLOSE (NORM_LUN)

CLOSE (COMP_LUN)

STATUS = LIBSFREE VM (MAP_LEN,

2 MAP)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
STATUS = DCXSCOMPRESS DONE (CONTEXT)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))

END
INTEGER FUNCTION GET MAP (LUN, | passed
2 CONTEXT, ! passed
MAP, ! returned
| returned

Analyzes records in file opened on logical
unit LUN and then attempts to create a
compression/expansion function using

2

2 MAP LEN)
|

|

1

| DCX$MAKE_MAP.

(continued on next page)

DCX-6 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
7.2 Using the DCX Routines: Examples

Example 7-1 (Cont.) Compressing a File in a HP Fortran Program

! dummy arguments

! context variable

INTEGER CONTEXT

! logical unit number

INTEGER LUN

| compression/expansion function
INTEGER MAP,

2 MAP LEN

| status variable
INTEGER STATUS,

2 IOSTAT,
2 10 OK,
2 STATUS_OK

PARAMETER (IO OK = 0)
PARAMETER (STATUS OK = 1)
INCLUDE ' ($FORDEF) '

! Logical end-of-file

LOGICAL EOF

| record buffer; 32764 is the maximum record size
CHARACTER*32764 RECORD

INTEGER RECORD LEN

! library procedures
INTEGER DCX$ANALYZE DATA,

2 DCX$MAKE MAP
! analyze records
EOF = .FALSE.
READ (UNIT = LUN,
2 FMT = ' (Q,A)’,
2 IOSTAT = IOSTAT) RECORD LEN,RECORD
IF (IOSTAT .NE. IO OK) THEN
CALL ERRSNS (,,,,STATUS)

IF (STATUS .NE. FOR$ ENDDURREA) THEN
CALL LIBS$SSIGNAL (%VAL(STATUS))

ELSE
EOF = .TRUE.
STATUS = STATUS OK
END IF

END IF

DO WHILE (.NOT. EOF)
STATUS = DCXSANALYZE DATA (CONTEXT,

2 RECORD (1:RECORD_LEN))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
READ (UNIT = LUN,

2 FMT = ’(Q/A)’/
2 IOSTAT = IOSTAT) RECORD LEN,RECORD
IF (IOSTAT .NE. IO OK) THEN
CALL ERRSNS (,,,,STATUS)

IF (STATUS .NE. FOR$ ENDDURREA) THEN
CALL LIBSSIGNAL (%VAL(STATUS))

ELSE
EOF = .TRUE.
STATUS = STATUS OK
END IF
END IF
END DO

(continued on next page)

Data Compression/Expansion (DCX) Routines DCX-7

Data Compression/Expansion (DCX) Routines
7.2 Using the DCX Routines: Examples

Example 7-1 (Cont.) Compressing a File in a HP Fortran Program

STATUS = DCXSMAKE MAP (CONTEXT,

2 MAP,

2 MAP LEN)

GET MAP = STATUS

END

SUBROUTINE WRITE MAP (LUN, | passed
2 MAP, | passed
2 MAP_LEN) ! passed

IMPLICIT INTEGER (A-Z)
! write compression/expansion function
! to file of compressed data

| dummy arguments

INTEGER LUN, ! logical unit of file
2 MAP LEN ! length of function
BYTE MAP (MAP LEN) ! compression/expansion function

! write map length
WRITE (UNIT = LUN) MAP LEN

| write map
WRITE (UNIT = LUN) MAP
END

Example 7-2 shows how to expand a compressed file in a HP Fortran program.

Example 7-2 Expanding a Compressed File in a HP Fortran Program

PROGRAM EXPAND FILES
IMPLICIT INTEGER (A-Z)
| EXPANSION OF COMPRESSED FILES

! file names, lengths, and logical unit numbers
CHARACTER*256 OLD FILE,

2 NEW_FILE

INTEGER*2 OLD LEN,

2 NEW_LEN

INTEGER OLD LUN,

2 NEW_LUN

! length of compression/expansion function
INTEGER MAP,
2 MAP LEN

| user routine
EXTERNAL EXPAND DATA

! library procedures
INTEGER LIBS$GET LUN,

2 LIB$GET_INPUT,
2 LIB$GET VM,
2 LIB$FREE_VM

(continued on next page)

DCX-8 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
7.2 Using the DCX Routines: Examples

Example 7-2 (Cont.) Expanding a Compressed File in a HP Fortran Program

! open file to expand

STATUS = LIBSGET LUN (OLD_LUN)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
STATUS = LIBSGET INPUT (OLD FILE,

2 "File to expand: ',

2 OLD_LEN)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
OPEN (UNIT = OLD LUN,

2 STATUS = 'OLD’,
2 FILE = OLD FILE(1:0LD LEN),
2 FORM = 'UNFORMATTED')

! open file to hold expanded data

STATUS = LIBSGET LUN (NEW_LUN)

IF (.NOT. STATUS) CALL LIBS$SIGNAL (%VAL (STATUS))

STATUS = LIBSGET INPUT (NEW FILE,

2 "File to hold expanded data: ',
2 NEW_LEN)

IF (.NOT. STATUS) CALL LIBS$SIGNAL (%VAL (STATUS))

OPEN (UNIT = NEW _LUN,

2 STATUS = 'NEW’,
2 CARRIAGECONTROL = 'LIST',
2 FILE = NEW FILE(1:NEW LEN))

| expand file

! get length of compression/expansion function
READ (UNIT = OLD LUN) MAP LEN

STATUS = LIBSGET VM (MAP_ LEN,

2 MAP)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! expand records

CALL EXPAND DATA (%VAL (MAP),

2 MAP LEN, ! length of function
2 OLD_LUN, | compressed data file
2 NEW LUN) | expanded data file

! delete virtual memory used for function
STATUS = LIBSFREE VM (MAP_LEN,

2 MAP)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
END

SUBROUTINE EXPAND DATA (MAP, ! passed

2 MAP_LEN, ! passed

2 OLD_LUN, ! passed

2 NEW _LUN) ! passed

! expand data program

! dummy arguments

INTEGER MAP LEN, ! length of expansion function
2 OLD_LUN, | logical unit of compressed file
2 NEW_LUN ! logical unit of expanded file
BYTE MAP(MAP LEN) ! array containing the function

| status variables
INTEGER STATUS,

2 TOSTAT,
2 10 OK,
2 STATUS_OK

PARAMETER (IO OK = 0)
PARAMETER (STATUS OK = 1)

INCLUDE ' ($SFORDEF) '

(continued on next page)

Data Compression/Expansion (DCX) Routines DCX-9

Data Compression/Expansion (DCX) Routines
7.2 Using the DCX Routines: Examples

Example 7-2 (Cont.) Expanding a Compressed File in a HP Fortran Program

| context variable
INTEGER CONTEXT

! logical end of file
LOGICAL EOF

I record buffers
CHARACTER*32764 RECORD,

2 RECORD2
INTEGER RECORD LEN,
2 RECORD2_LEN

! library procedures
INTEGER DCX$EXPAND INIT,
2 DCX$EXPAND DATA,
2 DCXSEXPAND DONE

! read data compression/expansion function

READ (UNIT = OLD LUN) MAP

| initialize work area

STATUS = DCXSEXPAND INIT (CONTEXT,

2 $LOC (MAP(1)))

IF (.NOT. STATUS) CALL LIBS$SSIGNAL (%VAL(STATUS))
| expand records

EOF = .FALSE.

! read length of compressed record

READ (UNIT = OLD LUN,

2 IOSTAT = IOSTAT) RECORD LEN
IF (IOSTAT .NE. IO OK) THEN
CALL ERRSNS (,,,,STATUS)

IF (STATUS .NE. FOR$ ENDDURREA) THEN
CALL LIBSSIGNAL (%VAL (STATUS))

ELSE
EOF = .TRUE.
STATUS = STATUS_OK
END IF

END IF

DO WHILE (.NOT. EOF)
| read compressed record
READ (UNIT = OLD LUN) RECORD (1:RECORD LEN)
! expand record
STATUS = DCXSEXPAND DATA (CONTEXT,

2 RECORD (1:RECORD_LEN) ,
2 RECORD2,
2 RECORD2 LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL_(%VAL(STATUS))
! write expanded record to new file
WRITE (UNIT = NEW_LUN,
2 FMT = ' (A)’') RECORD2 (1:RECORD2_LEN)
! read length of compressed record

READ (UNIT = OLD LUN,

2 IOSTAT = IOSTAT) RECORD_LEN
IF (IOSTAT .NE. IO OK) THEN
CALL ERRSNS (,,,,STATUS)

IF (STATUS .NE. FOR$ ENDDURREA) THEN
CALL LIBSSIGNAL (%VAL (STATUS))
ELSE
EOF = .TRUE.

STATUS = STATUS_OK
END IF
END IF
END DO

DCX-10 Data Compression/Expansion (DCX) Routines

(continued on next page)

Data Compression/Expansion (DCX) Routines
7.2 Using the DCX Routines: Examples

Example 7-2 (Cont.) Expanding a Compressed File in a HP Fortran Program

| clean up work area

STATUS = DCXSEXPAND DONE (CONTEXT)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL(STATUS))
END

7.3 DCX Routines

This section describes the individual DCX routines.

Data Compression/Expansion (DCX) Routines DCX-11

Data Compression/Expansion (DCX) Routines
DCX$ANALYZE_DATA

DCX$ANALYZE DATA—Perform Statistical Analysis on a Data

Format

Returns

Arguments

Record

The DCX$ANALYZE_DATA routine performs statistical analysis on a data record.
The results of the analysis are accumulated internally in the context area and are
used by the DCX$MAKE_MAP routine to compute the mapping function.

DCX$ANALYZE_DATA context ,record

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

context

OpenVMS usage: context

type: longword (unsigned)
access: read only
mechanism: by reference

Value identifying the data stream that DCX$ANALYZE_DATA analyzes.

The context argument is the address of a longword containing this value.
DCX$ANALYZE_INIT initializes this value; you should not modify it. You can
define multiple context arguments to identify multiple data streams that are
processed simultaneously.

record

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Record to be analyzed. DCX$ANALYZE_DATA reads the record argument,
which is the address of a descriptor for the record string. The maximum length of
the record string is 65,535 characters.

DCX-12 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
DCX$ANALYZE_DATA

Description

The DCX$ANALYZE_DATA routine performs statistical analysis on a single data
record. This routine is called once for each data record to be analyzed.

During analysis, the DCX facility gathers information that DCX$MAKE_MAP
uses to create the compression/expansion function for the file. After the data
records have been analyzed, call the DCX$MAKE_MAP routine. Upon receiving
the DCX$_AGAIN status code from DCX$MAKE_MAP, you must again analyze
the same data records (in the same order) using DCX$ANALYZE_DATA and
then call DCX$MAKE_MAP again. On the second iteration, DCX$MAKE_MAP
returns the DCX$ _NORMAL status code, and the data analysis is complete.

Condition Values Returned

DCX$_INVCTX Error. The context variable is invalid, or the
context area is invalid or corrupted. This may
be caused by a failure to call the appropriate
routine to initialize the context variable or by an
application program error.

DCX$_NORMAL Normal successful completion.

This routine also returns any condition values returned by LIBSANALYZE_
SDESC_R2.

Data Compression/Expansion (DCX) Routines DCX-13

Data Compression/Expansion (DCX) Routines
DCX$ANALYZE_DONE

DCX$ANALYZE _DONE—Specify Analysis Completed

Format

Returns

Argument

The DCX$ANALYZE_DONE routine deletes the context area and sets the context
variable to zero, undoing the work of the DCX$ANALYZE_INIT routine.

Call DCX$ANALYZE_DONE after data records have been analyzed and the
DCX$MAKE_MAP routine has created the map.

DCX$ANALYZE_DONE context

OpenVMS usage: cond_value

type: longword
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

context

OpenVMS usage: context
type: longword
access: modify
mechanism: by reference

Value identifying the data stream that DCX$ANALYZE_DONE deletes.

The context argument is the address of a longword containing this value.
DCX$ANALYZE_INIT initializes this value; you should not modify it. You can
define multiple context arguments to identify multiple data streams that are
processed simultaneously.

Condition Values Returned

DCX$_INVCTX Error. The context variable is invalid, or the
context area is invalid or corrupted. This may
be caused by a failure to call the appropriate
routine to initialize the context variable or by an
application program error.

DCX$_NORMAL Normal successful completion.

This routine also returns any condition values returned by LIBSFREE_VM.

DCX-14 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
DCX$ANALYZE_INIT

DCX$ANALYZE_INIT—Initialize Analysis Context

Format

Returns

Arguments

The DCX$ANALYZE_INIT routine initializes the context area for a statistical
analysis of the data records to be compressed.

DCX$ANALYZE_INIT context [,item_code ,item_value]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

context

OpenVMS usage: context

type: longword (unsigned)
access: write only
mechanism: by reference

Value identifying the data stream that DCX$ANALYZE_INIT initializes.

The context argument is the address of a longword containing this value.
DCX$ANALYZE_INIT writes this context into the context argument; you should
not modify its value. You can define multiple context arguments to identify
multiple data streams that are processed simultaneously.

item_code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Item code specifying information that you want DCX$ANALYZE_INIT to use
in its analysis of data records and in its computation of the mapping function.
DCX$ANALYZE_INIT reads this item_code argument, which is the address of
the longword contained in the item code.

For each item_code argument specified in the call, you must also specify a
corresponding item_value argument. The item_value argument contains the
interpretation of the item_code argument.

The following symbolic names are the five legal values of the item_code
argument:

DCX$C_BOUNDED
DCX$C_EST_BYTES
DCX$C_EST_RECORDS
DCX$C_LIST
DCX$C_ONE_PASS

Data Compression/Expansion (DCX) Routines DCX-15

Data Compression/Expansion (DCX) Routines
DCX$ANALYZE_INIT

item_value

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Value of the corresponding item_code argument. DCX$ANALYZE_INIT reads
the item_value argument, which is the address of a longword containing the
item value.

The item_code and item_value arguments always occur as a pair, and together
they specify one piece of “advice” for the DCX routines to use in computing the
map function. Note that, unless stated otherwise in the list of item codes and
item values, no piece of “advice” is binding on DCX; that is, DCX is free to follow
or not to follow the “advice.”

The following table shows, for each item_code argument, the possible values for
the corresponding item_value argument:

Item Code Corresponding Item Value

DCX$C_BOUNDED A Boolean variable. If bit <0> is true (equals 1),
you are stating your intention to submit for analysis
all data records that will be compressed; doing so
often enables DCX to compute a better compression
algorithm. If bit <0> is false (equals 0) or if the
DCX$C _BOUNDED item code is not specified, DCX
computes a compression algorithm without regard
for whether all records to be compressed will also be
submitted for analysis.

DCX$C_EST BYTES A longword value containing your estimate of the
total number of data bytes that will be submitted
for compression. This estimate is useful in those
cases where fewer than the total number of bytes
are presented for analysis. If you do not specify the
DCX$C_EST _BYTES item code, DCX submits for
compression the same number of bytes that was
presented for analysis. Note that you may specify
DCX$C_EST _RECORDS or DCX$C_EST BYTES,
or both.

DCX$C_EST_RECORDS A longword value containing your estimate of the
total number of data records that will be submitted
for compression. This estimate is useful in those
cases where fewer than the total number of records
are presented for analysis. If you do not specify the
DCX$C_EST_RECORDS item code, DCX submits
for compression the same number of bytes that was
presented for analysis.

DCX-16 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines

DCX$ANALYZE_INIT

Item Code

Corresponding Item Value

DCX$C_LIST

DCX$C_ONE_PASS

Address of an array of 2*n+1 longwords. The
first longword in the array contains the value
2*n+1. The remaining longwords are paired; there
are n pairs. The first member of the pair is an
item code, and the second member of the pair is
the address of its corresponding item value. The
DCX$C_LIST item code allows you to construct an
array of item-code and item-value pairs and then
to pass the entire array to DCX$ANALYZE_INIT.
This is useful when your language has difficulty
interpreting variable-length argument lists. Note
that the DCX$C_LIST item code may be specified,
in a single call, alone or together with any of the
other item-code and item-value pairs.

A Boolean variable. If bit <0> is true (equals 1), you
make a binding request that DCX make only one
pass over the data to be analyzed. If bit <0> is false
(equals 0) or if the DCX$C_ONE_PASS item code is
not specified, DCX may make multiple passes over
the data, as required. Typically, DCX makes one
pass.

Description

The DCX$ANALYZE_INIT routine initializes the context area for a statistical
analysis of the data records to be compressed. The first (and typically the only)
argument passed to DCX$SANALYZE_INIT is an integer variable to contain the
context value. The DCX facility assigns a value to the context variable and
associates the value with the created work area. Each time you want a record
analyzed in that area, specify the associated context variable. You can analyze
two or more files at once by creating a different work area for each file, giving
each area a different context variable, and analyzing the records of each file in

the appropriate work area.

Condition Values Returned

DCX$_INVITEM

DCX$_NORMAL

Error; invalid item code. The number of
arguments specified in the call was incorrect
(this number should be odd), or an unknown item
code was specified.

Normal successful completion.

This routine also returns any condition values returned by LIB$GET VM.

Data Compression/Expansion (DCX) Routines DCX-17

Data Compression/Expansion (DCX) Routines
DCX$COMPRESS_DATA

DCX$COMPRESS DATA—Compress a Data Record

Format

Returns

Arguments

The DCX$COMPRESS_DATA routine compresses a data record. Call this routine
for each data record to be compressed.

DCX$COMPRESS _DATA context ,in_rec ,out_rec [,out_length]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

context

OpenVMS usage: context

type: longword (unsigned)
access: read only
mechanism: by reference

Value identifying the data stream that DCX$COMPRESS_DATA compresses.
The context argument is the address of a longword containing this value.
DCX$COMPRESS_INIT initializes the value; you should not modify it. You can
define multiple context arguments to identify multiple data streams that are
processed simultaneously.

in_rec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Data record to be compressed. The in_rec argument is the address of the
descriptor of the data record string.

out_rec

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Data record that has been compressed. The out_rec argument is the address of
the descriptor of the compressed record that DCX$COMPRESS_DATA returns.

DCX-18 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
DCX$COMPRESS DATA

out_length

OpenVMS usage: word_signed

type: word integer (signed)
access: write only
mechanism: by reference

Length (in bytes) of the compressed data record. The out_length argument is
the address of a word into which DCX$COMPRESS_DATA returns the length of
the compressed data record.

Description

The DCX$COMPRESS_DATA routine compresses a data record. Call this routine
for each data record to be compressed. As you compress each record, write the
compressed record to the file containing the compression/expansion map. For
each record, write the length of the record and substring string containing the
record to the same file. See the COMPRESS DATA section in Example 7-1.

Condition Values Returned

DCX$_INVCTX Error. The context variable is invalid, or the
context area is invalid or corrupted. This may
be caused by a failure to call the appropriate
routine to initialize the context variable or by an
application program error.

DCX$_INVDATA Error. You specified the item value DCX$C_
BOUNDED in the DCX$ANALYZE_INIT routine
and attempted to compress a data record (using
DCX$COMPRESS DATA) that was not presented
for analysis (using DCX$ANALYZE_DATA).
Specifying the DCX$C_BOUNDED item value
means that you must analyze all data records
that are to be compressed.

DCX$_INVMAP Error; invalid map. The map argument was not
specified correctly in the DCX$ANALYZE_INIT
routine or the context area is invalid.

DCX$_NORMAL Normal successful completion.

DCX$_TRUNC Error. The compressed data record has been
truncated because the out_rec descriptor did
not specify enough memory to accommodate the
record.

This routine also returns any condition values returned by LIBSANALYZE _
SDESC_R2 and LIB$SCOPY_R_DX.

Data Compression/Expansion (DCX) Routines DCX-19

Data Compression/Expansion (DCX) Routines
DCX$COMPRESS_DONE

DCX$COMPRESS DONE—Specify Compression Complete

Format

Returns

Argument

Description

The DCX$COMPRESS_DONE routine deletes the context area and sets the
context variable to zero.

DCX$COMPRESS_DONE context

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

context

OpenVMS usage: context

type: longword (unsigned)
access: write only
mechanism: by reference

Value identifying the data stream that DCX$COMPRESS_DONE deletes.

The context argument is the address of a longword containing this value.
DCX$COMPRESS_INIT writes the value into the context argument; you should
not modify its value. You can define multiple context arguments to identify
multiple data streams that are processed simultaneously.

The DCX$COMPRESS_DONE routine deletes the context area and sets the
context variable to zero, undoing the work of the DCX$COMPRESS_INIT routine.
Call DCX$COMPRESS_DONE when all data records have been compressed
(using DCX$COMPRESS_DATA). After calling DCX$COMPRESS_DONE, call
LIBSFREE_VM to free the virtual memory that DCX$MAKE_MAP used for the
compression/expansion function.

Condition Values Returned

DCX$_INVCTX Error. The context variable is invalid or the
context area is invalid or corrupted. This may
be caused by a failure to call the appropriate
routine to initialize the context variable or by an
application program error.

DCX$_NORMAL Normal successful completion.

This routine also returns any condition values returned by LIB$FREE_VM.

DCX-20 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
DCX$COMPRESS _INIT

DCX$COMPRESS _INIT—Initialize Compression Context

Format

Returns

Arguments

Description

The DCX$COMPRESS_INIT routine initializes the context area for the
compression of data records.

DCX$COMPRESS_INIT context ,map

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

context

OpenVMS usage: context

type: longword (unsigned)
access: write only
mechanism: by reference

Value identifying the data stream that DCX$COMPRESS_INIT initializes. The
context argument is the address of a longword containing this value. You should
not modify the context value after DCX$COMPRESS_INIT initializes it. You
can define multiple context arguments to identify multiple data streams that are
processed simultaneously.

map
OpenVMS usage: address

type: longword (unsigned)
access: read only
mechanism: by reference

The function created by DCX$MAKE_MAP. The map argument is the address of
the compression/expansion function’s virtual address.

The map argument must remain at this address until data compression is
completed and the context is deleted by means of a call to DCX$COMPRESS _
DONE.

The DCX$COMPRESS_INIT routine initializes the context area for the
compression of data records.

Call the DCX$COMPRESS_INIT routine after calling the DCX$ANALYZE_DONE
routine.

Data Compression/Expansion (DCX) Routines DCX-21

Data Compression/Expansion (DCX) Routines
DCX$COMPRESS_INIT

Condition Values Returned

DCX$_INVMAP Error; invalid map. The map argument was not
specified correctly, or the context area is invalid.
DCX$ _NORMAL Normal successful completion.

This routine also returns any condition values returned by LIB$GET_VM and
LIBSFREE_VM.

DCX-22 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
DCX$EXPAND_DATA

DCX$EXPAND_DATA—Expand a Compressed Data Record

Format

Returns

Arguments

The DCX$EXPAND_DATA routine expands (or restores) a compressed data record
to its original state.

DCX$EXPAND_DATA context ,in_rec ,out_rec [,out_length]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

context

OpenVMS usage: context

type: longword (unsigned)
access: read only
mechanism: by reference

Value identifying the data stream that DCX$EXPAND_DATA expands.

The context argument is the address of a longword containing this value.
DCX$EXPAND_INIT initializes this value; you should not modify it. You can
define multiple context arguments to identify multiple data streams that are
processed simultaneously.

in_rec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Data record to be expanded. The in_rec argument is the address of the descriptor
of the data record string.

out_rec

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Data record that has been expanded. The out_rec argument is the address of the
descriptor of the expanded record returned by DCX$EXPAND_DATA.

Data Compression/Expansion (DCX) Routines DCX-23

Data Compression/Expansion (DCX) Routines
DCX$EXPAND_DATA

out_length

OpenVMS usage: word_signed

type: word integer (signed)
access: write only
mechanism: by reference

Length (in bytes) of the expanded data record. The out_length argument is the
address of a word into which DCX$EXPAND_DATA returns the length of the
expanded data record.

Description

The DCX$EXPAND_DATA routine expands (or restores) a compressed data record
to its original state. Call this routine for each data record to be expanded.

Condition Values Returned

DCX$_INVCTX Error. The context variable is invalid, or the
context area is invalid or corrupted. This may
be caused by a failure to call the appropriate
routine to initialize the context variable or by an
application program error.

DCX$_INVDATA Error. A compressed data record is invalid
(probably truncated) and therefore cannot be
expanded.

DCX$ _INVMAP Error; invalid map. The map argument was not
specified correctly, or the context area is invalid.

DCX$_NORMAL Normal successful completion.

DCX$_TRUNC Warning. The expanded data record has been

truncated because the out_rec descriptor did
not specify enough memory to accommodate the
record.

This routine also returns any condition values returned by LIBSANALYZE_
SDESC_R2 and LIB$SCOPY_R_DX.

DCX-24 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
DCX$EXPAND_DONE

DCX$EXPAND_DONE—Specify Expansion Complete

Format

Returns

Argument

Description

The DCX$EXPAND_DONE routine deletes the context area and sets the context
variable to zero.

DCX$EXPAND_DONE context

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

context

OpenVMS usage: context

type: longword (unsigned)
access: write only
mechanism: by reference

Value identifying the data stream that DCX$EXPAND_DONE deletes. The
context argument is the address of a longword containing this value.
DCX$EXPAND_INIT initializes this value; you should not modify it. You can
define multiple context arguments to identify multiple data streams that are
processed simultaneously.

The DCX$EXPAND_DONE routine deletes the context area and sets the context
variable to zero, thus undoing the work of the DCX$EXPAND_INIT routine.
Call DCX$EXPAND_DONE when all data records have been expanded (using
DCX$EXPAND_DATA).

Condition Values Returned

DCX$_INVCTX Error. The context variable is invalid, or the
context area is invalid or corrupted. This may
be caused by a failure to call the appropriate
routine to initialize the context variable or by an
application program error.

DCX$NORMAL Normal successful completion.

This routine also returns any condition values returned by LIB$FREE_VM.

Data Compression/Expansion (DCX) Routines DCX-25

Data Compression/Expansion (DCX) Routines
DCX$EXPAND_INIT

DCX$EXPAND_INIT—Initialize Expansion Context

Format

Returns

Arguments

Description

The DCX$EXPAND_INIT routine initializes the context area for the expansion of
data records.

DCX$EXPAND_INIT context ,map

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

context

OpenVMS usage: context

type: longword (unsigned)
access: write only
mechanism: by reference

Value identifying the data stream that DCX$EXPAND_INIT initializes. The
context argument is the address of a longword containing this value. After
DCX$EXPAND_INIT initializes this context value, you should not modify it. You
can define multiple context arguments to identify multiple data streams that are
processed simultaneously.

map
OpenVMS usage: address

type: longword (unsigned)
access: read only
mechanism: by reference

Compression/expansion function (created by DCX$MAKE_MAP). The map
argument is the address of the compression/expansion function’s virtual address.

The map argument must remain at this address until data expansion is
completed and context is deleted by means of a call to DCX$EXPAND_ DONE.

The DCX$EXPAND_INIT routine initializes the context area for the expansion of
data records.

Call the DCX$EXPAND_INIT routine as the first step in the expansion (or
restoration) of compressed data records to their original state.

Before you call DCX$EXPAND_INIT, read the length of the compressed file from
the compression/expansion function (the map). Invoke LIBSGET_VM to get the
necessary amount of storage for the function. LIB$GET_VM returns the address
of the first byte of the storage area.

DCX-26 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
DCX$EXPAND _INIT

Condition Values Returned

DCX$_INVMAP Error; invalid map. The map argument was not
specified correctly, or the context area is invalid.
DCX$_NORMAL Normal successful completion.

This routine also returns any condition values returned by LIB$GET VM.

Data Compression/Expansion (DCX) Routines DCX-27

Data Compression/Expansion (DCX) Routines
DCX$MAKE_MAP

DCX$MAKE_MAP—Compute the Compression/Expansion Function

Format

Returns

Arguments

The DCX$MAKE_MAP routine uses the statistical information gathered by
DCX$ANALYZE_DATA to compute the compression/expansion function.

DCX$MAKE_MAP context ,map_addr [,map_size]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

context

OpenVMS usage: context

type: longword (unsigned)
access: write only
mechanism: by reference

Value identifying the data stream that DCX$MAKE_MAP maps. The context
argument is the address of a longword containing this value. DCX$ANALYZE_
INIT initializes this value; you should not modify it. You can define multiple
context arguments to identify multiple data streams that are processed
simultaneously.

map_addr

OpenVMS usage: address

type: longword (unsigned)
access: write only
mechanism: by reference

Starting address of the compression/expansion function. The map_addr
argument is the address of a longword into which DCX$SMAKE_MAP stores
the virtual address of the compression/expansion function.

map_size

OpenVMS usage: longword_signed
type: longword (unsigned)
access: write only
mechanism: by reference

Length of the compression/expansion function. The map_size argument is the
address of the longword into which DCX$MAKE_MAP writes the length of the
compression/expansion function.

DCX-28 Data Compression/Expansion (DCX) Routines

Description

Data Compression/Expansion (DCX) Routines
DCX$MAKE_MAP

The DCX$MAKE_MAP routine uses the statistical information gathered by
DCX$ANALYZE_DATA to compute the compression/expansion function. In
essence, this map is the algorithm used to shorten (or compress) the original data
records as well as to expand the compressed records to their original form.

The map must be available in memory when any data compression or
expansion takes place; the address of the map is passed as an argument to
the DCX$COMPRESS_INIT and DCX$EXPAND_INIT routines, which initialize
the data compression and expansion procedures, respectively.

The map is stored with the compressed data records, because the compressed
data records are indecipherable without the map. When compressed data records
have been expanded to their original state and no further compression is desired,
you should delete the map using the LIB$FREE_VM routine.

DCX requires that you submit data records for analysis and then call the
DCX$MAKE_MAP routine. Upon receiving the DCX$_AGAIN status code,

you must again submit data records for analysis (in the same order) and call
DCX$MAKE_MAP again; on the second iteration, DCX$MAKE_MAP returns the
DCX$_NORMAL status code.

Condition Values Returned

DCX$_AGAIN Informational. The map has not been created
and the map_addr and map_size arguments
have not been written because further analysis is
required. The data records must be analyzed
(using DCX$ANALYZE_DATA) again, and
DCX$MAKE_MAP must be called again before
DCX$MAKE_MAP will create the map and
return the DCX$_NORMAL status code.

DCX$_INVCTX Error. The context variable is invalid, or the
context area is invalid or corrupted. This may
be caused by a failure to call the appropriate
routine to initialize the context variable or by an
application program error.

DCX$_NORMAL Normal successful completion.

This routine also returns any condition values returned by LIB$GET_VM and
LIBSFREE_VM.

Data Compression/Expansion (DCX) Routines DCX-29

8

DEC Text Processing Utility (DECTPU)
Routines

This chapter describes callable DEC Text Processing Utility (DECTPU) routines.
It describes the purpose of the DECTPU callable routines, the parameters for the
routine call, and the primary status returns. The parameter in the call syntax
represents the object that you pass to a DECTPU routine. Each parameter
description lists the data type and the passing mechanism for the object. The
data types are standard OpenVMS data types. The passing mechanism indicates
how the parameter list is interpreted.

This chapter is written for system programmers who are familiar with the:
= OpenVMS Calling Standard
e OpenVMS Run-Time Library

= Precise manner in which data types are represented on a VAX processor or an
Alpha processor

= Method for calling routines written in a language other than the one you are
using for the main program

8.1 Introduction to DECTPU Routines

Callable DECTPU routines make DECTPU accessible from within other
languages and applications supported by OpenVMS. DECTPU can be called
from a program written in any language that generates calls using the OpenVMS
Calling Standard. You can also call DECTPU from OpenVMS utilities, for
example, the Mail utility. Callable DECTPU lets you perform text-processing
functions within your program.

Callable DECTPU consists of a set of callable routines that resides in the
DECTPU shareable images. You access callable DECTPU by linking against
the shareable images, which include the callable interface routine names and
constants. As with the DCL-level DECTPU interface, you can use files for input
to and output from callable DECTPU. You can also write your own routines for
processing file input, output, and messages.

The calling program must ensure that parameters passed to a called procedure,
in this case DECTPU, are of the type and form that the DECTPU procedure
accepts.

The DECTPU routines described in this chapter return condition values
indicating the routine’'s completion status. When comparing a returned condition
value with a test value, you should use the LIBSMATCH routine from the
Run-Time Library. Do not test the condition value as if it were a simple integer.

DEC Text Processing Utility (DECTPU) Routines DECTPU-1

DEC Text Processing Utility (DECTPU) Routines
8.1 Introduction to DECTPU Routines

8.1.1 Interfaces to Callable DECTPU

There are two interfaces you can use to access callable DECTPU: the simplified
callable interface and the full callable interface.

8.1.1.1 Simplified Callable Interface
The easiest way to use callable DECTPU is to use the simplified callable interface.
DECTPU provides two alternative routines in its simplified callable interface.
These routines in turn call additional routines that do the following:

= Initialize the editor

= Provide the editor with the parameters necessary for its operation
= Control the editing session

= Perform error handling

When using the simplified callable interface, you can use the TPU$TPU routine
to specify a command line for DECTPU, or you can call the TPUSEDIT routine
to specify an input file and an output file. TPUSEDIT builds a command string
that is then passed to the TPUS$TPU routine. These two routines are described in
detail in Section 8.2.

If your application parses information that is not related to the operation of
DECTPU, make sure the application obtains and uses all non-DECTPU parse
information before the application calls the simplified callable interface. You must
do this because the simplified callable interface destroys all parse information
obtained and stored before the simplified callable interface was called.

8.1.1.2 Full Callable Interface

To use the full callable interface, have your program access the main callable
DECTPU routines directly. These routines do the following:

< Initialize the editor (TPUSINTIALIZE)

e Execute DECTPU procedures (TPUSEXECUTE_INIFILE and
TPUS$SEXECUTE_COMMAND)

= Give control to the editor (TPU$CONTROL)
< Terminate the editing session (TPUSCLEANUP)

When using the full callable interface, you must provide values for certain
parameters. In some cases, the values you supply are actually addresses for
additional routines. For example, when you call TPUSINITIALIZE, you must
include the address of a routine that specifies initialization options. Depending
on your particular application, you might also have to write additional routines.
For example, you might need to write routines for performing file operations,
handling errors, and otherwise controlling the editing session. Callable DECTPU
provides utility routines that can perform some of these tasks for you. These
utility routines can do the following:

= Parse the command line and build the item list used for initializing the editor
= Handle file operations

= Output error messages

< Handle conditions

If your application calls the DECwindows version of DECTPU, the application
can call TPUSINITIALIZE only once.

DECTPU-2 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.1 Introduction to DECTPU Routines

Various topics relating to the full callable interface are discussed in the following
sections:

= Section 8.3 begins by briefly describing the interface. However, most of this
section describes the main callable DECTPU routines (TPUSINITIALIZE,
TPUSEXECUTE_INIFILE, TPU$CONTROL, TPUSEXECUTE_COMMAND,
and TPUSCLEANUP).

= Section 8.3.2 discusses additional routines that DECTPU provides for use
with the full callable interface.

= Section 8.3.3 defines the requirements for routines that you can write for use
with the full callable interface.

The full callable interface consists of the main callable DECTPU routines and the
DECTPU utility routines.

8.1.2 The DECTPU Shareable Image

Whether you use the simplified callable interface or the full callable interface,
you access callable DECTPU by linking against the DECTPU shareable image.
This image contains the routine names and constants available for use by an
application. In addition, the shareable image provides the following symbols:

= TPUS$GL_VERSION—The version of the shareable image
e TPUSGL_UPDATE—The update number of the shareable image
e TPUS$_FACILITY—The DECTPU facility code

For more information about how to link to the shareable image TPUSHR.EXE,
refer to the OpenVMS Programming Environment Manual.!

8.1.3 Passing Parameters to Callable DECTPU Routines

Parameters are passed to callable DECTPU routines by reference or by descriptor.
When the parameter is a routine, the parameter is passed by descriptor as a
bound procedure value (BPV) data type.

A bound procedure value is a two-longword entity in which the first longword
contains a procedure value and the second longword is the environment value (see
the following figure). The environment value is determined in a language-specific
manner when the original bound procedure value is generated. When the bound
procedure is called, the calling program loads the second longword into R1.

Name of your routine

Environment

ZK-4046-GE

8.1.4 Error Handling

When you use the simplified callable interface, DECTPU establishes its own
condition handler, TPUSHANDLER, to handle all errors. When you use the full
callable interface, there are two ways to handle errors:

e You can use the DECTPU default condition handler, TPUSHANDLER.

1 This manual has been archived but is available on the OpenVMS Documentation

CD-ROM.

DEC Text Processing Utility (DECTPU) Routines DECTPU-3

DEC Text Processing Utility (DECTPU) Routines
8.1 Introduction to DECTPU Routines

< You can write your own condition handler to process some of the errors and
call TPUSHANDLER to process the rest.

The default condition handler, TPU$SHANDLER, is described in Section 8.7.
Information about writing your own condition handler can be found in the HP
OpenVMS Programming Concepts Manual.

8.1.5 Return Values

All DECTPU condition codes are declared as universal symbols. Therefore, you
automatically have access to these symbols when you link your program to the
shareable image. The condition code values are returned in RO. Return codes
for DECTPU can be found in the DEC Text Processing Utility Reference Manual.
DECTPU return codes and their messages are accessible from the Help/Message
facility.

Additional information about condition codes is provided in the descriptions of
callable DECTPU routines found in subsequent sections. This information is
provided under the heading Condition Values Returned and indicates the values
that are returned when the default condition handler is established.

8.2 Simplified Callable Interface

The DECTPU simplified callable interface consists of two routines: TPU$TPU
and TPUSEDIT. These entry points to DECTPU are useful for the following kinds
of applications:

e Those able to specify all the editing parameters on a single command line
= Those that need to specify only an input file and an output file

If your application parses information that is not related to the operation of
DECTPU, make sure the application obtains and uses all non-DECTPU parse
information before the application calls the simplified callable interface. You must
do this because the simplified callable interface destroys all parse information
obtained and stored before the simplified callable interface was called.

The following example calls TPUSEDIT to edit text in the file INFILE.DAT and
writes the result to OUTFILE.DAT. Note that the parameters to TPU$SEDIT must
be passed by descriptor.
/*

Sample C program that calls DECTPU. This program uses TPUSEDIT to

provide the names of the input and output files

*/
#include descrip
int return status;

static S$DESCRIPTOR (input file, "infile.dat");
static $DESCRIPTOR (output file, "outfile.dat");

main (argc, argv)
int argc;
char *argvl];
!
Call DECTPU to edit text in "infile.dat" and write the result

to "outfile.dat". Return the condition code from DECTPU as the
status of this program.

*/

DECTPU-4 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.2 Simplified Callable Interface

return status = TPUSEDIT (&input file, &output file);
exit (return status);

}

The next example performs the same task as the previous example. This time,
the TPUSTPU entry point is used. TPU$TPU accepts a single argument which is
a command string starting with the verb TPU. The command string can contain
all of the qualifiers that are accepted by the EDIT/TPU command.
/*

Sample C program that calls DECTPU. This program uses TPUSTPU and

specifies a command string

*/
#include descrip
int return status;

static $DESCRIPTOR (command prefix, "TPU/NOJOURNAL/NOCOMMAND/OUTPUT=");
static $DESCRIPTOR (input file, "infile.dat");

static $DESCRIPTOR (output file, "outfile.dat");

static $DESCRIPTOR (space desc, " ");

char command line [100];
static $DESCRIPTOR (command desc, command line);

main (argc, argv)
int argc;
char *argvl(];

{
/*
Build the command line for DECTPU. Note that the command verb
igs TPU instead of EDIT/TPU. The string we construct in the
buffer command line will be
"TPU/NOJOURNAL/NOCOMMAND/OUTPUT=outfile.dat infile.dat"
*/

return status = STR$CONCAT (&command desc,
&command prefix,
&output file,
&space_desc,
&input file);
if (! return status)
exit (return status);

/*
Now call DECTPU to edit the file
*/
return status = TPUSTPU (&command desc) ;
exit (return status);

The following section contains detailed information about the routines in the full
DECTPU callable interface. If you use the simplified interface, that interface
calls these routines for you. If you use the full interface, your code calls these
routines directly.

8.3 Full Callable Interface

The DECTPU full callable interface consists of a set of routines that you can use
to perform the following tasks:

= Specify initialization parameters
= Control file input/output

= Specify commands to be executed by the editor

DEC Text Processing Utility (DECTPU) Routines DECTPU-5

DEC Text Processing Utility (DECTPU) Routines
8.3 Full Callable Interface

e Control how conditions are handled

When you use the simplified callable interface, these operations are performed
automatically. The individual DECTPU routines that perform these functions
can be called from a user-written program and are known as the DECTPU full
callable interface. This interface has two sets of routines: the main DECTPU
callable routines and the DECTPU utility routines. These DECTPU routines, as
well as your own routines that pass parameters to the DECTPU routines, are the
mechanism that your application uses to control DECTPU.

The following sections describe the main callable routines, how parameters are
passed to these routines, the DECTPU utility routines, and the requirements of
user-written routines.

8.3.1 Main Callable DECTPU Utility Routines
The following callable DECTPU routines are described in this chapter:
e TPUSINITIALIZE
e TPUSEXECUTE_INIFILE
e TPUS$CONTROL
e TPUSEXECUTE_COMMAND
e TPUSCLEANUP

Note

Before calling any of these routines, you must establish TPUSHANDLER
or provide your own condition handler. See the routine description of
TPUSHANDLER in this chapter and the HP OpenVMS Calling Standard
for information about establishing a condition handler.

8.3.2 Other DECTPU Utility Routines

The full callable interface includes several utility routines for which you can
provide parameters. Depending on your application, you might be able to use
these routines rather than write your own routines. These DECTPU utility
routines and their descriptions follow:

e TPUS$CLIPARSE—Parses a command line and builds the item list for
TPUSINITIALIZE

e TPUS$PARSEINFO—Parses a command and builds an item list for
TPUSINITIALIZE

e TPUSFILEIO—The default file 1/0 routine

e TPUSMESSAGE—Writes error messages and strings using the built-in
procedure MESSAGE

e TPU$HANDLER—The default condition handler

e TPUS$CLOSE_TERMINAL—Closes the DECTPU channel to the terminal (and
its associated mailbox) for the duration of a CALL_USER routine

e TPUSSPECIFY_ASYNC_ACTION—Specifies an asynchronous event for
interrupting the TPU$CONTROL routine

DECTPU-6 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.3 Full Callable Interface

e TPUSTRIGGER_ASYNC_ACTION—Interrupts the TPUSCONTROL routine
on a specified asynchronous event

Note that TPUSCLIPARSE and TPU$SPARSEINFO destroy the context
maintained by the CLI$ routines for parsing commands.

8.3.3 User-Written Routines

This section defines the requirements for user-written routines. When these
routines are passed to DECTPU, they must be passed as bound procedure values.
(See Section 8.1.3 for a description of bound procedure values.) Depending on
your application, you might have to write one or all of the following routines:

= Routine for initialization callback—This is a routine that TPUSINITIALIZE
calls to obtain values for initialization parameters. The initialization
parameters are returned as an item list.

= Routine for file I/O—This is a routine that handles file operations. Instead
of writing your own file 1/0O routine, you can use the TPUSFILEIO utility
routine. DECTPU does not use this routine for journal file operations or for
operations performed by the built-in procedure SAVE.

= Routine for condition handling—This is a routine that handles error
conditions. Instead of writing your own condition handler, you can use
the default condition handler, TPU$SHANDLER.

= Routine for the built-in procedure CALL_USER—This is a routine that is
called by the built-in procedure CALL_USER. You can use this mechanism to
cause your program to get control during an editing session.

8.4 Using the DECTPU Routines: Examples

Example 8-1, Example 8-2, Example 8-3, and Example 8-4 use callable
DECTPU. These examples are included here for illustrative purposes only; HP
does not assume responsibility for supporting these examples.

Example 8-1 Sample VAX BLISS Template for Callable DECTPU

MODULE file io example (MAIN = top level,
ADDRESSING MODE (EXTERNAL = GENERAL)) =

BEGIN

FORWARD ROUTINE
top_level, ! Main routine of this example
tpu init, ! Initialize TPU
tpu io; | File I/0 routine for TPU

|
! Declare the stream data structure passed to the file I/O routine
|

MACRO

stream file id = 3 File ID
stream rat Record attributes

Record format
File name descriptor

© J oo
o O oo
O O O o
o\® o\°® o\° o\

stream rfm
stream file nm

(continued on next page)

DEC Text Processing Utility (DECTPU) Routines DECTPU-7

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8-1 (Cont.) Sample VAX BLISS Template for Callable DECTPU

| Declare the routines that would actually do the I/0. These must be supplied

! in another module
|
EXTERNAL ROUTINE
my io open,
my io close,
my io get record,
my io put record;

Routine to open a file
Routine to close a file
Routine to read a record
Routine to write a record

| Declare the DECTPU routines
|

EXTERNAL ROUTINE

tpusfileio, ! DECTPU’s internal file I/O routine
tpuShandler, | DECTPU’s condition handler
tpusinitialize, | Initialize DECTPU

tpu$execute_command, | Execute a DECTPU statement
tpuScontrol, ! Let user interact with DECTPU

|
|
|
tpuSexecute inifile, ! Execute the initial procedures
|
|
tpuscleanup; ! Have DECTPU cleanup after itself

| Declare the DECTPU literals
|
EXTERNAL LITERAL
tpu$k close, | File I/0 operation codes
tpusk close delete,
tpusk open,
tpusk get,
tpusk put,

tpusk access, | File access codes
tpu$k_io,

tpusk input,

tpu$k_output,

tpu$ calluser, | Ttem list entry codes
tpu$_fileio,

tpu$ outputfile,

tpu$_sectionfile,

tpu$ commandfile,

tpu$ filename,

tpu$ journalfile,

tpu$_options,

tpusSm recover, ! Mask for values in options bitmask
tpu$m journal,

tpusm read,

tpu$m_command,

tpusm create,

tpu$m section,

tpusm display,

tpu$m output,

tpusm reset terminal, ! Masks for cleanup bitmask
tpu$m kill processes,

tpusm delete exith,

tpuSm last time,

DECTPU-8 DEC Text Processing Utility (DECTPU) Routines

(continued on next page)

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8-1 (Cont.) Sample VAX BLISS Template for Callable DECTPU

tpus nofileaccess, | DECTPU status codes
tpus openin,

tpus_inviocode,

tpus failure,

tpus closein,

tpus closeout,

tpus readerr,

tpus writeerr,

tpus_success;

ROUTINE top level =

L4+

BEGIN

! Main entry point of your program

! Your initialization routine must be declared as a BPV

LOCAL
initialize bpv: VECTOR [2],
status,
cleanup flags;
!
| First establish the condition handler
!
ENABLE
tpushandler ();

|
! Initialize the editing session, passing TPUSINITIALIZE the address of
! the bound procedure value which defines the routine which DECTPU is

! to call to return the initialization item list

|

initialize bpv [0] = tpu init;

initialize bpv [1] = 0;

tpusinitialize (initialize bpv);

|

! Call DECTPU to execute the contents of the command file, the debug file
! or the TPUSINIT PROCEDURE from the section file.

|

tpusexecute inifile();
|

! Let DECTPU take over.
|

Epu$control();
|

! Have DECTPU cleanup after itself

|

cleanup flags = tpu$m reset terminal OR
tpusm kill processes OR
tpuém delete exith OR
tpusm last time;

Reset the terminal

Delete Subprocesses

Delete the exit handler

Last time calling the editor

tpuscleanup (cleanup flags);
RETURN tpu$ success;
END;

(continued on next page)

DEC Text Processing Utility (DECTPU) Routines DECTPU-9

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8-1 (Cont.) Sample VAX BLISS Template for Callable DECTPU
ROUTINE tpu init =
BEGIN

!
! Allocate the storage block needed to pass the file I/0O routine as a

! bound procedure variable as well as the bitmask for the initialization
| options

!

OWN
file io bpv: VECTOR [2, LONG]
INITIAL (TPU_IO, 0),
options;
|

| These macros define the file names passed to DECTPU
|

MACRO

Out_file = 'QUTPUT.TPU' % ,
com file = 'TPUSCOMMAND' % ,
sec_file = 'TPU$SSECTION’ % ,
inp_file = 'FILE.TPU' % ;

| Create the item list to pass to DECTPU. Each item list entry consists of
! two words which specify the size of the item and its code, the address of
! the buffer containing the data, and a longword to receive a result (always
| zero, since DECTPU does not return any result values in the item list)

b +
| Item Code | Item Length

| Buffer Address
b +
| Return Address (always 0) |
b +

|
|
|
|
|
|
|
|
! Fommmmmmmmm oo it +
|
|
|
|
1
! Remember that the item list is always terminated with a longword containing
|
|

| a zero
BIND
item_list = UPLIT BYTE (
WORD (4), | Options bitmask
WORD (tpu$ options),
LONG (options),
LONG (0),
WORD (4), | File I/0 routine
WORD (tpu$ fileio),
LONG (file io bpv),
LONG (0),
WORD (%CHARCOUNT (out_file)), ! Output file
WORD (tpu$ outputfile),
LONG (UPLIT (%ASCII out_file)),
LONG (0),
WORD (%CHARCOUNT (com file)), | Command file
WORD (tpu$ commandfile),
LONG (UPLIT (%ASCII com file)),
LONG (0),

(continued on next page)

DECTPU-10 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8-1 (Cont.) Sample VAX BLISS Template for Callable DECTPU

WORD (%CHARCOUNT (sec_file)), | Section file
WORD (tpu$ sectionfile),
LONG (

(

UPLIT (%ASCII sec_file)),
0

LONG (0),

WORD ($CHARCOUNT (inp file)), | Input file

WORD (tpu$ filename),

LONG (UPLIT ($ASCII inp file)),

LONG (0),
0

LONG (0)); | Terminating longword of 0
|
| Initialize the options bitmask
|
options = tpu$m display OR ! We have a display
tpusm_section OR | We have a section file
tpuSm create OR ! Create a new file if one does not
I exist
! We have a section file
! We supplied an output file spec

tpusm_command OR
tpusm output;
|

| Return the item list as the value of this routine for DECTPU to interpret
|

RETURN item list;

END; ! End of routine tpu init
ROUTINE tpu io (p opcode, stream: REF BLOCK [,byte], data) =
|
! This routine determines how to process a TPU I/0 request

!
BEGIN

LOCAL
status;

! Is this one of ours, or do we pass it to TPU’s file I/O routines?

IF (..p opcode NEQ tpu$Sk open) AND (.stream [stream file id] GIR 511)
THEN
RETURN tpusfileio (.p opcode, .stream, .data);

|

| Either we’re opening the file, or we know it’s one of ours
! Call the appropriate routine (not shown in this example)
|

SELECTONE ..p_opcode OF
SET

[tpusk _open] :
status = my _io open (.stream, .data);

[tpuSk close, tpuSk close delete]:
status = my_io close (.stream, .data);

[tpuSk get]:

status = my io get record (.stream, .data);
[tpuSk put]:

status = my io put record (.stream, .data);
[OTHERWISE] :

status = tpus failure;

TES;

(continued on next page)

DEC Text Processing Utility (DECTPU) Routines DECTPU-11

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8-1 (Cont.) Sample VAX BLISS Template for Callable DECTPU

RETURN .status;
END;

END

ELUDOM

! End of routine TPU IO

! End Module file io example

Example 8-2 shows normal DECTPU setup in HP Fortran.

Example 8-2 Normal DECTPU Setup in HP Fortran

C A sample Fortran program that calls DECTPU to act
C normally, using the programmable interface.
C
C IMPLICIT NONE
INTEGER*4 CLEAN OPT loptions for clean up routine
INTEGER*4 STATUS lreturn status from DECTPU routines
INTEGER*4 BPV_PARSE (2) Iset up a bound procedure value
INTEGER*4 LOC_PARSE !a local function call
C declare the DECTPU functions
INTEGER*4 TPUSCONTROL
INTEGER*4 TPUSCLEANUP
INTEGER*4 TPUSEXECUTE INIFILE
INTEGER*4 TPUSINITIALIZE
INTEGER*4 TPUSCLIPARSE
C declare a local copy to hold the values of DECTPU cleanup variables
INTEGER*4 RESET TERMINAL
INTEGER*4 DELETE_JOURNAL
INTEGER*4 DELETE BUFFERS, DELETE WINDOWS
INTEGER*4 DELETE EXITH, EXECUTE PROC
INTEGER*4 PRUNE CACHE, KILL PROCESSES
INTEGER*4 CLOSE_SECTION
C declare the DECTPU functions used as external
EXTERNAL TPUSHANDLER
EXTERNAL TPUSCLIPARSE
EXTERNAL TPUS_SUCCESS lexternal error message
EXTERNAL LOC_PARSE luser supplied routine to
C call TPUCLIPARSE and setup
C declare the DECTPU cleanup variables as external these are the
¢ external literals that hold the value of the options
EXTERNAL TPUSM_RESET TERMINAL
EXTERNAL TPUSM_DELETE JOURNAL
EXTERNAL TPUSM DELETE BUFFERS, TPUSM DELETE WINDOWS
EXTERNAL TPUSM DELETE EXITH, TPUSM EXECUTE PROC
EXTERNAL TPUSM_PRUNE_CACHE, TPUSM_KILL PROCESSES
100 CALL LIBSESTABLISH (TPUSHANDLER) lestablish the condition handler
C set up the bound procedure value for the call to TPUSINITIALIZE
BPV PARSE(1) = %LOC(LOC_PARSE)
BPV PARSE(2) =0

DECTPU-12 DEC Text Processing Utility (DECTPU) Routines

(continued on next page)

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8-2 (Cont.) Normal DECTPU Setup in HP Fortran

C

[PESNOK®!

(@]

9999

call the DECTPU initialization routine to do some set up work
STATUS = TPUSINITIALIZE (BPV_PARSE)

Check the status if it is not a success then signal the error

IF (STATUS .NE. %LOC (TPU$ SUCCESS)) THEN
CALL LIBSSIGNAL(%VAL(STATUS))
GOTO 9999

ENDIF

execute the TPUS init files and also a command file if it
was specified in the command line call to DECTPU

STATUS = TPUSEXECUTE INIFILE ()

IF (STATUS .NE. %LOC (TPUS SUCCESS)) THEN !make sure everything is ok
CALL LIBSSIGNAL($VAL(STATUS))
GOTO 9999

ENDIF

invoke the editor as it normally would appear

STATUS = TPUSCONTROL () !call the DECTPU editor

IF (STATUS .NE. %LOC (TPUS SUCCESS)) THEN !make sure everything is ok
CALL LIBSSIGNAL($%VAL(STATUS))
GOTO 9999

ENDIF

Get the value of the option from the external literals. In Fortran you
cannot use external literals directly so you must first get the value
of the literal from its external location. Here we are getting the
values of the options that we want to use in the call to TPUSCLEANUP.

DELETE JOURNAL = %LOC (TPUSM DELETE JOURNAL)

DELETE_EXITH = %LOC (TPU$M_DELETE_EXITH)

DELETE BUFFERS = %LOC (TPUSM DELETE BUFFERS)

DELETE_WINDOWS = $LOC (TPU$M_DELETE_WINDOWS)

EXECUTE PROC = %LOC (TPUSM_EXECUTE PROC)

RESET TERMINAL = $LOC (TPU$M RESET TERMINAL)

KILL PROCESSES = %LOC (TPUSM KILL PROCESSES)

CLOSE_SECTION = $LOC (TPUSM CLOSE_ SECTION)

Now that we have the local copies of the variables we can do the
logical OR to set the multiple options that we need.

CLEAN OPT = DELETE JOURNAL .OR. DELETE EXITH .OR.
1 DELETE_BUFFERS .OR. DELETE WINDOWS .OR. EXECUTE_PROC
1 .OR. RESET TERMINAL .OR. KILL PROCESSES .OR. CLOSE SECTION

do the necessary clean up
TPUSCLEANUP wants the address of the flags as the parameter so
pass the %LOC of CLEAN OPT which is the address of the variable

STATUS = TPUSCLEANUP ($LOC (CLEAN OPT))
IF (STATUS .NE. %LOC (TPU$ SUCCESS)) THEN
CALL LIBSSIGNAL(%VAL(STATUS))
ENDIF
CALL LIBSREVERT lgo back to normal processing -- handlers

STOP
END

(continued on next page)

DEC Text Processing Utility (DECTPU) Routines DECTPU-13

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8-2 (Cont.) Normal DECTPU Setup in HP Fortran

¢
c
INTEGER*4 FUNCTION LOC PARSE
INTEGER*4 BPV(2) 1A local bound procedure value
CHARACTER*12 EDIT_ COMM IA command line to send to TPUSCLIPARSE
C Declare the DECTPU functions used
INTEGER*4 TPUSFILEIO
INTEGER*4 TPUSCLIPARSE
C Declare this routine as external because it is never called directly and
C we need to tell Fortran that it is a function and not a variable
EXTERNAL TPUSFILEIO
BPV (1) = %LOC(TPUSFILEIO) Iset up the bound procedure value
BPV(2) = 0
EDIT COMM(1:12) = 'TPU TEST.TXT'
¢ parse the command line and build the item list for TPUSINITIALIZE
9999 LOC_PARSE = TPUSCLIPARSE (EDIT_COMM, BPV , 0)
RETURN
END

Example 8-3 shows how to build a callback item list with HP Fortran.

Example 8-3 Building a Callback Item List with HP Fortran

PROGRAM TEST TPU

C
IMPLICIT NONE
C
C Define the expected DECTPU return statuses
C
EXTERNAL TPUS$_SUCCESS
EXTERNAL TPUS_QUITTING
EXTERNAL TPU$_EXITING
c
C Declare the DECTPU routines and symbols used
c
EXTERNAL TPUSM_DELETE CONTEXT
EXTERNAL TPUSHANDLER
INTEGER*4 TPUSM_DELETE CONTEXT
INTEGER*4 TPUSINITIALIZE
INTEGER*4 TPUSEXECUTE INIFILE
INTEGER*4 TPUSCONTROL
INTEGER*4 TPUSCLEANUP
C
c Use LIBSMATCH COND to compare condition codes
C
INTEGER*4 LIBSMATCH COND
C
C Declare the external callback routine
C
EXTERNAL TPU_STARTUP ! the DECTPU set-up function
INTEGER*4 TPU_STARTUP
INTEGER*4 BPV(2) ! Set up a bound procedure value

(continued on next page)

DECTPU-14 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8-3 (Cont.) Building a Callback Item List with HP Fortran

C
C Declare the functions used for working with the condition handler
C
INTEGER*4 LIBSESTABLISH
INTEGER*4 LIBSREVERT
C
C Local Flags and Indices
C
INTEGER*4 CLEANUP_FLAG ! flag(s) for DECTPU cleanup
INTEGER*4 RET STATUS
INTEGER*4 MATCH_STATUS
C
C Initializations
C
RET STATUS =0
CLEANUP_FLAG = %LOC(TPUSM_DELETE CONTEXT)
C
C Establish the default DECTPU condition handler
C
CALL LIBSESTABLISH (%REF (TPUSHANDLER))
C
C Set up the bound procedure value for the initialization callback
C
BPV(1) = $LOC (TPU STARTUP)
BPV(2) = 0
C
C Call the DECTPU procedure for initialization
C
RET STATUS = TPUSINITIALIZE (BPV)
IF (RET STATUS .NE. $LOC(TPUS$_SUCCESS)) THEN
CALL LIBS$SIGNAL (%VAL(RET STATUS))
ENDIF
C
C Execute the DECTPU initialization file
C
RET STATUS = TPU$EXECUTE_INIFILE()
IF (RET STATUS .NE. %LOC(TPUS_SUCCESS)) THEN
CALL LIBSSIGNAL (%VAL(RET STATUS))
ENDIF
C
C Pass control to DECTPU
C
RET STATUS = TPUSCONTROL ()
C
c Test for valid exit condition codes. You must use LIBSMATCH COND
C because the severity of TPU$ QUITTING can be set by the TPU
C application
C

MATCH STATUS = LIBSMATCH COND (RET STATUS, %LOC (TPUS$_QUITTING),
1 $LOC (TPUS$_EXITING))
IF (MATCH STATUS .EQ. 0) THEN

CALL LIBS$SIGNAL (%VAL(RET STATUS))

ENDIF

(continued on next page)

DEC Text Processing Utility (DECTPU) Routines DECTPU-15

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8-3 (Cont.) Building a Callback Item List with HP Fortran

C
C
C

[eNeNe!

[eNeNe!

[oNeNe!

[oNeNe!

[eNeNe! [eNeNe!

[eNeNe!

Clean up after processing

RET STATUS = TPUSCLEANUP (%REF (CLEANUP FLAG))

IF (RET STATUS .NE. $LOC(TPU$_SUCCESS)) THEN
CALL LIBSSIGNAL (%VAL(RET_ STATUS))
ENDIF

Set the condition handler back to the default

RET STATUS = LIBSREVERT()
END

INTEGER*4 FUNCTION TPU STARTUP
IMPLICIT NONE

INTEGER*4 OPTION MASK | temporary variable for DECTPU
CHARACTER*44 SECTION_ NAME | temporary variable for DECTPU

External DECTPU routines and symbols

EXTERNAL TPUSK_OPTIONS
EXTERNAL TPUSM_READ
EXTERNAL TPUSM_SECTION
EXTERNAL TPUSM_DISPLAY
EXTERNAL TPUSK_SECTIONFILE
EXTERNAL TPUSK_FILEIO
EXTERNAL TPUSFILEIO
INTEGER*4 TPUSFILEIO

The bound procedure value used for setting up the file I/0 routine

INTEGER*4 BPV(2)

Define the structure of the item list defined for the callback

STRUCTURE /CALLBACK/

INTEGER*2 BUFFER_LENGTH
INTEGER*2 ITEM CODE

INTEGER*4 BUFFER_ADDRESS
INTEGER*4 RETURN_ADDRESS

END STRUCTURE
There are a total of four items in the item list
RECORD /CALLBACK/ CALLBACK (4)
Make sure it is not optimized!
VOLATILE /CALLBACK/
Define the options we want to use in the DECTPU session

OPTION MASK = %LOC(TPUSM_SECTION) .OR. %LOC(TPUSM READ)

1 .OR. 3%LOC(TPU$M DISPLAY)

(continued on next page)

DECTPU-16 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8-3 (Cont.) Building a Callback Item List with HP Fortran

C

C Define the name of the initialization section file

C
SECTION_NAME = '"TPUSSECTION’

C

C Set up the required I/0 routine. Use the DECTPU default.

C
BPV (1) = %LOC(TPUSFILEIO)
BPV(2) = 0

C

C Build the callback item list

C

C Set up the edit session options

C
CALLBACK(I).ITEM_CODE = %LOC(TPU$K_OPTIONS)
CALLBACK(l).BUFFER_ADDRESS = %LOC(OPTION_MASK)
CALLBACK(I).BUFFER_LENGTH =4
CALLBACK(l).RETURN_ADDRESS =0

C

C Identify the section file to be used

C
CALLBACK(Z).ITEM_CODE = %LOC(TPU$K_SECTIONFILE)
CALLBACK(Z).BUFFER_ADDRESS = %LOC(SECTION_NAME)
CALLBACK(Z).BUFFER_LENGTH = LEN(SECTION_NAME)
CALLBACK(Z).RETURN_ADDRESS =0

C

¢ Set up the I/0 handler

C
CALLBACK(3).ITEM_CODE = %LOC(TPU$K_FILEIO)
CALLBACK(3).BUFFER_ADDRESS = %LOC (BPV)
CALLBACK(3).BUFFER_LENGTH =4
CALLBACK(3).RETURN_ADDRESS =0

C

C End the item list with zeros to indicate we are finished

C
CALLBACK(4).ITEM_CODE =0
CALLBACK(4).BUFFER_ADDRESS =0
CALLBACK(4).BUFFER_LENGTH =0
CALLBACK(4).RETURN_ADDRESS =0

C

C Return the address of the item list

C
TPU_STARTUP = %LOC (CALLBACK)
RETURN
END

Example 8-4 shows how to specify a user-written file 1/O routine in VAX C.

Example 8-4 Specifying a User-Written File I1/0O Routine in VAX C

/*

Segment of a simple VAX C program to invoke DECTPU. This program provides its
own FILEIO routine instead of using the one provided by DECTPU. This program
will run correctly if you write the routines it calls.

*/

/*

** To compile this example use the command:

$ CC <file-name>

(continued on next page)

DEC Text Processing Utility (DECTPU) Routines DECTPU-17

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8-4 (Cont.) Specifying a User-Written File I/O Routine in VAX C

** To link this example after a successful compilation:

$ LINK <file-name>,sys$input/

SYSSLIBRARY:VAXCRTL/SHARE

<PRESS-Ctrl/z>

The TPUSHR shareable image is found by the linker in IMAGELIB.OLB.
*/

#include descrip

#include stdio

/* data structures needed */

struct bpv_arg /* bound procedure value */
int *routine add ; /* pointer to routine */
int env ; /* environment pointer */
struct item list entry /* item list data structure */
short int buffer length; /* buffer length */
short int item code; /* item code */
int *buffer add; /* buffer address */
int *return len add; /* return address */

1

struct stream type

int ident; /* stream id */

short int alloc; /* file size */

short int flags; /* file record attributes/format */

short int length; /* resultant file name length */

short int stuff; /* file name descriptor class & type */

int nam add; /* file name descriptor text pointer */
globalvalue tpu$ success; /* TPU Success code */
globalvalue tpu$ quitting; /* Exit code defined by TPU */
globalvalue /* Cleanup codes defined by TPU */

tpusm delete journal, tpusm delete exith,
tpusm delete buffers, tpusm delete windows, tpusm delete cache,
tpusm prune cache, tpu$m execute file, tpu$m execute proc,
tpusm delete context, tpu$m reset terminal, tpu$m kill processes,
tpusm close section, tpu$m delete others, tpu$m last time;
globalvalue /* Item codes for item list entries */
tpusk fileio, tpu$k options, tpu$k sectionfile,
tpusk commandfile ;
globalvalue /* Option codes for option item */
tpusm display, tpu$m section, tpu$m command, tpu$m create ;

globalvalue /* Possible item codes in item list */
tpusk access, tpuSk filename, tpu$k defaultfile,
tpusk relatedfile, tpu$k record attr, tpu$k maximize ver,
tpusk flush, tpusk filesize;

globalvalue /* Possible access types for tpu$k access */
tpusk io, tpuSk input, tpuSk output;

globalvalue /* OpenVMS RMS File Not Found message code */
rms$_fnf;

(continued on next page)

DECTPU-18 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8-4 (Cont.) Specifying a User-Written File /O Routine in VAX C
globalvalue /* FILEIO routine functions */

tpusk open, tpu$k close, tpuSk close delete,

tpuSk get, tpusk put;

int lib$establish (); /* RTL routine to establish an event handler */
int tpu$cleanup (); /* TPU routine to free resources used */

int tpu$control (); /* TPU routine to invoke the editor */

int tpuSexecute inifile (); /* TPU routine to execute initialization code */
int tpu$handler (); /* TPU signal handling routine */

int tpu$initialize (); /* TPU routine to initialize the editor */

/*

This function opens a file for either read or write access, based upon
the itemlist passed as the data parameter. Note that a full implementation
of the file open routine would have to handle the default file, related
file, record attribute, maximize version, flush and file size item code
properly.
*/
open_file (data, stream)

int *data;
struct stream type *stream;

{

struct item list entry *item;
char *access; /* File access type */
char filename[256]; /* Max file specification size */

FILE *fopen();
/* Process the item list */

item = data;
while (item->item code != 0 && item->buffer length != 0)

if (item->item code == tpu$k access)
if (item->buffer add == tpuSk io) access = "r+";
else if (item->buffer add == tpu$k input) access = "r";
else if (item->buffer add == tpu$k output) access = "w";
else if (item->item code == tpu$k filename)

strncpy (filename, item->buffer add, item->buffer length);
filename [item->buffer length] = 0;

lib$scopy r dx (&item->buffer length, item->buffer add,

| &stream->length) ;

else if (item->item code == tpu$k_defaultfile)

{ /* Add code to handle default file */

I /* spec here */
else if (item->item code == tpu$k relatedfile)

{ /* Add code to handle related */

} /* file spec here */
else if (item->item code == tpubk record attr)

{ /* Add code to handle record */

1 /* attributes for creating files */
else if (item->item code == tpu$k maximize ver)

{ /* Add code to maximize version */

} /* number with existing file here */
else if (item->item code == tpu$k flush)

{ /* Add code to cause each record */

1 /* to be flushed to disk as written */

(continued on next page)

DEC Text Processing Utility (DECTPU) Routines DECTPU-19

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8-4 (Cont.) Specifying a User-Written File I/O Routine in VAX C

else if (item->item code == tpuSk filesize)
/* Add code to handle specification */
/* of initial file allocation here */
++item; /* get next item */

stream->ident = fopen(filename,access);
if (stream->ident != 0)
return tpus_success;
else
return rms$_fnf;
/*
This procedure closes a file
*/
close file (data,stream)
struct stream type *stream;

close (stream->ident) ;
return tpu$ success;
/*
This procedure reads a line from a file
*x/
read line(data,stream)
struct dscSdescriptor *data;
struct stream type *stream;

{

char textline[984]; /* max line size for TPU records */
int len;
globalvalue rms$_eof; /* RMS End-Of-File code */
if (fgets(textline, 984,stream->ident) == NULL)
return rms$_eof;
else

{

len = strlen(textline);
if (len > 0)
len = len - 1;
return lib$scopy r dx (&len, textline, data);

/*
This procedure writes a line to a file
*/

write line(data,stream)

struct dscSdescriptor *data;

struct stream type *stream;

{

char textline[984]; /* max line size for TPU records */

strncpy (textline, data->dsc$a pointer, data->dscS$w length);
textline [data->dsc$w_length] = 0;

fputs(textline, stream->ident);

fputs ("\n", stream->ident) ;

return tpu$ success;

(continued on next page)

DECTPU-20 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8-4 (Cont.) Specifying a User-Written File /O Routine in VAX C

/*
This procedure will handle I/0 for TPU
*/
fileio(code, stream,data)
int *code;
int *stream;
int *data;

{

int status;

/* Dispatch based on code type. Note that a full implementation of the */
/* file I/0 routines would have to handle the close and delete code properly */
/* instead of simply closing the file */

if (*code == tpu$k open) /* Initial access to file */
status = open file (data,stream);

else if (*code == tpu$k close) /* End access to file */
status = close file (data,stream);

else if (*code == tpuSk close delete) /* Treat same as close */
status = close file (data,stream);

else if (*code == tpusk get) /* Read a record from a file */
status = read line (data,stream);

else if (*code == tpusk put) /* Write a record to a file */
status = write line (data,stream);

else
{ /* Who knows what we have? */

status = tpu$_success;
printf ("Bad FILEIO I/0 function requested");

return status;
h,
This procedure formats the initialization item list and returns it as
its return value.
*/
callrout ()

{

static struct bpv_arg add block =
{ fileio, 0 } ; /* BPV for fileio routine */
int options ;
char *section name = "TPUSSECTION";
static struct item list entry argl] =

{/* length code buffer add return add */
4,tpuSk fileio, 0, 0 },
4,tpusk options, 0, 0,
0,tpusk sectionfile,0, 0},
0,0, 0, 0

}i
/* Setup file I/O routine item entry */
arg[0] .buffer add = &add block;

/* Setup options item entry. Leave journaling off. */
options = tpu$m display | tpu$m section;
arg[1] .buffer add = &options;

/* Setup section file name */
arg[2] .buffer length = strlen(section name);
arg[2] .buffer add = section name;

return arg;

(continued on next page)

DEC Text Processing Utility (DECTPU) Routines DECTPU-21

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8-4 (Cont.) Specifying a User-Written File I/O Routine in VAX C
/*

Main program. Initializes TPU, then passes control to it.
*/
main ()

{

int return status ;
int cleanup options;
struct bpv_arg add block;

/* Establish as condition handler the normal DECTPU handler */
libSestablish (tpusShandler) ;
/* Setup a BPV to point to the callback routine */

add block.routine add = callrout ;
add block.env = 0;

/* Do the initialize of DECTPU */

return status = tpu$initialize(&add block);
if (!return status)
exit (return status);

/* Have TPU execute the procedure TPUSINIT PROCEDURE from the section file */
/* and then compile and execute the code from the command file */

return status = tpuSexecute inifile();
if (!return status)
exit (return status);

/* Turn control over to DECTPU */

return status = tpu$control ();
if (!return status)
exit (return status);

/* Now clean up. */

cleanup options = tpu$m last time | tpu$m delete context;
return status = tpu$cleanup (&cleanup optioms);
exit (return status);

printf ("Experiment complete");

8.5 Creating and Calling a USER Routine

This section describes the steps involved in creating an executable image for the
USER routine and how to call the routine from a C program in the DECTPU
environment. The following list describes the steps in creating the executable
image:

1. Write a program in the appropriate high-level language; in the supporting
example, the language is C. The program must contain a global routine
named TPU$CALLUSER.

2. Compile the program.
3. Link the program with an options file to create a shareable image.

4. Define the logical name TPU$CALLUSER to point to the file containing the
USER routine.

5. Invoke DECTPU.

DECTPU-22 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.5 Creating and Calling a USER Routine

6. From within a DECTPU session, call the high-level program to perform
its function by specifying the built-in procedure CALL_USER with the
appropriate parameters. The built-in procedure passes the specified
parameters to the appropriate routine.

8.5.1 The CALL_USER Code

This is an example of a USER routine written in the VAX C programming
language. The comments in the code explain the various routine functions.

/* call user.c */

/*

A sample of a TPU CALL USER routine written in VAX C.

The routine is compiled and linked as a shareable image and then the
DCL logical TPUSCALLUSER is defined to point at the image.

From within TPU, when the built-in CALL USER is called, this image
will be activated and the tpu$call user routine will be called.

This example is for VAX C but can be updated to work with DEC C with little
effort.

*/
#include <descrip.h>

extern int lib$sgetl dd(),
vaxc$ertl init();

globalvalue
tpu$ success;

/*
Because we know we are being called from a non-C based routine, call
the CRTL initialization routine once
*/
static int
rtl inited = 0;

extern int tpuScalluser (
int *int param,
struct dsc$descriptor *str param,
struct dsc$descriptor *result param)
/*
A sample TPU CALL USER routine that checks access to the file specified
in the str param descriptor.

Return (in result param):
ACCESS - specified access is allowed
NOACCESS - specified access is not allowed
ERROR - Either invalid param or the file does not exist
PARAM ERROR - Invalid param passed
MEMORY ERROR - An error occured allocating memory

An example from TPU code would be:
file access := CALL USER (0, "SYSSLOGIN:LOGIN.COM");

! Only look at the return value of ACCESS,
|

IF file access = "ACCESS"

THEN

file exists := 1;
ELSE

file exists := 0;
ENDIF;

DEC Text Processing Utility (DECTPU) Routines DECTPU-23

DEC Text Processing Utility (DECTPU) Routines
8.5 Creating and Calling a USER Routine

See the description of the CALL USER built-in for more information on how to
use the built-in.
*/
static char
*error str = "ERROR",
*param error_str = "PARAM ERROR",
*memory error str = "MEMORY ERROR",
*access_str = "ACCESS",
*noaccess_str = "NOACCESS";
char
*result str ptr;
int
result str length;
/*
If this is the first time in, call the VAXCRTL routine to init things
*/
if (rtl inited == 0) {
vaxcscrtl init();
rtl inited = 1;

/*
The integer must be between 0 and 7 for the
call to the C RTL routine ACCESS

*/

if ((*int param < 0) || (*int param > 7)) {
result str length = strlen (param error str);
result str ptr = param error str;

}

else {
/*
If we were passed a null string,
set the param error return value
*/

if (str_param->dsc$w length == 0) {
result str length = strlen (param error str);
result str ptr = param error str;

else {
/*

Because there is NO way of knowing if the descriptor we have
been passed ends with a \0, we need to create a valid string
pass to the rtl routine "access"

*/
char
*str ptr;
/*
Allocate memory enough for the string plus the null character
*/
str_ptr = (char *) malloc (str param->dsc$w_length + 1);
/*
Make sure the memory allocation worked...
*/
if (str ptr == 0) {
result str length = strlen (memory error str);
result str ptr = memory error str;

DECTPU-24 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.5 Creating and Calling a USER Routine

else {
/*
Move the bytes from the descriptor into the memory
pointed to by str ptr, and end it with a \0
Then call the access routine, free the memory
*
/
sprintf (str ptr, "%.*s\0", str param->dsc$w _length,
str param->dsc$a_pointer) ;
if (access (str_ptr, *int param) == 0) {
result str length = strlen (access_str);
result str ptr = access str;

else {
result str length = strlen (noaccess str);
result str ptr = noaccess_str;

free (str ptr);

/* Setup the return descriptor */

lib$sgetl dd (&result str length, result param);

/*
Copy the result bytes into the descriptor’s dynamic
memory

*/

memcpy (result param->dsc$a pointer, result str ptr,

result str length);

return tpu$_success;

Use the following command to compile the routine with the VAX C compiler:

$ CC/LIST call user.c

8.5.2 Linking the CALL_USER Image

To link the CALL_USER image as a shareable image requires a linker option file
similar to the one that follows:

! CALL_USER.OPT

call user.obj
UNIVERSAL=TPUSCALLUSER
SYSSLIBRARY:VAXCRTL/SHARE

After you create the linker option file, use the following command to link the
shareable image:

$ LINK CALL USER/OPT/SHARE/MAP/FULL
This command produces a shareable image named CALL_USER.EXE.

The description of the DECTPU built-in CALL_USER states that you must define
the logical name TPU$CALLUSER to point to the image that contains the USER
procedure. Use the following command to define the logical nhame:

$ DEFINE TPUSCALLUSER SYSSDISK: []CALL USER.EXE

If you move the image to another device and directory, you must appropriately
revise the pointer.

DEC Text Processing Utility (DECTPU) Routines DECTPU-25

DEC Text Processing Utility (DECTPU) Routines
8.6 Accessing the USER Routine from DECTPU

8.6 Accessing the USER Routine from DECTPU

To access the USER routine from DECTPU, your code must call the CALL_USER
built-in procedure. The CALL_USER built-in procedure activates the shareable
image pointed to by the logical name TPU$CALLUSER and calls the USER
routine within that image. The following is an example of DECTPU code that can
be used with the USER example routine in Section 8.5.1.

! Module: CALL USER.TPU - the access routine

|

! Constants used with the call to this procedure (or directly to the call user

! routine).

|

CONSTANT
ACCESS_FILE EXISTS := 0
ACCESS_FILE EXECUTE :=
ACCESS_FILE WRITE := 2
ACCESS_FILE DELETE :=
ACCESS_FILE READ := 4,
ACCESS FILE EXE DEL := ACCESS FILE EXECUTE + ACCESS FILE DELETE,
ACCESS_FILE EXE WRITE := ACCESS FILE EXE DEL,
ACCESS FILE DEL READ := ACCESS FILE DELETE + ACCESS FILE READ,
ACCESS_FILE DEL WRITE := ACCESS FILE DEL READ,
ACCESS FILE EXE READ := ACCESS FILE EXECUTE + ACCESS FILE READ;

ll

2 U

PROCEDURE access (val, the file)
Call the CRTL function ACCESS via the TPU CALL_USER built-in

exists
execute
= write (& delete)
= read
dd them for combinations)
turn Values:

0
1
2
4
(
R

requested access is allowed
requested access is NOT allowed
-1 = an error occured with the built-in
Side Effects:
A message may end up in the message buffer if there is an error

a
e
1
0

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

LOCAL

ret val;
! Handle the call user errors
ON_ERROR

[TPUS_BADUSERDESC]
MESSAGE (ERROR_TEXT) ;
RETURN -1;

[TPUS_NOCALLUSER]
MESSAGE ("Could not find access call user routine - check logicals");
RETURN -1;

[TPUS_CALLUSERFAIL]
MESSAGE ("Something is wrong in the access call user routine");
MESSAGE (ERROR_TEXT) ;
RETURN -1

[OTHERWISE]
MESSAGE (ERROR_TEXT) ;
RETURN -1;
ENDON ERROR;

DECTPU-26 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.6 Accessing the USER Routine from DECTPU

ret val := CALL USER (val, the file);
CASE ret val
["ACCESS"]
RETURN 1;
["NOACCESS"]
RETURN 0;
[OUTRANGE]
MESSAGE ("Error with call to access routine: " + ret val);
ENDCASE;
RETURN -1;
ENDPROCEDURE ;

You can extend the EVE editor using the DECTPU code described at the
beginning of this section. Copy the code to a file named CALL_USER.TPU in the
current working directory and then execute the following commands:

GET FILE CALL_USER.TPU
EXTEND ALL

To use the DECTPU routine ACCESS from EVE, write a DECTPU procedure
EVE_EXISTS, coded as follows:

PROCEDURE eve exists (the file)
IF access (ACCESS FILE EXISTS, the file) = 1

THEN

MESSAGE ("File " + the file + " exists");
ELSE

MESSAGE ("No such file " + the file);
ENDIF;
ENDPROCEDURE;

This enables calls from the command line such as:
Command: exists sys$Slogin:login.com

This command directs that the message window indicate whether the file
SYS$LOGIN:LOGIN.COM exists.

8.7 DECTPU Routines

This section describes the individual DECTPU routines.

DEC Text Processing Utility (DECTPU) Routines DECTPU-27

DEC Text Processing Utility (DECTPU) Routines
TPUSCLEANUP

TPU$CLEANUP—Free System Resources Used During DECTPU
Session

The TPU$CLEANUP routine cleans up internal data structures, frees memory,
and restores terminals to their initial state.

This is the final routine called in each interaction with DECTPU.

Format
TPUS$CLEANUP flags
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value in RO.
The condition value that this routine can return is listed under Condition Value
Returned.
Argument
flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or mask) defining the cleanup options. The flags argument is the address
of a longword bit mask defining the cleanup options or the address of a 32-bit
mask defining the cleanup options. This mask is the logical OR of the flag bits
you want to set. Following are the various cleanup options:

Flag* Function

TPUSM_DELETE_JOURNAL Closes and deletes the journal file if it is open.
TPUSM_DELETE_EXITH Deletes the DECTPU exit handler.
TPU$SM_DELETE _BUFFERS Deletes all text buffers. If this is not the

last time you are calling DECTPU, then all
variables referring to these data structures
are reset, as if by the built-in procedure
DELETE. If a buffer is deleted, then all
ranges and markers within that buffer, and
any subprocesses using that buffer, are also
deleted.

1The prefix can be TPU$SM_ or TPU$V_. TPUSM_ denotes a mask corresponding to the specific field
in which the bit is set. TPU$V_ is a bit number.

DECTPU-28 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines

TPU$CLEANUP

Flag®

Function

TPUSM_DELETE_WINDOWS

TPU$M_DELETE_CACHE

TPU$M_PRUNE_CACHE

TPUSM_EXECUTE_FILE

TPU$SM_EXECUTE_PROC

TPU$SM_DELETE_CONTEXT

TPU$SM_RESET_TERMINAL

TPUSM_KILL_PROCESSES

Deletes all windows. If this is not the last
time you are calling DECTPU, then all
variables referring to these data structures
are reset, as if by the built-in procedure
DELETE.

Deletes the virtual file manager’s data
structures and caches. If this deletion is
requested, then all buffers are also deleted. If
the cache is deleted, the initialization routine
has to reinitialize the virtual file manager the
next time it is called.

Frees up any virtual file manager caches that
have no pages allocated to buffers. This frees
up any caches that may have been created
during the session but are no longer needed.

Reexecutes the command file if
TPUSEXECUTE_INIFILE is called again.
You must set this bit if you plan to specify

a new file name for the command file. This
option is used in conjunction with the option
bit passed to TPUSINITIALIZE indicating the
presence of the /COMMAND qualifier.

Looks up TPUS$INIT_PROCEDURE and
executes it the next time TPUSEXECUTE_
INIFILE is called.

Deletes the entire context of DECTPU. If this
option is specified, then all other options are
implied, except for executing the initialization
file and initialization procedure.

Resets the terminal to the state it was in
upon entry to DECTPU. The terminal mailbox
and all windows are deleted. If the terminal
is reset, then it is reinitialized the next time
TPUSINITIALIZE is called.

Deletes all subprocesses created during the
session.

1The prefix can be TPUSM_ or TPU$V_. TPUSM_ denotes a mask corresponding to the specific field
in which the bit is set. TPU$V_ is a bit number.

DEC Text Processing Utility (DECTPU) Routines DECTPU-29

DEC Text Processing Utility (DECTPU) Routines
TPUSCLEANUP

Description

Flag* Function

TPU$M_CLOSE_SECTION? Closes the section file and releases the
associated memory. All buffers, windows,
and processes are deleted. The cache is
purged and the flags are set for reexecution
of the initialization file and initialization
procedure. If the section is closed and if
the option bit indicates the presence of the
SECTION qualifier, then the next call to
TPUSINITIALIZE attempts a new restore
operation.

TPUSM_DELETE_OTHERS Deletes all miscellaneous preallocated data
structures. Memory for these data structures
is reallocated the next time TPUSINITIALIZE
is called.

TPUSM_LAST_TIME This bit should be set only when you are
calling DECTPU for the last time. Note that
if you set this bit and then recall DECTPU,
the results are unpredictable.

1The prefix can be TPU$M_ or TPU$V_. TPU$M_ denotes a mask corresponding to the specific field
in which the bit is set. TPUS$V_ is a bit number.

2Using the simplified callable interface does not set TPU$_CLOSE_SECTION. This feature allows you
to make multiple calls to TPU$TPU without requiring you to open and close the section file on each
call.

The cleanup routine is the final routine called in each interaction with DECTPU.
It tells DECTPU to clean up its internal data structures and prepare for
additional invocations. You can control what is reset by this routine by setting or
clearing the flags described previously.

When you finish with DECTPU, call this routine to free the memory and restore
the characteristics of the terminal to their original settings.

If you intend to exit after calling TPUSCLEANUP, do not delete the data
structures; the operating system does this automatically. Allowing the operating
system to delete the structures improves the performance of your program.

Notes

1. When you use the simplified interface, DECTPU automatically sets the
following flags:

e TPU$V_RESET_TERMINAL

e TPU$V_DELETE_BUFFERS

- TPUS$V_DELETE_JOURNAL
= TPUSV_DELETE_WINDOWS
e TPUS$V_DELETE_EXITH

DECTPU-30 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$CLEANUP

e TPU$V_EXECUTE_PROC
e TPU$V_EXECUTE_FILE
e TPU$V_PRUNE_CACHE
e TPU$V _KILL PROCESSES
2. If this routine does not return a success status, no other calls to the editor
should be made.

Condition Value Returned

TPU$_SUCCESS Normal successful completion.

DEC Text Processing Utility (DECTPU) Routines DECTPU-31

DEC Text Processing Utility (DECTPU) Routines
TPUS$CLIPARSE

TPUSCLIPARSE—Parse a Command Line

Format

Returns

Arguments

The TPUS$CLIPARSE routine parses a command line and builds the item list for
TPUSINITIALIZE.

TPUSCLIPARSE string |fileio ,call_user

OpenVMS usage: item_list

type: longword (unsigned)
access: read only
mechanism: by reference

This routine returns the address of an item list.

string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Command line. The string argument is the address of a descriptor of a DECTPU
command.

fileio

OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: read only

mechanism: by descriptor

File 1/0 routine. The fileio argument is the address of a descriptor of a file 1/O
routine.

call_user

OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: read only

mechanism: by descriptor

Call-user routine. The call_user argument is the address of a descriptor of a
call-user routine.

DECTPU-32 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPUS$CLIPARSE

Description

This routine calls CLISDCL_PARSE to establish a command table and a
command to parse. It then calls TPU$SPARSEINFO to build an item list for
TPUSINITIALIZE.

If your application parses information that is not related to the operation of
DECTPU, make sure the application obtains and uses all non-DECTPU parse
information before the application calls TPU$CLIPARSE. You must do this
because TPUSCLIPARSE destroys all parse information obtained and stored
before TPUSCLIPARSE was called.

DEC Text Processing Utility (DECTPU) Routines DECTPU-33

DEC Text Processing Utility (DECTPU) Routines
TPUSCLOSE_TERMINAL

TPU$CLOSE_TERMINAL—Close Channel to Terminal

Format

Returns

Arguments

Description

The TPUSCLOSE_TERMINAL routine closes the DECTPU channel to the
terminal.

TPU$CLOSE_TERMINAL

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
The condition value that this routine can return is listed under Condition Value
Returned.

None.

This routine is used with the built-in procedure CALL_USER and its associated
call-user routine to control the DECTPU access to the terminal. When a call-user
routine invokes TPUSCLOSE_TERMINAL, DECTPU closes its channel to the
terminal and the channel of the DECTPU associated mailbox.

When the call-user routine returns control to it, DECTPU automatically reopens
a channel to the terminal and redisplays the visible windows.

A call-user routine can use TPUSCLOSE_TERMINAL at any point in the
program and as many times as necessary. If the terminal is already closed to
DECTPU when TPU$SCLOSE_TERMINAL is used, the call is ignored.

Condition Value Returned

TPU$_SUCCESS Normal successful completion.

DECTPU-34 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$SCONTROL

TPU$CONTROL—Pass Control to DECTPU

Format

Returns

Argument

Description

The TPUSCONTROL routine is the main processing routine of the DECTPU
editor. It is responsible for reading the text and commands and executing them.
When you call this routine (after calling TPUSINITIALIZE), control is turned
over to DECTPU.

TPU$SCONTROL [integer]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

integer

OpenVMS usage: integer

type: longword (unsigned)
access: read only
mechanism: by reference

Prevents DECTPU from displaying the message “Editing session is not being
journaled” when the calling program gives control to DECTPU. Specify a true
(odd) integer to preserve compatibility in future releases. If you omit the
parameter, DECTPU displays the message if journaling is not enabled.

This routine controls the editing session. It is responsible for reading the text
and commands and for executing them. Windows on the screen are updated

to reflect the edits made. Your program can regain control by interrupting
DECTPU using the TPU$SPECIFY_ASYNC_ACTION routine, together with the
TPUSTRIGGER_ASYNC_ACTION routine.

Note

Control is also returned to your program if an error occurs or when you
enter either the built-in procedure QUIT or the built-in procedure EXIT.

DEC Text Processing Utility (DECTPU) Routines DECTPU-35

DEC Text Processing Utility (DECTPU) Routines

TPU$SCONTROL

Condition Values Returned

TPUS$_EXITING

TPU$_NONANSICRT

TPU$_QUITTING

TPU$_RECOVERFAIL

A result of EXIT (when the default condition
handler is established).

A result of operation termination — results when
you call DECTPU with TPUSDISPLAYFILE

set to nodisplay and you attempt to execute
screen-oriented commands.

A result of QUIT (when the default condition
handler is established).

A recovery operation was terminated abnormally.

DECTPU-36 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPUSEDIT

TPUS$EDIT—Edit a File

Format

Returns

Arguments

The TPUSEDIT routine builds a command string from its parameters and passes
it to the TPUS$TPU routine.

TPUSEDIT is another entry point to the DECTPU simplified callable interface.

TPUSEDIT input ,output

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

input

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Input file name. The input argument is the address for a descriptor of a file
specification.

output

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Output file name. The output argument is the address for a descriptor of an
output file specification. It is used with the /OUTPUT command qualifier.

DEC Text Processing Utility (DECTPU) Routines DECTPU-37

DEC Text Processing Utility (DECTPU) Routines
TPUSEDIT

Description

This routine builds a command string and passes it to TPUSTPU. If the length
of the output descriptor is nonzero, then the /OUTPUT qualifier is added to
the command string. The /OUTPUT qualifier causes a file to be written to the
specified file even if no modifications are made to the input file. If the QUIT
built-in procedure is called, it prompts the user as if changes had been made
to the buffer. This allows applications to check for the existence of the output
file to see if the editing session was terminated, which is consistent with other
OpenVMS callable editors.

If your application parses information that is not related to the operation of
DECTPU, make sure the application obtains and uses all non-DECTPU parse
information before the application calls TPUS$EDIT. Your application must do this
because TPUSEDIT destroys all parse information obtained and stored before
TPUSEDIT is called.

Condition Values Returned

This routine returns the same values as TPU$TPU.

DECTPU-38 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPUSEXECUTE_COMMAND

TPUSEXECUTE_ COMMAND—EXxecute One or More DECTPU

Format

Returns

Argument

Description

Statements

The TPUSEXECUTE_COMMAND routine allows your program to execute
DECTPU statements.

TPUSEXECUTE_COMMAND string

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by value

DECTPU statement. The string argument is the address of a descriptor of a
character string denoting one or more DECTPU statements.

This routine performs the same function as the built-in procedure EXECUTE
described in the DEC Text Processing Utility Reference Manual.

Condition Values Returned

TPU$_SUCCESS Normal successful completion.

TPU$_EXECUTEFAIL Execution aborted. This could be because of
execution errors or compilation errors.

TPUS_EXITING EXIT built-in procedure was invoked.

TPUS$ QUITTING QUIT built-in procedure was invoked.

DEC Text Processing Utility (DECTPU) Routines DECTPU-39

DEC Text Processing Utility (DECTPU) Routines
TPUSEXECUTE_INIFILE

TPUSEXECUTE_INIFILE—EXxecute Initialization Files

Format

Returns

Arguments

Description

The TPUSEXECUTE_INIFILE routine allows you to execute a user-written
initialization file.

This routine must be executed after the editor is initialized and before any other
commands are processed.

TPUSEXECUTE_INIFILE

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

None.

Calling the TPUSEXECUTE_INIFILE routine causes DECTPU to perform the
following steps:

1. The command file is read into a buffer. The default is TPUSCOMMAND.TPU.
If you specified a file on the command line that cannot be found, an error
message is displayed and the routine is aborted.

2. If you specified the /IDEBUG qualifier on the command line, the DEBUG file
is read into a buffer. The default is SYS$SHARE: TPU$SDEBUG.TPU.

The DEBUG file is compiled and executed (if available).
TPUSINIT_PROCEDURE is executed (if available).

The Command buffer is compiled and executed (if available).
TPUSINIT_POSTPROCEDURE is executed (if available).

o o A~ W

Note

If you call this routine after calling TPUSCLEANUP, you must set
the flags TPU$ EXECUTEPROCEDURE and TPU$ EXECUTEFILE.
Otherwise, the initialization file does not execute.

DECTPU-40 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPUSEXECUTE_INIFILE

Condition Values Returned

TPU$_SUCCESS Normal successful completion.

TPUS$_COMPILEFAIL The compilation of the initialization file was
unsuccessful.

TPU$_EXECUTEFAIL The execution of the statements in the
initialization file was unsuccessful.

TPUS$ _EXITING A result of EXIT. If the default condition handler
is being used, the session is terminated.

TPUS$ FAILURE General code for all other errors.

TPUS$ QUITTING A result of QUIT. If the default condition handler

is being used, the session is terminated.

DEC Text Processing Utility (DECTPU) Routines DECTPU-41

DEC Text Processing Utility (DECTPU) Routines

TPUSFILEIO

TPUSFILEIO—Perform File Operations

Format

Returns

Arguments

The TPUSFILEIO routine handles all DECTPU file operations. Your own file
1/0 routine can call this routine to perform some operations for it. However, the
routine that opens the file must perform all operations for that file. For example,
if TPUSFILEIO opens the file, it must also close it.

TPUSFILEIO code ,stream ,data

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Item code specifying a DECTPU function. The code argument is the address of a
longword containing an item code from DECTPU specifying a function to perform.
Following are the item codes that you can specify in the file 1/0 routine:

e TPU$K_OPEN—This item code specifies that the data parameter is the
address of an item list. This item list contains the information necessary
to open the file. The stream parameter should be filled in with a unique
identifying value to be used for all future references to this file. The resultant
file name should also be copied with a dynamic string descriptor.

e TPUS$K_CLOSE—The file specified by the stream argument is to be closed.
All memory being used by its structures can be released.

e TPUS$K_CLOSE_DELETE—The file specified by the stream argument is
to be closed and deleted. All memory being used by its structures can be
released.

e TPU$K_GET—The data parameter is the address of a dynamic string
descriptor to be filled with the next record from the file specified by the
stream argument. The routine should use the routines provided by the Run-
Time Library to copy text into this descriptor. DECTPU frees the memory
allocated for the data read when the file 1/0O routine indicates that the end of
the file has been reached.

e TPUS$SK_PUT—The data parameter is the address of a descriptor for the data
to be written to the file specified by the stream argument.

DECTPU-42 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines

TPUSFILEIO
stream
OpenVMS usage: unspecified
type: longword (unsigned)
access: modify
mechanism: by reference

File description. The stream argument is the address of a data structure
consisting of four longwords. This data structure describes the file to be
manipulated.

This data structure is used to refer to all files. It is written to when an open file
request is made. All other requests use information in this structure to determine
which file is being referenced.

The following figure shows the stream data structure:

File Identifier

RFM Allocation

Class Type Length

Address of name

ZK-4045-GE

The first longword holds a unique identifier for each file. The user-written file 1/0
routine is restricted to values between 0 and 511. Thus, you can have up to 512
files open simultaneously.

The second longword is divided into three fields. The low word is used to store
the allocation quantity, that is, the number of blocks allocated to this file from
the FAB (FAB$L_ALQ). This value is used later to calculate the output file size
for preallocation of disk space. The low-order byte of the second word is used

to store the record attribute byte (FAB$B_RAT) when an existing file is opened.
The high-order byte is used to store the record format byte (FAB$B_RFM) when
an existing file is opened. The values in the low word and the low-order and
high-order bytes of the second word are used for creating the output file in the
same format as the input file. These three fields are to be filled in by the routine
opening the file.

The last two longwords are used as a descriptor for the resultant or the expanded
file name. This name is used later when DECTPU processes EXIT commands.
This descriptor is to be filled in with the file name after an open operation. It
should be allocated with either the routine LIB$SCOPY_R_DX or the routine
LIB$SCOPY_DX from the Run-Time Library. This space is freed by DECTPU
when it is no longer needed.

data

OpenVMS usage: item_list_3

type: longword (unsigned)
access: modify

mechanism: by reference

Stream data. The data argument is either the address of an item list or the
address of a descriptor.

DEC Text Processing Utility (DECTPU) Routines DECTPU-43

DEC Text Processing Utility (DECTPU) Routines

TPUSFILEIO

Note

The meaning of this parameter depends on the item code specified in the
code field.

When the TPU$K_OPEN item code is issued, the data parameter is the address
of an item list containing information about the open request. The following
DECTPU item codes are available for specifying information about the open
request:

TPU$K_ACCESS item code lets you specify one of three item codes in the
buffer address field, as follows:

— TPUSK_IO
— TPUSK_INPUT
— TPU$K_OUTPUT

TPUSK_FILENAME item code is used for specifying the address of a string
to use as the name of the file you are opening. The length field contains the
length of this string, and the address field contains the address.

TPUSK_DEFAULTFILE item code is used for assigning a default file name
to the file being opened. The buffer length field contains the length, and the
buffer address field contains the address of the default file name.

TPU$K_RELATEDFILE item code is used for specifying a related file name

for the file being opened. The buffer length field contains the length, and the
buffer address field contains the address of a string to use as the related file
name.

TPU$SK_RECORD_ATTR item code specifies that the buffer address field
contains the value for the record attribute byte in the FAB (FAB$B_RAT)
used for file creation.

TPU$K_RECORD_FORM item code specifies that the buffer address field
contains the value for the record format byte in the FAB (FAB$B_RFM) used
for file creation.

TPUSK_MAXIMIZE_VER item code specifies that the version number of the
output file should be one higher than the highest existing version number.

TPUSK_FLUSH item code specifies that the file should have every record
flushed after it is written.

TPUS$K_FILESIZE item code is used for specifying a value to be used as the
allocation quantity when creating the file. The value is specified in the buffer
address field.

DECTPU-44 DEC Text Processing Utility (DECTPU) Routines

Description

DEC Text Processing Utility (DECTPU) Routines
TPUSFILEIO

By default, TPUSFILEIO creates variable-length files with carriage-return record
attributes (FAB$B_RFM = VAR, FAB$B_RAT = CR). If you pass to it the TPUS$K_
RECORD_ATTR or TPU$K_RECORD_FORM item, that item is used instead.

The following combinations of formats and attributes are acceptable:

Format Attributes
STM,STMLF,STMCR 0,BLK,CR,BLK+CR
VAR 0,BLK,FTN,CR,BLK+FTN,BLK+CR

All other combinations are converted to VAR format with CR attributes.

This routine always puts values greater than 511 in the first longword of the
stream data structure. Because a user-written file 1/0O routine is restricted to the
values 0 through 511, you can easily distinguish the file control blocks (FCB) this
routine fills in from the ones you created.

Note

DECTPU uses TPUSFILEIO by default when you use the simplified
callable interface. When you use the full callable interface, you must
explicitly invoke TPUSFILEIO or provide your own file 1/O routine.

Condition Values Returned

The TPUS$FILEIO routine returns an OpenVMS RMS status code to DECTPU.
The file 1/0 routine is responsible for signaling all errors if any messages are
desired.

DEC Text Processing Utility (DECTPU) Routines DECTPU-45

DEC Text Processing Utility (DECTPU) Routines
TPUSFILE_PARSE

TPUSFILE_PARSE— Parse the Given File Specification

Format

Returns

Arguments

The TPUSFILE_PARSE routine provides a simplified interface to the $PARSE
system service. DECTPU calls this routine when the built-in procedure FILE_
PARSE is executed from TPU code.

TPUSFILE_PARSE result-string ,flags ,filespec ,default-spec ,related-spec

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
See Condition Values Returned.

result-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Includes the components of the file specification specified by the flags argument.
The memory for the return string is allocated via the Run-Time Library routine
LIB$SGET1_DD. Use the Run-Time Library routine LIB$SFREE1_DD to
deallocate the memory for the return string.

flags

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Determine what file specification components should be returned. The following
table shows the valid values for the flags argument:

Flag Bit* Description

TPU$SM_NODE Returns the node component of the file
specification.

TPU$SM_DEV Returns the device component of the file
specification.

TPUSM_DIR Returns the directory component of the file
specification.

TPUSM_NAME Returns the name component of the file

specification.

ITPUSM . .. indicates a mask. There is a corresponding value for each mask in the form TPU$V

DECTPU-46 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPUSFILE_PARSE

Flag Bit! Description

TPUSM_TYPE Returns the type component of the file
specification.

TPUSM_VER Returns the version component of the file

TPU$M_HEAD

specification.

Returns NODE, DEVICE and DIRECTORY
components of the file specification. If the
TPUSM_NODE, TPUSM_DEV or TPU$M_DIR
bits are set while TPU$SM_HEAD is set, the
routine signals the error TPU$_ INCKWDCOM
and returns control to the caller.

TPUSM_TAIL Returns NAME, TYPE and VERSION components
of the file specification. If the TPU$M_NAME,
TPUS$SM_TYPE or TPU$M_VER bits are set while
TPUS$M_TAIL is set, the routine signals the error
TPU$_INCKWDCOM and returns control to the
caller.

ITPUS$M . .. indicates a mask. There is a corresponding value for each mask in the form TPUS$V

filespec

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

The object file specification.

default-spec
OpenVMS usage:
type:

access:
mechanism:

char_string
character string
read only

by descriptor

Contains the default file specification. The default file specification fields are used
in the result string as substitutes for fields omitted in the filespec argument.
You can also make substitutions in the result string using the related-spec

argument.

Use the value 0 when no default-spec is to be applied to the file specification.

related-spec
OpenVMS usage:
type:

access:
mechanism:

char_string
character string
read only

by descriptor

Contains the related file specification. The fields in the related file specification
are substituted in the result-string if a particular field is missing from both the
filespec and default-spec arguments.

Use the value 0 when no default-spec is to be applied to the file specification.

DEC Text Processing Utility (DECTPU) Routines DECTPU-47

DEC Text Processing Utility (DECTPU) Routines
TPUSFILE_PARSE

Description

The TPUSFILE_PARSE routine returns a string containing the fields requested
of the file specified. The file is not required to exist when the parse is done.
The intention of the TPUSFILE_PARSE routine is to construct a valid file
specification from the information passed in through the file specification, the
default file specification, and the related file specification.

The routine uses the $PARSE system service to return the requested information.

The TPUS$FILE_PARSE routine is also called by DECTPU when the TPU built-in
procedure FILE_PARSE is executed from TPU code. The return value of the
built-in procedure is the string returned in the result-string argument.

Condition Values Returned

TPU$_SUCCESS Normal successful completion. If the return
string contains a null-string, then the last match
of the search operations has occurred.

TPU$_INCKWDCOM The flags argument had an illegal combination
of values.
TPU$_PARSEFAIL The parse failed.

DECTPU-48 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPUSFILE_SEARCH

TPUSFILE_SEARCH—Search File System for Specified File

The TPUSFILE_SEARCH routine provides a simplified interface to the $SEARCH
system service. DECTPU call this routine when TPU code executes the FILE_
SEARCH built-in procedure.

Format
TPUS$FILE_SEARCH result-string ,flags ,filespec ,default-spec ,related-spec
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value in RO.
See Condition Values Returned.
Arguments

result-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Includes the components of the file specification passed by the flags argument.
The memory for the return string is allocated via the Run-Time Library routine
LIB$SGET1_DD. To deallocate memory for the string, use the Run-Time Library
routine LIB$SFREE1_DD.

flags

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Determines what file specification components should be returned. The following
table lists the valid flag values:

Flag® Function

TPUSM_NODE Returns the node component of the file
specification.

TPUSM_DEV Returns the device component of the file
specification.

TPUSM_DIR Returns the directory component of the file
specification.

TPUSM_NAME Returns the name component of the file

specification.

ITPUSM . .. indicates a mask. There is a corresponding value for each mask in the form TPU$V

DEC Text Processing Utility (DECTPU) Routines DECTPU-49

DEC Text Processing Utility (DECTPU) Routines

TPUSFILE_SEARCH

Flag* Function

TPUSM_TYPE Returns the type component of the file
specification.

TPUSM_VER Returns the version component of the file

TPU$M_REPARSE

TPU$M_HEAD

specification.

Reparses the file specification before processing.
This is intended to be used to reset the file search.

Returns NODE, DEVICE, and DIRECTORY
components of the file specification. If the
TPUSM_NODE, TPU$SM_DEV or TPU$SM_DIR bits
are set while TPU$M_HEAD is set, the routine
will signal the error TPU$_INCKWDCOM and
return.

TPUSM_TAIL Returns NAME, TYPE and VERSION components
of the file specification. If the TPU$SM_NAME,
TPUS$SM_TYPE or TPU$SM_VER bits are set while
TPUSM_TAIL is set, the routine will signal the
error TPU$_INCKWDCOM and return.

ITPUSM . . . indicates a mask. There is a corresponding value for each mask in the form TPU$V

filespec

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Obiject file specification.

default-spec
OpenVMS usage:
type:

access:
mechanism:

char_string
character string
read only

by descriptor

The default file specification. The default file specification fields are used to fill
in the result-string when fields are omitted in the filespec argument. Use the
related-spec argument to specify other substitutions.

Use the value 0 when no default-spec is to be applied to the file specification.

related-spec
OpenVMS usage:
type:

access:
mechanism:

char_string
character string
read only

by descriptor

Contains the related file specification. The fields in the related file specification
are used in the result-string for fields omitted in the filespec and default-spec

arguments.

Use the value 0 when no default-spec is to be applied to the file specification.

DECTPU-50 DEC Text Processing Utility (DECTPU) Routines

Description

DEC Text Processing Utility (DECTPU) Routines
TPUSFILE_SEARCH

This routine allows an application to verify the existence of, and return
components of, a file specification. Wildcard operations are permitted. The
routine uses the $PARSE and $SEARCH system services to seek the file
specification.

If no wildcards are included in the file specification string and the result-string
returns a zero (0) length string, no file was found. If wildcard characters were
present in the file specification and the result-string returns a zero (0) length
string, there are no more files that match the wildcards.

To find all the files that match a wildcard specification, repeatedly call this
routine, passing the same arguments, until the routine returns a zero-length
result string.

The TPUS$FILE_SEARCH routine is called by DECTPU when the TPU built-in
procedure FILE_SEARCH is executed from TPU code. The return value of the
built-in procedure is the string returned in the result-string argument.

Condition Values Returned

TPU$_SUCCESS Normal successful completion. If the return
string contains a null string, the final match
operation was detected.

TPU$_INCKWDCOM The flags argument had an illegal combination
of values.

TPU$_PARSEFAIL The requested repeat parse failed.

TPU$_SEARCHFAIL An error occurred during the search operation.

DEC Text Processing Utility (DECTPU) Routines DECTPU-51

DEC Text Processing Utility (DECTPU) Routines
TPUSHANDLER

TPU$SHANDLER—DECTPU Condition Handler

Format

Returns

Arguments

Description

The TPU$SHANDLER routine is the DECTPU condition handler.

The DECTPU condition handler invokes the $SPUTMSG system service, passing it
the address of TPUSMESSAGE.

TPUSHANDLER signal_vector ,mechanism_vector

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
See Condition Values Returned.

signal_vector
OpenVMS usage: arg_list

type: longword (unsigned)
access: modify
mechanism: by reference

Signal vector. See the HP OpenVMS System Services Reference Manual for
information about the signal vector passed to a condition handler.

mechanism_vector
OpenVMS usage: arg_list

type: longword (unsigned)
access: read only
mechanism: by reference

Mechanism vector. See the HP OpenVMS System Services Reference Manual for
information about the mechanism vector passed to a condition handler.

The TPUSMESSAGE routine performs the actual output of the message. The
$PUTMSG system service only formats the message. It gets the settings for the
message flags and facility name from the variables described in Section 8.1.2.
Those values can be modified only by the DECTPU built-in procedure SET.

If the condition value received by the handler has a FATAL status or does not
have the DECTPU facility code, the condition is resignaled.

If the condition is TPU$_QUITTING, TPU$_EXITING, or TPU$_RECOVERFAIL,
a request to UNWIND is made to the establisher of the condition handler.

After handling the message, the condition handler returns with a continue
status. DECTPU error message requests are made by signaling a condition to
indicate which message should be written out. The arguments in the signal
array are a correctly formatted message argument vector. This vector sometimes

DECTPU-52 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPUSHANDLER

contains multiple conditions and formatted ASCII output (FAO) arguments for
the associated messages. For example, if the editor attempts to open a file that
does not exist, the DECTPU message TPU$ NOFILEACCESS is signaled. The
FAO argument to this message is a string for the name of the file. This condition
has an error status, followed by the OpenVMS RMS status field (STS) and status
value field (STV). Because this condition does not have a fatal severity, the editor
continues after handling the error.

The editor does not automatically return from TPU$CONTROL. If you call the
TPUSCONTROL routine, you must explicitly establish a way to regain control
(for example, using the built-in procedure CALL_USER). If you establish your
own condition handler but call the DECTPU handler for certain conditions,
the default condition handler must be established at the point in your program
where you want to return control. You can also interrupt TPUSCONTROL

by having your program specify and then trigger an asynchronous routine via
the TPUSSPECIFY_ASNYC_ACTION and TPU$TRIGGER_ASYNC_ACTION
routines.

See the HP OpenVMS Calling Standard for details on writing a condition
handler.

DEC Text Processing Utility (DECTPU) Routines DECTPU-53

DEC Text Processing Utility (DECTPU) Routines
TPUSINITIALIZE

TPUSINITIALIZE—Initialize DECTPU for Processing

Format

Returns

Argument

The TPUSINITIALIZE routine initializes DECTPU for text processing. This

routine allocates global data structures, initializes global variables, and calls
the appropriate setup routines for each of the major components of the editor,
including the Screen Manager and the 1/0O subsystem.

TPUSINITIALIZE callback [,user_arg]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

callback

OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: read only

mechanism: by descriptor

Callback routine. The callback argument is the address of a user-written routine
that returns the address of an item list containing initialization parameters or

a routine for handling file 1/0 operations. This callback routine must call a
command line parsing routine, which can be TPUSCLIPARSE or a user-written
parsing routine.

Callable DECTPU defines item codes that you can use to specify initialization
parameters. The following rules must be followed when building the item list:

e If you use the TPU$ OTHER_FILENAMES item code, it must follow the
TPU$ FILENAME item code.

e If you use either the TPU$_CHAIN item code or the TPU$_ENDLIST code, it
must be the last item code in the list.

The following figure shows the general format of an item descriptor. For
information about how to build an item list, refer to the programmer’s manual
associated with the language you are using. Any reference to command line
qualifiers refer to those command line qualifiers that you use with the EDIT/TPU
command.

DECTPU-54 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPUSINITIALIZE

ltem code Buffer length

Buffer address

Return address

ZK-4044-GE

The return address in an item descriptor is usually 0.

The following item codes are available:

Item Code

Description

TPU$ OPTIONS

TPU$_JOURNALFILE

TPU$_SECTIONFILE

TPU$_OUTPUTFILE

TPU$_DISPLAYFILE

TPU$_COMMANDFILE

TPUS$_FILENAME

Enables the command qualifiers. The bits in the bit mask
specified by the buffer address field correspond to the various
DECTPU command qualifiers.

Passes the string specified with the /JJOURNAL qualifier. The
buffer length field is the length of the string, and the buffer
address field is the address of the string. This string is available
with GET_INFO (COMMAND_LINE,“JOURNAL_FILE"). This
string can be a null string.

Passes the string that is the name of the binary initialization file
(section file) to be mapped in. The buffer length field is the length
of the string, and the buffer address field is the address of the
string. If the TPU$V_SECTION bit is set, this item code must be
specified.

Passes the string specified with the /OUTPUT qualifier. The
buffer length field is the length of the string, and the buffer
address field specifies the address of the string. This string is
returned by the built-in procedure GET_INFO (COMMAND _
LINE, “OUTPUT_FILE"). The string can be a null string.

Passes the string specified with the /DISPLAY qualifier. The
buffer length field defines the length of the string, and the buffer
address field defines the string address. The interface between
the TPUSHR image and the display file image is not documented.
Applications should only use this option with documented display
files such as TPU$CCTSHR or TPU$SMOTIFSHR.

Passes the string specified with the /COMMAND qualifier.
The buffer length field is the length of the string, and the
buffer address field is the address of the string. This string is
returned by the built-in procedure GET_INFO (COMMAND _
LINE, “COMMAND_FILE"). The string can be a null string.

Passes the string that is the name of the first input file specified
on the command line. The buffer length field specifies the length
of this string, and the buffer address field specifies its address.
This string is returned by the built-in procedure GET_INFO
(COMMAND_LINE, “FIRST_FILE_NAME"). This file name can
be a null string.

DEC Text Processing Utility (DECTPU) Routines DECTPU-55

DEC Text Processing Utility (DECTPU) Routines

TPUSINITIALIZE

Item Code

Description

TPU$ OTHER_
FILENAMES

TPU$ FILEIO

TPU$_CALLUSER

TPUS$_INIT_FILE

TPUS$_START_LINE

TPU$_START_CHAR

TPU$_CHARACTERSET

Passes a string that contains the name of an input file that
follows the first input file on the command line. The buffer length
field specifies the length of this string, and the buffer address
field specifies its address. Each additional file specified on the
command line requires its own TPU$ OTHER_FILENAMES
item entry. These strings are returned by the GET_INFO
(COMMAND_LINE,“NEXT_FILE_NAME") built-in procedure

in the order they appear in the item list. This item code must
appear after the TPU$_FILENAME item in the item list.

Passes the bound procedure value of a routine to be used for
handling file operations. You can provide your own file 1/0
routine, or you can call TPUSFILEIO, the utility routine provided
by DECTPU for handling file operations. The buffer address field
specifies the address of a two-longword vector. The first longword
of the vector contains the address of the routine. The second
longword specifies the environment value that DECTPU loads
into R1 before calling the routine.

Passes the bound procedure value of the user-written routine that
the built-in procedure CALL_USER is to call. The buffer address
field specifies the address of a two-longword vector. The first
longword of the vector contains the address of the routine. The
second longword specifies the environment value that DECTPU
loads into R1 before calling the routine.

Passes the string specified with the /INITIALIZATION qualifier.
The buffer length field is the length of the string, and the buffer
address field is the address of the string. This string is returned
by the built-in procedure GET_INFO (COMMAND_LINE,“INIT_
FILE").

Passes the starting line number for the edit. The buffer address
field contains the first of the two integer values you specified as
part of the /START_POSITION command qualifier. The value is
available using the built-in procedure GET_INFO (COMMAND _
LINE,“LINE"). Usually an initialization procedure uses this
information to set the starting position in the main editing buffer.
The first line in the buffer is line 1.

Passes the starting column position for the edit. The buffer
address field contains the second of the two integer values you
specified as part of the /START_POSITION command qualifier.
The value is available using the built-in procedure GET_INFO
(COMMAND_LINE, “CHARACTER?"). Usually an initialization
procedure uses this information to set the starting position in the
main editing buffer. The first column on a line to character 1.

Passes the string specified with the /CHARACTER_SET qualifier.
The buffer length field specifies the string length and the buffer
address field specifies the string address. Valid strings are “DEC _
MCS” (the default value), “ISO_LATIN1", and “GENERAL". If the
application tries to pass any other string, the routine signals an
error and passes the default string (DEC_MCS).

DECTPU-56 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPUSINITIALIZE

Item Code

Description

TPU$_WORKFILE

TPU$_CHAIN

TPU$ ENDLIST
TPU$_PARENT WIDGET

TPU$_APPLICATION
CONTEXT

TPU$_DEFAULTSFILE

TPU$_CTRL_C_ROUTINE

TPU$_DEBUGFILE

TPU$_FILE_SEARCH

TPU$_FILE_PARSE

Passes the string specified with the /WORK qualifier. The buffer
length field specifies the string length and the buffer address
specifies the string address. This string is available with GET_
INFO (COMMAND_LINE, “WORK_FILE").

Passes the address of the next item list to the process specified by
the buffer address field.

Signals the end of the item list.

Passes the appropriate parent widget when invoking the
DECwindows version of the editor. This routine is not specified by
the application; DECTPU invokes its own application shell. The
widget address is passed in the buffer address field. This item
code is only valid when using the DECwindows interface.

Passes the application context to use with the TPU$_PARENT_
WIDGET. DECTPU defaults to its own application context. The
buffer address field specifies the application context address. This
item code is only valid when using the DECwindows interface.

Specifies which file DECTPU uses to initialize the X defaults
database. The buffer length field specifies the string length and
the buffer address field specifies the string address. This item
code is only valid when using the DECwindows interface.

Passes the bound procedure value of a routine to be used for
handling Ctrl/C asynchronous system traps (ASTs). DECTPU
calls the routine when a Ctrl/C AST occurs. If the routine returns
a FALSE value, DECTPU assumes that the Ctrl/C has been
handled. If the routine returns a TRUE value, DECTPU aborts
any currently executing DECTPU procedure. The buffer address
field specifies the address of a two-longword vector. The first
longword of the vector contains the address of the routine. The
second longword specifies the environment value that DECTPU
loads into R1 before calling the routine.

Passes the string specified with the /DEBUG command qualifier.
The buffer length field is the length of the string, and the buffer
address field is the address of the string.

Passes the bound procedure value of a routine to be used to
replace the TPU$FILE_SEARCH routine which is called when the
built-in procedure FILE_SEARCH is called from TPU code. See
the description of the TPU$SFILE_SEARCH and the user routine
FILE_SEARCH for more information.

Passes the bound procedure value of a routine to be used to
replace the TPUS$FILE_PARSE routine which is called when the
built-in procedure FILE_PARSE is called from TPU code. See
the description of the TPUSFILE_PARSE and the user routine
FILE_PARSE for more information.

Table 8-1 lists the bits and corresponding masks enabled by the item code
TPUSK_OPTIONS and shows how each bit affects TPUSINITIALIZE operation.
Several bits in the TPU$ OPTIONS mask require additional item code entries
in the item list. An example of this is TPU$M_COMMAND which requires a
TPU$_COMMANDFILE entry in the item list.

DEC Text Processing Utility (DECTPU) Routines DECTPU-57

DEC Text Processing Utility (DECTPU) Routines

TPUSINITIALIZE

Table 8-1 Valid Masks for the TPUSK_OPTIONS Item Code

GET_INFO
Mask? Request String? Description
TPU$SM_COMMAND COMMAND If DECTPU senses the presence of the TPU$_

TPU$M_COMMAND _
DFLTED

TPUSM_CREATE

TPU$SM_DEBUG

TPU$SM_DEFAULTS

TPUSM_DISPLAY

TPUSM_INIT

TPU$SM_JOURNAL

Not applicable

CREATE

Not applicable

Not applicable

DISPLAY

INITIALIZATION

JOURNAL

COMMANDFILE item, it tries to read, compile
and execute the unbound TPU code.

Specifies that DECTPU should use the default
command file name of TPUSCOMMAND.TPU
when reading in the command file. No error is
reported if the default command file is not found.
TPUSINITIALIZE fails when the TPU$M_
COMMAND_DFLTED bit is set to 0 and no file
is specified in the item list.

The behavior of DECTPU is not affected by this
bit. Its interpretation is left to the application
layered on DECTPU.

If DECTPU senses the presence of the TPUS$
DEBUGFILE item, it tries to read the file,
and then proceeds to compile and execute its
contents as TPU statements.

If DECTPU senses the presence of the TPUS$
DEFAULTSFILE item, it uses the specified
DECwindows X resource file to initialize the
DECwindows X resource database.

If DECTPU senses the presence of the TPU$_
DISPLAYFILE item, it tries to image activate
the specified image as its screen manager.
When the bit is 0, DECTPU uses SYS$OUTPUT
for display and only the READ_LINE built-in
procedure may be used for input.

If DECTPU senses the presence of the TPUS$
INIT_FILE item, it returns the specified string
through the built-in procedure GET_INFO
(COMMAND_LINE, “INITIALIZATION_FILE").
Processing of the initialization file is left to the
application.

If DECTPU senses the presence of the TPUS$
JOURNALFILE item, it outputs the keystrokes
entered during the editing session to the
specified file.

Note: HP recommends the use of buffer change
journaling in new applications.

1The prefix can be TPU$SM_ or TPU$V_. TPUSM_ denotes a mask corresponding to the specific field in which the bit is

set. TPUSV_ is a bit number.

2Most bits in the mask have a corresponding GET_INFO (COMMAND_LINE) request string.

(continued on next page)

DECTPU-58 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines

TPUSINITIALIZE

Table 8-1 (Cont.) Valid Masks for the TPU$K_OPTIONS Item Code

GET_INFO
Mask? Request String? Description
TPUSM_MODIFY MODIFY The behavior of DECTPU is not affected by this

TPUSM_
NODEFAULTS

TPU$SM_NOMODIFY

TPUSM_OUTPUT

TPU$M_READ

TPU$M_RECOVER

TPU$M_SECTION

TPU$M_SEC_LNM_
MODE

TPU$M_WORK

TPUSM_WRITE

Not applicable

NOMODIFY

OUTPUT

READ_ONLY

RECOVER

SECTION

Not applicable

WORK

WRITE

bit. Its interpretation is left to the application
layered on DECTPU.

DECTPU initializes the DECwindows X resource
database only with resource files that the
DECwindows toolkit routine XtApplinitialize
loads into the database.

The behavior of DECTPU is not affected by this
bit. Its interpretation is left to the application
layered on DECTPU.

The behavior of DECTPU is not affected by this
bit. Its interpretation is left to the application
layered on DECTPU.

The behavior of DECTPU is not affected by this
bit. Its interpretation is left to the application
layered on DECTPU.

The behavior of DECTPU is not affected by this
bit. Its interpretation is left to the application
layered on DECTPU.

If DECTPU senses the presence of the TPUS$
SECTIONFILE item, it tries to read the
specified file as a binary initialization file.
TPUSINITIALIZE fails if this bit is set to 1 and
the TPU$_SECTIONFILE item is not present in
the item list.

If DECTPU senses the presence of the TPU$SM_
SEC_LNM_MODE item, it looks only at
executive mode logical names when attempting
to read in a section file.

If DECTPU senses the presence of the TPUS$
WORKFILE item, it uses the specifed file for
memory management. If no item list entry is
present, and this bit is set to 1, a file is created
in SYS$SLOGIN:. TPU$SWORK.

The behavior of DECTPU is not affected by this
bit. Its interpretation is left to the application
layered on DECTPU.

1The prefix can be TPU$M_ or TPU$V_. TPU$M_ denotes a mask corresponding to the specific field in which the bit is

set. TPUSV_ is a bit number.

2Most bits in the mask have a corresponding GET_INFO (COMMAND_LINE) request string.

To create the bits, start with the value 0, then use the OR operator on the mask
(TPUSM . ..) of each item you want to set. Another way to create the bits is to
treat the 32 bits as a bit vector and set the bit (TPUS$V ...) corresponding to the
item you want.

DEC Text Processing Utility (DECTPU) Routines DECTPU-59

DEC Text Processing Utility (DECTPU) Routines
TPUSINITIALIZE

user_arg
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

User argument. The user_arg argument is passed to the user-written
initialization routine INITIALIZE.

The user_arg parameter is provided to allow an application to pass information
through TPUSINITIALIZE to the user-written initialization routine. DECTPU
does not interpret this data in any way.

Description
This is the first routine that must be called after establishing a condition handler.

This routine initializes the editor according to the information received from
the callback routine. The initialization routine defaults all file specifications to
the null string and all options to off. However, it does not default the file 1/0 or
call-user routine addresses.

Condition Values Returned

TPU$_SUCCESS Initialization was completed successfully.

TPUS$_FAILURE General code for all other errors during
initialization.

TPUS$_INSVIRMEM Insufficient virtual memory exists for the editor
to initialize.

TPU$_NOFILEROUTINE No routine has been established to perform file
operations.

TPU$_NONANSICRT The input device (SYSSINPUT) is not a
supported terminal.

TPU$ RESTOREFAIL An error occurred during the restore operation.

TPU$ SYSERROR A system service did not work correctly.

DECTPU-60 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPUSMESSAGE

TPUSMESSAGE—Write Message String

Format

Returns

Argument

The TPUSMESSAGE routine writes error messages and strings using the built-in
procedure, MESSAGE.

Call this routine to have messages written and handled in a manner consistent
with DECTPU. This routine should be used only after TPUSEXECUTE_INIFILE.

TPUSMESSAGE string

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value.

Note

The return status should be ignored because it is intended for use by the
$PUTMSG system service.

string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Formatted message. The string argument is the address of a descriptor of text
to be written. It must be completely formatted. This routine does not append
the message prefixes. However, the text is appended to the message buffer if one
exists. In addition, if the buffer is mapped to a window, the window is updated.

DEC Text Processing Utility (DECTPU) Routines DECTPU-61

DEC Text Processing Utility (DECTPU) Routines
TPUSPARSEINFO

TPUSPARSEINFO—Parse Command Line and Build Item List

Format

Returns

Arguments

Description

The TPUSPARSEINFO routine parses a command and builds the item list for
TPUSINITIALIZE.

TPUS$PARSEINFO fileio ,call_user

OpenVMS usage: item_list

type: longword (unsigned)
access: read only
mechanism: by reference

The routine returns the address of an item list.

fileio

OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: read only

mechanism: by descriptor

File 1/0 routine. The fileio argument is the address for a descriptor of a file I/O
routine.

call_user

OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: read only

mechanism: by descriptor

Call-user routine. The call_user argument is the address for a descriptor of a
call-user routine.

The TPUSPARSEINFO routine parses a command and builds the item list for
TPUSINITIALIZE.

This routine uses the command language (CLI) routines to parse the current
command. It makes queries about the command parameters and qualifiers that
DECTPU expects. The results of these queries are used to set up the proper
information in an item list. The addresses of the user routines are used for those
items in the list. The address of this list is the return value of the routine.

If your application parses information that is not related to the operation of
DECTPU, make sure the application obtains and uses all non-DECTPU parse
information before the application calls the TPU$SPARSEINFO interface. This is
because TPU$SPARSEINFO destroys all parse information obtained and stored
before TPUSPARSEINFO was called.

DECTPU-62 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPUS$SIGNAL

TPU$SIGNAL—Signal a TPU Status

Format

Returns

Argument

Description

The TPUS$SIGNAL routine allows applications and user-written TPU routines
such as FILEIO to easily signal error messages in order for TPU error handlers
to perform correctly.

TPUS$SIGNAL condition-code

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. In most cases, the routine returns either the same
signal passed to it in the condition value argument, or the return value of
LIB$SIGNAL. If the routine fails, it signals TPU$_FAILURE and returns control
to the caller.

condition-code
OpenVMS usage: cond_value

type: longword (unsigned)
access: read only
mechanism: by value

The condition-code is an unsigned longword that contains the condition code to be
signaled. In most cases, this argument is a TPU message code.

TPUSSIGNAL performs the same function as the Run-Time Library routine
LIB$SIGNAL, but it also processes TPU facility messages to allow TPU language
ON_ERROR handlers to be called.

For example, assume that a user-written file input/output routine is designed
to signal the error TPU$_OPENIN when it fails to open a file. Calling the
TPUS$SIGNAL routine and passing the value TPU$ OPENIN allows a case-style
TPU ON_ERROR handler to receive the error, thus preserving the documented
return values for TPU built-in procedures such as READ_FILE.

Note

You must call TPUSINITIALIZE before you call the TPU$SIGNAL
routine.

If TPUS_QUITTING, TPU$_EXITING, or TPU$_RECOVERFAIL are passed to
the routine, it calls the Run-Time Library routine LIB$SIGNAL.

If facility messages other than TPU messages are passed to the TPU$SIGNAL
routine, it calls the LIB$SIGNAL routine and passes the appropriate condition
value.

DEC Text Processing Utility (DECTPU) Routines DECTPU-63

DEC Text Processing Utility (DECTPU) Routines
TPUSSPECIFY_ASYNC_ACTION

TPUSSPECIFY_ASYNC_ACTION—Register an Asynchronous Action

Format

Returns

Argument

Description

The TPUSSPECIFY_ASYNC_ACTION routine allows applications using the
DECTPU full callable interface to register asynchronous actions with DECTPU.

TPUS$SPECIFY_ASYNC_ACTION facility_index [,tpu_statement]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

facility_index
OpenVMS usage: longword_unsigned

type: longword (signed)
access: read only
mechanism: by reference

Represents an index of the asynchronous action. This index is used with the
TPUSTRIGGER_ASYNC_ACTION routine to let DECTPU know what action to
perform. It may also be used to delete an action routine (by omitting the tpu_
statement). You may register several asynchronous actions depending on your
application’s needs. This facility index number may be any positive integer.

tpu_statement
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

The DECTPU statement you want executed when you call the TPU$TRIGGER _
ASYNC_ACTION routine. The statement is compiled and then stored internally.
If you omit the parameter, DECTPU removes the action from its list of
asynchronous events.

The TPUSSPECIFY_ASYNC_ACTION routine, along with TPU$TRIGGER_
ASYNC_ACTION, allow applications to interrupt DECTPU after calling
TPUS$CONTROL. The specified DECTPU statement is compiled and saved.

This routine must be called after TPUSINITIALIZE. It will not complete
successfully if keystroke journaling is enabled.

DECTPU-64 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPUSSPECIFY_ASYNC_ACTION

Condition Values Returned

TPU$_SUCCESS Normal successful completion.

TPUS$_COMPILEFAIL The code specified in tpu_statement did not
compile successfully.

TPUS$_INVPARM An invalid parameter was passed.

TPUS$_JINLACTIVE Keystroke journaling is active. This routine

requires that either journaling be turned off or
that buffer change journaling be used.

DEC Text Processing Utility (DECTPU) Routines DECTPU-65

DEC Text Processing Utility (DECTPU) Routines

TPUSTPU

TPU$TPU—Invoke DECTPU

Format

Returns

Argument

Description

The TPU$TPU routine invokes DECTPU and is equivalent to the DCL command
EDIT/TPU.

TPUSTPU command

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

command

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Command string. Note that the verb is TPU instead of EDIT/TPU. The
command argument is the address for a descriptor of a command line.

This routine takes the command string specified and passes it to the editor.
DECTPU uses the information from this command string for initialization
purposes, just as though you had entered the command at the DCL level.

Using the simplified callable interface does not set TPUSCLOSE_SECTION. This
feature lets you make multiple calls to TPU$TPU without requiring you to open
and close the section file on each call.

If your application parses information that is not related to the operation of
DECTPU, make sure the application obtains and uses all non-DECTPU parse
information before the application calls TPU$TPU. This is because TPU$TPU
destroys all parse information obtained and stored before TPU$TPU was called.

Condition Values Returned

This routine returns any condition value returned by TPUSINITIALIZE,
TPUSEXECUTE_INIFILE, TPU$SCONTROL, and TPU$CLEANUP.

DECTPU-66 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPUSTRIGGER_ASYNC _ACTION

TPUSTRIGGER_ASYNC_ ACTION—Execute DECTPU Command at

Format

Returns

Arguments

Description

Asynchronous Level

The TPUSTRIGGER_ASYNC_ACTION routine allows applications using the
DECTPU full callable interface to interrupt the DECTPU TPU$SCONTROL loop
at an asynchronous level.

TPUSTRIGGER_ASYNC_ACTION facility_index

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

facility_index
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

The facility_index argument represents the asynchronous action to be taken.
This is the same index passed to the TPU$SPECIFY_ASYNC_ACTION routine
registering what DECTPU statements to execute.

The TPUSTRIGGER_ASYNC_ACTION routine, along with TPUS$SPECIFY_
ASYNC_ACTION routine allow applications to interrupt DECTPU after calling
TPUSCONTROL. The command that was specified for this facility_index is
put on the DECTPU queue of work items and is handled as soon as no other
work items are present. This allows DECTPU to complete and stabilize its
environment before executing the command. This routine must be called after
control has been passed to DECTPU via the TPUSCONTROL routine.

Condition Values Returned

TPU$_SUCCESS Normal successful completion.

TPU$_UNKFACILITY The facility_index passed to this routine
does not match any facility index passed to
TPUS$SPECIFY_ASYNC_ACTION.

DEC Text Processing Utility (DECTPU) Routines DECTPU-67

DEC Text Processing Utility (DECTPU) Routines

FILEIO

FILEIO—User-Written Routine to Perform File Operations

Format

Returns

Arguments

The user-written FILEIO routine is used to handle DECTPU file operations. The
name of this routine can be either your own file 1/O routine or the name of the
DECTPU file 1/O routine (TPUS$FILEIO).

FILEIO code ,stream ,data

OpenVMS usage: cond_value

type: longword (usigned)
access: write only
mechanism: by reference

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Item code specifying a DECTPU function. The code argument is the address of
a longword containing an item code from DECTPU, which specifies a function to
perform.

stream

OpenVMS usage: unspecified

type: longword (unsigned)
access: modify

mechanism: by reference

File description. The stream argument is the address of a data structure
containing four longwords. This data structure is used to describe the file to be
manipulated.

data

OpenVMS usage: item_list_3

type: longword (unsigned)
access: modify

mechanism: by reference

Stream data. The data argument is either the address of an item list or the
address of a descriptor.

Note

The value of this parameter depends on which item code you specify.

DECTPU-68 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
FILEIO

Description

The bound procedure value of this routine is specified in the item list built by
the callback routine. This routine is called to perform file operations. Instead

of using your own file 1/0 routine, you can call TPUS$FILEIO and pass it the
parameters for any file operation you do not want to handle. Note, however, that
TPUSFILEIO must handle all 1/O requests for any file it opens. Also, if it does
not open the file, it cannot handle any 1/O requests for the file. In other words,
you cannot mix the file operations between your own file 1/0 routine and the one
supplied by DECTPU.

Condition Values Returned

The condition values returned are determined by the user and should indicate
success or failure of the operation.

DEC Text Processing Utility (DECTPU) Routines DECTPU-69

DEC Text Processing Utility (DECTPU) Routines
FILE_PARSE

FILE_PARSE—User-Written Routine to Perform File Parse

Operations
This is a user-written routine that can be used in place of the TPU$FILE_PARSE
routine.
Format
FILE_PARSE result-string ,flags ,filespec ,default-spec ,related-spec
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. The return value is ignored by DECTPU. User-written
FILE_PARSE routines should include calls to the TPU$SIGNAL routine to ensure
proper error handling.
Arguments

result-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Return value for the built-in procedure FILE_PARSE. The calling program should
fill in this descriptor with a dynamic string allocated by the string routines, such
as the Run-Time Library routine LIB$SGET1_DD. DECTPU frees this string
when necessary.

flags

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

The following table lists the valid flag values used to request file specification

components:

Flag* Function

TPU$SM_NODE Requests for the node component of the file
specification.

TPU$SM_DEV Requests for the device component of the file
specification.

TPUSM_DIR Requests for the directory component of the file
specification.

ITPUSM . .. indicates a mask. There is a corresponding value for each mask in the form TPU$V

DECTPU-70 DEC Text Processing Utility (DECTPU) Routines

Description

DEC Text Processing Utility (DECTPU) Routines
FILE_PARSE

Flag®

Function

TPUSM_NAME
TPUSM_TYPE
TPUSM_VER

TPU$M_HEAD

Requests for the name component of the file
specification.

Requests for the type component of the file
specification.

Requests for the version component of the file
specification.

Requests for the NODE, DEVICE, and
DIRECTORY components of the file specification.

TPUSM_TAIL Requests for NAME, TYPE, and VERSION
components of the file specification.

ITPUSM . .. indicates a mask. There is a corresponding value for each mask in the form TPU$V

filespec

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

The object file specification.

default-spec
OpenVMS usage:
type:

access:
mechanism:

char_string
character string
read only

by descriptor

Contains the default file specification. The value O is passed if there is no
default-spec argument.

related-spec
OpenVMS usage:
type:

access:
mechanism:

char_string
character string
read only

by descriptor

The related-spec argument contains the related file specification. The value 0 is
passed if there is no related-spec.

This routine allows an application to replace the TPU$FILE_PARSE routine
with its own file-parsing routine. The calling program passes the address of the
file-parsing routine to TPUSINITIALIZE using the TPU$_FILE_PARSE item

code.

When the DECTPU built-in procedure FILE_PARSE is called from TPU
code, DECTPU calls either the user-written routine (if one was passed to
TPUSINITIALIZE) or the TPUSFILE_PARSE routine. The return value of
the built-in procedure is the string returned in the result-string argument.

To ensure proper operation of the user's ON_ERROR error handlers, errors should
be signaled using the TPU$SIGNAL routine.

DEC Text Processing Utility (DECTPU) Routines DECTPU-71

DEC Text Processing Utility (DECTPU) Routines
FILE_SEARCH

FILE_SEARCH—User-Written Routine to Perform File Search

Format

Returns

Arguments

Operations

This is a user-written routine that is used in place of the TPU$FILE_SEARCH
routine.

FILE_SEARCH result-string ,flags ,filespec ,default-spec ,related-spec

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. If an odd numeric value is returned, the next call to
the built-in procedure FILE_SEARCH automatically sets the TPU$M_REPARSE
bit in the flags longword. TPU$M_REPARSE is also set if the result-string has
a length of 0.

result-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Return value for the built-in procedure FILE_SEARCH. Your program should fill
in this descriptor with a dynamic string allocated by the string routines such as
the Run-Time Library routine LIB$SGET1_DD. DECTPU frees this string when
necessary.

The TPU$SM_REPARSE bit is set in the flags longword if the result-string has a
length of zero. The bit is intended to reset the file search when wildcard searches
are performed.

flags

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The following table shows the flags used for specifying the file components:

Flag* Function

TPU$SM_NODE Requests for the node component of the file
specification.

TPUSM_DEV Requests for the device component of the file

specification.

ITPUS$M ... indicates a mask. There is a corresponding value for each mask in the form TPU$V

DECTPU-72 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines

FILE_SEARCH

Flag* Function

TPUSM_DIR Requests for the directory component of the file
specification.

TPUSM_NAME Requests for the name component of the file
specification.

TPUSM_TYPE Requests for the type component of the file
specification.

TPU$SM_VER Requests for the version component of the file
specification.

TPUSM_REPARSE Reparses the file specification before processing.

This is intended as a way to restart the file search.
This flag will automatically be set by DECTPU

if on a previous call to the FILE_SEARCH user
routine the result-string has a zero length or the
routine returns a odd (noneven) status.

TPU$SM_HEAD Requests for the NODE, DEVICE, and
DIRECTORY components of the file specification.

TPUSM_TAIL Requests for the NAME, TYPE, and VERSION
component of the file specification.

1ITPUSM . .. indicates a mask. There is a corresponding value for each mask in the form TPU$V

filespec

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

The object file specification.

default-spec
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

The default-spec argument contains the default file specification.

The value 0 is passed if there is no default-spec.

related-spec
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

The related-spec argument contains the related file specification.

The value 0 is passed if there is no related-spec.

DEC Text Processing Utility (DECTPU) Routines DECTPU-73

DEC Text Processing Utility (DECTPU) Routines
FILE_SEARCH

Description

The FILE_SEARCH user routine allows an application to replace the TPUSFILE
SEARCH routine with its own file-searching routine. The calling program passes
the address of the routine to the TPUSINITIALIZE routine using the TPUS$
FILE_SEARCH item code.

When the DECTPU built-in procedure FILE_SEARCH is called from TPU code,
DECTPU calls either the user-written FILE_SEARCH routine (if one was passed
to TPUSINITIALIZE) or the TPUSFILE_SEARCH routine. The return value of
the built-in procedure is the string returned in the result-string argument.

To ensure proper operation of the user’'s ON_ERROR handlers, errors in the
user-written FILE_PARSE routine should be signaled using the TPU$SIGNAL
routine.

DECTPU-74 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
HANDLER

HANDLER—User-Written Condition Handling Routine

Format

Returns

Arguments

Description

The user-written HANDLER routine performs condition handling.

HANDLER signal_vector ,mechanism_vector

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value.

signal_vector
OpenVMS usage: arg_list

type: longword (unsigned)
access: modify
mechanism: by reference

Signal vector. See the HP OpenVMS System Services Reference Manual for
information about the signal vector passed to a condition handler.

mechanism_vector
OpenVMS usage: arg_list

type: longword (unsigned)
access: read only
mechanism: by reference

Mechanism vector. See the HP OpenVMS System Services Reference Manual for
information about the mechanism vector passed to a condition handler.

If you need more information about writing condition handlers and programming
concepts, refer to HP OpenVMS Programming Concepts Manual.

Instead of writing your own condition handler, you can use the default condition
handler, TPUSHANDLER. If you want to write your own routine, you must call

TPU$SHANDLER with the same parameters that your routine received to handle
DECTPU internal signals.

DEC Text Processing Utility (DECTPU) Routines DECTPU-75

DEC Text Processing Utility (DECTPU) Routines

INITIALIZE

INITIALIZE—User-Written Initialization Routine

Format

Returns

Arguments

Description

The user-written initialization callback routine is passed to TPUSINITIALIZE
as a bound procedure value and called to supply information needed to initialize
DECTPU.

INITIALIZE [user_arg]

OpenVMS usage: item_list

type: longword (unsigned)
access: read only
mechanism: by reference

This routine returns the address of an item list.

user_arg
OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

User argument.

The user-written initialization callback routine is passed to TPUSINITIALIZE
as a bound procedure value and called to supply information needed to initialize
DECTPU.

If the user_arg parameter was specified in the call to TPUSINITIALIZE, the
initialization callback routine is called with only that parameter. If user_arg
was not specified in the call to TPUSINITIALIZE, the initialization callback
routine is called with no parameters.

The user_arg parameter is provided to allow an application to pass information
through TPUSINITIALIZE to the user-written initialization routine. DECTPU
does not interpret this data in any way.

The user-written callback routine is expected to return the address of an item
list containing initialization parameters. Because the item list is used outside
the scope of the initialization callback routine, it should be allocated in static
memory.

The item list entries are discussed in the section about TPUSINITIALIZE. . Most
of the initialization parameters have a default value; strings default to the null
string, and flags default to false. The only required initialization parameter is the
address of a routine for file 1/0. If an entry for the file 1/O routine address is not
present in the item list, TPUSINITIALIZE returns with a failure status.

DECTPU-76 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
USER

USER—User-Written Routine Called from a DECTPU Editing Session

Format

Returns

Arguments

The user-written USER routine allows your program to take control during
a DECTPU editing session (for example, to leave the editor temporarily and
perform a calculation).

USER integer ,stringin ,stringout

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value.

integer

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

First parameter to the built-in procedure CALL_USER. This is an input-only
parameter and must not be modified.

stringin

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Second parameter to the built-in procedure CALL_USER. This is an input-only
parameter and must not be modified.

stringout

OpenVMS usage: char_string
type: character string
access: modify
mechanism: by descriptor

Return value for the built-in procedure CALL_USER. Your program should fill
in this descriptor with a dynamic string allocated by the string routines (such as
LIB$SGET1_DD) provided by the Run-Time Library. The DECTPU editor frees
this string when necessary.

DEC Text Processing Utility (DECTPU) Routines DECTPU-77

DEC Text Processing Utility (DECTPU) Routines
USER

Description

This user-written routine is invoked by the DECTPU built-in procedure CALL _
USER. The built-in procedure CALL_USER passes three parameters to this
routine. These parameters are then passed to the appropriate part of your
application to be used as specified. (For example, they can be used as operands
in a calculation within a Fortran program.) Using the string routines provided
by the Run-Time Library, your application fills in the stringout parameter in
the call-user routine, which returns the stringout value to the built-in procedure
CALL_USER.

The description of the built-in procedure CALL_USER in the DEC Text Processing
Utility Reference Manual shows an example of a BASIC program that is a
call-user routine.

See Section 8.5 for a description of how to create an executeable image for the
USER routine and how to call the routine from a C program in the DECTPU
environment.

DECTPU-78 DEC Text Processing Utility (DECTPU) Routines

9

DECdts Portable Applications Programming
Interface

You can use the Digital Distributed Time Service (DECdts) programming routines
to obtain timestamps that are based on Coordinated Universal Time (UTC). You
can also use the DECdts routines to translate among different timestamp formats
and perform calculations on timestamps. Applications can use the timestamps
that DECdts supplies to determine event sequencing, duration, and scheduling.
Applications can call the DECdts routines from DECdts server or clerk systems.

The Digital Distributed Time Service routines are written in the C programming
language. You should be familiar with the basic DECdts concepts before you
attempt to use the applications programming interface (API).

The DECdts API routines can perform the following basic functions:

= Retrieve timestamp information

= Convert between binary timestamps that use different time structures
= Convert between binary timestamps and ASCII representations

= Convert between UTC time and local time

= Convert the binary time values in the OpenVMS (Smithsonian-based) format
to or from UTC-based binary timestamps (OpenVMS systems only)

= Manipulate binary timestamps
e Compare two binary time values
= Calculate binary time values

= Obtain time zone information

DECdts can convert between several types of binary time structures that

are based on different calendars and time unit measurements. DECdts uses
UTC-based time structures and can convert other types of time structures to its
own presentation of UTC-based time.

The following sections describe DECdts time representations, DECdts time
structures, API header files, and API routines.

9.1 DECdts Time Representation

UTC is the international time standard that has largely replaced Greenwich
Mean Time (GMT). The standard is administered by the International Time
Bureau (BIH) and is widely used. DECdts uses opaque binary timestamps that
represent UTC for all of its internal processes. You cannot read or disassemble
a DECdts binary timestamp; the DECdts API allows applications to convert or
manipulate timestamps, but they cannot be displayed. DECdts also translates
the binary timestamps into ASCII text strings, which can be displayed.

DECdts Portable Applications Programming Interface DECdts-1

DECdts Portable Applications Programming Interface
9.1 DECdts Time Representation

9.1.1 Absolute Time Representation

An absolute time is a point on a time scale. For DECdts, absolute times
reference the UTC time scale; absolute time measurements are derived from
system clocks or external time-providers. When DECdts reads a system clock
time, it records the time in an opaque binary timestamp that also includes the
inaccuracy and other information. When you display an absolute time, DECdts
converts the time to ASCII text, as shown in the following display:

1996-11-21-13:30:25.785-04:00I000.082

DECdts displays all times in a format that complies with the International
Standards Organization (ISO) 8601 (1988) standard. Note that the inaccuracy
portion of the time is not defined in the 1SO standard (times that do not include
an inaccuracy are accepted). Figure 9-1 explains the 1SO format that generated
the previous display.

Figure 9-1 Time Display Format

Calendar date and time Inaccuracy

TDF
component "_ component _"' component -I

CCYY-MM-DD-hh:mm:ss.fff[+|-]1hh:mmIsss.f£f

-
Year

seconds I
Month

Day

Inaccuracy
designator

minutes

minute

In Figure 9-1, the relative time preceded by the plus (+) or minus (-) character
indicates the hours and minutes that the calendar date and time are offset from
UTC. The presence of this time differential factor (TDF) in the string also
indicates that the calendar date and time are the local time of the system, not
UTC. Local time is UTC minus the TDF. The Inaccuracy designator I indicates
the beginning of the inaccuracy component associated with the time.

Although DECdts displays all times in the previous format, variations in the 1SO
format shown in Figure 9-2 are also accepted as input for the ASCII conversion
routines.

DECdts—2 DECdts Portable Applications Programming Interface

Month

Day

Time
designator

hour

minute
second

DECdts Portable Applications Programming Interface
9.1 DECdts Time Representation

Figure 9-2 Time Display Format Variants

Calendar date and time TDF Inaccuracy
component component component -l

CCYY-MM-DDThh:mm:ss, f££f [+|-]hh:mm * ss, ££f

seconds

Inaccuracy
designator

minutes I

ZK-4068A-GE

In Figure 9-2, the Time designator T separates the calendar date from the time,
a comma separates seconds from fractional seconds, and the plus or minus
character indicates the beginning of the inaccuracy component.

The following examples show some valid time formats.

The following represents July 4, 1776 17:01 GMT and an infinite inaccuracy
(default).

1776-7-4-17:01:00

The following represents a local time of 12:01 (17:01 GMT) on July 4, 1776 with a
TDF of -5 hours and an inaccuracy of 100 seconds.

1776-7-4-12:01:00-05:00I100

Both of the following represent 12:00 GMT in the current day, month, and year
with an infinite inaccuracy.

12:00 and T12
The following represents July 14, 1792 00:00 GMT with an infinite inaccuracy.
1792-7-14

9.1.2 Relative Time Representation

A relative time is a discrete time interval that is usually added to or subtracted
from another time. A TDF associated with an absolute time is one example of a

relative time. A relative time is normally used as input for commands or system
routines.

Figure 9-3 shows the full syntax for a relative time.

DECdts Portable Applications Programming Interface DECdts—3

DECdts Portable Applications Programming Interface
9.1 DECdts Time Representation

Figure 9-3 Relative Time Syntax

Relative date and time Inaccuracy
component _I I' component

DD-hh:mm:ss.fffIss.fff
= S~ (]
hours
[ines |
minutes

Inaccuracy
designator

ZK-4984A-GE

fractions

Notice that a relative time does not use the calendar date fields, because these
fields concern absolute time. A positive relative time is unsigned; a negative
relative time is preceded by a minus (—) sign. A relative time is often subtracted
from or added to another relative or absolute time. The relative times that
DECdts uses internally are opaque binary timestamps. The DECdts API offers
several routines that can be used to calculate new times using relative binary
timestamps.

The following example shows a relative time of 21 days, 8 hours, and 30 minutes,
25 seconds with an inaccuracy of 0.300 second.

21-08:30:25.000I00.300

The following example shows a negative relative time of 20.2 seconds with an
infinite inaccuracy (default).

-20.2

The following example shows a relative time of 10 minutes, 15.1 seconds with an
inaccuracy of 4 seconds.

10:15.114

Representing Periods of Time

A given duration of a period of time can be represented by a data element of
variable length that uses the syntax shown in Figure 9-4.

Figure 9-4 Time Period Syntax

PnYnMnWnDTnHnMnS In

| Period Designator -
Inaccuracy Designator/Inaccuracy
Years/Year Designator

Seconds/Second Designator

Months/Month Designator - " n
g Minutes/Minute Designator

Weeks/Week Designator .
Hours/Hour Designator

Days/Day Designator " "
Time Designator

ZK-4985A-GE

The data element contains the following parts:

= The designator P precedes the part that includes the calendar components,
including the following:

— The number of years followed by the designator Y

— The number of months followed by the designator M

DECdts—4 DECdts Portable Applications Programming Interface

DECdts Portable Applications Programming Interface
9.1 DECdts Time Representation

— The number of weeks followed by the designator W
— The number of days followed by the designator D

= The designator T precedes the part that includes the time components,
including the following:

— The number of hours followed by the designator H
— The number of minutes followed by the designator M
— The number of seconds followed by the designator S
e The designator I precedes the number of seconds of inaccuracy.

The following example represents a period of 1 year, 6 months, 15 days, 11 hours,
30 minutes, and 30 seconds and an infinite inaccuracy.

P1Y6M15DT11H30M30S

The following example represents a period of 3 weeks and an inaccuracy of 4
seconds.

P3WI4

9.2 Time Structures

DECdts can convert between several types of binary time structures that are
based on different base dates and time unit measurements. DECdts uses UTC-
based time structures and can convert other types of time structures to its own
presentation of UTC-based time. The DECdts API routines are used to perform
these conversions for applications on your system.

Table 9-1 lists the absolute time structures that the DECdts API uses to modify
binary times for applications.

Table 9—1 Absolute Time Structures

Structure Time Units Base Date Approximate Range
utc 100-nanosecond 15 October 1582 A.D. 1 to A.D. 30,000
tm second 1 January 1900 AD. 1 to AD. 30,000
timespec nanosecond 1 January 1970 A.D. 1970 to A.D. 2106

Table 9-2 lists the relative time structures that the DECdts API uses to modify
binary times for applications.

Table 9—2 Relative Time Structures

Structure Time Units Approximate Range
utc 100-nanosecond + 30,000 years

tm second + 30,000 years
reltimespec nanosecond + 68 years

The remainder of this section explains the DECdts time structures in detail.

DECdts Portable Applications Programming Interface DECdts-5

DECdts Portable Applications Programming Interface
9.2 Time Structures

9.2.1 The utc Structure

Coordinated Universal Time (UTC) is useful for measuring time across local time
zones and for avoiding the seasonal changes (summer time or daylight saving
time) that can affect the local time. DECdts uses 128-bit binary numbers to
represent time values internally; throughout this manual, these binary numbers
representing time values are referred to as binary timestamps. The DECdts
utc structure determines the ordering of the bits in a binary timestamp; all
binary timestamps that are based on the utc structure contain the following
information:

= The count of 100-nanosecond units since 00:00:00.00, 15 October 1582 (the
date of the Gregorian reform to the Christian calendar)

e The count of 100-nanosecond units of inaccuracy applied to the above
= The time differential factor (TDF), expressed as the signed quantity
= The timestamp version number

The binary timestamps that are derived from the DECdts utc structure have an
opaque format. This format is a cryptic character sequence that DECdts uses and
stores internally. The opaque binary timestamp is designed for use in programs,
protocols, and databases.

Note

Applications use the opaque binary timestamps when storing time values
or when passing them to DECdts.

The API provides the necessary routines for converting between opaque binary
timestamps and character strings that can be displayed and read by users.

9.2.2 The tm Structure

The tm structure is based on the time in years, months, days, hours, minutes, and
seconds since 00:00:00 GMT (Greenwich Mean Time), 1 January 1900. The tm
structure is defined in the <time.h> header file.

The tm structure declaration follows:

struct tm {

int tm sec; /* Seconds (0 - 59) */
int tm min; /* Minutes (0 - 59) */
int tm hour; /* Hours (0 - 23) */
int tm mday; /* Day of Month (1 - 31) */
int tm mon; /* Month of Year (0 - 11) */
int tm year; /* Year - 1900 */
int tm wday; /* Day of Week (Sunday = 0) */
int tm yday; /* Day of Year (0 - 364) */
int tm isdst; /* Nonzero if Daylight Savings Time */

/* 1s in effect */

}i

Not all of the tm structure fields are used for each routine that converts between
tm structures and utc structures. See the parameter descriptions that accompany
the routines in Chapter 9 for additional information about which fields are used
for specific routines.

DECdts—6 DECdts Portable Applications Programming Interface

DECdts Portable Applications Programming Interface
9.2 Time Structures

9.2.3 The timespec Structure

The timespec structure is normally used in combination with or in place of the
tm structure to provide finer resolution for binary times. The timespec structure
is similar to the tm structure, but the timespec structure specifies the number of
seconds and nanoseconds since the base time of 00:00:00 GMT, 1 January 1970.
You can find the structure in the <utc.h> header file.

The timespec structure declaration follows:

struct timespec {

unsigned long tv_sec; /* Seconds since 00:00:00 GMT, */
/* 1 January 1970 */
long tv_nsec; /* Additional nanoseconds since */
/* tv_sec */
} timespec t;

9.2.4 The reltimespec Structure

The reltimespec structure represents relative time. This structure is similar to
the timespec structure, except that the first field is signed in the reltimespec
structure. (The field is unsigned in the timespec structure.) You can find the
reltimespec structure in the <utc.h> header file.

The reltimespec structure declaration follows:

struct reltimespec {

long tv_sec; /* Seconds of relative time * /
long tv nsec; /* Additional nanoseconds of */
/* relative time */

} reltimespec t;

9.2.5 The OpenVMS Time Structure

The OpenVMS time structure is based on Smithsonian time, which has a base
date of November 17, 1858. The binary OpenVMS structure is a signed, 64-bit
integer that has a positive value for absolute times. You can use the DECdts API
to translate an OpenVMS structure representing an absolute time to or from the
DECdts UTC-based binary timestamp.

9.3 DECdts API Header Files

On OpenVMS systems, the header files are located in the SYSSLIBRARY
directory. The <time.h> and <utc.h> header files contain the data structures,
type definitions, and define statements that are referenced by the DECdts API
routines. The <time.h> header file is present on all OpenVMS systems. The
<utc.h> header file includes <time.h> and contains the timespec, reltimespec,
and utc structures.

DECdts Portable Applications Programming Interface DECdts—7

DECdts Portable Applications Programming Interface
9.4 Linking Programs with the DECdts API

9.4 Linking Programs with the DECdts API

The DECdts API is implemented by a shared image. To use the APl with your
program, you must link the program with this shared image. On DECnet-Plus
for OpenVMS systems, the DECdts API is implemented by the shared image
SYSSLIBRARY:DTSS$SHR.EXE. The following example shows how to link a
program with the DECdts shared image:

$ CC MYPROGRAM.C/OUTPUT=MYPROGRAM.OBJ

$ LINK MYPROGRAM.OBJ, SYSS$INPUT:/OPTIONS|Return]

SYSSLIBRARY:DTSS$SHR.EXE/SHARE
$

9.5 DECdts API Routine Functions

Figure 9-5 categorizes the DECdts portable interface routines by function.

DECdts—8 DECdts Portable Applications Programming Interface

DECdts Portable Applications Programming Interface
9.5 DECdts API Routine Functions

Figure 9-5 DTS Portable Interface Categories

Retrieving Time ... l—
utc_gettime

utc_getusertime
[Converting Formats ...]

To/From To/From

ASCII text: VMS time:
utc_ascanytime utc_mkvmsanytime
utc_ascgmtime utc_mkvmsgmtime
utc_asclocaltime utc_mkvmslocaltime
utc_ascreltime utc_vmsanytime
utc_mkasctime utc_vmsgmtime
utc_mkascreltime utc_vmslocaltime

[Converting Structures ...

To/From To/From
tm Structures: timespec Structures:
utc_anytime utc_binreltime
utc_gmtime utc_bintime
utc_localtime utc_mkbinreltime
utc_mkanytime utc_mkbintime

utc_mkgmtime
utc_mklocaltime
utc_mkreltime
utc_reltime

[Manipulating Times ...]_l

utc_boundtime
utc_spantime
utc_pointtime

[Comparing Times ...]—l

utc_cmpintervaltime
utc_cmpmidtime

[Calculating Times ...]—l

utc_abstime
utc_addtime
utc_mulftime
utc_multime
utc_subtime

Obtaining Timezone '—l
Information ...
utc_anyzone

utc_gmtzone
utc_localzone

ZK-4986A-GE

DECdts Portable Applications Programming Interface DECdts—9

DECdts Portable Applications Programming Interface
9.5 DECdts API Routine Functions

An alphabetical listing of the DECdts portable interface routines and a brief
description of each one follows:

utc_abstime
utc_addtime

utc_anytime

utc anyzone
utc_ascanytime
utc_ascgmtime
utc_asclocaltime
utc_ascreltime
utc_binreltime
utc_bintime
utc_boundtime
utc _cmpintervaltime
utc_cmpmidtime
utc _gettime

utc _getusertime
utc_gmtime

utc_gmtzone
utc_localtime

utc_localzone
utc_mkanytime

utc_mkascreltime
utc_mkasctime
utc_mkbinreltime

utc _mkbintime
utc_mkgmtime

Computes the absolute value of a binary relative time.

Computes the sum of two binary timestamps; the timestamps
can be two relative times or a relative time and an absolute
time.

Converts a binary timestamp into a tm structure, using the
TDF information contained in the timestamp to determine the
TDF returned with the tm structure.

Gets the time zone label and offset from GMT, using the TDF
contained in the input utc.

Converts a binary timestamp into an ASCII string that
represents an arbitrary time zone.

Converts a binary timestamp into an ASCII string that
expresses a GMT time.

Converts a binary timestamp to an ASCII string that
represents a local time.

Converts a binary timestamp that expresses a relative time to
its ASCII representation.

Converts a relative binary timestamp into timespec
structures that express relative time and inaccuracy.

Converts a binary timestamp into a timespec structure.

Given two UTC times, one before and one after an event,
returns a single UTC time whose inaccuracy includes the
event.

Compares two binary timestamps or two relative binary
timestamps.

Compares two binary timestamps or two relative binary
timestamps, ignoring inaccuracies.

Returns the current system time and inaccuracy as an opaque
binary timestamp.

Returns the time and process-specific TDF, rather than the
system-specific TDF.

Converts a binary timestamp into a tm structure that
expresses GMT or the equivalent UTC.

Gets the time zone label and zero offset from GMT, given utc.

Converts a binary timestamp into a tm structure that
expresses local time.

Gets the time zone label and offset from GMT, given utc.

Converts a tm structure and TDF (expressing the time in an
arbitrary time zone) into a binary timestamp.

Converts a null-terminated character string, which represents
a relative timestamp to a binary timestamp.

Converts a null-terminated character string, which represents
an absolute timestamp, to a binary timestamp.

Converts a timespec structure expressing a relative time to a
binary timestamp.

Converts a timespec structure into a binary timestamp.

Converts a tm structure that expresses GMT or UTC to a
binary timestamp.

DECdts—10 DECdts Portable Applications Programming Interface

DECdts Portable Applications Programming Interface

utc mklocaltime
utc _mkreltime

utc mkvmsanytime
utc mkvmsgmtime
utc mkvmslocaltime
utc mulftime

utc multime
utc pointtime

utc reltime

utc spantime

utc subtime

utc vmsanytime
utc_vmsgmtime

utc vmslocaltime

9.5 DECdts API Routine Functions

Converts a tm structure that expresses local time to a binary
timestamp.

Converts a tm structure that expresses relative time to a
binary timestamp.

Converts a binary OpenVMS format time and TDF (expressing
the time in an arbitrary time zone) to a binary timestamp.

Converts a binary OpenVMS format time expressing GMT (or
the equivalent UTC) into a binary timestamp.

Converts a local binary OpenVMS format time to a binary
timestamp, using the host system’s TDF.

Multiplies a relative binary timestamp by a floating-point
value.

Multiplies a relative binary timestamp by an integer factor.

Converts a binary timestamp to three binary timestamps that
represent the earliest, most likely, and latest time.

Converts a binary timestamp that expresses a relative time
into a tm structure.

Given two (possibly unordered) UTC timestamps, returns a
single UTC time interval whose inaccuracy spans the two
input timestamps.

Computes the difference between two binary timestamps that
express two relative times (an absolute time and a relative
time, two relative times, or two absolute times).

Converts a binary timestamp to a binary OpenVMS-format
time, using the TDF contained in the binary timestamp.

Converts a binary timestamp to a binary OpenVMS-format
time expressing GMT or the equivalent UTC.

Converts a binary timestamp to a local binary OpenVMS
format time, using the host system’s time differential factor.

Notes

Absolute time is a point on a time scale; absolute time measurements
are derived from system clocks or external time-providers. For DECdts,
absolute times reference the UTC standard and include the inaccuracy
and other information. When you display an absolute time, DECdts
converts the time to ASCII text, as shown in the following display:

1996-11-21-13:30:25.785-04:00I000.082

Relative time is a discrete time interval that is usually added to or
subtracted from an absolute time. A time differential factor (TDF)
associated with an absolute time is one example of a relative time. Note
that a relative time does not use the calendar date fields, because these
fields concern absolute time.

Coordinated Universal Time (UTC) is the international time standard
that DECdts uses. The zero hour of UTC is based on the zero hour of
Greenwich Mean Time (GMT). The documentation consistently refers to
the time zone of the Greenwich Meridian as GMT. However, this time
zone is also sometimes referred to as UTC.

The time differential factor (TDF) is the difference between UTC and
the time in a particular time zone.

OpenVMS systems do not have a default time zone rule. You
select a time zone by defining sysStimezone rule during the

DECdts Portable Applications Programming Interface DECdts—11

DECdts Portable Applications Programming Interface
9.5 DECdts API Routine Functions

sysSmanager:net$configure.com procedure, or by explicitly defining
sysStimezone rule.

Unless otherwise specified, the default input and output parameters for
the DECDts API routine commands are as follows:

= If utc is not specified as an input parameter, the current time is used.
= If inacc is not specified as an input parameter, infinity is used.

= If no output parameter is specified, no result (or an error) is returned.

The following command reference section includes all DECdts API routines.

DECdts—-12 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_abstime

utc_abstime

Format

Parameters

Description

Returns

Example

Computes the absolute value of a relative binary timestamp.

#include <utc.h>
int utc_abstime(result, *utcl)

utc_t result;
const utc_t *utcl,

Input
utcl
Relative binary timestamp.

Output

result
Absolute value of the input relative binary timestamp.

The Absolute Time routine computes the absolute value of a relative binary
timestamp. The input timestamp represents a relative (delta) time.

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time parameter or invalid results.

The following example scales a relative time, computes its absolute value, and
prints the result.

utc_t relutc, scaledutc;
char timstr [UTC_MAX STR LEN];
/*

* Make sure relative timestamp represents a positive interval...

*/

utc_abstime (&relutc, /* Out: Abs-value of rel time */
&relutc) ; /* In: Relative time to scale */
/*
* Scale it by a factor of 17...
*/
utc multime (&scaledutc, /* Out: Scaled relative time */
&relutc, /* In: Relative time to scale */
17L) ; /* In: Scale factor x/

DECdts Portable Applications Programming Interface DECdts-13

DECdts Portable Applicatons Programming Interface

utc_abstime

Out:

In:
In:

Out:

In:
In:

Out:

In:
In:

utc_ascreltime(timstr, /*
UTC_MAX STR LEN, /*
&scaledutc) ; /*
/*
printf ("$s\n", timstr);
/*
* Scale it by a factor of 17.65...
*/
utc mulftime (&scaledutc, /*
&relutc, /*
17.65); /*
utc_ascreltime (timstr, /*
UTC_MAX STR LEN, /*
&scaledutc) ; /*
/*

printf ("$s\n",timstr);

ASCII relative time
Length of input string
Relative time to
convert

Scaled relative time
Relative time to scale
Scale factor

ASCII relative time
Length of input string
Relative time to
convert

DECdts—14 DECdts Portable Applications Programming Interface

*/
*/

*/
*/
*/

DECdts Portable Applicatons Programming Interface
utc_addtime

utc_addtime

Computes the sum of two binary timestamps; the timestamps can be two relative
times or a relative time and an absolute time.

Format
#include <utc.h>

int utc_addtime(result, *utcl, *utc2)

utc_t result;
const utc_t *utcl,
const utc_t *utc2;

Parameters

Input
utcl
Binary timestamp or relative binary timestamp.

utc2
Binary timestamp or relative binary timestamp.

Output

result
Resulting binary timestamp or relative binary timestamp, depending on the
operation performed:

e relative time + relative time = relative time
e absolute time + relative time = absolute time
e relative time + absolute time = absolute time

e absolute time + absolute time is undefined. See NOTES.

Description

The Add Time routine adds two binary timestamps, producing a third binary
timestamp whose inaccuracy is the sum of the two input inaccuracies. One or
both of the input timestamps typically represent a relative (delta) time. The TDF
in the first input timestamp is copied to the output.

Notes

Although no error is returned, do not use the combination absolute time +
absolute time.

Returns

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time parameter or invalid results.

DECdts Portable Applications Programming Interface DECdts-15

DECdts Portable Applicatons Programming Interface
utc_addtime

Example

The following example shows how to compute a timestamp that represents a time
at least 5 seconds in the future.

utc t now, future, fivesec;

reltimespec t tfivesec;

timespec t tzero;

/*
* Construct a timestamp that represents 5 seconds...
*/

tfivesec.tv sec = 5;

tfivesec.tv nsec = 0;

tzero.tv_sec = 0;

tzero.tv nsec = 0;

utc mkbinreltime (&fivesec, /* Out: 5 secs in binary timestamp */
&tfivesec, /* In: 5 secs in timespec * /
&tzero); /* In: 0 secs inaccuracy in timespec */

/*
* Get the maximum possible current time...
* (NULL input parameter is used to specify the current time.)

*x/
utc_pointtime((utc t *)0, /* Out: Earliest possible current time */
(utc_t *)0, /* Out: Midpoint of current time */
&now, /* Out: Latest possible current time */
(utc_t *)0);/* In: Use current time */
/*
* Add 5 seconds to get future timestamp...
*/
utc_addtime (&future, /* Out: Future binary timestamp */
&now, /* In: Latest possible time now */
&fivesec); /* In: 5 secs */

Related Functions

utc_subtime

DECdts—16 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_anytime

utc_anytime

Format

Parameters

Description

Converts a binary timestamp to a tm structure, using the time differential factor
(TDF) information contained in the timestamp to determine the TDF returned
with the tm structure.

#include <utc.h>
int utc_anytime(timetm, *tns, *inacctm, *ins, *tdf, *utc)

struct tm timetm;
long *tns;

struct tm *inacctm;
long *ins;

long *tdf;

const utc_t *utc;

Input
utc
Binary timestamp.

Output

timetm
Time component of the binary timestamp expressed in the timestamp’s local time.

tns
Nanoseconds since time component of the binary timestamp.

inacctm

Seconds of inaccuracy component of the binary timestamp. If the inaccuracy is
finite, then tm mday returns a value of —1 and tm mon and tm_year return values
of 0. The field tm_yday contains the inaccuracy in days. If the inaccuracy is
infinite, all tm structure fields return values of —1.

ins
Nanoseconds of inaccuracy component of the binary timestamp.

tdf
TDF component of the binary timestamp in units of seconds east or west of GMT.

The Any Time routine converts a binary timestamp to a tm structure. The TDF
information contained in the timestamp is returned with the time and inaccuracy
components; the TDF component determines the offset from GMT and the local
time value of the tm structure. Additional returns include nanoseconds since
Time and nanoseconds of inaccuracy.

DECdts Portable Applications Programming Interface DECdts-17

DECdts Portable Applicatons Programming Interface
utc_anytime

Returns

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.
Example

The following example converts a timestamp, using the TDF information in the
timestamp, then prints the result.

utc_t evnt;

struct tm tmevnt;
timespec_t tevnt, ievnt;
char tznam[80] ;

/*

* Assume evnt contains the timestamp to convert...
*

* Get time as a tm structure, using the time zone information in
* the timestamp...

*/
utc_anytime (&tmevnt, /* Out: tm struct of time of evnt */
(long *)O0, /* Out: nanosec of time of evnt * /
(struct tm *)0, /* Out: tm struct of inacc of evnt */
(long *)O0, /* Out: nanosec of inacc of evnt */
(int *)o, /* Out: tdf of evnt */
&evnt) ; /* In: binary timestamp of evnt */
/*
* Get the time and inaccuracy as timespec structures...
x/
utc_bintime (&tevnt, /* Out: timespec of time of evnt */
&ievnt, /* Out: timespec of inacc of evnt */
(int *)o0, /* Out: tdf of evnt * /
&evnt) ; /* In: Binary timestamp of evnt */
/*

* Construct the time zone name from time zone information in the
* timestamp...

x/
utc_anyzone (tznam, /* Out: Time zone name */
80, /* In: Size of time zone name */
(long *)O0, /* Out: tdf of event * /
(long *)0, /* Out: Daylight saving flag */
&evnt) ; /* In: Binary timestamp of evnt */
/*
* Print timestamp in the format:
*
* 1991-03-05-21:27:50.02310.140 (GMT-5:00)
* 1992-04-02-12:37:24.003Iinf (GMT+7:00)
*
*

/

printf ("%$d-%02d-%02d-%02d:%02d:%02d.%03d",
tmevnt.tm year+1900, tmevnt.tm mon+l, tmevnt.tm mday,
tmevnt.tm hour, tmevnt.tm_min, tmevnt.tm sec,
(tevnt.tv nsec/1000000));

if ((long)ievnt.tv sec == -1)
printf ("Iinf");
else
printf ("I%$d.%03d", ievnt.tv sec, (ievnt.tv nsec/1000000));

DECdts—18 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_anytime

printf (" (%s)\n", tznam);

Related Functions

utc mkanytime, utc anyzone, utc gettime, utc getusertime, utc gmtime,
utc localtime

DECdts Portable Applications Programming Interface DECdts-19

DECdts Portable Applicatons Programming Interface
utc_anyzone

utc_anyzone

Gets the time zone label and offset from GMT, using the TDF contained in the

input utc.
Format
#include <utc.h>
int utc_anyzone(tzname, tzlen, *tdf, isdst, *utc)
char tzname;
size t tzlen;
long *tdf;
int *isdst;
const utc_t *utc;
Parameters
Input
tzlen
Length of the tzname buffer.
utc
Binary time.
Output
tzname
Character string that is long enough to hold the time zone label.
tdf
Longword with differential in seconds east or west of GMT.
isdst
Integer with a value of —1, indicating that no information is supplied as to
whether it is standard time or daylight saving time. A value of -1 is always
returned.
Description
The Any Zone routine gets the time zone label and offset from GMT, using the
TDF contained in the input utc. The label returned is always of the form GMT
+ n or GMT — n, where n is the TDF expressed in hours:minutes. (The label
associated with an arbitrary time zone is not known; only the offset is known.)
Notes

All of the output parameters are optional. No value is returned and no error
occurs if the pointer is null.

DECdts—20 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_anyzone

Returns

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or an insufficient buffer.

Example

See the sample program for the utc_anytime routine.

Related Functions

utc_anytime, utc_gmtzone, utc localzone

DECdts Portable Applications Programming Interface DECdts-21

DECdts Portable Applicatons Programming Interface
utc_ascanytime

utc_ascanytime

Format

Parameters

Description

Returns

Example

Converts a binary timestamp to an ASCII string that represents an arbitrary
time zone.

#include <utc.h>
int utc_ascanytime(*cp, stringlen, *utc)
char *cp;

size_t stringlen;
const utc_t *utc;

Input
stringlen
The length of the cp buffer.

utc
Binary timestamp.

Output

cp
ASCII string that represents the time.

The ASCII Any Time routine converts a binary timestamp to an ASCII string
that expresses a time. The TDF component in the timestamp determines the
local time used in the conversion.

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time parameter or invalid results.

The following example converts a time to an ASCII string that expresses the time
in the time zone where the timestamp was generated.

utc_t evnt;
char localTime [UTC_MAX STR LEN];
/*
* Assuming that evnt contains the timestamp to convert, convert
* the time to ASCII in the following format:
*
* 1991-04-01-12:27:38.37-8:00I2.00
*/

DECdts—22 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_ascanytime

utc_ascanytime (localtime, /* Out: Converted time x/
UTC MAX STR LEN, /* In: Length of string */
&evnt) ; /* In: Time to convert */

Related Functions

utc ascgmtime, utc_asclocaltime

DECdts Portable Applications Programming Interface DECdts—-23

DECdts Portable Applicatons Programming Interface
utc_ascgmtime

utc_ascgmtime

Converts a binary timestamp to an ASCII string that expresses a GMT time.

Format
#include <utc.h>
int utc_ascgmtime(*cp, stringlen, *utc)
char *cp;
size_t stringlen;
const utc_t *utc;
Parameters
Input
stringlen
Length of the cp buffer.
utc
Binary timestamp.
Output
cp
ASCII string that represents the time.
Description
The ASCII GMT Time routine converts a binary timestamp to an ASCII string
that expresses a time in GMT.
Returns
0 Indicates that the routine executed successfully.
-1 Indicates an invalid time parameter or invalid results.
Example

The following example converts the current time to GMT format.

char gmTime [UTC_MAX STR LEN];
/*

* Convert the current time to ASCII in the following format:
*

* 1991-04-01-12:27:38.3712.00
x/
utc_ascgmtime (gmTime, /* Out: Converted time */
UTC_MAX STR LEN, /* In: Length of string */
(utc_t*) NULL); /* In: Time to convert */

/* Default is current time */

DECdts—24 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_ascgmtime

Related Functions

utc_ascanytime, utc_asclocaltime

DECdts Portable Applications Programming Interface DECdts—25

DECdts Portable Applicatons Programming Interface
utc_asclocaltime

utc_asclocaltime

Format

Parameters

Description

Returns

Example

Converts a binary timestamp to an ASCII string that represents a local time.

#include <utc.h>

int utc_asclocaltime(*cp, stringlen, *utc)

char *cp;
size_t stringlen;
const utc_t *utc;

Input
stringlen
Length of the cp buffer.

utc
Binary timestamp.

Output

cp
ASCII string that represents the time.

The ASCII Local Time routine converts a binary timestamp to an ASCII string
that expresses local time.

OpenVMS systems do not have a default time zone rule. You select a time zone
by defining sys$timezone rule during the sys$manager:net$configure.com
procedure, or by explicitly defining sysStimezone rule.

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time parameter or invalid results.

The following example converts the current time to local time.

char localTime[UTC MAX STR LEN];

/*
* Convert the current time...
*/
utc_asclocaltime(localTime, /* Out: Converted time */
UTC_MAX STR LEN, /* In: Length of string */
(utc_t*) NULL); /* In: Time to convert */
/* Default is current time */

DECdts—26 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_asclocaltime

Related Functions

utc_ascanytime, utc_ascgmtime

DECdts Portable Applications Programming Interface DECdts-27

DECdts Portable Applicatons Programming Interface
utc_ascreltime

utc_ascreltime

Converts a relative binary timestamp to an ASCII string that represents the

time.
Format
#include <utc.h>
int utc_ascreltime(*cp, stringlen, *utc)
char *cp;
const size_t stringlen;
const utc_t *utc;
Parameters
Input
utc
Relative binary timestamp.
stringlen
Length of the cp buffer.
Output
cp
ASCII string that represents the time.
Description
The ASCII Relative Time routine converts a relative binary timestamp to an
ASCII string that represents the time.
Returns
0 Indicates that the routine executed successfully.
-1 Indicates an invalid time parameter or invalid results.
Example

See the sample program for the utc_abstime routine.

Related Functions

utc_mkascreltime

DECdts—28 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_binreltime

utc_binreltime

Format

Parameters

Description

Returns

Example

Converts a relative binary timestamp to two timespec structures that express
relative time and inaccuracy.

#include <utc.h>
int utc_binreltime(*timesp, *inaccsp, *utc)

reltimespec_t *timesp;
timespec_t *inaccsp;
const utc_t *utc;

Input
utc
Relative binary timestamp.

Output

timesp

Time component of the relative binary timestamp, in the form of seconds and
nanoseconds since the base time (1970-01-01:00:00:00.0 + 00:0010).

inaccsp
Inaccuracy component of the relative binary timestamp, in the form of seconds
and nanoseconds.

The Binary Relative Time routine converts a relative binary timestamp to two
timespec structures that express relative time and inaccuracy. These timespec
structures describe a time interval.

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.

The following example measures the duration of a process, then prints the
resulting relative time and inaccuracy.

utc_t before, duration;
reltimespec t tduration;
timespec t iduration;
/*
* Get the time before the start of the operation...
*/
utc_gettime (&before) ; /* Out: Before binary timestamp */

DECdts Portable Applications Programming Interface DECdts—29

DECdts Portable Applicatons Programming Interface
utc_binreltime

/*

* . ..Later...

*

* Subtract, getting the duration as a relative time.
*

*

NOTE: The NULL argument is used to obtain the current time.

*/
utc_subtime (&duration, /* Out: Duration rel bin timestamp */
(utc_t *)o, /* In: After binary timestamp */
&before) ; /* In: Before binary timestamp * /
/*
* Convert the relative times to timespec structures...
*x/
utc_binreltime(&tduration, /* Out: Duration time timespec * /
&iduration, /* Out: Duration inacc timespec */
&duration); /* In: Duration rel bin timestamp */
/*
* Print the duration...
*/
printf ("%d.%04d", tduration.tv_sec, (tduration.tv nsec/10000));
if ((long)iduration.tv sec == -1)
printf ("Iinf\n");
else

printf ("I%d.%04d\n", iduration.tv sec, (iduration.tv nsec/100000));

Related Functions

utc_mkbinreltime

DECdts—30 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_bintime

utc_bintime
Converts a binary timestamp to a timespec structure.

Format
#include <utc.h>
int utc_bintime(*timesp, *inaccsp, *tdf, *utc)

timespec_t *timesp;
timespec_t *inaccsp;
long *tdf;

const utc_t *utc;

Parameters

Input
utc
Binary timestamp.

Output

timesp
Time component of the binary timestamp, in the form of seconds and nanoseconds
since the base time.

inaccsp
Inaccuracy component of the binary timestamp, in the form of seconds and
nanoseconds.

tdf
TDF component of the binary timestamp in the form of signed number of seconds
east or west of GMT.

Description

The Binary Time routine converts a binary timestamp to a timespec structure.
The TDF information contained in the timestamp is returned.

Returns

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.

Example

See the sample program for the utc_anytime routine.

DECdts Portable Applications Programming Interface DECdts-31

DECdts Portable Applicatons Programming Interface
utc_bintime

Related Functions

utc_binreltime, utc mkbintime

DECdts—32 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_boundtime

utc_boundtime

Given two UTC times, one before and one after an event, returns a single UTC
time whose inaccuracy includes the event.

Format
#include <utc.h>

int utc_boundtime(*result, *utcl, *utc2)

utc_t *result;
const utc_t *utcl,;
const utc_t *utc2;

Parameters

Input

utcl
Before binary timestamp or relative binary timestamp.

utc2
After binary timestamp or relative binary timestamp.

Output

result
Spanning timestamp.

Description

Given two UTC times, the Bound Time routine returns a single UTC time
whose inaccuracy bounds the two input times. This is useful for timestamping
events; the routine gets the utc values before and after the event, then calls
utc boundtime to build a timestamp that includes the event.

Notes

The TDF in the output UTC value is copied from the utc2 input. If one or both
input values have infinite inaccuracies, the returned time value also has an
infinite inaccuracy and is the average of the two input values.

Returns

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time parameter or invalid parameter order.

DECdts Portable Applications Programming Interface DECdts—33

DECdts Portable Applicatons Programming Interface
utc_boundtime

Example

The following example records the time of an event and constructs a single
timestamp, which includes the time of the event. Note that the utc_getusertime
routine is called so the time zone information that is included in the timestamp
references the user’s environment rather than the system’s default time zone.

OpenVMS systems do not have a default time zone rule. You select a time zone
by defining sys$timezone rule during the syssmanager:net$configure.com
procedure, or by explicitly defining sysStimezone rule.

utc t before, after, evnt;
/*
* Get the time before the event...
*/
utc_getusertime (&before); /* Out: Before binary timestamp */
/*
* Get the time after the event...
*/
utc_getusertime(&after); /* Out: After binary timestamp */
/*
* Construct a single timestamp that describes the time of the
* event...
*/
utc boundtime (&evnt, /* Out: Timestamp that bounds event */
&before, /* In: Before binary timestamp */
gafter); /* In: After binary timestamp */

Related Functions

utc_gettime, utc pointtime, utc_spantime

DECdts—34 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_cmpintervaltime

utc_cmpintervaltime
Compares two binary timestamps or two relative binary timestamps.

Format
#include <utc.h>

int utc_cmpintervaltime(*relation, *utcl, *utc2)
enum utc_cmptype *relation;

const utc_t *utcl;
const utc_t *utc2;

Parameters

Input

utcl
Binary timestamp or relative binary timestamp.

utc2
Binary timestamp or relative binary timestamp.

Output

relation
Receives the result of the comparison of utcl:utc2, where the result is an
enumerated type with one of the following values:

= utc_equalTo
e utc _lessThan
= utc_greaterThan

e utc_indeterminate

Description

The Compare Interval Time routine compares two binary timestamps and
returns a flag indicating that the first time is greater than, less than, equal to,
or overlapping with the second time. Two times overlap if the intervals (time —
inaccuracy, time + inaccuracy) of the two times intersect.

The input binary timestamps express two absolute or two relative times. Do
not compare relative binary timestamps and binary timestamps. If you do, no
meaningful results and no errors are returned.

This routine does a temporal ordering of the time intervals.
utcl is utc lessThan utc2 iff
utcl.time + utcl.inacc < utc2.time - utc2.inacc

utcl is utc _greaterThan utc2 iff
utcl.time - utcl.inacc > utc2.time + utc2.inacc

utcl utc equalTo utc2 iff

utcl.time == utc2.time and
utcl.inacc == 0 and
utc2.inacc == 0

DECdts Portable Applications Programming Interface DECdts—35

DECdts Portable Applicatons Programming Interface
utc_cmpintervaltime

utcl is utc_indeterminate with respect to utc2 if the intervals

overlap.
Returns
0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument.
Example
The following example checks to see if the current time is definitely after 1:00 P.m.
today GMT.
struct tm tmtime, tmzero;
enum utc_cmptype relation;
utc t testtime;
/*
* Zero the tm structure for inaccuracy...
*/
memset (&tmzero, 0, sizeof (tmzero));
/*
* Get the current time, mapped to a tm structure...
*
* NOTE: The NULL argument is used to get the current time.
*/
utc_gmtime (&tmtime, /* Out: Current GMT time in tm struct */
(long *)0, /* Out: Nanoseconds of time */
(struct tm *)0, /* Out: Current inaccuracy in tm struct */
(long *)O, /* Out: Nanoseconds of inaccuracy */
(utc_t *)0); /* In: Current timestamp */
/*
* Construct a tm structure that corresponds to 1:00 PM...
*/

tmtime.tm hour = 13;

tmtime.tm min = 0;
tmtime.tm sec = 0;
/*
* Convert to a binary timestamp...
*x/
utc_mkgmtime (&¢testtime, /* Out: Binary timestamp of 1:00 PM */
&tmtime, /* In: 1:00 PM in tm struct */
0, /* In: Nanoseconds of time * /
&tmzero, /* In: Zero inaccuracy in tm struct */
0); /* In: Nanoseconds of inaccuracy * /
/*

* Compare to the current time, noting the use of the
* NULL argument...

*/
utc _cmpintervaltime (&relation, /* Out: Comparison relation */
(utc_t *)o0, /* In: Current timestamp */
&testtime); /* In: 1:00 PM timestamp */
/*
* If it is not later - wait, print a message, etc.
*/
if (relation != utc_greaterThan) {

DECdts—-36 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_cmpintervaltime

/*

* Note: It could be earlier than 1:00 PM or it could be

* indeterminate. If indeterminate, for some applications
* it might be worth waiting.

*/

Related Functions

utc cmpmidtime

DECdts Portable Applications Programming Interface DECdts—37

DECdts Portable Applicatons Programming Interface
utc_cmpmidtime

utc_cmpmidtime

Compares two binary timestamps or two relative binary timestamps, ignoring
inaccuracies.

Format
#include <utc.h>
int utc_cmpmidtime(*relation, *utcl, *utc2)

enum utc_cmptype *relation;
const utc_t *utcl,
const utc_t *utc2;

Parameters

Input
utcl
Binary timestamp or relative binary timestamp.

utc2
Binary timestamp or relative binary timestamp.

Output

relation
Result of the comparison of utcl:utc2, where the result is an enumerated type
with one of the following values:

= utc_equalTo
= utc lessThan

= utc_greaterThan

Description

The Compare Midpoint Times routine compares two binary timestamps and
returns a flag indicating that the first timestamp is greater than, less than,
or equal to the second timestamp. Inaccuracy information is ignored for this
comparison; the input values are, therefore, equivalent to the midpoints of the
time intervals described by the input binary timestamps.

The input binary timestamps express two absolute or two relative times. Do
not compare relative binary timestamps and binary timestamps. If you do, no
meaningful results and no errors are returned.

The following routine does a lexical ordering on the time interval midpoints.

utcl is utc_lessThan utc2 iff
utcl.time < utc2.time

utcl is utc_greaterThan utc2 iff
utcl.time > utc2.time

utcl is utc_equalTo utc2 iff
utcl.time == utc2.time

DECdts—38 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_cmpmidtime

Returns

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument.

Example

The following example checks if the current time (ignoring inaccuracies) is after
1:00 p.m. today local time.

struct tm tmtime, tmzero;
enum utc_cmptype relation;
utc_t testtime;
/*
* Zero the tm structure for inaccuracy...
*/
memset (&tmzero, 0, sizeof (tmzero));
/*
* Get the current time, mapped to a tm structure...
*
* NOTE: The NULL argument is used to get the current time.
*/
utc_localtime (&tmtime, /* Out: Current local time in tm struct */
(long *)o0, /* Out: Nanoseconds of time */
(struct tm *)0, /* Out: Current inacc in tm struct x/
(long *)O0, /* Out: Nanoseconds of inaccuracy */
(utc_t *)0); /* In: Current timestamp x/
/*
* Construct a tm structure that corresponds to 1:00 P.M....
*/

tmtime.tm hour = 13;
tmtime.tm min = 0;

tmtime.tm sec = 0;
/*
* Convert to a binary timestamp...
*/
utc_mklocaltime (&testtime, /* Out: Binary timestamp of 1:00 P.M. */
&tmtime, /* In: 1:00 P.M. in tm struct */
0, /* In: Nanoseconds of time x/
&tmzero, /* In: Zero inaccuracy in tm struct */
0); /* In: Nanoseconds of inaccuracy x/
/*

* Compare to the current time, noting the use of the
* NULL argument...

*/
utc_cmpmidtime (&relation, /* Out: Comparison relation x/
(utc_t *)o, /* In: Current timestamp */
&testtime); /* In: 1:00 P.M. timestamp x/
/*
* If the time is not later - wait, print a message, etc.
*/

if (relation != utc greaterThan) {

DECdts Portable Applications Programming Interface DECdts—39

DECdts Portable Applicatons Programming Interface
utc_cmpmidtime

/* It is not later then 1:00 P.M. local time. Note that
* this depends on the setting of the user’s environment.
*/

}

Related Functions

utc_cmpintervaltime

DECdts—40 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_gettime

utc_gettime

Returns the current system time and inaccuracy as a binary timestamp.

Format
#include <utc.h>
int utc_gettime(*utc)
utc_t *utc;
Parameters
Input
None.
Output
utc
System time as a binary timestamp.
Description
The Get Time routine returns the current system time and inaccuracy in a
binary timestamp. The routine takes the TDF from the operating system’s
kernel; the TDF is specified in a system-dependent manner.
Returns
0 Indicates that the routine executed successfully.
-1 Generic error that indicates the time service cannot be accessed.
Example

See the sample program for the utc_binreltime routine.

DECdts Portable Applications Programming Interface DECdts—41

DECdts Portable Applicatons Programming Interface
utc_getusertime

utc_getusertime

Returns the time and process-specific TDF, rather than the system-specific TDF.

Format
#include <utc.h>
int utc_getusertime(*utc)
utc_t *utc;
Parameters
Input
None.
Output
utc
System time as a binary timestamp.
Description
The Get User Time routine returns the system time and inaccuracy in a
binary timestamp. The routine takes the TDF from the user’s environment,
which determines the time zone rule. OpenVMS systems do not have a default
time zone rule. You select a time zone by defining sysstimezone rule during
the sys$manager:netSconfigure.com procedure, or by explicitly defining
sys$timezone rule.
Returns
0 Indicates that the routine executed successfully.
-1 Generic error that indicates the time service cannot be accessed.
Example

See the sample program for the utc_boundtime routine.

Related Functions

utc _gettime

DECdts—42 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_gmtime

utc_gmtime

Converts a binary timestamp to a tm structure that expresses GMT or the
equivalent UTC.

Format
#include <utc.h>
int utc_gmtime(*timetm, *tns, *inacctm, *ins, *utc)

struct tm *timetm;
long *tns;

struct tm *inacctm;
long *ins;

const utc_t *utc;

Parameters

Input
utc
Binary timestamp to be converted to tm structure components.

Output

timetm
Time component of the binary timestamp.

tns
Nanoseconds since time component of the binary timestamp.

inacctm

Seconds of inaccuracy component of the binary timestamp. If the inaccuracy is
finite, then tm mday returns a value of —1 and tm mon and tm_year return values
of zero. The field tm_yday contains the inaccuracy in days. If the inaccuracy is
infinite, all tm structure fields return values of —1.

ins
Nanoseconds of inaccuracy component of the binary timestamp. If the inaccuracy
is infinite, ins returns a value of —1.

Description

The Greenwich Mean Time (GMT) routine converts a binary timestamp to a
tm structure that expresses GMT (or the equivalent UTC). Additional returns
include nanoseconds since time and nanoseconds of inaccuracy.

Returns

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.

DECdts Portable Applications Programming Interface DECdts—43

DECdts Portable Applicatons Programming Interface
utc_gmtime

Example

See the sample program for the utc_cmpintervaltime routine.

Related Functions

utc_anytime, utc_gmtzone, utc_localtime, utc_mkgmtime

DECdts—44 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_gmtzone

utc_gmtzone

Format

Parameters

Description

Notes

Gets the time zone label for GMT.

#include <utc.h>

int utc_gmtzone(*tzname, tzlen, *tdf, *isdst, *utc)

char *tzname,;
size_t tzlen;
long *tdf;

int *isdst;

const utc_t *utc;

Input
tzlen
Length of buffer tzname.

utc
Binary timestamp. This parameter is ignored.

Output

tzname
Character string long enough to hold the time zone label.

tdf
Longword with differential in seconds east or west of GMT. A value of zero is
always returned.

isdst
Integer with a value of zero, indicating that daylight saving time is not in effect.
A value of zero is always returned.

The Greenwich Mean Time Zone routine gets the time zone label and zero
offset from GMT. Outputs are always tdf = 0 and tzname = GMT. This routine
exists for symmetry with the Any Zone (utc_anyzone) and the Local Zone
(utc_localzone) routines.

All of the output parameters are optional. No value is returned and no error
occurs if the tzname pointer is NULL.

DECdts Portable Applications Programming Interface DECdts—45

DECdts Portable Applicatons Programming Interface
utc_gmtzone

Returns
0 Indicates that the routine executed successfully (always returned).
Example
The following example prints out the current time in both local time and GMT
time.
utc t TI0W ;
struct tm tmlocal, tmgmt;
long tzoffset;
int tzdaylight;
char tzlocal [80], tzgmt[80];
/*
* Get the current time once, so both conversions use the same
* time...
*/
utc_gettime (&now) ;
/*

* Convert to local time, using the process TZ environment
* variable...

*/
utc localtime (&tmlocal, /* Out: Local time tm structure */
(long *)O0, /* Out: Nanosec of time * /
(struct tm *)0, /* Out: Inaccuracy tm structure */
(long *)O0, /* Out: Nanosec of inaccuracy * /
&now) ; /* In: Current binary timestamp */
/*

* Get the local time zone name, offset from GMT, and current
* daylight savings flag...

x/
utc_localzone(tzlocal, /* Out: Local time zone name */
80, /* In: Length of loc time zone name */
&tzoffset, /* Out: Loc time zone offset in secs */
&tzdaylight, /* Out: Local time zone daylight flag */
&now) ; /* In: Current binary timestamp */
/*
* Convert to GMT...
*x/
utc_gmtime (&tmgmt, /* Out: GMT tm structure */
(long *)O0, /* Out: Nanoseconds of time */
(struct tm *)0, /* Out: Inaccuracy tm structure */
(long *)O0, /* Out: Nanoseconds of inaccuracy */
&now) ; /* In: Current binary timestamp */
/*
* Get the GMT time zone name...
*/
utc_gmtzone (tzgmt, /* Out: GMT time zone name */
80, /* In: Size of GMT time zone name */
(long *)o0, /* Out: GMT time zone offset in secs */
(int *)o0, /* Out: GMT time zone daylight flag */
&now) ; /* In: Current binary timestamp */

DECdts—-46 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_gmtzone

/*
* Print out times and time zone information in the following
* format:
*
* 12:00:37 (EDT) = 16:00:37 (GMT)
* EDT is -240 minutes ahead of Greenwich Mean Time.
* Daylight savings time is in effect.
*
/

printf ("%d:%02d:%02d (%s) = %d:%02d:%02d (%s)\n",
tmlocal.tm hour, tmlocal.tm min, tmlocal.tm sec, tzlocal,
tmgmt.tm hour, tmgmt.tm min, tmgmt.tm sec, tzgmt);
printf ("%$s is %d minutes ahead of Greenwich Mean Time\n",
tzlocal, tzoffset/60);
if (tzdaylight != 0)
printf ("Daylight savings time is in effect\n");

Related Functions

utc_anyzone, utc_gmtime, utc localzone

DECdts Portable Applications Programming Interface DECdts—47

DECdts Portable Applicatons Programming Interface
utc_localtime

utc_localtime

Format

Parameters

Description

Converts a binary timestamp to a tm structure that expresses local time.

#include <utc.h>
int utc_localtime(*timetm, *tns, *inacctm, *ins, *utc)

struct tm *timetm;
long *tns;

struct tm *inacctm;
long *ins;

const utc_t *utc;

Input
utc
Binary timestamp.

Output

timetm
Time component of the binary timestamp, expressing local time.

tns
Nanoseconds since time component of the binary timestamp.

inacctm

Seconds of inaccuracy component of the binary timestamp. If the inaccuracy is
finite, then tm mday returns a value of -1 and tm mon and tm_year return values
of zero. The field tm_yday contains the inaccuracy in days. If the inaccuracy is
infinite, all tm structure fields return values of —1.

ins
Nanoseconds of inaccuracy component of the binary timestamp. If the inaccuracy
is infinite, ins returns a value of —1.

The Local Time routine converts a binary timestamp to a tm structure that
expresses local time.

OpenVMS systems do not have a default time zone rule. You select a time zone
by defining sys$timezone rule during the sys$manager:net$configure.com
procedure, or by explicitly defining sysstimezone rule.

Additional returns include nanoseconds since time and nanoseconds of inaccuracy.

DECdts—-48 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_localtime

Returns

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.

Example

See the sample program for the utc_gmtzone routine.

Related Functions

utc anytime, utc_gmtime, utc localzone, utc _mklocaltime

DECdts Portable Applications Programming Interface DECdts—49

DECdts Portable Applicatons Programming Interface
utc_localzone

utc_localzone

Format

Parameters

Description

Notes

Gets the local time zone label and offset from GMT, given utc.

#include <utc.h>

int utc_localzone(*tzname, tzlen, *tdf, *isdst, *utc)

char *tzname;
size_t tzlen;
long *tdf;

int *isdst;

const utc_t *utc;

#include <utc.h>

int utc_localzone(*tzname, tzlen, *tdf, *isdst, *utc)

Input
tzlen
Length of the tzname buffer.

utc
Binary timestamp.

Output

tzname
Character string long enough to hold the time zone label.

tdf
Longword with differential in seconds east or west of GMT.

isdst
Integer with a value of zero if standard time is in effect or a value of 1 if daylight
savings time is in effect.

The Local Zone routine gets the local time zone label and offset from GMT, given
utec.

OpenVMS systems do not have a default time zone rule. You select a time zone
by defining sys$timezone rule during the syssSmanager:net$configure.com
procedure, or by explicitly defining sysstimezone rule.

All of the output parameters are optional. No value is returned and no error
occurs if the pointer is null.

DECdts-50 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_localzone

Returns

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or an insufficient buffer.

Example

See the sample program for the utc_gmtzone routine.

Related Functions

utc_anyzone, utc_gmtzone, utc_localtime

DECdts Portable Applications Programming Interface DECdts-51

DECdts Portable Applicatons Programming Interface
utc_mkanytime

utc_mkanytime

Format

Parameters

Description

Converts a tm structure and TDF (expressing the time in an arbitrary time zone)
to a binary timestamp.

#include <utc.h>
int utc_mkanytime(*utc, *timetm, tns, *inacctm, ins, tdf)

utc_t *utc;

const struct tm *timetm;
long tns;

const struct tm *inacctm;
long ins;

long tdf;

Input

timetm

A tm structure that expresses the local time; tm _wday and tm_yday are ignored on
input.

tns
Nanoseconds since time component.

inacctm

A tm structure that expresses days, hours, minutes, and seconds of inaccuracy. If
tm yday is negative, the inaccuracy is considered to be infinite; tm mday, tm mon,
tm wday, tm isdst, tm gmtoff, and tm zone are ignored on input.

ins
Nanoseconds of inaccuracy component.

tdf
Time differential factor to use in conversion.

Output

utc
Resulting binary timestamp.

The Make Any Time routine converts a tm structure and TDF (expressing the
time in an arbitrary time zone) to a binary timestamp. Required inputs include
nanoseconds since time and nanoseconds of inaccuracy.

DECdts-52 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_mkanytime

Returns

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.

Example

The following example converts a string 1SO format time in an arbitrary time
zone to a binary timestamp. This may be part of an input timestamp routine,
although a real implementation will include range checking.

utc_t utc;

struct tm tmtime, tminacc;

float tsec, isec;

double tmp;

long tnsec, insec;

int i, offset, tzhour, tzmin, year, mon;

char *string;

/* Try to convert the string... */

if (sscanf (string, "%d-%d-%d-%d:%d:%e+%d:%dI%e",
&year, &mon, &tmtime.tm mday, &tmtime.tm hour,
&tmtime.tm min, &tsec, &tzhour, &tzmin, &isec) != 9) {

/* Try again with a negative TDF... */

if (sscanf(string, "%d-%d-%d-%d:%d:%e-%d:%dI%e",
&year, &mon, &tmtime.tm mday, &tmtime.tm hour,

&tmtime.tm min, &tsec, &tzhour, &tzmin, &isec) != 9) {
/* ERROR */
exit (1) ;
/* TDF is negative */
tzhour = -tzhour;
tzmin = -tzmin;
/* Fill in the fields... */

tmtime.tm year = year - 1900;
tmtime.tm mon = --mon;
tmtime.tm sec = tsec;

tnsec = (modf (tsec, &tmp)*1.0E9);
offset = tzhour*3600 + tzmin*60;
tminacc.tm sec = isec;

insec = (modf (isec, &tmp)*1.0E9);

/* Convert to a binary timestamp... x/

utc_mkanytime (&utc, /* Out: Resultant binary timestamp */
gtmtime, /* In: tm struct that represents input */
tnsec, /* In: Nanoseconds from input */
gtminacc, /* In: tm struct that represents inacc */
insec, /* In: Nanoseconds from input */
offgset); /* In: TDF from input x/

DECdts Portable Applications Programming Interface DECdts-53

DECdts Portable Applicatons Programming Interface
utc_mkanytime

Related Functions

utc_anytime, utc_anyzone

DECdts-54 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_mkascreltime

utc_mkascreltime

Converts a null-terminated character string that represents a relative timestamp
to a binary timestamp.

Format
#include <utc.h>
int utc_mkascreltime(*utc, *string)
utc_t *utc;
char *string;
Parameters
Input
string
A null-terminated string that expresses a relative timestamp in its 1SO format.
Output
utc
Resulting binary timestamp.
Description
The Make ASCII Relative Time routine converts a null-terminated string,
which represents a relative timestamp, to a binary timestamp.
Notes
The ASCII string must be null-terminated.
Returns
0 Indicates that the routine executed successfully.
-1 Indicates an invalid time parameter or invalid results.
Example
The following example converts an ASCII relative time string to its binary
equivalent.
utc_ t utc;
char str[UTC_MAX STR LEN];
/*

* Relative time of 333 days, 12 hours, 1 minute, 37.223 seconds
* Inaccuracy of 50.22 sec. in the format: -333-12:01:37.223150.22
*/

(void) strcpy ((void *)str,
"-333-12:01:37.223150.22");

DECdts Portable Applications Programming Interface DECdts-55

DECdts Portable Applicatons Programming Interface
utc_mkascreltime

utc mkascreltime (&utc, /* Out: Binary utc
str); /* In: String

Related Functions

utc_ascreltime

DECdts-56 DECdts Portable Applications Programming Interface

*/
*/

DECdts Portable Applicatons Programming Interface
utc_mkasctime

utc_mkasctime

Format

Parameters

Description

Notes

Returns

Example

Converts a null-terminated character string that represents an absolute time to a
binary timestamp.

#include <utc.h>
int utc_mkasctime(*utc, *string)

utc_t *utc;
char *string;

Input
string
A null-terminated string that expresses an absolute time.

Output

utc
Resulting binary timestamp.

The Make ASCII Time routine converts a null-terminated string that represents
an absolute time to a binary timestamp.

The ASCII string must be null-terminated.

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time parameter or invalid results.

The following example converts an ASCII time string to its binary equivalent.

utc_t utc;
char str [UTC_MAX STR_LEN];
/*

* July 4, 1776, 12:01:37.223 local time
* TDF of -5:00 hours
* Inaccuracy of 3600.32 seconds
*/
(void) strcpy ((void *)str,
"1776-07-04-12:01:37.223-5:00 I 3600.32");

DECdts Portable Applications Programming Interface DECdts-57

DECdts Portable Applicatons Programming Interface
utc_mkasctime

utc mkasctime (&utc, /* Out: Binary utc
str); /* In: String

Related Functions

utc_ascanytime, utc_ascgmtime, utc_asclocaltime

DECdts-58 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_mkbinreltime

utc_mkbinreltime

Converts a timespec structure expressing a relative time to a binary timestamp.

Format
#include <utc.h>
int utc_mkbinreltime(*utc, *timesp, *inaccsp)

utc_t *utc;
const reltimespec_t *timesp;
const timespec_t *inaccsp;

Parameters

Input
timesp
A reltimespec structure that expresses a relative time.

inaccsp
A timespec structure that expresses inaccuracy. If tv_sec is set to a value of -1,
the inaccuracy is considered to be infinite.

Output
utc
Resulting relative binary timestamp.

Description

The Make Binary Relative Time routine converts a timespec structure that
expresses relative time to a binary timestamp.

Returns

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.

Example

See the sample program for the utc_addtime routine.

Related Functions

utc_binreltime, utc mkbintime

DECdts Portable Applications Programming Interface DECdts-59

DECdts Portable Applicatons Programming Interface
utc_mkbintime

utc_mkbintime

Converts a timespec structure to a binary timestamp.

Format
#include <utc.h>
int utc_mkbintime(*utc, *timesp, *inaccsp)

utc_t *utc;

const timespec_t *timesp;
const timespec_t *inaccsp;
long tdf;

Parameters

Input
timesp
A timespec structure that expresses time since 1970-01-01:00:00:00.0+0:0010.

inaccsp
A timespec structure that expresses inaccuracy. If tv_sec is set to a value of -1,
the inaccuracy is considered to be infinite.

tdf
TDF component of the binary timestamp.

Output

utc
Resulting binary timestamp.

Description

The Make Binary Time routine converts a timespec structure time to a binary
timestamp. The TDF input is used as the TDF of the binary timestamp.

Returns

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.

Example

The following example obtains the current time from time (), converts it to a
binary timestamp with an inaccuracy of 5.2 seconds, and specifies GMT.

timespec_t ttime, tinacc;

utc t utc;

/*

* Obtain the current time (without the inaccuracy)...
*/

DECdts—-60 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_mkbintime

ttime.tv_sec = time((time t *)0);
ttime.tv nsec = 0;

/*
* Specify the inaccuracy...
*/

tinacc.tv_sec = 5;

tinacc.tv _nsec = 200000000;

/*
* Convert to a binary timestamp...
*/
utc_mkbintime (&utc, /* Out: Binary timestamp */
&ttime, /* In: Current time in timespec */
&tinacc, /* In: 5.2 seconds in timespec */
0); /* In: TDF of GMT */

Related Functions

utc bintime, utc_mkbinreltime

DECdts Portable Applications Programming Interface DECdts—61

DECdts Portable Applicatons Programming Interface
utc_mkgmtime

utc_mkgmtime

Format

Parameters

Description

Returns

Converts a tm structure that expresses GMT or UTC to a binary timestamp.

#include <utc.h>
int utc_mkgmtime(*utc, *timetm, tns, *inacctm, ins)

utc_t *utc;

const struct tm *timetm;
long tns;

const struct tm *inacctm;
long ins;

Input
timetm

A tm structure that expresses GMT. On input, tm_wday and tm_yday are ignored.

tns
Nanoseconds since time component.

inacctm

A tm structure that expresses days, hours, minutes, and seconds of inaccuracy.
If tm_yday is negative, the inaccuracy is considered to be infinite. On input,

tm mday, tm _mon, tm wday, tm isdst, tm gmtoff, and tm zone are ignored.
ins
Nanoseconds of inaccuracy component.

Output

utc
Resulting binary timestamp.

The Make Greenwich Mean Time routine converts a tm structure that
expresses GMT or UTC to a binary timestamp. Additional inputs include
nanoseconds since the last second of time and nanoseconds of inaccuracy.

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.

DECdts—-62 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_mkgmtime

Example

See the sample program for the utc_cmpintervaltime routine.

Related Functions

utc _gmtime

DECdts Portable Applications Programming Interface DECdts—63

DECdts Portable Applicatons Programming Interface
utc_mklocaltime

utc_mklocaltime

Converts a tm structure that expresses local time to a binary timestamp.

Format
#include <utc.h>
int utc_mklocaltime(*utc, *timetm, tns, *inacctm, ins)

utc_t *utc;

const struct tm *timetm;
long tns;

const struct tm *inacctm;
long ins;

Parameters

Input
timetm

A tm structure that expresses the local time. On input, tm _wday and tm_yday are
ignored.

tns
Nanoseconds since time component.

inacctm

A tm structure that expresses days, hours, minutes, and seconds of inaccuracy.
If tm_yday is negative, the inaccuracy is considered to be infinite. On input,
tm mday, tm_mon, tm wday, tm isdst, tm gmtoff, and tm_zone are ignored.

ins

Nanoseconds of inaccuracy component.

Output

utc
Resulting binary timestamp.

Description

The Make Local Time routine converts a tm structure that expresses local time
to a binary timestamp.

OpenVMS systems do not have a default time zone rule. You select a time zone
by defining sys$timezone rule during the sys$manager:net$configure.com
procedure, or by explicitly defining sysStimezone rule.

Additional inputs include nanoseconds since the last second of time and
nanoseconds of inaccuracy.

DECdts—-64 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_mklocaltime

Returns

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.

Example

See the sample program for the utc_cmpmidtime routine.

Related Functions

utc localtime

DECdts Portable Applications Programming Interface DECdts—65

DECdts Portable Applicatons Programming Interface
utc_mkreltime

utc_mkreltime

Converts a tm structure that expresses relative time to a relative binary
timestamp.

Format
#include <utc.h>
int utc_mkreltime(*utc, *timetm, tns, *inacctm, ins)

utc_t *utc;

const struct tm *timetm;
long tns;

const struct tm *inacctm;
long ins;

Parameters

Input

timetm

A tm structure that expresses a relative time. On input, tm_wday and tm_yday are
ignored.

tns
Nanoseconds since time component.

inacctm

A tm structure that expresses seconds of inaccuracy. If tm_yday is negative, the
inaccuracy is considered to be infinite. On input, tm mday, tm mon, tm year,
tm wday, tm isdst, and tm zone are ignored.

ins
Nanoseconds of inaccuracy component.

Output

utc
Resulting relative binary timestamp.

Description

The Make Relative Time routine converts a tm structure that expresses relative
time to a relative binary timestamp. Additional inputs include nanoseconds since
the last second of time and nanoseconds of inaccuracy.

Returns

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.

DECdts—-66 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_mkreltime

Example

The following example converts a string relative time in the format (1991-04-01-
12:12:12.12112.12) to a binary timestamp. This may be part of an input relative
timestamp routine, though a real implementation will include range checking.

utc_ t utc;
struct tm tmtime, tminacc;
float tsec, 1isec;
double tmp;
long tnsec, insec;
int i, tzhour, tzmin, year, mon;
char *string;
/*
* Try to convert the string...
*/

if (sscanf (string, "%d-%d-%d-%d:%d:%el%e",
&year, &mon, &tmtime.tm mday, &tmtime.tm hour,

&tmtime.tm min, &tsec, &isec) != 7) {

/*

* ERROR. ..

*/

exit (1) ;

}
/*

* Fill in the fields...

*/

tmtime.tm year = year - 1900;
tmtime.tm mon = --mon;
tmtime.tm sec = tsec;

tnsec = (modf (tsec, &tmp)*1.0E9);
tminacc.tm sec = isec;

insec = (modf (isec, &tmp)*1.0E9);
/*
* Convert to a binary timestamp...
*/
utc_mkreltime (&utc, /* Out: Resultant binary timestamp */
gtmtime, /* In: tm struct that represents input */
tnsec, /* In: Nanoseconds from input */
>minacc, /* In: tm struct that represents inacc */
insec) ; /* In: Nanoseconds from input */

Related Functions

utc reltime

DECdts Portable Applications Programming Interface DECdts—67

DECdts Portable Applicatons Programming Interface
utc_mkvmsanytime

utc_mkvmsanytime

Converts a binary OpenVMS format time and TDF (expressing the time in an
arbitrary time zone) to a binary timestamp.

Format
#include <utc.h>
int utc_mkvmsanytime(*utc, *timadr, tdf)

utc_t *utc;
const long *timadr;
const long tdf;

Parameters

Input
*timadr
Binary OpenVMS format time.

tdf
Time differential factor to use in conversion.

Output

*utc
Binary timestamp.

Description

The Make VMS Any Time routine converts a binary time in the OpenVMS
(Smithsonian) format and an arbitrary TDF to a UTC-based binary timestamp.
Because the input and output values are based on different time standards, any
input representing a value after A.D. 30,000 returns an error.

Returns

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.

Example

The following example shows how to convert between OpenVMS format binary
timestamps and UTC binary timestamps, while specifying the TDF for each. The
TDF value determines the offset from GMT and the local time.

/*****

start example mkvmsanytime,vmsanytime
*****/

#include <utc.h>

DECdts—-68 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_mkvmsanytime

main ()

{

struct utc utcTime;
int vmsTime [2];

SYSSGETTIM (vmsTime) ; /* read the current time */

/*
* convert the VMS local time to a UTC, applying a TDF of
* -300 minutes (the timezone is -5 hours from GMT)

*/
if (utc mkvmsanytime (&utcTime,vmsTime, -300))
exit (1) ;
/*

* convert UTC back to VMS local time. A TDF of -300 is applied
* to the UTC, since utcTime was constructed with that same value.
* This effectively gives us the same VMS time value we started

* with.
*/
if (utc_vmsanytime (vmsTime, &utcTime))
exit (2);
/****
end example
****/

Related Functions

Function: utc_vmsanytime

DECdts Portable Applications Programming Interface DECdts—69

DECdts Portable Applicatons Programming Interface
utc_mkvmsgmtime

utc_mkvmsgmtime

Format

Parameters

Description

Returns

Example

Converts a binary OpenVMS format time expressing GMT (or the equivalent
UTC) into a binary timestamp.

#include <utc.h>
int utc_mkvmsgmtime(*utc, *timadr)

utc_t *utc;
const long *timadr;

Input
*timadr
Binary OpenVMS format time representing GMT or the UTC equivalent.

Output

*utc
Binary timestamp.

The Make VMS Greenwich Mean Time routine converts an OpenVMS format
binary time representing GMT to a binary timestamp with the equivalent UTC
value. Since the input and output values are based on different time standards,
any input representing a value after A.D. 30,000 returns an error.

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.

See the sample program for the vmsgmtime routine.

Related Functions

Function: utc_vmsgmtime

DECdts—70 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_mkvmslocaltime

utc_mkvmslocaltime

Format

Parameters

Description

Notes

Returns

Converts a local binary OpenVMS format time to a binary timestamp, using the
host system'’s time differential factor.

#include <utc.h>
int utc_mkvmslocaltime(*utc, *timadr)

const long *timadr;
utc_t *utc;

Input
*timadr
Binary OpenVMS format time expressing local time.

Output

*utc
Binary timestamp expressing the system’s local time.

The Make VMS Local Time routine converts a binary OpenVMS

format time, representing the local time of the host system, to a binary
timestamp. The system’s local time value is defined by the time zone rule
in sysstimezone rule, which is created by the system configuration process
sys$manager:net$configure.com.

If the routine call is made during a seasonal time zone change when the local
time is indeterminate, an error is returned. For example, if the time zone change
occurs at the current local time of 2:00 A.m. to a new local time of 1:00 A.m., and
the routine is called between 1:00 AM. and 2:00 A.M,, it cannot be determined
which TDF applies.

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument, invalid results, or invalid routine call
during a time zone change.

DECdts Portable Applications Programming Interface DECdts-71

DECdts Portable Applicatons Programming Interface
utc_mkvmslocaltime

Example

The following example shows how to retrieve the current local time of the
system in the binary OpenVMS format, convert the OpenVMS format time to
a UTC-based binary timestamp (using the system’s TDF), and print an ASCII
representation of the binary timestamp.

/*********

start example mkvmslocaltime
*********/

#include <utc.h>
main ()
char outstring[UTC MAX STR LEN];

struct utc utcTime;
int vmsTime[2];

SYSSGETTIM (vimsTime) ; /* read current time */
if (utc_mkvmslocaltime (&utcTime,vmsTime)) /* convert the local time */
exit (1) ; /* vmsTime to UTC using */

/* the system tdf. */

/* convert to ISO asciix*/
utc_asclocaltime (outstring, UTC_MAX STR_LEN, &utcTime) ;
/* format and print */
printf ("Current time=> %s\n",outstring);

/*****

end example
*****/

Related Functions

Function: utc_vmslocaltime

DECdts—72 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_mulftime

utc_mulftime

Multiplies a relative binary timestamp by a floating-point value.

Format
#include <utc.h>
int utc_mulftime(*result, *utcl, factor)
utc_t *result;
const utc_t *utcl;
const double factor;
Parameters
Input
utcl
Relative binary timestamp.
factor
Real scale factor (double-precision floating-point) (G format floating-point on VAX
systems).
Output
result
Resulting relative binary timestamp.
Description
The Multiply a Relative Time by a Real Factor routine multiplies a relative
binary timestamp by a floating-point value. Either or both may be negative;
the resulting relative binary timestamp has the appropriate sign. The unsigned
inaccuracy in the relative binary timestamp is also multiplied by the absolute
value of the floating-point value.
Returns
0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.
Example

The following example scales and prints a relative time.

utc_t relutc, scaledutc;
struct tm sacledreltm;

char timstr [UTC _MAX STR LEN];
/*

* Agssume relutc contains the time to scale.
* Scale it by a factor of 17...
*/

DECdts Portable Applications Programming Interface DECdts—73

DECdts Portable Applicatons Programming Interface

utc_mulftime

utc _multime (&scaledutc, /*
&relutc, /*

17L) ; /*
utc_ascreltime(timstr, /*
UTC MAX STR LEN, /*

&scaledute) ; /*

printf ("$s\n", timstr);

Out:

In:
In:

Out:

In:
In:

Scaled rel time
Rel time to scale
Scale factor

ASCII rel time
Length of input str
Rel time to convert

/*
* Scale it by a factor of 17.65...
*/
utc mulftime (&scaledutc, /* Out: Scaled rel time
&relutc, /* In: Rel time to scale
17.65); /* In: Scale factor
utc_ascreltime(timstr, /* Out: ASCII rel time
UTC MAX STR LEN, /* In: Input str length
&scaledutc) ; /* In: Rel time to convert
printf ("$s\n", timstr);
/*
* Convert it to a tm structure and print it.
*/
utc reltime(&scaledreltm, /* Out: Scaled rel tm
(long *)O, /* Out: Scaled rel nano-sec
(struct tm *)O0, /* Out: Scaled rel inacc tm
(long *)O, /* Out: Scd rel inacc nanos
&scaledutc) ; /* In: Rel time to convert

printf ("Approximately %d days, %d hours
scaledreltm.tm yday, scaledreltm.tm hour, scaledreltm.tm min);

Related Functions

utc multime

and %d minutes\n",

DECdts—74 DECdts Portable Applications Programming Interface

*/
*/

*/
*/
*/

*/
*/

*/
*/
*/

*/
*/
*/
*/
*/

DECdts Portable Applicatons Programming Interface
utc_multime

utc_multime

Multiplies a relative binary timestamp by an integer factor.

Format
#include <utc.h>
int utc_multime(*result, *utcl, factor)
utc_t *result;
const utc_t *utcl;
long factor;
Parameters
Input
utcl
Relative binary timestamp.
factor
Integer scale factor.
Output
result
Resulting relative binary timestamp.
Description
The Multiply Relative Time by an Integer Factor routine multiplies a
relative binary timestamp by an integer. Either or both may be negative; the
resulting binary timestamp has the appropriate sign. The unsigned inaccuracy in
the binary timestamp is also multiplied by the absolute value of the integer.
Returns
0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.
Example

See the sample program for the utc_mulftime routine.

Related Functions

utc mulftime

DECdts Portable Applications Programming Interface DECdts—75

DECdts Portable Applicatons Programming Interface
utc_pointtime

utc_pointtime

Converts a binary timestamp to three binary timestamps that represent the
earliest, most likely, and latest time.

Format
#include <utc.h>
int utc_pointtime(*utclp, *utcmp, *utchp, *utc)
utc_t *utclp;
utc_t *utcmp;
utc_t *utchp;
const utc_t *utc;
Parameters
Input
utc
Binary timestamp or relative binary timestamp.
Output
utclp
Lowest (earliest) possible time that the input binary timestamp or shortest
possible relative time that the relative binary timestamp can represent.
utcmp
Midpoint of the input binary timestamp or the midpoint of the input relative
binary timestamp.
utchp
Highest (latest) possible time that the input binary timestamp or the longest
possible relative time that the relative binary timestamp can represent.
Description
The Point Time routine converts a binary timestamp to three binary timestamps
that represent the earliest, latest, and most likely (midpoint) times. If the input
is a relative binary time, the outputs represent relative binary times.
Notes
All outputs have zero inaccuracy. An error is returned if the input binary
timestamp has an infinite inaccuracy.
Returns

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument.

DECdts—76 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_pointtime

Example

See the sample program for the utc_addtime routine.

Related Functions

utc _boundtime, utc_spantime

DECdts Portable Applications Programming Interface DECdts—-77

DECdts Portable Applicatons Programming Interface

utc_reltime

utc_reltime

Format

Parameters

Description

Returns

Converts a relative binary timestamp to a tm structure.

#include <utc.h>
int utc_reltime(*timetm, *tns, *inacctm, *ins, *utc)

struct tm *timetm;
long *tns;

struct tm *inacctm;
long *ins;

const utc_t *utc;

Input
utc
Relative binary timestamp.

Output

timetm

Relative time component of the relative binary timestamp. The field tm_mday
returns a value of -1 and the fields tm_year and tm mon return values of zero.
The field tm_yday contains the number of days of relative time.

tns
Nanoseconds since time component of the relative binary timestamp.

inacctm

Seconds of inaccuracy component of the relative binary timestamp. If the
inaccuracy is finite, then tm_mday returns a value of -1 and tm_mon and tm_year
return values of zero. The field tm_yday contains the inaccuracy in days. If the
inaccuracy is infinite, all tm structure fields return values of —1.

ins
Nanoseconds of inaccuracy component of the relative binary timestamp.

The Relative Time routine converts a relative binary timestamp to a tm
structure. Additional returns include nanoseconds since time and nanoseconds of
inaccuracy.

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.

DECdts—78 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_reltime

Example

See the sample program for the utc_mulftime routine.

Related Functions

utc _mkreltime

DECdts Portable Applications Programming Interface DECdts—79

DECdts Portable Applicatons Programming Interface
utc_spantime

utc_spantime

Given two (possibly unordered) binary timestamps, returns a single UTC time
interval whose inaccuracy spans the two input binary timestamps.

Format
#include <utc.h>

int utc_spantime(*result, *utcl, *utc2)

utc_t *result;
const utc_t *utcl,
const utc_t *utc2;

Parameters

Input

utcl
Binary timestamp.

utc2
Binary timestamp.

Output

result
Spanning timestamp.

Description

Given two binary timestamps, the Span Time routine returns a single UTC time
interval whose inaccuracy spans the two input timestamps (that is, the interval
resulting from the earliest possible time of either timestamp to the latest possible
time of either timestamp).

Notes

The tdf in the output UTC value is copied from the utc2 input. If either input
binary timestamp has an infinite inaccuracy, an error is returned.

Returns

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument.

DECdts—80 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_spantime

Example

The following example computes the earliest and latest times for an array of 10
timestamps.

utc t time array[10], testtime, earliest, latest;
int i;
/*
* Set the running timestamp to the first entry...
*/
testtime = time array[0];
for (i=1; 1<10; i++) {

/*
* Compute the minimum and the maximum against the next
* element...

*/
utc spantime (&testtime, /* Out: Resultant interval x/
&testtime, /* In: Largest previous interval */
&time array(i]); /* In: Element under test x/
/*
* Compute the earliest possible time...
*/
utc_pointtime (&earliest, /* Out: Earliest poss time in array */
(utc_t *)o, /* Out: Midpoint */
&latest, /* Out: Latest poss time in array */
&testtime) ; /* In: Spanning interval */

Related Functions

utc _boundtime, utc gettime, utc _pointtime

DECdts Portable Applications Programming Interface DECdts-81

DECdts Portable Applicatons Programming Interface
utc_subtime

utc_subtime

Computes the difference between two binary timestamps that express either an
absolute time and a relative time, two relative times, or two absolute times.

Format
#include <utc.h>
int utc_subtime(*result, *utcl, *utc2)
utc_t *result;
const utc_t *utcl,
const utc_t *utc2;
Parameters
Input
utcl
Binary timestamp or relative binary timestamp.
utc2
Binary timestamp or relative binary timestamp.
Output
result
Resulting binary timestamp or relative binary timestamp, depending on the
operation performed:
= absolute time — absolute time = relative time
= relative time — relative time = relative time
= absolute time — relative time = absolute time
= relative time — absolute time is undefined. See NOTES.
Description
The Subtract Time routine subtracts one binary timestamp from another.
The resulting timestamp is utcl minus utc2. The inaccuracies of the two input
timestamps are combined and included in the output timestamp. The TDF in the
first timestamp is copied to the output.
Notes
Although no error is returned, do not use the combination relative time —
absolute time.
Returns

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.

DECdts—82 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_subtime

Example

See the sample program for the utc_binreltime routine.

Related Functions

utc addtime

DECdts Portable Applications Programming Interface DECdts—83

DECdts Portable Applicatons Programming Interface
utc_vmsanytime

utc_vmsanytime

Converts a binary timestamp to a binary OpenVMS format time. The TDF
encoded in the input timestamp determines the TDF of the output.

Format
#include <utc.h>
int utc_vmsanytime(*timadr, *utc)
const utc_t *utc;
long *timadr;
Parameters
Input
*utc
Binary timestamp.
Output
*timadr
Binary OpenVMS format time.
Description
The VMS Any Time routine converts a UTC-based binary timestamp to a 64-bit
binary time in the OpenVMS (Smithsonian) format. Because the input and
output values are based on different time standards, any input representing a
value before the Smithsonian base time of November 17, 1858 returns an error.
Returns
0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.
Example

See the sample program for the mkvmsanytime routine.

Related Functions

Function: utc_mkvmsanytime

DECdts—-84 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_vmsgmtime

utc_vmsgmtime

Format

Parameters

Description

Returns

Example

Converts a binary timestamp to a binary OpenVMS format time expressing GMT
or the equivalent UTC.

#include <utc.h>
int utc_vmsgmtime(*timadr, *utc)

const utc_t *utc;
long *timadr;

Input
*utc
Binary timestamp to be converted.

Output

*timadr
Binary OpenVMS format time representing GMT or the UTC equivalent.

The OpenVMS Greenwich Mean Time routine converts a UTC-based binary
timestamp to a 64-bit binary time in the OpenVMS (Smithsonian) format. The
OpenVMS format time represents Greenwich Mean Time or the equivalent UTC.
Because the input and output values are based on different time standards, any
input representing a value before the Smithsonian base time of November 17,
1858 returns an error.

0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.

The following example shows the following time zone and time format
conversions:

1. Retrieve a binary timestamp representing UTC with the sys$getutc system
service.

2. Convert the binary timestamp to a OpenVMS format binary time representing
GMT

3. Convert the OpenVMS format binary time representing GMT back to a
UTC-based binary timestamp with a TDF of 0 (zero)

DECdts Portable Applications Programming Interface DECdts—85

DECdts Portable Applicatons Programming Interface
utc_vmsgmtime

4. Convert the UTC-based binary time to a binary OpenVMS format time
representing the local time; use the TDF from the system

/*****

start example vmsgmtime, mkvmsgmtime, vmslocaltime
*****/

#include <utc.h>

main()

int status;

struct utc utcTime;
int vmsTime [2];

if (! ((status=SYSSGETUTC (&utcTime))&l))
exit (status); /* read curr time as a utc */
/*
* convert the utcvalue into a vms time, with a timezone of 0
* (GMT). Printing the resultant vmstime yields the time at

* the prime meridian in Greenwich, not (necessarily) the
* local time.

*/
if (utc_vmsgmtime (vmsTime, &utcTime))
exit (1) ;
/*
* Convert the vmstime (which is in GMT) to a utc
*/
if (utc mkvmsgmtime (&utcTime, vmsTime))
exit(2);
/*

* convert the UTC to local 64-bit time. Note that this is the
* value we would have read if we had issued a ’'SYSSGETTIM’ in
* the initial statement.
*/
if (utc vmslocaltime (vmsTime, &utcTime))

exit (3);

/*****

end example
*****/

Related Functions

Function: utc_mkvmsgmtime

DECdts—-86 DECdts Portable Applications Programming Interface

DECdts Portable Applicatons Programming Interface
utc_vmslocaltime

utc_vmslocaltime

Converts a binary timestamp to a local binary OpenVMS format time, using the
host system'’s time differential factor.

Format
#include <utc.h>
int utc_vmslocaltime(*timadr, *utc)
const utc_t *utc;
long *timadr;
Parameters
Input
*utc
Binary timestamp.
Output
*timadr
Binary OpenVMS format time expressing local time.
Description
The VMS Local Time routine converts a binary timestamp to a binary OpenVMS
format time; the output value represents the local time of the host system. The
system’s offset from UTC and the local time value are defined by the time zone
rule in sysStimezone rule, which is created by the system configuration process
sys$manager:net$configure.com.
Returns
0 Indicates that the routine executed successfully.
-1 Indicates an invalid time argument or invalid results.
Example

See the sample program for the vmsgmtime routine.

Related Functions

Function: utc_vmsmklocaltime

DECdts Portable Applications Programming Interface DECdts—87

DECdts Portable Applicatons Programming Interface
9.6 Example Using the DECdts API Routines

9.6 Example Using the DECdts API Routines

This section contains a C programming example showing a practical application
of the DECdts API programming routines. The program performs the following
actions:

= Prompts the user to enter time coordinates.

= Stores those coordinates in a tm structure.

= Converts the tm structure to a utc structure.

= Determines which event occurred first.

= Determines if Event 1 may have caused Event 2 by comparing the intervals.
= Prints out the utc structure in 1SO text format.

#include <time.h> /* time data structures */
#include <utc.h> /* utc structure definitions */

void ReadTime () ;
void PrintTime();

/*
* This program requests user input about events, then prints out
* information about those events.

*x/
main()

{

struct utc eventl,event2;
enum utc_cmptype relation;

/*
* Read in the two events.
*/
ReadTime (&eventl) ;
ReadTime (&event2) ;
/*
* Print out the two events.
*/
printf ("The first event is : ");
PrintTime (&eventl) ;
printf ("\nThe second event is : ");
PrintTime (&event2) ;
printf ("\n");
/*
* Determine which event occurred first.
*/
if (utc_cmpmidtime (&relation, &eventl, &event2))
exit (1);

DECdts—88 DECdts Portable Applications Programming Interface

)

DECdts Portable Applicatons Programming Interface
9.6 Example Using the DECdts API Routines

?witch(relation)
case utc_lessThan:
printf ("comparing midpoints: Eventl < Event2\n");
break;
case utc_greaterThan:
printf ("comparing midpoints: Eventl > Event2\n");
break;
case utc_equalTo:
printf ("comparing midpoints: Eventl == Event2\n");
break;
default:
exit(1);
break;

}
/*

* Could Event 1 have caused Event 2? Compare the intervals.

*/
if (utc cmpintervaltime(&relation, &eventl, &event2))
exit (1) ;

?witch(relation)
case utc_lessThan:
printf ("comparing intervals: Eventl < Event2\n");
break;
case utc_greaterThan:
printf ("comparing intervals: Eventl > Event2\n");

break;

case utc_equalTo:

printf ("comparing intervals: Eventl == Event2\n");
break;

case utc_indeterminate:

printf ("comparing intervals: Eventl ? Event2\n");
default:

exit(1);

break;

/*

* Print out a utc structure in ISO text format.

*/

void PrintTime (utcTime)
struct utc *utcTime;

char string[50];

/*

* Break up the time string.

*/

if (utc_ascgmtime (string, /* Out: Converted time
50, /* In: String length
utcTime)) /* In: Time to convert

exit (1) ;

printf ("$s\n", string) ;

* Prompt the user to enter time coordinates. Store the
* coordinates in a tm structure and then convert the
* tm structure to a utc structure.

DECdts Portable Applications Programming Interface DECdts—89

*/
*/
*/

DECdts Portable Applicatons Programming Interface
9.6 Example Using the DECdts API Routines

void ReadTime (utcTime)
struct utc *utcTime;

struct tm tmTime, tmInacc;

void)memset ((void *)&tmTime, 0,sizeof (tmTime));
void)memset ((void *)&tmInacc, 0,sizeof (tmInacc));
void)printf ("Year? ");

void) scanf ("%d", &tmTime.tm year) ;

tmTime.tm year -= 1900;

(void)printf ("Month? ");

(void) scanf ("%d", &tmTime.tm mon) ;

tmTime.tm mon -= 1;

(void)printf ("Day? ");

scanf ("%d", &tmTime.tm min);
printf ("Inacc Secs? ");
scanf ("%d", &tmInacc.tm sec) ;

if (utc_mkanytime (utcTime,
&tmTime,
(long) o0,
&tmInacc,
(long) o0,
(long)0))
exit(1);

J

Assume the preceding program is named compare events.c. To compile and
link the program on a DECnet-Plus for OpenVMS system, enter the following
command:

$ cc compare events.c/output=compare events.obj

$ link compare events.obj, sys$Sinput:/options|Retum
sysSlibrary:dtss$shr.exe/share
$

DECdts—90 DECdts Portable Applications Programming Interface

10

EDT Routines

On OpenVMS operating systems, the EDT editor can be called from a program
written in any language that generates calls using the OpenVMS Calling
Standard.

You can set up your call to EDT so the program handles all the editing work, or
you can make EDT run interactively so you can edit a file while the program is
running.

This chapter on callable EDT assumes that you know how to call an external
facility from the language you are using. Callable EDT is a shareable image,
which means that you save physical memory and disk space by having all
processes access a single copy of the image.

10.1 Introduction to EDT Routines

You must include a statement in your program accessing the EDT entry point.
This reference statement is similar to a library procedure reference statement.
The EDT entry point is referenced as EDT$EDIT. You can pass arguments

to EDT$EDIT; for example, you can pass EDT$FILEIO or your own routine.
When you refer to the routines you pass, call them FILEIO, WORKIO, and
XLATE. Therefore, FILEIO can be either a routine provided by EDT (named
EDTS$FILEIO) or a routine that you write.

10.2 Using the EDT Routines: An Example

Example 10-1 shows a VAX BASIC program that calls EDT. All three routines
(FILEIO, WORKIO, and XLATE) are called. Note the reference to the entry point
EDTS$EDIT in line number 500.

Example 10-1 Using the EDT Routines in a VAX BASIC Program

100 EXTERNAL INTEGER EDT$FILEIO @
200 EXTERNAL INTEGER EDTSWORKIO

250 EXTERNAL INTEGER AXLATE

300 EXTERNAL INTEGER FUNCTION EDTSEDIT
400 DECLARE INTEGER RESULT

450 DIM INTEGER PASSFILE(13) @
460 DIM INTEGER PASSWORK (1%)

465 DIM INTEGER PASSXLATE (1%)

470 PASSFILE(0%) LOC (EDTSFILEIO)
480 PASSWORK(0%) LOC (EDTSWORKIO)
485 PASSXLATE (0%) = LOC(AXLATE)

(continued on next page)

EDT Routines EDT-1

EDT Routines

10.2 Using the EDT Routines: An Example

Example 10-1 (Cont.) Using the EDT Routines in a VAX BASIC Program

500

600

RESULT = EDT$EDIT(’'FILE.BAS’,’’,’EDTINI’,’’,0%, ©
PASSFILE (0%)BY REF, PASSWORK(0%) BY REF, @
PASSXLATE (0%) BY REF)
IF (RESULT AND 1%) = 0%
THEN

PRINT "SOMETHING WRONG"

CALL LIBSSTOP(RESULT BY VALUE)

900 PRINT "EVERYTHING O.K."

1000 END

@ The external entry points EDT$FILEIO, EDT$WORKIO, and AXLATE are
defined so they can be passed to callable EDT.

® Arrays are used to construct the two-longword structure needed for data type
BPV.

© Here is the call to EDT. The input file is FILE.BAS, the output and journal
files are defaulted, and the command file is EDTINI. A 0 is passed for the
options word to get the default EDT options.

O The array PASSFILE points to the entry point for all file 1/0, which is set
up in this example to be the EDT-supplied routine with the entry point
EDTS$FILEIO. Similarly, the array PASSWORK points to the entry point
for all work 1/O, which is the EDT-supplied routine with the entry point
EDT$WORKIO.

O PASSXLATE points to the entry point that EDT will use for all XLATE

processing. PASSXLATE points to a user-supplied routine with the entry
point AXLATE.

10.3 EDT Routines

This section describes the individual EDT routines.

EDT-2 EDT Routines

EDT Routines
EDTS$EDIT

EDT$EDIT—Edit a File

Format

Returns

Arguments

The EDTS$EDIT routine invokes the EDT editor.

EDT$EDIT in_file [,out_file] [,com_file] [,jou_file] [,options] [,fileio] [,workio] [,xlate]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

in_file

OpenVMS usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor

File specification of the input file that EDT$EDIT is to edit. The in_file argument
is the address of a descriptor pointing to this file specification. The string that
you enter in this calling sequence is passed to the FILEIO routine to open the
primary input file. This is the only required argument.

out_file

OpenVMS usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor

File specification of the output file that EDT$EDIT creates. The out_file
argument is the address of a descriptor pointing to this file specification. The
default is that the input file specification is passed to the FILEIO routine to open
the output file for the EXIT command.

com_file

OpenVMS usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor

File specification of the startup command file to be executed when EDT is
invoked. The com_file argument is the address of a descriptor pointing to this
file specification. The com_file string is passed to the FILEIO routine to open
the command file. The default is the same as that for EDT command file defaults.

EDT Routines EDT-3

EDT Routines

EDTSEDIT

jou_file

OpenVMS usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor

File specification of the journal file to be opened when EDT is invoked. The
jou_file argument is the address of a descriptor pointing to this file specification.
The jou_file string is passed to the FILEIO routine to open the journal file. The
default is to use the same file name as in_file.

options

OpenVMS usage: mask_longword
type: aligned bit string
access: read only
mechanism: by reference

Bit vector specifying options for the edit operation. The options argument is the
address of an aligned bit string containing this bit vector. Only bits <5:0> are
currently defined; all others must be 0. The default options have all bits set to O.
This is the same as the default setting when you invoke EDT to edit a file from
DCL.

Symbols and their descriptions follow:

Symbol Description

EDT$M_RECOVER If set, bit <0> causes EDT to read the journal file
and execute the commands in it, except for the
EXIT or QUIT commands, which are ignored. After
the journal file commands are processed, editing
continues normally. If bit <0> is set, the FILEIO
routine is asked to open the journal file for both input
and output; otherwise FILEIO is asked only to open
the journal file for output. Bit <0> corresponds to the
/RECOVER qualifier on the EDT command line.

EDT$M_COMMAND If set, bit <1> causes EDT to signal if the startup
command file cannot be opened. When bit <1>
is 0, EDT intercepts the signal from the FILEIO
routine indicating that the startup command file
could not be opened. Then, EDT proceeds with
the editing session without reading any startup
command file. If no command file name is supplied
with the call to the EDT$EDIT routine, EDT tries
to open SYS$LIBRARY:EDTSYS.EDT or, if that
fails, EDTINIL.EDT. Bit <1> corresponds to the
/COMMAND qualifier on the EDT command line.
If EDT$SM_NOCOMMAND (bit <4>) is set, bit <1> is
overridden because bit <4> prevents EDT from trying
to open a command file.

EDT$SM_NOJOURNAL If set, bit <2> prevents EDT from opening the journal
file. Bit <2> corresponds to the /NOJOURNAL or
/READ_ONLY qualifier on the EDT command line.

EDT-4 EDT Routines

EDT Routines
EDTS$EDIT

Symbol Description

EDT$M_NOOUTPUT If set, bit <3> prevents EDT from using the input
file name as the default output file name. Bit <3>
corresponds to the /INOOUTPUT or /READ_ONLY
qualifier on the EDT command line.

EDT$M_NOCOMMAND If set, bit <4> prevents EDT from opening a
startup command file. Bit <4> corresponds to the
/INOCOMMAND qualifier on the EDT command line.

EDT$M_NOCREATE If set, bit <5> causes EDT to return to the caller if
the input file is not found. The status returned is the
error code EDT$_INPFILNEX.

fileio

OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: function call

mechanism: by reference

User-supplied routine called by EDT to perform file 1/0 functions. The fileio
argument is the address of a bound procedure value containing the user-supplied
routine. When you do not need to intercept any file 1/0, either use the entry point
EDTS$FILEIO for this argument or omit it. When you only need to intercept some
amount of file 1/0, call the EDT$FILEIO routine for the other cases.

To avoid confusion, note that EDT$FILEIO is a routine provided by EDT whereas
FILEIO is a routine that you provide.

In order to accommodate routines written in high-level languages that do up-level
addressing, this argument must have a data type of BPV (bound procedure value).
BPV is a two-longword entity in which the first longword contains the address

of a procedure value and the second longword is the environment value. When
the bound procedure is called, EDT loads the second longword into R1. If you use
EDTS$FILEIO for this argument, set the second longword to <0>. You can pass a
<0> for the argument, and EDT will set up EDT$FILEIO as the default and set
the environment word to O.

workio

OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: function call

mechanism: by reference

User-supplied routine called by EDT to perform 1/0O between the work file and
EDT. The workio argument is the address of a bound procedure value containing
the user-supplied routine. Work file records are addressed only by number and
are always 512 bytes long. If you do not need to intercept work file 1/0, you can
either use the entry point EDT$WORKIO for this argument or omit it.

In order to accommodate routines written in high-level languages that do up-level
addressing, this argument must have a data type of BPV (bound procedure value).
This means that EDT loads R1 with the second longword addressed before calling
it. If EDT$WORKIO is used for this argument, set the second longword to 0.
You can pass a 0 for this argument, and EDT will set up EDT$WORKIO as the
default and set the environment word to O.

EDT Routines EDT-5

EDT Routines

EDTSEDIT

Description

xlate

OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: function call

mechanism: by reference

User-supplied routine that EDT calls when it encounters the nokeypad command
XLATE. The xlate argument is the address of a bound procedure value containing
the user-supplied routine. The XLATE routine allows you to gain control of your
EDT session. If you do not need control of EDT during the editing session, you
can either use the entry point EDT$XLATE for this argument or omit it.

In order to accommodate routines written in high-level languages that do up-level
addressing, this argument must have a data type of BPV (bound procedure value).
This means that EDT loads R1 with the second longword addressed before calling
it. If EDTSXLATE is used for this argument, set the second longword to 0. You
can pass a 0 for this argument, and EDT will set up EDT$XLATE as the default
and set the environment word to 0.

If the EDT session is terminated by EXIT or QUIT, the status will be a successful
value (bit <0> = 1). If the session is terminated because the file was not

found and if the /INOCREATE qualifier was in effect, the failure code EDT$
INPFILNEX is returned. In an unsuccessful termination caused by an EDT error,
a failure code corresponding to that error is returned. Each error status from the
FILEIO and WORKIO routines is explained separately.

Three of the arguments to the EDT$EDIT routine, fileio, workio, and xlate are
the entry point names of user-supplied routines.

Condition Values Returned

SS$ NORMAL Normal successful completion.
EDT$_INPFILNEX INOCREATE specified and input file does not
exist.

This routine also returns any condition values returned by user-supplied
routines.

EDT-6 EDT Routines

EDT Routines
FILEIO

FILEIO

Format

Returns

Arguments

The user-supplied FILEIO routine performs file 1/0 functions. Call it by
specifying it as an argument in the EDTS$SEDIT routine. It cannot be called
independently.

FILEIO code ,stream ,record ,rhb

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

A status code that your FILEIO routine returns to EDTSEDIT. The fileio
argument is a longword containing the status code. The only failure code that
is normally returned is RMS$_EOF from a GET call. All other OpenVMS RMS
errors are signaled, not returned. The RMS signal should include the file name
and both longwords of the RMS status. Any errors detected with the FILEIO
routine can be indicated by setting status to an error code. That special error
code will be returned to the program by the EDTS$EDIT routine. There is a
special status value EDT$_NONSTDFIL for nonstandard file opening.

Condition values are returned in RO.

code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A code from EDT that specifies what function the FILEIO routine is to perform.
The code argument is the address of a longword integer containing this code.
Following are the valid function codes:

Function Code Description

EDT$K_OPEN_INPUT The record argument names a file to be
opened for input. The rhb argument is
the default file name.

EDT$K_OPEN_OUTPUT_SEQ The record argument names a file to
be opened for output as a sequenced file.
The rhb argument is the default file
name.

EDT$K_OPEN_OUTPUT_NOSEQ The record argument names a file to be
opened for output. The rhb argument is
the default file name.

EDT Routines EDT-7

EDT Routines
FILEIO

Function Code Description

EDT$K_OPEN_IN_OUT The record argument names a file to be
opened for both input and output. The
rhb argument is the default file name.

EDT$K_GET The record argument is to be filled with
data from the next record of the file. If
the file has record prefixes, rhb is filled
with the record prefix. If the file has no
record prefixes, rhb is not written. When
you attempt to read past the end of file,
status is set to RMS$_EOF.

EDT$K_PUT The data in the record argument is to
be written to the file as its next record.
If the file has record prefixes, the record
prefix is taken from the rhb argument.
For a file opened for both input and
output, EDT$K_PUT is valid only at the
end of the file, indicating that the record
is to be appended to the file.

EDT$K_CLOSE_DEL The file is to be closed and then deleted.
The record and rhb arguments are not
used in the call.

EDT$K_CLOSE The file is to be closed. The record and
rhb arguments are not used in the call.

stream

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A code from EDT that indicates which file is being used. The stream argument
is the address of a longword integer containing the code. Following are the valid

codes:

Function Code Description

EDT$K_COMMAND_FILE The command file.

EDT$K_INPUT_FILE The primary input file.
EDT$K_INCLUDE_FILE The secondary input file. Such a file is opened

in response to an INCLUDE command. It is
closed when the INCLUDE command is complete
and will be reused for subsequent INCLUDE
commands.

EDT-8 EDT Routines

EDT Routines
FILEIO

Function Code Description

EDT$K_JOURNAL_FILE The journal file. If bit O of the options is set, it
is opened for both input and output and is read
completely. Otherwise, it is opened for output
only. After it is read or opened for output only, it
is used for writing. On a successful termination
of the editing session, the journal file is closed
and deleted. EXIT/SAVE and QUIT/SAVE close
the journal file without deleting it.

EDT$K_OUTPUT_FILE The primary output file. It is not opened until
you enter the EXIT command.
EDT$K_WRITE_FILE The secondary output file. Such a file is opened

in response to a WRITE or PRINT command.
It is closed when the command is complete and
will be reused for subsequent WRITE or PRINT

commands.
record
OpenVMS usage: char_string
type: character-coded text string
access: modify
mechanism: by descriptor

Text record passed by descriptor from EDT to the user-supplied FILEIO routine;
the code argument determines how the record argument is used. The record
argument is the address of a descriptor pointing to this argument. When the
code argument starts with EDT$K_OPEN, the record is a file name. When the
code argument is EDT$K_GET, the record is a place to store the record that
was read from the file. For code argument EDT$K_PUT, the record is a place
to find the record to be written to the file. This argument is not used if the code
argument starts with EDT$SK_CLOSE.

Note that for EDT$K_GET, EDT uses a dynamic or varying string descriptor;
otherwise, EDT has no way of knowing the length of the record being read. EDT
uses only string descriptors that can be handled by the Run-Time Library routine
STR$COPY_DX.

rhb

OpenVMS usage: char_string

type: character-coded text string
access: modify

mechanism: by descriptor

Text record passed by descriptor from EDT to the user-supplied FILEIO routine;
the code argument determines how the rhb argument is used. When the code
argument starts with EDT$K_OPEN, the rhb argument is the default file name.
When the code is EDT$K_GET and the file has record prefixes, the prefixes are
put in this argument. When the code is EDT$K_PUT and the file has record
prefixes, the prefixes are taken from this argument. Like the record argument,
EDT uses a dynamic or varying string descriptor for EDT$K_GET and uses
only string descriptors that can be handled by the Run-Time Library routine
STR$COPY_DX.

EDT Routines EDT-9

EDT Routines
FILEIO

Description

If you do not need to intercept any file 1/0, you can use the entry point
EDTSFILEIO for this argument or you can omit it. If you need to intercept
only some file 1/O, call the EDT$FILEIO routine for the other cases.

When you use EDT$FILEIO as a value for the fileio argument, files are opened
as follows:

e The record argument is always the RMS file name.
= The rhb argument is always the RMS default file name.
= There is no related name for the input file.

e The related name for the output file is the input file with OFP (output file
parse). EDT passes the input file name, the output file name, or the name
from the EXIT command in the record argument.

= The related name for the journal file is the input file name with the OFP
RMS bit set.

e The related name for the INCLUDE file is the input file name with the OFP
set. This is unusual because the file is being opened for input.

EDT contains support for VFC files. Normally, EDT will zero the length of the
RHB field if the file is not a VFC file. However, when the user supplies the
FILEIO routines, they are responsible for performing this operation.

EDT checks for a VFC file with the following algorithm:

IF FABSB RFM = FABSC VFC
AND FABSB RAT <> FABSM PRN
THEN
VFC file
ELSE
not VFC file, zero out RHB descriptor length field.

Condition Values Returned

SS$_NORMAL Normal successful completion.
EDT$_NONSTDFIL File is not in standard text format.
RMS$_EOF End of file on a GET.

EDT-10 EDT Routines

EDT Routines
WORKIO

WORKIO

Format

Returns

Arguments

The user-supplied WORKIO routine is called by EDT when it needs temporary
storage for the file being edited. Call it by specifying it as an argument in the
EDTS$EDIT routine. It cannot be called independently.

WORKIO code ,recordno ,record

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by immediate value

Longword value returned as a status code. It is generally a success code, because
all OpenVMS RMS errors should be signaled. The signal should include the file
name and both longwords of the RMS status. Any errors detected within work
1/0 can be indicated by setting status to an error code, which will be returned by
the EDTSEDIT routine.

The condition value is returned in RO.

code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A code from EDT that specifies the operation to be performed. The code
argument is the address of a longword integer containing this argument. The
valid function codes are as follows:

Function Code Description

EDT$K_OPEN_IN_OUT Open the work file for both input and output.
Neither the record nor recordno argument is
used.

EDT$K_GET Read a record. The recordno argument is the
number of the record to be read. The record
argument gives the location where the record is to
be stored.

EDT$K_PUT Write a record. The recordno argument is the
number of the record to be written. The record
argument tells the location of the record to be
written.

EDT$K_CLOSE_DEL Close the work file. After a successful close, the
file is deleted. Neither the record nor recordno
argument is used.

EDT Routines EDT-11

EDT Routines

WORKIO

Description

recordno

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Number of the record to be read or written. The recordno argument is the
address of a longword integer containing this argument. EDT always writes a
record before reading that record. This argument is not used for open or close
calls.

record

OpenVMS usage: char_string
type: character string
access: modify
mechanism: by descriptor

Location of the record to be read or written. This argument always refers to a
512-byte string during GET and PUT calls. This argument is not used for open
or close calls.

Work file records are addressed only by number and are always 512 bytes
long. If you do not need to intercept work file 1/0, you can use the entry point
EDT$WORKIO for this argument or you can omit it.

Condition Value Returned

SS$_NORMAL Normal successful completion.

EDT-12 EDT Routines

EDT Routines
XLATE

XLATE

Format

Returns

Argument

Description

The user-supplied XLATE routine is called by EDT when it encounters the
nokeypad command XLATE. You cause it to be called by specifying it as an
argument in the EDT$EDIT routine. It cannot be called independently.

XLATE string

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as a status code. It is generally a success code. If the
XLATE routine cannot process the passed string for some reason, it sets status
to an error code. Returning an error code from the XLATE routine aborts the
current key execution and displays the appropriate error message.

The condition value is returned in RO.

string

OpenVMS usage: char_string

type: character-coded text string
access: modify

mechanism: by descriptor

Text string passed to the nokeypad command XLATE. You can use the nokeypad
command XLATE by defining a key to include the following command in its
definition:

XLATEtext”Z

The text is passed by the string argument. The string argument can be handled
by the Run-Time Library routine STR$COPY_DX.

This argument is also a text string returned to EDT. The string is made up of
nokeypad commands that EDT is to execute.

The nokeypad command XLATE allows you to gain control of the EDT session.
(See the OpenVMS EDT Reference Manual® for more information about the
XLATE command.) If you do not need to gain control of EDT during the editing
session, you can use the entry point EDT$XLATE for this argument or you can
omit it.

1 This manual has been archived but is available on the OpenVMS Documentation

CD-ROM.

EDT Routines EDT-13

EDT Routines
XLATE

Condition Value Returned

SS$ NORMAL Normal successful completion.

EDT-14 EDT Routines

11

Encryption (ENCRYPT) Routines

The encryption routines (APIs) allow you to program encryption operations

into applications. OpenVMS Version 8.3 164 and Alpha systems support the
Advanced Encryption Standard (AES) algorithm, which allows any OpenVMS
user, system manager, security manager, or programmer to secure their files, save
sets, or application data with AES encryption. The former DES algorithm is also
supported for complete backward compatibility. This allows updating archived
data encrypted with DES to the more secure AES encryption algorithm.

Note

The DES encryption standard, reviewed and approved by the National
Bureau of Standards (NBS) every five years, remained the popular
standard until 1992. The Natonal Institue of Standards and Technology
(NIST) later declared the minimum encryption standard to be Triple-DES
(or TDEA). Triple-DES typically uses at least two or three different secret
keys. Since 1999, the older single DES standard is used only for legacy
government systems.

Since 2001, the Advanced Encryption Standard (AES) (FIPS PUB 197[5])
is the approved symmetric encryption algorithm that replaced DES.

Encryption is used to convert sensitive or otherwise private data to an
unintelligible form called cipher text. Decryption reverses this process, taking
the unintelligible cipher text and converting data back to its original form, called
plaintext. Encryption and decryption are also known as cipher and decipher.

Note

OpenVMS Version 8.3 integrates the former Encryption for OpenVMS
software product into the operating system, eliminating the requirement
for a separate installation and product license.

11.1 Introduction to Encryption Routines
Encryption provides the following routines, listed by function:
= Defining, generating, and deleting keys:
— ENCRYPT$DEFINE_KEY
— ENCRYPT$GENERATE_KEY
— ENCRYPT$DELETE_KEY

Encryption (ENCRYPT) Routines ENC-1

Encryption (ENCRYPT) Routines
11.1 Introduction to Encryption Routines

Encrypting and decrypting files:

— ENCRYPT$ENCRYPT

— ENCRYPT$ENCRYPT_FILE

— ENCRYPT$DECRYPT

Encrypting and decrypting records:

— ENCRYPT$DECRYPT_ONE_RECORD
— ENCRYPT$ENCRYPT_ONE_RECORD
Intializing and terminating the context area:
— ENCRYPTSINIT

— ENCRYPTS$FINI

Returning statistics:

— ENCRYPTS$STATISTICS

11.2 AES Encryption Features

AES encryption, like DES, is a symmetric block cipher. However, its algorithm
is very different, its key scheduling and number of rounds are based on key size
(10, 12, or 14 rounds for 128, 192, and 256 bit keys), making AES much stronger
cryptographically. AES features allows any user, system manager, security
manager, or programmer to secure their files, save sets, or application data with
strong AES encryption. It is integrated with OpenVMS Version 8.3 and does not
require a separate product license or installation.

AES encryption provides the following features and compatibility:

The DES algorithm is maintained for use with existing DES data and their
applications. All the functions that existed with DES continue to provide that
same level of DES support.

AES encryption is integrated with the Backup utility (BACKUP) for
encrypting and decrypting save sets with AES or DES.

Command-line use of AES encryption is the same as for DES encryption, with
minor changes to qualifiers (see the encryption routines later in this chapter).

Changes to the ENCRYPT$ APIs are minimal, with only textual parameter or
flag changes required to use the AES algorithm.

AES encryption supports the AES algorithm with 4 different cipher modes.
With each mode, you can specify a secret key in three different lengths (128,
192, and 256 bits), for a total of 12 different cipher and decipher operations:

— Cipher block chaining:

AESCBC128
AESCBC192
AESCBC256

— Electronic code book:

AESECB128
AESECB192
AESECB256

ENC-2 Encryption (ENCRYPT) Routines

Encryption (ENCRYPT) Routines
11.2 AES Encryption Features

— Cipher feedback:

AESCFB128
AESCFB192
AESCFB256

— Output feedback:

AESOFB128
AESOFB192
AESOFB256

The additional AES algorithm, modes, and key sizes are specified in either the
algorithm argument to the ENCRYPT$ENCRYPT_FILE and ENCRYPTSINIT
routines, or in the algorithm-name argument for the ENCRYPT$GENERATE_
KEY routine.

AES key-length requirements. The AES key requirements are the actual
number of bits utilized for each of the AES modes. This is actually the
minimum number of bytes needed for the encryption or decryption operation.
The minimum required key sizes are as follows:

— 128-bit mode = 16-byte key
— 192-bit mode = 24-byte key
— 256-bit mode = 32-byte key
For more information about encryption keys, see Section 11.3.1.

11.2.1 AES Key, Flag Mask, and Value

There are no new AES encryption API routines in OpenVMS Version 8.3.
However, to accommodate the AES algorithm and the various key-length values,
an additional AES key and AES file flag mask and value are added:

AES key flag

The KEY_AES mask value specified an AES key (as a longword by
reference) to the ENCRYPT$DEFINE_KEY, ENCRYPT$DELETE_KEY,
and ENCRYPT$GENERATE_KEY routines.

— ENCRYPT$M_KEY_AES
— ENCRYPT$V_KEY_AES

AES file flag mask

An additional FILE_AES flag mask (and value) is used with the
ENCRYPTS$ENCRYPT_FILE routine when encrypting files that use an
AES algorithm.

The ENCRYPT$ENCRYPT_FILE_FLAGS flags are used to control file
operations such as cipher direction, file compression, and so on. The FILE_
AES flag controls file AES initialization and encryption operations and also
flags AES keys.

— ENCRYPT$M_FILE_AES

— ENCRYPT$V_FILE_AES

The AES algorithm, mode, and key length (128, 192, or 256 bits) are
specified in the algorithm argument for the ENCRYPT$ENCRYPT_FILE
and ENCRYPTSINIT routines, or in the algorithm-name argument for the
ENCRYPT$GENERATE_KEY routine. The argorithm argument is in the
form of a character string descriptor reference (pointer), as follows:

Encryption (ENCRYPT) Routines ENC-3

Encryption (ENCRYPT) Routines
11.2 AES Encryption Features

— Block-mode ciphers

AESCBC128—Cipher block chaining
AESCBC192—Cipher block chaining
AESCBC256—Cipher block chaining
AESECB128—Electronic code book
AESECB192—Electronic code book
AESECB256—Electronic code book

— Stream-mode ciphers

AESCFB128—Cipher feedback
AESCFB192—Cipher feedback
AESCFB256—Cipher feedback
AESOFB128—Output feedback
AESOFB192—Output feedback
AESOFB256—Output feedback

Note

AESCBC128 is the default cipher and is also used for encryption and
decryption of the users key for storage of logical names. These ciphers are
looked up in the order in which they are stored in their algorithm table
with the new image file SYS$SHARE:ENCRYPTS$ALG$AES.EXE file.

11.3 How the Routines Work

You can call the encryption routines from any language that supports the
OpenVMS Calling Standard in 32-bit mode. After it is called, each routine does
the following:

e Performs its function.

= Returns a 32-bit status code value for the calling program to determine
success or failure.

< Returns control to the calling program.

The callable routines do not provide all the options of the file selection qualifiers
available with the DCL commands ENCRYPT and DECRYPT. The functions

of IBACKUP, /IBEFORE, /BY_OWNER, /CONFIRM, /EXCLUDE, /EXPIRED,
/ISINCE, and /SHOW are supported only at the DCL level. For more information,
see the Guide to Creating OpenVMS Modular Procedures.

11.3.1 Encryption Keys
This section provides information about encryptions for AES and DES.

= AES keys are created, encrypted (always with AESCBC128 and a master
key), and stored in a logical name table. During an encrypt operation, the key
is fetched, decrypted, and used as a 16-, 24- or 32-byte key, depending on the
chosen algorithm/key size for the cipher operation.

= Nonliteral DES keys are compressed, that is, converted to uppercase. Only
the characters A-Z, 0-9, dollar sign ($), period (.), and underscore () are
allowed. All others are converted to spaces, and multiple spaces are removed.
AES ASCII key values are not compressed.

ENC-4 Encryption (ENCRYPT) Routines

Encryption (ENCRYPT) Routines
11.3 How the Routines Work

= Use caution when creating keys to ensure they meet the minimum key length
when later used for the algorithm/key size selected. This condition was not a
problem with 8-byte DES keys. Any key (literal or nonliteral) that is longer
than necessary is folded for the proper 16-, 24- or 32-byte key size.

e The key name is a logical name for the key as stored in the logical name
table (SYSTEM, JOB, GROUP, or PROCESS [the default]). The value can be
ASCII (normal text keys) or hexadecimal/binary. When creating a literal key
(key-flags = ENCRYPT$M_LITERAL_KEY), the value is stored as a literal
value and is not compressed.

e Errors can result when using the ENCRYPT$SGENERATE_KEY routine to
generate AES keys and specifying key lengths that are not multiples of 16.

= Exercise care when supplying the key to the ENCRYPTS$INIT routine; it
must match the key stored in the logical name table. The descriptor type
determines how the DES key is handled:

— As text to be compressed, or

— As a binary value not to be compressed

AES key values are not compressed. The key flag (1 = literal, 0 = name)
determines how the key-name argument is interpreted:

= As a literal value passed directly to INIT

= As a key name for logical name lookup, translation, and decryption

Note that errors can result if you use an incorrect key type. For example,
an error occurs if the key flag argument = 0 (name) and a literal key value
is provided instead of a key name. An error can also occur if you attempt to
provide a key name to be used as a literal value.

For the ENCRYPTSINIT routine, key name descriptors of type DSC$K _
DTYPE_T, DSC$K _DTYPE_VT, and DSC$K_DTYPE_Z specify that the key
value be compressed for DES keys. AES key values are not compressed.

11.3.1.1 Deleting AES Keys

Like DES keys, AES keys are deleted or removed with the encryption command-
line qualifier 'REMOVE_KEY or with the ENCRYPT$DELETE_KEY routine:

$ ENCRYPT/REMOVE KEY KEYNAME /AES

The user’s secret key is encrypted with a master key and is stored in a logical
name table (PROCESS, JOB, GROUP or SYSTEM-ENCRYP$SYSTEM table); the
default is the PROCESS logical name table. To delete a key in a table other than
the PROCESS logical name table, the appropriate qualifier (/JOB, /GROUP, or
ISYSTEM) must also be specified in the ENCRYPT /REMOVE_KEY command.

Because the user’s secret key name is unique, only one key with the same name
can exist in the same logical name table, regardless of whether this is a DES key
or an AES key. This means that the /AES qualifier is unnecessary, although it is
implemented nevertheless.

Encryption (ENCRYPT) Routines ENC-5

Encryption (ENCRYPT) Routines
11.3 How the Routines Work

11.3.1.2 DES Key and Data Semantics

The National Bureau of Standards (NBS) document FIPS-PUB-46 describes the
operation of the DES algorithm in detail. The bit-numbering conventions in the
NBS document are different from OpenVMS numbering conventions.

Note

For the AES algorithm, see the National Institute of Standards and
Technology (NIST) document FIPS-PUB-197, pages 7 through 9.

If you are using encryption routines in conjunction with an independently
developed DES encryption system, be sure that you are familiar with the
relationship between the NBS and OpenVMS numbering conventions. Table 11-1
highlights the differences.

Table 11-1 Comparison of NBS and OpenVMS Numbering Conventions

NBS Encryption for OpenVMS

Numbers bits from left to right. Numbers bits from right to left.

Displays bytes in memory from left Displays bytes in memory from right to left.

to right.

Handles keys and data in 8-byte Handles 8-byte blocks in OpenVMS display order.
blocks.

Treats keys and data as hyte Treats keys and data as character strings.
strings.

The most significant byte is byte 1. Same.

In DES keys, the parity bits are In DES keys, the parity bits are OpenVMS bits 0,
DES bits 8, 16, 24, and so forth. 8, 16, and so forth.
DES keys, when expressed as Same.

strings of hexadecimal digits, are
given starting with the high digit of
byte 1, then the low digit of byte 1,
then the high digit of byte 2, and so
forth, through the low digit of byte
8.

To convert a hexadecimal key string into the 8-byte binary key, convert from
hexadecimal to binary one byte at a time. For example, a quadword hexadecimal-
to-binary conversion, using the library subroutine OTS$CVT_TZ L, yields an
incorrect, byte-reversed key.

Note

On OpenVMS 164 systems, AES uses an OpenVMS numbering overlay on
FIPS-197 numbering. For a description of AES key and data semantics,
see the National Institute of Standards and Technology (NIST) document
FIPS-PUB-197, pages 7 through 9.

ENC-6 Encryption (ENCRYPT) Routines

Encryption (ENCRYPT) Routines
11.3 How the Routines Work

Figure 11-1 and Figure 11-2 compares the OpenVMS numbering overlay to the
NBS numbering overlay.

Figure 11-1 OpenVMS Numbering Overlay on FIPS-46 Numbering

7 0 15 8 23 16 31 24 (OpenVMS numbering)
1 8 9 16 17 24 25 32 (DES numbering)
byte 1 byte 4
(NBS view)
byte 5 byte 8
39 32 47 40 55 48 63 56 (OpenVMS numbering)
33 40 41 48 49 56 57 64 (DES numbering)
ZK-8665A-GE

Figure 11-2 NBS Numbering Overlay on an OpenVMS Quadword

31 24 23 16 15 8 7 0 (OpenVMS numbering)
25 32 17 24 9 16 1 8 (DES numbering)
byte 4 byte 1
(OpenVMS view)
byte 8 byte 5
63 56 55 48 47 40 39 32 (OpenVMS numbering)
57 64 49 56 41 48 33 40 (DES numbering)
ZK-8666A-GE

11.3.2 File Encryption and Decryption

Once a key is created, you can encrypt and decrypt files. This can be
accomplished at the command line with the ENCRYPT and DECRYPT commands,
or by using the ENCRYPT$ENCRYPT_FILE routine.

File encryption encrypts RMS files in fixed-length, 512-byte records. The file
characteristics and attributes, such as the file creation and modify date, whether
the file was organized as sequential or indexed, and its record format (STREAM_
LF, VAR, or other), are preserved. You specify a key to be used for the encrypting
a file and a data algorithm. However, the user key is used to encrypt the random
key, initialization vector (1V), and data algorithm in the random key record. The
random key encrypts the files attributes and feature records and its data records
using the data algorithm that you specify.

When decrypting the file, the key specified decrypts the random key record, which
retrieves the random (data) key, 1V, and data algorithm file. Thereafter, the file’s
attributes, feature records, and data records are decrypted with the random key,
1V, and data algorithm from the fixed-length 512-byte records. They are then
restored to its original format and creation date. The modified (or revised) file
date is finally updated.

Encryption (ENCRYPT) Routines ENC-7

Encryption (ENCRYPT) Routines
11.4 Maintaining Keys

11.4 Maintaining Keys

When you use AES or DES symmetric key encryption routines, first define the
key that will be used in the encryption operation. Similarly, to decrypt a file

specify
keys.

the same key. Table 11-2 describes the callable routines that maintain

Table 11-2 Routines for Maintaining Keys

Routine

Description

ENCRYPT$DEFINE_KEY Creates a key definition with a key name and a key

value. Puts the definition into a key storage table.

Similar to the ENCRYPT /CREATE_KEY
command.

ENCRYPT$DELETE_KEY Removes a key definition from a key storage

table. Uses the key name to identify the key to
be removed.

Similar to the ENCRYPT /REMOVE_KEY
command.

ENCRYPT$GENERATE_KEY Generates random key values.

When you call these routines, use the following arguments:
= With ENCRYPT$DEFINE_KEY:

To pass the values for the key name and key value, use the key-name
and the key-value arguments.

To specify a key storage table, use the key-flags argument.
To specify other key options, use the key-flags argument.

On DES, to override key compression, use the key-flags argument. (AES
keys are not compressed.)

= With ENCRYPT$DELETE_KEY:

To pass the key name, use the key-name argument.

To specify the key storage table in which the key resides, use the
key-flags argument.

= With ENCRYPT$GENERATE_KEY:

To define the length of the key, use the key-length argument in
increments of 8 bytes for DES and 16 bytes for AES (that is, the block
size).

To specify the buffer into which the generated key is to be placed, use the
key-buffer argument.

To specify the algorithm that will use the key, use the algorithm-name
argument.

To optionally pass three arbitrary values for added security, use
the factor-a, factor-b, and factor-c arguments. These values are
randomizing factors when the routine generates a key value. For
example, the factors might be:

* Time an operation started

ENC-8 Encryption (ENCRYPT) Routines

Encryption (ENCRYPT) Routines
11.4 Maintaining Keys

* Size of a certain stack

* Copy of the last command line

11.5 Operations on Files

The ENCRYPT$ENCRYPT_FILE routine is similar to the DCL commands
ENCRYPT and DECRYPT in that you use this routine with entire files.

The ENCRYPT$ENCRYPT_FILE routine specifies the key, the input file
specification, the output file specification, and other file operation information.

Specify the type of operation, either encryption or decryption, with the file-flags
argument for DES and the file-AES argument for AES operations.

ENCRYPT$ENCRYPT_FILE does not require a prior call to ENCRYPTSINIT.

11.6 Operations on Records and Blocks
To operate on small records or blocks of data, use the following routines:
e ENCRYPT$ENCRYPT_ONE_RECORD
e ENCRYPT$DECRYPT_ONE_RECORD

These routines are an abbreviated form of the ENCRYPTS$INIT,
ENCRYPT$ENCRYPT, ENCRYPT$DECRYPT, ENCRYPTS$FINI sequence of
calls.

Do not use these routines for data that is larger than a few records.

To use AES for one-record ciphers, an AES key must first be created and stored in
the logical name table (encrypted). The key name of an AES key is specified as an
address of a descriptor that contains the ASCII text for the selected AESmmmkkk
(mode and key size) algorithm; for example, AESCBC256. Note that the input
and output buffers (descriptor addresses) are also provided.

11.7 Routine Descriptions
This section describes the syntax of each callable routine. The routines are listed
alphabetically.

11.7.1 Specifying Arguments

Each routine’s argument list shows the mandatory arguments first, followed
by the optional arguments. Brackets ([]) identify optional arguments in the
argument list.

For example, this format line shows that the required arguments are context,
input, and output, and that the optional arguments are output-length and p1:

ENCRYPT$DECRYPT context ,input ,output [,output-length] [,p1]
When you specify arguments, follow these guidelines:

= The order is important. Specify arguments in the order in which they appear
in the argument list.

= Separate each argument with a comma.

= Pass a zero value for each optional argument that you omit.

Encryption (ENCRYPT) Routines ENC-9

Encryption (ENCRYPT) Routines
11.7 Routine Descriptions

11.7.2 Bitmasks

Constants are associated with the symbolic names of the bitmasks
used by the encryption routines. These constants are defined in the
ENCRYPT_STRUCTURES files that are provided with the Kit.

The examples directory, ENCRYPT$EXAMPLES, has a copy of the
ENCRYPT_STRUCTURES file in each supported programming language.

11.7.3 Error Handling

By default, encryption signals error conditions with messages. To intercept a
message that is inappropriate for your application, supply a condition handler.

For information about implementing condition handlers, see your programming
language reference manual.

ENC-10 Encryption (ENCRYPT) Routines

Encryption (ENCRYPT) Routines
ENCRYPT$DECRYPT

ENCRYPT$DECRYPT

Format

Arguments

Decrypts the next record of ciphertext according to the algorithm specified in the
ENCRYPTSINIT call.

ENCRYPT$DECRYPT context, input, output [,output-length] [,p1]

context
type: longword integer (signed)
access: write only

mechanism: by reference

Context area initialized when ENCRYPTSINIT completes execution. The context
argument is the address of a longword of unspecified interpretation that is used
to convey context between encryption operations.

input
type: char_string
access: read only

mechanism: by descriptor

Ciphertext record that ENCRYPT$DECRYPT is to decrypt. The input argument
is the address of a descriptor pointing to a byte-aligned buffer containing the
input record to the decryption operation.

output
type: char_string
access: write only

mechanism: by descriptor

Plaintext record that results when ENCRYPT$DECRYPT completes execution.
The output argument is the address of a descriptor pointing to a byte-aligned
padding buffer that contains the output record from the decryption operation.

If the descriptor is dynamic and insufficient space is allocated to contain the
output record, storage is allocated from dynamic memory. If insufficient space
exists to contain the output of the operation, then an error status is returned.

The ENCRYPT$DECRYPT routine adjusts the length of the output descriptor,

if possible, to reflect the actual length of the output string. If the descriptor
type is not DSC$K_DTYPE_VS (varying string), DSC$K_DTYPE_V (varying), or
DSC$K_DTYPE_D (dynamic), the routine takes the actual output count from the
output-length argument.

The output buffer must be able to accommodate a padded block to an increment
of the block length. For AES this is 16 bytes, for DES, 8 bytes.

output-length

type: word integer
access: write only
mechanism: by reference

Optional argument.

Encryption (ENCRYPT) Routines ENC-11

Encryption (ENCRYPT) Routines
ENCRYPT$DECRYPT

Description

Number of bytes that ENCRYPT$DECRYPT wrote to the output buffer. The
output-length argument is the address of a word containing the number of bytes
written to the output buffer, including any bytes of pad characters generated by
the selected algorithm to meet length requirements of the input buffer, if any.
Output length does not count padding in the case of a fixed-length string.

Some encryption algorithms have specific requirements for the length of the input
and output strings. In particular, DESECB and DESCBC pad input data with
from 1 to 7 bytes to form complete 64-bit blocks for operation. The values of the
pad characters are indeterminate.

When you decrypt fewer than 8 bytes, present the full 8 bytes resulting

from the ENCRYPT$ENCRYPT to ENCRYPT$DECRYPT. Retain the byte

count of the input data in order to strip trailing pad bytes after a subsequent
decryption operation. Note that the AES block-mode algorithms (AESCBCxxx and
AESECBXxxx), pad the data to even 16-byte block boundaries. For AES, 1 byte
encrypts and decrypts to 16 bytes, 72 bytes to 80, and so forth. The AES padding
character is a HEX number of bytes indicating the number of bytes padded, for
example, the 1-byte encrypted pad decrypts to 15 characters of OF following the 1
decrypted byte of data. For the 72 bytes of data, 8 bytes of padding characters (08
08 ... 08) follow the 72 bytes of decrypted data. DESECB and DESCBC modes
always pad with characters of zeros. The character stream modes (AESCFBxxX,
AESOFBxxx, DESCFB) do not pad the data, so the output-length matches the
actual number of data bytes.

pl
type: quadword[1](DES), quadword[2](AES)
access: read only

mechanism: by reference

Optional argument. The P1 argument is the address of a quadword initialization
vector used to seed the two modes of the DES algorithm for which it is applicable
(DESECB and DESCFB). (That is, the DES IV initialization vector is a quadword
reference, to an 8-byte value.)

For AES, the optional P1 argument for the AES IV initialization vector is a
reference to a 16-byte (2 quadword) value.

If this argument is omitted, the initialization vector used is the residue of the
previous use of the specified context block. ENCRYPTS$INIT initializes the
context block with an initialization vector of zero.

The ENCRYPT$DECRYPT routine decrypts the next record of ciphertext
according to the algorithm specified in the ENCRYPTS$INIT call. Any errors
encountered in the operation are returned as status values. The message
authentication mode (DESMAC) is not supported by ENCRYPT$DECRYPT.

The ENCRYPT$DECRYPT routine returns a 32-bit status code indicating the
success or failure of the routine’s operation.

ENC-12 Encryption (ENCRYPT) Routines

Encryption (ENCRYPT) Routines

ENCRYPT$DECRYPT
Condition Values Returned
SS$_NORMAL Record successfully decrypted.
ENCRYPT$xyz An error reported by the encryption software.
The xyz portion identifies the message.
SS$_xyz A return status from a called system service.

The xyz portion identifies the return status.

Encryption (ENCRYPT) Routines ENC-13

Encryption (ENCRYPT) Routines
ENCRYPT$DECRYPT_ONE_RECORD

ENCRYPT$DECRYPT_ONE_RECORD

Format

Arguments

Decrypts a small amount of data on a decrypt stream.

Note

To use AES for one-record ciphers, you must first create an AES key,
which is stored in the logical name table (encrypted). The key name of
an AES key is specified as an address of a descriptor that contains the
ASCII text for the selected AESmmmkkk (mode and key size) algorithm,
for example, AESCBC256. The input and output buffers (descriptor
addresses) are also provided.

ENCRYPT$DECRYPT_ONE_RECORD input, output, key-name, algorithm

input
type: char_string
access: read only

mechanism: by descriptor

Ciphertext record to be decrypted. The input argument is the address of a string
descriptor pointing to a byte-aligned buffer containing the input record to be
decrypted.

output
type: char_string
access: write only

mechanism: by descriptor

Plaintext record resulting when ENCRYPT$DECRYPT_ONE_RECORD completes
execution. The output argument is the address of a string descriptor pointing to
a byte-aligned buffer that contains the plaintext record.

If the descriptor is dynamic and insufficient space is allocated to contain the
output record, storage is allocated from dynamic memory. If space is insufficient
to contain the output of the operation, an error is returned.

The ENCRYPT$DECRYPT_ONE_RECORD routine adjusts the length of the
output descriptor, if possible, to reflect the actual length of the output string.

key-name
type: char_string
access: read only

mechanism: by descriptor

Key used to initialize the decrypt stream. The key-name argument is the
address of a string descriptor pointing to the name of the previously defined user
key to be used.

ENC-14 Encryption (ENCRYPT) Routines

Description

Encryption (ENCRYPT) Routines
ENCRYPT$DECRYPT_ONE_RECORD

algorithm
type: char_string
access: read only

mechanism: by descriptor

Algorithm used for the decryption operation. The algorithm argument is the
address of a string descriptor pointing to a code for the selected algorithm. The
algorithm code is an ASCII string. Specify the descriptor type value as one of the
following:

 DSC$K_DTYPE_T (text)

e DSC$K_DTYPE_VT (varying text)

e DSC$K_DTYPE_Z (unspecified)

For DES, the following algorithms are valid:
= DESCBC (default)

- DESECB

- DESCFB

For AES, the following algorithms are valid:
= Cipher block chaining:

AESCBC128 (default)
AESCBC192
AESCBC256

e Electronic code book:

AESECB128
AESECB192
AESECB256

= Cipher feedback:

AESCFB128
AESCFB192
AESCFB256

= Output feedback:

AESOFB128
AESOFB192
AESOFB256

In some applications, only a small amount of data needs to be decrypted on a
particular decrypt stream. The ENCRYPT$DECRYPT_ONE_RECORD routine
allows you to perform such a decryption operation.

The ENCRYPT$DECRYPT_ONE_RECORD routine is an abbreviated form of the
ENCRYPTS$INIT, ENCRYPT$DECRYPT, and ENCRYPTS$FINI sequence of calls.
However, using ENCRYPT$DECRYPT_ONE_RECORD repeatedly to decrypt
records of a file is extremely inefficient.

The ENCRYPT$DECRYPT_ONE_RECORD routine returns a 32-bit status code
indicating the success or failure of the routine’s operation.

Encryption (ENCRYPT) Routines ENC-15

Encryption (ENCRYPT) Routines
ENCRYPT$DECRYPT_ONE_RECORD

Condition Values Returned

SS$_NORMAL
ENCRYPT$xyz

SS$_xyz

ENC-16 Encryption (ENCRYPT) Routines

Operation performed.

An error reported by the Encryption software.
The xyz portion identifies the message.

A return status from a called system service.
The xyz portion identifies the return status.

Encryption (ENCRYPT) Routines
ENCRYPT$DEFINE_KEY

ENCRYPT$DEFINE_KEY

Format

Arguments

Places a key definition into the process, group, job, or system key storage table.

ENCRYPT$DEFINE_KEY key-name, key-value, key-flags

key-name
type: char_string
access: read only

mechanism: by descriptor

Name of the key defined when ENCRYPT$DEFINE_KEY completes execution.
The key-name argument is the address of a string descriptor pointing to a
char_string key that is interpreted as the name of the key to be defined. A
maximum of 243 characters is permitted.

Note

Key names beginning with ENCRYPT$ are reserved for HP.

key-value
type: char_string
access: read only

mechanism: by descriptor

Key value defined when ENCRYPT$DEFINE_KEY completes execution. The
key-value argument is the address of a string descriptor pointing to a vector of
unsigned byte values that are assigned to the named key. A maximum of 240
bytes can be assigned.

key-flags
type: longword
access: read only

mechanism: by reference

Flags that ENCRYPT$DEFINE_KEY uses when defining a key. The key-flags
argument is the address of a longword containing flags that control the key
definition process.

Each flag has a symbolic name. The constants associated with these names are
defined in the ENCRYPT$EXAMPLES:ENCRYPT_STRUCTURES files in various
programming languages.

Table 11-3 defines the function of each flag.

Encryption (ENCRYPT) Routines ENC-17

Encryption (ENCRYPT) Routines
ENCRYPT$DEFINE_KEY

Description

Table 11-3 ENCRYPT$DEFINE_KEY Flags

Flag Symbolic Name Function
ENCRYPT$M_KEY_PROCESS Places definition in process table.
ENCRYPT$M_KEY_GROUP Places definition in group table.
ENCRYPT$M_KEY_JOB Places definition in job table.
ENCRYPT$M_KEY_SYSTEM Places definition in system table.
ENCRYPT$M_KEY_LITERAL Stores key without compressing.
ENCRYPT$M_KEY_AES Designates an AES key value.

The following AES mask can be used in addition to other flags for the key-flags
argument (as a longword by reference). An associated AES key value can be used
for testing the bit within the program. Use the KEY_AES key flag to specify an
AES key:

- ENCRYPT$M_KEY_AES
- ENCRYPT$V_KEY_AES

The ENCRYPT$DEFINE_KEY routine places a key definition into the process,
group, job, or system key storage table. The key value supplied with the routine
is processed as specified and placed in the key storage table under the indicated
name. The ENCRYPT$DEFINE_KEY routine does not interpret the key value.

By default, DES keys are treated as char_string keys, using the Digital
Multinational Character Set and are compressed before being inserted into
the key storage table. The compression proceeds as follows:

1. The string is converted to uppercase characters.
2. The digits 0 through 9 are left unchanged.

3. All characters except letters, numerals, dollar signs, periods, and underscores
are converted to spaces.

4. All sequences of multiple spaces (or characters that have been converted into
spaces) are converted into single spaces.

When a char_string key is retrieved from key storage for use as a DES key, it is
folded into an 8-byte key by exclusive OR-ing of 8-byte segments of the key string
together, and then by applying odd parity to each byte by modifying the sign bit
(bit 7).

The key flag ENCRYPT$M_KEY_LITERAL specifies that the key string supplied
is a binary key. A binary key is not compressed, but is placed into key storage as
is. When a binary key is used as a DES key, it is likewise folded into an 8-byte
key by exclusive OR-ing of 8-byte segments together. For DES, odd parity is then
applied by modifying the low bit (bit 0) of each byte.

AES key values are not subject to ASCII compression. Therefore, any 8-bit
character is allowed for AES keys.

The ENCRYPT$DEFINE_KEY routine returns a 32-bit status code indicating the
success or failure of the routine’s operation.

ENC-18 Encryption (ENCRYPT) Routines

Encryption (ENCRYPT) Routines
ENCRYPT$DEFINE_KEY

Condition Values Returned

SS$_NORMAL Key has been defined.

ENCRYPT$xyz An error reported by the Encryption software.
The xyz portion identifies the message.

SS$_xyz A return status from a called system service.

The xyz portion identifies the return status.

Encryption (ENCRYPT) Routines ENC-19

Encryption (ENCRYPT) Routines
ENCRYPT$DELETE_KEY

ENCRYPT$DELETE_KEY

Format

Arguments

Description

Deletes a key definition from a key storage table.

ENCRYPT$DELETE_KEY key-name, key-flags

key-name
type: char_string
access: read only

mechanism: by descriptor

Name of the key removed from a key storage table when
ENCRYPT$DELETE_KEY completes execution. The key-name argument is
the address of a string descriptor pointing to a char_string that is interpreted as
the name of the key to be deleted. A maximum of 243 characters is permitted.

key-flags
type: longword
access: read only

mechanism: by reference

Key table from which ENCRYPT$DELETE_KEY removes a key. The key-flags
argument is a longword containing flags that control the deletion process. The
following flags are available:

ENCRYPT$M_KEY_PROCESS Deletes a key from process table
ENCRYPT$M_KEY_GROUP Deletes a key from group table
ENCRYPT$M_KEY_JOB Deletes a key from job table
ENCRYPT$M_KEY_SYSTEM Deletes a key from system table
ENCRYPT$M_KEY_AES Designates an AES key value

The following AES mask can be used in addition to other flags for the key-flags
argument (as a longword by reference). An associated AES key value can be used
for testing the bit within the program. Use the KEY_AES key flag to specify an
AES key:

- ENCRYPT$M_KEY_AES
- ENCRYPT$V_KEY_AES

The ENCRYPTSDELETE_KEY routine deletes a key definition from a key
storage table. The ENCRYPT$DELETE_KEY routine returns a 32-bit status code
indicating the success or failure of the routine’s operation.

ENC-20 Encryption (ENCRYPT) Routines

Encryption (ENCRYPT) Routines
ENCRYPT$DELETE_KEY

Condition Values Returned

SS$_NORMAL Key has been deleted.

ENCRYPT$xyz An error reported by the Encryption software.
The xyz portion identifies the message.

SS$_xyz A return status from a called system service.

The xyz portion identifies the return status.

Encryption (ENCRYPT) Routines ENC-21

Encryption (ENCRYPT) Routines
ENCRYPT$ENCRYPT

ENCRYPT$ENCRYPT

Format

Arguments

Transforms the next record of plaintext according to the algorithm you specify
in the ENCRYPTSINIT call. This routine performs either an encryption or
decryption operation.

ENCRYPT$ENCRYPT context, input, output [,output-length] [,p1]

context
type: longword integer (signed)
access: write only

mechanism: by reference

Context area initialized when ENCRYPTS$INIT completes execution. The context
argument is the address of a longword of unspecified interpretation that is used
to convey context between encryption operations.

input
type: char_string
access: read only

mechanism: by descriptor

Plaintext record to encrypt. The input argument is the address of a descriptor
pointing to a byte-aligned buffer containing the input record to the encryption
operation.

output

type: char_string

access: write only by descriptor
mechanism:

Ciphertext record that results when ENCRYPT$ENCRYPT completes execution.
The output argument is the address of a descriptor pointing to a byte-aligned
buffer that will contain the output record from the encryption operation.

If the descriptor is dynamic and insufficient space is allocated to contain the
output record, storage is allocated from dynamic memory.

ENCRYPT$ENCRYPT adjusts the length of the output descriptor, if possible, to
reflect the actual length of the output string. If the descriptor type is not DSC$K _
DTYPE_VS (varying string), DSC$K_DTYPE_V (varying), or DSC$K_DTYPE_D
(dynamic), the routine takes the actual output count from the output-length
argument.

The output buffer must be able to accommodate a padded block to an increment
of the block length. For AES this is 16 bytes, for DES, 8 bytes.

output-length

type: word integer
access: write only
mechanism: by reference

ENC-22 Encryption (ENCRYPT) Routines

Description

Encryption (ENCRYPT) Routines
ENCRYPTSENCRYPT

Optional argument. Number of bytes that ENCRYPTSENCRYPT wrote to the
output buffer. The output-length argument is the address of a word containing
the number of bytes written to the output buffer.

Some encryption algorithms have specific requirements for the length of the input
and output strings. In particular, DESECB and DESCBC pad input data with
from 1 to 7 bytes to form complete 64-bit blocks for operation. The values of the
pad characters are indeterminate.

When you decrypt fewer than 8 bytes, preserve and present to
ENCRYPT$DECRYPT the full 8 bytes resulting from ENCRYPT$ENCRYPT.
Retain the byte count of the input data in order to strip trailing pad bytes after a
subsequent decryption operation.

Note that the AES block-mode algorithms (AESCBCxxx and AESECBxxx) pad
the data to even 16-byte block boundaries. For AES, one byte encrypts and
decrypts to 16 bytes, 72 bytes to 80, and so forth. The AES padding character
is a hexadeciman number of bytes indicating the number of bytes padded. For
example, the 1-byte encrypted pad would decrypt to 15 characters of 0F following
the one encrypted byte of data. For the 72 bytes of data, 8 bytes of padding
characters (08 08 ... 08) follow the 72 bytes of encrypted data. DESECB and
DESCBC modes always pad with characters of zeros. The character stream
modes (AESCFBxxx, AESOFBxxx, DESCFB). In order that the output-length
matchs the actual number of data bytes, do not pad the data.

pl
type: quadword[1] (DES), quadword[2] (AES)
access: read only

mechanism: by reference

Optional argument. The P1 argument is the address of a quadword initialization
vector used to seed the three modes (DESECB, DESCFB, and DESMAC) of the
DES algorithm for which it is applicable. The DES 1V initialization vector is a
guadword reference, to an 8-byte value.

For AES, the optional P1 argument for the AES 1V initialization vector is a
reference to a 16-byte (2 quadword) value.

If you omit this argument, the initialization vector used is the residue of the
previous use of the specified context block. ENCRYPTSINIT initializes the
context block with an initialization vector of zero.

The ENCRYPT$ENCRYPT routine transforms the next record of plaintext
according to the algorithm specified in the ENCRYPTSINIT call. Any

errors encountered in the operation are returned as status values. The
ENCRYPT$ENCRYPT routine returns a 32-bit status code indicating the success
or failure of the routine’s operation.

Encryption (ENCRYPT) Routines ENC-23

Encryption (ENCRYPT) Routines
ENCRYPT$ENCRYPT

Condition Values Returned

SS$_NORMAL
ENCRYPT$xyz

SS$_xyz

ENC-24 Encryption (ENCRYPT) Routines

Record successfully encrypted.

An error reported by the Encryption software.
The xyz portion identifies the message.

A return status from a called system service.
The xyz portion identifies the return status.

Encryption (ENCRYPT) Routines
ENCRYPT$ENCRYPT_FILE

ENCRYPT$ENCRYPT_FILE

Format

Arguments

Encrypts or decrypts data files.

ENCRYPT$ENCRYPT_FILE input-file, output-file, key-name, algorithm, file-flags
[,item-list]

input-file
type: char_string
access: read only

mechanism: by descriptor

Name of the input file that ENCRYPT$ENCRYPT_FILE is to process. The input-
file argument is the address of a string descriptor pointing to the file specification
string for the input file.

Wildcard characters are valid. To specify multiple input files, you must use
wildcard characters.

output-file
type: char_string
access: read only

mechanism: by descriptor

Name of the output file that ENCRYPTSENCRYPT_FILE is to generate. The
output-file argument is the address of a string descriptor pointing to the file
specification for the output file to be processed.

You can use wildcard characters. To specify the same names for the output and
input files, use a null character as the output-file argument.

key-name
type: char_string
access: read only

mechanism: by descriptor

Name of the key used when ENCRYPT$ENCRYPT_FILE processes files. The
key-name argument is the address of a string descriptor pointing to the name of
the key to be used in initializing the encrypt or decrypt stream used for each file
processed.

algorithm
type: char_string
access: read only

mechanism: by descriptor

Name of the algorithm that ENCRYPT$ENCRYPT_FILE uses to initialize the
process stream. The algorithm argument is the address of a string descriptor
pointing to the name of the algorithm.

Encryption (ENCRYPT) Routines ENC-25

Encryption (ENCRYPT) Routines
ENCRYPT$ENCRYPT_FILE

For DES, the following algorithms are valid:
e DESCBC (default)

- DESECB

- DESCFB

For AES, the following algorithms are valid:
= Cipher block chaining:

AESCBC128 (default)
AESCBC192
AESCBC256

e Electronic code book:

AESECB128
AESECB192
AESECB256

= Cipher feedback:

AESCFB128
AESCFB192
AESCFB256

e Output feedback:

AESOFB128
AESOFB192
AESOFB256

file-flags

type: longword
access: read only
mechanism: by reference

Flags that specify how ENCRYPTSENCRYPT_FILE performs the file operation.
The file-flags argument is the address of a longword containing a mask of flags.
Table 11-4 shows the function of each flag.

Table 11-4 ENCRYPT$ENCRYPT_FILE Flags

Flag Function
ENCRYPT$M_FILE_COMPRESS Compresses file data before encryption.
ENCRYPT$M_FILE_ENCRYPT Flag set: Encrypts the file.

Flag clear: Decrypts the file.

ENCRYPT$M_FILE_DELETE Deletes the input file when the operation
completes.
ENCRYPT$M_FILE_ERASE Erases the file with the security data

pattern before deleting it.
(continued on next page)

ENC-26 Encryption (ENCRYPT) Routines

Encryption (ENCRYPT) Routines
ENCRYPT$ENCRYPT_FILE

Table 11-4 (Cont.) ENCRYPT$ENCRYPT FILE Flags

Flag Function

ENCRYPT$M_FILE_KEY_VALUE Flag set: Treats the key value as a literal
value and does not compress it.

Flag clear: Treats the key value as a
text string that can be compressed.

If the key-name argument is present,
this flag is ignored.

ENCRYPT$M_FILE_AES Flag set: Encrypts a file with an AES key
and algorithm

An additional FILE_AES flag mask (and value) is used with the
ENCRYPT$ENCRYPT_FILE routine when encrypting files using an AES
algorithm. The ENCRYPT$ENCRYPT_FILE_FLAGS are used to control file
operations such as cipher direction, file compression and so on. The FILE_AES
flag controls file AES initialization and cipher operation.

item-list
type: item_list_3
access: read only

mechanism: by descriptor

The optional item-list argument is used to override the data algorithm argument.
This argument substitutes one algorithm for another that is similar in function
but that may be different in its name. In other words, it overrides the name

of the algorithm that is found in the random key record with the name of the
algorithm you provided in the override descriptor. This process provides a way
to open files that were encrypted with an algorithm name that may be different
than the algorithm name in the decrypt environment.

ENCRYPT$K_DATA_ALGORITHM
type: 3 longwords
access: read only
mechanism: by descriptor

Algorithm to be used to encrypt the file. This argument specifies the address and
length of the name string of the algorithm.

For DES, the following algorithms are valid:
= DESCBC (default)

- DESECB

= DESCFB

Encryption (ENCRYPT) Routines ENC-27

Encryption (ENCRYPT) Routines
ENCRYPT$ENCRYPT_FILE

For AES, the following algorithms are valid:

Cipher block chaining:

AESCBC128 (default)
AESCBC192
AESCBC256

Electronic code book:

AESECB128
AESECB192
AESECB256

Cipher feedback:

AESCFB128
AESCFB192
AESCFB256

Output feedback:

AESOFB128
AESOFB192
AESOFB256

Description

The ENCRYPT$ENCRYPT_FILE routine either encrypts or decrypts data files
from within an application.

The routine uses the user key and the specified algorithm to protect only the
randomly generated key and the initialization vector that are used with the
DESCBC algorithm to encrypt the file.

The ENCRYPT$SENCRYPT_FILE routine returns a 32-bit status code indicating
the success or failure of the routine’s operation.

When you use this routine, do not also use ENCRYPTSINIT or ENCRYPTS$FINI.

Condition Values Returned

SS$_ NORMAL Record successfully encrypted.

ENCRYPT$xyz An error reported by the Encryption software.
The xyz portion identifies the message.

SS$_xyz A return status from a called system service.

The xyz portion identifies the return status.

ENC-28 Encryption (ENCRYPT) Routines

Encryption (ENCRYPT) Routines
ENCRYPT$ENCRYPT_ONE_RECORD

ENCRYPT$ENCRYPT_ONE_RECORD

Format

Arguments

Encrypts a small amount of data in an encryption stream.

Note

To use AES for 1 record ciphers, you must first create an AES key, which
is stored in the logical name table (encrypted). The key name of an AES

key is specified as an address of a descriptor that contains the ASCII text
for the selected AESmmmkkk (mode and key size) algorithm, for example,
AESCBC256. The input and output buffers (descriptor addresses) are also
provided.

ENCRYPT$ENCRYPT_ONE_RECORD input, output, key-name, algorithm

input
type: char_string
access: read only

mechanism: by descriptor

Plaintext record to be encrypted. The input argument is the address of a string
descriptor pointing to a byte-aligned buffer containing the input record to be
encrypted.

output
type: char_string
access: write only

mechanism: by descriptor

Ciphertext record resulting when the routine completes execution. The output
argument is the address of a string descriptor pointing to a byte-aligned buffer
that contains the ciphertext record.

If the descriptor is dynamic, and insufficient space is allocated to contain the
output record, storage is allocated from dynamic memory. If insufficient space
exists to contain the output of the operation, an error is returned.

The ENCRYPT$ENCRYPT_ONE_RECORD routine adjusts the length of the
output descriptor, if possible, to reflect the actual length of the output string.

key-name
type: char_string
access: read only

mechanism: by descriptor

Key used to initialize the encryption stream. The key-name argument is the
address of a string descriptor pointing to the name of the previously defined user
key to be used.

Encryption (ENCRYPT) Routines ENC-29

Encryption (ENCRYPT) Routines
ENCRYPT$ENCRYPT_ONE_RECORD

algorithm
type: char_string
access: read only

mechanism: by descriptor

Algorithm used for the encryption operation. The algorithm argument is the
address of a string descriptor pointing to a code for the selected algorithm. The
algorithm code is an ASCII string. For descriptor type value, use one of the
following:

- DSC$K_DTYPE_T (text)

e DSC$K_DTYPE_VT (varying text)

e DSC$K_DTYPE_Z (unspecified)

For DES, the following algorithms are valid:
e DESCBC (default)

- DESECB

- DESCFB

For AES, the following algorithms are valid:
= Cipher block chaining:

AESCBC128 (default)
AESCBC192
AESCBC256

e Electronic code book:

AESECB128
AESECB192
AESECB256

= Cipher feedback:

AESCFB128
AESCFB192
AESCFB256

= Output feedback:

AESOFB128
AESOFB192
AESOFB256

Description

To encrypt only a small amount of data, use the ENCRYPT$ENCRYPT_ONE_
RECORD routine.

The ENCRYPT$SENCRYPT_ONE_RECORD routine is a shorthand form of the
ENCRYPTSINIT, ENCRYPT$ENCRYPT, and ENCRYPTS$FINI sequence of calls.
However, using ENCRYPT$ENCRYPT_ONE_RECORD repeatedly to encrypt
records of a file is extremely inefficient.

The ENCRYPT$SENCRYPT_ONE_RECORD routine returns a 32-bit status code
indicating the success or failure of the routine’s operation.

ENC-30 Encryption (ENCRYPT) Routines

Encryption (ENCRYPT) Routines
ENCRYPT$ENCRYPT_ONE_RECORD

Condition Values Returned

SS$_NORMAL Operation performed.

ENCRYPT$xyz An error reported by the Encryption software.
The xyz portion identifies the message.

SS$_xyz A return status from a called system service.

The xyz portion identifies the return status.

Encryption (ENCRYPT) Routines ENC-31

Encryption (ENCRYPT) Routines
ENCRYPTS$FINI

ENCRYPTS$FINI

Format

Arguments

Description

Disassociates the encryption context and releases it.

ENCRYPTS$FINI context

context
type: longword integer (signed)
access: read/write

mechanism: by reference

Context area terminated when ENCRYPTS$FINI completes execution. The
context argument is the address of a longword initialized by the ENCRYPTSINIT
routine.

The ENCRYPTS$FINI routine disassociates the indicated encryption context and
releases it. The ENCRYPTS$FINI routine returns a 32-bit status code indicating
the success or failure of the routine’s operation.

Condition Values Returned

SS$ NORMAL Encryption context successfully terminated.

ENCRYPT$xyz An error reported by the Encryption software.
The xyz portion identifies the message.

SS$_xyz A return status from a called system service.

The xyz portion identifies the return status.

ENC-32 Encryption (ENCRYPT) Routines

Encryption (ENCRYPT) Routines
ENCRYPT$SGENERATE_KEY

ENCRYPT$GENERATE_KEY

Format

Arguments

Generates a random key value.

ENCRYPT$GENERATE_KEY algorithm-name, key-length [,factor-a] [,factor-b]
[,factor-c] [,key buffer]

algorithm-name

type: char_string
access: read only
mechanism: by descriptor

The name of the algorithm that uses the generated key.

key-length
type: word unsigned
access: read only

mechanism: by reference

Unsigned integer indicating the size of the key to be generated. The key-length
argument is the address of an unsigned word containing a value that indicates
the length of the key.

For AES, the key-length argument takes values as increments of AES block size:
16 bytes, 32, bytes, and 48 bytes, and so on.

factor-a, factor-b, factor-c
type: char_string
access: read only
mechanism: by descriptor

Optional arguments. The factor-a, factor-b, and factor-c arguments are
operation-dependent data used as randomizing factors when the routine generates
a key value. For example, the factors might include:

e Time an operation started
= Size of a certain stack

= Copy of the last command line

key-buffer
type: char_string
access: write

mechanism: by descriptor

Buffer into which the generated key is to be placed. The key-buffer argument is
the address of a string descriptor referencing the appropriate buffer.

If you specify a class D descriptor, dynamic memory is allocated to contain the
entire key.

Encryption (ENCRYPT) Routines ENC-33

Encryption (ENCRYPT) Routines
ENCRYPT$GENERATE_KEY

Description

The ENCRYPT$GENERATE_KEY routine generates a random key value. The
ENCRYPT$GENERATE_KEY routine returns a 32-bit status code indicating the
success or failure of the routine’s operation.

Condition Values Returned

SS$ NORMAL Key has been created.

ENCRYPT$xyz An error reported by the Encryption software.
The xyz portion identifies the message.

SS$_xyz A return status from a called system service.

The xyz portion identifies the return status.

ENC-34 Encryption (ENCRYPT) Routines

Encryption (ENCRYPT) Routines
ENCRYPTSINIT

ENCRYPTS$INIT

Format

Arguments

Initializes the context for the encryption operation.

ENCRYPTSINIT context, algorithm, key-type, key-name [,p1]

context
type: longword integer signed
access: write only

mechanism: by reference

Context area that is initialized. The context argument is the address of a
longword of unspecified interpretation that is used to convey context between
encryption operations. An uninitialized context longword is defined to be zero and
is initialized to nonzero by this routine. The context area itself is allocated from
process dynamic memory.

algorithm
type: char_string
access: read/write

mechanism: by descriptor

Algorithm used for the encryption operation. The algorithm argument is the
address of a string descriptor pointing to a code for the selected algorithm. The
algorithm code is an ASCII string. For descriptor type value, use one of the
following:

DSC$K_DTYPE_T (text)
DSC$K_DTYPE_VT (varying text)
DSC$K_DTYPE_Z (unspecified)

For DES, the following algorithms are valid:
= DESCBC (default)

- DESECB

e DESCFB

For AES, the following algorithms are valid:
= Cipher block chaining:

AESCBC128 (default)
AESCBC192
AESCBC256

e Electronic code book:

AESECB128
AESECB192
AESECB256

Encryption (ENCRYPT) Routines ENC-35

Encryption (ENCRYPT) Routines
ENCRYPTSINIT

e Cipher feedback:

AESCFB128
AESCFB192
AESCFB256

e Output feedback:

AESOFB128
AESOFB192
AESOFB256

key-type

type: longword logical unsigned
access: read only

mechanism: by reference

Code specifying how ENCRYPTSINIT is to interpret the key-name argument.
The key-type argument is the address of an unsigned longword indicating
whether key-name is the name of the key or the key value. If you specify:

Key-type as 0 ENCRYPTSINIT interprets key-name as a
descriptor pointing to the key name string.

Key-type as 1 ENCRYPTSINIT interprets key-name as the
descriptor for the value of the key to be used.

key-name

type: char_string

access: read only

mechanism: by descriptor

Key that ENCRYPTSINIT passes to the selected encryption routine. The key-
name argument is the address of a character string descriptor containing
the name of the key or the address of the actual key value. ENCRYPTSINIT
interprets this argument based on the key-type value. Argument options:

The key name Actual key value is retrieved from key storage by
the selected encryption routine.
A key value It is stored with a temporary name, which is passed

to the selected encryption routine.

If the key-name argument is used to specify a key value (that is, if key-type has
been specified as 1), the key-name string-descriptor type field determines whether
the key value is to be treated as a char_string key or as a binary value to be used
exactly as specified.

If the descriptor type is DSC$K_DTYPE_T (char_string), DSC$K_DTYPE_VT
(varying char_string), or DSC$K_DTYPE_Z (unspecified), the value is treated as
a text string to be compressed for DES key values. ASCII compression converts
lowercase characters to uppercase; only the characters A-Z, 0-9, dollar sign ($),
period (.), and underscore () are allowed. Other characters are converted to
spaces, and the extra spaces are removed. AES ASCII key values are not subject
to ASCII compression, allowing any 8-bit ASCII character.

All other descriptor types are treated as though the key value is to be used
exactly as specified.

ENC-36 Encryption (ENCRYPT) Routines

Encryption (ENCRYPT) Routines
ENCRYPTSINIT

Note

The key name descriptors of type DSCK_DTYPE_T, DSCK_DTYPE_
VT, and DSC$K_DTYPE_Z all specify that the key value should be
compressed. For OpenVMS Version 8.3, this functionality applies only to
DES, not to AES. AES keys are not compressed.

pl
type: quadword[1] (DES), quadword[2] (AES)
access: read only

mechanism: by reference

Optional argument. The pl argument is the address of a quadword initialization
vector used to seed the three modes of the DES algorithm that uses an
initialization vector. These modes are DESCBC (default), DESCFB, and
DESMAC,; that is, the DES 1V initialization vector is a quadword reference

to an 8-byte value.

For AES, the optional pl argument for the AES IV initialization vector is a
reference to a 16-byte (2 quadword) value.

If you omit this argument, the initialization vector used is the residue of the
previous use of the specified context block. ENCRYPTSINIT initializes the
context block with an initialization vector of zero.

Description

ENCRYPTSINIT initializes the context for the encryption operation.
ENCRYPTSINIT creates preinitialized key tables in the context area to speed
the encryption or decryption process. Before you can reuse a context with a new
algorithm, key, or other values specified with ENCRYPTS$INIT, terminate the old
context with a call to ENCRYPTS$FINI.

Note

Always initialize the context with ENCRYPTS$INIT when you change the
operation from encryption to decryption or from decryption to encryption.

ENCRYPTSINIT returns a 32-bit status code indicating the success or failure of
the routine’s operation.

Condition Values Returned

SS$_NORMAL Initialization successfully completed.

ENCRYPT$xyz An error reported by the Encryption software.
The xyz portion identifies the message.

SS$_xyz A return status from a called system service.

The xyz portion identifies the return status.

Encryption (ENCRYPT) Routines ENC-37

Encryption (ENCRYPT) Routines
ENCRYPTS$STATISTICS

ENCRYPT$STATISTICS

Format

Arguments

Gains access to the statistics maintained by the encryption software.

ENCRYPTS$STATISTICS context, code, destination, return-length

context
type: longword
access: read only

mechanism: by reference

Context area initialized by ENCRYPTS$INIT. The context argument is the
address of a longword initialized by the ENCRYPTSINIT routine.

code
type: longword
access: read only

mechanism: by reference

Code specifying the desired statistic. The code argument is the address of a
longword containing the code. The only accepted value is 1, which indicates that
ENCRYPTS$STATISTICS is to return all statistics to the destination buffer.

destination
type: char_string
access: write only

mechanism: by descriptor

Buffer into which ENCRYPTSSTATISTICS places the statistics. The destination
argument is the address of a string descriptor describing the buffer. Ensure that
the destination buffer is at least 20 bytes long and contains:

= One longword indicating the number of times the primitive has been entered
referencing this encryption stream

< One quadword indicating the total bytes processed for this stream

= One quadword indicating the total CPU time, in OpenVMS time format, spent
on processing requests for this stream

return-length

type: longword
access: write only
mechanism: by reference

Number of bytes written to the destination buffer. The return-length argument
is the address of a word containing the number of bytes.

ENC-38 Encryption (ENCRYPT) Routines

Encryption (ENCRYPT) Routines
ENCRYPTS$STATISTICS

Description

To track the progress and performance of an encryption operation, the encryption
software maintains statistics in the context area. You can access these statistics
with the ENCRYPT$STATISTICS routine. The ENCRYPT$STATISTICS routine
returns a 32-bit status code indicating the success or failure of the routine’s
operation.

Condition Values Returned

SS$_NORMAL Statistics returned.

ENCRYPT$xyz An error reported by the Encryption software.
The xyz portion identifies the message.

SS$_xyz A return status from a called system service.

The xyz portion identifies the return status.

Encryption (ENCRYPT) Routines ENC-39

12

File Definition Language (FDL) Routines

This chapter describes the File Definition Language (FDL) routines. These
routines perform many of the functions of the File Definition Language that
define file characteristics. Typically, you use FDL to perform the following
operations:

= Specify file characteristics otherwise unavailable from your language.

< Examine or modify the file characteristics of an existing data file to improve
program or system interaction with that file.

12.1 Introduction to FDL Routines

You specify FDL attributes for a data file when you use FDL to create the data
file, set the desired file characteristics, and close the file. You can then use the
appropriate language statement to reopen the file. Because the data file is closed
between the time the FDL attributes are set and the time your program accesses
the file, you cannot use FDL to specify run-time attributes (attributes that are
ignored or deleted when the associated data file is closed).

The FDL$CREATE routine is the one most likely to be called from a high-

level language. It creates a file from an FDL specification and then closes the
file. The following HP Fortran program segment creates an empty data file
named INCOME93.DAT using the file characteristics specified by the FDL file
INCOME.FDL. The STATEMENT variable contains the number of the last FDL
statement processed by FDL$CREATE; this argument is useful for debugging an
FDL file.

INTEGER STATEMENT
INTEGER STATUS,

2 FDL$CREATE

STATUS = FDL$CREATE (’INCOME.FDL',

2 " INCOME93 . DAT' ,
2 11

2 STATEMENT,

2)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

File Definition Language (FDL) Routines FDL-1

File Definition Language (FDL) Routines
12.1 Introduction to FDL Routines

The following three FDL routines provide a way to specify all the options
OpenVMS RMS allows when it executes create, open, or connect operations. They
also allow you to specify special processing options required for your applications.

The FDL$GENERATE routine produces an FDL specification by interpreting
a set of RMS control blocks in an existing data file. It then writes the

FDL specification either to an FDL file or to a character string. If

your programming language does not provide language statements that
access RMS control blocks (for example, HP Fortran), you must use
FDL$GENERATE from within the context of a user-open routine to generate
an FDL file.

The FDL$PARSE routine parses an FDL specification, allocates RMS control
blocks, and fills in the relevant fields.

The FDL$RELEASE routine deallocates the virtual memory used by the RMS
control blocks created by FDL$PARSE.

These routines cannot be called from asynchronous system trap (AST) level. In
addition, in order to function properly, these routines require ASTs to remain
enabled.

An FDL specification can be in either a file or a character string. When specifying
an FDL specification in a character string, use semicolons to delimit the
statements of the FDL specification.

12.2 Using the FDL Routines: Examples

This section provides examples that demonstrate the use of the FDL routines in
various programming scenarios.

Example 12-1 shows how to use the FDL$CREATE routine in a Fortran
program.

Example 12-2 shows how to use the FDL$PARSE and FDL$RELEASE
routines in a C program.

Example 12-3 shows a HP Pascal program that uses the FDL$PARSE routine
to fill in the RMS control blocks in a data file. The program then uses the
FDL$GENERATE routine to create an FDL file using the information in the
control blocks.

FDL-2 File Definition Language (FDL) Routines

File Definition Language (FDL) Routines
12.2 Using the FDL Routines: Examples

Example 12-1 Using FDL$CREATE in a Fortran Program

* % X X X X

*

1000
2000

This program calls the FDLSCREATE routine. It
creates an indexed output file named NEW_MASTER.DAT
from the specifications in the FDL file named
INDEXED.FDL. You can also supply a default filename
and a result name (that receives the name of the

created file). The program also returns all the
statistics.

IMPLICIT INTEGER*4 (A - Z)

EXTERNAL LIB$GET_LUN, FDLSCREATE
CHARACTER IN FILE*11 /' INDEXED.FDL' /,

1 OUT FILE*14 /’NEW_MASTER.DAT’/,
1 DEF_FILE*11 /' DEFAULT.FDL'/,

1 RES FILE*50

INTEGER*4 FIDBLK(3) /0,0,0/

I =1

STATUS = FDLSCREATE (IN FILE,OUT FILE,
DEF_FILE,RES FILE,FIDBLK,,)
IF (.NOT. STATUS) CALL LIBS$STOP (%VAL(STATUS))

STATUS=LIBS$SGET LUN(LOG UNIT)
OPEN (UNIT=LOG UNIT,FILE=RES FILE,STATUS='OLD’)
CLOSE (UNIT=LOG UNIT, STATUS='KEEP’)

WRITE (6,1000) (RES_FILE)
WRITE (6,2000) (FIDBLK (I), I=1,3)

FORMAT (1X,’The result filename is: ’,A50)
FORMAT (/1X,'FID-NUM: ',I5/,

1 1X,'FID-SEQ: ',I5/,

1 1X,'FID-RVN: ’,I5)

END

Example 12—2 shows how to use the FDL$PARSE and FDL$RELEASE routines in a C

program.

Example 12-2 Using FDL$PARSE and FDL$RELEASE in a C Program

/*
* %
* %
* %
* %
* %
* %
* %

*/

FDLEXAM.C

This program calls the FDL utility routines FDLSPARSE and
FDLSRELEASE. First, FDLSPARSE parses the FDL specification
PART.FDL. Then the data file named in PART.FDL is accessed
using the primary key. Last, the control blocks allocated
by FDLSPARSE are released by FDLSRELEASE.

Note; to try this program use the following command on any
file with textual data: $ANALYZE/RMS/FDL/OUT=PART.FDL

#include <descrip>
#include <rms>
#define REC SIZE 80 /* as appropriate for files used */

FDLEXAM ()

struct FAB *fab ptr; /* variable to hold pointer to FAB structure */
struct RAB *rab ptr; /* variable to hold pointer to RAB structure */

SDESCRIPTOR (fdl_file, "PART.FDL") ; /* free choice of name */
char record buffer [REC SIZE+1]; /* allow for null terminator */
int stat;

(continued on next page)

File Definition Language (FDL) Routines FDL-3

File Definition Language (FDL) Routines
12.2 Using the FDL Routines: Examples

Example 12-2 (Cont.) Using FDL$PARSE and FDL$RELEASE in a C Program
/*

** Read and parse FDL file allocating and initializing RAB and
*% and FAB accordingly, returning pointers to the FAB & RAB.
*/

stat = FDL$PARSE (&fdl file, &fab ptr, &rab ptr);

if (!(stat & 1)) LIBSSTOP (stat);

/*

** Try to open file as described by information in the FAB.

** Signal open errors. Note the usage of STAT, instead of

** FAB PTR->FABSL_STS because just in case the FAB is invalid,
*% the only status returned is STAT.

*

/

stat = SYS$OPEN (fab ptr);

if (!(stat & 1)) LIBSSTOP (stat, fab ptr->fab$l stv);

stat = SYS$CONNECT (rab ptr);
if (!(stat & 1)) LIBSSTOP (stat, rab ptr->rab$l stv);

/*
** Opened the file and connect some internal buffers.
*% Fill in the record output buffer information which is the only
** missing information in the RAB that was created for us by FDL.
** Print a header recod and perform the initial $GET.
*
/
rab _ptr->rabsw usz = REC SIZE;
rab ptr->rab$l ubf = record buffer;
printf ("----------c-omooo-- start of records -------------- \n") ;
stat = SYS$GET (rab ptr);
while (stat & 1) /* As long as the S$GET is successful */

record buffer(rab ptr->rab$w rsz] = 0; /* Terminate for printf */
printf ("$s\n", record buffer); /* Current record */
stat = SYSSGET (rab ptr); /* Try to get next one */

/*

** At this point in the execution, the status should be EOF indicating

*% Successfully read the file to end. If not, signal real error.

*/

if (stat != RMS$ EOF) LIB$STOP (rab ptr->rabsl sts, rab ptr->rab$l stv);

printf (M---------mmeeoo- end of records --------------- \n") ;
stat = SYS$CLOSE (fab ptr); /* implicit SDISCONNECT */

if (!(stat & 1)) LIBSSTOP (fab ptr->fabsl sts, fab ptr->fab$l stv);
/*

** Allow FDL to release the FAB and RAB structures and any other
*% gtructures (XAB) that it allocated on behalf of the program.
** Return with its status as final status (success or failure).
*/

return FDLSRELEASE (&fab ptr, &rab ptr);

FDL-4 File Definition Language (FDL) Routines

File Definition Language (FDL) Routines
12.2 Using the FDL Routines: Examples

Example 12-3 shows a HP Pascal program that uses the FDL$PARSE routine to fill in the RMS
control blocks in a data file, and then uses the FDL$GENERATE routine to create an FDL file.

Example 12-3 Using FDL$PARSE and FDL$GENERATE in a HP Pascal

Program

[INHERIT (’'SYSSLIBRARY:STARLET')]
PROGRAM FDLexample (input,output,order master);

(* This program fills in its own FAB, RAB, and *)
(* XABs by calling FDL$SPARSE and then generates *)
(* an FDL specification describing them. *)
(* It requires an existing input FDL file *)
(* (TESTING.FDL) for FDLSPARSE to parse. *)
TYPE
(*+ *)
(* FDL CALL INTERFACE CONTROL FLAGS *)
(*- *)
$BIT1 = [BIT(1),UNSAFE] BOOLEAN;
FDL2STYPE = RECORD CASE INTEGER OF
1: (FDL$ FDLDEF BITS : [BYTE(1)] RECORD END;
)i
2: (FDL$V SIGNAL : [POS(0)] $BITL;
(* Signal errors; don’t return *)
FDL$V_FDL_STRING : [POS(1)] $BIT1;
(* Main FDL spec is a char string *)
FDL$V_DEFAULT_STRING : [POS(2)] $BITI;
(* Default FDL spec is a char string *)
FDL$V_FULL OUTPUT : [POS(3)] $BIT1;
(* Produce a complete FDL spec *)
FDL$V_$CALLBACK : [POS(4)] $BITL;
(* Used by EDIT/FDL on input (DEC only) *)
)
END;
mail order = RECORD
order num : [KEY(0)] INTEGER;
name : PACKED ARRAY[1..20] OF CHAR;
address : PACKED ARRAY([1..20] OF CHAR;
city : PACKED ARRAY[1..19] OF CHAR;
state : PACKED ARRAY[1..2] OF CHAR;
zip_code : [KEY(1)] PACKED ARRAY[1..5]
OF CHAR;
item num : [KEY(2)] INTEGER;
shipping : REAL;
END;
order file = [UNSAFE] FILE OF mail order;
ptr to FAB = “FABSTYPE;
ptr to RAB = “RABSTYPE;
byte = 0..255;
VAR
order master : order file;
flags : FDL2STYPE;
order_rec : mail order;
temp FAB : ptr to FAB;
temp RAB : ptr_to RAB;
status : integer;

(continued on next page)

File Definition Language (FDL) Routines FDL-5

File Definition Language (FDL) Routines
12.2 Using the FDL Routines: Examples

Example 12-3 (Cont.) Using FDL$PARSE and FDL$GENERATE in a HP Pascal
Program

FUNCTION FDL$PARSE
($STDESCR FDL_FILE : PACKED ARRAY [L..U:INTEGER]
OF CHAR;
VAR FAB PTR : PTR_TO FAB;
VAR RAB PTR : PTR_TO RAB) : INTEGER; EXTERN;

FUNCTION FDL$GENERATE
($REF FLAGS : FDL2$TYPE;
FAB PTR : PTR_TO FAB;
RAB PTR : PTR TO RAB;
$STDESCR FDL FILE DST : PACKED ARRAY [L..U:INTEGER]
OF CHAR) : INTEGER;
EXTERN;

BEGIN

status := FDLSPARSE (’TESTING',TEMP_FAB,TEMP_RAB);
flags::byte := 0;
status := FDLSGENERATE (flags,

temp FAB,

temp RAB,

"SYSSOUTPUT: ') ;

END.

12.3 FDL Routines
This section describes the individual FDL routines.

Note that the fdl_desc and the default_fdl_desc arguments that are used as
part of these routine calls are character strings that can be either of the following:

= A string descriptor pointing to a file that contains a specification
= A character string that is the actual specification

For additional details, see the descriptions of the individual routine calls.

FDL-6 File Definition Language (FDL) Routines

File Definition Language (FDL) Routines
FDL$CREATE

FDL$CREATE—Create a File from an FDL Specification and Close

Format

Returns

Arguments

the File

The FDL$CREATE routine creates a file from an FDL specification and then
closes the file.

FDL$CREATE fdl_desc [,filename] [,default_name] [,result_name] [,fid_block] [,flags]
[,stmnt_num] [,retlen] [,sts] [,stv] [,default_fdl_desc]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

fdl_desc

OpenVMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

The fdl_desc argument is one of the following:

= A character string descriptor pointing to a file containing the FDL
specification to be parsed

e A character string containing the actual FDL specification

The choice depends on the application making the call. For example, if the
application wants to create data files that are compatible with a PC application,
it might create the following FDL file and name it TRANSFER.FDL.:

FILE

ORGANIZATION sequential
RECORD

FORMAT stream 1f

The application could then include the address of the FDL file as the fdl_desc
argument to the FDL$PARSE call:

call fdl$parse transfer.fdl , . ..

Optionally, the application might code the FDL specification itself into the call
using a quoted character string as the fdl_desc argument:

call fdlSparse "FILE; ORG SEQ; FORMAT STREAM LF;" , . ..

Note that directly including the FDL specification into the call requires you to do
the following:

= Enclose the fdl_desc argument in quotation marks

File Definition Language (FDL) Routines FDL-7

File Definition Language (FDL) Routines
FDL$CREATE

= Use a semicolon to delimit statements within the fdl_desc argument
= Assign the symbol FDL$M_FDL_STRING as the flags mask value

filename

OpenVMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Name of the OpenVMS RMS file to be created using the FDL specification. The
filename argument is the address of a character string descriptor pointing to the
RMS file name. This name overrides the default_name parameter given in the
FDL specification.

default_name
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Default name of the file to be created using the FDL specification. The default_
name argument is the address of a character string descriptor pointing to the
default file name. This name overrides any name given in the FDL specification.

result_name
OpenVMS usage: char_string

type: character-coded text string
access: write only
mechanism: by descriptor—fixed-length string descriptor

Resultant name of the file created by FDL$CREATE. The result_name argument
is the address of a character string descriptor that receives the resultant file
name.

fid_block

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only

mechanism: by reference

File identification of the RMS file created by FDL$CREATE. The fid_block
argument is the address of an array of longwords that receives the RMS file
identification information. The first longword contains the FID_NUM, the second
contains the FID_SEQ, and the third contains the FID_RVN. They have the
following definitions:

FID_NUM The location of the file on the disk. Its value can range from 1 up
to the number of files the disk can hold.

FID_SEQ The file sequence number, which is the number of times the file
number has been used.
FID_RVN The relative volume number, which is the volume number of the

volume on which the file is stored. If the file is not stored on a
volume set, the relative volume number is O.

FDL-8 File Definition Language (FDL) Routines

File Definition Language (FDL) Routines

FDL$CREATE
flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or masks) that control how the fdl_desc argument is interpreted and how
errors are signaled. The flags argument is the address of a longword containing
the control flags (or a mask). If you omit this argument or specify it as 0, no flags
are set. The following table shows the flags and their meanings:

Flag Function

FDL$V_FDL_STRING Interprets the fdl_desc argument as an FDL
specification in string form. By default, the fdl_
desc argument is interpreted as the file name of an
FDL file.

FDL$V_LONG_NAMES Returns the RESULT_NAME using the long result
name from a long name access block (NAML). By
default, the RESULT_NAME is returned from the
short fields of a name access block (NAM) and thus
may have a generated specification.

This flag is valid for OpenVMS Alpha only.

FDL$V_SIGNAL Signals any error. By default, the status code is
returned to the calling image.

By default, an error status is returned rather than signaled.

stmnt_num

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

FDL statement number. The stmnt_num argument is the address of a longword
that receives the FDL statement number. If the routine finishes successfully,

the stmnt_num argument is the number of statements in the FDL specification.
If the routine does not finish successfully, the stmnt_num argument receives
the number of the statement that caused the error. Note that line numbers and
statement numbers are not the same and that an FDL specification in string form
has no “lines.”

retlen

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Number of characters returned in the result_name argument. The retlen
argument is the address of a longword that receives this number.

sts

OpenVMS usage: longword_unsigned
type: longword_unsigned
access: write only
mechanism: by reference

File Definition Language (FDL) Routines FDL-9

File Definition Language (FDL) Routines
FDL$CREATE

RMS status value FABS$L_STS. The sts argument is the address of a longword
that receives the status value FAB$L_STS from the $CREATE system service.

stv

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

RMS status value FAB$L_STV. The stv argument is the address of a longword
that receives the status value FAB$L_STV from the $CREATE system service.

default_fdl_desc
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

The default_fdl_desc argument is one of the following:

= A character string descriptor pointing to a file containing the default FDL
specification to be parsed

= A character string containing the actual default FDL specification
See the description of the fdl_desc argument for details.

This argument allows you to specify default FDL attributes. In other words,
FDL$CREATE processes the attributes specified in this argument unless you
override them with the attributes you specify in the fdl_desc argument.

You can code the FDL defaults directly into your program, typically with an FDL
specification in string form.

Description
FDL$CREATE calls the FDL$PARSE routine to parse the FDL specification. The
FDL specification can be in a file or a character string.
Source of FDL
Specification Advantages Disadvantages
FDL file Variability; for example, if File must be in default directory.
the specification changes Slower.
regularly, you can revise
the file without revising the
calling program.
Character You do not have to be Program must be recoded to
string concerned with locating a change FDL specification.
file.

Faster access.

If the FDL specification is relatively simple and is not going to change, put the
FDL specification in a character string as the fdl_desc argument to the call.

FDL$CREATE opens (creates) the specified RMS file and then closes it without
putting any data in it.

FDL-10 File Definition Language (FDL) Routines

File Definition Language (FDL) Routines
FDL$CREATE

FDL$CREATE does not create the output file if an error status is either returned

or signaled.

Condition Values Returned

SS$_NORMAL
FDL$ ABKW

FDL$_ABPRIKW

FDL$_BADLOGIC
FDL$_CLOSEIN
FDL$_CLOSEOUT
FDL$ CREATE
FDL$ CREATED

FDL$_CREATED_STM

FDL$ _FDLERROR
FDL$_ILL_ARG
FDL$_INSVIREM
FDLS$_INVBLK

FDL$_MULPRI
FDL$ OPENFDL
FDL$ OPENIN
FDL$ OPENOUT
FDL$ OUTORDER

FDL$_READERR
FDL$ _RFLOC
FDL$_SYNTAX
FDL$_UNPRIKW

FDL$_UNQUAKW
FDL$_UNSECKW

FDL$_VALERR
FDL$_VALPRI
FDL$ WARNING
FDL$ WRITEERR
RMS$_ACT
RMS$_CRE

RMS$ CREATED
RMS$_DNF

Normal successful completion.

Ambiguous keyword in statement
number<CRLF>reference-text.

Ambiguous primary keyword in statement
number<CRLF>reference-text.

Internal logic error detected.

Error closing filename as input.
Error closing filename as output.
Error creating filename.

Filename created.

Filename created in stream format.
Error parsing FDL file.

Wrong number of arguments.
Insufficient virtual memory.

Invalid RMS control block at virtual address
hex-offset’.

Multiple primary definition in statement number.
Error opening filename.

Error opening filename as input.

Error opening filename as output.

Key or area primary defined out of order in
statement number.

Error reading filename.
Unable to locate related file.
Syntax error in statement number reference-text.

Unrecognized primary keyword in statement
number<CRLF> reference-text.

Unrecognized qualifier keyword in statement
number<CRLF> reference-text.

Unrecognized secondary keyword in statement
number<CRLF> reference-text.

Specified value is out of legal range.

Value required on primary in statement number.
Parsed with warnings.

Error writing filename.

File activity precludes operation.

Ancillary control process (ACP) file create failed.
File was created, not opened.

Directory not found.

File Definition Language (FDL) Routines FDL-11

File Definition Language (FDL) Routines

FDL$CREATE

RMS$_DNR
RMS$_EXP
RMS$_FEX
RMS$_FLK
RMS$_PRV

RMS$ SUPERSEDE
RMS$_WLK

FDL-12 File Definition Language (FDL) Routines

Device not ready or not mounted.

File expiration date not yet reached.

File already exists, not superseded.

File currently locked by another user.
Insufficient privilege or file protection violation.
Created file superseded existing version.
Device currently write locked.

File Definition Language (FDL) Routines
FDL$GENERATE

FDL$GENERATE—Generate an FDL Specification

Format

Returns

Arguments

The FDL$GENERATE routine produces an FDL specification and writes it to
either an FDL file or a character string.

FDL$GENERATE flags ,fab_pointer ,rab_pointer [,fdl_file_dst] [,fdl_file_resnam]
[,fdl_str_dst] [,bad_blk_addr] [,retlen]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or masks) that control how the fdl_str_dst argument is interpreted

and how errors are signaled. The flags argument is the address of a longword
containing the control flags (or a mask). If you omit this argument or specify it as
zero, no flags are set. The flags and their meanings are as follows:

Flag Function

FDL$V_FDL_STRING Interprets the fdl_str_dst argument as an FDL
specification in string form. By default, the fdl_str_
dst argument is interpreted as the file name of an
FDL file.

FDL$V_FULL_OUTPUT Includes the FDL attributes to describe all the bits
and fields in the OpenVMS RMS control blocks,
including run-time options. If this flag is set, every
field is inspected before being written. By default,
only the FDL attributes that describe permanent file
attributes are included (producing a much shorter
FDL specification).

FDL$V_LONG_NAMES Returns the FDL_FILE_RESNAME using the long
result name from a long name access block (NAML).
By default, the FDL_FILE_RESNAM is returned
from the short fields of a name access block (NAM)
and thus may have a generated specification.

This flag is valid for OpenVMS Alpha only.

File Definition Language (FDL) Routines FDL-13

File Definition Language (FDL) Routines
FDL$GENERATE

Flag Function

FDL$V_SIGNAL Signals any error. By default, the status code is
returned to the calling image.

By default, an error status is returned rather than signaled.

fab_pointer

OpenVMS usage: address

type: longword (unsigned)
access: read only
mechanism: by reference

RMS file access block (FAB). The fab_pointer argument is the address of a
longword containing the address of a FAB.

rab_pointer

OpenVMS usage: address

type: longword (unsigned)
access: read only
mechanism: by reference

RMS record access block (RAB). The rab_pointer argument is the address of a
longword containing the address of a RAB.

fdl_file_dst

OpenVMS usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor

Name of the FDL file to be created. The fdl_file_dst argument is the address of a
character-string descriptor containing the file name of the FDL file to be created.
If the FDL$V_FDL_STRING flag is set in the flags argument, this argument

is ignored; otherwise, it is required. The FDL specification is written to the file
named in this argument.

fdl_file_resnam
OpenVMS usage: char_string

type: character-coded text string
access: write only
mechanism: by descriptor—fixed-length string descriptor

Resultant name of the FDL file created. The fdl_file_resnam argument is the
address of a variable character-string descriptor that receives the resultant name
of the FDL file created (if FDL$GENERATE is directed to create an FDL file).

fdl_str_dst

OpenVMS usage: char_string

type: character-coded text string

access: write only

mechanism: by descriptor—fixed-length string descriptor

FDL specification. The fdl_str_dst argument is the address of a variable
character string descriptor that receives the FDL specification created. If the
FDL$V_FDL_STRING bit is set in the flags argument, this argument is required,;
otherwise, it is ignored.

FDL-14 File Definition Language (FDL) Routines

File Definition Language (FDL) Routines

FDL$GENERATE
bad_blk_addr
OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of an invalid RMS control block. The bad_blk_addr argument is the
address of a longword that receives the address of an invalid control block (a

fatal error). If an invalid control block is detected, this argument is returned;
otherwise, it is ignored.

retlen

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Number of characters received in either the fdl_file_resnam or the fdl_str_dst
argument. The retlen argument is the address of a longword that receives this

number.

Condition Values Returned

SS$_NORMAL
FDL$_INVBLK
RMS$_ACT

RMS$ CONTROLC
RMS$ CONTROLO
RMS$ _CONTROLY
RMS$_DNR
RMS$_EXT

RMS$ OK_ALK
RMS$_OK_DUP
RMS$_OK_IDX
RMS$ PENDING
RMS$_PRV
RMS$_REX
RMS$_RLK

RMS$_RSA
RMS$_WLK
SS$_ACCVIO
STR$_FATINERR
STR$_ILLSTRCLA
STR$_INSVIRMEM

Normal successful completion.

Invalid block.

File activity precludes operation.

Operation completed under Ctrl/C.

Output completed under Ctrl/O.

Operation completed under Ctrl/Y.

Device not ready or mounted.

ACP file extend failed.

Record already locked.

Record inserted had duplicate key.

Index update error occurred.

Asynchronous operation pending completion.
Insufficient privilege or file protection violation.
Record already exists.

Target record currently locked by another
stream.

Record stream currently active.

Device currently write locked.

Access violation.

Fatal internal error in run-time library.
lllegal string class.

Insufficient virtual memory.

File Definition Language (FDL) Routines FDL-15

File Definition Language (FDL) Routines

FDL$PARSE

FDL$PARSE—Parse an FDL Specification

Format

Returns

Arguments

The FDL$PARSE routine parses an FDL specification, allocates OpenVMS RMS
control blocks (FABs, RABs, or XABs), and fills in the relevant fields.

FDL$PARSE fdl_desc ,fdl_fab_pointer ,fdl_rab_pointer [,flags] [,default_fdl_desc]
[,stmnt_num]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

fdl_desc

OpenVMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Name of the FDL file or the actual FDL specification to be parsed. See the
description of the fdl_desc argument for the FDL$CREATE routine for details.

fdl_fab_pointer
OpenVMS usage: address

type: longword (unsigned)
access: write only
mechanism: by reference

Address of an RMS file access block (FAB). The fdl_fab_pointer argument is the
address of a longword that receives the address of the FAB. FDL$PARSE both
allocates the FAB and fills in its relevant fields.

fdl_rab_pointer
OpenVMS usage: address

type: longword (unsigned)
access: write only
mechanism: by reference

Address of an RMS record access block (for VAX, this is the RAB; for Alpha, it is
the RAB64). The fdl_rab_pointer argument is the address of a longword that
receives the address of the RAB or RAB64. FDL$PARSE both allocates the RAB
or RAB64 and fills in any fields designated in the FDL specification.

For Alpha, the 64-bit record access block (RAB64) consists of the traditional
32-bit RAB followed by some 64-bit fields. The RAB64 is automatically allocated
for Alpha users, who can either use it as a RAB64 or overlay it with the 32-bit
RAB definition and use it as a traditional 32-bit RAB.

FDL-16 File Definition Language (FDL) Routines

File Definition Language (FDL) Routines

FDL$PARSE
flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or masks) that control how the default_fdl_desc argument is interpreted
and how errors are signaled. The flags argument is the address of a longword
containing the control flags. If you omit this argument or specify it as zero, no
flags are set. The flags and their meanings are as follows:

Flag Function

FDL$V DEFAULT STRING Interprets the default_fdl_desc argument as
an FDL specification in string form. By default,
the default_fdl_desc argument is interpreted
as the file name of an FDL file.

FDL$V_FDL_STRING Interprets the fdl_desc argument as an FDL
specification in string form. By default, the
fdl_desc argument is interpreted as the file
name of an FDL file.

FDL$V_LONG_NAMES Allocates and returns a long name access block
(NAML) linked to the returned RMS file access
block (FAB). The appropriate values are set in
the NAML and FAB blocks so that the long file
name fields of the NAML block will be used.

By default, a name block is not allocated and
the file name fields of FAB are used.

If the FDL$V_LONG_NAMES flag is set, then
the FDL$V_LONG_NAMES bit must also be set
in the flags argument to the FDL$RELEASE
routine to ensure that memory allocated for the
NAML block is deallocated properly.

This flag is valid for OpenVMS Alpha only.

FDL$V_SIGNAL Signals any error. By default, the status code is
returned to the calling image.

By default, an error status is returned rather than signaled.

default_fdl_desc
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

The default_fdl_desc argument is the address of a character-string descriptor
pointing to either the default FDL file or the default FDL specification. See the
description of the fdl_desc argument for the FDL$CREATE routine for details.

This argument allows you to specify default FDL attributes. In other words,
FDL$PARSE processes the attributes specified in this argument unless you
override them with the attributes you specify in the fdl_desc argument.

You can code the FDL defaults directly into your program, typically with an FDL
specification in string form.

File Definition Language (FDL) Routines FDL-17

File Definition Language (FDL) Routines

FDL$PARSE
stmnt_num
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

FDL statement number. The stmnt_num argument is the address of a longword
that receives the FDL statement number. If the routine finishes successfully,

the stmnt_num argument is the number of statements in the FDL specification.
If the routine does not finish successfully, the stmnt_num argument receives
the number of the statement that caused the error. Note that line numbers and
statement numbers are not the same and that an FDL specification in string form
has no “lines.”

By default, an error status is returned rather than signaled.

Condition Values Returned

SS$ NORMAL Normal successful completion.
LIB$_BADBLOADR Bad block address.
LIB$_BADBLOSIZ Bad block size.

LIB$_INSVIRMEM Insufficient virtual memory.
RMS$_DNF Directory not found.

RMS$ DNR Device not ready or not mounted.
RMS$ WCC Invalid wildcard context (WCC) value.

FDL-18 File Definition Language (FDL) Routines

File Definition Language (FDL) Routines
FDL$RELEASE

FDL$RELEASE—Free Virtual Memory Obtained By FDL$PARSE

Format

Returns

Arguments

The FDL$RELEASE routine deallocates the virtual memory used by the
OpenVMS RMS control blocks created by FDL$PARSE. You must use
FDL$PARSE to populate the control blocks if you plan to deallocate memory
later with FDL$SRELEASE.

FDL$SRELEASE [fab_pointer] [,rab_pointer] [,flags] [,badblk_addr]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

fab_pointer

OpenVMS usage: address

type: longword (unsigned)
access: read only
mechanism: by reference

File access block (FAB) to be deallocated using the LIBSFREE_VM routine. The
fab_pointer argument is the address of a longword containing the address of the
FAB. The FAB must be the same one returned by the FDL$PARSE routine. Any
name blocks (NAMs) and extended attribute blocks (XABs) connected to the FAB
are also released.

If you omit this argument or specify it as zero, the FAB (and any associated
NAMs and XABS) is not released.

rab_pointer

OpenVMS usage: address

type: longword (unsigned)
access: read only
mechanism: by reference

Record access block (RAB) to be deallocated using the LIBSFREE_VM system
service. The rab_pointer argument is the address of a longword containing the
address of the RAB. The address of the RAB must be the same one returned by
the FDL$PARSE routine. Any XABs connected to the RAB are also released.

If you omit this argument or specify it as zero, the RAB (and any associated
XABS) is not released.

File Definition Language (FDL) Routines FDL-19

File Definition Language (FDL) Routines

FDL$RELEASE
flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flag (or mask) that controls how errors are signaled. The flags argument is the
address of a longword containing the control flag (or a mask). If you omit this
argument or specify it as zero, no flag is set. The flag is defined as follows:

FDL$V_SIGNAL Signals any error. By default, the status code is returned to
the calling image.

FDL$V_LONG_ Deallocates any virtual memory used for a long name access
NAMES block (NAML) created by the FDL$PARSE routine.
This flag is valid for OpenVMS Alpha only.
badblk_addr
OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of an invalid RMS control block. The badblk_addr argument is the
address of a longword that receives the address of an invalid control block. If
an invalid control block (a fatal error) is detected, this argument is returned,;
otherwise, it is ignored.

Condition Values Returned

SS$ NORMAL Normal successful completion.

FDL$ INVBLK Invalid RMS control block at virtual address
“hex-offset’ .

LIB$ BADBLOADR Bad block address.

RMS$ ACT File activity precludes operation.

RMS$_RNL Record not locked.

RMS$_RSA Record stream currently active.

SS$ ACCVIO Access violation.

FDL-20 File Definition Language (FDL) Routines

13

Librarian (LBR) Routines

The Librarian (LBR) routines let you create and maintain libraries and their
modules, and use the data stored in library modules. You can also create and
maintain libraries at the DCL level by using the DCL command LIBRARY. For
more information, see the HP OpenVMS DCL Dictionary.

13.1 Introduction to LBR Routines

This section briefly describes the types of libraries you can create and maintain
using LBR routines and how the libraries are structured. This section also lists
and briefly describes the LBR routines. Section 13.2 provides sample programs
showing how to use various LBR routines. Section 13.3 is a reference section that
provides details about each of the LBR routines.

13.1.1 Types of Libraries
You can use the LBR routines to maintain the following types of libraries:

Object libraries, including 164 (ELF) object libraries and Alpha object
libraries, contain the object modules of frequently called routines. The
Linker utility searches specified object module libraries when it encounters

a reference it cannot resolve in one of its input files. For more information
about how the linker uses libraries, see the description of the Linker utility in
the HP OpenVMS Linker Utility Manual.

An object library has a default file type of .OLB and defaults the file type of
input files to .OBJ.

Macro libraries contain macro definitions used as input to the assembler. The
assembler searches specified macro libraries when it encounters a macro that
is not defined in the input file. For information about defining macros on
OpenVMS VAX systems, see the VAX MACRO and Instruction Set Reference
Manual. For information on porting VAX MACRO code to an OpenVMS Alpha
systems, see the HP OpenVMS MACRO Compiler Porting and User’s Guide.
For information on porting code to 164 systems, see the Porting Applications
from HP OpenVMS Alpha to HP OpenVMS Industry Standard 64 for Integrity
Servers.

A macro library has a default file type of .MLB and defaults the file type of
input files to .MAR.

Help libraries contain modules of help messages that provide user information
about a program. You can retrieve help messages at the DCL level by using
the DCL command HELP, or in your program by calling the appropriate LBR
routines. For information about creating help modules for insertion into help
libraries, see the description of the Librarian utility in the HP OpenVMS
Command Definition, Librarian, and Message Utilities Manual.

A help library has a default file type of .HLB and defaults the file type of
input files to .HLP.

Librarian (LBR) Routines LBR-1

Librarian (LBR) Routines
13.1 Introduction to LBR Routines

e Text libraries contain any sequential record files that you want to retrieve as
data for a program. For example, some compilers can retrieve program source
code from text libraries. Each text file inserted into the library corresponds
to one library module. Your programs can retrieve text from text libraries by
calling the appropriate LBR routines.

A text library has a default file type of .TLB and defaults the file type of input
files to .TXT.

= Shareable image libraries, including 164 (ELF) shareable image libraries and
Alpha shareable symbol table libraries contain the symbol tables of shareable
images used as input to the linker. For information about how to create a
shareable image library, see the descriptions of the Librarian and Linker
utilities in the HP OpenVMS Command Definition, Librarian, and Message
Utilities Manual and the HP OpenVMS Linker Utility Manual, respectively.

A shareable image library has a default type of .OLB and defaults the file
type of input files to .EXE.

= National character set (NCS) libraries contain definition modules that define
collating sequences and conversion functions. NCS libraries have the default
file type .NLB. For information about how to create an NCS library, see the
OpenVMS National Character Set Utility Manual.l

= User-developed libraries have characteristics specified when you call the
LBR$OPEN routine to create a new library. User-developed libraries allow
you to use the LBR routines to create and maintain libraries that are not
structured in the form assigned by default to the other library types. Note
that you cannot use the DCL command LIBRARY to access user-developed
libraries.

Table 13-1 shows the libraries that are created by the Librarian utility for each
OpenVMS platform.

Table 13-1 Libraries Created by OpenVMS Platforms

OpenVMS
OpenVMS VAX OpenVMS Alpha 164
VAX object Alpha object 164 object
VAX shareable image Alpha shareable image 164
shareable
image
Alpha object* VAX object!
Alpha shareable image? VAX shareable image?
Macro Macro Macro
Text Text Text
Help Help Help

1Use the /ALPHA qualifier to create and manipulate Alpha object and sharable image libraries.
2Use the /VAX qualifier to create and manipulate VAX object and sharable image libraries.

1 This manual has been archived but is available on the HP OpenVMS Documentation CD.

LBR-2 Librarian (LBR) Routines

Librarian (LBR) Routines
13.1 Introduction to LBR Routines

13.1.2 Structure of Libraries

You create libraries by executing the DCL command LIBRARY or by calling the
LBR$OPEN routine. When object, macro, text, help, or shareable image libraries
are created, the Librarian utility structures them as described in Figure 13-1 and
Figure 13-2. You can create user-developed libraries only by calling LBR$OPEN;
they are structured as described in Figure 13-3.

13.1.2.1 Library Headers

Every library contains a library header that describes the contents of the library,
for example, its type, size, version number, creation date, and number of indexes.
You can retrieve data from a library’s header by calling the LBR$GET_HEADER
routine.

13.1.2.2 Modules

Each library module consists of a header and data. The data is the information
you inserted into the library; the header associated with the data is created by
the LBR routine and provides information about the module, including its type,
attributes, and date of insertion into the library. You can read and update a
module’s header by calling the LBR$SET_MODULE routine.

13.1.2.3 Indexes and Keys

Libraries contain one or more indexes, which can be thought of as directories of
the library's modules. The entries in each index are keys, and each key consists
of a key name and a module reference. The module reference is a pointer to the
module’s header record and is called that record’s file address (RFA). Macro, text,
and help libraries (see Figure 13-1) contain only one index, called the module
name table. The names of the keys in the index are the names of the modules in
the library.

Object and shareable image libraries (see Figure 13-2) contain two indexes: the
module name table and a global symbol table. The global symbol table consists of
all the global symbols defined in the modules in the library. Each global symbol
is a key in the index and points to the module in which it was defined.

If you need to point to the same module with several keys, you should create
a user-developed library, which can have up to eight indexes (see Figure 13-3).
Each index consists of keys that point to the library’s modules.

The LBR routines differentiate library indexes by numbering them, starting with
1. For all but user-developed libraries, the module name table is index number
1 and the global symbol table, if present, is index number 2. You number the
indexes in user-developed libraries. When you access libraries that contain more
than one index, you may have to call LBR$SET_INDEX to tell the LBR routines
which index to use.

Librarian (LBR) Routines LBR-3

Librarian (LBR) Routines
13.1 Introduction to LBR Routines

Figure 13-1 Structure of a Macro, Text, or Help Library

Library Header

Index (Module Name Table)

o] [[em e

Each key in the index points to a module.

Modules

Header Header Header Header

Data Data Data Data

ZK-1871-GE

Figure 13-2 Structure of an Object or Shareable Image Library

Library Header

Index (Module Name Table)

for] (o] [ed] -

Each key in the index points to a module.

Index (Global Symbol Table)

Global Global Global Global Global
Symbol Symbol Symbol Symbol Symbol

Each global symbol is a key in the index, and points to the module in
which it was defined.

Modules

Header Header Header Header

Data Data Data Data

ZK-1872-GE

LBR-4 Librarian (LBR) Routines

Librarian (LBR) Routines
13.1 Introduction to LBR Routines

Figure 13-3 Structure of a User-Developed Library

Library Header

Index

Each key in an index points to one module. More than one key (from
the same or a different index) may point to the same module.

Can have up to .
8 indexes. .
Index
Modules
Header Header Header Header
Data Data Data Data

ZK-1873-GE

13.1.3 Summary of LBR Routines

All the LBR routines begin with the characters LBR$. Your programs can call
these routines by using the OpenVMS Calling Standard. When you call an LBR
routine, you must provide all required arguments. Upon completion, the routine
returns its completion status as a condition value. In addition to the listed
condition values, some routines may return the success code SS$ NORMAL as
well as various OpenVMS RMS or system status (SS) error codes.

When you link programs that contain calls to LBR routines, the linker locates the
routines during its default search of SYS$SHARE:LBRSHR. Table 13-2 lists the
routines and summarizes their functions.

Table 13—-2 LBR Routines

Routine Name Function
LBR$CLOSE Closes an open library.
LBR$DELETE_DATA Deletes a specified module’s header and data.

(continued on next page)

Librarian (LBR) Routines LBR-5

Librarian (LBR) Routines
13.1 Introduction to LBR Routines

Table 13-2 (Cont.) LBR Routines

Routine Name

Function

LBR$DELETE_KEY
LBRS$FIND

LBR$FLUSH

LBR$GET _HEADER
LBR$GET_HELP
LBR$GET_HISTORY

LBR$GET_INDEX
LBR$GET_RECORD
LBRS$INI_CONTROL

LBRSINSERT_KEY
LBR$LOOKUP_KEY
LBR$LOOKUP_TYPE

LBR$MAP_MODULE
LBR$OPEN
LBR$OUTPUT_HELP

LBR$PUT_END

LBR$PUT_HISTORY
LBR$PUT_MODULE

LBR$PUT_RECORD

LBR$REPLACE_KEY
LBR$RET_RMSSTV
LBR$SEARCH
LBRS$SET_INDEX

LBR$SET_LOCATE
LBR$SET_MODULE

LBR$SET_MOVE
LBR$SUNMAP_MODULE

Deletes a key from a library index.

Finds a module by using an address returned by a preceding
call to LBR$LOOKUP_KEY.

Writes the contents of modified blocks to the library file and
returns the virtual memory that contained those blocks.

Retrieves information from the library header.
Retrieves help text from a specified library.

Retrieves library update history records and calls a user-
supplied routine with each record returned.

Calls a routine to process modules associated with some or
all of the keys in an index.

Reads a data record from the module associated with a
specified key.

Initializes a control index that the Librarian uses to identify
a library.

Inserts a new key in the current library index.
Looks up a key in the current index.

Searches the index for the key from a particular module
(RFA) and returns the key’s type for that module.

164 only. Maps a module in P2 space.
Opens an existing library or creates a new one.

Retrieves help text from an explicitly named library or from
user-supplied default libraries, and optionally prompts you
for additional help queries.

Terminates the writing of a sequence of records to a module
using the LBR$PUT_RECORD routine.

Inserts a library update history record.

(164 only.) Puts an entire module, with the module’s file
address (RFA), from memory space into the current library.

Writes a data record to the module associated with the
specified key.

Replaces an existing key in the current library index.
Returns the last RMS status value.
Finds index keys that point to specified data.

Sets the index number to be used during processing of the
library.

Sets Librarian subroutine record access to locate mode.

Reads and optionally updates a module header associated
with a given record’s file address (RFA).

Sets Librarian subroutine record access to move mode.
(164 only.) Unmaps a module from process P2 space.

LBR-6 Librarian (LBR) Routines

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

13.2 Using the LBR Routines: Examples

This section provides programming examples that call LBR routines. Although
the examples do not illustrate all the LBR routines, they do provide an
introduction to the various data structures and the calling syntax.

The program examples are written in HP Pascal and the subroutine examples are
written in HP Fortran. The listing of each program example contains comments
and is followed by notes about the program. The highlighted numbers in the
notes are keyed to the highlighted numbers in the examples.

Each sample program calls the LBR$INI_CONTROL routine and the LBR$OPEN
routine before calling any other routine.

Note

The one exception is that when you call the LBRSOUTPUT_HELP
routine, you need not call the LBR$INI_CONTROL routine and the
LBR$OPEN routine.

The sample programs require access to various symbols derived from definition
macros. Use the INHERIT attribute to access these symbols from definition
macros in SYSSLIBRARY:STARLET.PEN.

The LBR$INI_CONTROL routine sets up a control index; do not confuse this
with a library index. The control index is used in subsequent LBR routine calls
to identify the applicable library (because you may want your program to work
with more than one library at a time).

Note

Do not alter the control index value.

LBR$INI_CONTROL specifies the library function, which can be to either create
and update a new library (LIB$C_CREATE), modify an existing library (LIB$C_
UPDATE), or read an existing library without updating it (LIB$C_READ).

Upon completion of the LBR$INI_CONTROL routine, call the LBR$OPEN
routine to open the library. Open an existing library, or create and open a new
library, in either the UPDATE or READ mode, checking for an error status value
of RMS$_FNF. If this error occurs, open the library in CREATE mode.

When you open the library, specify the library type and pass the file specification
or partial file specification of the library file.

If you are creating a new library, pass the create options array. The CRE symbols
identify the significant longwords of the array by their byte offsets into the array.
Convert these values to subscripts for an array of integers (longwords) by dividing
by 4 and adding 1. If you do not load the significant longwords before calling
LBR$INI_CONTROL, the library may be corrupted upon creation.

Finally, pass any defaults for the file specification. If you omit the device and
directory parts of the file specification, the current default device and directory
are used.

Librarian (LBR) Routines LBR-7

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

When you finish working with a library, call LBR$CLOSE to close the library

by providing the control index value. You must close a library explicitly before
updates can be posted. Remember to call LBR$INI_CONTROL again if you want
to reopen the library. LBR$CLOSE deallocates all the memory associated with
the library, including the control index.

The order in which you call the routines between LBR$OPEN and LBR$CLOSE
depends upon the library operations you need to perform. You may want to call
LBR$LOOKUP_KEY or LBR$GET_INDEX to find a key, then perform some
operation on the module associated with the key. You can think of a module as
being both the module itself and its associated keys. To access a module, you first
need to access a key that points to it; to delete a module, you first need to delete
any keys that point to it.

Note

Do not use LBR$INI_CONTROL, LBR$OPEN, and LBR$CLOSE
for writing help text with LBR$OUTPUT_HELP. Simply invoke
LBR$OUTPUT_HELP.

13.2.1 Creating, Opening, and Closing a Text Library

Example 13-1 is a sample HP Pascal program that creates, opens, and then
closes a text library. The program is summarized in the following steps:

1. [Initialize the library—Call LBR$INI_CONTROL to initialize the library.
2. Open the library—Call LBR$OPEN to open the library.
3. Close the library—Call LBR$CLOSE to close the library.

LBR-8 Librarian (LBR) Routines

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

Example 13-1 Creating a New Library Using HP Pascal

PROGRAM createlib (INPUT, OUTPUT) ;
(*This program creates a text library*)

TYPE (*Data type of*)
Create Array = ARRAY [1..20] OF INTEGER; (*create options arrayt)
VAR (*Constants and return status error

codes for LBR$_OPEN & LBR$INI_CONTROL.

These are defined in $LBRDEF macro*)
LBRC_CREATE,LBRC TYP TXT,LBR$ ILLCREOPT,LBR$ ILLCTL,
LBR$_ILLFMT,LBR$_NOFILNAM,LBR$_OLDMISMCH,LBR$_TYPMISMCH :

[EXTERNAL] INTEGER;

(*Create options array codes. These

are defined in SCREDEF macro¥)
CREL_TYPE,CREL_KEYLEN,CREL_ALLOC,CREL_IDXMAX,CRE$L_ENTALL,
CRESL LUHMAX,CRESL VERTYP,CRESL IDXOPT,CRES$C MACTXTCAS,

CRESC_VMSV3 : [EXTERNAL] INTEGER;

Lib Name : VARYING [128] OF CHAR; (*Name of library to create*)

Options : Create Array; (*Create options array*)

File Type : PACKED ARRAY [1..4] (*Character string that is default¥)
OF CHAR := '.TLB’; (*file type of created lib file¥)

lib index ptr : UNSIGNED; (*Value returned in library init¥*)

status : UNSIGNED; (*Return Status for function calls¥)

(¥-*-*-*-Function and Procedure Definitions-*-*-*-%)
(*Function that returns library
control index used by Librarian*)
FUNCTION LBR$SINI CONTROL (VAR library index: UNSIGNED;
func: UNSIGNED;
typ: UNSIGNED;
VAR namblk: ARRAY[1..u:INTEGER]
OF INTEGER := %IMMED 0) :
INTEGER; EXTERN;
(*Function that creates/opens library*)
FUNCTION LBRSOPEN (library index: UNSIGNED;
fns: [class s]PACKED ARRAY[l..u:INTEGER] OF CHAR;
create options: Create Array;
dns: [CLASS S] PACKED ARRAY [13..u3:INTEGER] OF CHAR;
rlfna: ARRAY [14..u4:INTEGER] OF INTEGER := $IMMED O0;
rns: [CLASS S] PACKED ARRAY [15..u5:INTEGER] OF CHAR :=
$IMMED O;
VAR rnslen: INTEGER := $IMMED 0):
INTEGER; EXTERN;
(*Function that closes library*)
FUNCTION LBRSCLOSE (library index: UNSIGNED) :

INTEGER; EXTERN;
(*Error handler to check error codes

if open/create not successful*)

(continued on next page)

Librarian (LBR) Routines LBR-9

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

Example 13-1 (Cont.) Creating a New Library Using HP Pascal

PROCEDURE Open_ Error; (3)
BEGIN
WRITELN (’Open Not Successful’); (*Now check specific error codest*)
IF status = IADDRESS(LBR$ ILLCREOPT) THEN
WRITELN (' Create Options Not Valid Or Not Supplied’);
IF status = IADDRESS(LBR$ ILLCTL) THEN
WRITELN (' Invalid Library Index’);
IF status = IADDRESS(LBR$ ILLFMT) THEN
WRITELN (' Library Not In Correct Format’);
IF status = IADDRESS (LBR$ NOFILNAM) THEN
WRITELN (' Library Name Not Supplied’);
IF status = IADDRESS(LBR$ OLDMISMCH) THEN
WRITELN (' 0ld Library Conflict’);
IF status = IADDRESS(LBR$ TYPMISMCH) THEN
WRITELN (' Library Type Mismatch’)
END; (*of procedure Open Error¥)
BEGIN (* *xkkkkkkxkkrkkx* DECLARATIONS COMPLETE ***kkkkkkkkkkkkkkkkkrkkk*
*kkkkkkkkkkkkkkx MATN PROGRAM BEGINS HERE ** %% kkkkkkkhkhkkkkkhkk *)
(*Prompt for Library Name*)
WRITE('Library Name: ’); READLN(Lib Name);
(*Fill Create Options Array. Divide
by 4 and add 1 to get proper subscript*)

Options [IADDRESS (CRESL TYPE) DIV 4 + 1] IADDRESS (LBR$SC_TYP_TXT) ;

(
Options [IADDRESS (CRESL KEYLEN) DIV 4 + 1] := 31; (4)
Options [IADDRESS (CRESL ALLOC) DIV 4 + 1] = 8;
Options [IADDRESS (CRESL IDXMAX) DIV 4 + 1] := 1;
Options [IADDRESS (CRESL ENTALL) DIV 4 + 1] := 96;
Options [IADDRESS (CRESL LUHMAX) DIV 4 + 1] := 20;
Options [IADDRESS (CRESL VERTYP) DIV 4 + 1] := IADDRESS(CRESC VMSV3);
Options [ITADDRESS (CRESL IDXOPT) DIV 4 + 1] := IADDRESS(CRESC MACTXTCAS) ;

(*Initialize library control index*)
status := LBRSINI CONTROL (lib index ptr,

IADDRESS (LBR$C_CREATE) , (*Create access¥)
IADDRESS(LBR$C_TYP_TXT)); (*Text library*)
IF NOT ODD(status) THEN (*Check return statust)
WRITELN('Initialization Failed’)
ELSE (*Initialization was successful*)
BEGIN (*Create and open the library*)
status := LBRSOPEN (lib_index ptr,
Lib Name,
Options, (6
File Type);
IF NOT ODD(status) THEN (*Check return statust)
Open_Error (*Call error handler*) (7]
ELSE (*Open/create was successful*)
BEGIN (*Close the library*)

status := LBR$SCLOSE(lib_index ptr);
IF NOT ODD(status) THEN (*Check return status*)
WRITELN (’Close Not Successful’)
END
END
END. (*of program creatlibt)

Each item in the following list corresponds to a number highlighted in
Example 13-1:

© Use the INHERIT attribute to access the LBR and CRE symbols from
SYSS$LIBRARY:STARLET.PEN.

LBR-10 Librarian (LBR) Routines

O © o ©o

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

Start the declarations of the LBR routines that are used by the program.
Each argument to be passed to the Librarian is specified on a separate line
and includes the name (which just acts as a placeholder) and data type (for
example: UNSIGNED, which means an unsigned integer value, and PACKED
ARRAY OF CHAR, which means a character string). If the argument is
preceded by VAR, then a value for that argument is returned by the LBR to
the program.

Declare the procedure Open_Error, which is called in the executable section
if the Librarian returns an error when LBR$OPEN is called. Open_Error
checks the Librarian’s return status value to determine the specific cause
of the error. The return status values for each routine are listed in the
descriptions of the routines.

Initialize the array called Options with the values the Librarian needs to
create the library.

Call LBR$INI_CONTROL, specifying that the function to be performed is
create and that the library type is text.

Call LBR$OPEN to create and open the library; pass the Options array
initialized in item 5 to the Librarian.

If the call to LBR$OPEN was unsuccessful, call the procedure Open_Error
(see item 4) to determine the cause of the error.

13.2.2 Inserting a Module

Example 13-2 illustrates the insertion of a module into a library from a HP
Pascal program. The program is summarized in the following steps:

1.

Ensure that the module does not already exist by calling LBRSLOOKUP_
KEY. The return status should be LBR$ KEYNOTFND. This step is optional.

Construct the module by calling LBR$PUT_RECORD once for each record
going into the module. Pass the contents of the record as the second
argument. LBR$PUT_RECORD returns the record file address (RFA) in
the library file as the third argument on the first call. On subsequent calls,
you pass the RFA as the third argument, so do not alter its value between
calls.

Call LBR$PUT_END after the last call to LBRSPUT_RECORD.

Call LBR$INSERT_KEY to catalog the records you have just put in the
library. The second argument is the name of the module.

To replace an existing module, save the RFA of the module header returned by
LBR$LOOKUP_KEY in Step 1 in one variable and the new RFA returned by the
first call to LBR$PUT_RECORD (Step 2) in another variable. In Step 4, invoke
LBR$REPLACE_KEY instead of LBRSINSERT_KEY, pass the old RFA as the
third argument, and the new RFA as the fourth argument.

Librarian (LBR) Routines LBR-11

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

Example 13-2 Inserting a Module into a Library Using HP Pascal

PROGRAM insertmod (INPUT,OQUTPUT) ;

(*This program inserts a module into a libraryt)

TYPE

Rfa Ptr = ARRAY [0..1] OF INTEGER;

VAR
LBR$C_UPDATE,
LBR$C_TYP TXT,

(*Data type of RFA of module*)

(*Constants for LBR$SINI CONTROL*)
(*Defined in SLBRDEF macro*)

LBRS KEYNOTFND : [EXTERNAL] INTEGER; (*Error code for LBRSLOOKUP KEY*)

Lib Name : VARYING [128] OF CHAR;
Module Name : VARYING [31] OF CHAR;

(
(*Name of library receiving module*)
(*Name of module to insert*)

Text Data Record : VARYING [255] OF CHAR; (*Record in new module*)
Textin : FILE OF VARYING [255] OF CHAR; (*File containing new modulet)

lib index ptr : UNSIGNED;
status : UNSIGNED;
txtrfa ptr : Rfa Ptr;

Key Not Found : BOOLEAN := FALSE;

(*Value returned in library init*)
(*Return status for function callst)
(*For key lookup and insertion*)
(*True if new mod not already in lib¥)

(¥-*-*-%_-Function Definitiong-*-*-*-%)
(*Function that returns library
control index used by Librariant)

FUNCTION LBR$SINI CONTROL (VAR library index: UNSIGNED;

func: UNSIGNED;
typ: UNSIGNED;
VAR namblk: ARRAY[1..u:INTEGER]
OF INTEGER := %IMMED 0):
INTEGER; EXTERN;
(*Function that creates/opens library*)

FUNCTION LBRSOPEN (library index: UNSIGNED;

fns: [class s]PACKED ARRAY([Il..u:INTEGER] OF CHAR;
create options: ARRAY [12..u2:INTEGER] OF INTEGER :=
$IMMED 0;
dns: [CLASS S] PACKED ARRAY [13..u3:INTEGER] OF CHAR
:= $IMMED 0;
rlfna: ARRAY [14..u4:INTEGER] OF INTEGER := $IMMED O0;
rns: [CLASS S] PACKED ARRAY [15..u5:INTEGER] OF CHAR :=
$IMMED O;
VAR rnslen: INTEGER := %IMMED 0):
INTEGER; EXTERN;
(*Function that finds a key in indext*)

FUNCTION LBRSLOOKUP KEY (library index: UNSIGNED;

key_name:[CLASS_S] PACKED ARRAY [1..u:INTEGER] OF
CHAR;
VAR txtrfa: Rfa Ptr):
INTEGER; EXTERN;
(*Function that inserts key in indext*)

FUNCTION LBRSINSERT KEY (library index: UNSIGNED;

key_name:[CLASS_S] PACKED ARRAY [1l..u:INTEGER] OF
CHAR;
txtrfa: Rfa Ptr):
INTEGER; EXTERN;
(*Function that writes data recordst*)

(continued on next page)

LBR-12 Librarian (LBR) Routines

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

Example 13-2 (Cont.) Inserting a Module into a Library Using HP Pascal

FUNCTION LBR$SPUT RECORD (library index: UNSIGNED; (*to modules*)
textline: [CLASS S] PACKED ARRAY [l..u:INTEGER] OF
CHAR;

txtrfa: Rfa Ptr):
INTEGER; EXTERN;
(*Function that marks end of a module*)
FUNCTION LBR$PUT_END (library_index: UNSIGNED) :
INTEGER; EXTERN;
(*Function that closes library*)
FUNCTION LBRSCLOSE (library index: UNSIGNED) :
INTEGER; EXTERN;
BEGIN (* **xk%%xk*kxk**x* DECLARATIONS COMPLETE ****kkkkkkkkkkhkkxhkkhkhkx
kkkkkkxkkkkkkkx* MATN PROGRAM BEGINS HERE **kkkkkkkkkxkkkkkkxkkx *)
(*Prompt for library name and
module to insert*)
WRITE (’'Library Name: ’); READLN(Lib Name);
WRITE ('Module Name: ‘); READLN(Module Name) ;
(*Initialize 1ib for update access*)
status := LBRSINI CONTROL (1ib index ptr,

TADDRESS (LBR$C_UPDATE) , (*Update access*)
IADDRESS (LBRSC _TYP _TXT)); (*Text library*)
IF NOT ODD(status) THEN (*Check error status*)
WRITELN('Initialization Failed’)
ELSE (*Initialization was successful¥)
BEGIN
status := LBRSOPEN (lib index ptr, (*Open the library*)
Lib_Name) ;
IF NOT ODD(status) THEN (*Check error statust)
WRITELN (’Open Not Successful’)
ELSE (*Open was successful*)
BEGIN (*Is module already in the library?*)
status := LBRSLOOKUP_ KEY (1ib index ptr,
Module Name,
txtrfa ptr);
IF ODD(status) THEN (*Check status. Should not be odd¥)
WRITELN (' Lookup key was successful.’,
'The module is already in the library.’)
ELSE (*Did lookup key fail because key not found?*)
IF status = IADDRESS(LBR$ KEYNOTFND) THEN (3]
Key Not Found := TRUE
END
END;

(continued on next page)

Librarian (LBR) Routines LBR-13

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

Example 13-2 (Cont.) Inserting a Module into a Library Using HP Pascal

(#**+%+xTf [BRSLOOKUP_KEY failed because the key was not found
(as expected), we can open the file containing the new module,
and write the module’s records to the library file****k*x)
IF Key Not Found THEN
BEGIN
OPEN (Textin,Module Name,old) ;
RESET (Textin) ;

WHILE NOT EOF (Textin) DO (*Repeat until end of file¥)
BEGIN
READ (Textin, Text Data Record) ; (*Read record from
external file*)
status := LBRSPUT RECORD (1ib_index ptr, (*Write*)
Text Data Record, (*record to*)
txtrfa ptr); (*library*)

IF NOT ODD(status) THEN
WRITELN (' Put Record Routine Not Successful’)
END; (*of WHILE statementt)
IF ODD(status) THEN (*True if all the records have been
successfully written into the library*)
BEGIN
status := LBRSPUT END (lib_index ptr); (*Write end of
module record*)
IF NOT ODD(status) THEN
WRITELN (’Put End Routine Not Successful’)

ELSE (*Insert key for new module*)
BEGIN
status := LBRSINSERT KEY (1ib_index ptr,
Module Name,
txtrfa ptr);

IF NOT ODD(status) THEN
WRITELN (' Insert Key Not Successful’)
END
END
END;
status := LBRSCLOSE(lib index ptr);
IF NOT ODD(status) THEN
WRITELN('Close Not Successful’)
END. (*of program insertmod*)

Each item in the following list corresponds to a number highlighted in
Example 13-2:

O Call LBR$INI_CONTROL, specifying that the function to be performed is
update and that the library type is text.

Call LBR$LOOKUP_KEY to see whether the module to be inserted is already
in the library.

(2]

© Call LBR$LOOKUP_KEY to see whether the lookup key failed because the
key was not found. (In this case, the status value is LBR$_KEYNOTFND.)

(4]

Read a record from the input file, then use LBR$PUT_RECORD to write the
record to the library. When all the records have been written to the library,
use LBR$PUT_END to write an end-of-module record.

O Use LBR$INSERT_KEY to insert a key for the module into the current index.

LBR-14 Librarian (LBR) Routines

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

13.2.3 Extracting a Module

Example 13-3 illustrates the extraction of a library module from a HP Pascal
program. The program is summarized in the following steps:

1. Call LBR$LOOKUP_KEY to locate the module. Specify the name of the
module as the second argument. LBRSLOOKUP_KEY returns the RFA of the
module as the third argument; do not alter this value.

2. Call LBR$GET_RECORD once for each record in the module. Specify a
character string to receive the extracted record as the second argument.
LBR$GET _RECORD returns a status value of RMS$_EOF after the last
record in the module is extracted.

Example 13-3 Extracting a Module from a Library Using HP Pascal

PROGRAM extractmod (INPUT, OUTPUT, Textout) ;
(*This program extracts a module from a library*)

TYPE
Rfa Ptr = ARRAY [0..1] OF INTEGER; (*Data type of RFA of module*)
VAR
LBR$C_UPDATE, (*Constants for LBR$INI_CONTROL*)
LBRSC TYP TXT, (*Defined in $LBRDEF macro*)
RMS$ EOF : [EXTERNAL] INTEGER; (*RMS return status; defined in
SRMSDEF macro*)
Lib Name : VARYING [128] OF CHAR; (*Name of library receiving module*)
Module Name : VARYING [31] OF CHAR; (*Name of module to insert*)
Extracted File : VARYING [31] OF CHAR; (*Name of file to hold
extracted module*)
Outtext : PACKED ARRAY [1..255] OF CHAR; (*Extracted mod put here, *)
Outtext2 : VARYING [255] OF CHAR; (* then moved to here*)
i1 : INTEGER; (*For loop control*)
Textout : FILE OF VARYING [255] OF CHAR; (*File containing extracted
modulet)
nullstring : CHAR; *nullstring, pos, and len used tot)

lib index ptr : UNSIGNED; *Value returned in library init¥)
status : UNSIGNED; *Return status for function calls¥*)
txtrfa ptr : Rfa Ptr; (*For key lookup and insertiont)
(¥-*-*-%_-Punction Definitions-*-*-%-%)
(*Function that returns library
control index used by Librarian*)
FUNCTION LBRSINI CONTROL (VAR library index: UNSIGNED;
func: UNSIGNED;
typ: UNSIGNED;
VAR namblk: ARRAY[1..u:INTEGER]
OF INTEGER := %IMMED 0) :

(

pos, len : INTEGER; (*find string in extracted file recd*)
(
(

INTEGER; EXTERN;
(*Function that creates/opens library*)
FUNCTION LBRSOPEN (library index: UNSIGNED;
fns: [class s]PACKED ARRAY[l..u:INTEGER] OF CHAR;
create options: ARRAY [12..u2:INTEGER] OF INTEGER :=
$IMMED O0;
dns: [CLASS S] PACKED ARRAY [13..u3:INTEGER] OF CHAR
:= $IMMED 0;
rlfna: ARRAY [14..u4:INTEGER] OF INTEGER := %IMMED O;
rns: [CLASS_S] PACKED ARRAY [15..u5:INTEGER] OF CHAR :=
$IMMED 0;
VAR rnslen: INTEGER := $IMMED 0):
INTEGER; EXTERN;

(continued on next page)

Librarian (LBR) Routines LBR-15

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

Example 13-3 (Cont.) Extracting a Module from a Library Using HP Pascal

(*Function that finds a key in an index*)

FUNCTION LBRSLOOKUP KEY (library index: UNSIGNED;
key name: [CLASS S] PACKED ARRAY [1l..u:INTEGER] OF

CHAR;
VAR txtrfa: Rfa Ptr):
INTEGER; EXTERN;

(*Function that retrieves records from modules*)

FUNCTION LBRSGET RECORD (library index: UNSIGNED;
var textline:[CLASS S] PACKED ARRAY [l..u:INTEGER] OF
CHAR) :
INTEGER;
EXTERN;
(*Function that closes library*)
FUNCTION LBRSCLOSE (library index: UNSIGNED) :
INTEGER; EXTERN;
BEGIN (* kkkkkkkkkkkkkkk DECLARATIONS COMPLETE kkkkkkkkkkkkkkkkkkhkkkkkx
*kkkkkkkkkkkkkkx MATN PROGRAM BEGINS HERE ***x%kkkkkdhkhkhkhkhkkhxk *)

(* Get Library Name, Module To Extract, And File To Hold Extracted Module *)

WRITE('Library Name: '); READLN(Lib Name);

WRITE ('Module Name: '); READLN(Module Name) ;

WRITE (’'Extract Into File: '); READLN (Extracted File);
status := LBR$INI CONTROL (lib_index ptr, (1

TADDRESS (LBR$C_UPDATE) ,
TADDRESS (LBR$C_TYP TXT)) ;

IF NOT ODD(status) THEN
WRITELN('Initialization Failed’)

ELSE
BEGIN
status := LBRSOPEN (lib_index ptr,
Lib Name) ;
IF NOT ODD(status) THEN
WRITELN (’Open Not Successful’)
ELSE
BEGIN (2]
status := LBRSLOOKUP KEY (1ib_index ptr,
Module Name,
txtrfa ptr);
IF NOT ODD(status) THEN
WRITELN (' Lookup Key Not Successful’)
ELSE
BEGIN (3]
OPEN (Textout,Extracted File, new);
REWRITE (Textout)
END
END
END;
WHILE ODD(status) DO
BEGIN
nullstring := '’ (0);
FOR i := 1 TO 255 DO (4]
Outtext[i] := nullstring;
status := LBRSGET RECORD (1ib index ptr,

Outtext) ;
IF NOT ODD(status) THEN
BEGIN (5]
IF status = IADDRESS (RMS$ EOF) THEN
WRITELN(* RMS end of file’)
END

(continued on next page)

LBR-16 Librarian (LBR) Routines

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

Example 13-3 (Cont.) Extracting a Module from a Library Using HP Pascal

END.

ELSE
BEGIN (6]
pos := INDEX(Outtext, nullstring); (*find first null
in Outtext¥)
len := pos - 1; (*length of Outtext to first null¥)
IF len >= 1 THEN
BEGIN
Outtext2 := SUBSTR (Outtext,1,LEN);
WRITE (Textout,Outtext2)
END

END
END; (*of WHILE*)
status := LBRSCLOSE(lib index ptr);
IF NOT ODD(status) THEN
WRITELN (' Close Not Successful’)
(*of program extractmod*)

Each item in the following list corresponds to a number highlighted in
Example 13-3:

@ © 006 o

Call LBR$INI_CONTROL, specifying that the function to be performed is
update and that the library type is text.

Call LBR$LOOKUP_KEY to find the key that points to the module you want
to extract.

Open an output file to receive the extracted module.

Initialize the variable that is to receive the extracted records to null
characters.

Call LBR$GET_RECORD to see if there are more records in the file (module).
A failure indicates that the end of the file has been reached.

Write the extracted record data to the output file. This record should consist
only of the data up to the first null character.

13.2.4 Deleting a Module

Example 13-4 illustrates the deletion of library module from a HP Pascal
program. The program is summarized in the following steps:

1.

Call LBR$SLOOKUP_KEY, and specify the name of the module as the second
argument. LBR$LOOKUP_KEY returns the RFA of the module as the third
argument; do not alter this value.

Call LBR$DELETE_KEY to delete the module key. Specify the name of the
module as the second argument.

Call LBR$DELETE_DATA to delete the module itself. Specify the RFA of the
module obtained in Step 1 as the second argument.

Librarian (LBR) Routines LBR-17

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

Example 13-4 Deleting a Module from a Library Using HP Pascal

PROGRAM deletemod (INPUT, OUTPUT) ;
(*This program deletes a module from a library*)

TYPE
Rfa Ptr = ARRAY [0..1] OF INTEGER; (*Data type of RFA of module*)
VAR
LBR$C_UPDATE, (*Constants for LBR$INI_CONTROL*)
LBRSC TYP TXT, (*Defined in SLBRDEF macro*)

LBR$_REYN6TFND : [EXTERNAL] INTEGER; (*Error code for LBR$LOOKUP_KEY*)
Lib Name : VARYING [128] OF CHAR; (*Name of library receiving modulet)
Module Name : VARYING [31] OF CHAR; (*Name of module to insertt)

Text Data Record : VARYING [255] OF CHAR; (*Record in new module*)
Textin : FILE OF VARYING [255] OF CHAR; (*File containing new module*)

lib index ptr : UNSIGNED; (*Value returned in library init*)
status : UNSIGNED; (*Return status for function calls*)
txtrfa ptr : Rfa Ptr; (*For key lookup and insertion*)

Key Not Found : BOOLEAN := FALSE; (*True if new mod not already in lib%*)

(¥-*-*-%_-Function Definitions-*-*-*-%)
(*Function that returns library
control index used by Librarian¥)
FUNCTION LBRSINI CONTROL (VAR library index: UNSIGNED;
func: UNSIGNED;
typ: UNSIGNED;
VAR namblk: ARRAY[1..u:INTEGER]
OF INTEGER := %IMMED O0):
INTEGER; EXTERN;
(*Function that creates/opens library*)
FUNCTION LBRSOPEN (library index: UNSIGNED;
fns: [class s]PACKED ARRAY[l..u:INTEGER] OF CHAR;
create options: ARRAY [12..u2:INTEGER] OF INTEGER :=
$IMMED 0;
dns: [CLASS_S] PACKED ARRAY [13..u3:INTEGER] OF CHAR
:= $IMMED 0;
rlfna: ARRAY [14..u4:INTEGER] OF INTEGER := %IMMED 0;
rns: [CLASS S] PACKED ARRAY [15..u5:INTEGER] OF CHAR :=
$IMMED O0;
VAR rnslen: INTEGER := $IMMED O0):
INTEGER; EXTERN;
(*Function that finds a key in indext)
FUNCTION LBRSLOOKUP KEY (library index: UNSIGNED;
key name: [CLASS S] PACKED ARRAY [1l..u:INTEGER] OF
CHAR;
VAR txtrfa: Rfa Ptr):
INTEGER; EXTERN;
(*Function that removes a key from an indext)
FUNCTION LBRSDELETE KEY (library index: UNSIGNED;
key name: [CLASS S] PACKED ARRAY [l..u:INTEGER] OF
CHAR) :
INTEGER;
EXTERN;

(*Function that deletes all the records
associated with a module*)
FUNCTION LBR$DELETE_DATA (library_index: UNSIGNED;
txtrfa: Rfa Ptr):
INTEGER;
EXTERN;
(*Function that closes libraryt)
FUNCTION LBRSCLOSE (library_index: UNSIGNED) :
INTEGER; EXTERN;

(continued on next page)

LBR-18 Librarian (LBR) Routines

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

Example 13-4 (Cont.) Deleting a Module from a Library Using HP Pascal

BEGIN (% **xk%xxkkxk*kxx* DECLARATIONS COMPLETE ****k%kkkkkkkkhkkrkhkkhkhkx
kkkkkkkkkkkkkkk MAIN PROGRAM BEGINS HERE khkkkkkkkkhkkkhkkxkkkkkkkx *)
(* Get Library Name and Module to Delete *)
WRITE ('Library Name: ’); READLN(Lib Name);
WRITE ('Module Name: ’); READLN(Module Name) ;
(*Initialize 1ib for update accesst)
status := LBRSINI CONTROL (1ib_index ptr,

IADDRESS(LBR$C_UPDATE), (*Update access*)
IADDRESS(LBR$C_TYP_TXT)); (*Text library*)
IF NOT ODD(status) THEN (*Check error status*)
WRITELN (' Initialization Failed’)
ELSE (*Initialization was successful*)
BEGIN
status := LBRSOPEN (lib index ptr, (*Open the library*)
Lib Name);
IF NOT ODD(status) THEN (*Check error status*)
WRITELN (’Open Not Successful’)
ELSE (*Open was successful*)
BEGIN ® (*Is module in the library?*)
status := LBRSLOOKUP_KEY (1ib_index ptr,
Module Name,
txtrfa ptr);
IF NOT ODD(status) THEN (*Check status*)
WRITELN (' Lookup Key Not Successful’)
END
END;
IF ODD(status) THEN (*Key was found; delete it*)
BEGIN
status := LBRSDELETE KEY (lib_index ptr, (3]

Module Name) ;
IF NOT ODD(status) THEN
WRITELN ('Delete Key Routine Not Successful’)

ELSE (*Delete key was successful*)
BEGIN (*Now delete module’s data records*)
status := LBR$DELETE DATA (lib index ptr,
txtrfa ptr);

IF NOT ODD(status) THEN
WRITELN (’'Delete Data Routine Not Successful’)
END

END;
status := LBR$CLOSE (lib_index ptr); (*Close the library*)
IF NOT ODD(status) THEN

WRITELN (’Close Not Successful’);

END. (*of program deletemod*)

Each item in the following list corresponds to a number highlighted in
Example 13-4:

@ Call LBR$INI_CONTROL, specifying that the function to be performed is
update and the library type is text.

@ Call LBR$LOOKUP_KEY to find the key associated with the module you
want to delete.

© Call LBR$DELETE_KEY to delete the key associated with the module you
want to delete. If more than one key points to the module, you need to call
LBRSLOOKUP_KEY and LBR$DELETE_KEY for each key.

O Call LBR$DELETE_DATA to delete the module (the module header and data)
from the library.

Librarian (LBR) Routines LBR-19

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

13.2.5 Using Multiple Keys and Multiple Indexes

You can point to the same module with more than one key. The keys can be in
the primary index (index 1) or alternate indexes (indexes 2 through 10). The
best method is to reserve the primary index for module names. In system-defined
object libraries, index 2 contains the global symbols defined by the various

modules.

Example 13-5 illustrates the way that keys can be associated with modules.

Example 13-5 Associating Keys with Modules

SUBROUTINE ALIAS (INDEX)

| Catalogs modules by alias

INTEGER STATUS, !
INDEX, !
TXTRFA (2) !

CHARACTER*31 MODNAME, !

ALTASNAME !

INTEGER MODNAME LEN !

INTEGER ALIASNAME LEN !

! VMS library procedures

INTEGER LBR$LOOKUP_KEY,
LBR$SET INDEX,
LBR$INSERT_KEY,
LIBSGET INPUT,
LIB$GET_VALUE
LIBSLOCC

I Return codes

EXTERNAL LBR$_KEYNOTFND,
LBR$_DUPKEY,
RMS$_EOF,
DOLIB NOMOD

Return status

Library index

RFA of module

Name of module

Name of alias

Length of module name
Length of alias name

! Key not found

! Duplicate key

| End of text in module
! No such module

| Get module name from /ALIAS on command line
CALL CLI$GET_VALUE ("ALIAS’', MODNAME)

| Calculate length of module name

MODNAME LEN = LIBSLOCC (’ ', MODNAME) - 1

! Look up module name in library index

STATUS = LBRSLOOKUP KEY (INDEX,

END IF

LBR-20 Librarian (LBR) Routines

MODNAME (1:MODNAME LEN),

TXTRFA)

(continued on next page)

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

Example 13-5 (Cont.) Associating Keys with Modules

! Insert aliases if module exists
IF (STATUS) THEN

I Set to index 2
STATUS = LBR$SET_INDEX (INDEX, 2)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
| Get alias name from /ALIAS on command line
STATUS = CLI$GET_VALUE ("ALIAS', ALIASNAME)
| Insert aliases in index 2 until bad return status
! which indicates end of qualifier values
DO WHILE (STATUS)

! Calculate length of alias name

ALIASNAME LEN = LIBSLOCC (' ', ALIASNAME) - 1

I Put alias name in index

STATUS = LBR$INSERT_KEY (INDEX,

ALIASNAME (leLIASNAME_LEN),
TXTRFA)
IF ((.NOT. STATUS) .AND.
(STATUS .NE. $%LOC (LBR$_DUPKEY)) THEN
CALL LIBSSIGNAL (%VAL (STATUS))

END IF

| Get another alias

STATUS = CLI$GET_VALUE ("ALIAS’, ALIASNAME)
END DO

! Issue warning if module does not exist
ELSE IF (STATUS .EQ. %LOC (LBRS KEYNOTFND)) THEN
CALL LIBSSIGNAL (DOLIB NOMOD,
SVAL (1),
MODNAME (1:MODNAME LEN))
ELSE
CALL LIBSSIGNAL (%VAL (STATUS))
END IF

! Exit
END

You can look up a module using any of the keys associated with it. The following
code fragment checks index 2 for a key if the lookup in the primary index fails:

STATUS = LBRSSET INDEX (INDEX, 1)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
STATUS = LBRSLOOKUP KEY (INDEX,
MODNAME (1:MODNAME LEN),
TXTRFA)
IF (STATUS .EQ. %LOC (LBR$ KEYNOTFND)) THEN
STATUS = LBRSSET INDEX (INDEX, 2)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
STATUS = LBRSLOOKUP KEY (INDEX,
MODNAME (1:MODNAME LEN),
TXTRFA)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))

END IF
There are two ways to identify the keys associated with a module:

= Use the LBRSLOOKUP_KEY routine to look up the module using one of the
keys.

e Use LBR$SEARCH to search applicable indexes for the keys. LBR$SEARCH
calls a user-written routine each time it retrieves a key. The routine must be
an integer function defined as external that returns a success (odd number)

Librarian (LBR) Routines LBR-21

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

or failure (even number) status. LBR$SEARCH stops processing on a return
status of failure.

The subroutine in Example 13-6 lists the names of keys in index 2 (the aliases)
that point to a module identified on the command line by the module’s name in
the primary index.

Example 13-6 Listing Keys Associated with a Module

SUBROUTINE SHOWAL (INDEX)
| Lists aliases for a module

INTEGER STATUS, ! Return status
INDEX, ! Library index
TXTRFA (2) ! RFA for module text

CHARACTER*31 MODNAME ! Name of module
INTEGER MODNAME LEN ! Length of module name
! VMS library procedures
INTEGER LBRSLOOKUP_KEY,
LBRSSEARCH,
LIBSLOCC
I Return codes
EXTERNAL LBRS KEYNOTFND, ! Key not found
DOLIB_NOMOD ! No such module
| Search routine
EXTERNAL SEARCH
INTEGER SEARCH
! Get module name and calculate length
CALL CLISGET VALUE ('SHOWALIAS’, MODNAME)
MODNAME LEN = LIBSLOCC (’ ', MODNAME) - 1
! Look up module in index 1
STATUS = LBRSLOOKUP KEY (INDEX,
MODNAME (1:MODNAME LEN),
TXTRFA)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
| Search for alias names in index 2
STATUS = LBRSSEARCH (INDEX,
2 T
TXTRFA,
SEARCH)

END

INTEGER FUNCTION SEARCH (ALIASNAME, RFA)

! Function called for each alias name pointing to MODNAME
| Displays the alias name

INTEGER STATUS OK, ! Good return status
RFA (2) ! RFA of module

PARAMETER (STATUS OK = 1) ! Odd number

CHARACTER* (*) ALIASNAME ! Name of module

| Display module name
TYPE *, MODNAME

! Exit

SEARCH = STATUS_OK
END

LBR-22 Librarian (LBR) Routines

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

13.2.6 Accessing Module Headers

You can store user information in the header of each module up to the total size
of the header specified at library creation time in the CRE$L_UHDMAX option.
The total size of each header in bytes is the value of MHD$B_USRDAT plus the
value assigned to the CRE$L_UHDMAX option. The value of MHD$B_USRDAT
is defined by the macro $SMHDDEF; the default value is 16 bytes.

To put user data into a module header, first locate the module with
LBR$LOOKUP_KEY; then move the data to the module header by invoking
LBR$SET_MODULE, specifying the first argument (index value returned by
LBR$INI_CONTROL), the second argument (RFA returned by LBR$LOOKUP_
KEY), and the fifth argument (character string containing the user data).

To read user data from a module header, first locate the module with
LBR$LOOKUP_KEY; then, retrieve the entire module header by invoking
LBR$SET_MODULE, specifying the first, second, third (character string to
receive the contents of the module header), and fourth (length of the module
header) arguments. The user data starts at the byte offset defined by MHD$B _
USRDAT. Convert this value to a character string subscript by adding 1.

Example 13-7 displays the user data portion of module headers on SYS$OUTPUT
and applies updates from SYSS$SINPUT.

Example 13—-7 Displaying the Module Header

SUBROUTINE MODHEAD (INDEX)
| Modifies module headers

INTEGER STATUS, | Return status

INDEX, ! Library index

TXTRFA (2) ! RFA of module
CHARACTER*31 MODNAME ! Name of module
INTEGER MODNAME LEN ! Length of module name
CHARACTER*80 HEADER ! Module header
INTEGER HEADER LEN ! Length of module header
INTEGER USER_START ! Start of user data in header
CHARACTER*64 USERDATA ! User data part of header
INTEGER*2 USERDATA LEN ! Length of user data
! VMS library procedures
INTEGER LBRSLOOKUP_KEY,

LBRSSET MODULE,

LIBSGET INPUT,

LIBSPUT OUTPUT,

CLISGET VALUE,

LIBSLOCC
| Offset to user data --- defined in SMHDDEF
EXTERNAL MHD$B_USRDAT
! Return codes
EXTERNAL LBR$ KEYNOTFND, ! Key not found

DOLIB_NOMOD ! No such module
! Calculate start of user data in header
USER_START = %LOC (MHD$B_USRDAT) + 1
| Get module name from /MODHEAD on command line
STATUS = CLISGET VALUE ('MODHEAD’, MODNAME)

(continued on next page)

Librarian (LBR) Routines LBR-23

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

Example 13-7 (Cont.) Displaying the Module Header

| Get module headers until bad return status
! which indicates end of qualifier values
DO WHILE (STATUS)

! Calculate length of module name

MODNAME LEN = LIBSLOCC (' ', MODNAME) - 1

! Look up module name in library index

STATUS = LBRSLOOKUP KEY (INDEX,
MODNAME (1:MODNAME LEN),
TXTRFA)

! Get header if module exists
IF (STATUS) THEN

STATUS = LBRSSET MODULE (INDEX,

TXTRFA,

HEADER,

HEADER_LEN)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
! Display header and solicit replacement
STATUS = LIBSPUT OUTPUT
('User data for module '//MODNAME (1:MODNAME LEN)//':')
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
STATUS = LIBSPUT OUTPUT
(HEADER (USER_START:HEADER LEN))
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
STATUS = LIBSPUT OUTPUT
('Enter replacement text below or just hit return:’)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
STATUS = LIBSGET INPUT (USERDATA,, USERDATA LEN)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
| Replace user data
IF (USERDATA LEN .GT. 0) THEN

STATUS = LBRSSET MODULE (INDEX,
TXTRFA, ,,
USERDATA (1:USERDATA LEN))

END IF

! Issue warning if module does not exist
ELSE IF (STATUS .EQ. %LOC (LBRS KEYNOTFND)) THEN
CALL LIB$SIGNAL (DOLIB NOMOD,

$VAL (1),
MODNAME (1:MODNAME LEN))

ELSE
CALL LIBSSIGNAL (%VAL (STATUS))
END IF

| Get another module name

STATUS = CLI$GET_VALUE ("MODHEAD' , MODNAME)
END DO
| Exit
END

13.2.7 Reading Library Headers

Call LBR$GET_HEADER to obtain general information concerning the library.
Pass the value returned by LBR$INI_CONTROL as the first argument.
LBR$GET_HEADER returns the information to the second argument, which
must be an array of 128 longwords. The LHI symbols identify the significant
longwords of the array by their byte offsets into the array. Convert these values
to subscripts by dividing by 4 and adding 1.

LBR-24 Librarian (LBR) Routines

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

Example 13-8 reads the library header and displays some information from it.

Example 13-8 Reading Library Headers

SUBROUTINE TYPEINFO (INDEX)
! Types the type, major ID, and minor ID
! of a library to SYS$SOUTPUT

INTEGER STATUS ! Return status
INDEX, ! Library index
|
|

HEADER (128), Structure for header information
TYPE, Subscripts for header structure
MAJOR ID,

MINOR ID

CHARACTER*8 MAJOR ID TEXT, ! Display info in character format
MINOR_ID TEXT
! VMS library procedures
INTEGER LBRS$GET HEADER,
LIBSPUT OUTPUT
| Offsets for header --- defined in SLHIDEF
EXTERNAL LHISL TYPE,
LHISL MAJORID,
LHISL MINORID
! Library type values --- defined in S$LBRDEF
EXTERNAL LBRSC TYP OBJ,
LBRSC TYP MLB,
LBR$C_TYP HLP,
LBRS$C TYP TXT
| Get header information
STATUS = LBRSGET HEADER (INDEX, HEADER)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
! Calculate subscripts for header structure
TYPE = $LOC (LHISL TYPE) / 4+ 1
MAJOR _ID = %LOC (LHI$L MAJORID) / 4+ 1
MINOR ID = $LOC (LHISL MINORID) / 4 1
! Display library type
IF (HEADER (TYPE) .EQ. %LOC (LBRSC TYP OBJ)) THEN
STATUS = LIB$PUT OUTPUT ('Library type: object’)
ELSE IF (HEADER (TYPE) .EQ. %LOC (LBR$SC _TYP MLB)) THEN
STATUS = LIBSPUT OUTPUT (’Library type: macro’)
ELSE IF (HEADER (TYPE) .EQ. %LOC (LBR$C_TYP HLP)) THEN
STATUS = LIB$PUT OUTPUT (’Library type: help’)
ELSE IF (HEADER (TYPE) .EQ. %LOC (LBR$C _TYP TXT)) THEN
STATUS = LIBSPUT OUTPUT (’'Library type: text’)
ELSE
STATUS = LIBSPUT OUTPUT ('Library type: unknown’)
END IF
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
! Convert and display major ID
WRITE (UNIT=MAJOR ID TEXT,
FMT=' (I)’) HEADER (MAJOR ID)
STATUS = LIBSPUT OUTPUT (’'Major ID: ’//MAJOR_ID_TEXT)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
! Convert and display minor ID
WRITE (UNIT=MINOR ID TEXT,
FMT=' (I)’) HEADER (MINOR ID)
STATUS = LIBSPUT OUTPUT (’'Minor ID: ’//MINOR_ID_TEXT)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))

(continued on next page)

Librarian (LBR) Routines LBR-25

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

Example 13-8 (Cont.) Reading Library Headers

! Exit
END

13.2.8 Displaying Help Text

You can display text from a help library by calling the LBRSOUTPUT_HELP
routine and specifying the output routine, the keywords, and the name of the
library. You must also specify the input routine if the prompting mode flag is set
or if the flags argument is omitted.

Note

If you specify subprograms in an argument list, they must be declared as
external.

You can use the LIBSPUT_OUTPUT and LIB$GET_INPUT routines to specify
the output routine and the input routine. (If you use your own routines,
make sure the argument lists are the same as for LIB$PUT_OUTPUT and
LIB$GET_INPUT.) Do not call LBR$INI_CONTROL and LBR$OPEN before
calling LBR$OUTPUT_HELP.

Example 13-9 solicits keywords from SYS$INPUT and displays the text
associated with those keywords on SYS$OUTPUT, thus inhibiting the prompting
facility.

Example 13-9 Displaying Text from a Help Library

PROGRAM GET HELP

! Prints help text from a help library
CHARACTER*31 LIBSPEC ! Library name
CHARACTER*15 KEYWORD ! Keyword in help library
INTEGER*2 LIBSPEC LEN, ! Length of name
KEYWORD LEN ! Length of keyword

INTEGER FLAGS, | Help flags

STATUS ! Return status
! VMS library procedures
INTEGER LBR$OUTPUT HELP,

LIBSGET INPUT,

LIBSPUT OUTPUT
EXTERNAL LIBSGET INPUT,

LIBSPUT OUTPUT

! Error codes

EXTERNAL RMSS$ EOF, ! End-of-file
LIBS INPSTRTRU ! Input string truncated
! Flag values --- defined in SHLPDEF

EXTERNAL HLP$M_PROMPT,
HLP$M_PROCESS,
HLP$M_GROUP,
HLP$M_SYSTEM,
HLP$M_LIBLIST,
HLP$M_HELP

(continued on next page)

LBR-26 Librarian (LBR) Routines

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

Example 13-9 (Cont.) Displaying Text from a Help Library

| Get library name
STATUS = LIBSGET INPUT (LIBSPEC,
"Library: ',
LIBSPEC_LEN)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
IF (LIBSPEC_LEN .EQ. 0) THEN
LIBSPEC = 'HELPLIB’
LIBSPEC LEN = 7
END IF
! Set flags for no prompting
FLAGS = %LOC (HLPS PROCESS) +
%$LOC (HLPS_GROUP) +
%$LOC (HLPS$ SYSTEM)

| Get first keyword
STATUS = LIBSGET INPUT (KEYWORD,
'Keyword or Ctrl/z: ',
KEYWORD_LEN)
IF ((.NOT. STATUS) .AND.
(STATUS .NE. %LOC (LIB$ INPSTRTRU)) .AND.
(STATUS .NE. %LOC (RMS$_EOF))) THEN
CALL LIBSSIGNAL (%VAL (STATUS))
END IF
! Display text until end-of-file
DO WHILE (STATUS .NE. %LOC (RMS$_EOF))
STATUS = LBR$OUTPUT_HELP (LIB$PUT_OUTPUT,,
KEYWORD (1:KEYWORD LEN),
LIBSPEC (lzLIBSPEC_LEN),
FLAGS,
LIB$GET_INPUT)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
! Get another keyword
STATUS = LIBSGET INPUT (KEYWORD,
'Keyword or Ctrl/z: ',
KEYWORD_LEN)
IF ((.NOT. STATUS) .AND.
(STATUS .NE. %LOC (LIB$_ INPSTRTRU)) .AND.
(STATUS .NE. %LOC (RMS$_EOF))) THEN
CALL LIBSSIGNAL (%VAL (STATUS))
END IF
END DO

| Exit
END

13.2.9 Listing and Processing Index Entries

You can process index entries an entry at a time by invoking LBR$GET_INDEX.
The fourth argument specifies a match name for the entry or entries in the index
to be processed: you can include the asterisk (*) and percent (%) characters in
the match name for generic processing. For example, MOD* means all entries
whose names begin with MOD; and MOD% means all entries whose names are
four characters and begin with MOD.

The third argument names a user-written routine that is executed once for each
index entry specified by the fourth argument. The routine must be a function
declared as external that returns a success (odd number) or failure (even number)
status. LBR$GET_INDEX processing stops on a return status of failure. Declare
the first argument passed to the function as a passed-length character argument;
this argument contains the name of the index entry. Declare the second argument
as an integer array of two elements.

Librarian (LBR) Routines LBR-27

Librarian (LBR) Routines
13.2 Using the LBR Routines: Examples

Example 13-10 obtains a match name from the command line and displays the
names of the matching entries from index 1 (the index containing the names of
the modules).

Example 13-10 Displaying Index Entries

SUBROUTINE LIST (INDEX)
| Lists modules in the library

INTEGER STATUS, ! Return status
INDEX, ! Library index
CHARACTER*31 MATCHNAME ! Name of module to list
INTEGER MATCHNAME LEN ! Length of match name
! VMS library procedures
INTEGER address LBRSGET INDEX,
LIBSLOCC
! Match routine
INTEGER MATCH
EXTERNAL MATCH
! Get module name and calculate length
CALL CLISGET VALUE ('LIST’, MATCHNAME)
MATCHNAME LEN = LIBSLOCC (’ ', MATCHNAME) - 1
! Call routine to display module names
STATUS = LBRSGET INDEX (INDEX,
1, ! Primary index
MATCH,
MATCHNAME (1:MATCHNAME LEN))

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))

| Exit

END

INTEGER FUNCTION MATCH (MODNAME, RFA)

! Function called for each module matched by MATCHNAME
! Displays the module name

INTEGER STATUS OK, | Good return status

RFA (2) I RFA of module name in index
PARAMETER (STATUS_OK = 1) ! 0dd value
CHARACTER* (*) MODNAME | Name of module

! Display the name
TYPE *, MODNAME ! Display module name

| Exit
MATCH = STATUS OK
END

13.3 LBR Routines

This section describes the individual LBR routines.

LBR-28 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$CLOSE

LBR$CLOSE—Close a Library

Format

Returns

Argument

Description

The LBR$CLOSE routine closes an open library.

LBR$CLOSE library_index

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

When you are finished working with a library, you should call LBR$CLOSE to
close it. Upon successful completion, LBR$CLOSE closes the open library and
deallocates all of the memory used for processing it.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_LIBNOTOPN Specified library not open.

Librarian (LBR) Routines LBR-29

Librarian (LBR) Routines
LBR$DELETE_DATA

LBR$DELETE_DATA—Delete Module Data from the Library

Format

Returns

Arguments

The LBR$DELETE_DATA routine deletes module data from the library.

LBR$DELETE_DATA library_index, txtrfa [,flags]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value.
Condition values that this routine can return are listed under Condition Values
Returned.

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

txtrfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by reference

Record’s file address (RFA) of the module header for the module you want to
delete. The txtrfa argument is the address of the 2-longword array that contains
the RFA. You can obtain the RFA of a module header by calling LBR$LOOKUP_
KEY or LBR$PUT_RECORD.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

The contents of the flag are ignored. The purpose of this argument is to indicate
to this routine that the application knows about the new index structure for ELF
object and ELF shareable image libraries.

LBR-30 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$DELETE_DATA

Description

To delete a library module, first call LBR$DELETE_KEY to delete all keys
that point to it. If no library index keys are pointing to the module header,
LBR$DELETE_DATA deletes the module header and associated data records;
otherwise, this routine returns the error LBR$ STILLKEYS.

Note that other library routines can reuse data blocks that contain no data.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.

LBR$_INVRFA Specified RFA not valid.

LBR$_LIBNOTOPN Specified library not open.

LBR$_STILLKEYS Keys in other indexes still point to the module
header. Therefore, the specified module was not
deleted.

Librarian (LBR) Routines LBR-31

Librarian (LBR) Routines
LBR$DELETE_KEY

LBR$DELETE_KEY—Delete a Key

The LBR$DELETE_KEY routine removes a key from the current library index.

Format
LBRSDELETE_KEY library_index, key name]J, txtrfa] [, flags]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value.
Condition values that this routine can return are listed under Condition Values
Returned.
Arguments
library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of a longword that contains the index.

key name

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The key to be deleted from the library index. For libraries with binary keys, the
key name argument is the address of an unsigned longword containing the key
number.

For libraries with ASCII keys, the key name argument is the address of the
string descriptor pointing to the key with the following argument characteristics:

Argument Characteristics Entry

OpenVMS usage char_string

type character string
access read only
mechanism by descriptor
txtrfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by reference

LBR-32 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$DELETE_KEY

The txtrfa argument is the address of the 2-longword array that contains the
record file address (RFA). If present and if the flags argument is not present,
the routine scans for all types of the key for the specified txtrfa and delete those

entries.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

If present, this argument indicates that a particular type of the key or all types
of the key is to be deleted. The flags bits are as follows:

Flag Bits Description

LBR$M_SYM_WEAK = 0x1 UNIX-style weak symbol attribute
LBR$M_SYM_GROUP = 0x2 Group symbol attribute
LBR$M_SYM_ALL = All symbols

0x80000000

If the txtrfa argument is not present or if its value is zero, the type indicated
by flags is deleted. If txtrfa specifies a nonzero value, the entry of the type
indicated, with the txtrfa supplied, is removed. Note that only one type or all
types can be specified.

Description

If LBR$DELETE_KEY finds the key specified by key_name in the current
index, it deletes the key. Note that if you want to delete a library module, you
should first use LBR$DELETE_KEY to delete all keys that point to it, then use
LBR$DELETE_DATA to delete the module’s header and associated data. You
cannot call LBR$DELETE_KEY from within the user-supplied routine specified
in LBR$SEARCH or LBR$GET_INDEX.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_KEYNOTFND Specified key not found.
LBR$_LIBNOTOPN Specified library not open.
LBR$_UPDIRTRAV Specified index update not valid in a user-

supplied routine specified in LBR$SEARCH
or LBR$GET_INDEX.

Librarian (LBR) Routines LBR-33

Librarian (LBR) Routines

LBR$FIND

LBR$FIND—Look Up a Module by Its RFA

Format

Returns

Arguments

Description

The LBR$FIND routine sets the current internal read context for the library to
the library module specified.

LBRS$FIND library_index ,txtrfa

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

txtrfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by reference

Record’s file address (RFA) of the module header for the module you want to
access. The txtrfa argument is the address of a 2-longword array containing the
RFA. You can obtain the RFA of a module header by calling LBR$LOOKUP_KEY
or LBR$PUT_RECORD.

Use the LBR$FIND routine to access a module that you had accessed earlier in
your program. For example, if you look up several keys with LBRSLOOKUP_
KEY, you can save the RFAs returned by LBR$LOOKUP_KEY and later use
LBRS$FIND to reaccess the modules. Thus, you do not have to look up the module
header’s key every time you want to access the module. If the specified RFA is
valid, LBR$FIND initializes internal tables so you can read the associated data.

LBR-34 Librarian (LBR) Routines

Librarian (LBR) Routines

LBR$FIND
Condition Values Returned
LBR$_ILLCTL Specified library control index not valid.
LBR$_INVRFA Specified RFA not valid.
LBR$_LIBNOTOPN Specified library not open.

Librarian (LBR) Routines LBR-35

Librarian (LBR) Routines
LBR$FLUSH

LBR$FLUSH—Recover Virtual Memory

The LBR$FLUSH routine writes modified blocks back to the library file and frees
the virtual memory the blocks had been using.

Format
LBR$FLUSH library_index ,block_type

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments
library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.
block_type
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value
Extent of the flush operation. The block_type argument contains the longword
value that indicates how the flush operation proceeds. If you specify LBR$C
FLUSHDATA, the data blocks are flushed. If you specify LBR$C FLUSHALL,
first the data blocks and then the current library index are flushed.
Each programming language provides an appropriate mechanism for accessing
these symbols.

Description

LBR$FLUSH cannot be called from other LBR routines that reference cache
addresses or by routines called by LBR routines.

LBR-36 Librarian (LBR) Routines

Librarian (LBR) Routines

LBR$FLUSH
Condition Values Returned

LBR$ NORMAL Operation completed successfully.

LBR$ BADPARAM Error. A value passed to the LBR$FLUSH
routine was either out of range or an illegal
value.

LBR$ WRITERR Error. An error occurred during the writing of

the cached update blocks to the library file.

Librarian (LBR) Routines LBR-37

Librarian (LBR) Routines
LBR$GET_HEADER

LBR$GET _HEADER—REetrieve Library Header Information

Format

Returns

Arguments

The LBR$GET_HEADER routine returns information from the library’s header to
the caller.

LBR$GET_HEADER library_index ,retary

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

retary

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only

mechanism: by reference

Array of 128 longwords that receives the library header. The retary argument is
the address of the array that contains the header information. The information
returned in the array is listed in the following table. Each programming language
provides an appropriate mechanism for accessing this information.

Offset in

Longwords Symbolic Name Contents
0 LHISL_TYPE Library type (see LBR$SOPEN for

possible values)

1 LHI$L_NINDEX Number of indexes
2 LHI$L_MAJORID Library format major identification
3 LHISL_MINORID Library format minor identification
4 LHI$T_LBRVER ASCIC version of Librarian

12 LHI$L_CREDAT Creation date/time

14 LHISL_UPDTIM Date/time of last update

LBR-38 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$GET_HEADER

Offset in
Longwords

Symbolic Name

Contents

16

17
18
19

21
22

23
24
25
26
27

28

29

30

31

32-128

LHI$SL_UPDHIS

LHI$SL_FREEVBN
LHI$L_FREEBLK
LHI$B_NEXTRFA

LHISL_NEXTVBN
LHI$SL_FREIDXBLK

LHI$SL_FREEIDX
LHI$SL_HIPREAL
LHISL_IDXBLKS
LHISL_IDXCNT

LHI$SL_MODCNT

LHI$SL_MHDUSZ
LHI$SL_MAXLUHREC
LHI$L_NUMLUHREC

LHISL_LIBSTATUS

Virtual block number (VBN) of start of
update history

First logically deleted block
Number of deleted blocks

Record file address (RFA) of end of
library

Next VBN to allocate at end of file

Number of free preallocated index
blocks

List head for preallocated index blocks
VBN of highest preallocated block
Number of index blocks in use
Number of index entries (total)

Number of entries in index 1 (module
names)

Number of bytes of additional
information reserved in module header

Maximum number of library update
history records maintained

Number of library update history
records in history

Library status (false if there was an
error closing the library)

Reserved by HP

Description

On successful completion, LBR$GET_HEADER places the library header
information into the array of 128 longwords.

Note that the offset is the byte offset of the value into the header structure. You
can convert the offset to a longword subscript by dividing the offset by 4 and
adding 1 (assuming that subscripts in your programming language begin with 1).

Condition Values Returned

LBRS$_ILLCTL
LBRS$_LIBNOTOPN

Specified library control index not valid.

Specified library not open.

Librarian (LBR) Routines LBR-39

Librarian (LBR) Routines
LBR$GET_HELP

LBR$GET_ HELP—Retrieve Help Text

The LBR$GET_HELP routine retrieves help text from a help library, displaying
it on SYS$OUTPUT or calling your routine for each record returned.

Format
LBR$GET_HELP library_index [,line_width] [,routine] [,data] [,key_1]
[key 2 ... key 10]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.
Arguments
library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

line_width

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Width of the help text line. The line_width argument is the address of a
longword containing the width of the listing line. If you do not supply a line
width or if you specify 0, the line width defaults to 80 characters per line.

routine

OpenVMS usage: procedure

type: procedure value
access: read only
mechanism: by reference

Routine called for each line of text you want output. The routine argument is
the address of the procedure value for this user-written routine.

If you do not supply a routine argument, LBR$GET_HELP calls the Run-Time
Library procedure LIB$PUT_OUTPUT to send the help text lines to the current
output device (SYS$OUTPUT). However, if you want SYSSOUTPUT for your
program to be a disk file rather than the terminal, you should supply a routine to
output the text.

LBR-40 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$GET_HELP

If the user-written routine returns an error status with low bit clear, the
LBR$GET_HELP routine passes this status to the caller. If the user-written
routine returns a success status with low bit set, the LBR$GET_HELP routine
returns 1 to the caller.

The routine you specify is called with an argument list of four longwords:
1. The first argument is the address of a string descriptor for the output line.

2. The second argument is the address of an unsigned longword containing flag
bits that describe the contents of the text being passed. The possible flags are
as follows:

HLP$M_NOHLPTXT Specified help text cannot be found.

HLP$M_KEYNAMLIN Text contains key names of the printed text.

HLP$M_OTHERINFO Text is part of the information provided on
additional help available.

Each programming language provides an appropriate mechanism for
accessing these flags. Note that, if no flag bit is set, help text is passed.

3. The third argument is the address stipulated in the data argument specified
in the call to LBR$GET_HELP (or the address of a O constant if the data
argument is zero or was omitted).

4. The fourth argument is a longword containing the address of the current key
level.

The routine you specify must return with success or failure status. A failure
status (low bit = 0) terminates the current call to LBR$GET_HELP.

data

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Data passed to the routine specified in the routine argument. The data
argument is the address of data for the routine. The address is passed to the
routine specified in the routine argument. If you omit this argument or specify
it as zero, then the argument passed in your routine will be the address of a zero
constant.

key_l,key 2,... key_10

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by descriptor

Level of the help text to be output. Each key 1,key 2, ... key 10 argument is

the address of a descriptor pointing to the key for that level.

If the key 1 descriptor is O or if it is not present, LBR$GET_HELP assumes
that the key 1 name is HELP, and it ignores all the other keys. For key_2
through key 10, a descriptor address of 0, or a length of 0, or a string address of
0 terminates the list.

Librarian (LBR) Routines LBR-41

Librarian (LBR) Routines
LBR$GET_HELP

The key argument may contain any of the following special character strings:

String Meaning
* Return all level 1 help text in the library.
KEY ... Return all help text associated with the specified key and its subkeys
(valid for level 1 keys only).
* L. Return all help text in the library.
Description

LBR$GET_HELP returns all help text in the same format as the output returned
by the DCL command HELP; that is, it indents two spaces for every key level

of text displayed. (Because of this formatting, you may want to make your help
messages shorter than 80 characters, so they fit on one line on terminal screens
with the width set to 80.) If you do not want the help text indented to the
appropriate help level, you must supply your own routine to change the format.

Note that most application programs use LBRSOUTPUT_HELP instead of
LBR$GET_HELP.

Condition Values Returned

LBR$ ILLCTL Specified library control index not valid.
LBR$_LIBNOTOPN Specified library not open.
LBR$ NOTHLPLIB Specified library not a help library.

LBR-42 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$GET_HISTORY

LBR$GET_HISTORY—REetrieve a Library Update History Record

Format

Returns

Arguments

Description

The LBR$GET_HISTORY routine returns each library update history record to a
user-specified action routine.

LBR$GET_HISTORY library_index ,action_routine

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

action_routine
OpenVMS usage: procedure

type: procedure value
access: modify
mechanism: by reference

User-supplied routine for processing library update history records. The action_
routine argument is the address of the procedure value of this user-supplied
routine. The routine is invoked once for each update history record in the library.
One argument is passed to the routine, namely, the address of a descriptor
pointing to a history record.

This routine retrieves the library update history records written by the routine
LBR$PUT_HISTORY.

Librarian (LBR) Routines LBR-43

Librarian (LBR) Routines
LBR$GET_HISTORY

Condition Values Returned

LBR$_NORMAL
LBR$_EMPTYHIST

LBR$_INTRNLERR
LBR$_NOHISTORY

LBR-44 Librarian (LBR) Routines

Normal exit from the routine.

History empty. This is an informational code, not
an error code.

Internal Librarian routine error occurred.

No update history. This is an informational code,
not an error code.

Librarian (LBR) Routines
LBR$GET_INDEX

LBR$GET_INDEX—Call a Routine for Selected Index Keys

Format

Returns

Arguments

The LBR$GET_INDEX routine calls a user-supplied routine for selected keys in
an index.

LBR$GET_INDEX library_index ,index_number ,routine_name [,match_desc] [,
flags]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value.
Condition values that this routine can return are listed under Condition Values
Returned.

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

index_number
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Number of the library index. The index_number argument is the address of a
longword containing the index number. This is the index number associated with
the keys you want to use as input to the user-supplied routine.

routine_name
OpenVMS usage: procedure

type: procedure value
access: read only
mechanism: by reference

User-supplied routine called for each of the specified index keys. The routine_
name argument is the address of the procedure value for this user-supplied
routine.

Librarian (LBR) Routines LBR-45

Librarian (LBR) Routines
LBR$GET_INDEX

LBR$GET_INDEX passes two arguments to the routine:
= A key name.

— For libraries with ASCII keys, the key_name argument is the address of
a string descriptor pointing to the key. Note that the string and the string
descriptor passed to the routine are valid only for the duration of that
call. The string must be copied privately if you need it again for more
processing.

— For libraries with binary keys, the key_name argument is the address of
an unsigned longword containing the key number.

= The record file address (RFA) of the module’'s header for this key name. The
RFA argument is the address of a 2-longword array that contains the RFA.

e The key’s type whose bits are as follows:

Flag Bits Description
LBR$M_SYM_WEAK =1 UNIX-style weak symbol attributes
LBR$M_SYM_GROUP =2 Group symbol attribute

The user routine must return a value to indicate success or failure. If the user
routine returns a false value (low bit = 0), LBR$GET_INDEX stops searching
the index and returns the status value of the user-specified routine to the calling

program.

The routine cannot contain calls to either LBR$DELETE_KEY or LBR$INSERT _
KEY.

match_desc

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Key matching identifier. The match_desc argument is the address of a string
descriptor pointing to a string used to identify which keys result in calls to the
user-supplied routine. Wildcard characters are allowed in this string. If you omit
this argument, the routine is called for every key in the index. The match_desc
argument is valid only for libraries that have ASCII keys.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

If present and non-zero, this argument specifies the type, or all types, of the key
provided. The flag bits are:

Flag Bits Description
LBR$M_SYM_WEAK = 0x1 UNIX-style weak symbol attribute
LBR$M_SYM_GROUP = 0x2 Group symbol attribute

LBR-46 Librarian (LBR) Routines

Description

Librarian (LBR) Routines
LBR$GET_INDEX

Flag Bits Description

LBR$M_SYM_ALL = 0x80000000 All symbols

The user routine will be provided the key’s type through an additional third
parameter.

LBR$GET_INDEX searches through the specified index for keys that match the
match_desc argument. Each time it finds a match, it calls the user routine
specified by the routine_name argument. If you do not specify the match_desc
argument, LBR$GET_INDEX calls the user routine for every key in the index.

For example, if you call LBR$GET _INDEX on an object library with match_desc
equal to TR* and index_number set to 1 (module name table), then LBR$GET _
INDEX calls routine_name for each module whose name begins with TR.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_ILLIDXNUM Specified index number not valid.
LBR$_LIBNOTOPN Specified library not open.
LBR$_NULIDX Specified library empty.

Librarian (LBR) Routines LBR-47

Librarian (LBR) Routines
LBR$GET_RECORD

LBR$GET RECORD—Read a Data Record

The LBR$GET_RECORD routine returns the next data record in the module
associated with a specified key.

Format
LBR$GET_RECORD library_index [,inbufdes] [,outbufdes]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.
Arguments
library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index. The
library must be open and LBR$LOOKUP_KEY or LBR$FIND must have been
called to find the key associated with the module whose records you want to read.

inbufdes

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

User buffer to receive the record. The inbufdes argument is the address

of a string descriptor that points to the buffer that receives the record from
LBR$GET_RECORD. This argument is required when the Librarian subroutine
record access is set to move mode (which is the default). This argument is not
used if the record access mode is set to locate mode. The Description section
contains more information about the locate and move modes.

outbufdes

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String descriptor that receives the actual length and address of the data for the
record returned. The outbufdes argument is the address of the string descriptor
for the returned record. The length and address fields of the string descriptor are
filled in by the LBR$GET_RECORD routine. This parameter must be specified

LBR-48 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$GET_RECORD

when Librarian subroutine record access is set to locate mode. This parameter
is optional if record access mode is set to move mode. The Description section
contains more information about the locate and move modes.

Description

Before calling LBR$GET_RECORD, you must first call LBR$LOOKUP_KEY or
LBR$FIND to set the internal library read context to the record’s file address
(RFA) of the module header of the module whose records you want to read.

LBR$GET_RECORD uses two record access modes: locate mode and move
mode. Move mode is the default. The LBR$SET_LOCATE and LBR$SET_MOVE
subroutines set these modes. The record access modes are mutually exclusive;
that is, when one is set, the other is turned off. If move mode is set, LBR$GET _
RECORD copies the record to the user-specified buffer described by inbufdes. If
you have optionally specified the output buffer string descriptor, outbufdes, the
Librarian fills it with the actual length and address of the data. If locate mode
is set, LBR$GET_RECORD returns the record by way of an internal subroutine
buffer, pointing the outbufdes descriptor to the internal buffer. The second
parameter, inbufdes, is not used when locate mode is set.

Condition Values Returned

LBR$ ILLCTL Specified library control index not valid.
LBR$_LIBNOTOPN Specified library not open.

LBR$ LKPNOTDON Requested key lookup not done.

RMS$_EOF Error. An attempt has been made to read past

the logical end of the data in the module.

Librarian (LBR) Routines LBR-49

Librarian (LBR) Routines
LBR$INI_CONTROL

LBR$INI_CONTROL—Initialize a Library Control Structure

Format

Returns

Arguments

The LBR$INI_CONTROL routine initializes a control structure, called a library
control index, to identify the library for use by other LBR routines.

LBR$INI_CONTROL library_index ,func [,type] [,namblk]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of a longword that is to receive the index.

func

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library function to be performed. The func argument is the address of the
longword that contains the library function. Valid functions are LBR$C_CREATE,
LBR$C_READ, and LBR$C_UPDATE. Each programming language provides an
appropriate mechanism for accessing these symbols.

type

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library type. The type argument is the address of the longword containing the
library type. Valid library types include the following:

- LBR$C_TYP_OBJ (VAX object)

e LBR$C_TYP_SHSTB (VAX shareable image)

e LBRS$C TYP_EOBJ (Alpha object)

e LBR$C _TYP_ESHSTB (Alpha shareable image)

LBR-50 Librarian (LBR) Routines

Description

Librarian (LBR) Routines
LBR$INI_CONTROL

e LBR$C_TYP_MLB (macro)

e LBR$C_TYP_HLP (help)

« LBR$C_TYP_TXT (text)

e LBR$C_TYP_UNK (unknown)

« LBR$C_TYP_NCS (NCS library)

e For user-developed libraries, a type in the range of LBR$C _TYP_USRLW
through LBR$C_TYP_USRHI.

namblk

OpenVMS usage: nam

type: longword (unsigned)
access: read only
mechanism: by reference

OpenVMS RMS name block (NAM). The namblk argument is the address of a
variable-length data structure containing an RMS NAM block. The LBR$OPEN
routine fills in the information in the NAM block so it can be used later to open
the library. If the NAM block has this file identification in it from previous use,
the LBR$OPEN routine uses the open-by-NAM block option. This argument is
optional and should be used if the library will be opened many times during a
single run of the program. For a detailed description of RMS NAM blocks, see the
OpenVMS Record Management Services Reference Manual.

Except for the LBR$SOUTPUT_HELP routine, you must call LBR$INI_CONTROL
before calling any other LBR routine. After you initialize the library control
index, you must open the library or create a new one using the LBR$OPEN
routine. You can then call other LBR routines that you need. After you finish
working with a library, close it with the LBR$CLOSE routine.

LBR$INI_CONTROL initializes a library by filling the longword referenced by the
library_index argument with the control index of the library. Upon completion
of the call, the index can be used to refer to the current library in all future
routine calls. Therefore, your program must not alter this value.

You can have up to 16 libraries open simultaneously in your program.

Condition Values Returned

LBR$_NORMAL Library control index initialized successfully.
LBR$_ILLFUNC Requested function not valid.

LBR$_ILLTYP Specified library type not valid.
LBR$_TOOMNYLIB Error. An attempt was made to allocate more

than 16 control indexes.

Librarian (LBR) Routines LBR-51

Librarian (LBR) Routines
LBR$INSERT_KEY

LBRSINSERT KEY—Insert a New Key

Format

Returns

Arguments

The LBR$INSERT_KEY routine inserts a new key in the current library index.

LBRSINSERT_KEY library_index ,key_name ,txtrfa [, flags]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value.
Condition values that this routine can return are listed under Condition Values
Returned.

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL library routine. The
library_index argument is the address of the longword that contains the index.

key name

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Name of the new key you are inserting.

If the library uses binary keys, the key_name argument is the address of an
unsigned longword containing the value of the key.

If the library uses ASCII keys, the key_name argument is the address of a string
descriptor of the key with the following argument characteristics:

Argument

Characteristics Entry

OpenVMS usage char_string
type character string
access read only
mechanism by descriptor

LBR-52 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$INSERT_KEY

txtrfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: modify

mechanism: by reference

The record file address (RFA) of the module associated with the new key you are
inserting. The txtrfa argument is the address of a 2-longword array containing
the RFA. You can use the RFA returned by the first call to LBRSPUT_RECORD.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

If present, specifies the key’s type. The flag bits are as follows:

Flag Bits Description
LBR$M_SYM_WEAK = 0x1 UNIX-style weak symbol attribute
LBR$M_SYM_GROUP = 0x2 Group symbol attribute

If this argument is not present, the normal NonGroup-Global type is the assumed
type.
Description

The LBRSINSERT_KEY routine inserts a new key in the current library index.
You cannot call LBR$INSERT_KEY within the user-supplied routine specified in
LBR$SEARCH or LBR$GET_INDEX.

Condition Values Returned

LBR$ DUPKEY Index already contains the specified key.
LBR$_ILLCTL Specified library control index not valid.
LBR$_INVRFA Specified RFA does not point to valid data.
LBR$_LIBNOTOPN Specified library not open.

LBR$ UPDURTRAV LBR$INSERT_KEY was called by the user-

defined routine specified in LBR$SEARCH or
LBR$GET_INDEX.

Librarian (LBR) Routines LBR-53

Librarian (LBR) Routines
LBR$LOOKUP_KEY

LBR$LOOKUP_KEY—Look Up aLibrary Key

Format

Returns

Arguments

The LBR$LOOKUP_KEY routine looks up a key in the library’s current index
and prepares to access the data in the module associated with the key.

LBR$LOOKUP_KEY library_index ,key_name ,txtrfa [, flags]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value.
Condition values that this routine can return are listed under Condition Values
Returned.

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

key_name

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Name of the library key. If the library uses binary keys, the key name argument
is the address of the unsigned longword value of the key.

If the library uses ASCII keys, the key _name argument is the address of a string
descriptor for the key with the following argument characteristics:

Argument Characteristics Entry

OpenVMS usage char_string
type character string
access read only
mechanism by descriptor

LBR-54 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$LOOKUP_KEY

txtrfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only

mechanism: by reference

The record file address (RFA) of the library module header. The txtrfa argument
is the address of the 2-longword array that receives the RFA of the module

header.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

The flags argument, if present and not zero, receives the type of key returned.
the flag bits are as follows:

Flag Bits Description
LBR$SYM_WEAK = 0x1 UNIX-style weak symbol attribute
LBR$SYM_GROUP = 0x2 Group symbol attribute

The key returned is the highest precedent definition type present.

Description

If LBR$LOOKUP_KEY finds the specified key, it initializes internal tables so you
can access the associated data.

This routine returns the RFA to the 2-longword array referenced by txtrfa.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_INVRFA RFA obtained not valid.

LBR$ KEYNOTFND Specified key not found.
LBR$_LIBNOTOPN Specified library not open.

Librarian (LBR) Routines LBR-55

Librarian (LBR) Routines
LBR$LOOKUP_TYPE

LBR3LOOKUP_TYPE—Searches index and returns key type for the
module

The LBR$LOOK_TYPE routine searches the index for the key from a particular
module (RFA) and returns that key’s type for that module.

Format

LBR$LOOKUP_TYPE library_index, key _name, txtrfa, ret_types
Arguments

library_index

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

key_name

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The key _name argument is the address of the string descriptor pointing to the
key with the following argument characteristics:

Argument Characteristics Entry

OpenVMS usage char_string
type character string
access read only
mechanism by descriptor
txtrfa

OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

The module’s record file address (RFA) of the library module header. The txtrfa
argument is the address of the 2-longword array that specifies the RFA of the
module header.

ret_types

OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

The address of a longword to receive the symbol types found for the specified
module (txtrfa). The return type bits are as follows:

LBR-56 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$LOOKUP_TYPE

LBR$M_SYM_NGG = 1
LBR$M_SYM_UXWK = 2
LBR$M_SYM GG = 4
LBR$M_SYM_GUXWK = 8

Description

This routine searches the index for the key from a particular module (RFA) and
returns that key’s type for that module, if present. Otherwise, it returns LBR$
KEYNOTFND.

Librarian (LBR) Routines LBR-57

Librarian (LBR) Routines
LBR$MAP_MODULE

LBR$MAP_MODULE—Maps a module into process P2 space (164

Format

Arguments

only)

The LBR$MAP_MODULE routine maps a module into process P2 space.

LBR$MAP_MODULE library_index, ret_va_addr, ret_mod_len, txtrfa

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL library routine. The
library_index argument is the address of the longword that contains the index.

ret_va addr

OpenVMS usage: address

type: guadword address

access: write only

mechanism: by 32-bit or 64-bit reference

The 32-bit or 64-bit virtual address of a naturally aligned quadword into which
the routine returns the virtual address at which the routine mapped the library
module.

ret_ mod_len
OpenVMS usage: byte count

type: guadword (unsigned)
access: read only
mechanism: by reference

The address of a naturally aligned quadword into which the library routine
returns the module length.

txtrfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by reference

The module’s record file address (RFA) of the library module header. The txtrfa
argument is the address of the 2-longword array that specifies the RFA of the
module header.

LBR-58 Librarian (LBR) Routines

Description

Librarian (LBR) Routines
LBR$MAP_MODULE

This routine maps a module, with the given txtrfa, into process P2 memory space
and returns the virtual address where the module is mapped and the module
size.

Unlike other LBR services that use RMS services, LBRSMAP_MODULE also uses
system services. Because of this, the secondary status for error returns is placed
in LBR$$GL_SUBSTS. Use this secondary status to find additional status when
an error is returned.

Librarian (LBR) Routines LBR-59

Librarian (LBR) Routines

LBR$OPEN

LBR3$OPEN—Open or Create a Library

Format

Returns

Arguments

The LBR$OPEN routine opens an existing library or creates a new one.

LBR$OPEN library_index [,fns] [,create_options] [,dns] [,rlfna] [,rns] [,rnslen]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of a longword containing the index.

fns

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification of the library. The fns argument is the address of a string
descriptor pointing to the file specification. Unless the OpenVMS RMS NAM
block address was previously supplied in the LBR$INI_CONTROL routine and
contained a file specification, this argument must be included. Otherwise, the
Librarian returns an error (LBR$_NOFILNAM).

create_options
OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Library characteristics. The create_options argument is the address of an array
of 20 longwords that define the characteristics of the library you are creating. If
you are creating a library with LBR$C_CREATE, you must include the create_
options argument. The following table shows the entries that the array must
contain. Each programming language provides an appropriate mechanism for
accessing the listed symbols.

LBR-60 Librarian (LBR) Routines

Librarian (LBR) Routines

LBR$OPEN
Offset in
Longwords Symbolic Name Contents
0 CRESL_TYPE Library type:
LBR$C_TYP_UNK (0) Unknown/unspecified
LBR$C_TYP_OBJ (1) VAX object
LBR$C_TYP_MLB (2) Macro
LBR$C_TYP_HLP (3) Help
LBR$C_TYP_TXT (4) Text
LBR$C_TYP_SHSTB (5) VAX shareable image
LBR$C_TYP_NCS (6) NCS
LBR$C _TYP_EOBJ (7) Alpha object
LBR$C_TYP_ESHSTB (8) Alpha shareable image
(9-127) Reserved by HP
LBR$C_TYP_USRLW (128) User library types — low
end of range
LBR$C_TYP_USRHI (255) User library types — high
end of range
1 CRES$L_KEYLEN Maximum length of ASCII
keys or, if 0, indicates 32-bit
unsigned keys (binary keys)
2 CRESL_ALLOC Initial library file allocation
3 CRES$L_IDXMAX Number of library indexes
(maximum of eight)
4 CRE$L_UHDMAX Number of additional bytes
to reserve in module header
5 CRES$L_ENTALL Number of index entries to
preallocate
6 CRES$SL_LUHMAX Maximum number of library
update history records to
maintain
7 CRES$SL_VERTYP Format of library to create:
CRE$C VMSV2 VMS Version 2.0
CRES$C_VMSV3 VMS Version 3.0
8 CRES$L_IDXOPT Index key casing option:
CRES$C_HLPCASING Treat character case as it is
for help libraries
CRES$C_OBJCASING Treat character case as it is
for object libraries
CRES$C_MACTXTCAS Treat character case as it is
for macro and text libraries
9-19 Reserved by HP

The input of uppercase and lowercase characters is treated differently for help,
object, macro, and text libraries. For details, see the HP OpenVMS Command
Definition, Librarian, and Message Utilities Manual.

Librarian (LBR) Routines LBR-61

Librarian (LBR) Routines

LBR$OPEN

Description

dns

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Default file specification. The dns argument is the address of the string
descriptor that points to the default file specification. See the OpenVMS Record
Management Services Reference Manual for details about how defaults are
processed.

rifna

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Related file name. The rlfna argument is the address of an RMS NAM block
pointing to the related file name. You must specify rlfna for related file name
processing to occur. If a related file name is specified, only the file name,

type, and version fields of the NAM block are used for related name block
processing. The device and directory fields are not used. See the OpenVMS
Record Management Services Reference Manual for details on processing related
file names.

rns
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Resultant file specification returned. The rns argument is the address of a string
descriptor pointing to a buffer that is to receive the resultant file specification
string. If an error occurs during an attempt to open the library, the expanded
name string is returned instead.

rnslen

OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Length of the resultant or expanded file name. The rnslen argument is the
address of a longword receiving the length of the resultant file specification string
(or the length of the expanded name string if there was an error in opening the
library).

You can call this routine only after you call LBR$INI_CONTROL and before you
call any other LBR routine except LBR$OUTPUT_HELP.

When the library is successfully opened, the LBR routine reads the library header
into memory and sets the default index to 1.

If the library cannot be opened because it is already open for a write operation,
LBRS$OPEN retries the open operation every second for a maximum of 30 seconds
before returning the RMS error, RMS$_FLK, to the caller.

LBR-62 Librarian (LBR) Routines

Condition Values Returned

LBR$_ERRCLOSE

LBR$_ILLCREOPT

LBR$_ILLCTL
LBR$_ILLFMT
LBR$_ILLFUNC
LBR$_LIBOPN
LBR$_NOFILNAM

LBR$_OLDLIBRARY

LBR$ OLDMISMCH

LBR$_TYPMISMCH

Librarian (LBR) Routines
LBR$OPEN

Error. When the library was last modified while
opened for write access, the write operation
was interrupted. This left the library in an
inconsistent state.

Requested create options not valid or not
supplied.

Specified library control index not valid.
Specified library format not valid.
Specified library function not valid.
Specified library already open.

Error. The fns argument was not supplied or the
RMS NAM block was not filled in.

Success. The specified library has been opened;
the library was created with an old library
format.

Requested library function conflicts with old
library type specified.

Library type does not match the requested type.

Librarian (LBR) Routines LBR-63

Librarian (LBR) Routines
LBR$OUTPUT_HELP

LBR$OUTPUT_HELP—Output Help Messages

The LBR$OUTPUT_HELP routine outputs help text to a user-supplied output
routine. The text is obtained from an explicitly named help library or, optionally,
from user-specified default help libraries. An optional prompting mode is
available that enables LBR$OUTPUT_HELP to interact with you and continue to
provide help information after the initial help request has been satisfied.

Format
LBR$OUTPUT_HELP output_routine [,output_width] [,line_desc] [,library_name]
[,flags] [,input_routine]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.
Arguments

output_routine
OpenVMS usage: procedure

type: procedure value
access: write only
mechanism: by reference

Name of a routine that writes help text a line at a time. The output_routine
argument is the address of the procedure value of the routine to call. You should
specify either the address of LIBSPUT_OUTPUT or a routine of your own that
has the same calling format as LIBSPUT_OUTPUT.

output_width
OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Width of the help-text line to be passed to the user-supplied output routine. The
output_width argument is the address of a longword containing the width of the
text line to be passed to the user-supplied output routine. If you omit output_
width or specify it as 0, the default output width is 80 characters per line.

line_desc

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Contents of the help request line. The line_desc argument is the address of
a string descriptor pointing to a character string containing one or more help

LBR-64 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$OUTPUT_HELP

keys defining the help requested, for example, the HELP command line minus
the HELP command and HELP command qualifiers. The default is a string
descriptor for an empty string.

library_name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the main library. The library_name argument is the address of a string
descriptor pointing to the main library file specification string. The default is a
null string, which means you should use the default help libraries. If you omit
the device and directory specifications, the default is SYSSHELP. The default file
type is .HLB.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags specifying help output options. Each programming language provides an
appropriate mechanism for accessing these flags. The flags argument is the
address of an unsigned longword that contains the following flags, when set:

Flag Description

HLP$M_PROMPT Interactive help prompting is in effect.

HLP$M_PROCESS The process logical name table is searched for default help
libraries.

HLP$M_GROUP The group logical name table is searched for group default

help libraries.

HLP$M_SYSTEM The system logical name table is searched for system
default help libraries.

HLP$M_LIBLIST The list of default libraries available is output with the
list of topics available.

HLP$M_HELP The list of topics available in a help library is preceded by
the major portion of the text on help.

If you omit this longword, the default is for prompting and all default library
searching to be enabled, but no library list is generated and no help text precedes
the list of topics.

input_routine
OpenVMS usage: procedure

type: procedure value
access: read only
mechanism: by reference

Routine used for prompting. The input_routine argument is the address of the
procedure value of the prompting routine. You should specify either the address
of LIB$SGET_INPUT or a routine of your own that has the same calling format as
LIB$SGET_INPUT. This argument must be supplied when the HELP command is
run in prompting mode (that is, HLP$M_PROMPT is set or defaulted).

Librarian (LBR) Routines LBR-65

Librarian (LBR) Routines
LBR$OUTPUT_HELP

Description

The LBR$OUTPUT_HELP routine provides a simple, one-call method to
initiate an interactive help session. Help library bookkeeping functions,
such as LBR$INI_CONTROL and LBR$OPEN, are handled internally. You
should not call LBR$INI_CONTROL or LBR$OPEN before you issue a call to
LBR$OUTPUT_HELP.

LBR$OUTPUT_HELP accepts help keys in the same format as LBR$GET_HELP,
with the following qualifications:

= If the keyword HELP is supplied, help text on HELP is output, followed by a
list of HELP subtopics available.

If no help keys are provided or if the line_desc argument is 0, a list of topics
available in the root library is output.

= If the line_desc argument contains a list of help keys, then each key must be
separated from its predecessor by a slash (/) or by one or more spaces.

= The first key can specify a library to replace the main library as the root
library (the first library searched) in which LBR$OUTPUT_HELP searches
for help. A key used for this purpose must have the form <@filespec>, where
filespec is subject to the same restrictions as the library_name argument. If
the specified library is an enabled user-defined default library, then filespec
can be abbreviated as any unique substring of that default library’s logical
name translation.

In default library searches, you can define one or more default libraries for
LBR$OUTPUT_HELP to search for help information not contained in the root
library. Do this by equating logical names (HLP$LIBRARY, HLP$LIBRARY _

1, ... HLPS$LIBRARY_999) to the file specifications of the default help libraries.
You can define these logical names in the process, group, or system logical name
table.

If default library searching is enabled by the flags argument, LBR$OUTPUT _
HELP uses those flags to determine which logical name tables are enabled and
then automatically searches any user default libraries that have been defined

in those logical name tables. The library search order proceeds as follows:

root library, main library (if specified and different from the root library),
process libraries (if enabled), group libraries (if enabled), system libraries (if
enabled). If the requested help information is not found in any of these libraries,
LBR$OUTPUT_HELP returns to the root library and issues a “help not found”
message.

To enter an interactive help session (after your initial request for help has been
satisfied), you must set the HLP$M_PROMPT bit in the flags argument.

You can encounter four different types of prompt in an interactive help session.
Each type represents a different level in the hierarchy of help available to you.

1. If the root library is the main library and you are not currently examining
HELP for a particular topic, the prompt Topic? is output.

2. If the root library is a library other than the main library and if you are
not currently examining HELP for a particular topic, a prompt of the form
@<library-spec>Topic? is output.

3. If you are currently examining HELP for a particular topic (and subtopics), a
prompt of the form <keyword...>subtopic? is output.

LBR-66 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$OUTPUT_HELP

4. A combination of 2 and 3.

When you encounter one of these prompt messages, you can respond in any one
of several ways. Each type of response and its effect on LBR$OUTPUT_HELP in
each prompting situation is described in the following table:

Response Action in the Current Prompt Environment!

keyword [...] (1,2) Search all enabled libraries for these keys.
(3,4) Search additional help for the current topic
(and subtopic) for these keys.

@filespec [keyword][...] (1,2) Same as above, except that the root library
is the library specified by filespec. If the specified
library does not exist, treat @filespec as a normal
key.

(3,4) Same as above; treat @filespec as a normal
key.

? (1,2) Display a list of topics available in the root
library.

(3,4) Display a list of subtopics of the current
topic (and subtopics) for which help exists.

Carriage Return (1) Exit from LBR$OUTPUT_HELP.

(2) Change root library to main library.

(3,4) Strip the last keyword from a list of
keys defining the current topic (and subtopic)
environment.

ctrl/z (1,2,3,4) Exit from LBR$OUTPUT_HELP,

1Keyed to the prompt in the preceding list.

Condition Values Returned

LBR$ ILLINROU Input routine improperly specified or omitted.
LBR$_ILLOUTROU Output routine improperly specified or omitted.
LBR$_NOHLPLIS Error. No default help libraries can be opened.
LBR$ TOOMNYARG Error. Too many arguments were specified.
LBR$_USRINPERR Error. An error status was returned by the

user-supplied input routine.

Librarian (LBR) Routines LBR-67

Librarian (LBR) Routines
LBR$PUT_END

LBR$PUT_END—Write an End-of-Module Record

Format

Returns

Argument

Description

The LBR$PUT_END routine marks the end of a sequence of records written to a
library by the LBR$PUT_RECORD routine.

LBR$PUT_END library_index

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of a longword containing the index.

Call LBR$PUT_END after you write data records to the library with the
LBR$PUT_RECORD routine. LBR$PUT_END terminates a module by attaching
a 3-byte logical end-of-file record (hexadecimal 77,00,77) to the data.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_LIBNOTOPN Specified library not open.

LBR-68 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$PUT_HISTORY

LBR$PUT_HISTORY—Write an Update History Record

Format

Returns

Arguments

Description

The LBR$PUT_HISTORY routine adds an update history record to the end of the
update history list.

LBR$PUT_HISTORY library_index ,record_desc

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in RO.
Condition values that this routine can return are listed under Condition Values
Returned.

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

record_desc
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Library history record. The record_desc argument is the address of a string
descriptor pointing to the record to be added to the library update history.

LBR$PUT_HISTORY writes a new update history record. If the library already
contains the maximum number of history records (as specified at creation time
by CRE$L_LUHMAX; see LBR$OPEN for details), the oldest history record is
deleted before the new record is added.

Librarian (LBR) Routines LBR-69

Librarian (LBR) Routines
LBR$PUT_HISTORY

Condition Values Returned

LBR$ NORMAL Normal exit from the routine.

LBR$_INTRNLERR Internal Librarian error.

LBR$ NOHISTORY No update history. This is an informational code,
not an error code.

LBR$ RECLNG Record length greater than that specified by

LBR$C_MAXRECSIZ. The record was not
inserted or truncated.

LBR-70 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$PUT_MODULE

LBR$PUT_MODULE—Puts a module and module’s RFA from

Format

Arguments

memory space into current library (164 only)

The LBR$PUT_MODULE routine puts an entire module, with the module’s record
file address (RFA), from memory space into the current library.

LBR$PUT_MODULE library_index, mod_addr, mod_len, txtrfa

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL library routine. The
library_index argument is the address of the longword that contains the index.

mod_addr

OpenVMS usage: address

type: quadword address

access: read only

mechanism: by 32-bit or 64-bit reference

The address from which the Library service obtains the 64-bit address of where
the module is mapped in memory. The mod_addr argument is the 32- or 64-bit
virtual address of a naturally aligned quadword containing the virtual address
location of the module to write to the library.

mod_len

OpenVMS usage: byte count

type: quadword (unsigned)
access: read only

mechanism: by 32- or 64-bit reference

The 64-bit virtual address of a naturally aligned quadword containing the length
of the module that the Library service is to write into the library.

txtrfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only

mechanism: by reference

The module’s record file address (RFA) of the library module header. The txtrfa
argument is the address of the 2-longword array receiving the RFA of the newly
created module header.

Librarian (LBR) Routines LBR-71

Librarian (LBR) Routines
LBR$PUT_MODULE

Description

The LBR$PUT_MODULE routine puts an entire module, with the module’s record
file address (RFA), from memory space into the current library. LBR$PUT_END
is not required when you write an entire module to the current library.

LBR-72 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$PUT_RECORD

LBR$PUT _RECORD—Write a Data Record

Format

Returns

Arguments

The LBR$PUT_RECORD routine writes a data record beginning at the next free
location in the library.

LBR$PUT_RECORD library_index ,bufdes ,txtrfa [, mod_size]

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only

Longword condition value. Most utility routines return a condition value.
Condition values that this routine can return are listed under Condition Values
Returned.

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

bufdes

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Record to be written to the library. The bufdes argument is the address of

a string descriptor pointing to the buffer containing the output record. The
maximum record size for VAX libraries is symbolically defined as LBR$C _
MAXRECSIZ; for 164 and Alpha libraries, the symbolic maximum record size is
ELBR$_MAXRECSIZ.

txtrfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only

mechanism: by reference

Record’s file address (RFA) of the module header. The txtrfa argument is the
address of a 2-longword array receiving the RFA of the newly created module
header upon the first call to LBR$PUT_RECORD.

mod_size

OpenVMS usage: byte count

type: longword (unsigned)
access: read only

Librarian (LBR) Routines LBR-73

Librarian (LBR) Routines
LBR$PUT_RECORD

Description

mechanism: by value

The value from mod_size is read on the first call to this routine and ignored
otherwise. The value specifies the size of the module to be entered so that
contiguous space is allocated within the library for that module. This argument
is ignored for non-ELF object libraries and for data-reduced ELF object libraries.
The LBR$PUT_END routine is still required to terminate the byte stream and
close off the module.

If this is the first call to LBR$PUT_RECORD, this routine first writes a module
header and returns its RFA to the 2-longword array pointed to by txtrfa.
LBR$PUT_RECORD then writes the supplied data record to the library. On
subsequent calls to LBR$PUT_RECORD, this routine writes the data record
beginning at the next free location in the library (after the previous record). The
last record written for the module should be followed by a call to LBR$PUT_END.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_LIBNOTOPN Specified library not open.

LBR-74 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$REPLACE_KEY

LBR$SREPLACE_KEY—Replace a Library Key

Format

Returns

Arguments

The LBR$REPLACE_KEY routine modifies or inserts a key into the library.

LBR$REPLACE_KEY library_index ,key_name ,oldrfa ,newrfa [, flags]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value.
Condition values that this routine can return are listed under Condition Values
Returned.

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

key name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

For libraries with ASCII keys, the key _name argument is the address of a string
descriptor for the key.

For libraries with binary keys, the key_name argument is the address of an
unsigned longword value for the key.

Librarian (LBR) Routines LBR-75

Librarian (LBR) Routines
LBR$REPLACE_KEY

oldrfa

OpenVMS usage: vector_longword_unsigned
type: lon