HP Open Source Security for OpenVMS
Volume 2: HP SSL for OpenVMS

HP SSL Version 1.3 for OpenVMS

OpenVMS 164 Version 8.2 or higher
OpenVMS Alpha Version 7.3-2 or higher

This manual supersedes HP Open Source Security for OpenVMS
HP SSL for OpenVMS, Version 8.2

O)

invent

Manufacturing Part Number: BA554-90007
July 2006

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Legal Notice

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products
and services are set forth in the express warranty statements accompanying such products and services.
Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for
technical or editorial errors or omissions contained herein.

See Appendix B Open Source Notices for information regarding certain open source code included in this
product.

Windows, Windows NT, and MS Windows are U.S. registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of The Open Group in the U.S. and/or other countries.
All other product names mentioned herein may be trademarks of their respective companies.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

7K6661
The HP OpenVMS documentation set is available on CD-ROM.

Contents

1. Installation and Release Notes

1.1 Installation Requirements and Prerequisites............. 15
1.1.1 Hardware Prerequisitest et e e e 15
1.1.2 Software Prerequisites e e e 15
1.1.3 Account Quotas and System Parameters i, 15
1.1.4 New Features in HP SSL Version 1.3 for OpenVMS 16

1.2 OpenSSL Documentation from The Open Groupo et iniiiinnnn.. 16

1.3 Installing HP SSL for OpenVMS Automatically During OpenVMS Installation or Upgrade . .. 17

1.4 Downloading and Installing HP SSL for OpenVMS from Web Site. 17
1.4.1 Before Installing HP SSL for OpenVMS e 17
1.4.2 Installation Procedure 18

1.5 DPostinstallation Tasks. e 21
1.5.1 After Automatic Installation of HP SSL During OpenVMS Installation or Upgrade 21
1.5.2 After Download and Installation of HP SSL from Web Site............. 21

1.6 HP SSL Directory Structure. i e e e e 22

1.7 Building an HP SSL Application ittt 22
1.7.1 Building an Application Using 64-Bit APIs i, 23
1.7.2 Building an Application Using 32-Bit APIs i, 23

1.8 Release Noteso e e 23
1.8.1 Legal Caution i e e e e 23
1.8.2 HP SSL APIs Not Backward Compatible 23
1.8.3 Changes to APIsin OpenSSL 0.9.7€e i e e e 24
1.8.4 Preserve Configuration Files Before Manually Uninstalling HP SSL 24
1.8.5 Warning Against Uninstalling HP SSL from OpenVMS Version 8.3 or Higher Using the
PRODUCT REMOVE Command vttt ettt et ettt e ettt eee 24
1.8.6 SSL$DEFINE_ROOT.COM Removed From SSL$STARTUP.COM..................... 25
1.8.7 SSL$STARTUP.TEMPLATE Removed From HP SSL Version 1.3 25
1.8.8 Configuration Command Procedure Template Files. 25
1.8.9 HP SSL Requirement to Install on System Disk 25
1.8.10 Shut Down HP SSL Before Installing on Common System Disk. 25
1.8.11 OpenSSL Version Command Displays HP SSL for OpenVMS Version................. 26
1.8.12 Shareable Images Containing 64-Bit and 32-Bit APIs Provided...................... 26
1.8.13 Linking with HP SSL Shareable Images. 26
1.8.14 Certificate Tool Cannot Have Simultaneous Users 26
1.8.15 Protect Certificates and Keys. i e e e 26
1.8.16 Enhancements to the HP SSL. Example Programs. 27
1.8.17 SSL$EXAMPLES Logical Namettt ettt 27
1.8.18 Environment Variables. e e 27
1.8.19 IDEA and RC5 Symmetric Cipher Algorithms Not Supported 27
1.8.20 APIs RAND_egd, RAND_egd_bytes, and RAND_query_egd_bytes Not Supported 27
1.8.21 Documentation from the OpenSSL Web Site 27
1.8.22 Extra Certificate Files — *PEM e e 28
1.8.23 Known Problem: Certificate Verification with OpenVMS File Specifications 28
1.8.24 Known Problem: BIND Error in TCP/IP Application 28
1.8.25 Known Problem: Server Hang in HP SSL Session Reuse Example Program 28
1.8.26 Known Problem: Compaq C++ V5.5 CANTCOMPLETE Warnings 28

Contents

1.8.27 Problem Corrected: Possible Errors Using PRODUCT REMOVE 29
1.8.28 Problem Corrected: Error Running OpenSSL Command Line Utility on ODS-5 Disks ... 29

1.8.29 Problem Corrected: Attempt to Encrypt within SMIME Subutility Caused Access Violation
29

1.8.30 Problem Corrected: Race Condition When CRLs are Checked in a Multithreaded Environment
29

2. Overview of SSL

2.1 The SSL Protocol. e e 31
2.2 The SSLHandshake. e e e e e 32
2.3 Public Key Encryption e e e 33
2.4 Certificateso i e 33
2.5 CIpher SUiteo e e e 34
2.6 Digital Signatures. e e 34

3. Using the Certificate Tool

3.1 Starting the Certificate Tool. e e e e e 37
3.2 Viewing a Certificate i e e e 38
3.3 View a Certificate Request File e i 39
3.4 Create a Certificate Signing Request. 40

3.4.1 Installing Certificates. i e e e e e 42
3.5 Create a Self-Signed Certificate. i e e 42
3.6 Create a Certificate Authority i et e e 43
3.7 Createa Certificate Chain i et 45

3.7.1 Creating an Intermediate CA (RA) Certificate iion.. 45

3.7.2 Creating a Client/Server Certificate Signed with an Intermediate CA Certificate 46

3.7.3 Creating a Certificate Chain File. i e 46
3.8 Sign a Certificate Signing Request i e 46
3.9 Revoke a Certificate e 47
3.10 Create a Certificate Revocation List i 47
3.11 Hash Certificates it e e e et e 48
3.12 Hash Certificate Revocations i et e e e 48

4. SSL Programming Concepts

4.1 HP SSL Data Structures e e e 51
4.1.1 SSL_CTX Structure e e e e e e e e 52
4.1.2 SSOL Structureo 52
4.1.3 SSL_METHOD Structure.ttt et e e e e 53
4.1.4 SSL_CIPHER Structure. e e e et 53
4.1.5 CERT/X509 Structure.t e e et e e e e 53
4.1.6 BIO Structureo e 54

4.2 Certificates for SSL Applications. i it e 54
4.2.1 Configuring Certificates in the SSL Clientand Server 54
4.2.2 Obtaining and Creating Certificates............... 57

4.3 SSL Programming Tutorial e 59
4.3.1 Initializing the SSL Library. e et e 61

Contents

4.3.2 Creating and Setting Up the SSL Context Structure (SSL_CTX) 61
4.3.3 Setting Up the Certificateand Key 62
4.3.4 Creating and Setting Up the SSL Structure 65
4.3.5 Setting Up the TCP/IP Connectionttt niininnean.. 65
4.3.6 Setting Up the Socket/Socket BIO in the SSL Structure 67
4.3.7 SSLHandshake 67
4.3.8 Transmitting SSL Data e e e 68
4.3.9 Closing an SSL Connectionttt 69
4.3.10 Resuming an SSL Connectionttt ittt 69
4.3.11 Renegotiating the SSL Handshake 70
4.3.12 Finishing the SSL Application.t 71

5. Example Programs

5.1 Example Programs Included in HP SSL Kit. i, 73
5.2 Template for Creating Certificates and Keys for the Example Programs................... 74
5.3 Simple SSL Client Programttt e et e 78
5.4 Simple SSL Server Program. e 83

6. OpenSSL Command Line Interface

6.1 Command-Line Help. i i e e e 89
6.2 Standard Commandsttt e 90
6.3 Message Digest Commandsttt e e 92
6.4 Encoding and Cipher Commands. ittt 92
6.5 Password Arguments e e 95
6.6 Creating a DH Parameter (Key) File and a DSA Certificateand Key...................... 95
OpenSSL Command Line Interface (CLI) Referencecccoiiiiieeenneecnccosanns 97
CRYPTO Application Programming Interface (API) Reference...........ccooivvevnnnnn 217
SSL Application Programming Interface (API) Referenceccoivvviiinrecnnnenes 495

A. Data Structures and Header Files

Al Header Files e e e e 625
A2 SSL_CTX Structurettt e e e e e e e e e 625
A3 SO Structure. . ..ot e e e 627
A4 SSL_METHOD Structurettt et e e e 631
A5 SSL_SESSION Structure.ottt et e et e et et et 631
A6 SSL_CIPHER Structure.ttt ettt et e e et e 633
AT BIO Structure. e e e 634
A8 XB0O Structureo e e 634

B. New and Changed APIs in OpenSSL 0.9.7d and 0.9.7e
B.1 New AES APIsin OpenSSL 0.9.7et i e e e e e e e 637
B.2 New CRYPTO APIsin OpenSSL 0.9.7e it 637

Contents

B.3
B4
B.5
B.6

Changed DES APIs in OpenSSL 0.9.7€e.o ittt et e 637
New EVP APIsin OpenSSL 0.9.7€ ottt e 638
New SSL APIsin 0.9.7dot e e e e e 638
Changed SSL APIsin 0.9.7d o i e e e e et e e 639

C. Open Source Notices

C.1
C.2

OpenSSL Open Source LiCenSeo v e et et e e 641
Original SSLeay Licensettt et e e e e 642
.. 643

Table 4-1. APIs for Data Structure Creation and Deallocation

Table 4-2. Types of APIs for SSL_METHOD Creation

Table 5-1. HP SSL Example Programs

Tables

Figure 3-1

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.

. Certificate Tool Main Menu i e 37
Relationship Between SSL_CTX and SSL 52
Structures Associated with SSL Structure. 53
Client and Server Certificates Directly Signed by CAs. 54
Client and Server Certificates Indirectly Signed by CAs 55
Certificates on SSL Client and Server (Case 1) 56
Certificates on SSL Client and Server (Case 2) 57
Certificate Creation Process i i e 57
Overview of SSL Application with OpenSSL APIs 60

Figures

10

Preface

The HP Open Source Security for OpenVMS, Volume 2: HP SSL for OpenVMS manual describes how
customers can take advantage of the OpenSSL security capabilities available in OpenVMS Industry Standard
64 and OpenVMS Alpha.

For information about HP SSL for OpenVMS VAX, see the HP Open Source Security for OpenVMS, Volume 2:
HP SSL for OpenVMS for HP SSL Version 1.2.

Intended Audience

This document is for application developers who want to protect communication links to OpenVMS
applications. The OpenSSL APIs establish private, authenticated and reliable communications link between
applications.

Document Structure

The information in this manual applies to OpenVMS 164, OpenVMS Alpha, and OpenVMS VAX.
This manual consists of the following chapters:

Chapter 1 contains installation instructions and release notes.

Chapter 2 provides an overview of SSL.

Chapter 3 includes information about the Certificate Tool.

Chapter 4 is a programming tutorial about how to use the OpenSSL APIs in your application program.
Chapter 5 lists the example programs included in the HP SSL kit.

Chapter 6 describes the OpenSSL command line interface.

The OpenSSL Command Line Interface (CLI) Reference describes the command line interface that allows you
to use the cryptography functions of SSL's cryptography library from the OpenSSL command prompt.

The CRYPTO Application Programming Interface (API) Reference is a reference section that includes
documentation from The Open Group about the CRYPTO application programming interfaces (APIs).

The SSL Application Programming Interface (API) Reference is a reference section that includes
documentation from The Open Group about the OpenSSL application programming interfaces (APIs).

Appendix A lists the header files and the data structures included in HP SSL for OpenVMS.

Appendix B lists open source notices.

Related Documents

The following documents are recommended for further information:

e HP Open Source Security for OpenVMS, Volume 1: Common Data Security Architecture

e HP Open Source Security for OpenVMS, Volume 3: Kerberos

¢ OpenSSL documentation from The Open Group is available at the following World Wide Web address:

http://www.openssl.org

11

For additional information about HP OpenVMS products and services, see the following World Wide Web
address:

http://www.hp.com/go/openvms/

For additional information about HP SSL for OpenVMS, see the HP SSL web site at the following World Wide
Web address:

http://h71000.www7 .hp.com/openvms/products/ssl/

Reader's Comments
HP welcomes your comments on this manual.

Please send comments to either of the following addresses:

Internet: openvmsdoc@hp.com

Postal Mail:
Hewlett-Packard Company
OSSG Documentation Group
ZK03-4/U08

110 Spit Brook Road
Nashua, NH 03062-2698

How to Order Additional Documentation

For information about how to order additional documentation, visit the following World Wide Web address :

http://www.hp.com/go/openvms/doc/order/

Conventions

The following conventions may be used in this manual:

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key labeled
Ctrl while you press another key or a pointing device button.

PF1x A sequence such as PF1 x indicates that you must first press and release the
key labeled PF1 and then press and release another key (x) or a pointing
device button.

Return In examples, a key name in bold indicates that you press that key.

A horizontal ellipsis in examples indicates one of the following possibilities:
— Additional optional arguments in a statement have been omitted.

— The preceding item or items can be repeated one or more times.

— Additional parameters, values, or other information can be entered.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to
the topic being discussed.

O) In command format descriptions, parentheses indicate that you must
enclose choices in parentheses if you specify more than one.

12

Convention

Meaning

[]

bold type

italic type

UPPERCASE TYPE

Example

numbers

In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the
command line. However, you must include the brackets in the syntax for
OpenVMS directory specifications and for a substring specification in an
assignment statement.

In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within braces,
at least one choice is required. Do not type the vertical bars on the command
line.

In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the
command line.

Bold type represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

In command or script examples, bold text indicates user input.

Italic type indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output
(Internal error number), in command lines /PRODUCER=name), and in
command parameters in text (where (dd) represents the predefined par code
for the device type).

Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies URLs, UNIX command and
pathnames, PC-based commands and folders, and certain elements of the C
programming language.

A hyphen at the end of a command format description, command line, or
code line indicates that the command or statement continues on the
following line.

All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly
indicated.

13

14

Installation and Release Notes
Installation Requirements and Prerequisites

1 Installation and Release Notes

This chapter contains hardware and software prerequisites, installation instructions, postinstallation tasks,
instructions for building your application, the HP SSL directory structure, and release notes for HP SSL
Version 1.3 for OpenVMS. For an overview of HP SSL, see Chapter 2.

The information in this chapter applies to HP SSL running on OpenVMS 164 and OpenVMS Alpha. For
information about HP SSL for OpenVMS VAX, see the HP Open Source Security for OpenVMS, Volume 2: HP
SSL for OpenVMS for HP SSL Version 1.2.

1.1 Installation Requirements and Prerequisites

The following sections list hardware and disk space requirements, and software prerequisites.

1.1.1 Hardware Prerequisites

Disk Space Requirements

The HP SSL for OpenVMS kit requires approximately 45,000 blocks of working disk space to install. Once
installed, the software occupies approximately 40,000 blocks of disk space.

1.1.2 Software Prerequisites

HP SSL for OpenVMS requires the following software.
Operating System

HP OpenVMS Alpha Version 7.3-2 or higher, or

HP OpenVMS Industry Standard 64 Version 8.2 or higher
TCP/IP Transport

HP TCP/IP Services for OpenVMS Version 5.6 or higher (for HP SSL on OpenVMS 164 and OpenVMS Alpha
Version 8.2 or higher), or

HP TCP/IP Services for OpenVMS Version 5.5 or higher (for HP SSL on OpenVMS Alpha Version 7.3-2)

NOTE HP SSL for OpenVMS has been tested and verified using HP TCP/IP Services for OpenVMS.
On OpenVMS Alpha, there are no known problems running HP SSL for OpenVMS with other
TCP/IP network products, including TCPware and MultiNet from Process Software
Corporation. However, HP has not formally tested and verified these other products.

1.1.3 Account Quotas and System Parameters

There are no specific requirements for account quotas and system parameters for installing or using HP SSL
for OpenVMS.

15

Installation and Release Notes
OpenSSL Documentation from The Open Group

1.1.4 New Features in HP SSL Version 1.3 for OpenVMS

HP SSL Version 1.3 for OpenVMS, based on OpenSSL 0.9.7¢, is included in OpenVMS Version 8.3. (The
previous version of HP SSL was based on OpenSSL 0.9.7d.)

New features in HP SSL Version 1.3 include:

HP SSL Version 1.3 is now included in the OpenVMS operating system as a SIP (system integrated
product) . SSL for OpenVMS is installed automatically when you install or upgrade to OpenVMS Version
8.3.

Bug Fixes in OpenSSL 0.9.7e

— Fixed race condition when CRLs are checked in a multithreaded environment.
— Added Delta CRL to extension code.
— Fixed s3_pkt.c so alerts are sent properly.

— Reduced chances of duplicate issuer name and serial numbers (in violation of RFC3280) using the
OpenSSL certificate creation utilities.

— Removed potential SSL Protocol 2.0 rollback.

The functionality of SSL_OP_MSIE_SSLV2_RSA PADDING (part of SSL,_OP_ALL) has been
removed from 0.9.7e. This option can be used to disable the countermeasure against
man-in-the-middle protocol-version rollback in the SSL Protocol 2.0 server implementation. See
http://www.openssl.org/mews/secadv_20051011.txt for more information.

1.2 OpenSSL Documentation from The Open Group

Documentation about the OpenSSL project and The Open Group is available at the following URL:

http://www.openssl.org

The OpenSSL documentation was written for UNIX® users. When reading UNIX-style OpenSSL
documentation, note the following differences between UNIX and OpenVMS:

File specification format

The OpenSSL documentation shows example file specifications in UNIX format. For example, the UNIX
file specification /dkal00/foo/bar/file.dat is equivalent to DKA100:[FOO.BAR]FILE.DAT on
OpenVMS.

Directory format

Directories (pathnames) that begin with a period (.) on UNIX begin with an underscore (_) on OpenVMS.
In addition, on UNIX, the tilde (~) is an abbreviation for SYS$LOGIN. For example, the UNIX pathname
~/.openssl/profile/prefs. js is equivalent to the OpenVMS directory
[._OPENSSL.PROFILE]PREFS.JS.

16

Installation and Release Notes
Installing HP SSL for OpenVMS Automatically During OpenVMS Installation or Upgrade

1.3 Installing HP SSL for OpenVMS Automatically During OpenVMS
Installation or Upgrade

HP SSL Version 1.3 is included in the OpenVMS operating system as a SIP (system integrated product).
Previous versions of HP SSL were included in previous versions of OpenVMS as a layered product.

NOTE SSL for OpenVMS is now installed automatically when you install or upgrade to
OpenVMS Version 8.3, and previous installed versions of HP SSL are automatically removed.
You no longer need to install the PCSI file separately.

When the OpenVMS installation or upgrade procedure is complete, you must define the HP SSL foreign
commands and (optionally) run the Certificate Tool before you use HP SSL. See Section 1.5 for more
information.

1.4 Downloading and Installing HP SSL for OpenVMS from Web Site

You can install HP SSL Version 1.3 on versions of OpenVMS earlier than 8.3. A PCSI kit of HP SSL for
OpenVMS is available for download from the HP SSL web site at

http://h71000.www7 .hp.com/openvms/products/ssl/

1.4.1 Before Installing HP SSL for OpenVMS

Beginning in HP SSL Version 1.3, the installation procedure automatically removes the previous version
of HP SSL before installing the new version. For example, if you have Version 1.2 installed, it is removed
during the installation procedure and the product removal is displayed in the installation log.

The HP SSL Version 1.3 installation procedure also automatically removes any old SSL kits that have a kit
name beginning with DEC or CPQ. This removal is done silently during the preconfigure phase and is not
shown in the installation log. For example, if you have SSL Version 1.1-B (kit name CPQ) installed, it is
silently removed when you install SSL Version 1.3.

NOTE Do not use the PRODUCT REMOVE command to manually remove HP SSL Version 1.2 or
higher. If you attempt to use PRODUCT REMOVE on these versions of HP SSL, you will
receive a PCSI error that recommends terminating the operation. If you ignore the warning
and continue to remove HP SSL, HP strongly recommends that you use PRODUCT INSTALL
to install the HP SSL Version 1.3 PCSI kit as soon as possible. Other components in OpenVMS
require that HP SSL is installed.

Before you begin the installation of HP SSL, perform the following steps:

1. Preserve the SSL configuration files OPENSSL-VMS.CNF and OPENSSL.CNF (if you modified them) by
copying them to another disk and directory before installing HP SSL.

2. Shut down HP SSL on each node in the cluster before installing HP SSL on a common system disk
in a cluster.

17

Installation and Release Notes
Downloading and Installing HP SSL for OpenVMS from Web Site

1.4.2 Installation Procedure

Install the HP SSL for OpenVMS kit by entering the following command:

$ PRODUCT INSTALL SSL

NOTE Beginning in HP SSL Version 1.3 for OpenVMS, HP SSL is always installed into
SYS$SYSDEVICE:[VMS$COMMON]. The /DESTINATION qualifier is no longer supported.

For a description of the features you can request with the PRODUCT INSTALL command when starting an
installation, such as running the IVP, purging files, and configuring the installation, refer to the
POLYCENTER Software Installation Utility User's Guide.

As the deinstallation and installation procedures progress, the system displays information similar to the
following output.

NOTE Specifying the /HELP qualifier on the PRODUCT INSTALL command line displays additional
information about HP SSL.

$ PRODUCT INSTALL SSL/SOURCE=DKA500:[KITS] /HELP
The following product has been selected:
HP AXPVMS SSL V1.3-281 Layered Product
Do you want to continue? [YES]
Configuration phase starting

You will be asked to choose options, if any, for each selected product and for
any products that may be installed to satisfy software dependency requirements.

HP AXPVMS SSL V1.3-281: SSL for OpenVMS Alpha V1.3 (Based on OpenSSL 0.9.7e)

SSL for OpenVMS provides a toolkit that implements SSL Vv2/V3, TLS V1,
and a general purpose cryptography library.

© Copyright 2006 Hewlett-Packard Development Company, L.P.

This software is installable on OpenVMS processors using the POLYCENTER
Software Installation utility.

IMPORTANT LEGAL NOTICE:

Exports of this product are subject to U.S. Export Administration
Regulations pertaining to encryption items and may require that
individual export authorization be obtained from the U.S.
Department of Commerce.

The /DESTINATION qualifier is not supported with SSL V1.3
As of SSL V1.3, the SSL product must be installed on the system disk.

If you specified a location other than the system disk with the use of the
qualifier /DESTINATION, it is recommended that you stop the installation

18

If you did not specify the /DESTINATION qualifier,

termination question, and continue with the installatio

Terminating is strongly recommended. Do you want to te

Portion done: 0%...10%...20%...30%...40%...50%...60%..

$PCSI-I-IVPEXECUTE,

Installation and Release Notes

Downloading and Installing HP SSL for OpenVMS from Web Site

and restart it with the following command:

$ PRODUCT INSTALL SSL

Do you want the defaults for all options? [YES]

Do you want to review the options? [NO]

Execution phase starting

The following product will be installed to destination:

answer NO to the

n.
rminate? [YES] NO

HP AXPVMS SSL V1.3-281 DISKSDWLLNG_A_V73: [VMS$SCOMMON.]

The following product will be removed from destination:

HP AXPVMS SSL V1.2 DISKSDWLLNG_A_V73: [VMS$SCOMMON.]

The following product has been installed:

.70%...80%...90%...100%

HP AXPVMS SSL V1.3-281 Layered Product

The following product has been removed:

HP AXPVMS SSL V1.2 Layered Product

executing test procedure for HP AXPVMS SSL V1.3-281
$PCSI-I-IVPSUCCESS, test procedure completed successful

ly

HP AXPVMS SSL V1.3-281: SSL for OpenVMS Alpha V1.3 (Based on OpenSSL 0.9.7e)

There are post installation tasks that you must complete

including the following items that are described in

detail:

- ensuring SSL startup and logical names creation files

are executed

- updating or copying the necessary startup, shutdown and

configuration files from the installed templa

- running the Installation Verification Program

te files

(IVP)

Refer to the SSL release notes and the OpenVMS SSL documentation for
more information about activities that should be performed once the

installation has finished.

SSL has created the following directory structure and files in
PCSISDESTINATION (which defaults to SYS$SSYSDEVICE: [VMS$SCOMMON]) :

[SSL] Top-level SSL directory

[SSL.ALPHA_EXE] Contains the images for the Alpha platform
[SSL.COM] Directory to hold the various command procedures
[SSL.DEMOCA] Directory structure to demo SSL’s CA features
[SSL.DEMOCA .CERTS] Directory to hold the certificates and keys
[SSL.DEMOCA .CONF] Contains the configuration files
[SSL.DEMOCA.CRL] Contains revoked certificates and CRLs
[SSL.DEMOCA.PRIVATE] Directory for private keys and random data
[SSL.DOC] OpenSSL.org provided documentation & information

19

Installation and Release Notes
Downloading and Installing HP SSL for OpenVMS from Web Site

[SSL.INCLUDE] Contains the C Header (.H) files
[SSL.TEST] Contains the files used during the IVP
[SYSSSTARTUP] Startup and shutdown templates and files
[SYSHLP] Release notes

[SYSHLP.EXAMPLES.SSL] SSL crypto and secure session examples
[SYSLIB] SSL shareable image files

[SYSTEST] SSL$SIVP.COM test files

...after upgrading from previous SSL versions...

The SSL release notes provide information to verify the SSL startup,
shutdown, and configuration template files. Template files provide the

user with new features or changes, but do not overwrite existing command
procedures and configuration files. A product upgrade or re-installation
will not overwrite or create a new file version if the file has been odified.
It will only create the template files. It is suggested that you review
these files for any changes.

For more information, refer to the SSL Release Notes and other SSL
files using the system logical name definitions, or the subdirectory of
the PCSI destination device and directory.

..including verifying startup command procedures and logical names...

Once the installation is complete, verify that SSLSSTARTUP.COM is
located in SYS$SMANAGER:SYSTARTUP_VMS.COM file. This will define the
SSL$ executive mode logical names in the SYSTEM logical name table,
and install the SSL shareable images in memory that reside in the
[SYSLIB] directory.

Also, add SSLS$SSHUTDOWN.COM to the SYSSMANAGER:SYSHUTDWN.COM file to remove
the installed images and deassign the SSLS$S logical name definitions.

If you have customized the SSL command files for the site, it is
suggested that you compare the SSL provided template files with your
existing command procedures and take the appropriate action to update
your files. A product upgrade or re-installation will not overwrite
these files.

By default SYS$SSTARTUP: logical can be used to locate the SSL provided
startup files.

System managers should modify site-specific requirements in SSL files:

SSLSCOM: SSL$SYSTARTUP . COM
SSLSCOM: SSL$SYSHUTDOWN . COM

HP recommends that these site-specific SSL command procedures are utilized
to tailor the SSL installation specific to the regirements of the system
or site. These files are located in the SSL$COM: directory.

Refer to SYSSHELP:SSL013.RELEASE_NOTES for more information.

The SSL product release notes contain up to date information regarding
bug fixes, known problems, and general installation information.

20

Installation and Release Notes
Postinstallation Tasks

$PCSIUI-I-COMPWERR, operation completed after explicit continuation from errors

$

Stopping and Restarting the Installation
Use the following procedure to stop and restart the installation:

1. To stop the procedure at any time, press Ctrl/Y.

2. Enter the DCL command PRODUCT REMOVE SSL to reverse any changes to the system that occurred
during the partial installation. This deletes all files created up to that point and causes the installation
procedure to exit.

3. To restart the installation, go back to the beginning of the installation procedure.

1.5 Postinstallation Tasks

After the installation is complete, perform the steps in one of the following sections, depending on the
installation method you used.

1.5.1 After Automatic Installation of HP SSL During OpenVMS Installation or
Upgrade

1. If you previously installed HP SSL, the existing file SSL$STARTUP.COM has been renamed
SSL$STARTUP.COM_OLD. If you made changes to that file, manually incorporate your changes from
SSL$STARTUP.COM_OLD into the new SSL$STARTUP.COM that was installed with Version 1.3.

2. Define the foreign commands that use the OpenSSL utility OPENSSL.EXE, such as openssl, ca, enc,
req, and X509, by entering the following command:

$ @SSLSCOM:SSLSUTILS
3. Optionally, start the Certificate Tool by entering the following command:
$ @SSLSCOM: SSLSCERT _TOOL

This menu-driven tool allows you to create and view certificates and certificate requests and to sign
certificate requests. For information about the Certificate Tool, see Chapter 3.

NOTE Beginning in OpenVMS Version 8.3, HP SSL for OpenVMS is automatically started when
OpenVMS is started. The HP SSL startup file SSL$STARTUP.COM has been added to the
OpenVMS command procedure VMS$LPBEGIN-050_STARTUP.COM. Startup of HP SSL
Version 1.3 is required because other OpenVMS components, such as iCAP and Encrypt, are
dependent on HP SSL.

1.5.2 After Download and Installation of HP SSL from Web Site

1. Add the following line to the system startup file, SYS$STARTUP:SYSTARTUP_VMS.COM, to set up the
HP SSL symbols, logical names, and shareable images:

$ @SYSSSTARTUP: SSLSSTARTUP

21

Installation and Release Notes
HP SSL Directory Structure

2. At the DCL command prompt, execute the command that you entered into the system startup file so that
you can use HP SSL immediately. If you installed HP SSL to a common system disk in a cluster, execute
this command on each node in the cluster.

$ @SYSSSTARTUP: SSLSSTARTUP

3. Define the foreign commands that use the OpenSSL utility OPENSSL.EXE, such as openssl, ca, enc,
req, and X509, by entering the following command:

$ @SSLSCOM:SSLSUTILS
4. Optionally, start the Certificate Tool by entering the following command:

$ @SSLSCOM:SSLSCERT_TOOL

1.6 HP SSL Directory Structure

After the installation is complete, the HP SSL directory structure is as follows:

[SSL] - Top-level directory created by default in SYS$SYSDEVICE:[VMS$COMMON].
One of the following three directories:

[SSL.ALPHA_EXE] - Contains images for the Alpha platform.

[SSL.IA64_EXE] - Contains images for the 164 platform.

[SSL.VAX_EXE] - Contains images for the VAX platform.
[SSL.COM] - Contains command procedures.
[SSL.DEMOCA] - Contains demos for SSL's CA features
[SSL.DEMOCA.CERTS] - Contains certificates and keys.
[SSL.DEMOCA.CONF] - Contains configuration files.
[SSL.DEMOCA.CRL] - Contains revoked certificates and CRLs.
[SSL.DEMOCA.PRIVATE] - Contains private keys and random data.
[SSL.DOC] - OpenSSL Group-provided documentation and information.
[SSL.INCLUDE] - Contains C header (.H) files.
[SSL.TEST] - Contains files used during the Installation Verification Procedure (IVP).
[SYS$STARTUP] - Contains startup and shutdown templates and files.
[SYSHLP] - Contains release notes.
[SYSHLP.EXAMPLES.SSL] - Contains SSL crypto and secure session examples.
[SYSLIB] - Contains SSL shareable image files.
[SYSTEST] - Contains SSL$IVP.COM test files.

Note that the HP SSL example programs are located in SYS$COMMON:[SYSHLP.EXAMPLES.SSL]. (The
logical name SSL$EXAMPLES points to this directory.) These example programs are also shown and
discussed in Chapter 5.

1.7 Building an HP SSL Application

HP SSL for OpenVMS provides shareable images that contain 64-bit APIs and shareable images that contain
32-bit APIs. You can choose which APIs to use when you compile your application.

The file names for these shareable images are as follows:
SYS$SHARE:SSL$LIBSSL_SHR.EXE - 64-bit SSL APIs

22

Installation and Release Notes
Release Notes

SYS$SHARE:SSL$LIBCRYPTO_SHR.EXE - 64-bit Crypto APIs
SYS$SHARE:SSL$LIBSSL_SHR32.EXE - 32-bit SSL APIs
SYS$SHARE:SSL$LIBCRYPTO_SHR32.EXE - 32-bit Crypto APIs

When you compile your application using HP C, use the /POINTER_SIZE=64 qualifier to take advantage of
the 64-bit APIs. The default value for the /POINTER_SIZE qualifier is 32.

Linking your application is the same for both 64-bit or 32-bit APIs. The options file used contains either the
64-bit or 32-bit references to the appropriate shareable image.

1.7.1 Building an Application Using 64-Bit APIs

To build (compile and link) an example program using the 64-bit APIs, enter the following commands:

$ CC/POINTER_SIZE=64/PREFIX=ALL SAMPLE.C
$ LINK/MAP SAMPLE, LINKER_OPT/OPTIONS

In these commands, LINKER_OPT.OPT is a simple text file that contains the following lines:

SYS$SHARE: SSLSLIBSSL_SHR/SHARE
SYS$SHARE: SSLSLIBCRYPTO_SHR/SHARE

1.7.2 Building an Application Using 32-Bit APIs

To build (compile and link) an example program using the 32-bit APIs, enter the following commands:

$ CC/PREFIX=ALL SAMPLE.C
$ LINK/MAP SAMPLE, LINKER_OPT/OPTIONS

In these commands, LINKER_OPT.OPT is a simple text file that contains the following lines:

SYS$SSHARE: SSLSLIBSSL_SHR32/SHARE
SYS$SSHARE: SSLSLIBCRYPTO_SHR32/SHARE

1.8 Release Notes

This section contains notes on the current release of HP SSL for OpenVMS.

1.8.1 Legal Caution

SSL data transport requires encryption. Many governments, including the United States, have restrictions on
the import and export of cryptographic algorithms. Please ensure that your use of HP SSL is in compliance
with all national and international laws that apply to you.

1.8.2 HP SSL APIs Not Backward Compatible

HP cannot guarantee the backward compatibility of HP SSL for OpenVMS until the release of HP SSL for
OpenVMS that is based on OpenSSL 1.0.0 from The Open Group.

The HP SSL Version 1.3 for OpenVMS code is based on the 0.9.7e baselevel of OpenSSL. Any OpenSSL API,
data structure, header file, command, and so on might be changed in a future version of OpenSSL.

23

Installation and Release Notes
Release Notes

NOTE The HP SSL shareable images use EQUAL 1,0 which means that applications will have to
relink when the idents on the shareable images have changed, as they have in HP SSL Version
1.3.

If you were running a version of HP SSL prior to Version 1.2, you must recompile and relink your code after
you upgrade to Version 1.3. You must relink your code if you see the following error:

$ run ssl_test

$DCL-W-ACTIMAGE, error activating image SSLSLIBSSI,_SHR32

-CLI-E-IMGNAME, image file DWLLNGS$DKA500:[SYSO0.SYSCOMMON.] [SYSLIB]SSLSLIBSSL_SHR32.EXE
-SYSTEM-F-SHRIDMISMAT, ident mismatch with shareable image

$

1.8.3 Changes to APIs in OpenSSL 0.9.7e

A number of APIs have been changed in HP SSL Version 1.3. See Appendix B for a list of new and changed
APIs.

1.8.4 Preserve Configuration Files Before Manually Uninstalling HP SSL

Preserving configuration files is not necessary when you perform a regular upgrade or reinstallation of HP
SSL using the PRODUCT INSTALL command.

Using the PRODUCT REMOVE command to manually uninstall HP SSL is not recommended (see the
following note). However, if you made any modifications to the HP SSL configuration files, preserve the files
by backing up these files to a different disk and directory before you enter the PRODUCT REMOVE
command that removes the HP SSL kit. Otherwise, any changes you made to OPENSSL-VMS.CNF and
OPENSSL.CNF will be lost. When you have completed the Version 1.3 installation, move the saved items
back into the HP SSL directory structure.

1.8.5 Warning Against Uninstalling HP SSL from OpenVMS Version 8.3 or Higher
Using the PRODUCT REMOVE Command

The POLYCENTER Software Installation utility command PRODUCT REMOVE is not supported for HP SSL
on OpenVMS Version 8.3 or higher, even though there is an apparent option to remove HP SSL.. HP SSL is
installed together with the operating system and is tightly bound with it. An attempt to remove it from
Version 8.3 or higher would not work cleanly and could create other undesirable side effects.

If you ignore the warning and continue to remove HP SSL, HP strongly recommends that you use PRODUCT
INSTALL to install the HP SSL Version 1.3 PCSI kit as soon as possible. An attempt to remove HP SSL
results in the following message:

$PCSI-E-HRDREF, product HP AXPVMS SSL V1.3-xxx is referenced by DEC AXPVMS OPENVMS
V8.3 -xxx

The two products listed above are tightly bound by a software dependency.
If you override the recommendation to terminate the operation, the
referenced product will be removed, but the referencing product will have
an unsatisfied software dependency and may no longer function correctly.
Please review the referencing product’s documentation on requirements.

Answer YES to the following question to terminate the PRODUCT command.
However, if you are sure you want to remove the referenced product then

24

Installation and Release Notes
Release Notes

answer NO to continue the operation.

Terminating is strongly recommended. Do you want to terminate? [YES]

1.8.6 SSL$DEFINE ROOT.COM Removed From SSL$STARTUP.COM

Beginning in HP SSL Version 1.3, SSL is installed on the system disk only. To reflect this change, the
command procedure SSL$DEFINE_ROOT.COM has been removed from SSL$STARTUP.COM.
(SSL$DEFINE_ROOT.COM was included in HP SSL Version 1.2 to define the logical SSL$ROOT. In Version
1.2, it was possible to install HP SSL to locations other than the system disk.)

The logical name SSL$ROOT is now defined in SSL$STARTUP.COM, and points to
SYS$SYSDEVICE:[VMS$COMMON.SSL.].

1.8.7 SSL$STARTUP.TEMPLATE Removed From HP SSL Version 1.3

HP SSL Version 1.3 no longer contains SSL$STARTUP.TEMPLATE. Before overwriting the file, HP SSL
copies your existing SSL$STARTUP.COM file to SSL$STARTUP.COM_OLD to preserve any changes that you
may have made to SSL$STARTUP.COM in the past.

If you are upgrading from a previous version of HP SSL, after the installation is complete compare your
SSL$STARTUP.COM_OLD file and the new SSL$STARTUP.COM file, and add any modifications you made
to the new file. (Version 1.3 continues to provide the configuration template files
OPENSSL.CNF_TEMPLATE and OPENSSL-VMS.CNF_TEMPLATE. See the following note for more

information.)

Use SSL$COM:SSL$SYSTARTUP.COM to make additions or changes to the startup of HP SSL.
SSL$COM:SSL$SYSTARTUP.COM is executed from SSL$STARTUP.COM. SSL$STARTUP.COM has been
added to the OpenVMS command procedure VMS$LPBEGIN-050_STARTUP.COM so that SSL is started
when OpenVMS is started.

1.8.8 Configuration Command Procedure Template Files

The configuration files included in the HP SSL kit are named OPENSSL.CNF_TEMPLATE and
OPENSSL-VMS.CNF_TEMPLATE. This prevents PCSI from overwriting the .CNF files, and allows you to
preserve any modifications you made to OPENSSL.CNF and OPENSSL-VMS.CNF if you installed a previous
release of HP SSL for OpenVMS.

If you are upgrading from a previous version of HP SSL, after you install the HP SSL kit, compare the new
.CNF_TEMPLATE files with your existing .CNF files and add any new information as required.

If you did not previously install an HP SSL for OpenVMS kit, both the .CNF_TEMPLATE and .CNF files are
provided.

1.8.9 HP SSL Requirement to Install on System Disk

The option to install to a location other than the system disk is no longer available beginning in HP SSL
Version 1.3. HP SSL is installed on the system disk automatically when you install or upgrade to OpenVMS
Version 8.3. If you download HP SSL Version 1.3 from the web site and install it as a layered product, it too
must be installed on the system disk.

1.8.10 Shut Down HP SSL Before Installing on Common System Disk

Before installing HP SSL to a common system disk in a cluster, you must first shut down HP SSL by entering
the following command on each node in the cluster:

25

Installation and Release Notes
Release Notes

$ @SYSSSTARTUP: SSLSSHUTDOWN

Shutting down HP SSL deassigns logical names and removes installed shareable images that may interfere
with the installation.

After the installation is complete, start HP SSL by entering the following command on each node in the
cluster:

$ @SYSSSTARTUP: SSLSSTARTUP

Note: If you are installing on a common cluster disk and not a common system disk, omit the SYS§STARTUP
logical and specify the specific startup directory in the shutdown and startup commands. For example:

S @device: [directory.SYSSSTARTUP]SSLS$SSHUTDOWN
S @device: [directory.SYSSSTARTUP]SSLSSTARTUP

1.8.11 OpenSSL Version Command Displays HP SSL for OpenVMS Version

Beginning with HP SSL Version 1.2, the OpenSSL command line utility command VERSION now includes
the HP SSL for OpenVMS version. The OpenSSL VERSION command displays output similar to the
following:

S OPENSSL VERSION
OpenSSL 0.9.7e 25 Oct 2004
SSL for OpenVMS V1.3 May 26 2006

1.8.12 Shareable Images Containing 64-Bit and 32-Bit APIs Provided

HP SSL for OpenVMS provides shareable images that contain 64-bit APIs and shareable images that contain
32-bit APIs. You can choose which APIs to use when you compile your application. For more information, see
Building an HP SSL Application.

1.8.13 Linking with HP SSL Shareable Images

If you have written an application that links against the OpenSSL object libraries, you must make a minor
change to your code because HP SSL for OpenVMS provides only shareable images. To link your application
against the shareable images, use code similar to the following:

S LINK my_app.obj, VMS_SSIL_OPTIONS/OPT
where VMS_SSL_OPTIONS.OPT is a text file that contains the following lines:

SYS$SHARE : SSLSLIBCRYPTO_SHR.EXE/SHARE
SYS$SHARE: SSLSLIBSSL_SHR.EXE/SHARE

1.8.14 Certificate Tool Cannot Have Simultaneous Users

Only one user/process should use the Certificate Tool at a time. The tool does not have a locking mechanism to
prevent unsynchronized accesses of the database and serial file, which could cause database corruption.

1.8.15 Protect Certificates and Keys

When you create certificates and keys with the Certificate Tool, take care to ensure that the keys are properly
protected to allow only the owner of the keys to use them. A private key should be treated like a password.
You can use OpenVMS file protections to protect the key file, or you can use ACLs to protect individual key
files within a common directory.

26

Installation and Release Notes
Release Notes

1.8.16 Enhancements to the HP SSL Example Programs

Beginning with HP SSL Version 1.2, several enhancements and changes were made to the HP SSL example

programs located in SYS$COMMON:[SYSHLP.EXAMPLES.SSL]. These include new examples (for example,
using HP SSL with QIO, AES encryption, and SHA1DIGEST) and additional common callbacks and routines
to SSL,_EXAMPLES.H includes file. Extra calls to free routines have been removed from the examples along
with general code clean up. For more information about the example programs, see Chapter 5.

1.8.17 SSL$SEXAMPLES Logical Name

The SSL$EXAMPLES logical name has been added to the SSL$STARTUP.TEMPLATE command procedure.
This logical points to the directory SYS$COMMON:[SYSHLP.EXAMPLES.SSL)].

1.8.18 Environment Variables

OpenSSL environmental variables have two formats, as follows:
o $var

e ${var}

In order for these variables to be parsed properly and not be confused with logical names, HP SSL for
OpenVMS only accepts the ${var/ format.

1.8.19 IDEA and RC5 Symmetric Cipher Algorithms Not Supported

The IDEA and RC5 symmetric cipher algorithms are not available in HP SSL for OpenVMS. Both of these
algorithms are under copyright protection, and HP does not have the right to use these algorithms.

If you want to use either of these algorithms, HP recommends that you contact RSA Security at the following
URL for the licensing conditions of the RC5 algorithm:

http://www.rsasecurity.com

If you want to use the IDEA algorithm, contact Ascom for their license requirements at the following URL:
http://www.ascom.com

Once you have obtained the proper licenses, download the source code from the following URL:
http://www.openssl.org

Build the product using the command procedure named MAKEVMS.COM provided in the download.

1.8.20 APIs RAND_egd, RAND_egd_bytes, and RAND_query_egd_bytes Not
Supported
The RAND_egd (), RAND_egd_bytes (), and RAND_query_egd_bytes () APIs are not available on OpenVMS.

To obtain a secure random seed on OpenVMS, use the RAND_po11 () APIL.

1.8.21 Documentation from the OpenSSL Web Site

The documentation on the OpenSSL website is under development. It is likely that the API and command
line documentation shipped with this kit will differ from the documentation on the OpenSSL website at some
point. If such a situation arises, you should consider the API documentation on the OpenSSL website to have
precedence over the documentation included in this kit.

27

Installation and Release Notes
Release Notes

1.8.22 Extra Certificate Files — *PEM

When you sign a certificate request using either the Certificate Tool or the OpenSSL utility, you may notice
that an extra certificate is produced with a name similar to SSL§CRTO01.PEM. This certificate is the same as
the certificate that you produced with the name you chose. These extra files are the result of the OpenSSL
demonstration Certificate Authority (CA) capability, and are used as a CA accounting function. These extra
files are kept by the CA and can be used to generate Certificate Revocation Lists (CRLs) if the certificate
becomes compromised.

1.8.23 Known Problem: Certificate Verification with OpenVMS File
Specifications

OpenSSL is unable to properly parse OpenVMS file specifications when they are passed in as CApath
directories. If you try to do this, OpenSSL returns the following error:

unable to get local issuer certificate

To work around this problem, define a logical that points to the OpenVMS directory, as follows:

S define vms_cert_dir dka300:[ssl.certificates]
S openssl verify “-CApath” vms_cert_dir -purpose any example.crt

1.8.24 Known Problem: BIND Error in TCP/IP Application

If you are running a TCP/IP-based SSL client/server application, the server occasionally fails to start up, and
displays the following error message:

bind: address already in use
To avoid this error, use setsockopt () with SO_REUSEADDR as follows:

int on = 1;
ret = setsockopt(listen_sock, SOL_SOCKET, SO_REUSEADDR, (void *)
&on, sizeof(on));

1.8.25 Known Problem: Server Hang in HP SSL Session Reuse Example
Program

In HP SSL Version 1.1-B and higher, a server hang problem may occur when you are running one of the HP
SSL session reuse example programs. The server hang occurs when a VAX system acts as a client and the
server is an Alpha or 164 system in this mixed architecture, client-server test.

When the client SSL$CLI_SESS_REUSE.EXE program is run on a VAX system, and the server
SSL$SERV_SESS_REUSE.EXE program is run on an Alpha or 164 system, the server appears to hang
waiting for further session reconnections, because the loop counts differ. In fact, the VAX client has finished
and closed the connection. There is no problem when the client server roles are reversed, or if the same
system acts as both client and server.

1.8.26 Known Problem: Compaq C++ V5.5 CANTCOMPLETE Warnings

When you compile programs that contain OpenSSL APIs, Compaq C++ Version 5.5 issues warnings about
incomplete classes. This error occurs when you use a structure definition before it has been defined. You can
resolve these warnings in one of two ways:

e Upgrade to C++ Version 6.0 or higher.

28

Installation and Release Notes
Release Notes

¢ Supply the necessary prototype before using the structure.
The following is an example of this error:

S cxx/list/PREFIX=(ALL_ENTRIES) serv.c
struct CRYPTO_dynlock_value *data;

$CXX-W-CANTCOMPLETE, In this declaration, the incomplete class
"unnamed struct::CRYPTO_dynlock_wvalue"

cannot be completed because it is declared within a
class or a function prototype.

at line number 161 in file
CRYPTOSRES: [OSSL.BUILD_0049_ALPHA_32.INCLUDE.OPENSSL]CRYPTO.H;3

1.8.27 Problem Corrected: Possible Errors Using PRODUCT REMOVE

In HP SSL Version 1.2, when you used the PCSI REMOVE SSL command to remove previous versions of HP
SSL, certain DCL symbols were not set up properly. This would result in various file not found errors.

This problem has been corrected in HP SSL Version 1.3.

1.8.28 Problem Corrected: Error Running OpenSSL Command Line Utility on
ODS-5 Disks

In previous versions of HP SSL, an invalid command error was displayed when you tried to run OpenSSL
commands on an ODS-5 disk with the following parsing logicals set:

$ SET PROCESS/PARSE=EXTENDED
$ DEFINE DECCS$SARGV_PARSE_STYLE ENABLE

This problem has been corrected beginning in HP SSL Version 1.2. OpenSSL commands now work on both
ODS-2 and ODS-5 disks, regardless of the parse settings.

1.8.29 Problem Corrected: Attempt to Encrypt within SMIME Subutility Caused
Access Violation

In versions of HP SSL earlier than Version 1.2, if you entered an OpenSSL SMIME command, an access
violation was returned. For example:

S openssl smime -encrypt -in in.txt ssl$Scerts:server.pem

$SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual
address=FFFFFFFFF00D2B10,
PC=000000000017DD0OC, PS=0000001B

Improperly handled condition, image exit forced.

This problem was corrected in OpenSSL 0.9.7d, and has been included beginning in HP SSL Version 1.2.

1.8.30 Problem Corrected: Race Condition When CRLs are Checked in a
Multithreaded Environment
In versions of HP SSL earlier than Version 1.2, a race condition would occur when CRLs were checked in a

multithreaded environment. This would happen because of the reordering of the revoked entries during
signature checking and serial number lookup.

29

Installation and Release Notes
Release Notes

In OpenSSL 0.9.7e and HP SSL Version 1.2 and higher, the encoding is cached and the serial number sort is
performed under a lock.

30

Overview of SSL
The SSL Protocol

2 Overview of SSL

Secure Sockets Layer (SSL) is the open standard security protocol for the secure transfer of sensitive
information over the Internet. SSL provides three things: privacy through encryption, server authentication,
and message integrity. Client authentication is available as an optional function.

OpenVMS includes three standards-based cryptographic security solutions, HP SSL for OpenVMS, Common
Data Security Architecture (CDSA), and Kerberos for OpenVMS that protect your information and
communications.

Protecting communication links to OpenVMS applications over a TCP/IP connection can be accomplished
through the use of SSL. The OpenSSL APIs establish private, authenticated and reliable communications
links between applications.

CDSA for OpenVMS provides a security infrastructure that allows for the creation of multiplatform, open
source industry standard cryptographic solutions. CDSA provides a flexible mix-and-match solution among a
variety of different applications and security services. This allows for compliance to local regulation while
keeping the security underpinnings transparent to the end user. For more information, see the HP Open
Source Security for OpenVMS, Volume 1: Common Data Security Architecture.

Kerberos is a network authentication protocol designed to provide strong authentication for client/server
applications by using secret-key cryptography. It was developed at the Massachusetts Institute of Technology
as part of Project Athena in the mid-1980s. The Kerberos protocol uses strong cryptography, so that a client
can prove its identity to a server (and vice versa) across an insecure network connection. After a client and
server have used Kerberos to prove their identity, they can also encrpt all of their communications to assure
privacy and data integrity. For more information, see HP Open Source Security for OpenVMS, Volume 3:
Kerberos.

NOTE SSL data transport requires encryption. Many governments, including the United States, have
restrictions on the import and export of cryptographic algorithms. Please ensure that your use
of SSL is in compliance with all national and international laws that apply to you.

This chapter discusses the following topics:
e The SSL protocol

¢ The SSL handshake

¢ Public key encryption

¢ (Certificates

e Cipher suite

¢ Digital signatures

2.1 The SSL Protocol

This section provides an overview of SSL technology and its application.

31

Overview of SSL
The SSL Handshake

The SSL protocol works cooperatively on top of several other protocols. SSL works at the application level.
The underlying mechanism is TCP/IP (Transmission Control Protocol/Internet Protocol), which governs the
transport and routing of data over the Internet. Application protocols, such as HTTP (HyperText Transport
Protocol), LDAP (Lightweight Directory Access Protocol), and IMAP (Internet Messaging Access Protocol),
run on top of TCP/IP. They use TCP/IP to support typical application tasks, such as displaying web pages or
running email servers.

SSL addresses three fundamental security concerns about communication over the Internet and other
TCP/IP networks:

¢ SSL server authentication — Allows a user to confirm a server's identity. SSL-enabled client software
can use standard techniques of public-key cryptography to check whether a server's certificate and public
ID are valid and have been issued by a Certificate Authority (CA) listed in the client's list of trusted CAs.
Server authentication is used, for example, when a PC user is sending a credit card number to make a
purchase on the web and wants to check the receiving server's identity.

e SSL client authentication — Allows a server to confirm a user's identity. Using the same techniques as
those used for server authentication, SSL-enabled server software can check whether a client's certificate
and public ID are valid and have been issued by a Certificate Authority (CA) listed in the server's list of
trusted CAs. Client authentication is used, for example, when a bank is sending confidential financial
information to a customer and wants to check the recipient's identity.

¢ An encrypted SSL connection — Requires all information sent between a client and a server to be
encrypted by the sending software and decrypted by the receiving software, thereby providing a high
degree of confidentiality. Confidentiality is important for both parties to any private transaction. In
addition, all data sent over an encrypted SSL connection is protected with a mechanism that
automatically detects whether data has been altered in transit.

2.2 The SSL Handshake

An SSL session always begins with an exchange of messages called the SSL handshake. The handshake
allows the server to authenticate itself to the client using public key techniques, also called asymmetric
encryption. It then allows the client and the server to cooperate in the creation of symmetric keys, which are
used for rapid encryption, decryption, and tamper detection during the session that follows. Optionally, the
handshake also allows the client to authenticate itself to the server.

This exchange of messages is designed to facilitate the following actions:

e Authenticate the server to the client.

e Allow the client and server to select the cryptographic algorithms, or ciphers, that they both support.
e Optionally authenticate the client to the server.

¢ Use public key encryption techniques to generate shared secrets.

e Kstablish an encrypted SSL connection.

32

Overview of SSL
Public Key Encryption

2.3 Public Key Encryption

In traditional environments, encrypted information is sent between parties that use the same key to encode
and decode information. This is called symmetric encryption. In the case of the Internet, there is no way
for one computer to send the encryption key to another without risk of a third party stealing the key and
decoding subsequent communications. A method other than symmetrical encryption is required to transmit
the encryption key securely on the Internet.

Public key cryptography was developed by Whitfield Diffie and Martin Hellman. The Diffie-Hellman key
agreement protocol was published in 1976. It is also called asymmetric encryption because it uses two keys
instead of one key. The RSA algorithm is another option for public key cryptography.

The solution is a system called public key cryptography or asymmetric encryption, which uses two
keys. One is a public key and is usually available to anyone who wants it. The other, a private key, is held
by just one party. Only the private key can decipher information that is encrypted using the public key; it is
impossible to decipher the message using the public key. Similarly, only the private key can create encrypted
messages that are decipherable with the public key. Because there can be only one public key for each private
key, and vice-versa, it is nearly impossible to impersonate the holder of the private key. The two keys are
mathematically related, but in such a way that it is virtually impossible to derive the private key from the
public one.

During the SSL handshake, each computer generates a set of codes to encrypt information. From these codes,
each computer creates two keys, one private key and one public key. Your computer keeps the private key
secret, but it sends out the public key to the other computer, which uses that key to encode subsequent
messages that only your computer can read. However, the public key cannot, be used to decode the message;
only private key can decode the message.

These keys allow you and the other computer to lock and unlock information so that only the holder of the
private key can read messages encrypted by the public key. Since only you and the other computer have a
copy of your respective private keys, there is no way for anybody else to intercept and decode your messages.

2.4 Certificates

A certificate, or digital certificate, is an electronic document used to identify an individual, a server, a
company, or some other entity and to associate that identity with a public key. Like a driver's license, a
passport, or other commonly used personal IDs, a certificate provides generally recognized proof of a person's
identity. Public key cryptography uses certificates to address the problem of impersonation.

Certificates are issued by certificate authorities. The Certificate Authority (CA) is a trusted third party
that verifies the identity of the site with which you are connected. Like any form of identification, the
authenticity of the issuer is essential.

The role of CAs in validating identities and in issuing certificates is analogous to the way a government issues
passports and driver's licenses. CAs can be either independent third parties or organizations running their
own certificate-issuing server software (such as Netscape Certificate Server).

The methods used to validate an identity vary depending on the policies of a given CA. In general, before
issuing a certificate, the CA must use its published verification procedures for that type of certificate to
ensure that an entity requesting a certificate is in fact who it claims to be.

33

Overview of SSL
Cipher Suite

The certificate issued by the CA binds a particular public key to the name of the entity the certificate
identifies (such as the name of an employee or a server). Certificates help prevent the use of fake public keys
for impersonation. Only the public key certified by the certificate works with the corresponding private key
possessed by the entity identified by the certificate.

In addition to a public key, a certificate always includes the name of the entity it identifies, an expiration date,
the name of the CA that issued the certificate, a serial number, and other information. Most importantly, a
certificate always includes the digital signature of the issuing CA. The CA's digital signature allows the
certificate to function as a "letter of introduction" for users who know and trust the CA but who do not know
the entity identified by the certificate.

For information about the HP SSL Certificate Tool, which allows you to view and create certificates, see
Chapter 3.

2.5 Cipher Suite

Integral to the SSL protocol is its use of cryptographic algorithms, generally called ciphers. Ciphers are
required to authenticate the server and client to each other, transmit certificates, and establish session keys.
Clients and servers can support different cipher suites, or sets of ciphers, depending on factors such as the
version of SSL they support, company policies regarding acceptable encryption strength, and government
restrictions on the export of SSL-enabled software.

Among its other functions, the SSL. handshake protocol determines how the server and client negotiate which
cipher suites they will use to authenticate each other, to transmit certificates, and to establish session keys.
Key exchange algorithms such as RSA and DH key exchange govern the way the server and client determine
the symmetric keys they will both use during an SSL session. The most commonly used SSL cipher suites use
RSA key exchange.

The SSL 2.0 and SSL 3.0 protocols support overlapping sets of cipher suites. Administrators can enable or
disable any of the supported cipher suites for both clients and servers. When a particular client and server
exchange information during the SSL handshake, they identify the strongest enabled cipher suites they have
in common and use those for the SSL session.

Decisions about which cipher suites a particular organization decides to enable depend on trade-offs among
the sensitivity of the data involved, the speed of the cipher, and the applicability of export rules.

2.6 Digital Signatures

Encryption and decryption address the problem of eavesdropping. However, tampering and impersonation are
still possible.

Public key cryptography addresses the problem of tampering using a mathematical function called a
one-way hash function (also called a message digest function or algorithm). A one-way hash is a
fixed-length number whose value is unique to the data being hashed. Any change in the data, even deleting or
altering a single character, results in a different value.

For all practical purposes, the content of the hashed data cannot be deduced from the hash, which is why it is
called "one-way."

34

Overview of SSL
Digital Signatures

This principle is the crucial part of digitally signing any data. Instead of encrypting the data itself, the
signing software creates a one-way hash of the data, then uses your private key to encrypt the hash. The
encrypted hash, along with other information, such as the hashing algorithm, is known as a digital
signature.

35

Overview of SSL
Digital Signatures

36

Using the Certificate Tool
Starting the Certificate Tool

3 Using the Certificate Tool

HP SSL for OpenVMS provides a certificate tool that is a simple menu-driven interface for viewing and
creating SSL certificates. The OpenSSL Certificate Tool enables you to perform the most important
certification functions with ease. Using it, you can view certificates and certificate requests, create certificate
requests, sign your own certificate, create your own certificate authority, and sign client certificate requests.
Additional hash functions are included.

NOTE Some OpenSSL commands are beyond the scope of the Certificate Tool. For these, use the
command-line OpenSSL utility. See Chapter 5 for more information

3.1 Starting the Certificate Tool

Run the Certificate Tool by entering the following command at the DCL command prompt:

$ @SSLS$COM: SSLSCERT_TOOL

NOTE Only one user or process should use the Certificate Tool at a time. The tool does not have a
locking mechanism to prevent unsynchronized accesses of the database and serial file, which
could cause database corruption. This assumes that you started SSL using
SSL$STARTUP.COM.

Figure 3-1 shows the Certificate Tool's main menu.

Figure 3-1 Certificate Tool Main Menu

4 ™\
SSL Certificate Tool

Main Menu

View a Certificate

View a Certificate Signing Request

Create a Certificate Signing Request

Create a Self-Signed Certificate

Create a CA (Certification Authority) Certificate
Sign a Certificate Signing Request

Hash Certificates

Hash Certificate Revocations

Exit

W oo Jo Ul WNE

Enter Option: I

- J

VM-0868A-Al

37

Using the Certificate Tool
Viewing a Certificate

3.2 Viewing a Certificate

The content of a certificate associates a public key with the real identity of an individual, server, or other
entity (known as the subject). Information about the subject includes identifying information (the
distinguished name), and the public key. It also includes the identification and signature of the certificate
authority that issued the certificate, and the period of time during which the certificate is valid. The
certificate might contain additional information (or extensions) as well as administrative information, such as
a serial number, for the Certificate Authority's use.

To view a certificate, do the following:

1. Select the View a Certificate option from the main menu by entering 1 and pressing enter.

2. Press enter to accept the default file specification (or type a new file specification to an alternative
location) for the certificate directory to find files with a CRT extension:

SSL Certificate Tool

View Certificate

Display Certificate File: ? [SSLSCRT:*.CRT] I

VM-0869A-Al

The default directory specification of SSL$CRT: is where certificates you sign are saved. Server
certificates can be saved on your system by other products. For example, HP Secure Web Server for
OpenVMS Alpha places certificates in APACHE$ROOT:[CONF.SSL_CRT].

3. Select a certificate file by entering its number, then pressing Enter. In the following example, number 1
(server_ca.crt) was selected.

4 N\
SSL Certificate Tool

View Certificate

<Select a File> Page 1 of 1

1. SSLSROOT: [CERTS]server_ca.crt;1
. SSLSROOT: [CERTS]test_selfsign.crt;1
3. SSLSROOT: [CERTS]TEST_SELFSIGN_X509.CRT;1

N

Enter B for Back, N for Next, Ctrl-Z to Exit or Enter a File Number

- J

VM-0870A-Al

4. View the certificate details:

e Version (SSL 3.0 protocol)

e Serial number (Certificates issued by a CA have a serial number that is unique to the certificates
issued by that CA.)

38

¢ Signature algorithm

e Issuer

e Validity (inception and expiration dates)
¢ Public key information

This information is displayed as follows:

Using the Certificate Tool
View a Certificate Request File

4 N\
SSL Certificate Tool
View Certificate
< SSLSROOT: [CERTS]server_ca.crt;1l > Page 1 of 3
Certificate:
Data:
Version: 3 (0x2)
Serial Number: 0 (0x0)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=US, O=Compaqg Computer Corp., OU=OpenVMS, CN=Dwllng CA Authority
Validity
Not Before: Jan 24 02:26:16 2002 GMT
Not After : Jan 23 02:26:16 2007 GMT
Subject: C=US, O=Compaq Computer Corp., OU=OpenVMS, CN=Dwllng CA Authority
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus (1024 bit):
00:c5:6e€:63:90:d7:11:d8:13:a8:96:8a:a3:4f:dd:
d3:8b:e6:d7:77:2c:8e:72:€6:63:73:14:1c:a9:be:
30:05:8e:84:74:17:cb:56:b3:7b:31:d4:44:26:8f:
bd:72:c£:22:£9:96:ea:84:b8:d0:13:0e:e4:cb:08:
25:e9:2e:3a:¢8:32:06:39:71:ee:93:a4:f4:71:£2:
e2:91:35:b8:6e:d3:5a:b2:0c:d9:a0:fe:07:£7:5d:
ed:89:77:77:41:3c:0d:bc:6a:41:b6:2e:1c:ab6:3c:
81:3f:70:3c:58:a3:63:3d:cd:57:2a:d3:28:97:39:
£3:dd:33:65:29:09:21:b6:bb
Exponent: 65537 (0x10001)

Signature Algorithm: md5WithRSAEncryption
5c:ea:12:35:de:24:¢7:c0:40:ca:90:57:9b:31:b2:c4:79:fc:
a6:b2:fa:bd:fe:43:92:94:66:20:01:ec:63:0c:32:57:63:fe:
92:a7:bb:8c:al:4£:92:15:6£:75:b7:9a:9d:a8:€6:59:51:77:
2c:61:99:d3:2c:52:8c:db:d2:b8:a7:21:44:3d:b2:16:22:0b:
39:97:5b:84:9€:68:30:¢cb:74:d9:¢c£:03:¢c4:95:b0:d7:7a:09:
45:28:6d:29:eb:83:1f:76:13:6e:78:8d:eb:c5:54:d9:dc:71:
32:1le:be:2d:al1:d0:67:95:03:8f:bd:c6:0b:£3:54:93:b8:1f:
b8:96

NNNNNN Enter B for Back, N for Next, Ctrl-Z to Exit ~~~~~~
o J
VM-0871A-Al

3.3 View a Certificate Request File

A certificate request file is an unsigned certificate.

To view a certificate request file, do the following:

39

Using the Certificate Tool
Create a Certificate Signing Request

1. Type the file specification to the certificate request directory to find files with a .CSR extension:
2. Select a certificate request file.
3. View the certificate request details:

e Subject

e Public key information

¢ Signature algorithm

e Issuer

e Validity (inception and expiration dates)

3.4 Create a Certificate Signing Request

Creating a certificate signing request (generating a *.CSR file) is like an application form for a certificate. You
can specify two categories of request:

e Server certificate request

Prepares a certificate file to be signed by a trusted (root) CA to authenticate your server. You are the
subject of the certificate, and the CA you send it to will be the certificate issuer. For example, if you
wanted to get a Thawte Server ID, you would create a certificate request and mail the contents of this
generated file to Thawte. The file you generate is a *.CSR file.

¢ (Client certificate request

Prepares client certificate files that are loaded in the SSL client application, such as a web browser. The
client is the subject of the certificate and you are the certificate issuer.

To create a certificate request, perform the following steps.

1. Enter the information required for the certificate. You must complete all fields to create a valid certificate
request. The certificate request is generated after you respond to the last question.

¢ Encrypt Private Key
Using an encrypted private key forces the passphrase dialog when loading the private key.

NOTE Do not use this option if you are using the mod_ss1 directive SSLPassPhraseDialog
with the default built-in option.

¢ Encryption Bits

The largest recommended size is 1024 bits. Encryption strength is often described in terms of the size
of the keys used to perform the encryption; in general, longer keys provide stronger encryption but
require more computing time. Key length is measured in bits. Private key sizes larger than 1024 bits
are incompatible with some versions of Netscape Navigator and Microsoft Internet Explorer.

¢ Certificate Key File
Use OpenVMS syntax (defaults to SSLSKEY:SERVER.KEY).
e (Certificate Request File

40

Using the Certificate Tool
Create a Certificate Signing Request

Use OpenVMS syntax (defaults to SSL§CSR:SERVER.CSR).

The remaining questions determine your server's distinguished name.

e Country Name

e State or Province Name
e (City Name

¢ Organization Name

¢ Organization Unit Name
¢ Common Name

Common name usage is different for client certificates than it is for server certificates. Generally, the
common name on a client certificate is the proper name of the individual requesting a certificate. In
the case of server certificates, the common name must be the same as your server's DNS host name
(or virtual host name, if name-based virtual hosting is used). Browsers compare the common name in
the server certificate with the host name of the server to which they are connecting; these names
must match.

¢ Email Address
¢ Display the Certificate
2. View the details of the certificate request (if you chose to display the certificate).

e Subject

e Public key information

¢ Signature algorithm
To see the encoded contents, exit the certificate tool and enter the following command to view the CSR file.
$ TYPE SSLSROOT: [CERTS]SERVER.CSR

What you see is exactly what is required by the certificate authority. You might be required to send the file
itself or just the contents of the file to your CA (according to the CA's instructions). For example:

MIIB/TCCAWYCAQAWgbwxCzAJBgNVBAYTA1VTMRYWFAYDVQQIEwW10ZXcgSGFtcHNoO
aXJ1MQ8wDQYDVQQHEWZOYXNodWEXHjAcBgNVBAOTFUNvbXBhcSBDb21wdXR1ciBD
b3JwLjECMBOGALUECXMTT3B1blZNUyBFbmdpbmV1cmluZzEaMBgGA1UEAXMRRkxJ
UDMuWk t PLKRFQy5DT00xKjAoBgkghkiG9w0OBCQEWG3d1lYmlhc3R1ckBGTEIQMy5a
SO08UREVDLKNPTTCBnzANBgkghkiGI9w0OBAQEFAAOB]QAwWgYkCgYEAQ /y8RxXUE/COy
nVpeK00GgvbgFWxX1089ULQTMVUSwWmAzhdzbi3DZL5s85YRGAPVgYW2riWs1t2SQg
JMS1FTxta/CwiWe6Vwwn9GmdadJwkgGFxnpw2LmugexLfj+4t97AZyIR207gJIxCINSS
CWg3tenlZUmgswjkrG8WehUN+2C6IBcCAWEAAAAAMAOGCSgGSIb3DQEBBAUAALAGE
ABzgiiojPAcojLXGI20FxJ5apORAHHHAYcOYCUhFXS1Rs2BIXHMM5xQuxk8yitcd
yViQfHhGDzpDmOwWMKkK7t09UjQh9humKEU1ANnS4VYLL4AV]1genwLybcLLB0Q3aiQN
UjQwIRrXNWWZYVDenvrOwtbK9dFefb4dP1ZIAS2/Z4jLP

If you are sending only the contents, copy and paste everything and send to the CA using secure email or the
appropriate enrollment form. The CA will return a digitally signed certificate to you. For example:

MIICeDCCAiICEEdpjx0zmJPyh5TiG8BRA70wDQYJKoZIhveNAQEEBQAwgakxFjAU
BgNVBAOTDVZ1lcmlTaWduLCBIbmMxRzBFBgNVBAsSTPnd3dy527ZXJpc2lnbi5jb20v
cmVwb3NpdG9yeS9UZXNOQIBTIEIuY29ycC4gQnkgUmVmL i BMaWF 1 Li BMVEQuUMUYw
RAYDVQQLEz1Gb3IgVmVyaVNpZ24gYXV0aG9yaXplZCBO0ZXNOawsnIG9ubHkuIESv
IGFzc3VyYW5JjZXMgKEMpV1MxOTk3MB4XDTAWMDCcwWNzZ AWMDAWMF 0 XDTAWMDCYMTI z

41

Using the Certificate Tool
Create a Self-Signed Certificate

NTk10VowgZAxXxCzAJBgNVBAYTA1VTMRYWFAYDVQQIEw10ZXcgSGFtcHNoaXJ1MQ8w
DQYDVQQHFAZOYXNodWExH]AcBgNVBAOUFUNvbXBhcSBDb21wdXR1ciBDb3JwLIEc
MBOGA1UECxQTT3B1blZNUyBFbmdpbmVlcmluZzEaMBgGA1UEAXQRRkxJUDMuWkt P
LKRFQy5DT00wgZ8wDQYJKoZIhveNAQEBBQADgY0AMIGJAOGBANPSVECbhPwjspla
XitNBoL24BVsV9aPPVCOEzFVEsJgM4Xc24tw2S+bPOWERNT1YGFtglrNbdkkIIzE
pRUSbWvwsFulcMJ /RpnWicJKhhcZ6cNi5roHsS34 /uLfewGciEdjudCcQibDUuQlo
N7XJIWVIgrMI5KxvFnoVDf tguiAXAgMBAAEWDQYJK0ZIThveNAQEEBQADQQAYSLLe
U7nMLJ+QkR1d61gKjU2VotphPvgWMGsJ+TKqUI4MXaAv0zQxtBni1N8s0LXVNCuJ
1EzBYJjSbgbgEhJJA

The CA-signed certificate contains the following information:

¢ Your organization's common name (Www.your-server)

¢ Additional identifying information (IP and physical address)
¢ Your public key

e Expiration date of the public key

¢ Name of the CA that issued the ID

¢ A unique serial number. (Every certificate issued by a CA has a serial number that is unique to the
certificates issued by that CA.)

e CA's digital signature

3.4.1 Installing Certificates

A signed certificate needs to be installed, along with the key you generated when creating the request, by
saving or copying the respective files to their correct directories and restarting the application.

The following example shows a certificate and key copied to the directory of a web server.
$ COPY SSL$CERTS:SERVER.CRT APACHE$SPECIFIC: [CONF.SSIL_CRT]

$ COPY SSLSKEY:SERVER.KEY APACHESSPECIFIC: [CONF.SSL_KEY]

3.5 Create a Self-Signed Certificate

To create a self-signed certificate, perform the following steps. All fields must be completed to create a valid
self-signed certificate. The inception time of a certificate is based on UTC (Coordinated Universal Time).
Check with your system administrator that your computer's UTC is set correctly if you want to use the
self-signed certificate right away.

1. Enter the required information for the self-signed certificate.

¢ Encrypt Private Key
Using an encrypted private key forces the passphrase dialog to appear at startup time.

¢ Encryption Bits

42

Using the Certificate Tool
Create a Certificate Authority

The largest recommended size is 1024 bits. Encryption strength is often described in terms of the size
of the keys used to perform the encryption; in general, longer keys provide stronger encryption. Key
length is measured in bits. Private key sizes larger than 1024 bits are incompatible with some
versions of Netscape Navigator and Microsoft Internet Explorer.

Certificate Key File

Use OpenVMS syntax (defaults to SSLSKEY:SERVER.KEY).
Certificate File

Use OpenVMS syntax (defaults to SSL$CRT:SERVER.CRT).
Country Name

State or Province Name

City Name

Organization Name

Organization Unit Name

Common Name

Common name usage is different for client certificates than it is for server certificates. Generally, the
common name on a client certificate is the proper name of the individual requesting a certificate. In
the case of server certificates, the common name must be the same as your server's DNS host name
(or virtual host name, if name-based virtual hosting is used). Browsers compare the common name in
the server certificate with the host name of the server they are connecting to. These must match.

Email Address
Display the Certificate

2. View the details of the self-signed certificate (if you chose to display the certificate).

Version (SSL 3.0 protocol)

Serial number (Certificates issued by a CA have a serial number that is unique to the certificates
issued by that CA.)

Signature algorithm
Issuer
Validity (inception and expiration dates)

Public key information

3.6 Create a Certificate Authority

Creating a certificate authority (CA) allows you to issue certificates using your own private key. The
corresponding CA public key is itself contained within a certificate, called a CA Certificate. You must
distribute this certificate to clients in order for them to access your server. A browser must contain this CA
Certificate in its "trusted root library" in order to trust certificates signed by the CA's private key.

To create a certificate authority, perform the following steps:

43

Using the Certificate Tool
Create a Certificate Authority

1. Enter the information required to create a certificate authority. You must complete all fields to create a
valid CA certificate. The certificate request is generated after you respond to the last question.

PEM Passphrase
Encryption Bits

The largest recommended size is 1024 bits. Encryption strength is often described in terms of the size
of the keys used to perform the encryption; in general, longer keys provide stronger encryption. Key
length is measured in bits. Private key sizes larger than 1024 bits are incompatible with some
versions of Netscape Navigator and Microsoft Internet Explorer.

Default Days

The default number of days until expiration for certificates issued by the CA. A large number, such as
1825 (5 years) is usually appropriate so that certificates signed with this key do not expire too soon.

Certificate Key File

Use OpenVMS syntax (defaults to SSL$KEY:SERVER_CA.KEY).
CA Certificate File

Use OpenVMS syntax (defaults to SSL$CRT:SERVER_CA.CRT).
Country Name

A certificate authority can define a policy that specifies which distinguished names are optional and
which are required. The distinguished name is defined in the config file (.cnf), and is usually made up
of more than one field. The number and makeup of the fields are defined by the certificate authority,
and are found in the config file under the [req_distinguished_name] field. A certificate authority can
also place requirements on the field contents, as can users of certificates. As an example, a Netscape
browser requires that the common name for a certificate representing a server has a name that
matches a wildcard pattern for the domain name of that server, such as *.xyz.com.

State or Province Name
City Name

Organization Name
Organization Unit Name
Common Name

This can be any text string that you want to use to identify the authority. The name can be generic,
such as CA Authority, or more specific, such as nodenameCA.

Email Address
Require Unique Subject Names

If you accept the default or answer YES, then certificates must have unique subject names. If you
answer NO, then certificates can have duplicate subject names, and are distinguished from one
another by the serial number that is assigned to them. Answering NO allows you to have two
certificates with the same subject name in the database. This makes it easier to issue new certificates
when the old certificates are about to expire.

44

Using the Certificate Tool
Create a Certificate Chain

NOTE The UNIQUE_SUBJECT variable in the OPENSSL-VMS.CNF configuration file is set
to YES or NO, depending on the answer to the Require Unique Subject Names
question. After a CA and its database is created, the UNIQUE_SUBJECT variable
should not be changed. If at a later time you want to change the setting, you must
recreate the entire database.

¢ Display the Certificate
2. View the details of the certificate authority (if you chose to display the certificate).
e Version (SSL 3.0 protocol)

e Serial number (Certificates issued by a CA have a serial number that is unique to the certificates
issued by that CA.)

¢ Signature algorithm
¢ Issuer (your distinguished name)
e Validity (inception and expiration dates)

e Public key information

3.7 Create a Certificate Chain

The following sections describe the steps you must perform to create a certificate chain. Before you create the
chain, you must have the following certificates:

e A root CA certificate (See Create a Certificate Authority.)
¢ One (or more) intermediate CA certificates (See Creating an Intermediate CA (RA) Certificate.)

¢ (Client/server certificate signed with the intermediate CA certificate (See Creating a Client/Server
Certificate Signed with an Intermediate CA Certificate.)

3.7.1 Creating an Intermediate CA (RA) Certificate

With the Certificate Tool, you can generate an X509 certificate for an intermediate CA or RA (Registration
Authority). Perform the following steps to generate an X509 certificate.

1. Create a certificate signing request. (Select item 3 in the Certificate Tool Main Menu.)

2. Sign the certificate signing request with the root CA certificate. (Select item 6 in the Certificate Tool Main
Menu.)

NOTE To create an intermediate CA, you must encrypt the private key when you create the certificate
signing request (with PEM passphrase).

45

Using the Certificate Tool
Sign a Certificate Signing Request

3.7.2 Creating a Client/Server Certificate Signed with an Intermediate CA
Certificate

After you create an intermediate CA certificate (described in the previous section), create a client/server
certificate as follows:

1. Create a certificate signing request. (Select menu item 3 in the Certificate Tool Main Menu.)

2. Sign the certificate signing request with the intermediate CA certificate. (Select menu item 6 in the
Certificate Tool Main Menu.)

Encrypting the private key is not required for creating a client/server certificate. However, if the key is
encrypted, you can also use the certificate as an intermedicate CA certificate with which another certificate
will be signed.

3.7.3 Creating a Certificate Chain File

Some OpenSSL APIs require a certificate chain file. This file contains certificates that form the certificate
chain (from the client/server certificate to the root CA certificate).

To create a certificate chain file, append the certificates of intermediate CA(s) and the root CA to the
client/server certificate. The order in the file can be expressed as follows:

client/server cert >>> intermediate CAl >>> intermediate CA2 >>> root CA
Enter the following command to create a certificate chain file:

$ COPY CLIENT_CERT.PEM, INTER_CAl.PEM, INTER_CA2.PEM, -
_$ ROOT_CA.PEM, CERT_CHAIN.PEM

3.8 Sign a Certificate Signing Request

Signing someone else's certificate signing request is the function of a certificate authority. When you send a
signed certificate back, it can be used to start the server with the passphrase they have. Embedded in the
certificate is your public key. It must match the public key you distribute to clients using your server.

To sign a certificate signing request, perform the following steps. The certificate is signed after you respond to
the last question.

1. Enter the required information to sign a certificate.

NOTE The inception time of a certificate is based on UTC (Coordinated Universal Time). Verify
with your system administrator that your computer's UTC is set correctly.

e CA Certificate File specification

Use OpenVMS syntax (defaults to SSL$CRT:SERVER_CA.CRT).
¢ CA Certificate Key File specification

Use OpenVMS syntax (defaults to SSL$KEY:SERVER_CA.KEY).
e (Certificate Request File

Use OpenVMS syntax (defaults to SSL$CRT:SERVER.CSR).

46

Using the Certificate Tool
Revoke a Certificate

¢ Signed Request File specification

Use OpenVMS syntax (defaults to SSL$CRT:SIGNED.CRT).
e Default Days

The default number of days until the signed certificate expires.
e PEM Passphrase

This is a verification field only. You must use the same passphrase you used to create the certificate
authority (option 5).

2. View the details of the signed certificate (if you chose to display the certificate):
¢ Version (SSL 3.0 protocol)

e Serial number (Certificates issued by a CA have a serial number that is unique to the certificates
issued by that CA.)

¢ Signature algorithm
¢ Issuer (your distinguished name)
e Validity (inception and expiration dates)

e Public key information

3.9 Revoke a Certificate

You should revoke a certificate if the certificate has been compromised. The security of a certificate can be
compromised if, for example, someone has a copy of the private key, or knows the password to your encrypted
key.

A certificate can be revoked by the Certificate Authority that issued the certificate. You can also use the HP
SSL Certificate Tool to revoke a certificate, if the certificate was created using the Certificate Tool.

To revoke a certificate using the Certificate Tool, perform the following steps:

1. From the Main Menu, select Option 7 - Revoke a Certificate.
2. Enter the filenames of the Certificate Authority (CA) certificate and key.
3. Enter the filename of the certificate to be revoked.
4. Enter the PEM passphrase of the CA's key.
The Certificate Tool marks that certificate as being revoked in its database.

After you revoke the certificate, you must create a certificate revocation list (CRL).

3.10 Create a Certificate Revocation List

After you have revoked all known compromised certificates, you should create a Certificate Revocation List
(CRL). You can create a CRL using the HP SSL Certificate Tool.

47

Using the Certificate Tool
Hash Certificates

To create a CRL, perform the following steps:

1. From the Main Menu, select Option 8 - Create a Certificate Revocation List.

2. Enter the filenames of the Certificate Authority (CA) certificate and key.

3. Enter the filename of the Certificate Revocation List. This is the file into which the CRL will be written.
4.

Enter the number of days until the next CRL will be issued. Certificate Authorities typically issue CRLs
on a periodic basis to maintain the current status of the certificates that it has signed.

5. Enter the PEM passphrase of the CA's key.
The Certificate Tool then creates the CRL in the specified file.

3.11 Hash Certificates

This command is required to PEM-encode third-party certificate files and files you create using option 5
(which, by default, are named SERVER_CA.CRT).

For example, the mod_ssl directives related to CA certificate management (SSLCACertificatePath and
SSLCACertificateFile) require hashed files.

To hash a certificate or certificate authority, perform the following steps:

1. Enter the name of the path in which you have installed your CA files. For example, if you installed CA
files for HP Secure Web Server, the location is APACHE$SPECIFIC:[CONF.SSL_CRT]*.CRT.

2. Press Return to hash the certificate files at the specified location, or at the default location if you did not
enter a path.

You can verify the existence of the hashed file in the directory you selected by entering the following
command:

$ DIR APACHESCOMMON: [CONF .SSL_CRT]
Directory APACHESCOMMON: [CONF.SSIL,_CRT]
AEOFEDEE.0;4 DELETE HASH FILES.COM;1 SERVER_CA.CRT;4

Total of 3 files.

3.12 Hash Certificate Revocations

This command is required to PEM-encode third-party certificate revocation lists (CRLs) and ones you create
using the OpenSSL command line interface. The mod_ssl directives related to managing client revocation
lists (SSLCARevocationPath and SSLCARevocationFile) require hashed CRL files.

To hash certificate revocations, perform the following steps:

1. Install a trusted root CA's CRL file, or create your own using the OPENSSL CA command (using the
OpenSSL command line interface).

48

Using the Certificate Tool
Hash Certificate Revocations

2. Enter the name of the path in which you have installed your CRL files. For example, if you installed CRL
files for HP Secure Web Server, the location is APACHE$ROOT:[CONF.SSL_CRL]*.CRL.

3. Press Return to hash the CRL files at the specified location.

You can verify the existence of the hashed file in the directory you selected by entering the following
command:

$ DIR APACHESSPECIFIC: [CONF.SSIL_CRL]
Directory APACHESSPECIFIC: [CONF.SSL_CRL]
AEOFEDEE.RO CA-BUNDLE.CRL DELETE_HASH FILES.COM

Total of 3 files.

49

Using the Certificate Tool
Hash Certificate Revocations

50

SSL Programming Concepts
HP SSL Data Structures

4 SSL Programming Concepts

This chapter discusses how to write application programs using HP SSL on OpenVMS. The SSL library
provides APIs supporting three SSL protocols: SSL Version 2 (SSLv2), SSL Version 3 (SSLv3), and TLS
Version 1 (TLSv1). You can write an HP SSL application program in C or C++.

This chapter provides the following information:

¢ A description of the seven HP SSL data structures
e How to configure and obtain certificates

e An HP SSL programming tutorial that shows the implementation of a simple HP SSL client and server
program using HP SSL. APIs

4,1 HP SSL Data Structures

Before you start SSL application development, you should understand the data structures used for SSL: APlIs,
and the relationships between the data structures.

SSL APIs use data structures to hold various types of information about SSL sessions and connections. The
most important structures are SSI_CTX and SSL. Usually, one SSL._CTX structure exists per SSL application
program, and an SSL structure is created every time a new SSL connection is created. An SSL structure
inherits configuration information from the SSL._CTX structure when it is created.

Table 4-1 shows the APIs commonly used for creating and deallocating data structures.

Table 4-1 APIs for Data Structure Creation and Deallocation
Data Structure API for Creation API for Deallocation
SSL_CTX SSL_CTX_new () SSL_CTX_free()
SSL SSL_new () SSL_free()
SSL_SESSION SSL_SESSION_new () SSL_SESSION_free()
BIO BIO_new() BIO_free()
X509 X509_new () X509_free()
RSA RSA_new () RSA_free()
DH DH_new () DH_free()

51

SSL Programming Concepts
HP SSL Data Structures

Figure 4-1 shows the relationship between the SSL,_CTX and SSL data structures.

Figure 4-1 Relationship Between SSL_CTX and SSL
Structure 1
SSL_CTX
SSL SSL SSL SSL
Structure 1 Structure 2 Structure 3 Structure 4

VM-0902A-Al

4.1.1 SSL CTX Structure

The SSL._CTX structure is defined in ss1.h. An SSI_CTX structure stores default values for SSL structures.
(The ssL structures are created after the SSI,_CTX structure is created and configured.) The SSI,_CTX
structure also holds information about SSL connections and sessions (the numbers of new SSL connections,
renegotiations, session resumptions, and so on).

Each SSL client or server program creates and keeps only one SSI._CTX structure. The SSL_CTX structure is
created at the beginning of the SSL application program. The SSI,_CTX structure is configured with the
default values that will be inherited by the SSL structures. For example, a CA certificate loaded in the
SSL_CTX structure is also loaded into an SSL structure when that SSL structure is created.

NOTE Data structure definitions are subject to change in future releases of HP SSL for OpenVMS.

4.1.2 SSL Structure

An SSL structure is created for every SSL connection in the SSL client or server program. You create the SSL
structure after creating and configuring the SSI._CTX structure because the SSL structure inherits default
values from the SSI._CTX structure. The inheritance of the default values enables the SSL structure to be used
without explicit configuration. However, it is possible to change the inherited values in a specific SSL
structure.

An SSL structure saves the addresses of data structures that store information about SSL connections and
sessions. These data structures are as follows:

e The ssI._CTX structure from which the SSL structure is created
e SSI,_METHOD (SSL protocol version)

® SSIL_SESSION

® SSI,_CIPHER

® CERT (certificate information extracted from an X.509 structure)

e BIO (an SSL connection is performed via BIO)

52

SSL Programming Concepts
HP SSL Data Structures

The SSL information (protocol version, connection status values, and so on) in the SSL structure is used for
the SSL connection. Figure 4-2 shows the structures associated with the SSL structure.

Figure 4-2

Structures Associated with SSL Structure

SSL Server

SSL_CTX

SSL_METHOD

SSL_SESSION

— SSL_CIPHER

SSL Client

SSL_CTX

SSL_SESSION

SSL_CIPHER

+ [ssL_METHOD

BIO SS

Handshake/SSL Connection BIO

4.1.3 SSL. METHOD Structure

The SSI,_METHOD structure is defined in ssl.h. An SSI,_METHOD structure contains pointers to the functions
that implement the SSL protocol version specified. This structure must be created before creation of the

SSL_CTX structure.

4,1.4 SSL CIPHER Structure

The SSI. CIPHER structure is defined in the ss1.h header file. An SSI._CIPHER structure holds information

VM-0903A-Al

about the cipher suite used for SSL connections and sessions.

4.1.5 CERT/X509 Structure

In OpenSSL application programs, an X.509 certificate is stored as an X509 structure. However, after loading

an X509 structure into an SSL_CTX or SSL structure, the X.509 certificate information is extracted from the
X509 structure and stored in a CERT structure associated with the SSI._CTX or SSL structure. The X509 and

CERT structures are defined in x509.h and ss1_locl.h, respectively.

NOTE

The ss1_locl.hheader file is not used for SSL application programs because it defines only

internal functions and structures, such as the CERT structure. In SSL application programs, a
certificate is stored in an X509 structure, not in a CERT structure. An SSL application developer

does not need to know the definition of the CERT structure and ss1_locl.h.

53

SSL Programming Concepts
Certificates for SSL Applications

4.1.6 BIO Structure

A BIO structure is an I/O abstraction in an SSL application with SSL. APIs. The BIO structure encapsulates
an underlying I/O secured by SSL, and all the communication between the client and server is conducted
through this structure. The BIO structure is defined in bio.h.

4.2 Certificates for SSL Applications

To establish an SSL connection successfully, you must load proper certificates into the SSL client and server.
In this section, a few common uses of certificates are described. For general information about certificates, see
Chapter 3.

4.2.1 Configuring Certificates in the SSL Client and Server
SSL client and server applications might require four certificates:

¢ Server-s CA certificate
¢ (Client-s CA certificate
e (Client certificate
* Server certificate

A root CA is a CA certificate that is located as a root in a certificate signing hierarchy. A root CA is not signed
by any other CA - it is signed by itself. In Figure 4-3 and Figure 4-4, the CA certificates correspond to root
CAs.

For successful certificate verification, the certificates must have the proper signing relationships, as shown in
Figure 4-3 and Figure 4-4. In Figure 4-3, the client and server certificates are directly signed by their peers-
CAs.

Figure 4-3 Client and Server Certificates Directly Signed by CAs
CA CA
certificate certificate
(server trust) (client trust)
Client Server
certificate certificate
Client certificate is directly signed Server certificate is directly signed
with server's CA certificate with client's CA certificate
(certificate chain depth = 1) (certificate chain depth = 1)
VM-0904A-Al

54

SSL Programming Concepts
Certificates for SSL Applications

NOTE The client and server certificates are not necessarily directly signed by the CAs (see
Figure 4-3). In some cases, the certificate is signed by an RA (registration authority) or an
intermediate CA whose certificate is signed by the CA that is trusted by the peer. (The client
certificate in Figure 4-4 is an example of this situation.) In other cases, the certificate's signing
chain may involve more RAs or intermediate CAs. (The server certificate in Figure 4-4 is an
example of this situation.)

As long as the chain depth setting is appropriate (that is, the certificate chain depth for verification is longer
than the depth from the CA to the certificate being verified), the certificate verification succeeds.

Figure 4-4 Client and Server Certificates Indirectly Signed by CAs
CA CA
certificate certificate
(server trust) (client trust)
RA/Intermediate CA
certificate
RA/Intermediate CA |
certificate
RA/Intermediate CA
certificate
Client Server
certificate certificate
Client certificate is indirectly signed Server certificate is indirectly signed
with server's CA certificate with client's CA certificate
(certificate chain depth = 2) (certificate chain depth = 3)
VM-0905A-Al

Figure 4-5 depicts the most common deployment of certificates. This deployment is often used when
establishing SSL connections between web browsers and a web server. As part of its initialization, the SSL
server loads a certificate (server certificate) signed by a CA. This CA is trusted by the SSL clients. When a
client verifies the server, the server certificate is sent to the client and then is verified against the CA

55

SSL Programming Concepts
Certificates for SSL Applications

certificate. The fact that the server has a certificate signed by a trustworthy CA means that the server can be
trusted by the client, because the client trusts the CA. This certificate setup prevents the SSL client from
establishing an SSL connection with an untrustworthy SSL server.

Figure 4-5 Certificates on SSL Client and Server (Case 1)
SSL Server SSL Client
s : CA
f.;.v ert : certificate
certiicate 1 (client trusts)

Server
certification
verification

[success] [failure]

VM-0906A-Al

In addition to server certificate verification on the SSL client, you can perform client certificate verification on
the SSL server. This is shown in Figure 4-6. Web sites that require higher security, such as banks and online
brokers, deploy this model. The SSL client connecting to this type of SSL server is requested to send its
certificate (client certificate) to the server. The SSL server then performs client authentication based on the
client certificate verification.

56

SSL Programming Concepts
Certificates for SSL Applications

This method is the same as the one used in Figure 4-5, but in this case the server checks the client certificate
against the server-s CA certificate to establish the level of trust. Using this implementation, the SSL server
can achieve enhanced client authentication by combining with another authentication method, such as
requiring a user name and password.

Figure 4-6 Certificates on SSL Client and Server (Case 2)
SSL Server SSL Client
CA : l . CA
certificate S?;.V ert 1 i Ctl.'f?nt i certificate
(server trusts) certinicate 1 , | certiticate (client trusts)

Server
certification
verification

Server
certification
verification

[success] [failure]

VM-0907A-Al

4.2.2 Obtaining and Creating Certificates

If the proper certificates are not in place, the SSL application user or developer must either create them or
obtain them from a trustworthy organization such as a CA or RA. The SSL command line interface (described
in Chapter 5) and Certificate Tool (described in Chapter 3) allow you to create X.509 certificates. Figure 4-7
shows the process for creating an X.509 certificate.

Figure 4-7 Certificate Creation Process

CA

Create CSR I '
certificate | | Private-key | !
I |

|

(Certificate signing Request)
and Private Key

of CSR

ol
i 1| Private-key
ol

|
| .
; CSRiis
of CSR |1 CSR : @ by CA
o — oo] :
Certificate I
signed by 1
CA 1 1

VM-0908A-Al

57

SSL Programming Concepts
Certificates for SSL Applications

When you obtain or create a certificate, consider the following:
¢ Algorithms

o Key size

¢ Certificate/key format

e Security policies

Algorithms: RSA certificate with RSA keys or DSA certificate with DH keys

Although RSA certificates are commonly used for SSL, DSA certificates can be loaded in the SSL structure as
well. (Most SSL servers load only RSA certificates. SSL servers that use DSA certificates are rare.)

NOTE RSA and DSA certificates and keys are incompatible. An SSL client that has only an RSA
certificate and key cannot establish a connection with an SSL server that has only a DSA
certificate and key.

To avoid this problem, you can load both RSA and DSA certificates and key pairs in the SSI._CTX and SSL
structure. (For more information, see the description of the SSI._CTX_use_certificate() and
SSL_CTX_set_cipher_list () APIs in this manual.)

If you use a DSA certificate, you must load DH keys. Although the RSA algorithm is used for both key
exchange and signing operations, DSA can be used only for signing. Therefore, DH is used as the key
agreement algorithm with a DSA certificate in an SSL application.

NOTE DSA certificates and DH keys cannot be created with the OpenVMS SSL Certificate Tool
(described in Chapter 3). Use the SSL command line interface, described in Chapter 5, instead.

Key size: 512-bit, 1024-bit, or others

You must specify the key size of the algorithms when you create a certificate. The key size affects security and
performance of the SSL application. A longer key makes the application more secure, but it can slow
performance. A shorter key makes encryption and decryption faster, but lowers security.

Usually RSA and DSA keys are 512-bit, 1024-bit or 2048-bit. (1024-bit keys are the most commonly used.) In
some cases, you must decide the key size based on the application-s requirement or corporate or national
security policy.

Certificate and key formats: PEM, DER or others

The OpenSSL command line interface supports the following three certificate formats:

DER - Encodes the certificate using Distinguished Encoding Rules.
PEM - The Base64 encoding of the DER encoding, with header and footer lines added.
NET - An obsolete Netscape server format.

The most common certificate format for SSL applications is PEM. The SSL Certificate Tool, described in
Chapter 3, supports only the PEM format. If a DER certificate is necessary, use the SSL command line
interface, described in Chapter 5.

58

SSL Programming Concepts
SSL Programming Tutorial

Security policy of the application using the certificates

Check the application-s security policy or requirements when you issue certificates. Some applications
require certain attributes or values in the X.509 certificates. For example, SSL applications for financial
transactions might have a security policy to use 1024-bit or longer RSA keys, or certain extensions in an
X.509 certificates might be mandatory.

Many countries have national policies regarding encryption. Using and exporting strong encryption
algorithms and keys might be affected by these policies. Also, some organizations might have policies that
disallow their employees using strong encryption.

4.3 SSL Programming Tutorial

This section demonstrates the implementation of a simple SSL client and server program using OpenSSL
APIs.

59

SSL Programming Concepts
SSL Programming Tutorial

Although SSL client and server programs might differ in their setup and configuration, their common
internal procedures can be summarized in Figure 4-8. These procedures are discussed in the following
sections.

Figure 4-8 Overview of SSL Application with OpenSSL APIs

Initialization

!

Create SSL_METHOD
(choose SSLv2, SSLv3, or TLSv1)

!

Create SSL_CTX

!

Configure SSL_CTX
(set up certificates, keys, etc.)

Create SSL
(inherit configuration from SSL_CTX)

!

Set up TCP/IP socket

!

Create & Configure BIO

!

SSL Handshake

SSL Data Communication

SSL Rehandshake (option)

SSL Closure

SSL Session Reuse (option)[—

End

VM-0909A-Al

60

SSL Programming Concepts
SSL Programming Tutorial

4.3.1 Inmitializing the SSL Library

Before you can call any other OpenSSL APIs in the SSL application programs, you must perform
initialization using the following SSL APIs.

SSL_library_init(); /* load encryption & hash algorithms for SSL */
SSL_load_error_strings(); /* load the error strings for good error reporting */

The sSI,_library_init () API registers all ciphers and hash algorithms used in SSL. APIs. The encryption
algorithms loaded with this API are DES-CBC, DES-EDE3-CBC, RC2 and RC4 (IDEA and RC5 are not
available in HP SSL for OpenVMS); and the hash algorithms are MD2, MD5, and SHA. The
SSL_library_init () API has a return value that is always 1 (integer).

SSL applications should call the SSI._load_error_strings () APL This API loads error strings for SSL. APIs
as well as for Crypto APIs. Both SSL and Crypto error strings need to be loaded because many SSL
applications call some Crypto APIs as well as SSL APIs.

4.3.2 Creating and Setting Up the SSL Context Structure (SSL_CTX)

The first step after the intialization is to choose an SSL/TLS protocol version. Do this by creating an
SSL_METHOD structure with one of the following APIs. The SSI,_METHOD structure is then used to create an
SSL_CTX structure with the SSI_CTX_new () APIL

For every SSL/TLS version, there are three types of APIs to create an SSI,_ METHOD structure: one for both
client and server, one for server only, and one for client only. SSLv2, SSLv3, and TLSv1 APIs correspond with
the same name protocols. Table 4-2 shows the types of APIs.

Table 4-2 Types of APIs for SSL._ METHOD Creation
Protocol For combined client For a dedicated server For a dedicated client
type and server
SSLv2 SSLv2_method () SSLv2_server_ method () SSLv2_client_ method()
SSLv3 SSLv3_method () SSLv3_server_ method() SSLv3_client_ method()
TLSv1 TLSv1_method () TLSv1l_server_ method() TLSvl_client_ method()
SSLv23 SSLv23_method () SSLv23_server_ method () SSLv23_client_ method ()
NOTE There is no SSL protocol version named SSLv23. The SSLv23_method () API and its variants

choose SSLv2, SSLv3, or TLSv1 for compatibility with the peer.

Consider the incompatibility among the SSL/TLS versions when you develop SSL client/server applications.
For example, a TLSv1 server cannot understand a client-hello message from an SSLv2 or SSLv3 client. The
SSLv2 client/server recognizes messages from only an SSLv2 peer. The SSI.v23_method () API and its
variants may be used when the compatibility with the peer is important. An SSL server with the SSLv23
method can understand any of the SSLv2, SSLv3, and TLSv1 hello messages. However, the SSL client using
the SSLv23 method cannot establish connection with the SSL server with the SSLv3/TLSv1 method because
SSLv2 hello message is sent by the client.

The ssI._CTX_new() API takes the SSI,_METHOD structure as an argument and creates an SSI,_CTX structure.

In the following example, an SSI, METHOD structure that can be used for either an SSLv3 client or SSLv3
server is created and passed to SSI,_CTX_new (). The SSL._CTX structure is initialized for SSLv3 client and
server.

61

SSL Programming Concepts
SSL Programming Tutorial

meth = SSLv3_method() ;
ctx = SSL_CTX_new (meth) ;

4.3.3 Setting Up the Certificate and Key

Certificates for SSL Applications discussed how the SSL client and server programs require you to set up
appropriate certificates. This setup is done by loading the certificates and keys into the SSI,_CTX or SSL
structures. The mandatory and optional certificates are as follows:

e For the SSL server:

Server's own certificate (mandatory)
CA certificate (optional)

e For the SSL client:

CA certificate (mandatory)
Client's own certificate (optional)

4.3.3.1 Loading a Certificate (Client/Server Certificate)

Use the SSI,_CTX_use_certificate_file() API to load a certificate into an SSI,_CTX structure. Use the
SSL_use_certificate_file() API to load a certificate into an SSL structure. When the SSL structure is
created, the SSL structure automatically loads the same certificate that is contained in the SSI,_CTX structure.
Therefore, you onlyneed to call the SSI._use_certificate_file() API for the SSL structure only if it needs
to load a different certificate than the default certificate contained in the SSI,_CTX structure.

4.3.3.2 Loading a Private Key

The next step is to set a private key that corresponds to the server or client certificate. In the SSL. handshake,
a certificate (which contains the public key) is transmitted to allow the peer to use it for encryption. The
encrypted message sent from the peer can be decrypted only using the private key. You must preload the
private key that was created with the public key into the SSL structure.

The following APIs load a private key into an SSL or SSI,_CTX structure:
® SSIL._CTX use_PrivateKey ()

® SSIL_CTX use_PrivateKey ASNI ()

® SSI,_CTX use_PrivateKey file()

® SSIL._CTX use_RSAPrivateKey ()

® SSI_CTX use_RSAPrivateKey ASNI ()
® SSI,_CTX use_RSAPrivateKey file()
® SSL_use PrivateKey ()

® SSI_use PrivateKey_ ASNI ()

® SSIL_use PrivateKey_ file()

® SSIL_use RSAPrivateKey ()

® SSIL_use RSAPrivateKey_ ASNI1 ()

® SSIL_use RSAPrivateKey_ file()

62

SSL Programming Concepts
SSL Programming Tutorial

4.3.3.3 Loading a CA Certificate

To verify a certificate, you must first load a CA certificate (because the peer certificate is verified against a CA
certificate). The SSI._CTX_load_verify locations () API loads a CA certificate into the SSI._CTX structure.

The prototype of this API is as follows:

int SSL_CTX_load verify locations(SSL_CTX *ctx, const char *CAfile,
const char *CApath) ;

The first argument, ctx, points to an SSL._CTX structure into which the CA certificate is loaded. The second
and third arguments, CAfile and CApath, are used to specify the location of the CA certificate. When looking
up CA certificates, the OpenSSL library first searches the certificates in CAfile, then those in CApath.

The following rules apply to the CAfile and CApath arguments:

e Ifthe certificate is specified by CAfile (the certificate must exist in the same directory as the SSL
application), specify NULL for CaApath.

e To use the third argument, CApath, specify NULL for Cafile. You must also hash the CA certificates in
the directory specified by capath. Use the Certificate Tool (described in Chapter 3) to perform the hashing
operation.

4.3.3.4 Setting Up Peer Certificate Verification

The CA certificate loaded in the SSI._CTX structure is used for peer certificate verification. For example, peer
certificate verification on the SSL client is performed by checking the relationships between the CA certificate
(loaded in the SSL client) and the server certificate.

For successful verification, the peer certificate must be signed with the CA certificate directly or indirectly (a
proper certificate chain exists). The certificate chain length from the CA certificate to the peer certificate can
be set in the verify depth field of the SSI._CcTXand SSL structures. (The value in SSL is inherited from
SSL_CTX when you create an SSL structure using the SSI._new () API). Setting verify_depth to 1 means that
the peer certificate must be directly signed by the CA certificate.

The ssI._CTX_set_verify() API allows you to set the verification flags in the SSI,_CTX structure and a
callback function for customized verification as its third argument. (Setting NULL to the callback function
means the built-in default verification function is used.) In the second argument of SSL, CTX_set_verify (),
you can set the following macros:

¢ SSL_VERIFY_NONE

® SSL_VERIFY_PEER

® SSL_VERIFY FATL_TIF NO_PEER_CERT
¢ SSL_VERIFY_CLIENT ONCE

The SSI._VERIFY_PEER macro can be used on both SSL client and server to enable the verification. However,
the subsequent behaviors depend on whether the macro is set on a client or a server. For example:

/* Set a callback function (verify_callback) for peer certificate */
/* verification */

SSL_CTX_set_verify(ctx, SSL_VERIFY_ PEER, verify_callback);

/* Set the verification depth to 1 */

SSL_CTX_set_verify_ depth(ctx,1);

You can verify a peer certificate in another, less common way - by using the SSI._get_verify_ result() APL
This method allows you to obtain the peer certificate verification result without using the
SSL_CTX_set_verify () APIL

Call the following two APIs before you call the SSI,_get_verify_result() APIL

63

SSL Programming Concepts
SSL Programming Tutorial

1. Call sSSL._connect () (in the client) or SSI._accept () (in the server) to perform the SSL handshake.
Certificate verification is performed during the handshake. SSI,_get_verify_result() cannot obtain the
result before the verification process.

2. Call sSL,_get_peer_certificate() to explicitly obtain the peer certificate. The X509_V_OK macro value
is returned when a peer certificate is not presented as well as when the verification succeeds.

The following code shows how to use SSI,_get_verify result() in the SSL client:

SSL_CTX_set_verify depth(ctx, 1);

err = SSL_connect(ssl);
if(SSL_get_peer_certificate(ssl) != NULL)

{

if (SSL_get_verify_result(ssl) == X509_V_OK)

BIO_printf (bio_c_out, "client verification with SSL_get_verify result ()
succeeded.\n") ;
else{

BIO_printf(bio_err, "client verification with SSL_get_verify result()
failed.\n");

exit (1) ;
}
}
else
BIO_printf(bio_c_out, -the peer certificate was not presented.\n-);

4.3.3.5 Example 1: Setting Up Certificates for the SSL Server

The SSL protocol requires that the server set its own certificate and key. If you want the server to conduct
client authentication with the client certificate, the server must load a CA certificate so that it can verify the
client-s certificate.

The following example shows how to set up certificates for the SSL server:

/* Load server certificate into the SSL context */
if (SSL_CTX_ use_certificate_file(ctx, SERVER_CERT,
SSL_FILETYPE_PEM) <= 0) }

ERR_print_errors (bio_err); /* ==
ERR_print_errors_fp(stderr); */
exit (1) ;

/* Load the server private-key into the SSL context */
if (SSL_CTX_use_PrivateKey_file(ctx, SERVER_KEY,
SSL_FILETYPE PEM) <= 0) {

ERR_print_errors (bio_err); /* ==
ERR_print_errors_fp(stderr); */
exit (1) ;

/* Load trusted CA. */
if (!SSL_CTX_load_verify locations(ctx,CA_CERT,NULL)) {

ERR_print_errors (bio_err); * ==
ERR_print_errors_fp(stderr); */
exit (1) ;

64

SSL Programming Concepts
SSL Programming Tutorial

/* Set to require peer (client) certificate verification */
SSL_CTX_set_verify(ctx, SSL_VERIFY_ PEER, verify_callback);
/* Set the verification depth to 1 */

SSL_CTX_set_verify_ depth(ctx,1);

4.3.3.6 Example 2: Setting Up Certificates for the SSL Client

Generally, the SSL client verifies the server certificate in the process of the SSL handshake. This verification
requires the SSL client to set up its trusting CA certificate. The server certificate must be signed with the CA
certificate loaded in the SSL client in order for the server certificate verification to succeed.

The following example shows how to set up certificates for the SSL client:

[F—m—— Load a client certificate into the SSL_CTX structure ----- */
if (SSL_CTX_ use_certificate_file(ctx,CLIENT_CERT,
SSL_FILETYPE_PEM) <= 0) {

ERR_print_errors_fp(stderr) ;
exit (1) ;

[F—m——— Load a private-key into the SSL_CTX structure ----- *x/
if (SSL_CTX_use_PrivateKey file(ctx,CLIENT_KEY,
SSL_FILETYPE_PEM) <= 0){

ERR_print_errors_fp(stderr) ;
exit (1) ;

}

/* Load trusted CA. */
if (!SSL_CTX_load_verify locations(ctx,CA_CERT,NULL)) {
ERR_print_errors_fp(stderr) ;
exit (1) ;

4.3.4 Creating and Setting Up the SSL Structure

Call sSI._new () to create an SSL structure. Information for an SSL connection is stored in the SSL structure.
The protocol for the SSLI, new() API is as follows:

ssl = SSL_new(ctx) ;

A newly created SSL structure inherits information from the SSL_CTX structure. This information includes
types of connection methods, options, verification settings, and timeout settings. No additional settings are
required for the SSL structure if the appropriate initialization and configuration have been done for the
SSL_CTX structure.

You can modify the default values in the SSL structure using SSL APIs. To do this, use variants of the APIs
that set attributes of the SSI._CTX structure. For example, you can use SSI,_CTX_use_certificate() toload a
certificate into an SSI,_CTX structure, and you can use SSI_use_certificate() to load a certificate into an
SSL structure.

4.3.5 Setting Up the TCP/IP Connection

Although SSL works with some other reliable protocols, TCP/IP is the most common transport protocol used
with SSL.

65

SSL Programming Concepts
SSL Programming Tutorial

The following sections describe how to set up TCP/IP for the SSL APIs. This configuration is the same as in
many other TCP/IP client/server application programs; it is not specific to SSL API applications. In these
sections, TCP/IP is set up with the ordinary socket APIs, although it is also possible to use OpenVMS system
services.

4.3.5.1 Creating and Setting Up the Listening Socket (on the SSL Server)

The SSL server needs two sockets as an ordinary TCP/IP server—one for the SSL connection, the other for
detecting an incoming connection request from the SSL client.

In the following code, the socket () function creates a listening socket. After the address and port are
assigned to the listening socket with bind (), the listen() function allows the listening socket to handle an
incoming TCP/IP connection request from the client.

listen_sock = socket (PF_INET, SOCK_STREAM, IPPROTO_TCP) ;
CHK_ERR (listen_sock, "socket");

memset (&sa_serv, 0, sizeof(sa_serv));

sa_serv.sin_family = AF_INET;
sa_serv.sin_addr.s_addr = INADDR_ANY;
sa_serv.sin_port = htons (s_port) ; /* Server Port number */

err = bind(listen_sock, (struct sockaddr*)&sa_serv,sizeof (sa_serv));
CHK_ERR (err, "bind");

/* Receilve a TCP connection. */
err = listen(listen_sock, 5);
CHK_ERR (err, "listen");

4.3.5.2 Creating and Setting Up the Socket (on the SSL Client)

On the client, you must create a TCP/IP socket and attempt to connect to the server with this socket. To
establish a connection to the specified server, the TCP/IP connect () function is used. If the function succeeds,
the socket passed to the connect () function as a first argument can be used for data communication over the
connection.

sock = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP) ;
CHK_ERR (sock, "socket");

memset (&server_addr, '\0', sizeof (server_addr)) ;

server_addr.sin_family = AF_INET;

server_addr.sin_port = htons (s_port); /* Server Port number */
server_addr.sin_addr.s_addr = inet_addr(s_ipaddr); /* Server IP */

err = connect(sock, (struct sockaddr*) &server_addr, sizeof (server_addr)) ;
CHK_ERR (err, "connect");

4.3.5.3 Establishing a TCP/IP Connection (on the SSL Server)

To accept an incoming connection request and to establish a TCP/IP connection, the SSL server needs to call
the accept () function. The socket created with this function is used for the data communication between the
SSL client and server. For example:

sock = accept(listen_sock, (struct sockaddr*)&sa_cli, &client_len);
BIO_printf (bio_c_out, "Connection from %1x, port %x\n",
sa_cli.sin_addr.s_addr, sa_cli.sin_port);

66

SSL Programming Concepts
SSL Programming Tutorial

4.3.6 Setting Up the Socket/Socket BIO in the SSL Structure

After you create the SSL structure and the TCP/IP socket (sock), you must configure them so that SSL data
communication with the SSL structure can be performed automatically through the socket.

The following code fragments show the various ways to assign sock to ss1. The simplest way is to set the
socket directly into the SSL structure, as follows:

SSL_set_fd(ssl, sock);

A better way is to use a BIO structure, which is the I/O abstraction provided by OpenSSL. This way is
preferable because BIO hides details of an underlying I/0O. As long as a BIO structure is set up properly, you
can establish SSL connections over any I/0.

The following two examples demonstrate how to create a socket BIO and set it into the SSL structure.

sbio=BIO_new (BIO_s_socket());
BIO_set_fd(sbio, sock, BIO_NOCLOSE) ;
SSL_set_bio(ssl, sbio, sbio);

In the following example, the BIO_new_socket () API creates a socket BIO in which the TCP/IP socket is
assigned, and the SSI,_set_bio() API assigns the socket BIO into the SSL structure. The following two lines
of code are equivalent to the preceding three lines:

sbio = BIO_new_socket (socket, BIO_NOCLOSE) ;
SSL_set_bio(ssl, sbio, sbio);

NOTE If there is already a BIO connected to ss1, BIO_free () is called (for both the reading and
writing side, if different).

4.3.7 SSL Handshake

The SSL handshake is a complicated process that involves significant cryptographic key exchanges. However,
the handshake can be completed by calling SSI,_accept () on the SSL server and SSI,_connect () on the SSL
client.

4.3.7.1 SSL Handshake on the SSL Server

The sSL._accept () API waits for an SSL handshake initiation from the SSL client. Successful completion of
this API means that the SSL handshake has been completed.

err = SSL_accept(ssl);

4.3.7.2 SSL Handshake on the SSL Client

The SSL client calls the SSI,_connect () API to initiate an SSL handshake. If this API returns a value of 1,
the handshake has completed successfully. The data can now be transmitted securely over this connection.

err = SSL_connect(ssl);

4.3.7.3 Performing an SSL Handshake with SSL._read and SSL_write (Optional)

Optionally, you can call SSI,_write () and SSL_read () to complete the SSL. handshake as well as perform
SSL data exchange. With this approach, you must call SSI,_set_accept_state () before you call SSI._read ()
on the SSL server. You must also call SSI._set_connect_state ()before you call SSI,_write() on the client.
For example:

67

SSL Programming Concepts
SSL Programming Tutorial

/* When SSL_accept() is not called, SSL_set_accept_state() */
/* must be called prior to SSL_read() */
SSL_set_accept_state(ssl);

/* When SSL_connect() is not called, SSL_set_connect_state() */
/* must be called prior to

SSL_write() */
SSL_set_connect_state(ssl);

4.3.7.4 Obtaining a Peer Certificate (Optional)

Optionally, after the SSL handshake, you can obtain a peer certificate by calling
SSL_get_peer_certificate (). This API is often used for straight certificate verification, such as checking
certificate information (for example, the common name and expiration date).

peer_cert = SSL_get_peer_certificate(ssl);

4.3.8 Transmitting SSL Data

After the SSL handshake is completed, data can be transmitted securely over the established SSL connection.
SSL_write() and SSI_read () are used for SSL data transmission, just as write () and read() or send()
and recv () are used for an ordinary TCP/IP connection.

4.3.8.1 Sending Data

To send data over the SSL connection, call SSI, write(). The data to be sent is stored in the buffer specified
as a second argument. For example:

err = SSL_write(ssl, wbuf, strlen (wbuf));

4.3.8.2 Receiving Data

To read data sent from the peer over the SSL connection, call SSL_read (). The received data is stored in the
buffer specified as a second argument. For example:

err = SSL_read(ssl, rbuf, sizeof(rbuf)-1);

4.3.8.3 Using BIOs for SSL Data Transmission (Optional)

Instead of using SSI._write () and SSL_read (), you can transmit data by calling BIO_puts () and
BIO_gets (), and BIO_write() and BIO_read(), provided that a buffer BIO is created and set up as follows:

BIO *buf_io, *ssl_bio;
charrbuf [READBUF_SIZE];
charwbuf [WRITEBUF_SIZE]

buf_io = BIO_new(BIO_f buffer());/* create a buffer BIO */

ssl_bio = BIO_new(BIO_f_ssl()); /* create an ssl BIO */
BIO_set_ssl(ssl_bio, ssl, BIO_CLOSE);/* assign the ssl BIO to SSL */
BIO_push(buf_io, ssl_bio);/* add ssl_bio to buf_io */

ret = BIO_puts (buf_io, wbuf);

/* Write contents of wbuf[] into buf_io */
ret = BIO _write(buf_io, wbuf, wlen);
/* Write wlen-byte contents of wbuf[] into buf_io */

ret = BIO_gets(buf_io, rbuf, READBUF_SIZE) ;

68

SSL Programming Concepts
SSL Programming Tutorial

/* Read data from buf_io and store in rbuf[] */
ret = BIO_read(buf_io, rbuf, rlen);
/* Read rlen-byte data from buf_io and store rbuf[] */

4.3.9 Closing an SSL Connection

When you close an SSL connection, the SSL client and server send close_notify messages to notify each
other of the SSL closure. You use the SSI,_shutdown () API to send the close_notify alert to the peer.

The shutdown procedure consists of two steps:

¢ Sending a close_notify shutdown alert
¢ Receiving a close_notify shutdown alert from the peer

The following rules apply to closing an SSL connection:

¢ Either party can initiate a close by sending a close_notify alert.
e Any data received after sending a closure alert is ignored.
¢ Each party is required to send a close_notify alert before closing the write side of the connection.

¢ The other party is required both to respond with a close_notify alert of its own and to close down the
connection immediately, discarding any pending writes.

¢ The initiator of the close is not required to wait for the responding close_notify alert before closing the
read side of the connection.

The SSL client or server that initiates the SSL closure calls SSI._shutdown () either once or twice. If it calls
the API twice, one call sends the close_notify alert and one call receives the response from the peer. If the
initator calls the API only once, the initiator does not receive the close_notify alert from the peer. (The
initiator is not required to wait for the responding alert.)

The peer that receives the alert calls SSI,_shutdown () once to send the alert to the initiating party.

4.3.10 Resuming an SSL Connection

You can reuse the information from an already established SSL session to create a new SSL connection.
Because the new SSL connection is reusing the same master secret, the SSL handshake can be performed
more quickly. As a result, SSL session resumption can reduce the load of a server that is accepting many SSL
connections.

Perform the following steps to resume an SSL session on the SSL client:

1. Start the first SSL connection. This also creates an SSL session.

ret = SSL_connect (ssl)
(Use SSL_read() / SSL_write() for data communication
over the SSL connection)

2. Save the SSL session information.

sess = SSL_getl_session(ssl);
/* sess 1s an SSL_SESSION, and ssl is an SSL */

3. Shut down the first SSL connection.
SSL_shutdown (ssl) ;
4. Create a new SSL structure.

ssl = SSL_new(ctx) ;

69

SSL Programming Concepts
SSL Programming Tutorial

5. Set the SSL session to a new SSL session before calling SSI._connect ().

SSL_set_session(ssl, sess);
err = SSL_connect(ssl);

6. Start the second SSL connection with resumption of the session.

ret = SSL_connect (ssl)
(Use SSL_read() / SSL_write() for data communication
over the SSL connection)

If the SSL client calls SSI._getl_session() and SSL_set_session (), the SSL server can accept a new SSL
connection using the same session without calling special APIs to resume the session. The server does this by
following the steps discussed in Creating and Setting Up the SSL Structure, Setting Up the TCP/IP
Connection, Setting Up the Socket/Socket BIO in the SSL Structure, SSL. Handshake, and Transmitting SSL
Data.

NOTE Calling sSL._free () results in the failure of the SSL session to resume, even if you saved the
SSL session with SSI,_getl_session().

4.3.11 Renegotiating the SSL. Handshake

SSL renegotiation is a new SSL handshake over an already established SSL connection. Because the
renegotiation messages (including types of ciphers and encryption keys) are encrypted and then sent over the
existing SSL connection, SSL renegotiation can establish another SSL session securely. SSL renegotiation is
useful in the following situations, once you have established an ordinary SSL session:

¢ When you require client authentication
e When you are using a different set of encryption and decryption keys
¢ When you are using a different set of encryption and hashing algorithms

SSL renegotiation can be initiated by either the SSL client or the SSL server. Initiating an SSL renegotiation
on the client requires a different set of APIs (on both the initiating SSL client and the accepting server) from
the APIs required for the initiation on the SSL server (in this case, on the initiating SSL server and the
accepting SSL client).

The following sections discuss the required APIs for both situations.

NOTE SSLv2 cannot perform SSL renegotiation. Use SSLv3 or TLSv3 for this operation.

4.3.11.1 SSL Renegotiation Initiated by the SSL Server

To initiate an SSL renegotiation from the SSL server, call SSLI,_renegotiate() once and
SSL_do_handshake () twice.

The SSI._renegotiate() API sets flags for SSL renegotiation. This API does not actually initiate the
renegotiation. The flags turned on by SSL_renegotiate () inform SSL._do_handshake () that it needs to
perform SSL renegotiation with the SSL client. The SSL_do_handshake () API performs an actual SSL
handshake. The first call sends a -Server Hello- message to the SSL client.

If the first call succeeds, the client has agreed to perform an SSL renegotiation. The server then sets the
SSL_ST_ACCEPT state in the SSL structure and calls SSI,_do_handshake () again to complete the rest of the
renegotiation.

The following code fragment shows how these APIs are used:

70

SSL Programming Concepts
SSL Programming Tutorial

printf ("Starting SSL renegotiation on SSL server (initiating by SSL server)");
1f(SSL_renegotiate(ssl) <= 0) {

printf ("SSL_renegotiate() failed\n");

exit (1) ;

}

if (SSL_do_handshake(ssl) <= 0){

printf ("SSL_do_handshake() failed\n");
exit (1) ;

}

ssl->state = SSL_ST ACCEPT;

if (SSL_do_handshake(ssl) <= 0){
printf ("SSL_do_handshake() failed\n");
exit (1) ;

}

The following code shows the APIs called by the SSL client when the renegotiation is initiated by the server:

printf ("Starting SSL renegotiation on SSL client (initiating by SSL server)");
/* SSL renegotiation */
err = SSL_read(ssl, buf, sizeof (buf)-1);

As the example shows, SSI,_ READ () performs data exchange, and can also handle connection-related functions
such as renegotiation.

4.3.11.2 SSL Renegotiation Initiated by the SSL Client

The SSL client can also initiate SSL renegotiation. In this case, the setup on the client initiating the
renegotiation is similar to that on a server initiating the renegotiation. To complete this operation, the SSL
client calls SSI_renegotiate () and SSL_do_handshake () only once. SSL_renegotiate () simply sets the
flags for SSL renegotiation, and a single call of SSI._do_handshake () covers the entire renegotiation.

printf("Starting SSL renegotiation on SSL client (initiating by SSL client)");
if (SSL_renegotiate(ssl) <= 0){
printf ("SSL_renegotiate() failed\n");
exit(1l);
}
if (SSL_do_handshake(ssl) <= 0){
printf ("SSL_do_handshake () failed\n");
exit(1l);
}

The following code shows the APIs called by the SSL server when the renegotiation is initiated by the client.
(These are the same APIs that are called by the SSL client when the renegotiation is initiated by the server.)

printf("Starting SSL renegotiation on SSL server (initiating by SSL client)");
/* SSL renegotiation */
err = SSL_read(ssl, buf, sizeof (buf)-1);

Again in this example, SSI, READ () is handling the data exchange and connection renegotiation.
4.3.12 Finishing the SSL Application
When you finish an SSL application program, the major task is to free (deallocate) the data structures that

were created and used in the application program. The APIs for deallocation usually contain the _free suffix,
whereas the APIs that create a new data structure contain the_new suffix.

71

SSL Programming Concepts
SSL Programming Tutorial

You must free data structures that you explicitly created in the SSL application program. Data structures
that were created inside another structure with an xxx_new () API are automatically deallocated when the
structure is deallocated with the corresponding xxx_free () API. For example, a BIO structure created with
SSL_new () is freed when you call SSI._free (); you do not need to call BIO_free() to free the BIO inside the
SSL structure. However, if the application program called BIO_new () to allocate a BIO structure, you must
free that structure with BIO_free().

NOTE You must call SSI._shutdown () before you call SSI,_free ().

72

Example Programs
Example Programs Included in HP SSL Kit

9 Example Programs

The HP SSL for OpenVMS kit contains example programs that show you how to use the OpenSSL APIs in
your OpenVMS application. This chapter includes a table containing the names and descriptions of the
example programs included in the kit, the template file SSL$EXAMPLES_SETUP.TEMPLATE, which sets
up the certificates and keys so you can run the example programs, and the program listings of two simple
example programs.

5.1 Example Programs Included in HP SSL Kit

When you install HP SSL for OpenVMS, the example programs are copied into
SYS$COMMON:[SYSHLP.EXAMPLES.SSL]. The example programs included in the HP SSL kit are shown
in Table 5-1.

Table 5-1 HP SSL Example Programs

Example Programs (Client and Server) Description

SSL$SIMPLE_CLI.C and SSL$SIMPLE_SERV.C Simple client/server programs. This client verifies
the server certificate with the CA certificate. The
client certificate is not loaded, and there is no client
certificate verification in the SSL server.

SSL$AES.C Uses SSL Advanced Encryption Standard (AES)
256-bit key encryption application program
interface calls to encrypt 79 characters of data,
writing the encrypted data to file, then decrypting
the data and writing the plain text to a file.

SSL$BIO_CLI.C and SSL$BIO_SERV.C Implement the same functionality as
SSL$SIMPLE_CLI.C and SSL$SIMPLE_SERV.C
by using socket BIOs.

SSL$CLI_VERIFY_CLIENT.C and Based on SSL$BIO_CLI.C and SSL$BIO_SERV.C.

SSL$SERV_VERIFY_CLIENT.C These programs perform the client certificate

verification in the SSL server. For this purpose, the
client certificate is loaded in the client, and the
server has its CA certificate.

SSL$CLI_SESS_REUSE.C and Demonstrate SSL session reuse (resumption). This
SSL$SERV_SESS_REUSE.C feature was added to the implementation of
SSL$BIO_CLI.C and BIO_SERV.C.
SSL$CLI_SESS_RENEGO.C and Demonstrate SSL renegotiation (rehandshake).
SSL$SERV_SESS_RENEGO.C This feature was added to the implementation of

SSL$BIO_CLI.C and SSL$BIO_SERV.C.

73

Example Programs
Template for Creating Certificates and Keys for the Example Programs

Table 5-1 HP SSL Example Programs (Continued)
SSL$CLI_SESS_REUSE_ CLI_VER.C and Demonstrate SSL session reuse (resumption) as
SSL$SERV_SESS_REUSE_ CLI_VER.C well as the client certificate verification in the

server. The session reuse feature was added to the
implementation of SSL$CLI_VERIFY_CLIENT.C
and SSL$SERV_VERIFY_CLIENT.C.

SSL$CLI_SESS_RENEGO_ CLI_VER.C and Demonstrate SSL renegotiation (rehandshake) as

SSL$SERV_SESS_RENEGO_ CLI_VER.C well as the client certificate verification. The
renegotiation feature was added to the
implementation of SSL$CLI_VERIFY_CLIENT.C
and SSL$SERV_VERIFY_CLIENT.C.

SSL$SHA1_MD5.C Uses SSL crypto library SHA1 or MD5 message
disgest EVP application program interface calls to
perform a one way hash on the input buffer data
inputl and input2. The resulting hashed output in
digest is then printed in hex format to the terminal.

SSL$TCP_CLIENT_QIO_SSL.C and Demonstrate a TCP/IP IPv4 client and server using

SSL$TCP_SERVER_QIO_SSL.C OpenVMS QIO system services to handle network
I/O operations with SSL to secure the data with
encryption.

5.2 Template for Creating Certificates and Keys for the Example
Programs

The command procedure SSL$EXAMPLES_SETUP.TEMPLATE (located in
SYS$COMMON:[SYSHLP.EXAMPLES.SSL]) is a template that sets up the certificate and keys so you can
run the example programs included with HP SSL. SSL$EXAMPLES_SETUP.TEMPLATE does the following:

e C(Creates a Certificate Authority (CA) certificate
e C(Creates server and client certificate requests

¢ The CA signs the two certificate requests

e C(Creates server and client certificates

To execute this command procedure, be sure that SSL$STARTUP.COM and SSL$UTILS.COM have been run,
then remove the comment characters from the commands.

The following program listing shows SSL$EXAMPLES_SETUP.TEMPLATE.

St

S! SSL$SEXAMPLES_SETUP.COM --

St

$! This command procedure is actually a template that will show

$! the commands necessary to create certificates and keys for the example
$! programs.

St

$! Also included in this file are the necessary options to enter into the
$! SSLSCERT_TOOL.COM to create the necessary certificates and keys to the

74

Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl

Example Programs
Template for Creating Certificates and Keys for the Example Programs

example programs. The SSLSCERT_TOOL.COM is found in SSL$SCOM. See the
documenation for more information about the SSLSCERT_TOOL.COM.

1. Create CA certificate - option 5 in SSLSCERT_ TOOL.COM.
This will create a key in one file, named SSLSKEY:SERVER_CA.KEY
by default, and a certificate in another file, named
SSLSCERT: SERVER_CA.CRT by default.

2. Make 2 copies of CA certificate created in step #1.
One should be called server_ca.crt and the other called
client_ca.crt as these are the filenames defined in the
example programs. You will have to exit the SSLS$SCERT_TOOL.COM
procedure to do this operation from the DCL command line.
For example:

$!S COPY SSLSKEY:SERVER_CA.KEY SSLSKEY:CLIENT_CA.KEY
$!S COPY SSLSCERT:SERVER_CA.CRT SSLSCERT:CLIENT_CA.CRT

Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl

3. Create a server certificate signing request - option 3 in SSL$CERT_TOOL.COM.
The Common Name should be the TCP/IP hostname of the server system.
The default name of the request is SERVER.CSR. The corresponding private
key is named SERVER.KEY.

4. Sign server certificate signing request - option 6 in SSLS$SCERT_TOOL.COM
Use the CA certificate, SERVER_CA.CRT, created in step #1 to sign the request
created in step #3. This will create a certificate file, which should be
named SERVER.CRT. This is the name as it is defined in example programs.

5. Create a client certificate signing request - option 3 in SSL$CERT_TOOL.COM.

6. Sign client certificate signing request - option 6 in SSL$SCERT_TOOL.COM
Use the CA certificate, CLIENT_CA.CRT, created in step #1 to sign the request
created in step #5. This will create a certificate file, which should be
named CLIENT.CRT. This is the name as it is defined in example programs.

7. These certificates and keys should reside in the same directory as
the example programs.

The commands have been changed to use generic data as

input. To use these commands, one will have to substitute

the generic data with data specific to their site.

For example, yourcountry could be change to US. It is

assumed that the SSL startup file, SYS$SSTARTUP:SSLSSTARTUP.COM,
and the SSL$SCOM:SSLSUTILS.COM procedures have been executed.

Check to make sure SSL has been started, so
we can use the logicals that it defines.

S 1f fStrnlnm(“SSLSROOT”) .egs. ““

S then

$ write sysS$Soutput “SSL needs to be started. Execute SYSSSTARTUP:SSLS$SSTARTUP, ”
S write sysS$output “then try this procedure again.”

S endif

Check to make sure SSLSUTILS has been executed, so

75

Example Programs
Template for Creating Certificates and Keys for the Example Programs

S! we can use the foreign commands that it sets up.

S

s! ¢ if fStype (OPENSSL) .egs. ““
$! $ then

st s @SSLS$SCOM: SSLSUTILS

S!S endif

Sl

$! Check to make sure the SERIAL and INDEX files exist.
$s! If they don’t, create them.

$!

s! ¢ if f$search (“SSLS$SROOT: [DEMOCA]SERIAL.TXT”) .egs. ““
$! $ then

SRS CREATE SSLSROOT: [DEMOCA]SERIAL.TXT

st 01

S!S endif

S

s!' ¢ if f$search (“SSLS$SROOT: [DEMOCA]INDEX.TXT”) .egs. ““
$! $ then

SRS CREATE SSLSROOT: [DEMOCA]INDEX.TXT

S!S endif

$!

$! Create the CA certificate.

$!

$! $ define/user sys$command sysS$Sinput

S! $ openssl req -config ssl$root:[000000]openssl-vms.cnf -new -x509 -days 1825 -
S! -keyout sslSkey:server_ca.key -out sslS$Scerts:server_ca.crt

$! yourpassword

$! yourpassword

$! yourcountry

$! yourstate

S! yourcity

$! yourcompany

$! yourdepartment

$! your Certificate Authority certificate $! firstname.lastname@yourcompany.com
S

S! Copy the server_ca.* to client_ca.* so that the CA can $! be loaded on each side.
Sl

S! $ copy sslSkey:server_ca.key sslSkey:client_ca.key

S! $ copy sslScerts:server_ca.crt ssl$Scerts:client_ca.crt

S

St os!

Stos!

S! $! Create the server certificate request.

Stos!

Stos! Note : There is no way to use the value of a
Stos! symbol when you are using the value of
stos! symbol as input, as we do below. To get
Stos! around, we create a .COM on the fly and
SRR execute the created .COm file to create
SR the server certificate.

St st

S! $ hostname = fS$trnlnm(“tcpipS$Sinet_host”)

S! $ domain = fsStrnlnm(“tcpipS$inet_domain”)

$! $ server_name = hostname + “.” + domain $! $!

S! $ open/write s_com create_s_cert.com

Stos!

$! $ write s_com “$!”
S! $ write s_com “$ define/user sys$Scommand sysS$Sinput”

76

Example Programs
Template for Creating Certificates and Keys for the Example Programs

S! $ write s_com “$ openssl reqg -new -nodes -config ssl$root:[000000]openssl-vms.cnf” -
S + “-keyout sslSkey:server.key -out sslScerts:server.csr”
$! $ write s_com “yourcountry”

$! $ write s_com “yourstate”

S$! $ write s_com “yourcity”

$! $ write s_com “yourcompany”

S$! $ write s_com “yourdepartment”

$! $ write s_com “''’server_name’"”

$S! $ write s_com “firstname.lastname@yourcompany.com”

$! $ write s_com ““

$! $ write s_com ““

$tos!

$! $ close s_com
$! $ @create_s_cert
$! $ delete create_s_cert.com;

SRR
SRR
$! $! Now, sign the server certificate
SRR

$! ¢ define/user sys$Scommand sysS$Sinput

$! $ openssl ca -config ssl$root:[000000]openssl-vms.cnf -cert sslScerts:server_ca.crt
-keyfile sslS$Skey:server_ca.key -

Sl-out sslScerts:server.crt -infiles ssl$Scerts:server.csr

$! yourpassword

Sty
Sty
SRR
SRR
S! $! Create the client certificate request.
SRR

$! $ define/user sys$Scommand sysS$input

S! $ openssl req -new -nodes -config sslS$root:[000000]openssl-vms.cnf -
$! -keyout sslSkey:client.key -out sslScerts:client.csr

$! yourcountry

$! yourstate

S! yourcity

$! yourcompany

$! yourdepartment

$! yourname

$! firstname.lastname@yourcompany.com

S

S

SRR

SRR

$! $! Now, sign the client certificate
SRR

$! $ define/user sys$command sysS$input
S! $ openssl ca -config ssl$root:[000000]openssl-vms.cnf -cert sslScerts:client_ca.crt
-keyfile sslS$Skey:client_ca.key -

$! -out sslScerts:client.crt -infiles sslScerts:client.csr
$! yourpassword

Sty

sty

SRR

$! $! Let’s view the CA certificate.

SRR

S! $ openssl x509 -noout -text -in ssl$certs:server_ca.crt
SRR

77

Example Programs
Simple SSL Client Program

SRR
S! $! Let’s view the Server Certificate Request.
SRR

$! $ openssl reqg -noout -text -in ssl$Scerts:server.csr
SRR

$! $! Let’s view the Server Certificate.

SRR

S! $ openssl x509 -noout -text -in sslS$Scerts:server.crt
SRR

S! $! Let’s view the Client Certificate Request.

SRR

$! $ openssl reqg -noout -text -in ssl$certs:client.csr
SRR

$! $! Let’s view the Client Certificate.

SRR

$! $ openssl x509 -noout -text -in sslScerts:client.crt
SRR

SRR

$! $! Lastly, move the certificates and keys to the directory
$! $! in which you are building/running the examples.
S

S! Sexit

5.3 Simple SSL Client Program

The following is the program listing of the SSL$SIMPLE_CLI.C example program.
/ *

* o4+
* FACILITY:

*

*Simplest SSL Client

*

* ABSTRACT:

*

* This is an example of an SSL client with minimum functionality.
* The socket APIs are used to handle TCP/IP operations.

*

*This SSL client verifies the server's certificate against the CA
*certificate loaded in the client.

*

*This SSL client does not load its own certificate and key because

*the SSL server does not request nor verify the client certificate.
*

*/

/* Assumptions, Build, Configuration, and Execution Instructions */
/*

* ASSUMPTIONS:

*

* The following are assumed to be true for the

* execution of this program to succeed:

*

* - SSL is installed and started on this system.

78

Example Programs
Simple SSL Client Program

* - this server program, and its accompanying client

* program are run on the same system, but in different
* processes.

*

* - the certificate and keys referenced by this program
* reside in the same directory as this program. There
* is a command procedure, SSLSEXAMPLES_SETUP.COM, to

* help set up the certificates and keys.

* BUILD INSTRUCTIONS:

* To build this example program use commands of the form,

*

* For a 32-bit application using only SSL APIs needs to run the

* following commands for SSL_APP.C

K e e e e e e e e o — — — — — — — — — — — — — — —— —— ——— — —
* SCC/POINTER_SIZE=32/PREFIX_LIBRARY ENTRIES=ALL_ENTRIES SSL_APP.C
* $LINK SSL_APP.OBJ, VMS_DECC_OPTIONS.OPT/OPT

K e e e e e e e o —— — ———— —
* VMS_DECC_OPTIONS.OPT should include the following lines.

K e e e e e e e o — — — —— — — —— — — — —— —— — — —— —— ——

* SYSSLIBRARY :SSLSLIBCRYPTO_SHR32.EXE/SHARE

* SYSSLIBRARY:SSLSLIBSSL_SHR32.EXE/SHARE

K e e e e e e e . — — —— — — — — — —— — — — — —— —— ——

*

* Creating a 64-bit application of SSL_APP.C should run the

* following commands.

K e e e e e e e e e . — — — — — — — — — — — — — —— —— ———— —
* SCC/POINTER_SIZE=64/PREFIX_LIBRARY ENTRIES=ALL_ENTRIES SSL_APP.C
* SLINK SSL_APP.OBJ, VMS_DECC_OPTIONS.OPT/OPT

K e e e e e e e e o — —— — — — — — — — —— — ———— —
* VMS_DECC_OPTIONS.OPT should include the following lines.

K e e e e e e e o — — — —— — — —— — — — — — — — —— —— ——

* SYS$SLIBRARY :SSLSLIBCRYPTO_SHR.EXE/SHARE

* SYS$SLIBRARY:SSLSLIBSSL_SHR.EXE/SHARE

* CONFIGURATION INSTRUCTIONS:

* RUN INSTRUCTIONS:

* To run this example program:

*

* 1) Start the server program,

*

* S run server on this system
*

* 2) Start the client program on this same system,
*

* S run client

*

*/

#include <stdio.h>

79

Example Programs
Simple SSL Client Program

#include <string.h>
#include <errno.h>
#include <netdb.h>
#include <unistd.h>
#ifdef __VMS
#include <socket.h>
#include <inet.h>

#include <in.h>

#else

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#endif

#include <openssl/crypto.h>
#include <openssl/ssl.h>
#include <openssl/err.h>

#define RETURN_NULL (x) if ((x)==NULL) exit (1)
#define RETURN_ERR(err,s) if ((err)==-1) { perror(s); exit(l); }
#define RETURN_SSL(err) if ((err)==

static int verify_callback(int ok, X509_STORE_CTX *ctx);

#define RSA_CLIENT_CERT"client.crt"
#define RSA_CLIENT_KEY "client.key"

#define RSA_CLIENT_CA_CERT "client_ca.crt"

#define RSA_CLIENT_CA_PATH "sys$common: [syshlp.examples.ssl]"
#define ON 1

#define OFF 0

void main()

{

int err;

int verify_client = OFF; /* To verify a client certificate, set ON */
int sock;

struct sockaddr_in server_addr;

char*str;

char buf [4096];

char hello[80];

SSL_CTX *ctx;

SSL *ssl;
SSL_METHOD *meth;
X509 *server_cert;

EVP_PKEY *pkey;

short int s_port = 5555;
const char*s_ipaddr = "127.0.0.1";

printf ("Message to be sent to the SSL server: ");
fgets (hello, 80, stdin);

-1) { ERR_print_errors_fp(stderr); exit(l);

}

80

Example Programs
Simple SSL Client Program

/* Load encryption & hashing algorithms for the SSL program */
SSL_library_init();

/* Load the error strings for SSL & CRYPTO APIs */
SSL_load_error_strings();

/* Create an SSL_METHOD structure (choose an SSL/TLS protocol version) */
meth = SSLv3_method() ;

/* Create an SSL_CTX structure */
ctx = SSL_CTX_new (meth) ;

RETURN_NULL (ctx) ;

if (verify client == ON)

/* Load the client certificate into the SSL_CTX structure */
if (SSL_CTX_ use_certificate_file(ctx, RSA_CLIENT_CERT,

SSL_FILETYPE_PEM) <= 0) {
ERR_print_errors_fp(stderr) ;
exit (1) ;

/* Load the private-key corresponding to the client certificate */
if (SSL_CTX_use_PrivateKey_ file(ctx, RSA_CLIENT_KEY,
SSL_FILETYPE_PEM) <= 0) {
ERR_print_errors_fp(stderr) ;
exit (1) ;

/* Check if the client certificate and private-key matches */
if (!SSL_CTX_check_private_key(ctx)) {
fprintf (stderr, "Private key does not match the
certificate public key\n");

exit (1) ;
}
}
/* Load the RSA CA certificate into the SSL_CTX structure */
/* This will allow this client to verify the server's x/
/* certificate. */

if (!SSL_CTX_load_verify locations(ctx, RSA_CLIENT_CA_CERT, NULL)) {
ERR_print_errors_fp(stderr);

exit (1) ;
}
/* Set flag in context to require peer (server) certificate */
/* verification */
SSL_CTX_set_verify(ctx,SSL_VERIFY_PEER,NULL) ;
SSL_CTX_set_verify_depth(ctx,1);
/* ___ */

81

Example Programs
Simple SSL Client Program

/* Set up a TCP socket */
sock = socket (PF_INET, SOCK_STREAM, IPPROTO_TCP) ;

RETURN_ERR (sock, "socket");

memset (&server_addr, '\0', sizeof (server_addr));
server_addr.sin_family = AF_INET;

server_addr.sin_port = htons(s_port) ; /* Server Port number */
server_addr.sin_addr.s_addr = inet_addr(s_ipaddr); /* Server IP */

/* Establish a TCP/IP connection to the SSL client */

err = connect (sock, (struct sockaddr*) &server_addr, sizeof (server_addr));
RETURN_ERR (err, "connect");

/* ___ */

/* An SSL structure is created */

ssl = SSL_new (ctx);

RETURN_NULL (ssl) ;

/* Assign the socket into the SSL structure (SSL and socket without BIO) */
SSL_set_fd(ssl, sock);

/* Perform SSL Handshake on the SSL client */
err = SSL_connect (ssl);

RETURN_SSL(err) ;

/* Informational output (optional) */
printf ("SSL connection using %s\n", SSL_get_cipher (ssl));

/* Get the server's certificate (optional) */

server_cert = SSL_get_peer_certificate (ssl);
if (server_cert != NULL)
{
printf ("Server certificate:\n");

str = X509_NAME_oneline (X509_get_subject_name (server_cert),0,0);
RETURN_NULL (str) ;

printf ("\t subject: %s\n", str);

free (str);

str = X509_NAME_oneline (X509_get_issuer_name (server_cert),0,0);
RETURN_NULL (str) ;

printf ("\t issuer: %s\n", str);

free(str);

X509_free (server_cert);

}
else
printf ("The SSL server does not have certificate.\n");

82

[Fmm e DATA EXCHANGE - send message and receive reply. ------- */
/* Send data to the SSL server */
err = SSL_write(ssl, hello, strlen(hello));

RETURN_SSL (err) ;

/* Receive data from the SSL server */
err = SSL_read(ssl, buf, sizeof(buf)-1);

RETURN_SSL (err) ;
buflerr] = '\0';

printf ("Received %d chars:'%s'\n", err, buf);

[Fmmm e SSL closure --------------- */
/* Shutdown the client side of the SSL connection */

err = SSL_shutdown(ssl) ;
RETURN_SSL(err) ;

/* Terminate communication on a socket */
err = close(sock);

RETURN_ERR(err, "close");

/* Free the SSL structure */
SSL_free(ssl);

/* Free the SSL_CTX structure */
SSL_CTX_free(ctx);

Example Programs
Simple SSL Server Program

5.4 Simple SSL Server Program

The following is the program listing of the SSL$SIMPLE_SERV.C example program.

/*
* o++
* FACILITY:

*

*Simplest SSL Server

*

* ABSTRACT:

*

*This i1s an example of a SSL server with minimum functionality.
*The socket APIs are used to handle TCP/IP operations. This SSL
*server loads its own certificate and key, but it does not verify
*the certificate of the SSL client.

*

*/

/* Assumptions, Build, Configuration, and Execution Instructions */
/*

* ASSUMPTIONS:

*

83

Example Programs

Simple SSL Server Program
* The following are assumed to be true for the
* execution of this program to succeed:
*
* - SSL is installed and started on this system.
*
* - this server program, and its accompanying client
* program are run on the same system, but in different
* processes.
*
* - the certificate and keys referenced by this program
* reside in the same directory as this program. There
* is a command procedure, SSLSEXAMPLES_SETUP.COM, to
* help set up the certificates and keys.

* BUILD INSTRUCTIONS:

* To build this example program use commands of the form,

*

* For a 32-bit application using only SSL APIs needs to run the

* following commands for SSL_APP.C

K e e e e e e e e . — — — —— — — — — — — — ——— ——— —
* $CC/POINTER_SIZE=32/PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES SSL_APP.C
* $LINK SSL_APP.OBJ, VMS_DECC_OPTIONS.OPT/OPT

K e e e e e e e e e . — — — —— — — — — — — — ——— ——— —
* VMS_DECC_OPTIONS.OPT should include the following lines.

K e e e e e e e e — — — — — — — — — — — —— — — — —— — — — — — — — — — — — — — — — — —— —— ———

* SYS$LIBRARY:SSLSLIBCRYPTO_SHR32 .EXE/SHARE

* SYS$LIBRARY:SSLSLIBSSL_SHR32.EXE/SHARE

K e e e e e e o — — — — — — — — — — — — — — — —— — — — — — — — — — — — — — — — — —— —— ———

*

* Creating a 64-bit application of SSL_APP.C should run the

* following commands.

K e e e e e e e e . — — — —— — — — — — —— — — — —— — — —— — — — — — — —— ——— ————
* SCC/POINTER_SIZE=64/PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES SSIL_APP.C
* SLINK SSL_APP.OBJ, VMS_DECC_OPTIONS.OPT/OPT

K e e e e e e e e o — — — — — — — — — — — —— — — — — — — — — —— ——— ————
* VMS_DECC_OPTIONS.OPT should include the following lines.

K e e e e e e e e —— —

* SYS$LIBRARY: SSLSLIBCRYPTO_SHR.EXE/SHARE

* SYS$LIBRARY:SSLSLIBSSL_SHR.EXE/SHARE

* CONFIGURATION INSTRUCTIONS:

* RUN INSTRUCTIONS:

* To run this example program:

*

* 1) Start the server program,

*

* $ run server

*

* 2) Start the client program on this same system,
*

* S run client

84

Example Programs
Simple SSL Server Program

*

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <netdb.h>
#include <unistd.h>

#ifdef __VMS
#include <types.h>
#include <socket.h>
#include <in.h>
#include <inet.h>

#else
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#endif

#include <openssl/crypto.h>
#include <openssl/ssl.h>
#include <openssl/err.h>

#define RSA_SERVER_CERT "server.crt"
#define RSA_SERVER_KEY "server.key"

#define RSA_SERVER_CA_CERT"server_ca.crt"
#define RSA_SERVER_CA_PATH"sysS$Scommon: [syshlp.examples.ssl]"

#define ON 1
#define OFF 0

#define RETURN_NULL (x) if ((x)==NULL) exit (1)
#define RETURN_ERR(err,s) if ((err)==-1) { perror(s); exit(l); }
#define RETURN_SSL(err) if ((err)==-1) { ERR_print_errors_fp(stderr); exit(1l); 1}

void main()

{

int err;

int verify_client = OFF; /* To verify a client certificate, set ON */

int listen_sock;

int sock;

struct sockaddr_in sa_serv;
struct sockaddr_in sa_cli;
size_t client_len;
char*str;

char buf[4096];

SSL_CTX*ctx;
SSL*ssl;
SSL_METHOD *meth;

85

Example Programs
Simple SSL Server Program

X509*client_cert = NULL;
short int s_port = 5555;

/* Load encryption & hashing algorithms for the SSL program */
SSL_library_init();

/* Load the error strings for SSL & CRYPTO APIs */
SSL_load_error_strings();

/* Create a SSL_METHOD structure (choose a SSL/TLS protocol version) */
meth = SSLv3_method() ;

/* Create a SSL_CTX structure */
ctx = SSL_CTX_new (meth) ;

if (lectx) {
ERR_print_errors_fp(stderr) ;

exit (1) ;

/* Load the server certificate into the SSL_CTX structure */
if (SSL_CTX_ use_certificate_file(ctx, RSA_SERVER_CERT, SSL_FILETYPE_PEM) <= 0) {

ERR_print_errors_fp(stderr);

exit (1) ;

/* Load the private-key corresponding to the server certificate */
if (SSL_CTX use_PrivateKey file(ctx, RSA_SERVER_KEY, SSL_FILETYPE PEM) <= 0) {

ERR_print_errors_fp(stderr);
exit (1) ;
/* Check if the server certificate and private-key matches */
if (!SSL_CTX_check_private_key (ctx)) {
fprintf (stderr, "Private key does not match the certificate public key\n");

exit (1) ;

if (verify client == ON)

/* Load the RSA CA certificate into the SSL_CTX structure */
if (!SSL_CTX_load_verify locations(ctx, RSA_SERVER_CA_CERT, NULL)) {

ERR_print_errors_fp(stderr) ;
exit (1) ;

86

Example Programs

Simple SSL Server Program
/* Set to require peer (client) certificate verification */
SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER,NULL) ;
/* Set the verification depth to 1 */
SSL_CTX_set_verify_ depth(ctx,1);
}
/* ___ */
/* Set up a TCP socket */
listen_sock = socket (PF_INET, SOCK_STREAM, IPPROTO_TCP) ;
RETURN_ERR (listen_sock, "socket");
memset (&sa_serv, '\0', sizeof (sa_serv));
sa_serv.sin_family = AF_INET;
sa_serv.sin_addr.s_addr = INADDR_ANY;
sa_serv.sin_port = htons (s_port); /* Server Port number */
err = bind(listen_sock, (struct sockaddr*)&sa_serv,sizeof (sa_serv));
RETURN_ERR (err, "bind");
/* Wait for an incoming TCP connection. */
err = listen(listen_sock, 5);
RETURN_ERR (err, "listen");
client_len = sizeof(sa_cli);
/* Socket for a TCP/IP connection is created */
sock = accept(listen_sock, (struct sockaddr*)&sa_cli, &client_len);
RETURN_ERR (sock, "accept");
close (listen_sock) ;
printf ("Connection from %1x, port %x\n", sa_cli.sin_addr.s_addr,
sa_cli.sin_port);
/* ___ */
/* TCP connection is ready. */
/* A SSL structure is created */
ssl = SSL_new(ctx) ;
RETURN_NULL (ssl) ;
/* Assign the socket into the SSL structure (SSL and socket without BIO) */

SSL_set_fd(ssl, sock);

/* Perform SSL Handshake on the SSL server */
err = SSL_accept(ssl);

RETURN_SSL(err) ;

/* Informational output (optional) */

printf ("SSL connection using %s\n", SSL_get_cipher (ssl));

if (verify_client == ON)
{

/* Get the client's certificate (optional) */

87

Example Programs

Simple SSL Server Program
client_cert = SSL_get_peer_certificate(ssl);
if (client_cert != NULL)

{

printf ("Client certificate:\n");

str = X509_NAME_oneline (X509_get_subject_name(client_cert),
RETURN_NULL (str) ;

printf ("\t subject: %s\n", str);

free (str);

str = X509_NAME_oneline (X509_get_issuer_name(client_cert),
RETURN_NULL (str) ;

printf ("\t issuer: %s\n", str);

free (str);

X509_free(client_cert) ;

}

else

printf ("The SSL client does not have certificate.\n");

[Fmmmm - DATA EXCHANGE - Receive message and send reply. -------

/* Receive data from the SSL client */
err = SSL_read(ssl, buf, sizeof(buf) - 1);

RETURN_SSL(err) ;
buflerr] = '\0';
printf ("Received %d chars:'%s'\n", err, buf);

/* Send data to the SSL client */
err = SSL_write(ssl, "This message is from the SSL server",

strlen("This message is from the SSL server"));
RETURN_SSL(err) ;

[Fmm e SSL closure --------------- */
/* Shutdown this side (server) of the connection. */

err = SSL_shutdown(ssl) ;
RETURN_SSL (err) ;

/* Terminate communication on a socket */
err = close(sock);

RETURN_ERR (err, "close");

/* Free the SSL structure */
SSL_free(ssl);

/* Free the SSL_CTX structure */
SSL_CTX_free(ctx);

0, 0);

0,

0);

88

OpenSSL Command Line Interface
Command-Line Help

6 OpenSSL Command Line Interface

HP SSL for OpenVMS provides a command line interface that allows you to use the cryptography functions of
SSL's cryptography library from the OpenSSL command prompt (OPENSSL>). You can use the command-line
interface for the following tasks:

e C(Creating RSA, DH and DSA key parameters

e Creating X.509 certificates, CSRs, and CRLs

e (Calculating message digests

¢ Encrypting and decrypting with ciphers

¢ Testing on SSL/TLS clients and servers

¢ Handling of S/MIME signed or encrypted mail

For reference information about the OpenSSL commands, see the OpenSSL Command Line Interface (CLI)
Reference.

6.1 Command-Line Help

HP SSL for OpenVMS includes three pseudocommands that function like command-line help. When you
enter one of these pseudocommands at the OpenSSL prompt, SSL displays a list (one entry per line) of names
of all the standard commands, message digest commands, or cipher commands, that are available in the
command line interface.

NOTE To use these commands, you must have previously run SYS$STARTUP:SSL$STARTUP.COM
and SSL$COM:SSL$UTILS.COM.

The pseudocommands are as follows:

S openssl

openssl> list-standard-commands
openssl> list-message-digest-commands
openssl> list-cipher-commands

To obtain a list of all of the commands available, enter the following:
S openssl ?

SSL$UTILS.COM sets up foreign commands to provide command-line accesss to the standard, message
digest, and cipher commands. You can also display the UNIX manpage documentation for each command by
entering the following:

S openssl command-name ?

where command-name is the name of an OpenSSL command such as asnlparse.

89

OpenSSL Command Line Interface
Standard Commands

6.2 Standard Commands

The following are the OpenSSL standard commands.

asnlparse

Parse an ASN.1 sequence
ca

Certificate Authority (CA) Management
ciphers

Cipher Suite Description Determination
crl

Certificate Revocation List (CRL) Management
crl2pkcs?7

CRL to PKCS#7 Conversion
dgst

Message Digest Calculation
dh

Diffie-Hellman Parameter Management Obsoleted by dHParam.
dHParam

Generation and Management of Diffie-Hellman Parameters
dsa

DSA Data Management
dsaparam

DSA Parameter Generation
enc

Encoding with Ciphers
errstr

Error Number to Error String Conversion
gendh

Generation of Diffie-Hellman Parameters. Obsoleted by dHParam.
gendsa

Generation of DSA Parameters
genrsa

Generation of RSA Parameters
nseq

Netscape Certificate Sequence Utility

90

passwd

pkcsl?2

pkcs7

pkcs8

rand

req

rsa

rsautl

s_client

S_server

s_time

sess_id

smime

speed

spkac

verify

OpenSSL Command Line Interface
Standard Commands

Generation of hashed passwords

PKCS#12 Data Management

PKCS#7 Data Management

PKCS#8 Data Management

Generate pseudo-random bytes

X.509 Certificate Signing Request (CSR) Management

RSA Data Management

RSA utility for signing, verification, encryption, and decryption

Implements a generic SSL/TLS client that can establish a transparent connection to a
remote server speaking SSL/TLS. This command, however, is intended for testing purposes
only and provides only rudimentary interface functionality. Internally, however, it uses most
of the functionality of the OpenSSL ss1 library.

Implements a generic SSL/TLS server that accepts connections from remote clients
speaking SSL/TLS. It is intended for testing purposes only and provides only rudimentary
interface functionality. Internally, however, it uses most of the functionality of the OpenSSL
ssl library. It provides both its own command-line oriented protocol for testing SSL
functions and a simple HTTP response facility to emulate an SSL/TLS-aware web server.

SSL Connection Timer

SSL Session Data Management

S/MIME mail processing

Algorithm Speed Measurement

Signed public key and challenge

91

OpenSSL Command Line Interface
Message Digest Commands

X.509 Certificate Verification
version

OpenSSL Version Information
x509

X.509 Certificate Data Management

6.3 Message Digest Commands

The following are the OpenSSL message digest commands.

md2

MD2 Digest
md4

MD4 Digest
md5

MD5 Digest
mdc2

MDC2 Digest
rmdl160

RMD-160 Digest
sha

SHA Digest
shal

SHA-1 Digest

6.4 Encoding and Cipher Commands

The following are the OpenSSL encoding and cipher commands. These commands use the following
abbreviations:

¢ (CBC - Cipher Block Chaining

e CFB - Cipher Feedback

e ECB - Electronic Cookbook

e OFB - Output Feedback

e EDE - Encrypt-Decrypt-Encrypt

92

baseb4

bf-cbc

bf

bf-cfb

bf-ecb

bf-ofb

cast-cbc

cast5-cbc

cast

castb5-cfb

castb-ecb

cast5-ofb

des-cbc

des

des-cfb

des-ofb

des-ecb

des-ede-cbc

Base64 Encoding

Blowfish in CBC mode

Alias for bf-cbc

Blowfish in CFB mode

Blowfish in ECB mode

Blowfish in OFB mode

CAST Cipher in CBC mode

CASTS5 Cipher in CBC mode

Alias for cast-cbc

CASTS5 in CFB mode

CASTS5 in ECB mode

CASTS5 in OFB mode

DES Cipher in CBC mode

Alias for des-cbe

DES in CFB mode

DES in OFB mode

DES in ECB mode

Two key triple DES EDE in CBC mode

OpenSSL Command Line Interface
Encoding and Cipher Commands

93

OpenSSL Command Line Interface
Encoding and Cipher Commands

des-ede

des-ede-cfb

des-ede-ofb

des-ede3-cbc

des-ede3

des3

des-ede3-cfb

des-ede3-ofb

desx

rc2-cbc

rc2

rc2-cfb

rc2-ecb

rc2-ofb

rc2-64-cbc

rc2-40-cbc

rcd

rcd-40

Alias for des-ede

Two key triple DES EDE in CFB mode

Two key triple DES EDE in OFB mode

Three key triple DES EDE in CBC mode

Alias for des-ede3-cbc

Alias for des-ede3-cbc

Three key triple DES EDE CFB mode

Three key triple DES EDE in OFB mode

DESX algorithm

128-bit RC2 Cipher in CBC mode

Alias for rc2-cbe

128-bit RC2 in CFB mode

128-bit RC2 in ECB mode

128-bit RC2 in OFB mode

64-bit RC2 in CBC mode

40-bit RC2 in CBC mode

128-bit RC4 Cipher

40-bit RC4

94

OpenSSL Command Line Interface
Password Arguments

6.5 Password Arguments

Several commands accept password arguments, typically using the passin and the passout options,
respectively, for input and output passwords. These arguments allow the password to be obtained from a
variety of sources. Both options take a single argument in the following format. If no password argument is
given and a password is required, then the user is prompted to enter a password. The password is read from
the current terminal with echoing turned off.

pass:password

The actual password is password. Since the password is visible to utilities (such as the ps
utility in UNIX), use this form only when security is not important.

env:var

Obtains the password from the environment variable var. Because the environment of other
processes is visible on certain platforms (such as ps in certain UNIX operating systems), use
this option with caution.

file:pathname

The first line of pathname is the password. If the same pathname argument is supplied to
the passin and passout arguments, then the first line is used for the input password and
the next line is used for the output password. The pathname need not refer to a regular file;
for example, it could refer to a device or named pipe.

fd:number

Reads the password from the file descriptor number. This can be used, for example, to send
the data via a pipe.

stdin

Reads the password from standard input.

6.6 Creating a DH Parameter (Key) File and a DSA Certificate and

Key
In order to establish an SSL connection with the DH (key exchange) and DSA (DSS, signing) algorithms, a
DH parameter file and DSA certificates and keys are required in your SSL application. The Certificate Tool

(described in Chapter 3) does not provide this functionality. However, the OpenSSL command-line utility
allows you to create the required files.

The following lines demonstrate how to create the DH and DSA related files.

Create a DH parameter (key size is 1024 bits)
$ openssl dHParam -outform PEM -out dHParam.pem 1024

Create a DSA certificate

- Create DSA parameters (key size is 1024 bits)
S openssl dsaparam -out dsaparam.pem 1024

- Create a DSA CA certificate and private key(using DSA parameter in dsaparam.pem)

95

OpenSSL Command Line Interface
Creating a DH Parameter (Key) File and a DSA Certificate and Key

S openssl reqg -x509 -newkey dsa:dsaparam.pem
-keyout dsa_ca.key -out dsa_ca.crt -config SSLSCONF
- Create DSA certificate signing request (dsa_cert.csr)& private key(dsa_cert.key)

S openssl req -out dsa_cert.csr -keyout dsa_cert.key
-newkey dsa:DSAPARAM.PEM -config SSLS$SCONF

- Sign Certificate Signing Request with DSA CA Certificate and Create a New Certificate
S openssl ca -in dsa_cert.csr -out dsa_cert.crt

-config SSLSCA_CONF

96

OpenSSL Command Line Interface (CLI) Reference

This reference section includes the OpenSSL commands, and is based on information provided by The Open
Group. This information can also be found at the following URL:

http://www.openssl.org

HP SSL for OpenVMS provides a command line interface that allows you to use the cryptography functions of
SSL's cryptography library from the OpenSSL command prompt (OPENSSL>). You can use the command-line
interface for the following tasks:

e C(Creating RSA, DH and DSA key parameters

¢ Creating X.509 certificates, CSRs, and CRLs

e (Calculating message digests

¢ Encrypting and decrypting with ciphers

¢ Testing on SSL/TLS clients and servers

¢ Handling of S/MIME signed or encrypted mail

See Chapter 6, OpenSSL Command Line Interface, for more information about the OpenSSL commands.

97

asnlparse
NAME

asnlparse — ASN.1 parsing tool

Synopsis

openssl asnlparse [-inform PEM|DER] [-in filename] [-out filename] [-noout] [-offset
number] [-length number] [-1] [-oid filename] [-strparse offset]

DESCRIPTION

The asnlparse command is a diagnostic utility that can parse ASN.1 structures. It can also be used to extract
data from ASN.1 formatted data.

OPTIONS

e -inform DER|PEM

the input format. DER is binary format and PEM (the default) is base64 encoded.
¢ -in filename

the input file, default is standard input
¢ -out filename

output file to place the DER encoded data into. If this option is not present then no data will be output.
This is most useful when combined with the -strparse option.

* -noout
don't output the parsed version of the input file.
e -offset number
starting offset to begin parsing, default is start of file.
¢ -length number
number of bytes to parse, default is until end of file.
e i
indents the output according to the "depth" of the structures.
¢ -oid filename

a file containing additional OBJECT IDENTIFIERs (OIDs). The format of this file is described in the
NOTES section below.

e _strparse offset

parse the contents octets of the ASN.1 object starting at offset. This option can be used multiple times to
"drill down" into a nested structure.

OUTPUT
The output will typically contain lines like this:

0:d=0 hl=4 1= 681 cons: SEQUENCE

98

229:d=3 hl=3 1= 141 prim: BIT STRING

373:d=2 hl=3 1= 162 cons: cont [3]

376:d=3 hl=3 1= 159 cons: SEQUENCE

379:d=4 hl=2 1= 29 cons: SEQUENCE

381:d=5 hl=2 1= 3 prim: OBJECT :X509v3 Subject Key Identifier
386:d=5 hl=2 1= 22 prim: OCTET STRING

410:d=4 hl=2 1= 112 cons: SEQUENCE

412:d=5 hl=2 1= 3 prim: OBJECT :X509v3 Authority Key Identifier
417:d=5 hl=2 1= 105 prim: OCTET STRING

524:d=4 hl=2 1= 12 cons: SEQUENCE

This example is part of a self signed certificate. Each line starts with the offset in decimal. d=XX specifies the
current depth. The depth is increased within the scope of any SET or SEQUENCE.

h1=XX gives the header length (tag and length octets) of the current type. 1=XX gives the length of the
contents octets.

The -i option can be used to make the output more readable.
Some knowledge of the ASN.1 structure is needed to interpret the output.

In this example the BIT STRING at offset 229 is the certificate public key. The contents octets of this will
contain the public key information. This can be examined using the option -strparse 229 to yield:

0:d=0 hl=3 1= 137 cons: SEQUENCE
3:d=1 hl=3 1= 129 prim: INTEGER
:E5D21E1F5C8D208EA7A2166CT7TFAF9F6BDF2059669C60876DDB70840F1ASAAFAS9699FE4A71F379F1DD6A487ET7D540
9AB6A88D4A9746E24B91D8CF55DB3521015460C8EDE44EE8BA4189F7A7BE77D6CD3A9AF2696F486855CF58BFOEDF2B
4068058C7A947F52548DDF7E15E96B385F86422BEA9064A3EE9E1158A56E4A6F47E5897
135:d=1 hl=2 1= 3 prim: INTEGER :010001

NOTES

If an OID is not part of OpenSSL's internal table it will be represented in numerical form (for example
1.2.3.4). The file passed to the -oid option allows additional OIDs to be included. Each line consists of three
columns, the first column is the OID in numerical format and should be followed by white space. The second
column is the "short name" which is a single word followed by white space. The final column is the rest of the
line and is the "long name". asnlparse displays the long name. Example:

1.2.3.4shortNameA long name

Restrictions

There should be options to change the format of input lines. The output of some ASN.1 types is not well
handled (if at all).

99

ca
NAME

ca — sample minimal CA application

Synopsis

openssl ca [-verbose] [-config filename] [-name section] [-gencrl] [-revoke file]
[-crl_reason reason] [-crl_hold instruction] [-crl_compromise time] [-crl_CA_compromise
time] [-subj arg] [-crldays days] [-crlhours hours] [-crlexts section] [-startdate datel]
[-enddate date] [-days arg] [-md arg] [-policy arg] [-keyfile arg] [-key arg] [-passin arg]
[-cert file] [-in file] [-out file] [-notext] [-outdir dir] [-infiles] [-spkac file]
[-ss_cert file] [-preserveDN] [-noemailDN] [-batch] [-msie_hack] [-extensions section]
[-extfile section] [-engine id]

DESCRIPTION

The ca command is a minimal CA application. It can be used to sign certificate requests in a variety of forms
and generate CRLs it also maintains a text database of issued certificates and their status.

The options descriptions will be divided into each purpose.

CA OPTIONS

¢ -config filename
specifies the configuration file to use.
* -name section
specifies the configuration file section to use (overrides default_ca in the ca section).
¢ -in filename
an input filename containing a single certificate request to be signed by the CA.
e -ss_cert filename
a single self signed certificate to be signed by the CA.
¢ -spkac filename

a file containing a single Netscape signed public key and challenge and additional field values to be
signed by the CA. See the SPKAC FORMAT section for information on the required format.

e _infiles

if present this should be the last option, all subsequent arguments are assumed to the the names of files
containing certificate requests.

e -out filename

the output file to output certificates to. The default is standard output. The certificate details will also be
printed out to this file.

e -outdir directory

the directory to output certificates to. The certificate will be written to a filename consisting of the serial
number in hex with ".pem" appended.

100

-cert

the CA certificate file.

-keyfile filename

the private key to sign requests with.
-key password

the password used to encrypt the private key. Since on some systems the command line arguments are
visible (e.g. UNIX with the 'ps' utility) this option should be used with caution.

-passin arg

the key password source. For more information about the format of arg see the PASS PHRASE
ARGUMENTS section in openssl (1).

-verbose

this prints extra details about the operations being performed.
-notext

don't output the text form of a certificate to the output file.
-startdate date

this allows the start date to be explicitly set. The format of the date is YYMMDDHHMMSSZ (the same as
an ASN1 UTCTime structure).

-enddate date

this allows the expiry date to be explicitly set. The format of the date is YYMMDDHHMMSSZ (the same
as an ASN1 UTCTime structure).

-days arg

the number of days to certify the certificate for.

-md alg

the message digest to use. Possible values include md5, shal and mdc2. This option also applies to CRLs.
-policy arg

this option defines the CA "policy" to use. This is a section in the configuration file which decides which
fields should be mandatory or match the CA certificate. Check out the POLICY FORMAT section for more
information.

-msie_hack

this is a legacy option to make ca work with very old versions of the IE certificate enrollment control
"certenr3". It used UniversalStrings for almost everything. Since the old control has various security bugs
its use is strongly discouraged. The newer control "Xenroll" does not need this option.

-preserveDN

Normally the DN order of a certificate is the same as the order of the fields in the relevant policy section.
When this option is set the order is the same as the request. This is largely for compatibility with the
older IE enrollment control which would only accept certificates if their DNs match the order of the
request. This is not needed for Xenroll.

-noemailDN

101

The DN of a certificate can contain the EMAIL field if present in the request DN, however it is good policy
just having the e-mail set into the altName extension of the certificate. When this option is set the EMAIL
field is removed from the certificate' subject and set only in the, eventually present, extensions. The
email in_dn keyword can be used in the configuration file to enable this behaviour.

-batch

this sets the batch mode. In this mode no questions will be asked and all certificates will be certified
automatically.

-extensions section

the section of the configuration file containing certificate extensions to be added when a certificate is
issued (defaults to x509_extensions unless the -extfile option is used). If no extension section is present
then, a V1 certificate is created. If the extension section is present (even if it is empty), then a V3
certificate is created.

-extfile file

an additional configuration file to read certificate extensions from (using the default section unless the
-extensions option is also used).
-engine id

specifying an engine (by it's unique id string) will cause req to attempt to obtain a functional reference to
the specified engine, thus initialising it if needed. The engine will then be set as the default for all
available algorithms.

CRL OPTIONS

-gencrl
this option generates a CRL based on information in the index file.
-crldays num

the number of days before the next CRL is due. That is the days from now to place in the CRL nextUpdate
field.

-crlhours num

the number of hours before the next CRL is due.
-revoke filename

a filename containing a certificate to revoke.
-crl_reason reason

revocation reason, where reason is one of: unspecified, keyCompromise, CACompromise,
affiliationChanged, superseded , cessationOfOperation, certificateHold or removeFromCRL . The
matching of reason is case insensitive. Setting any revocation reason will make the CRL v2.

In practive removeFromCRL is not particularly useful because it is only used in delta CRLs which are not
currently implemented.

-crl_hold instruction

This sets the CRL revocation reason code to certificateHold and the hold instruction to instruction which
must be an OID. Although any OID can be used only holdInstructionNone (the use of which is
discouraged by RFC2459) holdInstructionCalllssuer or holdInstructionReject will normally be used.

102

e -crl_compromise time

This sets the revocation reason to keyCompromise and the compromise time to time. time should be in
GeneralizedTime format; that is, YYYYMMDDHHMMSSZ.

e -crl_CA_compromise time
This is the same as crl_compromise except the revocation reason is set to CACompromise .
e -subjarg

supersedes subject name given in the request. The arg must be formatted as
/typel=valuel/typel=valuel/type2=. .., characters may be escaped by \ (backslash), no spaces are
skipped.

e _crlexts section

the section of the configuration file containing CRL extensions to include. If no CRL extension section is
present then a V1 CRL is created, if the CRL extension section is present (even if it is empty) then a V2
CRL is created. The CRL extensions specified are CRL extensions and not CRL entry extensions. It
should be noted that some software (for example Netscape) can't handle V2 CRLs.

CONFIGURATION FILE OPTIONS

The section of the configuration file containing options for ca is found as follows: If the -name command line
option is used, then it names the section to be used. Otherwise the section to be used must be named in the
default_ca option of the ca section of the configuration file (or in the default section of the configuration file).
Besides default_ca, the following options are read directly from the ca section: RANDFILE preserve
msie_hack With the exception of RANDFILE, this is probably a bug and may change in future releases.

Many of the configuration file options are identical to command line options. Where the option is present in
the configuration file and the command line the command line value is used. Where an option is described as
mandatory then it must be present in the configuration file or the command line equivalent (if any) used.

e oid_file

This specifies a file containing additional OBJECT IDENTIFIERS. Each line of the file should consist of
the numerical form of the object identifier followed by white space then the short name followed by white
space and finally the long name.

e 0id_section

This specifies a section in the configuration file containing extra object identifiers. Each line should
consist of the short name of the object identifier followed by = and the numerical form. The short and long
names are the same when this option is used.

e new._certs_dir

the same as the -outdir command line option. It specifies the directory where new certificates will be
placed. Mandatory.

e certificate

the same as -cert. It gives the file containing the CA certificate. Mandatory.
e private_key

same as the -keyfile option. The file containing the CA private key. Mandatory.
e RANDFILE

a file used to read and write random number seed information, or an EGD socket (see RAND_egd (3)).

103

default_days
the same as the -days option. The number of days to certify a certificate for.
default_startdate

the same as the -startdate option. The start date to certify a certificate for. If not set the current time is
used.

default_enddate

the same as the -enddate option. Either this option or default_days (or the command line equivalents)
must be present.

default_crl_hours default_crl_days

the same as the -crlhours and the -crldays options. These will only be used if neither command line option
is present. At least one of these must be present to generate a CRL.

default_md

the same as the -md option. The message digest to use. Mandatory.

database

the text database file to use. Mandatory. This file must be present though initially it will be empty.
serial

a text file containing the next serial number to use in hex. Mandatory. This file must be present and
contain a valid serial number.

x509_extensions

the same as -extensions.
crl_extensions

the same as -crlexts.
preserve

the same as -preserve DN
email_in_dn

the same as -noemailDN. If you want the EMAIL field to be removed from the DN of the certificate simply
set this to 'no'. If not present the default is to allow for the EMAIL filed in the certificate's DN.

msie_hack

the same as -msie_hack

policy

the same as -policy. Mandatory. See the POLICY FORMAT section for more information.
nameopt, certopt

these options allow the format used to display the certificate details when asking the user to confirm
signing. All the options supported by the x509 utilities -nameopt and -certopt switches can be used here,
except the no_signame and no_sigdump are permanently set and cannot be disabled (this is because the
certificate signature cannot be displayed because the certificate has not been signed at this point).

For convenience the values ca_default are accepted by both to produce a reasonable output.

104

If neither option is present the format used in earlier versions of OpenSSL is used. Use of the old format
is strongly discouraged because it only displays fields mentioned in the policy section, mishandles
multicharacter string types and does not display extensions.

® copy_extensions

determines how extensions in certificate requests should be handled. If set to none or this option is not
present then extensions are ignored and not copied to the certificate. If set to copy then any extensions
present in the request that are not already present are copied to the certificate. If set to copyall then all
extensions in the request are copied to the certificate: if the extension is already present in the certificate
it is deleted first. See the WARNINGS section before using this option.

The main use of this option is to allow a certificate request to supply values for certain extensions such as
subjectAltName.

POLICY FORMAT

The policy section consists of a set of variables corresponding to certificate DN fields. If the value is "match"
then the field value must match the same field in the CA certificate. If the value is "supplied" then it must be
present. If the value is "optional" then it may be present. Any fields not mentioned in the policy section are
silently deleted, unless the -preserveDN option is set but this can be regarded more of a quirk than intended
behaviour.

SPKAC FORMAT

The input to the -spkac command line option is a Netscape signed public key and challenge. This will usually
come from the KEYGEN tag in an HTML form to create a new private key. It is however possible to create
SPKACs using the spkac utility.

The file should contain the variable SPKAC set to the value of the SPKAC and also the required DN
components as name value pairs. If you need to include the same component twice then it can be preceded by
anumber and a'.".

EXAMPLES

Note: these examples assume that the ca directory structure is already set up and the relevant files already
exist. This usually involves creating a CA certificate and private key with req, a serial number file and an
empty index file and placing them in the relevant directories.

To use the sample configuration file below the directories demoCA, demoCA/private and demoCA/newcerts
would be created. The CA certificate would be copied to demoCA/cacert.pem and its private key to
demoCA/private/cakey.pem. A file demoCA/serial would be created containing for example "01" and the empty
index file demoCA/index.txt.

Sign a certificate request:
openssl ca -in reqg.pem -out newcert.pem
Sign a certificate request, using CA extensions:
openssl ca -in reqg.pem -extensions v3_ca -out newcert.pem
Generate a CRL
openssl ca -gencrl -out crl.pem
Sign several requests:

openssl ca -infiles reqgl.pem reqg2.pem reqg3.pem

105

Certify a Netscape SPKAC:
openssl ca -spkac spkac.txt
A sample SPKAC file (the SPKAC line has been truncated for clarity):

SPKAC=MIGOMGAWXDANBgkghkiGO9wOBAQEFAANLADBIAKEAN7PDhCeV/XIXUg8V70YRXK2A5
CN=Steve Test

emailAddress=steve@openssl.org

0.0U=0penSSL Group

1.0U=Another Group

A sample configuration file with the relevant sections for ca:

[ca]
default_ca = CA_default # The default ca section

[CA_default]

dir = ./demoCA # top dir

database = S$dir/index.txt # index file.
new_certs_dir= $dir/newcerts # new certs dir

certificate = $dir/cacert.pem # The CA cert

serial = Sdir/serial # serial no file
private_key = $dir/private/cakey.pem# CA private key

RANDFILE = $dir/private/.rand # random number file
default_days = 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md = md5 # md to use

policy = policy_any # default policy

no # Don't add the email into cert DN

email_in_dn
nameopt= ca_default# Subject name display option
certopt= ca_default# Certificate display option

copy_extensions = none# Don't copy extensions from request

[policy_any]

countryName = supplied
stateOrProvinceName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

FILES

Note: the location of all files can change either by compile time options, configuration file entries,
environment variables or command line options. The values below reflect the default values.

/usr/local/ssl/1lib/openssl.cnf - master configuration file

. /demoCA - main CA directory

. /demoCA/cacert.pem - CA certificate

. /demoCA/private/cakey.pem - CA private key

. /demoCA/serial - CA serial number file

. /demoCA/serial.old - CA serial number backup file
. /demoCA/index. txt - CA text database file

106

. /demoCA/index.txt.old - CA text database backup file
. /demoCA/certs - certificate output file
. /demoCA/.rnd - CA random seed information

ENVIRONMENT VARIABLES

OPENSSL_CONTF reflects the location of master configuration file it can be overridden by the -config
command line option.

RESTRICTIONS

The text database index file is a critical part of the process and if corrupted it can be difficult to fix. It is
theoretically possible to rebuild the index file from all the issued certificates and a current CRL: however
there is no option to do this.

V2 CRL features like delta CRL support and CRL numbers are not currently supported.

Although several requests can be input and handled at once it is only possible to include one SPKAC or self
signed certificate.

Restrictions

The use of an in memory text database can cause problems when large numbers of certificates are present
because, as the name implies the database has to be kept in memory.

It is not possible to certify two certificates with the same DN: this is a side effect of how the text database is
indexed and it cannot easily be fixed without introducing other problems. Some S/MIME clients can use two
certificates with the same DN for separate signing and encryption keys.

The ca command really needs rewriting or the required functionality exposed at either a command or
interface level so a more friendly utility (perl script or GUI) can handle things properly. The scripts CA.sh and
CA.pl help a little but not very much.

Any fields in a request that are not present in a policy are silently deleted. This does not happen if the
-preserveDN option is used. To enforce the absence of the EMAIL field within the DN, as suggested by RFCs,
regardless the contents of the request' subject the -noemailDN option can be used. The behaviour should be
more friendly and configurable.

Cancelling some commands by refusing to certify a certificate can create an empty file.

WARNINGS

The ca command is quirky and at times downright unfriendly.

The ca utility was originally meant as an example of how to do things in a CA. It was not supposed to be used
as a full blown CA itself: nevertheless some people are using it for this purpose.

The ca command is effectively a single user command: no locking is done on the various files and attempts to
run more than one ca command on the same database can have unpredictable results.

The copy_extensions option should be used with caution. If care is not taken then it can be a security risk. For
example if a certificate request contains a basicConstraints extension with CA:TRUE and the
copy_extensions value is set to copyall and the user does not spot this when the certificate is displayed then
this will hand the requestor a valid CA certificate.

This situation can be avoided by setting copy_extensions to copy and including basicConstraints with
CA:FALSE in the configuration file. Then if the request contains a basicConstraints extension it will be
ignored.

107

It is advisable to also include values for other extensions such as keyUsage to prevent a request supplying its
own values.

Additional restrictions can be placed on the CA certificate itself. For example if the CA certificate has:
basicConstraints = CA:TRUE, pathlen:0

then even if a certificate is issued with CA:TRUE it will not be valid.

SEE ALSO

req (1), spkac (1), x509 (1), CA.pl (1), config (5)

108

ciphers
NAME

ciphers — SSL cipher display and cipher list tool

Synopsis

openssl ciphers [-v] [-ssl2] [-ss13] [-tlsl] [cipherlist]

DESCRIPTION

The cipherlist command converts OpenSSL cipher lists into ordered SSL cipher preference lists. It can be
used as a test tool to determine the appropriate cipherlist.

COMMAND OPTIONS

e v

verbose option. List ciphers with a complete description of protocol version (SSLv2 or SSLv3; the latter
includes TLS), key exchange, authentication, encryption and mac algorithms used along with any key size
restrictions and whether the algorithm is classed as an "export" cipher. Note that without the -v option,
ciphers may seem to appear twice in a cipher list; this is when similar ciphers are available for SSL v2
and for SSL v3/TLS v1.

e -ssl3

only include SSL v3 ciphers.
o -ssl2

only include SSL v2 ciphers.
o -tlsl

only include TLS v1 ciphers.
e -h -?

print a brief usage message.
¢ cipherlist

a cipher list to convert to a cipher preference list. If it is not included then the default cipher list will be
used. The format is described below.

CIPHER LIST FORMAT

The cipher list consists of one or more cipher strings separated by colons. Commas or spaces are also
acceptable separators but colons are normally used.

The actual cipher string can take several different forms.
It can consist of a single cipher suite such as RC4-SHA.

It can represent a list of cipher suites containing a certain algorithm, or cipher suites of a certain type. For
example SHA1 represents all ciphers suites using the digest algorithm SHA1 and SSLv3 represents all SSL
v3 algorithms.

109

Lists of cipher suites can be combined in a single cipher string using the + character. This is used as a logical
and operation. For example SHA1+DES represents all cipher suites containing the SHA1 and the DES
algorithms.

Each cipher string can be optionally preceded by the characters !, - or +.

If ! is used then the ciphers are permanently deleted from the list. The ciphers deleted can never reappear in
the list even if they are explicitly stated.

If - is used then the ciphers are deleted from the list, but some or all of the ciphers can be added again by later
options.

If + is used then the ciphers are moved to the end of the list. This option doesn't add any new ciphers it just
moves matching existing ones.

If none of these characters is present then the string is just interpreted as a list of ciphers to be appended to
the current preference list. If the list includes any ciphers already present they will be ignored: that is they
will not moved to the end of the list.

Additionally the cipher string @STRENGTH can be used at any point to sort the current cipher list in order of
encryption algorithm key length.

CIPHER STRINGS

The following is a list of all permitted cipher strings and their meanings.
e DEFAULT

the default cipher list. This is determined at compile time and is normally
ALL:'ADH:RC4+RSA:+SSLv2:@STRENGTH.

This must be the first cipher string specified.
e COMPLEMENTOFDEFAULT

the ciphers included in ALL, but not enabled by default. Currently this is ADH. Note that this rule does
not cover eNULL, which is not included by ALL (use COMPLEMENTOFALL if necessary).

e ALL
all ciphers suites except the eNULL ciphers which must be explicitly enabled.
e COMPLEMENTOFALL
the cipher suites not enabled by ALL, currently being eNULL.
e HIGH
"high" encryption cipher suites. This currently means those with key lengths larger than 128 bits.
e MEDIUM
"medium" encryption cipher suites, currently those using 128 bit encryption.
e LOW

"low" encryption cipher suites, currently those using 64 or 56 bit encryption algorithms but excluding
export cipher suites.

e EXP, EXPORT
export encryption algorithms. Including 40 and 56 bits algorithms.

110

EXPORT40

40 bit export encryption algorithms
EXPORT56

56 bit export encryption algorithms.
eNULL, NULL

the "NULL" ciphers that is those offering no encryption. Because these offer no encryption at all and are a
security risk they are disabled unless explicitly included.

aNULL

the cipher suites offering no authentication. This is currently the anonymous DH algorithms. These
cipher suites are vulnerable to a "man in the middle" attack and so their use is normally discouraged.

kRSA, RSA

cipher suites using RSA key exchange.

kEDH

cipher suites using ephemeral DH key agreement.
kDHr, kDHd

cipher suites using DH key agreement and DH certificates signed by CAs with RSA and DSS keys
respectively. Not implemented.

aRSA

cipher suites using RSA authentication, i.e. the certificates carry RSA keys.

aDSS, DSS

cipher suites using DSS authentication, i.e. the certificates carry DSS keys.

aDH

cipher suites effectively using DH authentication, i.e. the certificates carry DH keys. Not implemented.
kFZA, aFZA, eFZA, FZA

ciphers suites using FORTEZZA key exchange, authentication, encryption or all FORTEZZA algorithms.
Not implemented.

TLSv1, SSLv3, SSLv2

TLS v1.0, SSL v3.0 or SSL v2.0 cipher suites respectively.
DH

cipher suites using DH, including anonymous DH.
ADH

anonymous DH cipher suites.

AES

cipher suites using AES.

3DES

cipher suites using triple DES.

DES

111

cipher suites using DES (not triple DES).
e RC4

cipher suites using RC4.
e RC2

cipher suites using RC2.
e IDEA

cipher suites using IDEA.
e MD5

cipher suites using MD5.
e SHAI, SHA

cipher suites using SHA1.

CIPHER SUITE NAMES

The following lists give the SSL or TLS cipher suites names from the relevant specification and their
OpenSSL equivalents. It should be noted, that several cipher suite names do not include the authentication
used, e.g. DES-CBC3-SHA. In these cases, RSA authentication is used.

SSL v3.0 cipher suites.

SSL_RSA_WITH_NULL_MD5 NULL-MD5
SSL_RSA_WITH_NULL_SHA NULL-SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5 EXP-RC4-MD5
SSL_RSA_WITH_RC4_128_MD5 RC4-MD5
SSL_RSA_WITH_RC4_128_SHA RC4-SHA
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 EXP-RC2-CBC-MD5
SSL_RSA_WITH_IDEA_CBC_SHA IDEA-CBC-SHA
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA EXP-DES-CBC-SHA
SSL_RSA_WITH_DES_CBC_SHA DES-CBC-SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA DES-CBC3-SHA
SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA Not implemented.
SSL_DH_DSS_WITH_DES_CBC_SHA Not implemented.
SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA Not implemented.
SSL_DH_RSA_EXPORT WITH_DES40_CBC_SHA Not implemented.
SSL_DH_RSA_WITH_DES_CBC_SHA Not implemented.
SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA Not implemented.
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA EXP-EDH-DSS-DES-CBC-SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA EDH-DSS-CBC-SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA EDH-DSS-DES-CBC3-SHA
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA EXP-EDH-RSA-DES-CBC-SHA
SSL_DHE_RSA_WITH_DES_CBC_SHA EDH-RSA-DES-CBC-SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA EDH-RSA-DES-CBC3-SHA
SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 EXP-ADH-RC4-MD5
SSL_DH_anon_WITH_RC4_128_MD5 ADH-RC4-MD5
SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA EXP-ADH-DES-CBC-SHA
SSL_DH_anon_WITH_DES_CBC_SHA ADH-DES-CBC-SHA
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA ADH-DES-CBC3-SHA

112

SSL_FORTEZZA_KEA_WITH_NULL_SHA
SSL_FORTEZZA_KEA_WITH_FORTEZZA_CBC_SHA
SSL_FORTEZZA_KEA_WITH _RC4_128_SHA

TLS v1.0 cipher suites.

TLS_RSA_WITH_NULL_MD5
TLS_RSA_WITH_NULL_SHA
TLS_RSA_EXPORT_WITH_RC4_40_MD5
TLS_RSA_WITH_RC4_128_MD5
TLS_RSA_WITH_RC4_128_SHA
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5
TLS_RSA_WITH_IDEA CBC_SHA
TLS_RSA_EXPORT WITH DES40_CBC_SHA
TLS_RSA_WITH_DES_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA

TLS_DH_DSS_EXPORT WITH_DES40_CBC_SHA
TLS_DH_DSS_WITH DES_CBC_SHA
TLS_DH_DSS_WITH 3DES_EDE_CBC_SHA
TLS_DH_RSA_EXPORT WITH_DES40_CBC_SHA
TLS_DH_RSA_WITH DES_CBC_SHA
TLS_DH_RSA_WITH 3DES_EDE_CBC_SHA
TLS_DHE_DSS_EXPORT WITH DES40_CBC_SHA
TLS_DHE_DSS_WITH_DES_CBC_SHA
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
TLS_DHE_RSA_ EXPORT WITH DES40_CBC_SHA
TLS_DHE_RSA_ WITH_DES_CBC_SHA
TLS_DHE_RSA_WITH 3DES_EDE_CBC_SHA

TLS_DH_anon_EXPORT_WITH_RC4_40_MD5
TLS_DH_anon_WITH_RC4_128_MD5
TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA
TLS_DH_anon_WITH_DES_CBC_SHA
TLS_DH_anon_WITH_3DES_EDE_CBC_SHA

Not implemented.
Not implemented.
Not implemented.

NULL-MD5
NULL-SHA
EXP-RC4-MD5
RC4-MD5

RC4-SHA
EXP-RC2-CBC-MD5
IDEA-CBC-SHA
EXP-DES-CBC-SHA
DES-CBC-SHA
DES-CBC3-SHA

Not implemented.

Not implemented.

Not implemented.

Not implemented.

Not implemented.

Not implemented.
EXP-EDH-DSS-DES-CBC-SHA
EDH-DSS-CBC-SHA
EDH-DSS-DES-CBC3-SHA
EXP-EDH-RSA-DES-CBC-SHA
EDH-RSA-DES-CBC-SHA
EDH-RSA-DES-CBC3-SHA

EXP-ADH-RC4-MD5
ADH-RC4-MD5
EXP-ADH-DES-CBC-SHA
ADH-DES-CBC-SHA
ADH-DES-CBC3-SHA

AES ciphersuites from RFC3268, extending TLS v1.0

TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA

TLS_DH_DSS_WITH AES_128_CBC_SHA
TLS_DH_DSS_WITH AES_256_CBC_SHA
TLS_DH_RSA_WITH AES_128_CBC_SHA
TLS_DH_RSA_WITH AES_256_CBC_SHA

TLS_DHE_DSS_WITH_AES_128_CBC_SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA
TLS_DHE_RSA WITH_AES_128_CBC_SHA
TLS_DHE_RSA WITH_AES_256_CBC_SHA

TLS_DH_anon WITH_AES_128_CBC_SHA
TLS_DH_anon WITH_AES_256_CBC_SHA

AES128-SHA
AES256-SHA

DH-DSS-AES128-SHA
DH-DSS-AES256-SHA
DH-RSA-AES128-SHA
DH-RSA-AES256-SHA

DHE-DSS-AES128-SHA
DHE-DSS-AES256-SHA
DHE-RSA-AES128-SHA
DHE-RSA-AES256-SHA

ADH-AES128-SHA
ADH-AES256-SHA

Additional Export 1024 and other cipher suites

Note: these ciphers can also be used in SSL v3.

113

TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA EXP1024-DES-CBC-SHA
TLS_RSA_EXPORT1024_WITH_RC4_56_SHA EXP1024-RC4-SHA
TLS_DHE_DSS_EXPORT1024_WITH DES_CBC_SHA EXP1024-DHE-DSS-DES-CBC-SHA
TLS_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA EXP1024-DHE-DSS-RC4-SHA
TLS_DHE_DSS_WITH_RC4_128_SHA DHE-DSS-RC4-SHA

SSL v2.0 cipher suites.

SSL_CK_RC4_128_WITH MD5 RC4-MD5
SSL_CK_RC4_128_EXPORT40_WITH_MD5 EXP-RC4-MD5
SSL_CK_RC2_128_CBC_WITH_MD5 RC2-MD5
SSL_CK_RC2_128_CBC_EXPORT40_WITH MD5 EXP-RC2-MD5
SSL_CK_IDEA_128_CBC_WITH_MD5 IDEA-CBC-MD5
SSL_CK_DES_64_CBC_WITH_MD5 DES-CBC-MD5
SSL_CK_DES_192_EDE3_CBC_WITH_MD5 DES-CBC3-MD5
NOTES

The non-ephemeral DH modes are currently unimplemented in OpenSSL because there is no support for DH
certificates.

Some compiled versions of OpenSSL may not include all the ciphers listed here because some ciphers were
excluded at compile time.

EXAMPLES
Verbose listing of all OpenSSL ciphers including NULL ciphers:

openssl ciphers -v 'ALL:eNULL'
Include all ciphers except NULL and anonymous DH then sort by strength:
openssl ciphers -v 'ALL:!ADH:@STRENGTH'
Include only 3DES ciphers and then place RSA ciphers last:
openssl ciphers -v '3DES:+RSA'
Include all RC4 ciphers but leave out those without authentication:
openssl ciphers -v 'RC4:!COMPLEMENTOFDEFAULT'
Include all chiphers with RSA authentication but leave out ciphers without encryption.

openssl ciphers -v 'RSA:!COMPLEMENTOFALL'

SEE ALSO

s_client (1), s_server (1), ssl (3)

HISTORY
The COMPLENTOFALL and COMPLEMENTOFDEFAULT selection options were added in version 0.9.7.

114

config

NAME
config — OpenSSL CONF library configuration files

DESCRIPTION

The OpenSSL CONTF library can be used to read configuration files. It is used for the OpenSSL master
configuration file openssl.cnf and in a few other places like SPKAC files and certificate extension files for the
x509 utility.

A configuration file is divided into a number of sections. Each section starts with a line [section_name | and
ends when a new section is started or end of file is reached. A section name can consist of alphanumeric
characters and underscores.

The first section of a configuration file is special and is referred to as the default section this is usually
unnamed and is from the start of file until the first named section. When a name is being looked up it is first
looked up in a named section (if any) and then the default section.

The environment is mapped onto a section called ENV.
Comments can be included by preceding them with the # character
Each section in a configuration file consists of a number of name and value pairs of the form name=value

The name string can contain any alphanumeric characters as well as a few punctuation symbols such as ., ;
and _.

The value string consists of the string following the = character until end of line with any leading and trailing
white space removed.

The value string undergoes variable expansion. This can be done by including the form $var or ${var}: this
will substitute the value of the named variable in the current section. It is also possible to substitute a value
from another section using the syntax $section::name or ${section::name}. By using the form $ENV::name
environment variables can be substituted. It is also possible to assign values to environment variables by
using the name ENV::name, this will work if the program looks up environment variables using the CONF
library instead of calling getenv() directly.

It is possible to escape certain characters by using any kind of quote or the \ character. By making the last
character of a line a \ a value string can be spread across multiple lines. In addition the sequences \n, \r, \b
and \t are recognized.

NOTES

If a configuration file attempts to expand a variable that doesn't exist then an error is flagged and the file will
not load. This can happen if an attempt is made to expand an environment variable that doesn't exist. For
example the default OpenSSL master configuration file used the value of HOME which may not be defined on
non UNIX systems.

This can be worked around by including a default section to provide a default value: then if the environment
lookup fails the default value will be used instead. For this to work properly the default value must be defined
earlier in the configuration file than the expansion. See the EXAMPLES section for an example of how to do
this.

If the same variable exists in the same section then all but the last value will be silently ignored. In certain
circumstances such as with DNs the same field may occur multiple times. This is usually worked around by
ignoring any characters before an initial . e.g.

115

1.0U="My first OU"
2.0U="My Second 0OU"

EXAMPLES

Here is a sample configuration file using some of the features mentioned above.

This is the default section.

HOME=/temp
RANDFILE= S$S{ENV::HOME}/.rnd
configdir=$ENV::HOME/config

[section_one]
We are now in section one.

Quotes permit leading and trailing whitespace
any = " any variable name "

other = A string that can \
cover several lines \
by including \\ characters

message = Hello World\n
[section_two]

greeting = $section_one::message
This next example shows how to expand environment variables safely.

Suppose you want a variable called tmpfile to refer to a temporary filename. The directory it is placed in can
determined by the the TEMP or TMP environment variables but they may not be set to any value at all. If you
just include the environment variable names and the variable doesn't exist then this will cause an error when
an attempt is made to load the configuration file. By making use of the default section both values can be
looked up with TEMP taking priority and /tmp used if neither is defined:

TMP=/tmp

The above value is used if TMP isn't in the environment
TEMP=S$ENV: : TMP

The above value is used if TEMP isn't in the environment
tmpfile=${ENV: :TEMP}/tmp. filename

Restrictions

Currently there is no way to include characters using the octal \nnn form. Strings are all null terminated so
nulls cannot form part of the value.

The escaping isn't quite right: if you want to use sequences like \n you can't use any quote escaping on the
same line.

Files are loaded in a single pass. This means that an variable expansion will only work if the variables
referenced are defined earlier in the file.

SEE ALSO

x509 (1), req (1), ca (1)

116

crl

NAME
crl — CRL utility

Synopsis
openssl crl [-inform PEM|DER] [-outform PEM|DER] [-text] [-in filename] [-out filename]
[-noout] [-hash] [-issuer] [-lastupdate] [-nextupdate] [-CAfile file] [-CApath dir]

DESCRIPTION
The crl command processes CRL files in DER or PEM format.

COMMAND OPTIONS

e -inform DER|PEM

This specifies the input format. DER format is DER encoded CRL structure. PEM (the default) is a base64
encoded version of the DER form with header and footer lines.

e -outform DER|PEM
This specifies the output format, the options have the same meaning as the -inform option.
¢ -in filename
This specifies the input filename to read from or standard input if this option is not specified.
¢ -out filename
specifies the output filename to write to or standard output by default.
e -text
print out the CRL in text form.
* -noout
don't output the encoded version of the CRL.
¢ -hash
output a hash of the issuer name. This can be use to lookup CRLs in a directory by issuer name.
® -issuer
output the issuer name.
e -lastupdate
output the lastUpdate field.
e -nextupdate
output the nextUpdate field.
e _CAfile file
verify the signature on a CRL by looking up the issuing certificate in file

¢ -CApath dir

117

verify the signature on a CRL by looking up the issuing certificate in dir. This directory must be a
standard certificate directory: that is a hash of each subject name (using x509 -hash) should be linked to
each certificate.

NOTES

The PEM CRL format uses the header and footer lines:

EXAMPLES
Convert a CRL file from PEM to DER:

openssl crl -in crl.pem -outform DER -out crl.der
Output the text form of a DER encoded certificate:

openssl crl -in crl.der -text -noout

Restrictions

Ideally it should be possible to create a CRL using appropriate options and files too.

SEE ALSO

crl2pkes7 (1), ca (1), x509 (1)

118

crl2pkes7
NAME

crl2pkes7 — Create a PKCS#7 structure from a CRL and certificates

Synopsis

openssl crl2pkcs7 [-inform PEM|DER] [-outform PEM|DER] [-in filename] [-out filename]
[-certfile filename] [-nocrl]

DESCRIPTION

The crl2pkes7 command takes an optional CRL and one or more certificates and converts them into a
PKCS#7 degenerate "certificates only" structure.

COMMAND OPTIONS

e -inform DER|PEM

This specifies the CRL input format. DER format is DER encoded CRL structure.PEM (the default) is a
base64 encoded version of the DER form with header and footer lines.

e -outform DER|PEM

This specifies the PKCS#7 structure output format. DER format is DER encoded PKCS#7 structure. PEM
(the default) is a base64 encoded version of the DER form with header and footer lines.

e -in filename

This specifies the input filename to read a CRL from or standard input if this option is not specified.
¢ -out filename

specifies the output filename to write the PKCS#7 structure to or standard output by default.
e -certfile filename

specifies a filename containing one or more certificates in PEM format. All certificates in the file will be
added to the PKCS#7 structure. This option can be used more than once to read certificates form multiple
files.

e _nocrl

normally a CRL is included in the output file. With this option no CRL is included in the output file and a
CRL is not read from the input file.

EXAMPLES

Create a PKCS#7 structure from a certificate and CRL:
openssl crl2pkcs7 -in crl.pem -certfile cert.pem -out p7.pem
Creates a PKCS#7 structure in DER format with no CRL from several different certificates:

openssl crl2pkcs7 -nocrl -certfile newcert.pem
-certfile demoCA/cacert.pem -outform DER -out p7.der

119

NOTES

The output file is a PKCS#7 signed data structure containing no signers and just certificates and an optional
CRL.

This utility can be used to send certificates and CAs to Netscape as part of the certificate enrollment process.
This involves sending the DER encoded output as MIME type application/x-x509-user-cert.

The PEM encoded form with the header and footer lines removed can be used to install user certificates and
CAs in MSIE using the Xenroll control.

SEE ALSO

pkcs7 (1)

120

dgst
NAME
dgst, md5, md4, md2, shal, sha, mdc2, ripemd160 — message digests , Synopsis

openssl dgst [-md5|-md4|-md2|-shal|-sha|-mdc2|-ripemdl160|-dssl 1 [-c] [-d] [-hex]
[-binary] [-out filename] [-sign filename] [-verify filename] [-prverify filename]
[-signature filename] [file...] [md5|md4|md2|shal|sha|mdc2|ripemdl160] [-c] [-d] [file...]

DESCRIPTION

The digest functions output the message digest of a supplied file or files in hexadecimal form. They can also
be used for digital signing and verification.

OPTIONS

LI

print out the digest in two digit groups separated by colons, only relevant if hex format output is used.
e d

print out BIO debugging information.
e -hex

digest is to be output as a hex dump. This is the default case for a "normal" digest as opposed to a digital
signature.

¢ -binary
output the digest or signature in binary form.
¢ -out filename
filename to output to, or standard output by default.
e -sign filename
digitally sign the digest using the private key in "filename".
e -verify filename

verify the signature using the the public key in "filename". The output is either "Verification OK" or
"Verification Failure".

e -prverify filename

verify the signature using the the private key in "filename".
e _signature filename

the actual signature to verify.
¢ -rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see
RAND_egd (3)). Multiple files can be specified separated by a OS-dependent character. The separator is ;
for MS-Windows, , for OpenVMS, and : for all others.

121

e file...

file or files to digest. If no files are specified then standard input is used.

NOTES

The digest of choice for all new applications is SHA1. Other digests are however still widely used.
If you wish to sign or verify data using the DSA algorithm then the dssl1 digest must be used.
A source of random numbers is required for certain signing algorithms, in particular DSA.

The signing and verify options should only be used if a single file is being signed or verified.

122

dhparam
NAME

dhparam — DH parameter manipulation and generation,
Synopsis

openssl dhparam [-inform DER|PEM] [-outform DER|PEM] [-in filename] [-out filename]
[-dsaparam] [-noout] [-text] [-C] [-2] [-5] [-rand file(s)] [-engine id] [numbits]

DESCRIPTION

This command is used to manipulate DH parameter files.

OPTIONS

e -inform DER|PEM

This specifies the input format. The DER option uses an ASN1 DER encoded form compatible with the
PKCS#3 DHparameter structure. The PEM form is the default format: it consists of the DER format
base64 encoded with additional header and footer lines.

e -outform DER|PEM

This specifies the output format, the options have the same meaning as the -inform option.
® -in filename

This specifies the input filename to read parameters from or standard input if this option is not specified.
® -out filename

This specifies the output filename parameters to. Standard output is used if this option is not present.
The output filename should not be the same as the input filename.

e -dsaparam

If this option is used, DSA rather than DH parameters are read or created; they are converted to DH
format. Otherwise, "strong" primes (such that (p-1)/2 is also prime) will be used for DH parameter
generation.

DH parameter generation with the -dsaparam option is much faster, and the recommended exponent
length is shorter, which makes DH key exchange more efficient. Beware that with such DSA-style DH
parameters, a fresh DH key should be created for each use to avoid small-subgroup attacks that may be
possible otherwise.

. 2,5

The generator to use, either 2 or 5. 2 is the default. If present then the input file is ignored and
parameters are generated instead.

e ._rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see
RAND_egd (3)). Multiple files can be specified separated by a OS-dependent character. The separator is ;
for MS-Windows, , for OpenVMS, and : for all others.

® numbits

123

this option specifies that a parameter set should be generated of size numbits. It must be the last option.
If not present then a value of 512 is used. If this option is present then the input file is ignored and
parameters are generated instead.

* -noout

this option inhibits the output of the encoded version of the parameters.
e -text

this option prints out the DH parameters in human readable form.
e C

this option converts the parameters into C code. The parameters can then be loaded by calling the
get_dhnumbits() function.

* -engineid

specifying an engine (by it's unique id string) will cause req to attempt to obtain a functional reference to
the specified engine, thus initialising it if needed. The engine will then be set as the default for all
available algorithms.

WARNINGS

The program dhparam combines the functionality of the programs dh and gendh in previous versions of
OpenSSL and SSLeay. The dh and gendh programs are retained for now but may have different purposes in
future versions of OpenSSL.

NOTES

PEM format DH parameters use the header and footer lines:

OpenSSL currently only supports the older PKCS#3 DH, not the newer X9.42 DH.

This program manipulates DH parameters not keys.

Restrictions

There should be a way to generate and manipulate DH keys.

SEE ALSO

dsaparam (1)

HISTORY
The dhparam command was added in OpenSSL 0.9.5. The -dsaparam option was added in OpenSSL 0.9.6.

124

dsa

NAME
dsa — DSA key processing

Synopsis

openssl dsa [-inform PEM|DER] [-outform PEM|DER] [-in filename] [-passin arg] [-out
filename] [-passout arg] [-des] [-des3] [-idea] [-text] [-noout] [-modulus] [-pubin]
[-pubout] [-engine id]

DESCRIPTION

The dsa command processes DSA keys. They can be converted between various forms and their components
printed out.

Note: This command uses the traditional SSLeay compatible format for private key encryption: newer
applications should use the more secure PKCS#8 format using the pkcs8.

COMMAND OPTIONS

e -inform DER|PEM

This specifies the input format. The DER option with a private key uses an ASN1 DER encoded form of an
ASN.1 SEQUENCE consisting of the values of version (currently zero), p, q, g, the public and private key
components respectively as ASN.1 INTEGERs. When used with a public key it uses a
SubjectPublicKeyInfo structure: it is an error if the key is not DSA.

The PEM form is the default format: it consists of the DER format base64 encoded with additional header
and footer lines. In the case of a private key PKCS#8 format is also accepted.

e -outform DER|PEM
This specifies the output format, the options have the same meaning as the -inform option.
¢ -in filename

This specifies the input filename to read a key from or standard input if this option is not specified. If the
key is encrypted a pass phrase will be prompted for.

® -passin arg

the input file password source. For more information about the format of arg see the PASS PHRASE
ARGUMENTS section in openssl (1).

e -out filename

This specifies the output filename to write a key to or standard output by is not specified. If any
encryption options are set then a pass phrase will be prompted for. The output filename should not be the
same as the input filename.

®* -passout arg

the output file password source. For more information about the format of arg see the PASS PHRASE
ARGUMENTS section in openssl (1).

125

-des | -des3 | -idea

These options encrypt the private key with the DES, triple DES, or the IDEA ciphers respectively before
outputting it. A pass phrase is prompted for. If none of these options is specified the key is written in plain
text. This means that using the dsa utility to read in an encrypted key with no encryption option can be

used to remove the pass phrase from a key, or by setting the encryption options it can be use to add or
change the pass phrase. These options can only be used with PEM format output files.

e -text
prints out the public, private key components and parameters.
* -noout
this option prevents output of the encoded version of the key.
¢ -modulus
this option prints out the value of the public key component of the key.
* -pubin
by default a private key is read from the input file: with this option a public key is read instead.
e -pubout

by default a private key is output. With this option a public key will be output instead. This option is
automatically set if the input is a public key.

* -engineid

specifying an engine (by it's unique id string) will cause req to attempt to obtain a functional reference to

the specified engine, thus initialising it if needed. The engine will then be set as the default for all
available algorithms.

NOTES

The PEM private key format uses the header and footer lines:

EXAMPLES

To remove the pass phrase on a DSA private key:
openssl dsa -in key.pem -out keyout.pem
To encrypt a private key using triple DES:
openssl dsa -in key.pem -des3 -out keyout.pem
To convert a private key from PEM to DER format:
openssl dsa -in key.pem -outform DER -out keyout.der
To print out the components of a private key to standard output:

openssl dsa -in key.pem -text -noout

126

To just output the public part of a private key:

openssl dsa -in key.pem -pubout -out pubkey.pem

SEE ALSO

dsaparam (1), gendsa (1), rsa (1), genrsa (1)

127

dsaparam
NAME

dsaparam — DSA parameter manipulation and generation

Synopsis

openssl dsaparam [-inform DER|PEM] [-outform DER|PEM] [-in filename] [-out filename]
[-noout] [-text] [-C] [-rand file(s)] [-genkey] [-engine id] [numbits]

DESCRIPTION

This command is used to manipulate or generate DSA parameter files.

OPTIONS

e -inform DER|PEM

This specifies the input format. The DER option uses an ASN1 DER encoded form compatible with
RFC2459 (PKIX) DSS-Parms that is a SEQUENCE consisting of p, q and g respectively. The PEM form is
the default format: it consists of the DER format base64 encoded with additional header and footer lines.

e -outform DER|PEM
This specifies the output format, the options have the same meaning as the -inform option.
e -in filename

This specifies the input filename to read parameters from or standard input if this option is not specified.
If the numbits parameter is included then this option will be ignored.

e -out filename

This specifies the output filename parameters to. Standard output is used if this option is not present.
The output filename should not be the same as the input filename.

® -noout

this option inhibits the output of the encoded version of the parameters.
e -text

this option prints out the DSA parameters in human readable form.
e C

this option converts the parameters into C code. The parameters can then be loaded by calling the
get_dsaXXX() function.

e -genkey
this option will generate a DSA either using the specified or generated parameters.
e -rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see
RAND_egd (3)). Multiple files can be specified separated by a OS-dependent character. The separator is ;
for MS-Windows, , for OpenVMS, and : for all others.

128

e numbits

this option specifies that a parameter set should be generated of size numbits. It must be the last option.
If this option is included then the input file (if any) is ignored.

* -engineid

specifying an engine (by it's unique id string) will cause req to attempt to obtain a functional reference to
the specified engine, thus initialising it if needed. The engine will then be set as the default for all
available algorithms.

NOTES

PEM format DSA parameters use the header and footer lines:

DSA parameter generation is a slow process and as a result the same set of DSA parameters is often used to
generate several distinct keys.

SEE ALSO

gendsa (1), dsa (1), genrsa (1), rsa (1)

129

enc
NAME

enc — symmetric cipher routines

Synopsis

openssl enc -ciphername [-in filename] [-out filename] [-pass arg] [-e] [-d] [-a] [-A] [-k
password] [-kfile filename] [-K key] [-iv IV] [-p] [-P] [-bufsize number] [-nopad] [-debug]

DESCRIPTION

The symmetric cipher commands allow data to be encrypted or decrypted using various block and stream
ciphers using keys based on passwords or explicitly provided. Base64 encoding or decoding can also be
performed either by itself or in addition to the encryption or decryption.

OPTIONS

¢ -in filename

the input filename, standard input by default.
¢ -out filename

the output filename, standard output by default.
® -passarg

the password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl (1).

e -galt

use a salt in the key derivation routines. This option should ALWAYS be used unless compatibility with
previous versions of OpenSSL or SSLeay is required. This option is only present on OpenSSL versions
0.9.5 or above.

e _nosalt

don't use a salt in the key derivation routines. This is the default for compatibility with previous versions
of OpenSSL and SSLeay.

e e

encrypt the input data: this is the default.
e d

decrypt the input data.
e -a

base64 process the data. This means that if encryption is taking place the data is base64 encoded after
encryption. If decryption is set then the input data is base64 decoded before being decrypted.

e A

if the -a option is set then base64 process the data on one line.

130

e -k password

the password to derive the key from. This is for compatibility with previous versions of OpenSSL.
Superseded by the -pass argument.

e _kfile filename

read the password to derive the key from the first line of filename. This is for computability with previous
versions of OpenSSL. Superseded by the -pass argument.

e -Ssalt
the actual salt to use: this must be represented as a string comprised only of hex digits.
e -Kkey

the actual key to use: this must be represented as a string comprised only of hex digits. If only the key is
specified, the IV must additionally specified using the -iv option. When both a key and a password are
specified, the key given with the -K option will be used and the IV generated from the password will be
taken. It probably does not make much sense to specify both key and password.

e .vIV

the actual IV to use: this must be represented as a string comprised only of hex digits. When only the key
is specified using the -K option, the IV must explicitly be defined. When a password is being specified
using one of the other options, the IV is generated from this password.

* p
print out the key and IV used.
e P

print out the key and IV used then immediately exit: don't do any encryption or decryption.
¢ -bufsize number

set the buffer size for I/O
e -nopad

disable standard block padding
e -debug

debug the BIOs used for I/0.

NOTES

The program can be called either as openssl ciphername or openssl enc -ciphername.
A password will be prompted for to derive the key and IV if necessary.

The -salt option should ALWAYS be used if the key is being derived from a password unless you want
compatibility with previous versions of OpenSSL and SSLeay.

Without the -salt option it is possible to perform efficient dictionary attacks on the password and to attack
stream cipher encrypted data. The reason for this is that without the salt the same password always
generates the same encryption key. When the salt is being used the first eight bytes of the encrypted data are
reserved for the salt: it is generated at random when encrypting a file and read from the encrypted file when
it is decrypted.

Some of the ciphers do not have large keys and others have security implications if not used correctly. A
beginner is advised to just use a strong block cipher in CBC mode such as bf or des3.

131

All the block ciphers normally use PKCS#5 padding also known as standard block padding: this allows a
rudimentary integrity or password check to be performed. However since the chance of random data passing
the test is better than 1 in 256 it isn't a very good test.

If padding is disabled then the input data must be a multiple of the cipher block length.
All RC2 ciphers have the same key and effective key length.
Blowfish and RC5 algorithms use a 128 bit key.

SUPPORTED CIPHERS

baseb4d Base 64

bf-cbc Blowfish in CBC mode

bf Alias for bf-cbc

bf-cfb Blowfish in CFB mode

bf-ecb Blowfish in ECB mode

bf-ofb Blowfish in OFB mode

cast-cbc CAST in CBC mode

cast Alias for cast-cbc

cast5-cbc CAST5 in CBC mode

cast5-cfb CAST5 in CFB mode

cast5-ecb CAST5 in ECB mode

cast5-ofb CAST5 in OFB mode

des-cbc DES in CBC mode

des Alias for des-cbc

des-cfb DES in CBC mode

des-ofb DES in OFB mode

des-ecb DES in ECB mode

des-ede-cbc Two key triple DES EDE in CBC mode
des-ede Alias for des-ede

des-ede-cfb Two key triple DES EDE in CFB mode
des-ede-ofb Two key triple DES EDE in OFB mode
des-ede3-cbc Three key triple DES EDE in CBC mode
des-ede3 Alias for des-ede3-cbc

des3 Alias for des-ede3-cbc
des-ede3-cfb Three key triple DES EDE CFB mode
des-ede3-ofb Three key triple DES EDE in OFB mode
desx DESX algorithm.

idea-cbc IDEA algorithm in CBC mode

idea same as idea-cbc

idea-cfb IDEA in CFB mode

idea-ecb IDEA in ECB mode

idea-ofb IDEA in OFB mode

rc2-cbc 128 bit RC2 in CBC mode

rc2 Alias for rc2-cbc

rc2-cfb 128 bit RC2 in CBC mode

rc2-ecb 128 bit RC2 in CBC mode

rc2-ofb 128 bit RC2 in CBC mode

rc2-64-cbc 64 bit RC2 in CBC mode

132

rc2-40-cbc 40 bit RC2 in CBC

rcd 128 bit RC4
rc4d-64 64 bit RC4

rc4-40 40 bit RC4
rc5-cbe RC5 cipher in CBC
rch Alias for rc5-cbc
rc5-cfb RC5 cipher in CBC
rc5-ecb RC5 cipher in CBC
rc5-ofb RC5 cipher in CBC

EXAMPLES

Just base64 encode a binary file:

mode

mode

mode
mode
mode

openssl base64 -in file.bin -out file.b64

Decode the same file

openssl base64 -d -in file.b64 -out file.bin
Encrypt a file using triple DES in CBC mode using a prompted password:

openssl des3 -salt -in file.txt -out file.des3

Decrypt a file using a supplied password:

openssl des3 -d -salt -in file.des3

Encrypt a file then base64 encode it (so it can be sent via mail for example) using Blowfish in CBC mode:

openssl bf -a -salt -in file.txt -out file.bf

Base64 decode a file then decrypt it:

openssl bf -d -salt -a -in file.bf -out file.txt
Decrypt some data using a supplied 40 bit RC4 key:

openssl rc4-40 -in file.rcd -out file.txt -K 0102030405

Restrictions

The -A option when used with large files doesn't work properly.

There should be an option to allow an iteration count to be included.

-out file.txt -k mypassword

The enc program only supports a fixed number of algorithms with certain parameters. So if, for example, you

want to use RC2 with a 76 bit key or RC4 with an 84 bit key you can't use this program.

133

gendsa
NAME

gendsa — generate a DSA private key from a set of parameters

Synopsis

openssl gendsa [-out filename] [-des] [-des3] [-idea] [-rand file(s)] [-engine id]
[paramfile]

DESCRIPTION

The gendsa command generates a DSA private key from a DSA parameter file (which will be typically
generated by the openssl dsaparam command).

OPTIONS

e -des|-des3|-idea

These options encrypt the private key with the DES, triple DES, or the IDEA ciphers respectively before
outputting it. A pass phrase is prompted for. If none of these options is specified no encryption is used.

e _rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see
RAND_egd (3)). Multiple files can be specified separated by a OS-dependent character. The separator is ;
for MS-Windows, , for OpenVMS, and : for all others.

* -engineid

specifying an engine (by it's unique id string) will cause req to attempt to obtain a functional reference to
the specified engine, thus initialising it if needed. The engine will then be set as the default for all
available algorithms.

¢ paramfile

This option specifies the DSA parameter file to use. The parameters in this file determine the size of the
private key. DSA parameters can be generated and examined using the openssl dsaparam command.

NOTES

DSA key generation is little more than random number generation so it is much quicker that RSA key
generation for example.

SEE ALSO

dsaparam (1), dsa (1), genrsa (1), rsa (1)

134

genrsa
NAME

genrsa — generate an RSA private key

Synopsis
openssl genrsa [-out filename] [-passout arg] [-des] [-des3] [-idea] [-f4] [-3] [-rand
file(s)] [-engine id] [numbits]

DESCRIPTION

The genrsa command generates an RSA private key.

OPTIONS

e -out filename
the output filename. If this argument is not specified then standard output is used.
®* -passout arg

the output file password source. For more information about the format of arg see the PASS PHRASE
ARGUMENTS section in openssl (1).

e -des|-des3|-idea

These options encrypt the private key with the DES, triple DES, or the IDEA ciphers respectively before
outputting it. If none of these options is specified no encryption is used. If encryption is used a pass
phrase is prompted for if it is not supplied via the -passout argument.

e -F4|-3
the public exponent to use, either 65537 or 3. The default is 65537.
¢ -rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see
RAND_egd (3)). Multiple files can be specified separated by a OS-dependent character. The separator is ;
for MS-Windows, , for OpenVMS, and : for all others.

* -engineid

specifying an engine (by it's unique id string) will cause req to attempt to obtain a functional reference to
the specified engine, thus initialising it if needed. The engine will then be set as the default for all
available algorithms.

e numbits

the size of the private key to generate in bits. This must be the last option specified. The default is 512.

NOTES

RSA private key generation essentially involves the generation of two prime numbers. When generating a
private key various symbols will be output to indicate the progress of the generation. A . represents each
number which has passed an initial sieve test, + means a number has passed a single round of the
Miller-Rabin primality test. A newline means that the number has passed all the prime tests (the actual
number depends on the key size).

135

Because key generation is a random process the time taken to generate a key may vary somewhat.

Restrictions

A quirk of the prime generation algorithm is that it cannot generate small primes. Therefore the number of
bits should not be less that 64. For typical private keys this will not matter because for security reasons they
will be much larger (typically 1024 bits).

SEE ALSO
gendsa (1)

136

nseq
NAME

nseq — create or examine a netscape certificate sequence

Synopsis

openssl nseq [-in filename] [-out filename] [-toseq]

DESCRIPTION

The nseq command takes a file containing a Netscape certificate sequence and prints out the certificates
contained in it or takes a file of certificates and converts it into a Netscape certificate sequence.

COMMAND OPTIONS

¢ -in filename

This specifies the input filename to read or standard input if this option is not specified.
e -out filename

specifies the output filename or standard output by default.
e -toseq

normally a Netscape certificate sequence will be input and the output is the certificates contained in it.
With the -toseq option the situation is reversed: a Netscape certificate sequence is created from a file of
certificates.

EXAMPLES

Output the certificates in a Netscape certificate sequence
openssl nseqg -in nseqg.pem -out certs.pem
Create a Netscape certificate sequence

openssl nseqg -in certs.pem -toseqg -out nseq.pem

NOTES

The PEM encoded form uses the same headers and footers as a certificate:

A Netscape certificate sequence is a Netscape specific form that can be sent to browsers as an alternative to
the standard PKCS#7 format when several certificates are sent to the browser: for example during certificate
enrollment. It is used by Netscape certificate server for example.

Restrictions

This program needs a few more options: like allowing DER or PEM input and output files and allowing
multiple certificate files to be used.

137

ocsp
NAME

ocsp — Online Certificate Status Protocol utility

Synopsis

openssl ocsp [-out file] [-issuer file] [-cert file] [-serial n] [-signer file] [-signkey
file] [-sign_other file] [-no_certs] [-req text] [-resp_text] [-text] [-regout file]
[-respout file] [-regin file] [-respin file] [-nonce] [-no_nonce] [-url URL] [-host host:n]
[-path] [-CApath dir] [-CAfile file] [-VAfile file] [-validity_period n] [-status_age n]
[-noverify] [-verify other file] [-trust_other] [-no_intern] [-no_signature_verify]
[-no_cert_verify] [-no_chain] [-no_cert_checks] [-port num] [-index file] [-CA file]
[-rsigner file] [-rkey file] [-rother file] [-resp_no_certs] [-nmin n] [-ndays n]

[

-resp_key_id] [-nrequest n]

DESCRIPTION

The Online Certificate Status Protocol (OCSP) enables applications to determine the (revocation) state of an
identified certificate (RFC 2560).

The ocsp command performs many common OCSP tasks. It can be used to print out requests and responses,
create requests and send queries to an OCSP responder and behave like a mini OCSP server itself.

OCSP CLIENT OPTIONS

e -out filename
specify output filename, default is standard output.
e -issuer filename

This specifies the current issuer certificate. This option can be used multiple times. The certificate
specified in filename must be in PEM format.

e _cert filename

Add the certificate filename to the request. The issuer certificate is taken from the previous issuer option,
or an error occurs if no issuer certificate is specified.

e _serial num

Same as the cert option except the certificate with serial number num is added to the request. The serial
number is interpreted as a decimal integer unless preceded by 0x. Negative integers can also be specified
by preceding the value by a - sign.

e -signer filename, -signkey filename

Sign the OCSP request using the certificate specified in the signer option and the private key specified by
the signkey option. If the signkey option is not present then the private key is read from the same file as
the certificate. If neither option is specified then the OCSP request is not signed.

e —sign_other filename

Additional certificates to include in the signed request.

138

-nonce, -no_nonce

Add an OCSP nonce extension to a request or disable OCSP nonce addition. Normally if an OCSP request
is input using the respin option no nonce is added: using the nonce option will force addition of a nonce. If
an OCSP request is being created (using cert and serial options) a nonce is automatically added specifying
no_nonce overrides this.

-req_text, -resp_text, -text

print out the text form of the OCSP request, response or both respectively.
-reqout file, -respout file

write out the DER encoded certificate request or response to file.

-reqin file, respin file

read OCSP request or response file from file . These option are ignored if OCSP request or response
creation is implied by other options (for example with serial , cert and host options).

-url responder_url
specify the responder URL. Both HTTP and HTTPS (SSL/TLS) URLs can be specified.
-host hostname:port, -path pathname

if the host option is present then the OCSP request is sent to the host hostname on port port. path
specifies the HTTP path name to use or "/ by default.

-CAfile file, -CApath pathname

file or pathname containing trusted CA certificates. These are used to verify the signature on the OCSP
response.

-verify_other file

file containing additional certificates to search when attempting to locate the OCSP response signing
certificate. Some responders omit the actual signer's certificate from the response: this option can be used
to supply the necessary certificate in such cases.

-trust_other

the certificates specified by the -verify_certs option should be explicitly trusted and no additional checks
will be performed on them. This is useful when the complete responder certificate chain is not available or
trusting a root CA is not appropriate.

-VAfile file

file containing explicitly trusted responder certificates. Equivalent to the -verify_certs and -trust_other
options.

-noverify

don't attempt to verify the OCSP response signature or the nonce values. This option will normally only
be used for debugging since it disables all verification of the responders certificate.

-no_intern

ignore certificates contained in the OCSP response when searching for the signers certificate. With this
option the signers certificate must be specified with either the -verify_certs or -VAfile options.

-no_signature_verify

don't check the signature on the OCSP response. Since this option tolerates invalid signatures on OCSP
responses it will normally only be used for testing purposes.

139

-no_cert_verify

don't verify the OCSP response signers certificate at all. Since this option allows the OCSP response to be
signed by any certificate it should only be used for testing purposes.

-no_chain
do not use certificates in the response as additional untrusted CA certificates.
-no_cert_checks

don't perform any additional checks on the OCSP response signers certificate. That is do not make any
checks to see if the signers certificate is authorised to provide the necessary status information: as a
result this option should only be used for testing purposes.

-validity_period nsec, -status_age age

these options specify the range of times, in seconds, which will be tolerated in an OCSP response. Each
certificate status response includes a notBefore time and an optional notAfter time. The current time
should fall between these two values, but the interval between the two times may be only a few seconds.
In practice the OCSP responder and clients clocks may not be precisely synchronised and so such a check
may fail. To avoid this the -validity_period option can be used to specify an acceptable error range in
seconds, the default value is 5 minutes.

If the notAfter time is omitted from a response then this means that new status information is
immediately available. In this case the age of the notBefore field is checked to see it is not older than age
seconds old. By default this additional check is not performed.

OCSP SERVER OPTIONS

-index indexfile
indexfile is a text index file in ca format containing certificate revocation information.

If the index option is specified the ocsp utility is in responder mode, otherwise it is in client mode. The
request(s) the responder processes can be either specified on the command line (using issuer and serial
options), supplied in a file (using the respin option) or via external OCSP clients (if port or url is
specified.)

If the index option is present then the CA and rsigner options must also be present.
-CA file

CA certificate corresponding to the revocation information in indexfile.

-rsigner file

The certificate to sign OCSP responses with.

-rother file

Additional certificates to include in the OCSP response.

-resp_no_certs

Don't include any certificates in the OCSP response.

-resp_key_id

Identify the signer certificate using the key ID, default is to use the subject name.
-rkey file

The private key to sign OCSP responses with: if not present the file specified in the rsigner option is used.

140

® -port portnum

Port to listen for OCSP requests on. The port may also be specified using the url option.
e -nrequest number

The OCSP server will exit after receiving number requests, default unlimited.
e -nmin minutes, -ndays days

Number of minutes or days when fresh revocation information is available: used in the nextUpdate field.
If neither option is present then the nextUpdate field is omitted meaning fresh revocation information is
immediately available.

OCSP Response Verification

OCSP Response follows the rules specified in RFC2560.

Initially the OCSP responder certificate is located and the signature on the OCSP request checked using the
responder certificate's public key.

Then a normal certificate verify is performed on the OCSP responder certificate building up a certificate
chain in the process. The locations of the trusted certificates used to build the chain can be specified by the
CAfile and CApath options or they will be looked for in the standard OpenSSL certificates directory.

If the initial verify fails then the OCSP verify process halts with an error.

Otherwise the issuing CA certificate in the request is compared to the OCSP responder certificate: if there is
a match then the OCSP verify succeeds.

Otherwise the OCSP responder certificate's CA is checked against the issuing CA certificate in the request. If
there is a match and the OCSPSigning extended key usage is present in the OCSP responder certificate then
the OCSP verify succeeds.

Otherwise the root CA of the OCSP responders CA is checked to see if it is trusted for OCSP signing. If it is
the OCSP verify succeeds.

If none of these checks is successful then the OCSP verify fails.

What this effectively means if that if the OCSP responder certificate is authorised directly by the CA it is
issuing revocation information about (and it is correctly configured) then verification will succeed.

If the OCSP responder is a "global responder" which can give details about multiple CAs and has its own
separate certificate chain then its root CA can be trusted for OCSP signing. For example:

openssl x509 -in ocspCA.pem -addtrust OCSPSigning -out trustedCA.pem

Alternatively the responder certificate itself can be explicitly trusted with the -VAfile option.

NOTES

As noted, most of the verify options are for testing or debugging purposes. Normally only the -CApath, -CAfile
and (if the responder is a 'global VA') -VAfile options need to be used.

The OCSP server is only useful for test and demonstration purposes: it is not really usable as a full OCSP
responder. It contains only a very simple HTTP request handling and can only handle the POST form of
OCSP queries. It also handles requests serially meaning it cannot respond to new requests until it has
processed the current one. The text index file format of revocation is also inefficient for large quantities of
revocation data.

It is possible to run the ocsp application in responder mode via a CGI script using the respin and respout
options.

141

EXAMPLES

Create an OCSP request and write it to a file:
openssl ocsp -issuer issuer.pem -cert cl.pem -cert c2.pem -regout req.der

Send a query to an OCSP responder with URL http://ocsp.myhost.com/ save the response to a file and print it
out in text form

openssl ocsp -issuer issuer.pem -cert cl.pem -cert c2.pem \
-url http://ocsp.myhost.com/ -resp_text -respout resp.der

Read in an OCSP response and print out text form:
openssl ocsp -respin resp.der -text

OCSP server on port 8888 using a standard ca configuration, and a separate responder certificate. All
requests and responses are printed to a file.

openssl ocsp -index demoCA/index.txt -port 8888 -rsigner rcert.pem -CA demoCA/cacert.pem
-text -out log.txt

As above but exit after processing one request:

openssl ocsp -index demoCA/index.txt -port 8888 -rsigner rcert.pem -CA demoCA/cacert.pem
-nrequest 1

Query status information using internally generated request:

openssl ocsp -index demoCA/index.txt -rsigner rcert.pem -CA demoCA/cacert.pem
-issuer demoCA/cacert.pem -serial 1

Query status information using request read from a file, write response to a second file.

openssl ocsp -index demoCA/index.txt -rsigner rcert.pem -CA demoCA/cacert.pem
-reqgin reg.der -respout resp.der

142

openssl
NAME

openssl — OpenSSL command line tool

Synopsis

openssl command [command_opts] [command _args] openssl [list-standard-commands |
list-message-digest-commands | list-cipher-commands] openssl no-xxx [arbitrary options]

DESCRIPTION

OpenSSL is a cryptography toolkit implementing the Secure Sockets Layer (SSL v2/v3) and Transport Layer
Security (TLS v1) network protocols and related cryptography standards required by them.

The openssl program is a command line tool for using the various cryptography functions of OpenSSL's crypto
library from the shell. It can be used for

Creation of RSA, DH and DSA key parameters
Creation of X.509 certificates, CSRs and CRLs
Calculation of Message Digests

Encryption and Decryption with Ciphers
SSL/TLS Client and Server Tests

Handling of S/MIME signed or encrypted mail

O 0O O O 0 O

COMMAND SUMMARY

The openssl program provides a rich variety of commands (command in the SYNOPSIS above), each of which
often has a wealth of options and arguments (command_opts and command_args in the SYNOPSIS).

The pseudo-commands list-standard-commands, list-message-digest-commands, and list-cipher-commands
output a list (one entry per line) of the names of all standard commands, message digest commands, or cipher
commands, respectively, that are available in the present openssl utility.

The pseudo-command no-XxxX tests whether a command of the specified name is available. If no command
named XXX exists, it returns 0 (success) and prints no-xxX; otherwise it returns 1 and prints xxx. In both
cases, the output goes to stdout and nothing is printed to stderr. Additional command line arguments are
always ignored. Since for each cipher there is a command of the same name, this provides an easy way for
shell scripts to test for the availability of ciphers in the openssl program. (no-xxx is not able to detect
pseudo-commands such as quit , list-. . . -commands, or no-xxx itself.)

STANDARD COMMANDS

® asnlparse

Parse an ASN.1 sequence.
* ca

Certificate Authority (CA) Management.
® ciphers

Cipher Suite Description Determination.
e crl

Certificate Revocation List (CRL) Management.

143

® crl2pkcs?
CRL to PKCS#7 Conversion.
® dgst

Message Digest Calculation.

e dh

Diffie-Hellman Parameter Management. Obsoleted by dhparam.
® dsa

DSA Data Management.

® dsaparam
DSA Parameter Generation.
* enc
Encoding with Ciphers.
® errstr
Error Number to Error String Conversion.
o dhparam
Generation and Management of Diffie-Hellman Parameters.
e gendh
Generation of Diffie-Hellman Parameters. Obsoleted by dhparam.
® gendsa
Generation of DSA Parameters.
® genrsa
Generation of RSA Parameters.
® ocsp
Online Certificate Status Protocol utility.
® passwd
Generation of hashed passwords.
® pkcsl2
PKCS#12 Data Management.
e pkcs7
PKCS#7 Data Management.
® rand
Generate pseudo-random bytes.
* req
X.509 Certificate Signing Request (CSR) Management.
® rsa

RSA Data Management.

144

MESSAGE DIGEST COMMANDS

rsautl

RSA utility for signing, verification, encryption, and decryption.

s_client

This implements a generic SSL/TLS client which can establish a transparent connection to a remote

server speaking SSL/TLS. It's intended for testing purposes only and provides only rudimentary interface

functionality but internally uses mostly all functionality of the OpenSSL ssl library.

sS_server

This implements a generic SSL/TLS server which accepts connections from remote clients speaking

SSL/TLS. It's intended for testing purposes only and provides only rudimentary interface functionality
but internally uses mostly all functionality of the OpenSSL ssl library. It provides both an own command

line oriented protocol for testing SSL functions and a simple HTTP response facility to emulate an

SSL/TLS-aware webserver.
s_time
SSL Connection Timer.

sess_id

SSL Session Data Management.

smime
S/MIME mail processing.

speed

Algorithm Speed Measurement.

verify

X.509 Certificate Verification.
version

OpenSSL Version Information.

x509

X.509 Certificate Data Management.

md2

MD2 Digest
md5

MD5 Digest
mdc2

MDC2 Digest
rmd160
RMD-160 Digest
sha

SHA Digest

145

e shal
SHA-1 Digest

ENCODING AND CIPHER COMMANDS

* base64
Base64 Encoding
e bf bf-cbc bf-cfb bf-ecb bf-ofb
Blowfish Cipher
* cast cast-cbc
CAST Cipher
e cast5-cbc castb-cfb cast5-ecb cast5-ofb
CASTS5 Cipher
¢ des des-cbc des-cfb des-ecb des-ede des-ede-cbc des-ede-cfb des-ede-ofb des-ofb
DES Cipher
* des3 desx des-ede3 des-ede3-cbc des-ede3-cfb des-ede3-ofb
Triple-DES Cipher
¢ idea idea-cbc idea-cfb idea-ecb idea-ofb
IDEA Cipher
® rc2 rc2-cbe re2-cfb re2-ecb re2-ofb
RC2 Cipher
* rc4
RC4 Cipher
® rc5 rch-cbe reb-cfb re5-ecb reb-ofb
RC5 Cipher

PASS PHRASE ARGUMENTS

Several commands accept password arguments, typically using -passin and -passout for input and output
passwords respectively. These allow the password to be obtained from a variety of sources. Both of these
options take a single argument whose format is described below. If no password argument is given and a
password is required then the user is prompted to enter one: this will typically be read from the current
terminal with echoing turned off.

e pass:password

the actual password is password. Since the password is visible to utilities (like 'ps' under UNIX) this
UNIX form should only be used where security is not important.

b env.var

obtain the password from the environment variable var. Since the environment of other processes is
visible on certain platforms (e.g. ps under certain UNIX OSes) this option should be used with caution.

146

e file:pathname

the first line of pathname is the password. If the same pathname argument is supplied to -passin and
-passout arguments then the first line will be used for the input password and the next line for the output
password. pathname need not refer to a regular file: it could for example refer to a device or named pipe.

e fd:number

read the password from the file descriptor number. This can be used to send the data via a pipe for
example.

e stdin

read the password from standard input.

SEE ALSO

asnlparse (1), ca (1), config (5), crl (1), cr1l2pkcs7 (1), dgst (1), dhparam (1), dsa (1), dsaparam (1), enc (1),
gendsa (1), genrsa (1), nseq (1), openssl (1), passwd (1), pkcs12 (1), pkes7 (1), pkes8 (1), rand (1), req (1), rsa
(1), rsautl (1), s_client (1), s_server (1), smime (1), spkac (1), verify (1), version (1), x509 (1), crypto (3), ssl (3)

HISTORY

The openssl (1) document appeared in OpenSSL 0.9.2. The list-xxX -commands pseudo-commands were added
in OpenSSL 0.9.3; the no-xxx pseudo-commands were added in OpenSSL 0.9.5a. For notes on the availability
of other commands, see their individual manual pages.

147

passwd
NAME

passwd — compute password hashes

Synopsis

openssl passwd [-crypt] [-1] [-aprl] [-salt string] [-in file] [-stdin] [-noverify]
[-quiet] [-table] {password}

DESCRIPTION

The passwd command computes the hash of a password typed at run-time or the hash of each password in a
list. The password list is taken from the named file for option -in file, from stdin for option -stdin , or from the
command line, or from the terminal otherwise. The UNIX standard algorithm crypt and the MD5-based BSD
password algorithm 1 and its Apache variant aprl are available.

OPTIONS

e —crypt
Use the crypt algorithm (default).
e -1
Use the MD5 based BSD password algorithm 1.
e -aprl
Use the aprl algorithm (Apache variant of the BSD algorithm).
e -salt string
Use the specified salt. When reading a password from the terminal, this implies -noverify.
® -in file
Read passwords from file.
e -stdin
Read passwords from stdin.
e -noverify
Don't verify when reading a password from the terminal.
® -quiet
Don't output warnings when passwords given at the command line are truncated.
e -table

In the output list, prepend the cleartext password and a TAB character to each password hash.

148

EXAMPLES

openssl passwd -crypt -salt xx password prints xxj31ZMTZzkVA.
openssl passwd -1 -salt xxxxxxxx password prints 1xxxxxxxx$UYCIxa628.99XjpQCjM4a.
openssl passwd -aprl -salt xxxxxxxx password prints $aprl$xxxxxxxx$dxHfLAsjHkDRmG83UXe8KO.

149

pkes12

NAME
pkes12 — PKCS#12 file utility

Synopsis

openssl pkcsl2 [-export] [-chain] [-inkey filename] [-certfile filename] [-name name]
[-caname name] [-in filename] [-out filename] [-noout] [-nomacver] [-nocerts] [-clcerts]
[-cacerts] [-nokeys] [-info] [-des] [-des3] [-idea] [-nodes] [-noiter] [-maciter]
[-twopass] [-descert] [-certpbe] [-keypbe] [-keyex] [-keysig] [-password arg] [-passin
arg] [-passout arg] [-rand file(s)]

DESCRIPTION

The pkes12 command allows PKCS#12 files (sometimes referred to as PFX files) to be created and parsed.
PKCS#12 files are used by several programs including Netscape, MSIE and MS Outlook.

COMMAND OPTIONS

There are a lot of options the meaning of some depends of whether a PKCS#12 file is being created or parsed.
By default a PKCS#12 file is parsed a PKCS#12 file can be created by using the -export option (see below).

PARSING OPTIONS

¢ -in filename
This specifies filename of the PKCS#12 file to be parsed. Standard input is used by default.
e -out filename

The filename to write certificates and private keys to, standard output by default. They are all written in
PEM format.

® -pass arg, -passin arg

the PKCS#12 file (i.e. input file) password source. For more information about the format of arg see the
PASS PHRASE ARGUMENTS section in openssl (1).

®* -passout arg

pass phrase source to encrypt any outputed private keys with. For more information about the format of
arg see the PASS PHRASE ARGUMENTS section in openssl (1).

* -noout
this option inhibits output of the keys and certificates to the output file version of the PKCS#12 file.
e -clcerts
only output client certificates (not CA certificates).
* -cacerts
only output CA certificates (not client certificates).
® -nocerts

no certificates at all will be output.

150

e -nokeys
no private keys will be output.
e -info
output additional information about the PKCS#12 file structure, algorithms used and iteration counts.
e -des
use DES to encrypt private keys before outputting.
e -des3
use triple DES to encrypt private keys before outputting, this is the default.
e -idea
use IDEA to encrypt private keys before outputting.
e -nodes
don't encrypt the private keys at all.
® -nomacver
don't attempt to verify the integrity MAC before reading the file.
* -twopass

prompt for separate integrity and encryption passwords: most software always assumes these are the
same so this option will render such PKCS#12 files unreadable.

FILE CREATION OPTIONS

® -export

This option specifies that a PKCS#12 file will be created rather than parsed.
¢ -out filename

This specifies filename to write the PKCS#12 file to. Standard output is used by default.
¢ -in filename

The filename to read certificates and private keys from, standard input by default. They must all be in
PEM format. The order doesn't matter but one private key and its corresponding certificate should be
present. If additional certificates are present they will also be included in the PKCS#12 file.

® -inkey filename
file to read private key from. If not present then a private key must be present in the input file.
¢ -name friendlyname

This specifies the "friendly name" for the certificate and private key. This name is typically displayed in
list boxes by software importing the file.

e _certfile filename
A filename to read additional certificates from.
¢ -caname friendlyname

This specifies the "friendly name" for other certificates. This option may be used multiple times to specify
names for all certificates in the order they appear. Netscape ignores friendly names on other certificates
whereas MSIE displays them.

151

-pass arg, -passout arg

the PKCS#12 file (i.e. output file) password source. For more information about the format of arg see the
PASS PHRASE ARGUMENTS section in openssl (1).

-passin password

pass phrase source to decrypt any input private keys with. For more information about the format of arg
see the PASS PHRASE ARGUMENTS section in openssl (1).

-chain

if this option is present then an attempt is made to include the entire certificate chain of the user
certificate. The standard CA store is used for this search. If the search fails it is considered a fatal error.

-descert

encrypt the certificate using triple DES, this may render the PKCS#12 file unreadable by some "export
grade" software. By default the private key is encrypted using triple DES and the certificate using 40 bit
RC2.

-keypbe alg, -certpbe alg

these options allow the algorithm used to encrypt the private key and certificates to be selected. Although
any PKCS#5 v1.5 or PKCS#12 algorithms can be selected it is advisable only to use PKCS#12 algorithms.
See the list in the NOTES section for more information.

-keyex | -keysig

specifies that the private key is to be used for key exchange or just signing. This option is only interpreted
by MSIE and similar MS software. Normally "export grade" software will only allow 512 bit RSA keys to
be used for encryption purposes but arbitrary length keys for signing. The -keysig option marks the key
for signing only. Signing only keys can be used for S'MIME signing, authenticode (ActiveX control
signing) and SSL client authentication, however due to a bug only MSIE 5.0 and later support the use of
signing only keys for SSL client authentication.

-nomagciter, -noiter

these options affect the iteration counts on the MAC and key algorithms. Unless you wish to produce files
compatible with MSIE 4.0 you should leave these options alone.

To discourage attacks by using large dictionaries of common passwords the algorithm that derives keys
from passwords can have an iteration count applied to it: this causes a certain part of the algorithm to be
repeated and slows it down. The MAC is used to check the file integrity but since it will normally have the
same password as the keys and certificates it could also be attacked. By default both MAC and encryption
iteration counts are set to 2048, using these options the MAC and encryption iteration counts can be set
to 1, since this reduces the file security you should not use these options unless you really have to. Most
software supports both MAC and key iteration counts. MSIE 4.0 doesn't support MAC iteration counts so
it needs the -nomaciter option.

-maciter

This option is included for compatibility with previous versions, it used to be needed to use MAC
iterations counts but they are now used by default.

-rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see
RAND_egd (3)). Multiple files can be specified separated by a OS-dependent character. The separator is ;
for MS-Windows, , for OpenVMS, and : for all others.

152

NOTES

Although there are a large number of options most of them are very rarely used. For PKCS#12 file parsing
only -in and -out need to be used for PKCS#12 file creation -export and -name are also used.

If none of the -clcerts, -cacerts or -nocerts options are present then all certificates will be output in the order
they appear in the input PKCS#12 files. There is no guarantee that the first certificate present is the one
corresponding to the private key. Certain software which requires a private key and certificate and assumes
the first certificate in the file is the one corresponding to the private key: this may not always be the case.
Using the -clcerts option will solve this problem by only outputting the certificate corresponding to the private
key. If the CA certificates are required then they can be output to a separate file using the -nokeys -cacerts
options to just output CA certificates.

The -keypbe and -certpbe algorithms allow the precise encryption algorithms for private keys and certificates
to be specified. Normally the defaults are fine but occasionally software can't handle triple DES encrypted
private keys, then the option -keypbe PBE-SHA1-RC2-40 can be used to reduce the private key encryption to
40 bit RC2. A complete description of all algorithms is contained in the pkcs8 manual page.

EXAMPLES
Parse a PKCS#12 file and output it to a file:

openssl pkcsl2 -in file.pl2 -out file.pem
Output only client certificates to a file:
openssl pkcsl2 -in file.pl2 -clcerts -out file.pem
Don't encrypt the private key: openssl pkesl2 -in file.p12 -out file.pem -nodes
Print some info about a PKCS#12 file:
openssl pkcsl2 -in file.pl2 -info -noout
Create a PKCS#12 file:
openssl pkcsl2 -export -in file.pem -out file.pl2 -name "My Certificate"
Include some extra certificates:

openssl pkcsl2 -export -in file.pem -out file.pl2 -name "My Certificate" \
-certfile othercerts.pem

Restrictions

Some would argue that the PKCS#12 standard is one big bug :-)

Versions of OpenSSL before 0.9.6a had a bug in the PKCS#12 key generation routines. Under rare
circumstances this could produce a PKCS#12 file encrypted with an invalid key. As a result some PKCS#12
files which triggered this bug from other implementations (MSIE or Netscape) could not be decrypted by
OpenSSL and similarly OpenSSL could produce PKCS#12 files which could not be decrypted by other
implementations. The chances of producing such a file are relatively small: less than 1 in 256.

A side effect of fixing this bug is that any old invalidly encrypted PKCS#12 files cannot no longer be parsed by
the fixed version. Under such circumstances the pkcs12 utility will report that the MAC is OK but fail with a
decryption error when extracting private keys.

This problem can be resolved by extracting the private keys and certificates from the PKCS#12 file using an
older version of OpenSSL and recreating the PKCS#12 file from the keys and certificates using a newer
version of OpenSSL. For example:

153

old-openssl -in bad.pl2 -out keycerts.pem
openssl -in keycerts.pem -export -name "My PKCS#12 file" -out fixed.pl2

SEE ALSO

pkcs8 (1)

154

pkes7

NAME
pkes7 — PKCS#7 utility

Synopsis
openssl pkcs7 [-inform PEM|DER] [-outform PEM|DER] [-in filename] [-out filename]
[-print_certs] [-text] [-noout] [-engine id]

DESCRIPTION
The pkes7 command processes PKCS#7 files in DER or PEM format.

COMMAND OPTIONS

e -inform DER|PEM

This specifies the input format. DER format is DER encoded PKCS#7 v1.5 structure. PEM (the default) is
a base64 encoded version of the DER form with header and footer lines.

e -outform DER|PEM
This specifies the output format, the options have the same meaning as the -inform option.
¢ -in filename
This specifies the input filename to read from or standard input if this option is not specified.
e -out filename
specifies the output filename to write to or standard output by default.
e -print_certs

prints out any certificates or CRLs contained in the file. They are preceded by their subject and issuer
names in one line format.

e -text

prints out certificates details in full rather than just subject and issuer names.
* -noout

don't output the encoded version of the PKCS#7 structure (or certificates is -print_certs is set).
* -engineid

specifying an engine (by it's unique id string) will cause req to attempt to obtain a functional reference to
the specified engine, thus initialising it if needed. The engine will then be set as the default for all
available algorithms.

EXAMPLES
Convert a PKCS#7 file from PEM to DER:

openssl pkcs7 -in file.pem -outform DER -out file.der
Output all certificates in a file:

openssl pkcs7 -in file.pem -print_certs -out certs.pem

155

NOTES
The PEM PKCS#7 format uses the header and footer lines:

RESTRICTIONS

There is no option to print out all the fields of a PKCS#7 file.

This PKCS#7 routines only understand PKCS#7 v 1.5 as specified in RFC2315 they cannot currently parse,
for example, the new CMS as described in RFC2630.

SEE ALSO

crl2pkes7 (1)

156

pkes8
NAME

pkes8 — PKCS#8 format private key conversion tool

Synopsis
openssl pkcs8 [-topk8] [-inform PEM|DER] [-outform PEM|DER] [-in filename] [-passin arg]
[-out filename] [-passout arg] [-noiter] [-nocrypt] [-nooct] [-embed] [-nsdb] [-v2 alg]

[-vl alg] [-engine id]

DESCRIPTION

The pkes8 command processes private keys in PKCS#8 format. It can handle both unencrypted PKCS#8
PrivateKeyInfo format and EncryptedPrivateKeyInfo format with a variety of PKCS#5 (v1.5 and v2.0) and
PKCS#12 algorithms.

COMMAND OPTIONS

e -topk8

Normally a PKCS#8 private key is expected on input and a traditional format private key will be written.
With the -topk8 option the situation is reversed: it reads a traditional format private key and writes a
PKCS#8 format key.

e -inform DER|PEM

This specifies the input format. If a PKCS#8 format key is expected on input then either a DER or PEM
encoded version of a PKCS#8 key will be expected. Otherwise the DER or PEM format of the traditional
format private key is used.

e -outform DER|PEM
This specifies the output format, the options have the same meaning as the -inform option.
¢ -in filename

This specifies the input filename to read a key from or standard input if this option is not specified. If the
key is encrypted a pass phrase will be prompted for.

® -passin arg

the input file password source. For more information about the format of arg see the PASS PHRASE
ARGUMENTS section in openssl (1).

e -out filename

This specifies the output filename to write a key to or standard output by default. If any encryption
options are set then a pass phrase will be prompted for. The output filename should not be the same as
the input filename.

®* -passout arg

the output file password source. For more information about the format of arg see the PASS PHRASE
ARGUMENTS section in openssl (1).

157

-nocrypt

PKCS#8 keys generated or input are normally PKCS#8 EncryptedPrivateKeyInfo structures using an
appropriate password based encryption algorithm. With this option an unencrypted PrivateKeyInfo
structure is expected or output. This option does not encrypt private keys at all and should only be used
when absolutely necessary. Certain software such as some versions of Java code signing software used
unencrypted private keys.

-nooct

This option generates RSA private keys in a broken format that some software uses. Specifically the
private key should be enclosed in a OCTET STRING but some software just includes the structure itself
without the surrounding OCTET STRING.

-embed

This option generates DSA keys in a broken format. The DSA parameters are embedded inside the
PrivateKey structure. In this form the OCTET STRING contains an ASN1 SEQUENCE consisting of two
structures: a SEQUENCE containing the parameters and an ASN1 INTEGER containing the private key.

-nsdb

This option generates DSA keys in a broken format compatible with Netscape private key databases. The
PrivateKey contains a SEQUENCE consisting of the public and private keys respectively.

-v2 alg

This option enables the use of PKCS#5 v2.0 algorithms. Normally PKCS#8 private keys are encrypted
with the password based encryption algorithm called pbeWithMD5AndDES-CBC this uses 56 bit DES
encryption but it was the strongest encryption algorithm supported in PKCS#5 v1.5. Using the -v2 option
PKCS#5 v2.0 algorithms are used which can use any encryption algorithm such as 168 bit triple DES or
128 bit RC2 however not many implementations support PKCS#5 v2.0 yet. If you are just using private
keys with OpenSSL then this doesn't matter.

The alg argument is the encryption algorithm to use, valid values include des, des3 and rc2. It is
recommended that des3 is used.

-vl alg

This option specifies a PKCS#5 v1.5 or PKCS#12 algorithm to use. A complete list of possible algorithms
is included below.

-engine id

specifying an engine (by it's unique id string) will cause req to attempt to obtain a functional reference to
the specified engine, thus initialising it if needed. The engine will then be set as the default for all
available algorithms.

NOTES

The

encrypted form of a PEM encode PKCS#8 files uses the following headers and footers:

158

Private keys encrypted using PKCS#5 v2.0 algorithms and high iteration counts are more secure that those
encrypted using the traditional SSLeay compatible formats. So if additional security is considered important
the keys should be converted.

The default encryption is only 56 bits because this is the encryption that most current implementations of
PKCS#8 will support.

Some software may use PKCS#12 password based encryption algorithms with PKCS#8 format private keys:
these are handled automatically but there is no option to produce them.

It is possible to write out DER encoded encrypted private keys in PKCS#8 format because the encryption
details are included at an ASN1 level whereas the traditional format includes them at a PEM level.

PKCS#5 v1.5 and PKCS#12 algorithms.

Various algorithms can be used with the -vl command line option, including PKCS#5 v1.5 and PKCS#12.
These are described in more detail below.

e PBE-MD2-DES PBE-MD5-DES

These algorithms were included in the original PKCS#5 v1.5 specification. They only offer 56 bits of
protection since they both use DES.

e PBE-SHA1-RC2-64 PBE-MD2-RC2-64 PBE-MD5-RC2-64 PBE-SHA1-DES

These algorithms are not mentioned in the original PKCS#5 v1.5 specification but they use the same key
derivation algorithm and are supported by some software. They are mentioned in PKCS#5 v2.0. They use
either 64 bit RC2 or 56 bit DES.

e PBE-SHA1-RC4-128 PBE-SHA1-RC4-40 PBE-SHA1-3DES PBE-SHA1-2DES PBE-SHA1-RC2-128
PBE-SHA1-RC2-40

These algorithms use the PKCS#12 password based encryption algorithm and allow strong encryption
algorithms like triple DES or 128 bit RC2 to be used.

EXAMPLES

Convert a private from traditional to PKCS#5 v2.0 format using triple DES:
openssl pkcs8 -in key.pem -topk8 -v2 des3 -out enckey.pem

Convert a private key to PKCS#8 using a PKCS#5 1.5 compatible algorithm (DES):
openssl pkcs8 -in key.pem -topk8 -out enckey.pem

Convert a private key to PKCS#8 using a PKCS#12 compatible algorithm (3DES):
openssl pkcs8 -in key.pem -topk8 -out enckey.pem -v1 PBE-SHA1-3DES

Read a DER unencrypted PKCS#8 format private key:
openssl pkcs8 -inform DER -nocrypt -in key.der -out key.pem

Convert a private key from any PKCS#8 format to traditional format:

openssl pkcs8 -in pk8.pem -out key.pem

159

STANDARDS

Test vectors from this PKCS#5 v2.0 implementation were posted to the pkes-tng mailing list using triple DES,
DES and RC2 with high iteration counts, several people confirmed that they could decrypt the private keys
produced and Therefore it can be assumed that the PKCS#5 v2.0 implementation is reasonably accurate at
least as far as these algorithms are concerned.

The format of PKCS#8 DSA (and other) private keys is not well documented: it is hidden away in PKCS#11
v2.01, section 11.9. OpenSSL's default DSA PKCS#8 private key format complies with this standard.

Restrictions

There should be an option that prints out the encryption algorithm in use and other details such as the
iteration count.

PKCS#8 using triple DES and PKCS#5 v2.0 should be the default private key format for OpenSSL: for
compatibility several of the utilities use the old format at present.

SEE ALSO

dsa (1), rsa (1), genrsa (1), gendsa (1)

160

rand
NAME

rand — generate pseudo-random bytes

Synopsis

openssl rand [-out file] [-rand file(s)] [-base64] num

DESCRIPTION

The rand command outputs num pseudo-random bytes after seeding the random number generator once. As in
other openssl command line tools, PRNG seeding uses the file $HOME/ .rnd or .rnd in addition to the files given
in the -rand option. A new $HOME/.rnd or .rnd file will be written back if enough seeding was obtained from
these sources.

OPTIONS

* -out file
Write to fileinstead of standard output.
e .rand file(s)

Use specified file or files or EGD socket (see RAND_egd (3)) for seeding the random number generator.
Multiple files can be specified separated by a OS-dependent character. The separator is ; for MS-Windows,
, for OpenVMS, and :for all others.

e -base64

Perform base64 encoding on the output.

SEE ALSO
RAND_bytes (3)

161

req
NAME

req — PKCS#10 certificate request and certificate generating utility.

Synopsis

openssl req [-inform PEM|DER] [-outform PEM|DER] [-in filename] [-passin arg] [-out
filename] [-passout arg] [-text] [-pubkey] [-noout] [-verify] [-modulus] [-new] [-rand
file(s)] [-newkey rsa:bits] [-newkey dsa:file] [-nodes] [-key filename] [-keyform PEM|DER]
[-keyout filename] [-[md5|shal|md2|mdc2]] [-config filename] [-subj arg] [-x509] [-days n]
[-set_serial n] [-asnl-kludge] [-newhdr] [-extensions section] [-regexts section] [-utf8]
[-nameopt] [-batch] [-verbose] [-engine id]

DESCRIPTION

The req command primarily creates and processes certificate requests in PKCS#10 format. It can additionally
create self signed certificates for use as root CAs for example.

COMMAND OPTIONS

e -inform DER|PEM

This specifies the input format. The DER option uses an ASN1 DER encoded form compatible with the
PKCS#10. The PEM form is the default format: it consists of the PEM form is the default format: it
consists of the DER format base64 encoded with additional header and footer lines.

e -outform DER|PEM
This specifies the output format, the options have the same meaning as the -inform option.
e -in filename

This specifies the input filename to read a request from or standard input if this option is not specified. A
request is only read if the creation options (-new and -newkey) are not specified.

® -passin arg

the input file password source. For more information about the format of arg see the PASS PHRASE
ARGUMENTS section in openssl (1).

e -out filename
This specifies the output filename to write to or standard output by default.
®* -passout arg

the output file password source. For more information about the format of arg see the PASS PHRASE
ARGUMENTS section in openssl (1).

e -text

prints out the certificate request in text form.
e -pubkey

outputs the public key.

162

-noout

this option prevents output of the encoded version of the request.

-modulus

this option prints out the value of the modulus of the public key contained in the request.
-verify

verifies the signature on the request.

-new

this option generates a new certificate request. It will prompt the user for the relevant field values. The
actual fields prompted for and their maximum and minimum sizes are specified in the configuration file
and any requested extensions.

If the -key option is not used it will generate a new RSA private key using information specified in the
configuration file.

-rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see
RAND_egd (3)). Multiple files can be specified separated by a OS-dependent character. The separator is ;
for MS-Windows, , for OpenVMS, and : for all others.

-newkey arg

this option creates a new certificate request and a new private key. The argument takes one of two forms.
rsa:nbits, where nbits is the number of bits, generates an RSA key nbits in size. dsa:filename generates a
DSA key using the parameters in the file filename.

-key filename

This specifies the file to read the private key from. It also accepts PKCS#8 format private keys for PEM
format files.

-keyform PEM | DER
the format of the private key file specified in the -key argument. PEM is the default.
-keyout filename

this gives the filename to write the newly created private key to. If this option is not specified then the
filename present in the configuration file is used.

-nodes
if this option is specified then if a private key is created it will not be encrypted.
-[md5 | shal | md2 | mdc2]

this specifies the message digest to sign the request with. This overrides the digest algorithm specified in
the configuration file. This option is ignored for DSA requests: they always use SHAL.

-config filename

this allows an alternative configuration file to be specified, this overrides the compile time filename or
any specified in the OPENSSL_CONF environment variable.
-subj arg

sets subject name for new request or supersedes the subject name when processing a request. The arg
must be formatted as /typeO=valuel/typel=valuel/type2=. .., characters may be escaped by \
(backslash), no spaces are skipped.

163

-x509

this option outputs a self signed certificate instead of a certificate request. This is typically used to
generate a test certificate or a self signed root CA. The extensions added to the certificate (if any) are
specified in the configuration file. Unless specified using the set_serial option 0 will be used for the serial
number.

-days n

when the -x509 option is being used this specifies the number of days to certify the certificate for. The
default is 30 days.

-set_serial n

serial number to use when outputting a self signed certificate. This may be specified as a decimal value or
a hex value if preceded by 0x. It is possible to use negative serial numbers but this is not recommended.

-extensions section
-reqexts section

these options specify alternative sections to include certificate extensions (if the -x509 option is present)
or certificate request extensions. This allows several different sections to be used in the same
configuration file to specify requests for a variety of purposes.

-utf8

this option causes field values to be interpreted as UTF8 strings, by default they are interpreted as
ASCII. This means that the field values, whether prompted from a terminal or obtained from a
configuration file, must be valid UTF8 strings.

-nameopt option

option which determines how the subject or issuer names are displayed. The option argument can be a
single option or multiple options separated by commas. Alternatively the -nameopt switch may be used
more than once to set multiple options. See the x509 (1) manual page for details.

-asnl-kludge

by default the req command outputs certificate requests containing no attributes in the correct PKCS#10
format. However certain CAs will only accept requests containing no attributes in an invalid form: this
option produces this invalid format.

More precisely the Attributes in a PKCS#10 certificate request are defined as a SET OF Attribute. They
are not OPTIONAL so if no attributes are present then they should be encoded as an empty SET OF. The
invalid form does not include the empty SET OF whereas the correct form does.

It should be noted that very few CAs still require the use of this option.
-newhdr

Adds the word NEW to the PEM file header and footer lines on the outputed request. Some software
(Netscape certificate server) and some CAs need this.

-batch
non-interactive mode.
-verbose

print extra details about the operations being performed.

164

* -engineid

specifying an engine (by it's unique id string) will cause req to attempt to obtain a functional reference to
the specified engine, thus initialising it if needed. The engine will then be set as the default for all
available algorithms.

CONFIGURATION FILE FORMAT

The configuration options are specified in the req section of the configuration file. As with all configuration
files if no value is specified in the specific section (i.e. req) then the initial unnamed or default section is
searched too.

The options available are described in detail below.

e input_password output_password

The passwords for the input private key file (if present) and the output private key file (if one will be
created). The command line options passin and passout override the configuration file values.

e default_bits

This specifies the default key size in bits. If not specified then 512 is used. It is used if the -new option is
used. It can be overridden by using the -newkey option.

e default_keyfile

This is the default filename to write a private key to. If not specified the key is written to standard output.
This can be overridden by the -keyout option.

e oid_file

This specifies a file containing additional OBJECT IDENTIFIERS. Each line of the file should consist of
the numerical form of the object identifier followed by white space then the short name followed by white
space and finally the long name.

e oid_section

This specifies a section in the configuration file containing extra object identifiers. Each line should
consist of the short name of the object identifier followed by = and the numerical form. The short and long
names are the same when this option is used.

e RANDFILE

This specifies a filename in which random number seed information is placed and read from, or an EGD
socket (see RAND_egd (3)). It is used for private key generation.

e encrypt_key

If this is set to no then if a private key is generated it is not encrypted. This is equivalent to the -nodes
command line option. For compatibility encrypt_rsa_key is an equivalent option.

e default_md

This option specifies the digest algorithm to use. Possible values include md5 shal mdc2. If not present
then MDS5 is used. This option can be overridden on the command line.

e string_mask

This option masks out the use of certain string types in certain fields. Most users will not need to change
this option.

165

It can be set to several values default which is also the default option uses PrintableStrings, T61Strings
and BMPStrings if the pkix value is used then only PrintableStrings and BMPStrings will be used. This
follows the PKIX recommendation in RFC2459. If the utf8only option is used then only UTF8Strings will
be used: this is the PKIX recommendation in RFC2459 after 2003. Finally the nombstr option just uses
PrintableStrings and T61Strings: certain software has problems with BMPStrings and UTF8Strings: in
particular Netscape.

* req_extensions

this specifies the configuration file section containing a list of extensions to add to the certificate request.
It can be overridden by the -reqexts command line switch.

e x509_extensions

this specifies the configuration file section containing a list of extensions to add to certificate generated
when the -x509 switch is used. It can be overridden by the -extensions command line switch.

e prompt

if set to the value no this disables prompting of certificate fields and just takes values from the config file
directly. It also changes the expected format of the distinguished_name and attributes sections.

e utf8

if set to the value yes then field values to be interpreted as UTF8 strings, by default they are interpreted
as ASCII. This means that the field values, whether prompted from a terminal or obtained from a
configuration file, must be valid UTF8 strings.

e attributes

this specifies the section containing any request attributes: its format is the same as distinguished_name.
Typically these may contain the challengePassword or unstructuredName types. They are currently
ignored by OpenSSL's request signing utilities but some CAs might want them.

e distinguished_name

This specifies the section containing the distinguished name fields to prompt for when generating a
certificate or certificate request. The format is described in the next section.

DISTINGUISHED NAME AND ATTRIBUTE SECTION FORMAT

There are two separate formats for the distinguished name and attribute sections. If the prompt option is set
to no then these sections just consist of field names and values: for example,

CN=My Name
OU=My Organization
emailAddress=someone@somewhere.org

This allows external programs (e.g. GUI based) to generate a template file with all the field names and values
and just pass it to req. An example of this kind of configuration file is contained in the EXAMPLES section.

Alternatively if the prompt option is absent or not set to no then the file contains field prompting information.
It consists of lines of the form:

fieldName="prompt"
fieldName_default="default field value"
fieldName_min= 2

fieldName_max= 4

"fieldName" is the field name being used, for example commonName (or CN).

166

The "prompt" string is used to ask the user to enter the relevant details. If the user enters nothing then the
default value is used if no default value is present then the field is omitted. A field can still be omitted if a
default value is present if the user just enters the '.' character.

The number of characters entered must be between the fieldName_min and fieldName_max limits: there may
be additional restrictions based on the field being used (for example countryName can only ever be two
characters long and must fit in a PrintableString).

Some fields (such as organizationName) can be used more than once in a DN. This presents a problem
because configuration files will not recognize the same name occurring twice. To avoid this problem if the
fieldName contains some characters followed by a full stop they will be ignored. So for example a second
organizationName can be input by calling it "1.organizationName".

The actual permitted field names are any object identifier short or long names. These are compiled into
OpenSSL and include the usual values such as commonName, countryName, localityName,
organizationName, organizationUnitName, stateOrProvinceName. Additionally emailAddress is include as
well as name, surname, givenName initials and dnQualifier.

Additional object identifiers can be defined with the oid_file or oid_section options in the configuration file.
Any additional fields will be treated as though they were a DirectoryString.

EXAMPLES

Examine and verify certificate request:
openssl reqg -in reqg.pem -text -verify -noout
Create a private key and then generate a certificate request from it:

openssl genrsa -out key.pem 1024
openssl reqg -new -key key.pem -out req.pem

The same but just using req:

openssl req -newkey rsa:1024 -keyout key.pem -out reqg.pem
Generate a self signed root certificate:

openssl reqg -x509 -newkey rsa:1024 -keyout key.pem -out reqg.pem
Example of a file pointed to by the oid_file option:

1.2.3.4shortNameA longer Name
1.2.3.6otherNameOther longer Name

Example of a section pointed to by oid_section making use of variable expansion:

testoidl=1.2.3.5
testoid2=${testoidl} .6

Sample configuration file prompting for field values:

[req]

default_bits= 1024

default_keyfile = privkey.pem
distinguished_name= req distinguished_name
attributes= req attributes
x509_extensions= v3_ca

dirstring_type = nobmp

[reg_distinguished_name]
countryName= Country Name (2 letter code)

167

countryName_default= AU
countryName_min= 2
countryName_max= 2

localityName= Locality Name (eg, city)
organizationalUnitName= Organizational Unit Name (eg, section)

commonName= Common Name (eg, YOUR name)
commonName_max= 64

emailAddress= Email Address
emailAddress_max= 40

[reg_attributes]

challengePassword= A challenge password
challengePassword_min= 4
challengePassword_max= 20

[v3_ca]

subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid:always, issuer:always
basicConstraints = CA:true

Sample configuration containing all field values:

RANDFILE= S$ENV::HOME/.rnd

[req]

default_bits= 1024

default_keyfile = keyfile.pem
distinguished_name= req distinguished_name
attributes= req attributes

prompt= no

output_password= mypass

[reg_distinguished_name]

C= GB

ST= Test State or Province

L= Test Locality

O= Organization Name

OU= Organizational Unit Name

CN= Common Name

emailAddress= test@email.address

[reg_attributes]
challengePassword= A challenge password

NOTES

The header and footer lines in the PEM format are normally:

some software (some versions of Netscape certificate server) instead needs:

168

which is produced with the -newhdr option but is otherwise compatible. Either form is accepted transparently
on input.

The certificate requests generated by Xenroll with MSIE have extensions added. It includes the keyUsage
extension which determines the type of key (signature only or general purpose) and any additional OIDs
entered by the script in an extendedKeyUsage extension.

DIAGNOSTICS

The following messages are frequently asked about:

Using configuration from /some/path/openssl.cnf
Unable to load config info

This is followed some time later by...

unable to find 'distinguished_name' in config
problems making Certificate Request

The first error message is the clue: it can't find the configuration file! Certain operations (like examining a
certificate request) don't need a configuration file so its use isn't enforced. Generation of certificates or
requests however does need a configuration file. This could be regarded as a bug.

Another puzzling message is this:

Attributes:
a0:00

this is displayed when no attributes are present and the request includes the correct empty SET OF structure
(the DER encoding of which is 0xa0 0x00). If you just see:

Attributes:

then the SET OF is missing and the encoding is technically invalid (but it is tolerated). See the description of
the command line option -asnl-kludge for more information.

ENVIRONMENT VARIABLES

The variable OPENSSL_CONTF if defined allows an alternative configuration file location to be specified, it
will be overridden by the -config command line switch if it is present. For compatibility reasons the
SSLEAY_CONF environment variable serves the same purpose but its use is discouraged.

Restrictions

OpenSSL's handling of T61Strings (aka TeletexStrings) is broken: it effectively treats them as ISO-8859-1
(Latin 1), Netscape and MSIE have similar behaviour. This can cause problems if you need characters that
aren't available in PrintableStrings and you don't want to or can't use BMPStrings.

As a consequence of the T61String handling the only correct way to represent accented characters in
OpenSSL is to use a BMPString: unfortunately Netscape currently chokes on these. If you have to use
accented characters with Netscape and MSIE then you currently need to use the invalid T61String form.

The current prompting is not very friendly. It doesn't allow you to confirm what you've just entered. Other
things like extensions in certificate requests are statically defined in the configuration file. Some of these: like
an email address in subjectAltName should be input by the user.

169

SEE ALSO

x509 (1), ca (1), genrsa (1), gendsa (1), config (5)

170

rsa
NAME

rsa — RSA key processing tool

Synopsis
openssl rsa [-inform PEM|NET|DER] [-outform PEM|NET|DER] [-in filename] [-passin arg] [-out
filename] [-passout arg] [-sgckey] [-des] [-des3] [-idea] [-text] [-noout] [-modulus]

[-check] [-pubin] [-pubout] [-engine id]

DESCRIPTION

The rsa command processes RSA keys. They can be converted between various forms and their components
printed out.

Note: This command uses the traditional SSLeay compatible format for private key encryption: newer
applications should use the more secure PKCS#8 format using the pkcs8 utility.

COMMAND OPTIONS

e -inform DER|NET|PEM

This specifies the input format. The DER option uses an ASN1 DER encoded form compatible with the
PKCS#1 RSAPrivateKey or SubjectPublicKeyInfo format. The PEM form is the default format: it consists
of the DER format base64 encoded with additional header and footer lines. On input PKCS#8 format
private keys are also accepted. The NET form is a format is described in the NOTES section.

e -outform DER|NET|PEM
This specifies the output format, the options have the same meaning as the -inform option.
¢ -in filename

This specifies the input filename to read a key from or standard input if this option is not specified. If the
key is encrypted a pass phrase will be prompted for.

® -passin arg

the input file password source. For more information about the format of arg see the PASS PHRASE
ARGUMENTS section in openssl (1).

e -out filename

This specifies the output filename to write a key to or standard output if this option is not specified. If any
encryption options are set then a pass phrase will be prompted for. The output filename should not be the
same as the input filename.

® -passout password

the output file password source. For more information about the format of arg see the PASS PHRASE
ARGUMENTS section in openssl (1).

e -sgckey
use the modified NET algorithm used with some versions of Microsoft IIS and SGC keys.

171

e -des|-des3|-idea

These options encrypt the private key with the DES, triple DES, or the IDEA ciphers respectively before
outputting it. A pass phrase is prompted for. If none of these options is specified the key is written in plain
text. This means that using the rsa utility to read in an encrypted key with no encryption option can be
used to remove the pass phrase from a key, or by setting the encryption options it can be use to add or
change the pass phrase. These options can only be used with PEM format output files.

e -text

prints out the various public or private key components in plain text in addition to the encoded version.
® -noout

this option prevents output of the encoded version of the key.
¢ -modulus

this option prints out the value of the modulus of the key.
e -check

this option checks the consistency of an RSA private key.
* -pubin

by default a private key is read from the input file: with this option a public key is read instead.
e -pubout

by default a private key is output: with this option a public key will be output instead. This option is
automatically set if the input is a public key.

* -engineid

specifying an engine (by it's unique id string) will cause req to attempt to obtain a functional reference to
the specified engine, thus initialising it if needed. The engine will then be set as the default for all
available algorithms.

NOTES

The PEM private key format uses the header and footer lines:

The NET form is a format compatible with older Netscape servers and Microsoft IIS .key files, this uses
unsalted RC4 for its encryption. It is not very secure and so should only be used when necessary.

Some newer version of IIS have additional data in the exported .key files. To use these with the utility, view
the file with a binary editor and look for the string "private-key", then trace back to the byte sequence 0x30,
0x82 (this is an ASN1 SEQUENCE). Copy all the data from this point onwards to another file and use that as
the input to the rsa utility with the -inform NET option. If you get an error after entering the password try
the -sgckey option.

172

EXAMPLES

To remove the pass phrase on an RSA private key:
openssl rsa -in key.pem -out keyout.pem
To encrypt a private key using triple DES:
openssl rsa -in key.pem -des3 -out keyout.pem
To convert a private key from PEM to DER format:
openssl rsa -in key.pem -outform DER -out keyout.der
To print out the components of a private key to standard output:
openssl rsa -in key.pem -text -noout
To just output the public part of a private key:

openssl rsa -in key.pem -pubout -out pubkey.pem

Restrictions
The command line password arguments don't currently work with NET format.

There should be an option that automatically handles .key files, without having to manually edit them.

SEE ALSO

pkcs8 (1), dsa (1), genrsa (1), gendsa (1)

173

rsautl

NAME
rsautl — RSA utility

Synopsis

openssl rsautl [-in file] [-out file] [-inkey file] [-pubin] [-certin] [-sign] [-verify]
[-encrypt] [-decrypt] [-pkcs] [-ssl] [-raw] [-hexdump] [-asnlparse]

DESCRIPTION

The rsautl command can be used to sign, verify, encrypt and decrypt data using the RSA algorithm.

COMMAND OPTIONS

¢ -in filename
This specifies the input filename to read data from or standard input if this option is not specified.
¢ -out filename
specifies the output filename to write to or standard output by default.
e -inkey file
the input key file, by default it should be an RSA private key.
e -pubin
the input file is an RSA public key.
® -certin
the input is a certificate containing an RSA public key.
* -sign
sign the input data and output the signed result. This requires and RSA private key.
e -verify
verify the input data and output the recovered data.
®* -encrypt
encrypt the input data using an RSA public key.
e -decrypt
decrypt the input data using an RSA private key.
e -pkes, -oaep, -ssl, -raw

the padding to use: PKCS#1 v1.5 (the default), PKCS#1 OAEP, special padding used in SSL v2 backwards
compatible handshakes, or no padding, respectively. For signatures, only -pkcs and -raw can be used.

¢ -hexdump

hex dump the output data.

174

e -asnlparse

asnlparse the output data, this is useful when combined with the -verify option.

NOTES

rsautl because it uses the RSA algorithm directly can only be used to sign or verify small pieces of data.

EXAMPLES

Sign some data using a private key:
openssl rsautl -sign -in file -inkey key.pem -out sig
Recover the signed data
openssl rsautl -verify -in sig -inkey key.pem
Examine the raw signed data:
openssl rsautl -verify -in file -inkey key.pem -raw -hexdump
0000 - 00 01 f£f ff f£ff ff ff ff-ff £f £f £f £f £f ££f ££
0010 - f£ff ff f£f ff £f ff ff ff-ff £f £f £f £f £f ££f ££
0020 - f£ff ff f£f ff f£f ff ff ff-ff £f £f £f £f £f ££f ££
0030 - f£ff ff f£f ff f£f ff ff ff-ff £f £f £f £f £f ££f ££
0040 - ff ff f£f ff £f ff ff ff-ff £f £f £f £f £f ££f ££
0050 - ff ff ff ff f£f ff ff ff-ff £f £f £f £f ££f ££f ££

0060 - f£f f£f £f £f £f f£f £f f£f-ff £f £f £f £f £f ££f ££f
0070 - f£f £f £f f£f 00 68 65 6c-6c 6f 20 77 6f 72 6c 64 hello world

The PKCS#1 block formatting is evident from this. If this was done using encrypt and decrypt the block would
have been of type 2 (the second byte) and random padding data visible instead of the 0xff bytes.

It is possible to analyse the signature of certificates using this utility in conjunction with asnlparse. Consider
the self signed example in certs/pca-cert.pem . Running asnlparse as follows yields:

openssl asnlparse -in pca-cert.pem

0:d=0 hl=4 1= 742 cons: SEQUENCE
4:d=1 hl=4 1= 591 cons: SEQUENCE
8:d=2 hl=2 1= 3 cons: cont [0]
10:d=3 hl=2 1= 1 prim: INTEGER :02
13:d=2 hl=2 1= 1 prim: INTEGER :00
16:d=2 hl=2 1= 13 cons: SEQUENCE
18:d=3 hl=2 1= 9 prim: OBJECT :md5WithRSAEncryption
29:d=3 hl=2 1= 0 prim: NULL
31:d=2 hl=2 1= 92 cons: SEQUENCE
33:d=3 hl=2 1= 11 cons: SET
35:d=4 hl=2 1= 9 cons: SEQUENCE
37:d=5 hl=2 1= 3 prim: OBJECT :countryName
42:d=5 hl=2 1= 2 prim: PRINTABLESTRING :AU
599:d=1 hl=2 1= 13 cons: SEQUENCE
601:d=2 hl=2 1= 9 prim: OBJECT :md5WithRSAEncryption
612:d=2 hl=2 1= 0 prim: NULL
614:d=1 hl=3 1= 129 prim: BIT STRING

The final BIT STRING contains the actual signature. It can be extracted with:

openssl asnlparse -in pca-cert.pem -out sig -noout -strparse 614

175

The certificate public key can be extracted with:
openssl x509 -in test/testx509.pem -pubout -noout >pubkey.pem
The signature can be analysed with:

openssl rsautl -in sig -verify -asnlparse -inkey pubkey.pem -pubin

0:d=0 hl=2 1= 32 cons: SEQUENCE
2:d=1 hl=2 1= 12 cons: SEQUENCE
4:d=2 hl=2 1= 8 prim: OBJECT :md5
14:d=2 hl=2 1= 0 prim: NULL
16:d=1 hl=2 1= 16 prim: OCTET STRING
0000 - f£3 46 9e aa la 4a 73 c9-37 ea 93 00 48 25 08 b5 FLo..Js. 7., HS. .

This is the parsed version of an ASN1 DigestInfo structure. It can be seen that the digest used was md5. The
actual part of the certificate that was signed can be extracted with:

openssl asnlparse -in pca-cert.pem -out tbs -noout -strparse 4
and its digest computed with:

openssl md5 -c tbs
MD5 (tbs)= f3:46:9e:aa:1a:4a:73:¢9:37:ea:93:00:48:25:08:b5

which it can be seen agrees with the recovered value above.

SEE ALSO

dgst (1), rsa (1), genrsa (1)

176

s _client

NAME
s_client — SSI/TLS client program

Synopsis

openssl s_client [-connect host:port>] [-verify depth] [-cert filename] [-key filename]
[-CApath directory] [-CAfile filename] [-reconnect] [-pause] [-showcerts] [-debug] [-msg]
-nbio_test] [-state] [-nbio] [-crlf] [-ign_eof] [-quiet] [-ss12] [-ssl13] [-tlsl]

[
[-no_ssl2] [-no_ssl3] [-no_tlsl] [-bugs] [-cipher cipherlist] [-starttls protocol]
[-engine id] [-rand file(s)]

DESCRIPTION

The s_client command implements a generic SSL/TLS client which connects to a remote host using SSL/TLS.
It is a very useful diagnostic tool for SSL servers.

OPTIONS

e -connect host:port

This specifies the host and optional port to connect to. If not specified then an attempt is made to connect
to the local host on port 4433.

® -cert certname

The certificate to use, if one is requested by the server. The default is not to use a certificate.
o -key keyfile

The private key to use. If not specified then the certificate file will be used.
e -verify depth

The verify depth to use. This specifies the maximum length of the server certificate chain and turns on
server certificate verification. Currently the verify operation continues after errors so all the problems
with a certificate chain can be seen. As a side effect the connection will never fail due to a server
certificate verify failure.

¢ -CApath directory

The directory to use for server certificate verification. This directory must be in "hash format", see verify
for more information. These are also used when building the client certificate chain.

e -CAfile file

A file containing trusted certificates to use during server authentication and to use when attempting to
build the client certificate chain.

® -reconnect

reconnects to the same server 5 times using the same session ID, this can be used as a test that session
caching is working.

® -pause

pauses 1 second between each read and write call.

177

-showcerts
display the whole server certificate chain: normally only the server certificate itself is displayed.
-prexit

print session information when the program exits. This will always attempt to print out information even
if the connection fails. Normally information will only be printed out once if the connection succeeds. This
option is useful because the cipher in use may be renegotiated or the connection may fail because a client
certificate is required or is requested only after an attempt is made to access a certain URL. Note: the
output produced by this option is not always accurate because a connection might never have been
established.

-state

prints out the SSL session states.

-debug

print extensive debugging information including a hex dump of all traffic.

-msg

show all protocol messages with hex dump.

-nbio_test

tests non-blocking I/0

-nbio

turns on non-blocking I/O

-crlf

this option translated a line feed from the terminal into CR+LF as required by some servers.
-ign_eof

inhibit shutting down the connection when end of file is reached in the input.

-quiet

inhibit printing of session and certificate information. This implicitly turns on -ign_eof as well.
-ssl2, -ssl3, -tls1, -no_ssl2, -no_ssl3, -no_tlsl

these options disable the use of certain SSL or TLS protocols. By default the initial handshake uses a
method which should be compatible with all servers and permit them to use SSL v3, SSL v2 or TLS as
appropriate.

Unfortunately there are a lot of ancient and broken servers in use which cannot handle this technique
and will fail to connect. Some servers only work if TLS is turned off with the -no_tls option others will
only support SSL v2 and may need the -ssl2 option.

-bugs

there are several known bug in SSL and TLS implementations. Adding this option enables various
workarounds.

-cipher cipherlist

this allows the cipher list sent by the client to be modified. Although the server determines which cipher
suite is used it should take the first supported cipher in the list sent by the client. See the ciphers
command for more information.

178

e -starttls protocol

send the protocol-specific message(s) to switch to TLS for communication. protocol is a keyword for the
intended protocol. Currently, the only supported keywords are "smtp" and "pop3".

* -engineid

specifying an engine (by it's unique id string) will cause s_client to attempt to obtain a functional
reference to the specified engine, thus initialising it if needed. The engine will then be set as the default
for all available algorithms.

e _rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see
RAND_egd (3)). Multiple files can be specified separated by a OS-dependent character. The separator is ;
for MS-Windows, , for OpenVMS, and : for all others.

CONNECTED COMMANDS

If a connection is established with an SSL server then any data received from the server is displayed and any
key presses will be sent to the server. When used interactively (which means neither -quiet nor -ign_eof have
been given), the session will be renegotiated if the line begins with an R, and if the line begins with a Q or if
end of file is reached, the connection will be closed down.

NOTES

s_client can be used to debug SSL servers. To connect to an SSL. HTTP server the command:
openssl s_client -connect servername:443

would typically be used (https uses port 443). If the connection succeeds then an HTTP command can be given
such as "GET /" to retrieve a web page.

If the handshake fails then there are several possible causes, if it is nothing obvious like no client certificate
then the -bugs, -ssl2, -ssl3, -tls1, -no_ssl2, -no_ssl3, -no_tlsl can be tried in case it is a buggy server. In
particular you should play with these options before submitting a bug report to an OpenSSL mailing list.

A frequent problem when attempting to get client certificates working is that a web client complains it has no
certificates or gives an empty list to choose from. This is normally because the server is not sending the
clients certificate authority in its "acceptable CA list" when it requests a certificate. By using s_client the CA
list can be viewed and checked. However some servers only request client authentication after a specific URL
is requested. To obtain the list in this case it is necessary to use the -prexit command and send an HTTP
request for an appropriate page.

If a certificate is specified on the command line using the -cert option it will not be used unless the server
specifically requests a client certificate. Therefor merely including a client certificate on the command line is
no guarantee that the certificate works.

If there are problems verifying a server certificate then the -showcerts option can be used to show the whole
chain.

Restrictions

Because this program has a lot of options and also because some of the techniques used are rather old, the C
source of s_client is rather hard to read and not a model of how things should be done. A typical SSL client
program would be much simpler.

The -verify option should really exit if the server verification fails.

179

The -prexit option is a bit of a hack. We should really report information whenever a session is renegotiated.

SEE ALSO

sess_id (1), s_server (1), ciphers (1)

180

s_server
NAME

s_server — SSL/TLS server program
Synopsis

openssl s_server [-accept port] [-context id] [-verify depth] [-Verify depth] [-cert
filename] [-key keyfile] [-dcert filename] [-dkey keyfile] [-dhparam filename] [-nbio]
[-nbio_test] [-crlf] [-debug] [-msg] [-state] [-CApath directory] [-CAfile filename]
[-nocert] [-cipher cipherlist] [-quiet] [-no_tmp_rsal] [-ssl2] [-ssl3] [-tlsl] [-no_ssl2]
[-no_ss13] [-no_tlsl] [-no_dhe] [-bugs] [-hack] [-www] [-WWW] [-HTTP] [-engine id]
[-id_prefix arg] [-rand file(s)]

DESCRIPTION

The s_server command implements a generic SSL/TLS server which listens for connections on a given port
using SSL/TLS.

OPTIONS

® -accept port
the TCP port to listen on for connections. If not specified 4433 is used.
e -context id

sets the SSL context id. It can be given any string value. If this option is not present a default value will
be used.

e _cert certname

The certificate to use, most servers cipher suites require the use of a certificate and some require a
certificate with a certain public key type: for example the DSS cipher suites require a certificate
containing a DSS (DSA) key. If not specified then the filename "server.pem" will be used.

o -key keyfile
The private key to use. If not specified then the certificate file will be used.
e _dcert filename, -dkey keyname

specify an additional certificate and private key, these behave in the same manner as the -cert and -key
options except there is no default if they are not specified (no additional certificate and key is used). As
noted above some cipher suites require a certificate containing a key of a certain type. Some cipher suites
need a certificate carrying an RSA key and some a DSS (DSA) key. By using RSA and DSS certificates
and keys a server can support clients which only support RSA or DSS cipher suites by using an
appropriate certificate.

® -nocert

if this option is set then no certificate is used. This restricts the cipher suites available to the anonymous
ones (currently just anonymous DH).

181

-dhparam filename

the DH parameter file to use. The ephemeral DH cipher suites generate keys using a set of DH
parameters. If not specified then an attempt is made to load the parameters from the server certificate
file. If this fails then a static set of parameters hard coded into the s_server program will be used.

-no_dhe

if this option is set then no DH parameters will be loaded effectively disabling the ephemeral DH cipher
suites.

-no_tmp_rsa

certain export cipher suites sometimes use a temporary RSA key, this option disables temporary RSA key
generation.

-verify depth, -Verify depth

The verify depth to use. This specifies the maximum length of the client certificate chain and makes the
server request a certificate from the client. With the -verify option a certificate is requested but the client
does not have to send one, with the -Verify option the client must supply a certificate or an error occurs.

-CApath directory

The directory to use for client certificate verification. This directory must be in "hash format", see verify
for more information. These are also used when building the server certificate chain.

-CAfile file

A file containing trusted certificates to use during client authentication and to use when attempting to
build the server certificate chain. The list is also used in the list of acceptable client CAs passed to the
client when a certificate is requested.

-state

prints out the SSL session states.

-debug

print extensive debugging information including a hex dump of all traffic.
-msg

show all protocol messages with hex dump.

-nbio_test

tests non blocking I/0

-nbio

turns on non blocking I/0

-crlf

this option translated a line feed from the terminal into CR+LF.
-quiet

inhibit printing of session and certificate information.

-ssl2, -ssl3, -tls1, -no_ssl2, -no_ssl3, -no_tls1

these options disable the use of certain SSL or TLS protocols. By default the initial handshake uses a
method which should be compatible with all servers and permit them to use SSL v3, SSL v2 or TLS as
appropriate.

182

-bugs

there are several known bug in SSL and TLS implementations. Adding this option enables various
workarounds.

-hack
this option enables a further workaround for some some early Netscape SSL code (?).
-cipher cipherlist

this allows the cipher list used by the server to be modified. When the client sends a list of supported
ciphers the first client cipher also included in the server list is used. Because the client specifies the
preference order, the order of the server cipherlist irrelevant. See the ciphers command for more
information.

-WWW

sends a status message back to the client when it connects. This includes lots of information about the
ciphers used and various session parameters. The output is in HTML format so this option will normally
be used with a web browser.

-WwWw

emulates a simple web server. Pages will be resolved relative to the current directory, for example if the
URL https://myhost/page.html is requested the file ./page.html will be loaded.

-HTTP

emulates a simple web server. Pages will be resolved relative to the current directory, for example if the
URL https:/myhost/page.html is requested the file ./page.html will be loaded. The files loaded are
assumed to contain a complete and correct HTTP response (lines that are part of the HTTP response line
and headers must end with CRLF).

-engine id

specifying an engine (by it's unique id string) will cause s_server to attempt to obtain a functional
reference to the specified engine, thus initialising it if needed. The engine will then be set as the default
for all available algorithms.

-id_prefix arg

generate SSL/TLS session IDs prefixed by arg . This is mostly useful for testing any SSL/TLS code (eg.
proxies) that wish to deal with multiple servers, when each of which might be generating a unique range
of session IDs (eg. with a certain prefix).

-rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see
RAND_egd (3)). Multiple files can be specified separated by a OS-dependent character. The separator is ;
for MS-Windows, , for OpenVMS, and : for all others.

CONNECTED COMMANDS

If a connection request is established with an SSL client and neither the -www nor the -WWW option has
been used then normally any data received from the client is displayed and any key presses will be sent to the
client.

Certain single letter commands are also recognized which perform special operations: these are listed below.

q

end the current SSL connection but still accept new connections.

183

* Q
end the current SSL connection and exit.
e r
renegotiate the SSL session.
e R
renegotiate the SSL session and request a client certificate.
e P

send some plain text down the underlying TCP connection: this should cause the client to disconnect due
to a protocol violation.

e S

print out some session cache status information.

NOTES

s_server can be used to debug SSL clients. To accept connections from a web browser the command:
openssl s_server -accept 443 -www
can be used for example.

Most web browsers (in particular Netscape and MSIE) only support RSA cipher suites, so they cannot connect
to servers which don't use a certificate carrying an RSA key or a version of OpenSSL with RSA disabled.

Although specifying an empty list of CAs when requesting a client certificate is strictly speaking a protocol
violation, some SSL clients interpret this to mean any CA is acceptable. This is useful for debugging purposes.

The session parameters can printed out using the sess_id program.

Restrictions

Because this program has a lot of options and also because some of the techniques used are rather old, the C
source of s_server is rather hard to read and not a model of how things should be done. A typical SSL server
program would be much simpler.

The output of common ciphers is wrong: it just gives the list of ciphers that OpenSSL recognizes and the
client supports.

There should be a way for the s_server program to print out details of any unknown cipher suites a client says
it supports.

SEE ALSO

sess_id (1), s_client (1), ciphers (1)

184

s time
NAME

s_time — SSL/TLS performance timing program

Synopsis

openssl s_time [-connect host:port] [-www page] [-cert filename] [-key filename] [-CApath
directory] [-CAfile filename] [-reuse] [-new] [-verify depth] [-nbio] [-time seconds] [-ss12] [-ss13]
[-bugs] [-cipher cipherlist]

DESCRIPTION

The s_client command implements a generic SSI/TLS client which connects to a remote host using SSL/TLS.
It can request a page from the server and includes the time to transfer the payload data in its timing
measurements. It measures the number of connections within a given timeframe, the amount of data
transferred (if any), and calculates the average time spent for one connection.

OPTIONS

-connect host:port
This specifies the host and optional port to connect to.
-www page

This specifies the page to GET from the server. A value of '/' gets the index.htm[l] page. If this parameter
is not specified, then s_time will only perform the handshake to establish SSL connections but not
transfer any payload data.

-cert certname

The certificate to use, if one is requested by the server. The default is not to use a certificate. The file is in
PEM format.

-key keyfile
The private key to use. If not specified then the certificate file will be used. The file is in PEM format.
-verify depth

The verify depth to use. This specifies the maximum length of the server certificate chain and turns on
server certificate verification. Currently the verify operation continues after errors so all the problems
with a certificate chain can be seen. As a side effect the connection will never fail due to a server
certificate verify failure.

-CApath directory

The directory to use for server certificate verification. This directory must be in "hash format", see verify
for more information. These are also used when building the client certificate chain.

-CAfile file

A file containing trusted certificates to use during server authentication and to use when attempting to
build the client certificate chain.

185

° -new

performs the timing test using a new session ID for each connection. If neither -new nor -reuse are
specified, they are both on by default and executed in sequence.

° -reuse

performs the timing test using the same session ID; this can be used as a test that session caching is
working. If neither -new nor -reuse are specified, they are both on by default and executed in sequence.

e -nbio
turns on non-blocking 1/0.
o .ssl2,-ssl3

these options disable the use of certain SSL or TLS protocols. By default the initial handshake uses a
method which should be compatible with all servers and permit them to use SSL v3, SSL v2 or TLS as
appropriate. The timing program is not as rich in options to turn protocols on and off as the s_client (1)
program and may not connect to all servers.

Unfortunately there are a lot of ancient and broken servers in use which cannot handle this technique
and will fail to connect. Some servers only work if TLS is turned off with the -ssl3 option; others will only
support SSL v2 and may need the -ss/2 option.

e -bugs

there are several known bug in SSL and TLS implementations. Adding this option enables various
workarounds.

e cipher cipherlist

this allows the cipher list sent by the client to be modified. Although the server determines which cipher
suite is used it should take the first supported cipher in the list sent by the client. See the ciphers (1)
command for more information.

* -time length

specifies how long (in seconds) s_time should establish connections and optionally transfer payload data
from a server. Server and client performance and the link speed determine how many connections s_time
can establish.

NOTES

s_client can be used to measure the performance of an SSL connection. To connect to an SSL HTTP server and
get the default page the command

openssl s_time -connect servername:443 -www / -CApath yourdir -CAfile yourfile.pem -cipher
commoncipher [-ssl13]

would typically be used (https uses port 443). 'commoncipher' is a cipher to which both client and server can
agree, see the ciphers (1) command for details.

If the handshake fails then there are several possible causes, if it is nothing obvious like no client certificate
then the -bugs, -ssl2, -ssl3 options can be tried in case it is a buggy server. In particular you should play with
these options before submitting a bug report to an OpenSSL mailing list.

A frequent problem when attempting to get client certificates working is that a web client complains it has no
certificates or gives an empty list to choose from. This is normally because the server is not sending the
clients certificate authority in its "acceptable CA list" when it requests a certificate. By using s_client (1) the

186

CA list can be viewed and checked. However some servers only request client authentication after a specific
URL is requested. To obtain the list in this case it is necessary to use the -prexit option of s_client (1) and send
an HTTP request for an appropriate page.

If a certificate is specified on the command line using the -cert option it will not be used unless the server
specifically requests a client certificate. Therefor merely including a client certificate on the command line is
no guarantee that the certificate works.

Restrictions

Because this program does not have all the options of the s_client (1) program to turn protocols on and off, you
may not be able to measure the performance of all protocols with all servers.

The -verify option should really exit if the server verification fails.

SEE ALSO

s_client (1), s_server (1), ciphers (1)

187

sess_id
NAME

sess_id — SSL/TLS session handling utility

Synopsis
openssl sess_id [-inform PEM|DER] [-outform PEM|DER] [-in filename] [-out filename] [-text]
[-noout] [-context ID]

DESCRIPTION

The sess_id process the encoded version of the SSL session structure and optionally prints out SSL session
details (for example the SSL session master key) in human readable format. Since this is a diagnostic tool
that needs some knowledge of the SSL protocol to use properly, most users will not need to use it.

-inform DER | PEM

This specifies the input format. The DER option uses an ASN1 DER encoded format containing session
details. The precise format can vary from one version to the next. The PEM form is the default format: it
consists of the DER format base64 encoded with additional header and footer lines.

-outform DER | PEM

This specifies the output format, the options have the same meaning as the -inform option.

-in filename

This specifies the input filename to read session information from or standard input by default.
-out filename

This specifies the output filename to write session information to or standard output if this option is not
specified.

-text
prints out the various public or private key components in plain text in addition to the encoded version.
-cert

if a certificate is present in the session it will be output using this option, if the -text option is also present
then it will be printed out in text form.

-noout
this option prevents output of the encoded version of the session.
-context ID

this option can set the session id so the output session information uses the supplied ID. The ID can be
any string of characters. This option wont normally be used.

OUTPUT

Typ

ical output:

SSL-Session:
Protocol : TLSvl
Cipher : 0016

Session-ID: 871E62626C554CE95488823752CBD5F3673A3EF3DCE9C67BD916C809914B40ED

188

Session-ID-ctx: 01000000

Master-Key:
A7CEFC571974BEO2CAC305269DC59F76EA9F0B180CB6642697A68251F2D2BB57E51DBBB4C7885573192AE9AEE220F
ACD

Key-Arg : None
Start Time: 948459261
Timeout : 300 (sec)

Verify return code 0 (ok)
Theses are described below in more detail.
¢ Protocol
this is the protocol in use TLSv1, SSLv3 or SSLv2.
¢ Cipher

the cipher used this is the actual raw SSL or TLS cipher code, see the SSL or TLS specifications for more
information.

¢ Session-ID
the SSL session ID in hex format.
¢ Session-ID-ctx
the session ID context in hex format.
e Master-Key
this is the SSL session master key.
e Key-Arg
the key argument, this is only used in SSL v2.
e Start Time
this is the session start time represented as an integer in standard UNIX format.
e Timeout
the timeout in seconds.
e Verify return code

this is the return code when an SSL client certificate is verified.

NOTES

The PEM encoded session format uses the header and footer lines:

Since the SSL session output contains the master key it is possible to read the contents of an encrypted
session using this information. Therefore appropriate security precautions should be taken if the information
is being output by a "real" application. This is however strongly discouraged and should only be used for
debugging purposes.

Restrictions

The cipher and start time should be printed out in human readable form.

189

SEE ALSO

ciphers (1), s_server (1)

190

smime

NAME
smime — S/MIME utility

Synopsis

openssl smime [-encrypt] [-decrypt] [-sign] [-verify] [-pk7out] [-des] [-des3] [-rc2-40]
[-rc2-64] [-rc2-128] [-in file] [-certfile file] [-signer file] [-recip file] [-inform
SMIME | PEM|DER] [-passin arg] [-inkey file] [-out file] [-outform SMIME|PEM|DER] [-content
file] [-to addr] [-from ad] [-subject s] [-text] [-rand file(s)] [cert.pem]...

DESCRIPTION

The smime command handles S/MIME mail. It can encrypt, decrypt, sign and verify S/MIME messages.

COMMAND OPTIONS

There are five operation options that set the type of operation to be performed. The meaning of the other
options varies according to the operation type.

* -encrypt

encrypt mail for the given recipient certificates. Input file is the message to be encrypted. The output file
is the encrypted mail in MIME format.

e -decrypt

decrypt mail using the supplied certificate and private key. Expects an encrypted mail message in MIME
format for the input file. The decrypted mail is written to the output file.

® -sign

sign mail using the supplied certificate and private key. Input file is the message to be signed. The signed
message in MIME format is written to the output file.

e -verify

verify signed mail. Expects a signed mail message on input and outputs the signed data. Both clear text
and opaque signing is supported.

e -pk7out

takes an input message and writes out a PEM encoded PKCS#7 structure.
¢ -in filename

the input message to be encrypted or signed or the MIME message to be decrypted or verified.
e -inform SMIME | PEM | DER

this specifies the input format for the PKCS#7 structure. The default is SMIME which reads an S/MIME
format message.

PEM and DER format change this to expect PEM and DER format PKCS#7 structures instead. This
currently only affects the input format of the PKCS#7 structure, if no PKCS#7 structure is being input
(for example with -encrypt or -sign) this option has no effect.

191

-out filename

the message text that has been decrypted or verified or the output MIME format message that has been
signed or verified.

-outform SMIME | PEM | DER

this specifies the output format for the PKCS#7 structure. The default is SMIME which write an S/MIME
format message.

PEM and DER format change this to write PEM and DER format PKCS#7 structures instead. This
currently only affects the output format of the PKCS#7 structure, if no PKCS#7 structure is being output
(for example with -verify or -decrypt) this option has no effect.

-content filename

This specifies a file containing the detached content, this is only useful with the -verify command. This is
only usable if the PKCS#7 structure is using the detached signature form where the content is not
included. This option will override any content if the input format is S/MIME and it uses the
multipart/signed MIME content type.

-text

this option adds plain text (text/plain) MIME headers to the supplied message if encrypting or signing. If
decrypting or verifying it strips off text headers: if the decrypted or verified message is not of MIME type
text/plain then an error occurs.

-CAfile file
a file containing trusted CA certificates, only used with -verify.
-CApath dir

a directory containing trusted CA certificates, only used with -verify. This directory must be a standard
certificate directory: that is a hash of each subject name (using x509 -hash) should be linked to each
certificate.

-des -des3 -rc2-40 -rc2-64 -rc2-128

the encryption algorithm to use. DES (56 bits), triple DES (168 bits) or 40, 64 or 128 bit RC2 respectively
if not specified 40 bit RC2 is used. Only used with -encrypt.

-nointern

when verifying a message normally certificates (if any) included in the message are searched for the
signing certificate. With this option only the certificates specified in the -certfile option are used. The
supplied certificates can still be used as untrusted CAs however.

-noverify
do not verify the signers certificate of a signed message.
-nochain

do not do chain verification of signers certificates: that is don't use the certificates in the signed message
as untrusted CAs.

-nosigs

don't try to verify the signatures on the message.

192

-nocerts

when signing a message the signer's certificate is normally included with this option it is excluded. This
will reduce the size of the signed message but the verifier must have a copy of the signers certificate
available locally (passed using the -certfile option for example).

-noattr

normally when a message is signed a set of attributes are included which include the signing time and
supported symmetric algorithms. With this option they are not included.

-binary

normally the input message is converted to "canonical" format which is effectively using CR and LF as
end of line: as required by the S/MIME specification. When this option is present no translation occurs.
This is useful when handling binary data which may not be in MIME format.

-nodetach

when signing a message use opaque signing: this form is more resistant to translation by mail relays but
it cannot be read by mail agents that do not support S/MIME. Without this option cleartext signing with
the MIME type multipart/signed is used.

-certfile file

allows additional certificates to be specified. When signing these will be included with the message. When
verifying these will be searched for the signers certificates. The certificates should be in PEM format.

-signer file

the signers certificate when signing a message. If a message is being verified then the signers certificates
will be written to this file if the verification was successful.

-recip file

the recipients certificate when decrypting a message. This certificate must match one of the recipients of
the message or an error occurs.

-inkey file

the private key to use when signing or decrypting. This must match the corresponding certificate. If this
option is not specified then the private key must be included in the certificate file specified with the -recip
or -signer file.

-passin arg

the private key password source. For more information about the format of arg see the PASS PHRASE
ARGUMENTS section in openssl (1).

-rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see
RAND_egd (3)). Multiple files can be specified separated by a OS-dependent character. The separator is ;
for MS-Windows, , for OpenVMS, and : for all others.

cert.pem...
one or more certificates of message recipients: used when encrypting a message.
-to, -from, -subject

the relevant mail headers. These are included outside the signed portion of a message so they may be
included manually. If signing then many S/MIME mail clients check the signers certificate's email
address matches that specified in the From: address.

193

NOTES

The MIME message must be sent without any blank lines between the headers and the output. Some mail
programs will automatically add a blank line. Piping the mail directly to sendmail is one way to achieve the
correct format.

The supplied message to be signed or encrypted must include the necessary MIME headers or many S/MIME
clients wont display it properly (if at all). You can use the -text option to automatically add plain text headers.

A "signed and encrypted" message is one where a signed message is then encrypted. This can be produced by
encrypting an already signed message: see the examples section.

This version of the program only allows one signer per message but it will verify multiple signers on received
messages. Some S/MIME clients choke if a message contains multiple signers. It is possible to sign messages
"in parallel" by signing an already signed message.

The options -encrypt and -decrypt reflect common usage in S/MIME clients. Strictly speaking these process
PKCS#7 enveloped data: PKCS#7 encrypted data is used for other purposes.

EXIT CODES
e 0
the operation was completely successfully.
e 1
an error occurred parsing the command options.
e 2
one of the input files could not be read.
e 3
an error occurred creating the PKCS#7 file or when reading the MIME message.
e 4
an error occurred decrypting or verifying the message.
e 5

the message was verified correctly but an error occurred writing out the signers certificates.

EXAMPLES

Create a cleartext signed message:

openssl smime -sign -in message.txt -text -out mail.msg \
-signer mycert.pem

Create and opaque signed message:

openssl smime -sign -in message.txt -text -out mail.msg -nodetach \
-signer mycert.pem

Create a signed message, include some additional certificates and read the private key from another file:

openssl smime -sign -in in.txt -text -out mail.msg \
-signer mycert.pem -inkey mykey.pem -certfile mycerts.pem

194

Send a signed message under UNIX directly to sendmail, including headers:

openssl smime -sign -in in.txt -text -signer mycert.pem \
-from steve@openssl.org -to someone@somewhere \
-subject "Signed message" | sendmail someone@somewhere

Verify a message and extract the signer's certificate if successful:
openssl smime -verify -in mail.msg -signer user.pem -out signedtext.txt
Send encrypted mail using triple DES:

openssl smime -encrypt -in in.txt -from steve@openssl.org \
-to someone@somewhere -subject "Encrypted message" \
-des3 user.pem -out mail.msg

Sign and encrypt mail:

openssl smime -sign -in ml.txt -signer my.pem -text \
| openssl smime -encrypt -out mail.msg \

-from steve@openssl.org -to someone@somewhere \
-subject "Signed and Encrypted message" -des3 user.pem

Note: the encryption command does not include the -text option because the message being encrypted already
has MIME headers.

Decrypt mail:
openssl smime -decrypt -in mail.msg -recip mycert.pem -inkey key.pem

The output from Netscape form signing is a PKCS#7 structure with the detached signature format. You can
use this program to verify the signature by line wrapping the base64 encoded structure and surrounding it
with:

and using the command,
openssl smime -verify -inform PEM -in signature.pem -content content.txt
alternatively you can base64 decode the signature and use

openssl smime -verify -inform DER -in signature.der -content content.txt

Restrictions

The MIME parser isn't very clever: it seems to handle most messages that I've thrown at it but it may choke
on others.

The code currently will only write out the signer's certificate to a file: if the signer has a separate encryption
certificate this must be manually extracted. There should be some heuristic that determines the correct
encryption certificate.

Ideally a database should be maintained of a certificates for each email address.

The code doesn't currently take note of the permitted symmetric encryption algorithms as supplied in the
SMIMECapabilities signed attribute. this means the user has to manually include the correct encryption
algorithm. It should store the list of permitted ciphers in a database and only use those.

No revocation checking is done on the signer's certificate.

195

The current code can only handle S/MIME v2 messages, the more complex S/MIME v3 structures may cause
parsing errors.

196

speed
NAME

speed — test library performance
Synopsis

openssl speed [-engine id] [md2] [mdc2] [md5] [hmac] [shal] [rmdl60] [idea-cbc] [rc2-cbc]
[rc5-cbc] [bf-cbc] [des-cbc] [des-ede3] [rcd] [rsab5l12] [rsall024] [rsa2048] [rsad096]
[dsab12] [dsal024] [dsa2048] [idea] [rc2] [des] [rsal] [blowfish]

DESCRIPTION

This command is used to test the performance of cryptographic algorithms.

OPTIONS
* -engineid

specifying an engine (by it's unique id string) will cause speed to attempt to obtain a functional reference
to the specified engine, thus initialising it if needed. The engine will then be set as the default for all
available algorithms.

e [zero or more test algorithms]

If any options are given, speed tests those algorithms, otherwise all of the above are tested.

197

spkac

NAME
spkac — SPKAC printing and generating utility

Synopsis
openssl spkac [-in filename] [-out filename] [-key keyfile] [-passin arg] [-challenge
string] [-pubkey] [-spkac spkacname] [-spksect section] [-noout] [-verify] [-engine id]

DESCRIPTION

The spkac command processes Netscape signed public key and challenge (SPKAC) files. It can print out their
contents, verify the signature and produce its own SPKACs from a supplied private key.

COMMAND OPTIONS

e _in filename

This specifies the input filename to read from or standard input if this option is not specified. Ignored if
the -key option is used.

¢ -out filename
specifies the output filename to write to or standard output by default.
o -key keyfile

create an SPKAC file using the private key in keyfile. The -in, -nout, -spksect and -verify options are
ignored if present.

e -passin password

the input file password source. For more information about the format of arg see the PASS PHRASE
ARGUMENTS section in openssl (1).

¢ -challenge string
specifies the challenge string if an SPKAC is being created.
e -spkac spkacname

allows an alternative name form the variable containing the SPKAC. The default is "SPKAC". This option
affects both generated and input SPKAC files.

e -spksect section
allows an alternative name form the section containing the SPKAC. The default is the default section.
* -noout
don't output the text version of the SPKAC (not used if an SPKAC is being created).
e -pubkey
output the public key of an SPKAC (not used if an SPKAC is being created).
e -verify

verifies the digital signature on the supplied SPKAC.

198

* -engineid

specifying an engine (by it's unique id string) will cause req to attempt to obtain a functional reference to
the specified engine, thus initialising it if needed. The engine will then be set as the default for all
available algorithms.

EXAMPLES
Print out the contents of an SPKAC:

openssl spkac -in spkac.cnf
Verify the signature of an SPKAC:

openssl spkac -in spkac.cnf -noout -verify
Create an SPKAC using the challenge string "hello":

openssl spkac -key key.pem -challenge hello -out spkac.cnf
Example of an SPKAC, (long lines split up for clarity):

SPKAC=MIG5MGUWXDANBgkghkiGO9wOBAQEFAANLADBIAKEAlcCog2Wa3Ixs47ul7F\
PVWHVIPDx5ys0105Y6zpozaml35a8R0CpoRvkkigIyXfcCjivi5oWk+6FfPaD03u\
PFOQIDAQABFgV0oZWxsbzANBgkghkiGI9wOBAQQFAANBAFPQtY/FojdwkJhlbEIYuc\
2EeM2KHTWPEepWYeawvHDOgQ3DngSC75YCWnnDAg+NQ3 F+X4deMx9AaEglZ tULWV\
4=

NOTES

A created SPKAC with suitable DN components appended can be fed into the ca utility.

SPKACs are typically generated by Netscape when a form is submitted containing the KEYGEN tag as part
of the certificate enrollment process.

The challenge string permits a primitive form of proof of possession of private key. By checking the SPKAC
signature and a random challenge string some guarantee is given that the user knows the private key
corresponding to the public key being certified. This is important in some applications. Without this it is
possible for a previous SPKAC to be used in a "replay attack".

SEE ALSO
ca (1)

199

verify
NAME

verify — Utility to verify certificates.

Synopsis

openssl verify [-CApath directory] [-CAfile file] [-purpose purpose] [-untrusted file]
[-help] [-issuer checks] [-verbose] [-] [certificates]

DESCRIPTION

The verify command verifies certificate chains.

COMMAND OPTIONS

¢ -CApath directory

A directory of trusted certificates. The certificates should have names of the form: hash.0 or have symbolic
links to them of this form ("hash" is the hashed certificate subject name: see the -hash option of the x509
utility). Under UNIX the c_rehash script will automatically create symbolic links to a directory of
certificates.

e -CAfile file

A file of trusted certificates. The file should contain multiple certificates in PEM format concatenated
together.

e -untrusted file
A file of untrusted certificates. The file should contain multiple certificates
® -purpose purpose

the intended use for the certificate. Without this option no chain verification will be done. Currently
accepted uses are sslclient, sslserver, nssslserver, smimesign, smimeencrypt. See the VERIFY
OPERATION section for more information.

e -help

prints out a usage message.
e -verbose

print extra information about the operations being performed.
e -issuer_checks

print out diagnostics relating to searches for the issuer certificate of the current certificate. This shows
why each candidate issuer certificate was rejected. However the presence of rejection messages does not
itself imply that anything is wrong: during the normal verify process several rejections may take place.

marks the last option. All arguments following this are assumed to be certificate files. This is useful if the
first certificate filename begins with a -.

200

e certificates

one or more certificates to verify. If no certificate filenames are included then an attempt is made to read
a certificate from standard input. They should all be in PEM format.

VERIFY OPERATION

The verify program uses the same functions as the internal SSL and S/MIME verification, therefore this
description applies to these verify operations too.

There is one crucial difference between the verify operations performed by the verify program: wherever
possible an attempt is made to continue after an error whereas normally the verify operation would halt on
the first error. This allows all the problems with a certificate chain to be determined.

The verify operation consists of a number of separate steps.

Firstly a certificate chain is built up starting from the supplied certificate and ending in the root CA. It is an
error if the whole chain cannot be built up. The chain is built up by looking up the issuers certificate of the
current certificate. If a certificate is found which is its own issuer it is assumed to be the root CA.

The process of 'looking up the issuers certificate' itself involves a number of steps. In versions of OpenSSL
before 0.9.5a the first certificate whose subject name matched the issuer of the current certificate was
assumed to be the issuers certificate. In OpenSSL 0.9.6 and later all certificates whose subject name matches
the issuer name of the current certificate are subject to further tests. The relevant authority key identifier
components of the current certificate (if present) must match the subject key identifier (if present) and issuer
and serial number of the candidate issuer, in addition the keyUsage extension of the candidate issuer (if
present) must permit certificate signing.

The lookup first looks in the list of untrusted certificates and if no match is found the remaining lookups are
from the trusted certificates. The root CA is always looked up in the trusted certificate list: if the certificate to
verify is a root certificate then an exact match must be found in the trusted list.

The second operation is to check every untrusted certificate's extensions for consistency with the supplied
purpose. If the -purpose option is not included then no checks are done. The supplied or "leaf" certificate must
have extensions compatible with the supplied purpose and all other certificates must also be valid CA
certificates. The precise extensions required are described in more detail in the CERTIFICATE
EXTENSIONS section of the x509 utility.

The third operation is to check the trust settings on the root CA. The root CA should be trusted for the
supplied purpose. For compatibility with previous versions of SSLeay and OpenSSL a certificate with no trust
settings is considered to be valid for all purposes.

The final operation is to check the validity of the certificate chain. The validity period is checked against the
current system time and the notBefore and notAfter dates in the certificate. The certificate signatures are
also checked at this point.

If all operations complete successfully then certificate is considered valid. If any operation fails then the
certificate is not valid.

DIAGNOSTICS

When a verify operation fails the output messages can be somewhat cryptic. The general form of the error
message is:

server.pem: /C=AU/ST=Queensland/O=CryptSoft Pty Ltd/CN=Test CA (1024 bit)
error 24 at 1 depth lookup:invalid CA certificate

201

The first line contains the name of the certificate being verified followed by the subject name of the certificate.
The second line contains the error number and the depth. The depth is number of the certificate being verified
when a problem was detected starting with zero for the certificate being verified itself then 1 for the CA that
signed the certificate and so on. Finally a text version of the error number is presented.

An exhaustive list of the error codes and messages is shown below, this also includes the name of the error
code as defined in the header file x509_vfy.h Some of the error codes are defined but never returned: these are
described as "unused".

e 0X509_V_OK: ok
the operation was successful.
e 2X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT: unable to get issuer certificate

the issuer certificate could not be found: this occurs if the issuer certificate of an untrusted certificate
cannot be found.

e 3X509_V_ERR_UNABLE_TO_GET_CRL unable to get certificate CRL
the CRL of a certificate could not be found. Unused.
e 4X509_V_ERR_UNABLE_TO_DECRYPT_CERT SIGNATURE: unable to decrypt certificate's signature

the certificate signature could not be decrypted. This means that the actual signature value could not be
determined rather than it not matching the expected value, this is only meaningful for RSA keys.

e 5X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE: unable to decrypt CRL's signature

the CRL signature could not be decrypted: this means that the actual signature value could not be
determined rather than it not matching the expected value. Unused.

¢ 6X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY: unable to decode issuer public key
the public key in the certificate SubjectPublicKeyInfo could not be read.
e 7X509_V_ERR_CERT_SIGNATURE_FAILURE.: certificate signature failure
the signature of the certificate is invalid.
e 8X509_V_ERR CRL_SIGNATURE_FAILURE: CRL signature failure
the signature of the certificate is invalid. Unused.
e 9X509_V_ERR_CERT_NOT_YET_VALID: certificate is not yet valid
the certificate is not yet valid: the notBefore date is after the current time.
e 10X509_V_ERR_CERT_HAS_EXPIRED: certificate has expired
the certificate has expired: that is the notAfter date is before the current time.
e 11X509 V_ERR_CRL_NOT_YET_VALID: CRL is not yet valid
the CRL is not yet valid. Unused.
e 12X509_V_ERR_CRL_HAS_EXPIRED: CRL has expired
the CRL has expired. Unused.
e 13X509_V_ERR_ERROR_IN_CERT NOT_BEFORE_FIELD: format error in certificate's notBefore field
the certificate notBefore field contains an invalid time.
e 14 X509_V_ERR_ERROR_IN_CERT _NOT_AFTER_FIELD: format error in certificate's notAfter field

the certificate notAfter field contains an invalid time.

202

15 X509_V_ERR_ERROR_IN_CRL_LAST UPDATE_FIELD: format error in CRL's lastUpdate field
the CRL lastUpdate field contains an invalid time. Unused.

16 X509_V_ERR_ERROR_IN_CRL_NEXT UPDATE_FIELD: format error in CRL's nextUpdate field
the CRL nextUpdate field contains an invalid time. Unused.

17 X509_V_ERR_OUT_OF_MEM: out of memory

an error occurred trying to allocate memory. This should never happen.

18 X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT: self signed certificate

the passed certificate is self signed and the same certificate cannot be found in the list of trusted
certificates.

19 X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN: self signed certificate in certificate chain

the certificate chain could be built up using the untrusted certificates but the root could not be found
locally.

20 X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY: unable to get local issuer certificate

the issuer certificate of a locally looked up certificate could not be found. This normally means the list of
trusted certificates is not complete.

21 X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE: unable to verify the first certificate
no signatures could be verified because the chain contains only one certificate and it is not self signed.
22 X509_V_ERR_CERT_CHAIN_TOO_LONG: certificate chain too long

the certificate chain length is greater than the supplied maximum depth. Unused.

23 X509_V_ERR_CERT_REVOKED: certificate revoked

the certificate has been revoked. Unused.

24 X509_V_ERR_INVALID_CA: invalid CA certificate

a CA certificate is invalid. Either it is not a CA or its extensions are not consistent with the supplied
purpose.

25 X509_V_ERR_PATH_LENGTH_EXCEEDED: path length constraint exceeded
the basicConstraints pathlength parameter has been exceeded.

26 X509_V_ERR_INVALID_PURPOSE: unsupported certificate purpose

the supplied certificate cannot be used for the specified purpose.

27 X509_V_ERR_CERT_UNTRUSTED: certificate not trusted

the root CA is not marked as trusted for the specified purpose.

28 X509_V_ERR_CERT_REJECTED: certificate rejected

the root CA is marked to reject the specified purpose.

29 X509_V_ERR_SUBJECT _ISSUER_MISMATCH: subject issuer mismatch

the current candidate issuer certificate was rejected because its subject name did not match the issuer
name of the current certificate. Only displayed when the -issuer_checks option is set.

203

30 X509_V_ERR_AKID_SKID MISMATCH: authority and subject key identifier mismatch

the current candidate issuer certificate was rejected because its subject key identifier was present and did
not match the authority key identifier current certificate. Only displayed when the -issuer_checks option
is set.

31 X509_V_ERR_AKID_ISSUER_SERIAL MISMATCH: authority and issuer serial number mismatch

the current candidate issuer certificate was rejected because its issuer name and serial number was
present and did not match the authority key identifier of the current certificate. Only displayed when the
-issuer_checks option is set.

32 X509_V_ERR_KEYUSAGE_NO_CERTSIGN:key usage does not include certificate signing

the current candidate issuer certificate was rejected because its keyUsage extension does not permit
certificate signing.

50 X509_V_ERR_APPLICATION_VERIFICATION: application verification failure

an application specific error. Unused.

Restrictions

Although the issuer checks are a considerably improvement over the old technique they still suffer from
limitations in the underlying X509_LOOKUP API. One consequence of this is that trusted certificates with
matching subject name must either appear in a file (as specified by the -CAfile option) or a directory (as
specified by -CApath. If they occur in both then only the certificates in the file will be recognised.

Previous versions of OpenSSL assume certificates with matching subject name are identical and mishandled
them.

SEE ALSO

x509 (1)

204

version
NAME

version — print OpenSSL version information

Synopsis

openssl version [-a] [-v] [-b] [-o] [-f] [-p]

DESCRIPTION

This command is used to print out version information about OpenSSL.

OPTIONS

* -a
all information, this is the same as setting all the other flags.
e -v
the current OpenSSL version.
e b
the date the current version of OpenSSL was built.
e 0
option information: various options set when the library was built.
e -

compilation flags.

* p
platform setting.
e d
OPENSSLDIR setting.

NOTES

The output of openssl version -a would typically be used when sending in a bug report.

HISTORY
The -d option was added in OpenSSL 0.9.7.

205

x509

NAME
x509 — Certificate display and signing utility

Synopsis

openssl x509 [-inform DER|PEM|NET] [-outform DER|PEM|NET] [-keyform DER|PEM] [-CAform
DER |PEM] [-CAkeyform DER|PEM] [-in filename] [-out filename] [-serial] [-hash] [-subject]
[-issuer] [-nameopt option] [-email] [-startdate] [-enddate] [-purpose] [-dates]
[-modulus] [-fingerprint] [-alias] [-noout] [-trustout] [-clrtrust] [-clrreject]
[-addtrust arg] [-addreject arg] [-setalias arg] [-days arg] [-set_serial n] [-signkey
filename] [-x509toreq] [-req] [-CA filename] [-CAkey filename] [-CAcreateserial]
[-CAserial filename] [-text] [-C] [-md2|-md5|-shal|-mdc2] [-clrext] [-extfile filename]
[-extensions section] [-engine id]

DESCRIPTION

The x509 command is a multi purpose certificate utility. It can be used to display certificate information,
convert certificates to various forms, sign certificate requests like a "mini CA" or edit certificate trust settings.

Since there are a large number of options they will split up into various sections.

OPTIONS

INPUT, OUTPUT AND GENERAL PURPOSE OPTIONS
e -inform DER|PEM |NET

This specifies the input format normally the command will expect an X509 certificate but this can change
if other options such as -req are present. The DER format is the DER encoding of the certificate and PEM
is the base64 encoding of the DER encoding with header and footer lines added. The NET option is an
obscure Netscape server format that is now obsolete.

e -outform DER|PEM |NET
This specifies the output format, the options have the same meaning as the -inform option.
¢ -in filename
This specifies the input filename to read a certificate from or standard input if this option is not specified.
e -out filename
This specifies the output filename to write to or standard output by default.
e -md2|-md5]|-shal|-mdc2

the digest to use. This affects any signing or display option that uses a message digest, such as the
-fingerprint, -signkey and -CA options. If not specified then MD5 is used. If the key being used to sign
with is a DSA key then this option has no effect: SHA1 is always used with DSA keys.

* -engineid

specifying an engine (by it's unique id string) will cause req to attempt to obtain a functional reference to
the specified engine, thus initialising it if needed. The engine will then be set as the default for all
available algorithms.

206

DISPLAY OPTIONS

Note: the -alias and -purpose options are also display options but are described in the TRUST SETTINGS
section.

* -text

prints out the certificate in text form. Full details are output including the public key, signature
algorithms, issuer and subject names, serial number any extensions present and any trust settings.

e -certopt option

customise the output format used with -text . The option argument can be a single option or multiple
options separated by commas. The -certopt switch may be also be used more than once to set multiple
options. See the TEXT OPTIONS section for more information.

* -noout
this option prevents output of the encoded version of the request.
¢ -modulus
this option prints out the value of the modulus of the public key contained in the certificate.
e -serial
outputs the certificate serial number.
¢ -hash

outputs the "hash" of the certificate subject name. This is used in OpenSSL to form an index to allow
certificates in a directory to be looked up by subject name.

e -subject

outputs the subject name.
® -issuer

outputs the issuer name.
®* -nameopt option

option which determines how the subject or issuer names are displayed. The option argument can be a
single option or multiple options separated by commas. Alternatively the -nameopt switch may be used
more than once to set multiple options. See the NAME OPTIONS section for more information.

e -email

outputs the email address(es) if any.
e -startdate

prints out the start date of the certificate, that is the notBefore date.
¢ -enddate

prints out the expiry date of the certificate, that is the notAfter date.
e -dates

prints out the start and expiry dates of a certificate.
e -fingerprint

prints out the digest of the DER encoded version of the whole certificate (see digest options).

207

e C

this outputs the certificate in the form of a C source file.

TRUST SETTINGS

Please note these options are currently experimental and may well change.

A trusted certificate is an ordinary certificate which has several additional pieces of information attached to it
such as the permitted and prohibited uses of the certificate and an "alias".

Normally when a certificate is being verified at least one certificate must be "trusted". By default a trusted
certificate must be stored locally and must be a root CA: any certificate chain ending in this CA is then usable
for any purpose.

Trust settings currently are only used with a root CA. They allow a finer control over the purposes the root
CA can be used for. For example a CA may be trusted for SSL client but not SSL server use.

See the description of the verify utility for more information on the meaning of trust settings.

Future versions of OpenSSL will recognize trust settings on any certificate: not just root CAs.

e -trustout

this causes x509 to output a trusted certificate. An ordinary or trusted certificate can be input but by
default an ordinary certificate is output and any trust settings are discarded. With the -trustout option a
trusted certificate is output. A trusted certificate is automatically output if any trust settings are
modified.

e -setalias arg

sets the alias of the certificate. This will allow the certificate to be referred to using a nickname for
example "Steve's Certificate".

e -alias

outputs the certificate alias, if any.
e -clrtrust

clears all the permitted or trusted uses of the certificate.
e _clrreject

clears all the prohibited or rejected uses of the certificate.
¢ -addtrust arg

adds a trusted certificate use. Any object name can be used here but currently only clientAuth (SSL client
use), serverAuth (SSL server use) and emailProtection (S/MIME email) are used. Other OpenSSL
applications may define additional uses.

e -addreject arg
adds a prohibited use. It accepts the same values as the -addtrust option.
® -purpose

this option performs tests on the certificate extensions and outputs the results. For a more complete
description see the CERTIFICATE EXTENSIONS section.

SIGNING OPTIONS

The x509 utility can be used to sign certificates and requests: it can thus behave like a "mini CA".

208

-signkey filename
this option causes the input file to be self signed using the supplied private key.

If the input file is a certificate it sets the issuer name to the subject name (i.e. makes it self signed)
changes the public key to the supplied value and changes the start and end dates. The start date is set to
the current time and the end date is set to a value determined by the -days option. Any certificate
extensions are retained unless the -clrext option is supplied.

If the input is a certificate request then a self signed certificate is created using the supplied private key
using the subject name in the request.

-clrext

delete any extensions from a certificate. This option is used when a certificate is being created from
another certificate (for example with the -signkey or the -CA options). Normally all extensions are
retained.

-keyform PEM | DER

specifies the format (DER or PEM) of the private key file used in the -signkey option.
-days arg

specifies the number of days to make a certificate valid for. The default is 30 days.
-x509toreq

converts a certificate into a certificate request. The -signkey option is used to pass the required private
key.

-req
by default a certificate is expected on input. With this option a certificate request is expected instead.
-set_serial n

specifies the serial number to use. This option can be used with either the -signkey or -CA options. If used
in conjunction with the -CA option the serial number file (as specified by the -CAserial or -CAcreateserial
options) is not used.

The serial number can be decimal or hex (if preceded by 0x). Negative serial numbers can also be specified
but their use is not recommended.

-CA filename

specifies the CA certificate to be used for signing. When this option is present x509 behaves like a "mini
CA". The input file is signed by this CA using this option: that is its issuer name is set to the subject name
of the CA and it is digitally signed using the CAs private key.

This option is normally combined with the -req option. Without the -req option the input is a certificate
which must be self signed.

-CAkey filename

sets the CA private key to sign a certificate with. If this option is not specified then it is assumed that the
CA private key is present in the CA certificate file.

-CAserial filename
sets the CA serial number file to use.

When the -CA option is used to sign a certificate it uses a serial number specified in a file. This file consist
of one line containing an even number of hex digits with the serial number to use. After each use the
serial number is incremented and written out to the file again.

209

The default filename consists of the CA certificate file base name with ".srl" appended. For example if the
CA certificate file is called "mycacert.pem" it expects to find a serial number file called "mycacert.srl".

e -CAcreateserial

with this option the CA serial number file is created if it does not exist: it will contain the serial number
"02" and the certificate being signed will have the 1 as its serial number. Normally if the -CA option is
specified and the serial number file does not exist it is an error.

e -extfile filename
file containing certificate extensions to use. If not specified then no extensions are added to the certificate.
* -extensions section

the section to add certificate extensions from. If this option is not specified then the extensions should
either be contained in the unnamed (default) section or the default section should contain a variable
called "extensions" which contains the section to use.

NAME OPTIONS

The nameopt command line switch determines how the subject and issuer names are displayed. If no
nameopt switch is present the default "oneline" format is used which is compatible with previous versions of
OpenSSL. Each option is described in detail below, all options can be preceded by a - to turn the option off.
Only the first four will normally be used.

® compat
use the old format. This is equivalent to specifying no name options at all.
e RFC2253

displays names compatible with RFC2253 equivalent to esc_2253, esc_ctrl, esc_msb, utf8, dump_nostr,
dump_unknown , dump_der, sep_comma_plus, dn_rev and sname.

e oneline

a oneline format which is more readable than RFC2253. It is equivalent to specifying the esc_2253,
esc_ctrl, esc_msb, utf8, dump_nostr, dump_der, use_quote, sep_comma_plus_spc, spc_eq and sname
options.

e multiline
a multiline format. It is equivalent esc_ctrl , esc_msb, sep_multiline, spc_eq, Iname and align.
® esc_2253

escape the "special" characters required by RFC2253 in a field That is ,+"<>;. Additionally # is escaped at
the beginning of a string and a space character at the beginning or end of a string.

e esc_ctrl

escape control characters. That is those with ASCII values less than 0x20 (space) and the delete (0x7f)
character. They are escaped using the RFC2253 \XX notation (where XX are two hex digits representing
the character value).

® esc_msb
escape characters with the MSB set, that is with ASCII values larger than 127.
®* use_quote

escapes some characters by surrounding the whole string with “ characters, without the option all
escaping is done with the \ character.

210

utf8

convert all strings to UTF8 format first. This is required by RFC2253. If you are lucky enough to have a
UTF8 compatible terminal then the use of this option (and not setting esc_msb) may result in the correct
display of multibyte (international) characters. Is this option is not present then multibyte characters
larger than 0xff will be represented using the format \UXXXX for 16 bits and \WXXXXXXXX for 32 bits.
Also if this option is off any UTF8Strings will be converted to their character form first.

no_type

this option does not attempt to interpret multibyte characters in any way. That is their content octets are
merely dumped as though one octet represents each character. This is useful for diagnostic purposes but
will result in rather odd looking output.

show_type

show the type of the ASN1 character string. The type precedes the field contents. For example
"BMPSTRING: Hello World".

dump_der

when this option is set any fields that need to be hexdumped will be dumped using the DER encoding of
the field. Otherwise just the content octets will be displayed. Both options use the RFC2253 #XXXX...
format.

dump_nostr

dump non character string types (for example OCTET STRING) if this option is not set then non
character string types will be displayed as though each content octet represents a single character.

dump_all

dump all fields. This option when used with dump_der allows the DER encoding of the structure to be
unambiguously determined.

dump_unknown
dump any field whose OID is not recognised by OpenSSL.
sep_comma_plus, sep_comma_plus_space, sep_semi_plus_space, sep_multiline

these options determine the field separators. The first character is between RDNs and the second
between multiple AVAs (multiple AVAs are very rare and their use is discouraged). The options ending in
"space" additionally place a space after the separator to make it more readable. The sep_multiline uses a
linefeed character for the RDN separator and a spaced + for the AVA separator. It also indents the fields
by four characters.

dn_rev

reverse the fields of the DN. This is required by RFC2253. As a side effect this also reverses the order of
multiple AVAs but this is permissible.

nofname, sname, Iname, oid

these options alter how the field name is displayed. nofname does not display the field at all. sname uses
the "short name" form (CN for commonName for example). Iname uses the long form. oid represents the
OID in numerical form and is useful for diagnostic purpose.

align
align field values for a more readable output. Only usable with sep_multiline.
spc_eq

places spaces round the = character which follows the field name.

211

TEXT OPTIONS

As well as customising the name output format, it is also possible to customise the actual fields printed using
the certopt options when the text option is present. The default behaviour is to print all fields.

e compatible
use the old format. This is equivalent to specifying no output options at all.
¢ no_header
don't print header information: that is the lines saying "Certificate" and "Data".
® no_version
don't print out the version number.
* no_serial
don't print out the serial number.
® no_signame
don't print out the signature algorithm used.
e no_validity
don't print the validity, that is the notBefore and notAfter fields.
* no_subject
don't print out the subject name.
® no_issuer
don't print out the issuer name.
* no_pubkey
don't print out the public key.
® no_sigdump
don't give a hexadecimal dump of the certificate signature.
®* no_aux
don't print out certificate trust information.
®* no_extensions
don't print out any X509V3 extensions.
o ext_default
retain default extension behaviour: attempt to print out unsupported certificate extensions.
e ext_error
print an error message for unsupported certificate extensions.
®* ext_parse
ASN1 parse unsupported extensions.
e ext_dump

hex dump unsupported extensions.

212

e ca_default

the value used by the ca utility, equivalent to no_issuer, no_pubkey, no_header, no_version, no_sigdump

and no_signame.

EXAMPLES

Note: in these examples the '\' means the example should be all on one line.
Display the contents of a certificate:
openssl x509 -in cert.pem -noout -text
Display the certificate serial number:
openssl x509 -in cert.pem -noout -serial
Display the certificate subject name:
openssl x509 -in cert.pem -noout -subject
Display the certificate subject name in RFC2253 form:
openssl x509 -in cert.pem -noout -subject -nameopt RFC2253
Display the certificate subject name in oneline form on a terminal supporting UTFS8:
openssl x509 -in cert.pem -noout -subject -nameopt oneline, -escmsb
Display the certificate MD5 fingerprint:
openssl x509 -in cert.pem -noout -fingerprint
Display the certificate SHA1 fingerprint:
openssl x509 -shal -in cert.pem -noout -fingerprint
Convert a certificate from PEM to DER format:
openssl x509 -in cert.pem -inform PEM -out cert.der -outform DER
Convert a certificate to a certificate request:
openssl x509 -x509toreqg -in cert.pem -out reqg.pem -signkey key.pem
Convert a certificate request into a self signed certificate using extensions for a CA:

openssl x509 -reqg -in careqg.pem -extfile openssl.cnf -extensions v3_ca \
-signkey key.pem -out cacert.pem

Sign a certificate request using the CA certificate above and add user certificate extensions:

openssl x509 -reqg -in reqg.pem -extfile openssl.cnf -extensions v3_usr \
-CA cacert.pem -CAkey key.pem -CAcreateserial

Set a certificate to be trusted for SSL client use and change set its alias to "Steve's Class 1 CA"

openssl x509 -in cert.pem -addtrust clientAuth \
-setalias "Steve's Class 1 CA" -out trust.pem

NOTES

The PEM format uses the header and footer lines:

213

it will also handle files containing:

The conversion to UTF8 format used with the name options assumes that T61Strings use the ISO8859-1
character set. This is wrong but Netscape and MSIE do this as do many certificates. So although this is
incorrect it is more likely to display the majority of certificates correctly.

The -fingerprint option takes the digest of the DER encoded certificate. This is commonly called a
"fingerprint". Because of the nature of message digests the fingerprint of a certificate is unique to that
certificate and two certificates with the same fingerprint can be considered to be the same.

The Netscape fingerprint uses MD5 whereas MSIE uses SHA1.

The -email option searches the subject name and the subject alternative name extension. Only unique email
addresses will be printed out: it will not print the same address more than once.

CERTIFICATE EXTENSIONS

The -purpose option checks the certificate extensions and determines what the certificate can be used for. The
actual checks done are rather complex and include various hacks and workarounds to handle broken
certificates and software.

The same code is used when verifying untrusted certificates in chains so this section is useful if a chain is
rejected by the verify code.

The basicConstraints extension CA flag is used to determine whether the certificate can be used as a CA. If
the CA flag is true then it is a CA, if the CA flag is false then it is not a CA. All CAs should have the CA flag
set to true.

If the basicConstraints extension is absent then the certificate is considered to be a "possible CA" other
extensions are checked according to the intended use of the certificate. A warning is given in this case because
the certificate should really not be regarded as a CA: however it is allowed to be a CA to work around some
broken software.

If the certificate is a V1 certificate (and thus has no extensions) and it is self signed it is also assumed to be a
CA but a warning is again given: this is to work around the problem of Verisign roots which are V1 self signed
certificates.

If the keyUsage extension is present then additional restraints are made on the uses of the certificate. A CA
certificate must have the keyCertSign bit set if the keyUsage extension is present.

The extended key usage extension places additional restrictions on the certificate uses. If this extension is
present (whether critical or not) the key can only be used for the purposes specified.

A complete description of each test is given below. The comments about basicConstraints and keyUsage and
V1 certificates above apply to all CA certificates.

e SSL Client

The extended key usage extension must be absent or include the "web client authentication" OID.
keyUsage must be absent or it must have the digitalSignature bit set. Netscape certificate type must be
absent or it must have the SSL client bit set.

214

e SSL Client CA

The extended key usage extension must be absent or include the "web client authentication" OID.
Netscape certificate type must be absent or it must have the SSL CA bit set: this is used as a work around
if the basicConstraints extension is absent.

e SSL Server

The extended key usage extension must be absent or include the "web server authentication" and/or one
of the SGC OIDs. keyUsage must be absent or it must have the digitalSignature, the keyEncipherment
set or both bits set. Netscape certificate type must be absent or have the SSL server bit set.

e SSL Server CA

The extended key usage extension must be absent or include the "web server authentication" and/or one
of the SGC OIDs. Netscape certificate type must be absent or the SSL CA bit must be set: this is used as a
work around if the basicConstraints extension is absent.

e Netscape SSL Server

For Netscape SSL clients to connect to an SSL server it must have the keyEncipherment bit set if the
keyUsage extension is present. This isn't always valid because some cipher suites use the key for digital
signing. Otherwise it is the same as a normal SSL server.

e Common S/MIME Client Tests

The extended key usage extension must be absent or include the "email protection" OID. Netscape
certificate type must be absent or should have the S/MIME bit set. If the S/MIME bit is not set in
netscape certificate type then the SSL client bit is tolerated as an alternative but a warning is shown: this
is because some Verisign certificates don't set the S/MIME bit.

e S/MIME Signing

In addition to the common S/MIME client tests the digitalSignature bit must be set if the keyUsage
extension is present.

e S/MIME Encryption

In addition to the common S/MIME tests the keyEncipherment bit must be set if the keyUsage extension
is present.

e S/MIME CA

The extended key usage extension must be absent or include the "email protection" OID. Netscape
certificate type must be absent or must have the S/MIME CA bit set: this is used as a work around if the
basicConstraints extension is absent.

¢ CRL Signing
The keyUsage extension must be absent or it must have the CRL signing bit set.
¢ CRL Signing CA

The normal CA tests apply. Except in this case the basicConstraints extension must be present.

Restrictions

Extensions in certificates are not transferred to certificate requests and vice versa.

It is possible to produce invalid certificates or requests by specifying the wrong private key or using
inconsistent options in some cases: these should be checked.

215

There should be options to explicitly set such things as start and end dates rather than an offset from the
current time.

The code to implement the verify behaviour described in the TRUST SETTINGS is currently being developed.
It thus describes the intended behaviour rather than the current behaviour. It is hoped that it will represent
reality in OpenSSL 0.9.5 and later.

SEE ALSO

req (1), ca (1), genrsa (1), gendsa (1), verify (1)

216

CRYPTO Application Programming Interface (API)
Reference

This reference section includes the OpenSSL Crypto APIs, and is based on information provided by The
Open Group. This information can also be found at the following URL

http://www.openssl.org

The OpenSSL Crypto library implements a wide range of cryptographic algorithms used in various Internet
standards. The services provided by this library are used by the OpenSSL implementations of SSL, TLS and
S/MIME, and they have also been used to implement SSH, OpenPGP, and other cryptographic standards. The
Crypto library consists of a number of sublibraries that implement the individual algorithms. The
functionality includes symmetric encryption, public key cryptography and key agreement, certificate
handling, cryptographic hash functions and a cryptographic pseudorandom number generator.

The Crypto library is provided in the form of a shareable image and is located at:

SYS$LIBRARY:SSL$LIBCRYPTO_SHR.EXE (for 64-bit APIs)
SYS$LIBRARY:SSL$LIBCRYPTO_SHR32.EXE (for 32-bit APIs)

NOTE The documentation for the following Crypto APIs are not included in this manual. The APIs
themselves are provided in the HP SSL for OpenVMS kit and can be found in the preceding
shareable images.

X509_STORE_CTX_get_current_cert ()
X509_STORE_CTX_get_error ()
X509_STORE_CTX_get_error_depth ()
X509_STORE_CTX_get_ex_datal()
X509_STORE_CTX_set_error ()
X509_verify_cert_error_string ()
X509_get_issuer name ()
X509_get_pubkey ()
X509_get_subject_name ()

217

ASN1_OBJECT _new

NAME
ASN1_OBJECT new, ASN1_OBJECT_free — object allocation functions

Synopsis

ASN1_OBJECT *ASN1_OBJECT new (void) ;
void ASN1_OBJECT free (ASN1_OBJECT *a);

DESCRIPTION

The ASN1_OBJECT allocation routines, allocate and free an ASN1_OBJECT structure, which represents an
ASN1 OBJECT IDENTIFIER.

ASN1_OBJECT _new() allocates and initializes a ASN1_OBJECT structure.
ASN1_OBJECT free() frees up the ASNI1_OBJECT structure a.

NOTES

Although ASN1_OBJECT _new() allocates a new ASN1_OBJECT structure it is almost never used in
applications. The ASN1 object utility functions such as OBJ_nid2o0bj() are used instead.

RETURN VALUES

If the allocation fails, ASN1_OBJECT_new() returns NULL and sets an error code that can be obtained by
ERR_get_error (3). Otherwise it returns a pointer to the newly allocated structure.

ASN1_OBJECT_free() returns no value.

SEE ALSO
ERR_get_error (3), d2i_ASN1_OBJECT (3)

HISTORY
ASN1_OBJECT new() and ASN1_OBJECT_free() are available in all versions of SSLeay and OpenSSL.

218

ASN1_STRING_dup

NAME

ASN1_STRING_dup, ASN1_STRING_cmp, ASN1_STRING_set, ASN1_STRING_length,

ASN1_STRING_length_set, ASN1_STRING_type, ASN1_STRING_data — ASN1_STRING utility
functions

Synopsis

int ASN1_STRING_length (ASN1_STRING *x) ;

unsigned char * ASN1_STRING data (ASN1_STRING *x) ;

ASN1_STRING * ASN1_STRING_dup (ASN1_STRING *a) ;

int ASN1_STRING_cmp (ASN1_STRING *a, ASN1_STRING *Db);

int ASN1_STRING_set (ASN1_STRING *str, const void *data, int len);
int ASN1_STRING_type (ASN1_STRING *x) ;

int ASN1_STRING_to_UTF8 (unsigned char **out, ASN1_STRING *in);

DESCRIPTION

These functions allow an ASN1_STRING structure to be manipulated.
ASN1_STRING_length() returns the length of the content of x.

ASN1_STRING_data() returns an internal pointer to the data of x. Since this is an internal pointer it should
not be freed or modified in any way.

ASN1_STRING_dup() returns a copy of the structure a.

ASN1_STRING_cmp() compares a and b returning 0 if the two are identical. The string types and content are
compared.

ASN1_STRING_set() sets the data of string s¢r to the buffer data or length len. The supplied data is copied. If
len is -1 then the length is determined by strlen(data).

ASN1_STRING_type() returns the type of x, using standard constants such as V_ASNI1_OCTET _STRING.

ASN1_STRING_to_UTF8() converts the string in to UTF8 format, the converted data is allocated in a buffer
in *out. The length of out is returned or a negative error code. The buffer *out should be free using
OPENSSL_free().

NOTES

Almost all ASN1 types in OpenSSL are represented as an ASN1_STRING structure. Other types such as
ASNI1_OCTET_STRING are simply typedefed to ASN1_STRING and the functions call the ASN1_STRING
equivalents. ASN1_STRING is also used for some CHOICE types which consist entirely of primitive string
types such as DirectoryString and Time.

These functions should not be used to examine or modify ASN1_INTEGER or ASN1_ENUMERATED types:
the relevant INTEGER or ENUMERATED utility functions should be used instead.

In general it cannot be assumed that the data returned by ASN1_STRING_data() is null terminated or does
not contain embedded nulls. The actual format of the data will depend on the actual string type itself: for
example for and TA5String the data will be ASCII, for a BMPString two bytes per character in big endian
format, UTF8String will be in UTF8 format.

Similar care should be take to ensure the data is in the correct format when calling ASN1_STRING_set(.

219

RETURN VALUES

None.

SEE ALSO
ERR_get_error (3)

HISTORY

None.

220

ASN1_STRING_new

NAME

ASN1_STRING_new, ASN1_STRING_type_new, ASN1_STRING_free — ASN1_STRING allocation
functions

Synopsis

ASN1_STRING * ASN1_STRING_new (void) ;
ASN1_STRING * ASN1_STRING_type_new(int type) ;
void ASN1_STRING_ free(ASN1_STRING *a) ;

DESCRIPTION

ASN1_STRING_new() returns an allocated ASNI1_STRING structure. Its type is undefined.
ASN1_STRING_type_new() returns an allocated ASN1_STRING structure of type type.
ASN1_STRING_free() frees up a.

NOTES

Other string types call the ASN1_STRING functions. For example ASN1_OCTET_STRING_new() calls
ASN1_STRING_type(V_ASN1_OCTET_STRING).

RETURN VALUES
ASN1_STRING_new() and ASN1_STRING_type_new() return a valid ASN1_STRING structure or NULL if

an error occurred.

ASN1_STRING-_free() does not return a value.

SEE ALSO
ERR_get_error (3)

HISTORY

None.

221

ASN1_STRING_print_ex

NAME
ASN1_STRING_print_ex, ASN1_STRING_print_ex_fp — ASN1_STRING output routines. ,

Synopsis

#include <openssl/asnl.h>

int ASN1_STRING_print_ex(BIO *out, ASN1_STRING *str, unsigned long flags);
int ASN1_STRING_print_ex fp(FILE *fp, ASN1_STRING *str, unsigned long flags);
int ASN1_STRING_print (BIO *out, ASN1_STRING *str);

DESCRIPTION

These functions output an ASN1_STRING structure. ASN1_STRING is used to represent all the ASN1 string
types.

ASN1_STRING_print_ex() outputs str to out, the format is determined by the options flags.
ASN1_STRING_print_ex_fp() is identical except it outputs to fp instead.

ASN1_STRING_print() prints s¢r to out but using a different format to ASN1_STRING_print_ex(). It replaces
unprintable characters (other than CR, LF) with '.".

NOTES

ASN1_STRING_print() is a legacy function which should be avoided in new applications.

Although there are a large number of options frequently ASN1_STRFLAGS_RF(C2253 is suitable, or on UTF8
terminals ASNI_STRFLAGS_RFC2253 & ~ASN1_STRFLAGS_ESC_MSB.

The complete set of supported options for flags is listed below.

Various characters can be escaped. If ASN1_STRFLGS_ESC_2253 is set the characters determined by
RFC2253 are escaped. If ASN1_STRFLGS_ESC_CTRL is set control characters are escaped. If
ASNI1_STRFLGS_ESC_MSB is set characters with the MSB set are escaped: this option should not be used if
the terminal correctly interprets UTF8 sequences.

Escaping takes several forms.

If the character being escaped is a 16 bit character then the form "\WXXXX" is used using exactly four
characters for the hex representation. If it is 32 bits then "\ UXXXXXXXX" is used using eight characters of
its hex representation. These forms will only be used if UTF8 conversion is not set (see below).

Printable characters are normally escaped using the backslash '\' character. If
ASNI1_STRFLGS_ESC_QUOTE is set then the whole string is instead surrounded by double quote
characters: this is arguably more readable than the backslash notation. Other characters use the "\XX" using
exactly two characters of the hex representation.

IfASN1_STRFLGS_UTF8_CONVERT is set then characters are converted to UTF8 format first. If the
terminal supports the display of UTF8 sequences then this option will correctly display multi byte characters.

IfASN1_STRFLGS_IGNORE_TYPE is set then the string type is not interpreted at all: everything is
assumed to be one byte per character. This is primarily for debugging purposes and can result in confusing
output in multi character strings.

IfASN1_STRFLGS_SHOW_TYPE is set then the string type itself is printed out before its value (for example
"BMPSTRING"), this actually uses ASN1_tag2str().

222

The content of a string instead of being interpreted can be "dumped": this just outputs the value of the string
using the form #XXXX using hex format for each octet.

IfASN1_STRFLGS_DUMP_ALL is set then any type is dumped.

Normally non character string types (such as OCTET STRING) are assumed to be one byte per character, if
ASNI1_STRFLAGS_DUMP_UNKNOWN is set then they will be dumped instead.

When a type is dumped normally just the content octets are printed, if ASNI_STRFLGS_DUMP_DER is set
then the complete encoding is dumped instead (including tag and length octets).

ASNI1_STRFLGS_RF(C2253 includes all the flags required by RFC2253. It is equivalent to:
ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB |
ASN1_STRFLGS_UTF8_CONVERT | ASN1_STRFLGS_DUMP_UNKNOWN
ASN1_STRFLGS_DUMP_DER

SEE ALSO
X509_NAME _print_ex (3), ASN1_tag2str (3)

HISTORY

None.

223

bio
NAME

bio — I/O abstraction

Synopsis

#include <openssl/bio.h>

DESCRIPTION

A BIO is an I/O abstraction, it hides many of the underlying I/O details from an application. If an application
uses a BIO for its I/O it can transparently handle SSL connections, unencrypted network connections and file
I/0.

There are two type of BIO, a source/sink BIO and a filter BIO.

As its name implies a source/sink BIO is a source and/or sink of data, examples include a socket BIO and a
file BIO.

A filter BIO takes data from one BIO and passes it through to another, or the application. The data may be
left unmodified (for example a message digest BIO) or translated (for example an encryption BIO). The effect
of a filter BIO may change according to the I/O operation it is performing: for example an encryption BIO will
encrypt data if it is being written to and decrypt data if it is being read from.

BIOs can be joined together to form a chain (a single BIO is a chain with one component). A chain normally
consist of one source/sink BIO and one or more filter BIOs. Data read from or written to the first BIO then
traverses the chain to the end (normally a source/sink BIO).

SEE ALSO

BIO_ctrl (3), BIO_f_base64 (3), BIO_f _buffer (3), BIO_f cipher (3), BIO_f_md (3), BIO_f _null (3), BIO_f _ssl
(3), BIO_find_type (3), BIO_new (3), BIO_new_bio_pair (3), BIO_push (3), BIO_read (3), BIO_s_accept (3),
BIO_s_bio (3), BIO_s_connect (3), BIO_s_fd (3), BIO_s_file (3), BIO_s_mem (3), BIO_s_null (3), BIO_s_socket
(3), BIO_set_callback (3), BIO_should_retry (3)

224

BIO ctrl

NAME

BIO_ctrl, BIO_callback_ctrl, BIO_ptr_ctrl, BIO_int_ctrl, BIO_reset, BIO_seek, BIO_tell,
BIO_flush, BIO_eof, BIO_set_close, BIO_get_close, BIO_pending, BIO_wpending,

BIO_ctrl_pending, BIO_ctrl wpending, BIO_get_info_callback, BIO_set_info_callback — BIO control
operations

Synopsis

#include <openssl/bio.h>

long BIO_ctrl(BIO *bp,int cmd,long larg,void *parg) ;
long BIO_callback ctrl (BIO *b, int cmd, void (*fp) (struct bio_st *, int, const char *, int,
long, long));

char *BIO_ptr_ctrl(BIO *bp,int cmd,long larg) ;

long BIO_int_ctrl (BIO *bp,int cmd, long larg,int iarg) ;
int BIO_reset (BIO *b);

int BIO_seek (BIO *b, int ofs);

int BIO_tell (BIO *b);

int BIO_flush(BIO *b);

int BIO_eof (BIO *Db);

int BIO_set_close(BIO *b,long flag);

int BIO_get_close(BIO *Db);

int BIO_pending (BIO *b);

int BIO_wpending (BIO *Db);

size_t BIO_ctrl_pending(BIO *Db);

size_t BIO_ctrl_wpending (BIO *Db);

int BIO_get_info_callback (BIO *b,bio_info_cb **cbp);
int BIO_set_info_callback(BIO *b,bio_info_cb *cb);
typedef void bio_info_cb(BIO *b, int oper, const char *ptr, int argl, long arg2, long
arg3) ;

DESCRIPTION

BIO_ctrl(), BIO_callback_ctrl(), BIO_ptr_ctrl() and BIO_int_ctrl() are BIO "control" operations taking
arguments of various types. These functions are not normally called directly, various macros are used instead.
The standard macros are described below, macros specific to a particular type of BIO are described in the
specific BIOs manual page as well as any special features of the standard calls.

BIO_reset() typically resets a BIO to some initial state, in the case of file related BIOs for example it rewinds
the file pointer to the start of the file.

BIO_seek() resets a file related BIO's (that is file descriptor and FILE BIOs) file position pointer to ofs bytes
from start of file.

BIO_tell() returns the current file position of a file related BIO.

BIO_flush() normally writes out any internally buffered data, in some cases it is used to signal EOF and that
no more data will be written.

BIO_eof() returns 1 if the BIO has read EOF, the precise meaning of "EOF" varies according to the BIO type.

225

BIO_set_close() sets the BIO b close flag to flag. flag can take the value BIO_CLOSE or BIO_NOCLOSE.
Typically BIO_CLOSE is used in a source/sink BIO to indicate that the underlying I/O stream should be
closed when the BIO is freed.

BIO_get_close() returns the BIOs close flag.

BIO_pending(), BIO_ctrl_pending(), BIO_wpending() and BIO_ctrl_wpending() return the number of pending
characters in the BIOs read and write buffers. Not all BIOs support these calls. BIO_ctrl_pending() and
BIO_ctrl_wpending() return a size_t type and are functions, BIO_pending() and BIO_wpending() are macros
which call BIO_ctrl().

RETURN VALUES

BIO_reset() normally returns 1 for success and 0 or -1 for failure. File BIOs are an exception, they return 0 for
success and -1 for failure.

BIO_seek() and BIO_tell() both return the current file position on success and -1 for failure, except file BIOs
which for BIO_seek() always return 0 for success and -1 for failure.

BIO_flush() returns 1 for success and 0 or -1 for failure.

BIO_eof() returns 1 if EOF has been reached 0 otherwise.

BIO_set_close() always returns 1.

BIO_get_close() returns the close flag value: BIO_CLOSE or BIO_NOCLOSE.

BIO_pending(), BIO_ctrl_pending(), BIO_wpending() and BIO_ctrl_wpending() return the amount of pending
data.

NOTES

BIO_flush(), because it can write data may return 0 or -1 indicating that the call should be retried later in a
similar manner to BIO_write(). The BIO_should_retry() call should be used and appropriate action taken is
the call fails.

The return values of BIO_pending() and BIO_wpending() may not reliably determine the amount of pending
data in all cases. For example in the case of a file BIO some data may be available in the FILE structures
internal buffers but it is not possible to determine this in a portably way. For other types of BIO they may not
be supported.

Filter BIOs if they do not internally handle a particular BIO_ctrl() operation usually pass the operation to the
next BIO in the chain. This often means there is no need to locate the required BIO for a particular operation,
it can be called on a chain and it will be automatically passed to the relevant BIO. However this can cause
unexpected results: for example no current filter BIOs implement BIO_seek(), but this may still succeed if the
chain ends in a FILE or file descriptor BIO.

Source/sink BIOs return an 0 if they do not recognize the BIO_ctrl() operation.

Restrictions

Some of the return values are ambiguous and care should be taken. In particular a return value of 0 can be
returned if an operation is not supported, if an error occurred, if EOF has not been reached and in the case of
BIO_seek() on a file BIO for a successful operation.

SEE ALSO

None.

226

BIO f base64

NAME
BIO_f base64 — base64 BIO filter

Synopsis

#include <openssl/bio.h>
#include <openssl/evp.h>
BIO_METHOD *BIO_f_base64 (void) ;

DESCRIPTION

BIO_f_base64() returns the base64 BIO method. This is a filter BIO that base64 encodes any data written
through it and decodes any data read through it.

Base64 BIOs do not support BIO_gets() or BIO_puts().

BIO_flush() on a base64 BIO that is being written through is used to signal that no more data is to be
encoded: this is used to flush the final block through the BIO.

The flag BIO_FLAGS_BASE64_NO_NL can be set with BIO_set_flags() to encode the data all on one line or
expect the data to be all on one line.

NOTES

Because of the format of base64 encoding the end of the encoded block cannot always be reliably determined.

RETURN VALUES
BIO_f base64() returns the base64 BIO method.

EXAMPLES

Base64 encode the string "Hello World\n" and write the result to standard output:

BIO *bio, *b64;
char message[] = "Hello World \n";

b64 = BIO _new(BIO_f baseb64());

bio = BIO_new_fp(stdout, BIO_NOCLOSE) ;
bio = BIO_push(b64, bio);

BIO_write(bio, message, strlen(message));
BIO_flush(bio);

BIO_free_all (bio);
Read Base64 encoded data from standard input and write the decoded data to standard output:

BIO *bio, *b64, *bio_out;
char inbuf[512];
int inlen;

b64 = BIO_new(BIO_f_ baseb64());
bio = BIO_new_fp(stdin, BIO_NOCLOSE) ;
bio_out = BIO_new_ fp(stdout, BIO_NOCLOSE) ;

227

bio = BIO_push(b64, bio);
while((inlen = BIO_read(bio, inbuf, 512) > 0)
BIO _write(bio_out, inbuf, inlen);

BIO_free_all (bio);

Restrictions

The ambiguity of EOF in base64 encoded data can cause additional data following the base64 encoded block
to be misinterpreted.

There should be some way of specifying a test that the BIO can perform to reliably determine EOF (for
example a MIME boundary).

SEE ALSO

None.

228

BIO f buffer

NAME
BIO_f_buffer — buffering BIO

Synopsis

#include <openssl/bio.h>

BIO_METHOD * BIO_f buffer (void) ;

#define BIO_get_buffer num lines(b)BIO_ctrl (b,BIO_C_GET_ BUFF_NUM_LINES, 0, NULL)
#define BIO_set_read buffer size(b,size)

BIO_int_ctrl (b,BIO_C_SET BUFF SIZE,size,0)

#define BIO_set_write buffer_size(b,size)

BIO_int_ctrl (b,BIO_C_SET BUFF SIZE,size, 1)

#define BIO_set_buffer size(b,size)BIO_ctrl (b,BIO_C_SET BUFF _SIZE, size,NULL)
#define BIO_set_buffer_read data(b,buf,num)

BIO_ctrl (b,BIO_C_SET BUFF_READ DATA,num, buf)

DESCRIPTION
BIO_f_buffer() returns the buffering BIO method.

Data written to a buffering BIO is buffered and periodically written to the next BIO in the chain. Data read
from a buffering BIO comes from an internal buffer which is filled from the next BIO in the chain. Both
BIO_gets() and BIO_puts() are supported.

Calling BIO_reset() on a buffering BIO clears any buffered data.
BIO_get_buffer_num_lines() returns the number of lines currently buffered.

BIO_set_read_buffer_size(), BIO_set_write_buffer_size() and BIO_set_buffer_size() set the read, write or both
read and write buffer sizes to size. The initial buffer size is DEFAULT _BUFFER_SIZE, currently 1024. Any
attempt to reduce the buffer size below DEFAULT BUFFER_SIZE is ignored. Any buffered data is cleared
when the buffer is resized.

BIO_set_buffer_read_data() clears the read buffer and fills it with num bytes of buf. If num is larger than the
current buffer size the buffer is expanded.

NOTES

Buffering BIOs implement BIO_gets() by using BIO_read() operations on the next BIO in the chain. By
prepending a buffering BIO to a chain it is therefore possible to provide BIO_gets() functionality if the
following BIOs do not support it (for example SSL BIOs).

Data is only written to the next BIO in the chain when the write buffer fills or when BIO_flush() is called. It
is therefore important to call BIO_flush() whenever any pending data should be written such as when
removing a buffering BIO using BIO_pop(). BIO_flush() may need to be retried if the ultimate source/sink
BIO is non blocking.

RETURN VALUES
BIO_f_buffer() returns the buffering BIO method.

BIO_get_buffer_num_lines() returns the number of lines buffered (may be 0).

229

BIO_set_read_buffer_size(), BIO_set_write_buffer_size() and BIO_set_buffer_size() return 1 if the buffer was
successfully resized or 0 for failure.

BIO_set_buffer_read_data() returns 1 if the data was set correctly or 0 if there was an error.

SEE ALSO

None.

230

BIO_f cipher
NAME
BIO_f _cipher, BIO_set_cipher, BIO_get_cipher_status, BIO_get_cipher_ctx — cipher BIO filter

Synopsis

#include <openssl/bio.h>

#include <openssl/evp.h>

BIO_METHOD *BIO_f_cipher (void) ;

void BIO_set_cipher (BIO *b,const EVP_CIPHER *cipher, unsigned char *key, unsigned char *iv,
int enc);

int BIO_get_cipher_status (BIO *b) int BIO_get_ cipher ctx(BIO *b, EVP_CIPHER CTX **pctx)

DESCRIPTION

BIO_f_cipher() returns the cipher BIO method. This is a filter BIO that encrypts any data written through it,
and decrypts any data read from it. It is a BIO wrapper for the cipher routines EVP_Cipherlnit(),
EVP_CipherUpdate() and EVP_CipherFinal().

Cipher BIOs do not support BIO_gets() or BIO_puts().

BIO_flush() on an encryption BIO that is being written through is used to signal that no more data is to be
encrypted: this is used to flush and possibly pad the final block through the BIO.

BIO_set_cipher() sets the cipher of BIO b to cipher using key key and IV iv. enc should be set to 1 for
encryption and zero for decryption.

When reading from an encryption BIO the final block is automatically decrypted and checked when EOF is
detected. BIO_get_cipher_status() is a BIO_ctrl() macro which can be called to determine whether the
decryption operation was successful.

BIO_get_cipher_ctx() is a BIO_ctrl() macro which retrieves the internal BIO cipher context. The retrieved
context can be used in conjunction with the standard cipher routines to set it up. This is useful when
BIO_set_cipher() is not flexible enough for the applications needs.

NOTES

When encrypting BIO_flush() must be called to flush the final block through the BIO. If it is not then the final
block will fail a subsequent decrypt.

When decrypting an error on the final block is signalled by a zero return value from the read operation. A
successful decrypt followed by EOF will also return zero for the final read. BIO_get_cipher_status() should be
called to determine if the decrypt was successful.

As always, if BIO_gets() or BIO_puts() support is needed then it can be achieved by preceding the cipher BIO
with a buffering BIO.

RETURN VALUES

BIO_f cipher() returns the cipher BIO method.

BIO_set_cipher() does not return a value.

BIO_get_cipher_status() returns 1 for a successful decrypt and 0 for failure.

BIO_get_cipher_ctx() currently always returns 1.

231

EXAMPLES

None.

SEE ALSO

None.

232

BIO_f md
NAME
BIO_f_md, BIO_set_md, BIO_get_md, BIO_get_md_ctx — message digest BIO filter

Synopsis

#include <openssl/bio.h>

#include <openssl/evp.h>

BIO_METHOD *BIO_f_ md(void);

int BIO_set_md(BIO *b,EVP_MD *md);

int BIO_get_md(BIO *b,EVP_MD **mdp) ;

int BIO_get_md_ctx (BIO *b,EVP_MD_CTX **mdcp) ;

DESCRIPTION

BIO_f_md() returns the message digest BIO method. This is a filter BIO that digests any data passed through
it, it is a BIO wrapper for the digest routines EVP_DigestInit(), EVP_DigestUpdate() and EVP_DigestFinal().

Any data written or read through a digest BIO using BIO_read() and BIO_write() is digested.

BIO_gets(), if its size parameter is large enough finishes the digest calculation and returns the digest value.
BIO_puts() is not supported.

BIO_reset() reinitialises a digest BIO.

BIO_set_md() sets the message digest of BIO b to md: this must be called to initialize a digest BIO before any
data is passed through it. It is a BIO_ctrl() macro.

BIO_get_md() places the a pointer to the digest BIOs digest method in mdp, it is a BIO_ctrl() macro.
BIO_get_md_ctx() returns the digest BIOs context into mdcp.

NOTES

The context returned by BIO_get_md_ctx() can be used in calls to EVP_DigestFinal() and also the signature
routines EVP_SignFinal() and EVP_VerifyFinal().

The context returned by BIO_get_md_ctx() is an internal context structure. Changes made to this context will
affect the digest BIO itself and the context pointer will become invalid when the digest BIO is freed.

After the digest has been retrieved from a digest BIO it must be reinitialized by calling BIO_reset(), or
BIO_set_md() before any more data is passed through it.

If an application needs to call BIO_gets() or BIO_puts() through a chain containing digest BIOs then this can
be done by prepending a buffering BIO.

RETURN VALUES

BIO_f_md() returns the digest BIO method.
BIO_set_md(), BIO_get_md() and BIO_md_ctx() return 1 for success and 0 for failure.

EXAMPLES

The following example creates a BIO chain containing an SHA1 and MD5 digest BIO and passes the string
"Hello World" through it. Error checking has been omitted for clarity.

233

BIO *bio, *mdtmp;
char message[] = "Hello World";
bio = BIO_new(BIO_s_null());
mdtmp = BIO_new(BIO_f md());
BIO_set_md (mdtmp, EVP_shal());
/* For BIO_push() we want to append the sink BIO and keep a note of
* the start of the chain.
*/
bio = BIO_push (mdtmp, bio
mdtmp = BIO_new(BIO_f_ md(
BIO_set_md (mdtmp, EVP_md5
bio = BIO_push (mdtmp, bio
/* Note: mdtmp can now be discarded */
BIO_write(bio, message, strlen(message));

)
))
0));
)

i

The next example digests data by reading through a chain instead:

BIO *bio, *mdtmp;
char buf[1024];
int rdlen;
bio = BIO_new file(file, "rb");
mdtmp = BIO_new(BIO_f md());
BIO_set_md (mdtmp, EVP_shal());
bio = BIO_push (mdtmp, bio)
mdtmp = BIO_new(BIO_f_md()
BIO_set_md (mdtmp, EVP_md5 (
bio = BIO_push (mdtmp, bio)
do {
rdlen = BIO_read(bio, buf, sizeof(buf));
/* Might want to do something with the data here */
} while(rdlen > 0);

)
))

i

This next example retrieves the message digests from a BIO chain and outputs them. This could be used with
the examples above.

BIO *mdtmp;
unsigned char mdbuf [EVP_MAX_MD_SIZE];
int mdlen;
int 1i;
mdtmp = bio;/* Assume bio has previously been set up */
do {
EVP_MD *md;
mdtmp = BIO_find_type (mdtmp, BIO_TYPE_MD) ;
if (!mdtmp) break;
BIO_get_md(mdtmp, &md) ;
printf("%s digest", OBJ_nid2sn (EVP_MD_type(md)));
mdlen = BIO_gets(mdtmp, mdbuf, EVP_MAX_MD_SIZE) ;

for(i = 0; 1 < mdlen; i++) printf(":%02X", mdbuf[i]);
printf("\n");
mdtmp = BIO_next (mdtmp) ;

} while (mdtmp) ;

BIO_free_all (bio);

Restrictions

The lack of support for BIO_puts() and the non standard behaviour of BIO_gets() could be regarded as
anomalous. It could be argued that BIO_gets() and BIO_puts() should be passed to the next BIO in the chain
and digest the data passed through and that digests should be retrieved using a separate BIO_ctrl() call.

234

SEE ALSO

None.

235

BIO_f null
NAME

BIO_f null — null filter
Synopsis

#include <openssl/bio.h>
BIO_METHOD *BIO_f null (void) ;

DESCRIPTION
BIO_f_null() returns the null filter BIO method. This is a filter BIO that does nothing.

All requests to a null filter BIO are passed through to the next BIO in the chain: this means that a BIO chain
containing a null filter BIO behaves just as though the BIO was not there.

NOTES

As may be apparent a null filter BIO is not particularly useful.

RETURN VALUES
BIO_f null() returns the null filter BIO method.

SEE ALSO

None.

236

BIO f ssl

NAME
BIO_f_ssl, BIO_set_ssl, BIO_get_ssl, BIO_set_ssl_mode, BIO_set_ssl_renegotiate_bytes,
BIO_get_num_renegotiates, BIO_set_ssl_renegotiate_timeout, BIO_new_ssl,

BIO_new_ssl_connect, BIO_new_buffer_ssl_connect, BIO_ssl_copy_session_id, BIO_ssl_shutdown —
SSL BIO

Synopsis

#include <openssl/bio.h>

#include <openssl/ssl.h>

BIO_METHOD *BIO_f_ ssl(void);

#define BIO_set_ssl(b,ssl,c)BIO_ctrl (b,BIO_C_SET SSL,c, (char *)ssl)
#define BIO_get_ssl (b, sslp)BIO_ctrl (b,BIO_C_GET SSL, 0, (char *)sslp)
#define BIO_set_ssl mode(b,client)BIO_ctrl (b, BIO_C_SSI_MODE, client, NULL)
#define BIO_set_ssl_renegotiate_bytes (b, num)

\ BIO_ctrl(b,BIO_C_SET SSIL. RENEGOTIATE BYTES,num,NULL) ;

#define BIO_set_ssl_renegotiate_timeout (b, seconds)

\ BIO_ ctrl(b,BIO_C_SET SSL_ RENEGOTIATE TIMEOUT, seconds,NULL) ;
#define BIO_get_num renegotiates (b)

\ BIO_ctrl(b,BIO_C_SET SSIL._NUM RENEGOTIATES,O,NULL) ;

BIO *BIO_new_ssl(SSL_CTX *ctx,int client);

BIO *BIO_new_ssl_connect (SSL_CTX *ctx);

BIO *BIO_new buffer ssl connect (SSL_CTX *ctx);

int BIO_ssl_copy session_id(BIO *to,BIO *from) ;

void BIO_ssl_shutdown (BIO *bio) ;

#define BIO_do_handshake (b)BIO_ctrl (b,BIO_C_DO_STATE_MACHINE, 0,NULL)

DESCRIPTION

BIO_f_ssl() returns the SSL BIO method. This is a filter BIO which is a wrapper round the OpenSSL SSL
routines adding a BIO "flavour" to SSL I/O.

I/0 performed on an SSL BIO communicates using the SSL protocol with the SSLs read and write BIOs. If an
SSL connection is not established then an attempt is made to establish one on the first I/O call.

If a BIO is appended to an SSL BIO using BIO_push() it is automatically used as the SSL BIOs read and
write BIOs.

Calling BIO_reset() on an SSL BIO closes down any current SSL connection by calling SSL._shutdown().
BIO_reset() is then sent to the next BIO in the chain: this will typically disconnect the underlying transport.
The SSL BIO is then reset to the initial accept or connect state.

If the close flag is set when an SSL BIO is freed then the internal SSL structure is also freed using
SSL_free().

BIO_set_ssl() sets the internal SSL pointer of BIO b to ssl using the close flag c.

BIO_get_ssl() retrieves the SSL pointer of BIO b, it can then be manipulated using the standard SSL library
functions.

BIO_set_ssl_mode() sets the SSL BIO mode to client. If client is 1 client mode is set. If client is 0 server mode
is set.

237

BIO_set_ssl_renegotiate_bytes() sets the renegotiate byte count to num. When set after every num bytes of
I/O (read and write) the SSL session is automatically renegotiated. num must be at least 512 bytes.

BIO_set_ssl_renegotiate_timeout() sets the renegotiate timeout to seconds. When the renegotiate timeout
elapses the session is automatically renegotiated.

BIO_get_num_renegotiates() returns the total number of session renegotiations due to I/O or timeout.
BIO_new_ssl() allocates an SSL BIO using SSL_CTX ctx and using client mode if client is non zero.

BIO_new_ssl_connect() creates a new BIO chain consisting of an SSL BIO (using ctx) followed by a connect
BIO.

BIO_new_buffer_ssl_connect() creates a new BIO chain consisting of a buffering BIO, an SSL BIO (using ctx)
and a connect BIO.

BIO_ssl_copy_session_id() copies an SSL session id between BIO chains from and to. It does this by locating
the SSL BIOs in each chain and calling SSL_copy_session_id() on the internal SSL pointer.

BIO_ssl_shutdown() closes down an SSL connection on BIO chain bio. It does this by locating the SSL BIO in
the chain and calling SSI,_shutdown() on its internal SSL pointer.

BIO_do_handshake() attempts to complete an SSL. handshake on the supplied BIO and establish the SSL
connection. It returns 1 if the connection was established successfully. A zero or negative value is returned if
the connection could not be established, the call BIO_should_retry() should be used for non blocking connect
BIOs to determine if the call should be retried. If an SSL connection has already been established this call has
no effect.

NOTES

SSL BIOs are exceptional in that if the underlying transport is non blocking they can still request a retry in
exceptional circumstances. Specifically this will happen if a session renegotiation takes place during a
BIO_read() operation, one case where this happens is when SGC or step up occurs.

In OpenSSL 0.9.6 and later the SSL flag SSI._AUTO_RETRY can be set to disable this behaviour. That is
when this flag is set an SSL BIO using a blocking transport will never request a retry.

Since unknown BIO_ctrl() operations are sent through filter BIOs the servers name and port can be set using
BIO_set_host() on the BIO returned by BIO_new_ssl_connect() without having to locate the connect BIO first.

Applications do not have to call BIO_do_handshake() but may wish to do so to separate the handshake
process from other I/O processing.

RETURN VALUES

None.

EXAMPLE

This SSL/TLS client example, attempts to retrieve a page from an SSL/TLS web server. The I/O routines are
identical to those of the unencrypted example in BIO_s_connect (3).

BIO *sbio, *out;
int len;

char tmpbuf[1024];
SSL_CTX *ctx;

SSL *ssl;

ERR_load_crypto_strings() ;

238

ERR_load_SSL_strings() ;
OpenSSL_add_all_algorithms() ;

/* We would seed the PRNG here if the platform didn't
* do it automatically
*/

ctx = SSL_CTX_ new(SSLv23_client_method());

/* We'd normally set some stuff like the verify paths and
* mode here because as things stand this will connect to
* any server whose certificate is signed by any CA.

*/

sbio = BIO_new_ssl_connect(ctx) ;

BIO_get_ssl(sbio, &ssl);

if(!ssl) {
fprintf (stderr, "Can't locate SSL pointer\n");
/* whatever ... */

}

/* Don't want any retries */
SSL_set_mode(ssl, SSL_MODE_AUTO_RETRY) ;

/* We might want to do other things with ssl here */
BIO_set_conn_hostname(sbio, "localhost:https");

out = BIO_new_fp(stdout, BIO_NOCLOSE) ;
if (BIO_do_connect (sbio) <= 0) {

fprintf (stderr, "Error connecting to server\n");
ERR_print_errors_fp(stderr) ;
/* whatever ... */

}

if (BIO_do_handshake(sbio) <= 0) {

fprintf (stderr, "Error establishing SSL connection\n");
ERR_print_errors_fp(stderr) ;

/* whatever ... */

}

/* Could examine ssl here to get connection info */

BIO_puts(sbio, "GET / HTTP/1.0\n\n");
for(;;) |
len = BIO_read(sbio, tmpbuf, 1024);
if(len <= 0) break;
BIO_write(out, tmpbuf, len);

}

BIO_free_all (sbio);

BIO_free(out);

Here is a simple server example. It makes use of a buffering BIO to allow lines to be read from the SSL. BIO
using BIO_gets. It creates a pseudo web page containing the actual request from a client and also echoes the

request to standard output.

239

BIO *sbio, *bbio, *acpt, *out;
int len;

char tmpbuf[1024];

SSL_CTX *ctx;

SSL *ssl;

ERR_load_crypto_strings() ;
ERR_load_SSL_strings() ;
OpenSSL_add_all_algorithms() ;

/* Might seed PRNG here */

ctx = SSL_CTX_new(SSLv23_server_method());

1SSIL,_CTX_use_PrivateKey file(ctx, "server.pem", SSL_FILETYPE_PEM)

if (!SSL_CTX_ use_certificate_file(ctx, "server.pem",SSL_FILETYPE_PEM)
| 1SSL_CTX_check_private_key(ctx)) {

fprintf (stderr, "Error setting up SSL_CTX\n");
ERR_print_errors_fp(stderr) ;
return 0;

}

/* Might do other things here like setting verify locations and
* DH and/or RSA temporary key callbacks
*/

/* New SSL BIO setup as server */
sbio=BIO_new_ssl (ctx,0);

BIO_get_ssl(sbio, &ssl);

if(!ssl) {
fprintf (stderr, "Can't locate SSL pointer\n");
/* whatever ... */

}

/* Don't want any retries */
SSL_set_mode(ssl, SSL_MODE_AUTO_RETRY) ;

/* Create the buffering BIO */
bbio = BIO_new (BIO_f_buffer());

/* Add to chain */
sbio = BIO_push(bbio, sbio);

acpt=BIO_new_accept ("4433");

/* By doing this when a new connection is established
* we automatically have sbio inserted into it. The
* BIO chain is now 'swallowed' by the accept BIO and

* will be freed when the accept BIO is freed.
*/

BIO_set_accept_bios(acpt, sbio);

out = BIO_new_fp(stdout, BIO_NOCLOSE) ;

240

/* Setup accept BIO */

1f(BIO_do_accept(acpt) <= 0) {
fprintf (stderr, "Error setting up accept BIO\n");
ERR_print_errors_fp(stderr) ;
return 0;

}

/* Now wait for incoming connection */
1f(BIO_do_accept (acpt) <= 0) {

fprintf (stderr, "Error in connection\n") ;
ERR_print_errors_fp(stderr) ;
return 0;

}

/* We only want one connection so remove and free
* accept BIO
*/

sbio = BIO_pop (acpt) ;
BIO_free_all (acpt) ;

if (BIO_do_handshake(sbio) <= 0) {

fprintf (stderr, "Error in SSL handshake\n") ;
ERR_print_errors_fp(stderr) ;

return 0;

}

BIO_puts(sbio, "HTTP/1.0 200 OK\r\nContent-type: text/html\r\n\r\n");
BIO_puts(sbio, "<pre>\r\nConnection Established\r\nRequest headers:\r\n");

BIO_puts(sbio, "-------——--——— - \r\n") ;
for(;;) |

len = BIO_gets(sbio, tmpbuf, 1024);

if(len <= 0) break;

BIO_write(sbio, tmpbuf, len);
BIO_write(out, tmpbuf, len);

/* Look for blank line signifying end of headers*/
if ((tmpbuf[0] == '\r') || (tmpbufl[0] == '\n')) break;

}

BIO_puts(sbio, "-------——--——— - \r\n") ;

BIO_puts(sbio, "</pre>\r\n");

/* Since there is a buffering BIO present we had better flush it */
BIO_flush(sbio);

BIO_free_all(sbio);

SEE ALSO

None.

241

BIO_find_type
NAME

BIO_find_type, BIO_next — BIO chain traversal

Synopsis

#include <openssl/bio.h>
BIO *BIO_find_ type(BIO *b,int bio_type) ;
BIO *BIO_next (BIO *b);

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

BIO_method_type (b) ((b) ->method->type)
BIO_TYPE NONEO

BIO_TYPE MEM(1|0x0400)

BIO_TYPE FILE(2|0x0400)

BIO_TYPE FD(4|0x0400|0x0100)
BIO_TYPE_SOCKET(5|0x0400|0x0100)
BIO_TYPE_NULL (6| 0x0400)
BIO_TYPE_SSL(7|0x0200)
BIO_TYPE_MD(8|0x0200)
BIO_TYPE_BUFFER(9|0x0200)
BIO_TYPE_CIPHER(10|0x0200)
BIO_TYPE_BASE64(11|0x0200)
BIO_TYPE_CONNECT (12 |0x0400|0x0100)
BIO_TYPE_ACCEPT(13|0x0400|0x0100)
BIO_TYPE_PROXY_CLIENT (14]|0x0200)
BIO_TYPE_PROXY_SERVER (15| 0x0200)
BIO_TYPE NBIO_TEST(16|0x0200)
BIO_TYPE_NULL_FILTER(17]0x0200)
BIO_TYPE BER(18|0x0200)

BIO_TYPE BIO(19]|0x0400)
BIO_TYPE_DESCRIPTOR0x0100
BIO_TYPE_FILTER0x0200

BIO_TYPE SOURCE_SINK0x0400

DESCRIPTION

The BIO_find_type() searches for a BIO of a given type in a chain, starting at BIO b. If ¢ype is a specific type
(such as BIO_TYPE_MEM) then a search is made for a BIO of that type. If type is a general type (such as
BIO_TYPE_SOURCE_SINK) then the next matching BIO of the given general type is searched for.
BIO_find_type() returns the next matching BIO or NULL if none is found.

Note: not all the BIO_TYPE_* types above have corresponding BIO implementations.

BIO_next() returns the next BIO in a chain. It can be used to traverse all BIOs in a chain or used in
conjunction with BIO_find_type() to find all BIOs of a certain type.

BIO_method_type() returns the type of a BIO.

RETURN VALUES

BIO_find_type() returns a matching BIO or NULL for no match.

BIO_next() returns the next BIO in a chain.

242

BIO_method_type() returns the type of the BIO b.

NOTES

BIO_next() was added to OpenSSL 0.9.6 to provide a 'clean' way to traverse a BIO chain or find multiple
matches using BIO_find_type(). Previous versions had to use:

next = bio->next_bio;

Restrictions
BIO_find_type() in OpenSSL 0.9.5a and earlier could not be safely passed a NULL pointer for the b argument.

EXAMPLE

Traverse a chain looking for digest BIOs:
BIO *btmp;

btmp = in_bio;/* in_bio is chain to search through */

do {

btmp = BIO_find_ type (btmp, BIO_TYPE_MD) ;

if (btmp == NULL) break;/* Not found */

/* btmp is a digest BIO, do something with it ...*/

btmp = BIO_next (btmp) ;
} while (btmp) ;

SEE ALSO

None.

243

BIO new

NAME
BIO_new, BIO_set, BIO_free, BIO_vfree, BIO_free_all — BIO allocation and freeing functions

Synopsis

#include <openssl/bio.h>

BIO *BIO_new(BIO_METHOD *type) ;
intBIO_set (BIO *a,BIO_METHOD *type);
intBIO_free (BIO *a);
voidBIO_vfree(BIO *a);
voidBIO_free_all (BIO *a);

DESCRIPTION

The BIO_new() function returns a new BIO using method ¢ype.
BIO_set() sets the method of an already existing BIO.

BIO_free() frees up a single BIO, BIO_vfree() also frees up a single BIO but it does not return a value. Calling
BIO_free() may also have some effect on the underlying I/O structure, for example it may close the file being
referred to under certain circumstances. For more details see the individual BIO_METHOD descriptions.

BIO_free_all() frees up an entire BIO chain, it does not halt if an error occurs freeing up an individual BIO in
the chain.

RETURN VALUES

BIO_new() returns a newly created BIO or NULL if the call fails.
BIO_set(), BIO_free() return 1 for success and 0 for failure.
BIO_free_all() and BIO_vfree() do not return values.

NOTES

Some BIOs (such as memory BIOs) can be used immediately after calling BIO_new(). Others (such as file
BIOs) need some additional initialization, and frequently a utility function exists to create and initialize such
BIOs.

If BIO_free() is called on a BIO chain it will only free one BIO resulting in a memory leak.

Calling BIO_free_all() a single BIO has the same effect as calling BIO_free() on it other than the discarded
return value.

Normally the type argument is supplied by a function which returns a pointer to a BIO_METHOD. There is a
naming convention for such functions: a source/sink BIO is normally called BIO_s_*() and a filter BIO
BIO_f *();

EXAMPLE

Create a memory BIO:

BIO *mem = BIO_new(BIO_s_mem()) ;

244

SEE ALSO

None.

245

BIO_push

NAME
BIO_push, BIO_pop — add and remove BIOs from a chain.

Synopsis

#include <openssl/bio.h>
BIO *BIO_push(BIO *b,BIO *append) ;
BIO *BIO_pop(BIO *b);

DESCRIPTION
The BIO_push() function appends the BIO append to b, it returns b.

BIO_pop() removes the BIO b from a chain and returns the next BIO in the chain, or NULL if there is no next
BIO. The removed BIO then becomes a single BIO with no association with the original chain, it can thus be
freed or attached to a different chain.

NOTES

The names of these functions are perhaps a little misleading. BIO_push() joins two BIO chains whereas
BIO_pop() deletes a single BIO from a chain, the deleted BIO does not need to be at the end of a chain.

The process of calling BIO_push() and BIO_pop() on a BIO may have additional consequences (a control call is
made to the affected BIOs) any effects will be noted in the descriptions of individual BIOs.

EXAMPLES

For these examples suppose md1 and md2 are digest BIOs, 664 is a base64 BIO and fis a file BIO.
If the call:

BIO_push(b64, £f);
is made then the new chain will be b64-chain. After making the calls

BIO_push(md2, b64);
BIO_push(mdl, md2) ;

the new chain is md1-mdZ2-b64-f. Data written to md1 will be digested by md1 and md2, base64 encoded and
written to f.

It should be noted that reading causes data to pass in the reverse direction, that is data is read from f, base64
decoded and digested by md1 and md2. If the call:

BIO_pop (md2) ;

The call will return 664 and the new chain will be md1-b64-f data can be written to md1 as before.

RETURN VALUES

BIO_push() returns the end of the chain, b.
BIO_pop() returns the next BIO in the chain, or NULL if there is no next BIO.

246

SEE ALSO

None.

247

BIO read

NAME
BIO_read, BIO_write, BIO_gets, BIO_puts — BIO I/O functions

Synopsis

#include <openssl/bio.h>

intBIO_read (BIO *b, void *buf, int len);
intBIO_gets (BIO *b,char *buf, int size);
intBIO_write (BIO *b, const void *buf, int len);
intBIO_puts (BIO *b,const char *buf);

DESCRIPTION
BIO_read() attempts to read len bytes from BIO b and places the data in buf.

BIO_gets() performs the BIOs "gets" operation and places the data in buf. Usually this operation will attempt
to read a line of data from the BIO of maximum length len. There are exceptions to this however, for example
BIO_gets() on a digest BIO will calculate and return the digest and other BIOs may not support BIO_gets() at
all.

BIO_write() attempts to write len bytes from buf to BIO 5.
BIO_puts() attempts to write a null terminated string bufto BIO b

RETURN VALUES

All these functions return either the amount of data successfully read or written (if the return value is
positive) or that no data was successfully read or written if the result is 0 or -1. If the return value is -2 then
the operation is not implemented in the specific BIO type.

NOTES

A 0 or -1 return is not necessarily an indication of an error. In particular when the source/sink is non-blocking
or of a certain type it may merely be an indication that no data is currently available and that the application
should retry the operation later.

One technique sometimes used with blocking sockets is to use a system call (such as select(), poll() or
equivalent) to determine when data is available and then call read() to read the data. The equivalent with
BIOs (that is call select() on the underlying I/O structure and then call BIO_read() to read the data) should
not be used because a single call to BIO_read() can cause several reads (and writes in the case of SSL BIOs)
on the underlying I/O structure and may block as a result. Instead select() (or equivalent) should be combined
with non blocking I/0 so successive reads will request a retry instead of blocking.

See BIO_should_retry (3) for details of how to determine the cause of a retry and other I/O issues.

If the BIO_gets() function is not supported by a BIO then it possible to work around this by adding a buffering
BIO BIO_f buffer (3) to the chain.

SEE ALSO
BIO_should_retry (3)

248

BIO_s_accept
NAME

BIO_s_accept, BIO_set_accept_port, BIO_get_accept_port, BIO_set_nbio_accept,
BIO_set_accept_bios, BIO_set_bind_mode, BIO_get_bind_mode, BIO_do_accept — accept BIO

Synopsis

#include <openssl/bio.h>

BIO_METHOD *BIO_s_accept (void) ;

long BIO_set_accept_port (BIO *b, char *name);
char *BIO_get_accept_port (BIO *b);

BIO *BIO_new_accept (char *host_port) ;

long BIO_set_nbio_accept (BIO *b, int n);
long BIO_set_accept_bios(BIO *b, char *bio);
long BIO_set_bind mode (BIO *b, long mode) ;
long BIO_get_bind mode (BIO *b, long dummy) ;
#define BIO_BIND_NORMALO

#define BIO_BIND_REUSEADDR_IF_UNUSED1
#define BIO_BIND_REUSEADDR2

int BIO_do_accept (BIO *Db);

DESCRIPTION

BIO_s_accept() returns the accept BIO method. This is a wrapper round the platform's TCP/IP socket accept
routines.

Using accept BIOs, TCP/IP connections can be accepted and data transferred using only BIO routines. In this
way any platform specific operations are hidden by the BIO abstraction.

Read and write operations on an accept BIO will perform I/0O on the underlying connection. If no connection is
established and the port (see below) is set up properly then the BIO waits for an incoming connection.

Accept BIOs support BIO_puts() but not BIO_gets().

If the close flag is set on an accept BIO then any active connection on that chain is shutdown and the socket
closed when the BIO is freed.

Calling BIO_reset() on a accept BIO will close any active connection and reset the BIO into a state where it
awaits another incoming connection.

BIO_get_fd() and BIO_set_fd() can be called to retrieve or set the accept socket. See BIO_s_fd (3)

BIO_set_accept_port() uses the string name to set the accept port. The port is represented as a string of the
form "host:port", where "host" is the interface to use and "port" is the port. Either or both values can be "*"
which is interpreted as meaning any interface or port respectively. "port" has the same syntax as the port
specified in BIO_set_conn_port() for connect BIOs, that is it can be a numerical port string or a string to
lookup using getservbyname() and a string table.

BIO_new_accept() combines BIO_new() and BIO_set_accept_port() into a single call: that is it creates a new
accept BIO with port host_port.

BIO_set_nbio_accept() sets the accept socket to blocking mode (the default) if n is 0 or non blocking mode if n
is 1.

249

BIO_set_accept_bios() can be used to set a chain of BIOs which will be duplicated and prepended to the chain
when an incoming connection is received. This is useful if, for example, a buffering or SSL BIO is required for
each connection. The chain of BIOs must not be freed after this call, they will be automatically freed when the
accept BIO is freed.

BIO_set_bind_mode() and BIO_get_bind_mode() set and retrieve the current bind mode. If
BIO_BIND_NORMAL (the default) is set then another socket cannot be bound to the same port. If
BIO_BIND_REUSEADDR is set then other sockets can bind to the same port. If
BIO_BIND_REUSEADDR_IF_UNUSED is set then and attempt is first made to use BIO_BIN_NORMAL, if
this fails and the port is not in use then a second attempt is made using BIO_BIND_REUSEADDR.

BIO_do_accept() serves two functions. When it is first called, after the accept BIO has been setup, it will
attempt to create the accept socket and bind an address to it. Second and subsequent calls to BIO_do_accept()
will await an incoming connection, or request a retry in non blocking mode.

NOTES

When an accept BIO is at the end of a chain it will await an incoming connection before processing I/O calls.
When an accept BIO is not at then end of a chain it passes I/O calls to the next BIO in the chain.

When a connection is established a new socket BIO is created for the connection and appended to the chain.
That is the chain is now accept->socket. This effectively means that attempting I/O on an initial accept socket
will await an incoming connection then perform I/O on it.

If any additional BIOs have been set using BIO_set_accept_bios() then they are placed between the socket
and the accept BIO, that is the chain will be accept->otherbios->socket.

If a server wishes to process multiple connections (as is normally the case) then the accept BIO must be made
available for further incoming connections. This can be done by waiting for a connection and then calling:

connection = BIO_pop (accept) ;

After this call connection will contain a BIO for the recently established connection and accept will now be a
single BIO again which can be used to await further incoming connections. If no further connections will be
accepted the accept can be freed using BIO_free().

If only a single connection will be processed it is possible to perform I/O using the accept BIO itself. This is
often undesirable however because the accept BIO will still accept additional incoming connections. This can
be resolved by using BIO_pop() (see above) and freeing up the accept BIO after the initial connection.

If the underlying accept socket is non-blocking and BIO_do_accept() is called to await an incoming connection
it is possible for BIO_should_io_special() with the reason BIO_RR_ACCEPT. If this happens then it is an
indication that an accept attempt would block: the application should take appropriate action to wait until
the underlying socket has accepted a connection and retry the call.

BIO_set_accept_port(), BIO_get_accept_port(), BIO_set_nbio_accept(), BIO_set_accept_bios(),
BIO_set_bind_mode(), BIO_get_bind_mode() and BIO_do_accept() are macros.

RETURN VALUES

None.

EXAMPLE

This example accepts two connections on port 4444, sends messages down each and finally closes both down.

250

BIO *abio, *cbio, *cbio2;
ERR_load_crypto_strings() ;
abio = BIO_new_accept("4444");

/* First call to BIO_accept() sets up accept BIO */
1f(BIO_do_accept(abio) <= 0) {
fprintf (stderr, "Error setting up accept\n");
ERR_print_errors_fp(stderr) ;
exit (0);

}

/* Wait for incoming connection */
1f(BIO_do_accept(abio) <= 0) {
fprintf (stderr, "Error accepting connection\n");
ERR_print_errors_fp(stderr) ;
exit (0);
}
fprintf (stderr, "Connection 1 established\n");
/* Retrieve BIO for connection */
cbio = BIO_pop (abio);

BIO_puts(cbio, "Connection 1: Sending out Data on initial connection\n");

fprintf (stderr, "Sent out data on connection 1\n");
/* Wait for another connection */
1f(BIO_do_accept(abio) <= 0) {

fprintf (stderr, "Error accepting connection\n");
ERR_print_errors_fp(stderr) ;

exit (0);

}

fprintf (stderr, "Connection 2 established\n");

/* Close accept BIO to refuse further connections */
cbio2 = BIO_pop(abio);

BIO_free(abio);

BIO_puts(cbio2, "Connection 2: Sending out Data on second\n");
fprintf (stderr, "Sent out data on connection 2\n") ;

BIO_puts(cbio, "Connection 1: Second connection established\n");

/* Close the two established connections */
BIO_free(cbio);
BIO_free(cbio2);

SEE ALSO

None.

251

BIO s bio

NAME
BIO_s_bio, BIO_make_bio_pair, BIO_destroy_bio_pair, BIO_shutdown_wr,
BIO_set_write_buf_size, BIO_get_write_buf_size, BIO_new_bio_pair, BIO_get_write_guarantee,
BIO_ctrl_get_write_guarantee, BIO_get_read_request, BIO_ctrl_get_read_request,
BIO_ctrl_reset_read_request — BIO pair BIO

Synopsis

#include <openssl/bio.h>

BIO_METHOD *BIO_s_bio(void);

#define BIO_make bio_pair (bl,b2)

(int)BIO_ctrl (bl,BIO_C_MAKE_BIO_PAIR,0,b2)

#define BIO_destroy bio_pair (b)

(int)BIO_ctrl (b,BIO_C_DESTROY_BIO_PAIR, 0,NULL)

#define BIO_shutdown_wr (b)

(int)BIO_ctrl (b, BIO_C_SHUTDOWN_WR, 0, NULL)

#define BIO_set_write_buf_size(b,size)

(int)BIO_ctrl (b,BIO_C_SET WRITE_BUF _SIZE,size,NULL)

#define BIO_get_write buf_size(b,size)

(size_t)BIO_ctrl (b,BIO_C GET WRITE_BUF_SIZE, size,NULL)

int BIO_new_bio_pair (BIO **biol, size_t writebufl, BIO **bio2, size_t writebuf2);
#define BIO_get_write_guarantee (b)

(int)BIO_ctrl (b,BIO_C_GET WRITE_GUARANTEE, 0,NULL) size t BIO_ctrl_get write guarantee (BIO
*b) ;

#define BIO_get_read_request (b)

(int)BIO_ctrl (b,BIO_C_GET READ REQUEST,0,NULL) size t BIO _ctrl_get read_request (BIO *Db);
int BIO_ctrl_reset_read_request (BIO *Db);

DESCRIPTION

BIO_s_bio() returns the method for a BIO pair. A BIO pair is a pair of source/sink BIOs where data written to
either half of the pair is buffered and can be read from the other half. Both halves must usually by handled by
the same application thread since no locking is done on the internal data structures.

Since BIO chains typically end in a source/sink BIO it is possible to make this one half of a BIO pair and have
all the data processed by the chain under application control.

One typical use of BIO pairs is to place TLS/SSL I/O under application control, this can be used when the
application wishes to use a non standard transport for TLS/SSL or the normal socket routines are
inappropriate.

Calls to BIO_read() will read data from the buffer or request a retry if no data is available.
Calls to BIO_write() will place data in the buffer or request a retry if the buffer is full.

The standard calls BIO_ctrl_pending() and BIO_ctrl_wpending() can be used to determine the amount of
pending data in the read or write buffer.

BIO_reset() clears any data in the write buffer.

BIO_make_bio_pair() joins two separate BIOs into a connected pair.

252

BIO_destroy_pair() destroys the association between two connected BIOs. Freeing up any half of the pair will
automatically destroy the association.

BIO_shutdown_wr() is used to close down a BIO b. After this call no further writes on BIO b are allowed (they
will return an error). Reads on the other half of the pair will return any pending data or EOF when all
pending data has been read.

BIO_set_write_buf size() sets the write buffer size of BIO b to size. If the size is not initialized a default value
is used. This is currently 17K, sufficient for a maximum size TLS record.

BIO_get_write_buf size() returns the size of the write buffer.

BIO_new_bio_pair() combines the calls to BIO_new(), BIO_make_bio_pair() and BIO_set_write_buf size() to
create a connected pair of BIOs biol, bio2 with write buffer sizes writebuf1 and writebuf2. If either size is zero
then the default size is used. BIO_new_bio_pair() does not check whether bioI or bio2 do point to some other
BIO, the values are overwritten, BIO_free() is not called.

BIO_get_write_guarantee() and BIO_ctrl_get_write_guarantee() return the maximum length of data that can
be currently written to the BIO. Writes larger than this value will return a value from BIO_write() less than
the amount requested or if the buffer is full request a retry. BIO_ctrl_get_write_guarantee() is a function
whereas BIO_get_write_guarantee() is a macro.

BIO_get_read_request() and BIO_ctrl_get_read_request() return the amount of data requested, or the buffer
size if it is less, if the last read attempt at the other half of the BIO pair failed due to an empty buffer. This
can be used to determine how much data should be written to the BIO so the next read will succeed: this is
most useful in TLS/SSL applications where the amount of data read is usually meaningful rather than just a
buffer size. After a successful read this call will return zero. It also will return zero once new data has been
written satisfying the read request or part of it. Note that BIO_get_read_request() never returns an amount
larger than that returned by BIO_get_write_guarantee().

BIO_ctrl_reset_read_request() can also be used to reset the value returned by BIO_get_read_request() to zero.

NOTES

Both halves of a BIO pair should be freed. That is even if one half is implicit freed due to a BIO_free_all() or
SSL_free() call the other half needs to be freed.

When used in bidirectional applications (such as TLS/SSL) care should be taken to flush any data in the write
buffer. This can be done by calling BIO_pending() on the other half of the pair and, if any data is pending,
reading it and sending it to the underlying transport. This must be done before any normal processing (such
as calling select()) due to a request and BIO_should_read() being true.

To see why this is important consider a case where a request is sent using BIO_write() and a response read
with BIO_read(), this can occur during an TLS/SSL handshake for example. BIO_write() will succeed and
place data in the write buffer. BIO_read() will initially fail and BIO_should_read() will be true. If the
application then waits for data to be available on the underlying transport before flushing the write buffer it
will never succeed because the request was never sent!

RETURN VALUES

BIO_new_bio_pair() returns 1 on success, with the new BIOs available in biol and bio2, or 0 on failure, with
NULL pointers stored into the locations for biol and bio2. Check the error stack for more information.

253

EXAMPLE

The BIO pair can be used to have full control over the network access of an application. The application can
call select() on the socket as required without having to go through the SSL-interface.

BIO *internal_bio, *network_bio;
BIO_new_bio_pair (internal_bio, 0, network bio, 0);

SSL_set_bio(ssl, internal_bio, internal_bio);
SSL_operations () ;

application | TLS-engine
| |
o > SSIL_operations ()
| /\ N
| N \/
| BIO-pair (internal_bio)
tmmmm—————— < BIO-pair (network_bio)
| |
socket |

SSL_free(ssl);/* implicitly frees internal_bio */
BIO_free(network_bio) ;

As the BIO pair will only buffer the data and never directly access the connection, it behaves non-blocking
and will return as soon as the write buffer is full or the read buffer is drained. Then the application has to
flush the write buffer and/or fill the read buffer.

Use the BIO_ctrl_pending(), to find out whether data is buffered in the BIO and must be transfered to the
network. Use BIO_ctrl_get_read_request() to find out, how many bytes must be written into the buffer before
the SSL_operation() can successfully be continued.

WARNING

As the data is buffered, SSL_operation() may return with a ERROR_SSL._WANT_READ condition, but there
is still data in the write buffer. An application must not rely on the error value of SSL_operation() but must
assure that the write buffer is always flushed first. Otherwise a deadlock may occur as the peer might be
waiting for the data before being able to continue.

SEE ALSO
SSL_set_bio (3), ssl (3), bio (3), BIO_should_retry (3), BIO_read (3)

254

BIO_s connect
NAME

BIO_s_connect, BIO_set_conn_hostname, BIO_set_conn_port, BIO_set_conn_ip,
BIO_set_conn_int_port, BIO_get_conn_hostname, BIO_get_conn_port, BIO_get_conn_ip,
BIO_get_conn_int_port, BIO_set_nbio, BIO_do_connect — connect BIO

Synopsis

#include <openssl/bio.h>

BIO_METHOD * BIO_s_connect (void) ;

BIO *BIO_new_connect (char *name) ;

long BIO_set_conn_hostname (BIO *b, char *name) ;
long BIO_set_conn_port (BIO *b, char *port);
long BIO_set_conn_ip(BIO *b, char *ip);

long BIO_set_conn_int_port (BIO *b, char *port);
char *BIO_get_conn_hostname (BIO *b);

char *BIO_get_conn_port (BIO *Db);

char *BIO_get_conn_ip(BIO *b, dummy) ;

long BIO_get_conn_int_port (BIO *b, int port);
long BIO_set_nbio(BIO *b, long n);

int BIO_do_connect (BIO *b);

DESCRIPTION

BIO_s_connect() returns the connect BIO method. This is a wrapper round the platform's TCP/IP socket
connection routines.

Using connect BIOs, TCP/IP connections can be made and data transferred using only BIO routines. In this
way any platform specific operations are hidden by the BIO abstraction.

Read and write operations on a connect BIO will perform I/0O on the underlying connection. If no connection is
established and the port and hostname (see below) is set up properly then a connection is established first.

Connect BIOs support BIO_puts() but not BIO_gets().

If the close flag is set on a connect BIO then any active connection is shutdown and the socket closed when the
BIO is freed.

Calling BIO_reset() on a connect BIO will close any active connection and reset the BIO into a state where it
can connect to the same host again.

BIO_get_fd() places the underlying socket in ¢ if it is not NULL, it also returns the socket . If ¢ is not NULL it
should be of type (int *).

BIO_set_conn_hostname() uses the string name to set the hostname. The hostname can be an IP address. The
hostname can also include the port in the form hostname:port . It is also acceptable to use the form
"hostname/any/other/path" or "hostname:port/any/other/path".

BIO_set_conn_port() sets the port to port. port can be the numerical form or a string such as "http". A string
will be looked up first using getservbyname() on the host platform but if that fails a standard table of port
names will be used. Currently the list is http, telnet, socks, https, ssl, ftp, gopher and wais.

BIO_set_conn_ip() sets the IP address to ip using binary form, that is four bytes specifying the IP address in
big-endian form.

255

BIO_set_conn_int_port() sets the port using port. port should be of type (int *).

BIO_get_conn_hostname() returns the hostname of the connect BIO or NULL if the BIO is initialized but no
hostname is set. This return value is an internal pointer which should not be modified.

BIO_get_conn_port() returns the port as a string.
BIO_get_conn_ip() returns the IP address in binary form.
BIO_get_conn_int_port() returns the port as an int.

BIO_set_nbio() sets the non blocking I/O flag to n. If n is zero then blocking I/O is set. If n is 1 then non
blocking I/0O is set. Blocking I/O is the default. The call to BIO_set_nbio() should be made before the
connection is established because non blocking I/O is set during the connect process.

BIO_new_connect() combines BIO_new() and BIO_set_conn_hostname() into a single call: that is it creates a
new connect BIO with name.

BIO_do_connect() attempts to connect the supplied BIO. It returns 1 if the connection was established
successfully. A zero or negative value is returned if the connection could not be established, the call
BIO_should_retry() should be used for non blocking connect BIOs to determine if the call should be retried.

NOTES

If blocking I/O is set then a non positive return value from any I/O call is caused by an error condition,
although a zero return will normally mean that the connection was closed.

If the port name is supplied as part of the host name then this will override any value set with
BIO_set_conn_port(). This may be undesirable if the application does not wish to allow connection to
arbitrary ports. This can be avoided by checking for the presence of the "' character in the passed hostname
and either indicating an error or truncating the string at that point.

The values returned by BIO_get_conn_hostname(), BIO_get_conn_port(), BIO_get_conn_ip() and
BIO_get_conn_int_port() are updated when a connection attempt is made. Before any connection attempt the
values returned are those set by the application itself.

Applications do not have to call BIO_do_connect() but may wish to do so to separate the connection process
from other I/O processing.

If non blocking I/0 is set then retries will be requested as appropriate.

It addition to BIO_should_read() and BIO_should_write() it is also possible for BIO_should_io_special() to be
true during the initial connection process with the reason BIO_RR_CONNECT. If this is returned then this is
an indication that a connection attempt would block, the application should then take appropriate action to
wait until the underlying socket has connected and retry the call.

BIO_set_conn_hostname(), BIO_set_conn_port(), BIO_set_conn_ip(), BIO_set_conn_int_port(),
BIO_get_conn_hostname(), BIO_get_conn_port(), BIO_get_conn_ip(), BIO_get_conn_int_port(),
BIO_set_nbio() and BIO_do_connect() are macros.

RETURN VALUES

BIO_s_connect() returns the connect BIO method.
BIO_get_fd() returns the socket or -1 if the BIO has not been initialized.

BIO_set_conn_hostname(), BIO_set_conn_port(), BIO_set_conn_ip() and BIO_set_conn_int_port() always
return 1.

BIO_get_conn_hostname() returns the connected hostname or NULL is none was set.

256

BIO_get_conn_port() returns a string representing the connected port or NULL if not set.
BIO_get_conn_ip() returns a pointer to the connected IP address in binary form or all zeros if not set.

BIO_get_conn_int_port() returns the connected port or 0 if none was set.

BIO_set_nbio() always returns 1.

BIO_do_connect() returns 1 if the connection was successfully established and 0 or -1 if the connection failed.

EXAMPLE

This is example connects to a webserver on the local host and attempts to retrieve a page and copy the result

to standard output.

BIO *cbio, *out;

int len;

char tmpbuf[1024];
ERR_load_crypto_strings() ;

cbio = BIO_new_connect ("localhost:http");
out = BIO_new_fp(stdout, BIO_NOCLOSE) ;

if (BIO_do_connect(cbio) <= 0) {

fprintf (stderr, "Error connecting to server\n");

ERR_print_errors_fp(stderr) ;

/* whatever ... */

}

BIO_puts(cbio, "GET / HTTP/1.0\n\n");
for(;;) |

len = BIO_read(cbio, tmpbuf, 1024);
if (len <= 0) break;
BIO_write(out, tmpbuf, len);

}

BIO_free(cbio);

BIO_free(out) ;

SEE ALSO

None.

257

BIO s fd

NAME
BIO_s_fd, BIO_set_fd, BIO_get_fd, BIO_new_fd — file descriptor BIO

Synopsis

#include <openssl/bio.h>

BIO_METHOD *BIO_s_fd(void);

#define BIO_set_fd (b, fd,c)BIO_int_ctrl (b,BIO_C_SET FD,c, fd)
#define BIO_get_fd(b,c)BIO_ctrl (b,BIO_C_GET FD,0, (char *)c)
BIO *BIO_new_ fd(int fd, int close_flag);

DESCRIPTION

BIO_s_fd() returns the file descriptor BIO method. This is a wrapper round the platforms file descriptor
routines such as read() and write().

BIO_read() and BIO_write() read or write the underlying descriptor. BIO_puts() is supported but BIO_gets()
is not.

If the close flag is set then then close() is called on the underlying file descriptor when the BIO is freed.
BIO_reset() attempts to change the file pointer to the start of file using 1seek(fd, 0, 0).

BIO_seek() sets the file pointer to position ofs from start of file using lseek(fd, ofs, 0).

BIO_tell() returns the current file position by calling Iseek(fd, 0, 1).

BIO_set_fd() sets the file descriptor of BIO b to fd and the close flag to c.

BIO_get_fd() places the file descriptor in ¢ if it is not NULL, it also returns the file descriptor. If ¢ is not NULL
it should be of type (int *).

BIO_new_fd() returns a file descriptor BIO using fd and close_flag.

NOTES

The behaviour of BIO_read() and BIO_write() depends on the behavior of the platforms read() and write()
calls on the descriptor. If the underlying file descriptor is in a non blocking mode then the BIO will behave in
the manner described in the BIO_read (3) and BIO_should_retry (3) manual pages.

File descriptor BIOs should not be used for socket I/O. Use socket BIOs instead.

RETURN VALUES
BIO_s_fd() returns the file descriptor BIO method.

BIO_reset() returns zero for success and -1 if an error occurred. BIO_seek() and BIO_tell() return the current
file position or -1 is an error occurred. These values reflect the underlying lseek() behaviour.

BIO_set_fd() always returns 1.
BIO_get_fd() returns the file descriptor or -1 if the BIO has not been initialized.
BIO_new_fd() returns the newly allocated BIO or NULL is an error occurred.

258

EXAMPLE
This is a file descriptor BIO version of "Hello World":

BIO *out;

out = BIO_new_fd(fileno(stdout), BIO_NOCLOSE) ;
BIO_printf (out, "Hello World\n");
BIO_free(out) ;

SEE ALSO

BIO_seek (3), BIO_tell (3), BIO_reset (3), BIO_read (3), BIO_write (3), BIO_puts (3), BIO_gets (3), BIO_printf
(3), BIO_set_close (3), BIO_get_close (3)

259

BIO s file

NAME
BIO_s_file, BIO_new_file, BIO_new_fp, BIO_set_fp, BIO_get_fp, BIO_read_filename,
BIO_write_filename, BIO_append_filename, BIO_rw_filename — FILE bio

Synopsis

#include <openssl/bio.h>

BIO_METHOD *BIO_s_file(void);

BIO *BIO_new_file(const char *filename, const char *mode) ;
BIO *BIO_new_fp(FILE *stream, int flags);

BIO_set_fp(BIO *b,FILE *fp, int flags);

BIO_get_fp(BIO *b,FILE **fpp);

int BIO_read_filename(BIO *b, char *name)

int BIO write filename (BIO *b, char *name)

int BIO_append_filename (BIO *b, char *name)

int BIO_rw_filename(BIO *b, char *name)

DESCRIPTION

BIO_s_file() returns the BIO file method. As its name implies it is a wrapper round the stdio FILE structure
and it is a source/sink BIO.

Calls to BIO_read() and BIO_write() read and write data to the underlying stream. BIO_gets() and
BIO_puts() are supported on file BIOs.

BIO_flush() on a file BIO calls the fflush() function on the wrapped stream.

BIO_reset() attempts to change the file pointer to the start of file using fseek(stream, 0, 0).
BIO_seek() sets the file pointer to position ofs from start of file using fseek(stream, ofs, 0).
BIO_eof() calls feof().

Setting the BIO_CLOSE flag calls fclose() on the stream when the BIO is freed.

BIO_new_file() creates a new file BIO with mode mode the meaning of mode is the same as the stdio function
fopen(). The BIO_CLOSE flag is set on the returned BIO.

BIO_new_fp() creates a file BIO wrapping stream. Flags can be: BIO_CLOSE, BIO_NOCLOSE (the close flag)
BIO_FP_TEXT (sets the underlying stream to text mode, default is binary: this only has any effect under
Win32).

BIO_set_fp() set the fp of a file BIO to fp. flags has the same meaning as in BIO_new_fp(), it is a macro.
BIO_get_fp() retrieves the fp of a file BIO, it is a macro.

BIO_seek() is a macro that sets the position pointer to offset bytes from the start of file.

BIO_tell() returns the value of the position pointer.

BIO_read_filename(), BIO_write_filename(), BIO_append_filename() and BIO_rw_filename() set the file BIO
b to use file name for reading, writing, append or read write respectively.

260

NOTES

When wrapping stdout, stdin or stderr the underlying stream should not normally be closed so the
BIO_NOCLOSE flag should be set.

Because the file BIO calls the underlying stdio functions any quirks in stdio behaviour will be mirrored by the
corresponding BIO.

EXAMPLES
File BIO "hello world":

BIO *bio_out;
bio_out = BIO_new_ fp(stdout, BIO_NOCLOSE) ;
BIO_printf (bio_out, "Hello World\n");

Alternative technique:

BIO *bio_out;

bio_out = BIO_new(BIO_s_file());

if(bio_out == NULL) /* Error ... */

if(!BIO_set_fp(bio_out, stdout, BIO_NOCLOSE)) /* Error ... */
BIO_printf (bio_out, "Hello World\n");

Write to a file:

BIO *out;

out = BIO_new_file("filename.txt", "w");
if(lout) /* Error occurred */

BIO_printf (out, "Hello World\n");
BIO_free(out);

Alternative technique:

BIO *out;

out = BIO_new(BIO_s_file());

if(out == NULL) /* Error ... */

if(!BIO_write_filename (out, "filename.txt")) /* Error ... */

BIO_printf (out, "Hello World\n");
BIO_free(out);

RETURN VALUES
BIO_s_file() returns the file BIO method.
BIO_new_file() and BIO_new_fp() return a file BIO or NULL if an error occurred.

BIO_set_fp() and BIO_get_fp() return 1 for success or 0 for failure (although the current implementation
never return 0).

BIO_seek() returns the same value as the underlying fseek() function: 0 for success or -1 for failure.
BIO_tell() returns the current file position.

BIO_read_filename(), BIO_write_filename(), BIO_append_filename() and BIO_rw_filename() return 1 for
success or 0 for failure.

261

Restrictions

BIO_reset() and BIO_seek() are implemented using fseek() on the underlying stream. The return value for
fseek() is 0 for success or -1 if an error occurred this differs from other types of BIO which will typically return
1 for success and a non positive value if an error occurred.

SEE ALSO

BIO_seek (3), BIO_tell (3), BIO_reset (3), BIO_flush (3), BIO_read (3), BIO_write (3), BIO_puts (3), BIO_gets
(3), BIO_printf (3), BIO_set_close (3), BIO_get_close (3)

262

BIO s mem
NAME

BIO_s_mem, BIO_set_mem_eof_return, BIO_get_mem_data, BIO_set_mem_buf,

BIO_get_mem_ptr, BIO_new_mem_buf — memory BIO

Synopsis

#include <openssl/bio.h>

BIO_METHOD *BIO_s_mem(void) ;

BIO_set_mem eof_return (BIO *b,int wv)

long BIO_get_mem _data(BIO *b, char **pp)
BIO_set_mem buf (BIO *b,BUF_MEM *bm,int c)
BIO_get_mem ptr (BIO *b,BUF_MEM **pp)

BIO *BIO_new mem_ buf (void *buf, int len);

DESCRIPTION

BIO_s_mem() return the memory BIO method function.

A memory BIO is a source/sink BIO which uses memory for its I/O. Data written to a memory BIO is stored in
a BUF_MEM structure which is extended as appropriate to accommodate the stored data.

Any data written to a memory BIO can be recalled by reading from it. Unless the memory BIO is read only
any data read from it is deleted from the BIO.

Memory BIOs support BIO_gets() and BIO_puts().

If the BIO_CLOSE flag is set when a memory BIO is freed then the underlying BUF_MEM structure is also
freed.

Calling BIO_reset() on a read write memory BIO clears any data in it. On a read only BIO it restores the BIO
to its original state and the read only data can be read again.

BIO_eof() is true if no data is in the BIO.
BIO_ctrl_pending() returns the number of bytes currently stored.

BIO_set_mem_eof return() sets the behaviour of memory BIO b when it is empty. If the v is zero then an
empty memory BIO will return EOF (that is it will return zero and BIO_should_retry(b) will be false. If v is
non zero then it will return v when it is empty and it will set the read retry flag (that is BIO_read_retry(b) is
true). To avoid ambiguity with a normal positive return value v should be set to a negative value, typically -1.

BIO_get_mem_data() sets pp to a pointer to the start of the memory BIOs data and returns the total amount
of data available. It is implemented as a macro.

BIO_set_mem_buf() sets the internal BUF_MEM structure to bm and sets the close flag to ¢, that is ¢ should
be either BIO_CLOSE or BIO_NOCLOSE. It is a macro.

BIO_get_mem_ptr() places the underlying BUF_MEM structure in pp. It is a macro.

BIO_new_mem_buf() creates a memory BIO using len bytes of data at buf, if len is -1 then the buf is assumed
to be null terminated and its length is determined by strlen. The BIO is set to a read only state and as a result
cannot be written to. This is useful when some data needs to be made available from a static area of memory
in the form of a BIO. The supplied data is read directly from the supplied buffer: it is not¢ copied first, so the
supplied area of memory must be unchanged until the BIO is freed.

263

NOTES

Writes to memory BIOs will always succeed if memory is available: that is their size can grow indefinitely.

Every read from a read write memory BIO will remove the data just read with an internal copy operation, if a
BIO contains a lots of data and it is read in small chunks the operation can be very slow. The use of a read
only memory BIO avoids this problem. If the BIO must be read write then adding a buffering BIO to the chain
will speed up the process.

Restrictions
There should be an option to set the maximum size of a memory BIO.
There should be a way to "rewind" a read write BIO without destroying its contents.

The copying operation should not occur after every small read of a large BIO to improve efficiency.

EXAMPLES

Create a memory BIO and write some data to it:

BIO *mem = BIO_new(BIO_s_mem()) ;
BIO_puts (mem, "Hello World\n");

Create a read only memory BIO:

char datal[] = "Hello World";
BIO *mem;
mem = BIO_new _mem_buf (data, -1);

Extract the BUF_MEM structure from a memory BIO and then free up the BIO:

BUF_MEM *bptr;

BIO_get_mem_ ptr (mem, &bptr);

BIO_set_close(mem, BIO_NOCLOSE); /* So BIO_free() leaves BUF_MEM alone */
BIO_free(mem) ;

SEE ALSO

None.

264

BIO_s null

NAME
BIO_s_null — null data sink

Synopsis

#include <openssl/bio.h>
BIO_METHOD *BIO_s_ null (void) ;

DESCRIPTION

BIO_s_null() returns the null sink BIO method. Data written to the null sink is discarded, reads return EOF.

NOTES
A null sink BIO behaves in a similar manner to the UNIX /dev/null device.
A null bio can be placed on the end of a chain to discard any data passed through it.

A null sink is useful if, for example, an application wishes to digest some data by writing through a digest bio
but not send the digested data anywhere. Since a BIO chain must normally include a source/sink BIO this can
be achieved by adding a null sink BIO to the end of the chain

RETURN VALUES
BIO_s_null() returns the null sink BIO method.

SEE ALSO

None.

265

BIO_s socket

NAME
BIO_s_socket, BIO_new_socket — socket BIO

Synopsis

#include <openssl/bio.h>

BIO_METHOD *BIO_s_socket (void) ;

long BIO_set_fd(BIO *b, int fd, long close flag);
long BIO_get_fd(BIO *b, int *c);

BIO *BIO_new_socket (int sock, int close_flag);

DESCRIPTION

BIO_s_socket() returns the socket BIO method. This is a wrapper round the platform's socket routines.

BIO_read() and BIO_write() read or write the underlying socket. BIO_puts() is supported but BIO_gets() is
not.

If the close flag is set then the socket is shut down and closed when the BIO is freed.
BIO_set_fd() sets the socket of BIO b to fd and the close flag to close_flag.

BIO_get_fd() places the socket in ¢ if it is not NULL, it also returns the socket. If ¢ is not NULL it should be of
type (int *).

BIO_new_socket() returns a socket BIO using sock and close_flag.

NOTES

Socket BIOs also support any relevant functionality of file descriptor BIOs.

The reason for having separate file descriptor and socket BIOs is that on some platforms sockets are not file
descriptors and use distinct I/O routines, Windows is one such platform. Any code mixing the two will not
work on all platforms.

BIO_set_fd() and BIO_get_fd() are macros.

RETURN VALUES

BIO_s_socket() returns the socket BIO method.
BIO_set_fd() always returns 1.
BIO_get_fd() returns the socket or -1 if the BIO has not been initialized.

BIO_new_socket() returns the newly allocated BIO or NULL is an error occurred.

SEE ALSO

None.

266

BIO_set_callback

NAME

BIO_set_callback, BIO_get_callback, BIO_set_callback_arg, BIO_get_callback_arg,
BIO_debug_callback — BIO callback functions

Synopsis

#include <openssl/bio.h>

#define BIO_set_callback (b, cb) ((b)->callback=(cb))

#define BIO_get_callback(b) ((b)->callback)

#define BIO_set_callback arg (b, arg) ((b) ->cb_arg=(char *) (arg))

#define BIO_get_callback_ arg (b) ((b)->cb_arg)

long BIO_debug_callback(BIO *bio,int cmd, const char *argp,int argi, long argl,long ret);
typedef long callback(BIO *b,

int oper, const char *argp,

int argi, long argl, long retvalue);

DESCRIPTION

BIO_set_callback() and BIO_get_callback() set and retrieve the BIO callback, they are both macros. The
callback is called during most high level BIO operations. It can be used for debugging purposes to trace
operations on a BIO or to modify its operation.

BIO_set_callback_arg() and BIO_get_callback_arg() are macros which can be used to set and retrieve an
argument for use in the callback.

BIO_debug_callback() is a standard debugging callback which prints out information relating to each BIO
operation. If the callback argument is set if is interpreted as a BIO to send the information to, otherwise
stderr is used.

callback() is the callback function itself. The meaning of each argument is described below.
The BIO the callback is attached to is passed in b.

oper is set to the operation being performed. For some operations the callback is called twice, once before and
once after the actual operation, the latter case has oper or'ed with BIO_CB_RETURN.

The meaning of the arguments argp, argi and argl depends on the value of oper, that is the operation being
performed.

retvalue is the return value that would be returned to the application if no callback were present. The actual
value returned is the return value of the callback itself. In the case of callbacks called before the actual BIO
operation 1 is placed in retvalue, if the return value is not positive it will be immediately returned to the
application and the BIO operation will not be performed.

The callback should normally simply return retvalue when it has finished processing, unless if specifically
wishes to modify the value returned to the application.

CALLBACK OPERATIONS

e BIO_free(b)
callback(b, BIO_CB_FREE, NULL, OL, OL, 1L) is called before the free operation.
e BIO_read(b, out, outl)

267

callback(b, BIO_CB_READ, out, outl, OL, 1L) is called before the read and callback(b,
BIO_CB_READ | BIO_CB_RETURN, out, outl, OL, retvalue) after.

* BIO_write(b, in, inl)

callback(b, BIO_CB_WRITE, in, inl, 0L, 1L) is called before the write and callback(b,
BIO_CB_WRITE | BIO_CB_RETURN, in, inl, OL, retvalue) after.

e BIO_gets(b, out, outl)

callback(b, BIO_CB_GETS, out, outl, 0L, 1L) is called before the operation and callback(b,
BIO_CB_GETS | BIO_CB_RETURN, out, outl, OL, retvalue) after.

e BIO _puts(b, in)

callback(b, BIO_CB_WRITE, in, 0, 0L, 1L) is called before the operation and callback(b,
BIO_CB_WRITE | BIO_CB_RETURN, in, 0, OL, retvalue) after.

e BIO_ctrl(BIO *b, int cmd, long larg, void *parg)

callback(b,BIO_CB_CTRL,parg,cmd,larg,1L) is called before the call and
callback(b,BIO_CB_CTRL | BIO_CB_RETURN,parg,cmd, larg,ret) after.

EXAMPLE

The BIO_debug_callback() function is a good example, its source is in crypto/bio/bio_cb.c

SEE ALSO

None.

268

BIO_should_retry

NAME

BIO_should_retry, BIO_should_read, BIO_should_write, BIO_should_io_special, BIO_retry_type,
BIO_should_retry, BIO_get_retry_BIO, BIO_get_retry_reason — BIO retry functions

Synopsis

#include <openssl/bio.h>

#define BIO_should_read(a) ((a)->flags & BIO_FLAGS_READ)

#define BIO_should_write(a) ((a)->flags & BIO_FLAGS_WRITE)
#define BIO_should_io_special (a) ((a) ->flags & BIO_FLAGS_IO_SPECIAL)
#define BIO_retry type(a) ((a)->flags & BIO_FLAGS_RWS)

#define BIO_should_retry(a) ((a)->flags & BIO_FLAGS_SHOULD_RETRY)
#define BIO_FLAGS_READOxO01

#define BIO_FLAGS_WRITE0x02

#define BIO_FLAGS_IO_SPECIALOx04 #define BIO_FLAGS_RWS
(BIO_FLAGS_READ | BIO_FLAGS_WRITE | BIO_FLAGS_TIO_SPECIAL)

#define BIO_FLAGS_SHOULD RETRYO0x08

BIO *BIO_get_retry BIO(BIO *bio, int *reason);

intBIO_get_retry reason(BIO *bio);

DESCRIPTION

These functions determine why a BIO is not able to read or write data. They will typically be called after a
failed BIO_read() or BIO_write() call.

BIO_should_retry() is true if the call that produced this condition should then be retried at a later time.
If BIO_should_retry() is false then the cause is an error condition.

BIO_should_read() is true if the cause of the condition is that a BIO needs to read data.
BIO_should_write() is true if the cause of the condition is that a BIO needs to read data.

BIO_should_io_special() is true if some "special" condition, that is a reason other than reading or writing is
the cause of the condition.

BIO_get_retry_reason() returns a mask of the cause of a retry condition consisting of the values
BIO_FLAGS_READ, BIO_FLAGS_WRITE, BIO_FLAGS_IO_SPECIAL though current BIO types will only
set one of these.

BIO_get_retry_BIO() determines the precise reason for the special condition, it returns the BIO that caused
this condition and if reason is not NULL it contains the reason code. The meaning of the reason code and the
action that should be taken depends on the type of BIO that resulted in this condition.

BIO_get_retry_reason() returns the reason for a special condition if passed the relevant BIO, for example as
returned by BIO_get_retry_BIO().

269

NOTES

If BIO_should_retry() returns false then the precise "error condition" depends on the BIO type that caused it
and the return code of the BIO operation. For example if a call to BIO_read() on a socket BIO returns 0 and
BIO_should_retry() is false then the cause will be that the connection closed. A similar condition on a file BIO
will mean that it has reached EOF. Some BIO types may place additional information on the error queue. For
more details see the individual BIO type manual pages.

If the underlying I/O structure is in a blocking mode almost all current BIO types will not request a retry,
because the underlying I/O calls will not. If the application knows that the BIO type will never signal a retry
then it need not call BIO_should_retry() after a failed BIO I/O call. This is typically done with file BIOs.

SSL BIOs are the only current exception to this rule: they can request a retry even if the underlying I/O
structure is blocking, if a handshake occurs during a call to BIO_read(). An application can retry the failed
call immediately or avoid this situation by setting SSL._ MODE_AUTO_RETRY on the underlying SSL

structure.

While an application may retry a failed non blocking call immediately this is likely to be very inefficient
because the call will fail repeatedly until data can be processed or is available. An application will normally
wait until the necessary condition is satisfied. How this is done depends on the underlying I/O structure.

For example if the cause is ultimately a socket and BIO_should_read() is true then a call to select() may be
made to wait until data is available and then retry the BIO operation. By combining the retry conditions of
several non blocking BIOs in a single select() call it is possible to service several BIOs in a single thread,
though the performance may be poor if SSL BIOs are present because long delays can occur during the initial
handshake process.

It is possible for a BIO to block indefinitely if the underlying I/O structure cannot process or return any data.
This depends on the behaviour of the platforms I/O functions. This is often not desirable: one solution is to use
non blocking I/O and use a timeout on the select() (or equivalent) call.

Restrictions

The OpenSSL ASN1 functions cannot gracefully deal with non blocking I/O: that is they cannot retry after a
partial read or write. This is usually worked around by only passing the relevant data to ASN1 functions
when the entire structure can be read or written.

SEE ALSO

None.

270

blowfish

NAME

blowfish, BF_set_key, BF_encrypt, BF_decrypt, BF_ecb_encrypt, BF_cbc_encrypt,
BF_cfb64_encrypt, BF_ofb64_encrypt, BF_options — Blowfish encryption

Synopsis

#include <openssl/blowfish.h>

void BF_set_key (BF_KEY *key, int len, const unsigned char *data);

void BF_ecb_encrypt (const unsigned char *in, unsigned char *out, BF_KEY *key, int enc);
void BF_cbc_encrypt (const unsigned char *in, unsigned char *out, long length, BF_KEY
*schedule, unsigned char *ivec, int enc);

void BF_cfb64_encrypt (const unsigned char *in, unsigned char *out, long length, BF_KEY
*schedule, unsigned char *ivec, int *num, int enc);

void BF_ofb64_encrypt (const unsigned char *in, unsigned char *out, long length, BF_KEY
*schedule, unsigned char *ivec, int *num);

const char *BF_options (void) ;

void BF_encrypt (BF_LONG *data,const BF_KEY *key);

void BF_decrypt (BF_LONG *data,const BF_KEY *key);

DESCRIPTION

This library implements the Blowfish cipher, which was invented and described by Counterpane (see
http://www.counterpane.com/blowfish.html).

Blowfish is a block cipher that operates on 64 bit (8 byte) blocks of data. It uses a variable size key, but
typically, 128 bit (16 byte) keys are a considered good for strong encryption. Blowfish can be used in the same
modes as DES (see des_modes (7)). Blowfish is currently one of the faster block ciphers. It is quite a bit faster
than DES, and much faster than IDEA or RC2.

Blowfish consists of a key setup phase and the actual encryption or decryption phase.
BF_set_key() sets up the BF_KEY key using the len bytes long key at data.

BF_ecb_encrypt() is the basic Blowfish encryption and decryption function. It encrypts or decrypts the first 64
bits of in using the key key, putting the result in out. enc decides if encryption (BF_ENCRYPT) or decryption
(BF_DECRYPT) shall be performed. The vector pointed at by in and out must be 64 bits in length, no less. If
they are larger, everything after the first 64 bits is ignored.

The mode functions BF_cbc_encrypt(), BF_cfb64_encrypt() and BF_ofb64_encrypt() all operate on variable
length data. They all take an initialization vector ivec which needs to be passed along into the next call of the
same function for the same message. ivec may be initialized with anything, but the recipient needs to know
what it was initialized with, or it won't be able to decrypt. Some programs and protocols simplify this, like
SSH, where ivec is simply initialized to zero. BF_cbc_encrypt() operates on data that is a multiple of 8 bytes
long, while BF_cfb64_encrypt() and BF_ofb64_encrypt() are used to encrypt an variable number of bytes (the
amount does not have to be an exact multiple of 8). The purpose of the latter two is to simulate stream
ciphers, and therefore, they need the parameter num, which is a pointer to an integer where the current offset
in ivec is stored between calls. This integer must be initialized to zero when ivec is initialized.

BF_cbc_encrypt() is the Cipher Block Chaining function for Blowfish. It encrypts or decrypts the 64 bits
chunks of in using the key schedule, putting the result in out. enc decides if encryption (BF_ENCRYPT) or
decryption (BF_DECRYPT) shall be performed. ivec must point at an 8 byte long initialization vector.

271

BF_cfb64_encrypt() is the CFB mode for Blowfish with 64 bit feedback. It encrypts or decrypts the bytes in in
using the key schedule, putting the result in out. enc decides if encryption (BF_ENCRYPT) or decryption
(BF_DECRYPT) shall be performed. ivec must point at an 8 byte long initialization vector. num must point at
an integer which must be initially zero.

BF_ofb64_encrypt() is the OFB mode for Blowfish with 64 bit feedback. It uses the same parameters as
BF _cfb64_encrypt(), which must be initialized the same way.

BF_encrypt() and BF_decrypt() are the lowest level functions for Blowfish encryption. They encrypt/decrypt
the first 64 bits of the vector pointed by data, using the key key. These functions should not be used unless
you implement 'modes' of Blowfish. The alternative is to use BF_ecb_encrypt(). If you still want to use these
functions, you should be aware that they take each 32-bit chunk in host-byte order, which is little-endian on
little-endian platforms and big-endian on big-endian ones.

RETURN VALUES

None of the functions presented here return any value.

NOTE

Applications should use the higher level functions EVP_EncryptInit (3) etc. instead of calling the blowfish
functions directly.

SEE ALSO
des_modes (7)

HISTORY

The Blowfish functions are available in all versions of SSLeay and OpenSSL.

272

bn
NAME

bn — multiprecision integer arithmetics

Synopsis

#include <openssl/bn.h>
BIGNUM *BN_new(void) ;
void BN_free (BIGNUM *a) ;
void BN_init (BIGNUM *) ;
void BN_clear (BIGNUM *a) ;
void BN_clear free (BIGNUM *a);
BN_CTX *BN_CTX_ new (void) ;
void BN_CTX_ init (BN_CTX *c);
void BN_CTX_ free(BN_CTX *c);
BIGNUM *BN_copy (BIGNUM *a, const BIGNUM *b) ;
BIGNUM *BN_dup (const BIGNUM *a) ;
BIGNUM *BN_swap (BIGNUM *a, BIGNUM *b) ;
int BN_num bytes (const BIGNUM *a);
int BN_num bits (const BIGNUM *a) ;
int BN_num_bits_word (BN_ULONG w) ;
int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *Db);
int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *Db);
int BN_mul (BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
int BN_sgr (BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
(

int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d, BN_CTX *ctx);
int BN_mod (BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_nnmod (BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

int BN_mod_add(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM
int BN_mod_sub (BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM
int BN_mod_mul (BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM
int BN_mod_sqgr (BIGNUM *ret, BIGNUM *a, const BIGNUM *m, BN_CTX
int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);

int BN_mod_exp (BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx);

int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
int BN_add_word (BIGNUM *a, BN_ULONG w) ;

int BN_sub_word (BIGNUM *a, BN_ULONG w) ;

int BN_mul_word (BIGNUM *a, BN_ULONG w) ;

BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) ;
BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) ;
int BN_cmp (BIGNUM *a, BIGNUM *b) ;

int BN_ucmp (BIGNUM *a, BIGNUM *b);

int BN_is_zero (BIGNUM *a) ;

int BN_is_one(BIGNUM *a);

int BN_is_word(BIGNUM *a, BN_ULONG w) ;

int BN_is_odd(BIGNUM *a) ;

int BN_zero (BIGNUM *a) ;

int BN_one (BIGNUM *a);

const BIGNUM *BN_value_one (void) ;

int BN_set_word (BIGNUM *a, unsigned long w) ;
unsigned long BN_get_word (BIGNUM *a) ;

*m, BN_CTX *ctx);
*m, BN_CTX *ctx);
*m, BN_CTX *ctx);
*ctx) ;

273

int BN_rand(BIGNUM *rnd, int bits, int top, int bottom) ;

int BN_pseudo_rand (BIGNUM *rnd, int bits, int top, int bottom) ;

int BN_rand_range (BIGNUM *rnd, BIGNUM *range) ;

int BN_pseudo_rand_range (BIGNUM *rnd, BIGNUM *range) ;

BIGNUM *BN_generate_prime (BIGNUM *ret, int bits,int safe, BIGNUM *add, BIGNUM *rem, void
(*callback) (int, int, void *), void *cb_arg);

int BN_is_prime (const BIGNUM *p, int nchecks, void (*callback) (int, int, void *), BN_CTX
*ctx, void *cb_arg); int BN_set_bit (BIGNUM *a, int n);

int BN_clear_bit (BIGNUM *a, int n);

int BN_is_bit_set(const BIGNUM *a, int n);

int BN_mask_bits (BIGNUM *a, int n);

int BN_1lshift (BIGNUM *r, const BIGNUM *a, int n);

int BN_1lshiftl (BIGNUM *r, BIGNUM *a);

int BN_rshift (BIGNUM *r, BIGNUM *a, int n);

int BN_rshiftl (BIGNUM *r, BIGNUM *a);

int BN_bn2bin(const BIGNUM *a, unsigned char *to);

BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret);

char *BN_bn2hex (const BIGNUM *a) ;

char *BN_bn2dec (const BIGNUM *a) ;

int BN_hex2bn (BIGNUM **a, const char *str);

int BN_dec2bn (BIGNUM **a, const char *str);

int BN_print (BIO *fp, const BIGNUM *a);

int BN_print_fp (FILE *fp, const BIGNUM *a);

int BN_bn2mpi (const BIGNUM *a, unsigned char *to);

BIGNUM *BN_mpi2bn(unsigned char *s, int len, BIGNUM *ret);

BIGNUM *BN_mod_inverse (BIGNUM *r, BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);

BN_RECP_CTX *BN_RECP_CTX new (void) ;

void BN_RECP_CTX init (BN_RECP_CTX *recp) ;

void BN_RECP_CTX free(BN_RECP_CTX *recp) ;

int BN_RECP_CTX_set (BN_RECP_CTX *recp, const BIGNUM *m, BN_CTX *ctx);

int BN_mod_mul_reciprocal (BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_RECP_CTX *recp, BN_CTX *ctx);
BN_MONT_CTX *BN_MONT_CTX_new (void) ;

void BN_MONT_CTX_ init (BN_MONT_CTX *ctx);

void BN_MONT_CTX_ free(BN_MONT CTX *mont) ;

int BN_MONT CTX_set (BN_MONT CTX *mont, const BIGNUM *m, BN_CTX *ctx);

BN_MONT_CTX *BN_MONT_CTX_copy (BN_MONT_CTX *to, BN_MONT CTX *from) ;

int BN_mod_mul_montgomery (BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_MONT CTX *mont, BN_CTX *ctx);
int BN_from montgomery (BIGNUM *r, BIGNUM *a, BN_MONT CTX *mont, BN_CTX *ctx);

int BN_to_montgomery (BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont, BN_CTX *ctx);

DESCRIPTION

This library performs arithmetic operations on integers of arbitrary size. It was written for use in public key
cryptography, such as RSA and Diffie-Hellman.

It uses dynamic memory allocation for storing its data structures. That means that there is no limit on the
size of the numbers manipulated by these functions, but return values must always be checked in case a
memory allocation error has occurred.

The basic object in this library is a BIGNUM. It is used to hold a single large integer. This type should be
considered opaque and fields should not be modified or accessed directly.

274

The creation of BIGNUM objects is described in BN_new (3); BN_add (3) describes most of the arithmetic
operations. Comparison is described in BN_cmp (3); BN_zero (3) describes certain assignments, BN_rand (3)
the generation of random numbers, BN_generate_prime (3) deals with prime numbers and BN _set_bit (3) with
bit operations. The conversion of BIGNUMs to external formats is described in BN_bn2bin (3).

SEE ALSO

bn_internal (3), dh (3), err (3), rand (3), rsa (3), BN_new (3), BN_CTX_new (3), BN_copy (3), BN_swap (3),
BN_num_bytes (3), BN_add (3), BN_add_word (3), BN_cmp (3), BN_zero (3), BN_rand (3),
BN_generate_prime (3), BN_set_bit (3), BN_bn2bin (3), BN_mod_inverse (3), BN_mod_mul_reciprocal (3),
BN_mod_mul_montgomery (3)

275

BN add

NAME

BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add, BN_mod_sub,
BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd — arithmetic operations on BIGNUMs ,

Synopsis

#include <openssl/bn.h>

int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *Db);

int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *Db);

int BN_mul (BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) ;

int BN_sgr (BIGNUM *r, BIGNUM *a, BN_CTX *ctx);

int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d, BN_CTX *ctx);

int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

int BN_nnmod (BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, BN_CTX *ctx);

int BN_mod_sub (BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, BN_CTX *ctx);

int BN_mod_mul (BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, BN_CTX *ctx);

int BN_mod_sqgr (BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

int BN_exp (BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);

int BN_mod_exp (BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx);
int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

DESCRIPTION
BN_add() adds a and b and places the result in r (r=a+b). r may be the same BIGNUM as a or b.

BN_sub() subtracts b from a and places the result in r (r=a-b).

BN_mul() multiplies a and b and places the result in r (r=a*b). r may be the same BIGNUM as a or b. For
multiplication by powers of 2, use BN_Ishift (3).

BN_sqr() takes the square of a and places the result in r (r=a~2). r and a may be the same BIGNUM. This
function is faster than BN_mul(r,a,a).

BN_div() divides a by d and places the result in dv and the remainder in rem(dv=a/d, rem=a%d). Either of dv
and remmay be NULL, in which case the respective value is not returned. The result is rounded towards zero;
thus if a is negative, the remainder will be zero or negative. For division by powers of 2, use BN_rshift (3).

BN_mod() corresponds to BN_div() with dvset to NULL.

BN_nnmod() reduces a modulo m and places the non-negative remainder in r.
BN_mod_add() adds a to b modulo mand places the non-negative result in r.
BN_mod_sub() subtracts b from a modulo m and places the non-negative result in r.

BN_mod_mul() multiplies a by b and finds the non-negative remainder respective to modulus m(r=(a*b) mod
m). r may be the same BIGNUM as a or b. For more efficient algorithms for repeated computations using the
same modulus, see BN_mod_mul_montgomery (3) and BN_mod_mul_reciprocal (3).

BN_mod_sqr() takes the square of a modulo m and places the result in r.

BN_exp() raises a to the p-th power and places the result in r (r=a”p). This function is faster than repeated
applications of BN_mul().

276

BN_mod_exp() computes a to the p-th power modulo m (r=a”p % m). This function uses less time and space
than BN_exp().

BN_gcd() computes the greatest common divisor of a and b and places the result in r. r may be the same
BIGNUM as aor b.

For all functions, ctxis a previously allocated BN_CTX used for temporary variables; see BN_CTX_new (3).
Unless noted otherwise, the result BIGNUM must be different from the arguments.

RETURN VALUES

For all functions, 1 is returned for success, 0 on error. The return value should always be checked (e.g., if
(!BN_add(r,a,b)) goto err;). The error codes can be obtained by ERR_get_error (3).

SEE ALSO
bn (3), ERR_get_error (3), BN_CTX new (3), BN_add_word (3), BN_set_bit (3)

HISTORY

BN_add(, BN_sub(), BN_sqr(), BN_div(), BN_mod(), BN_mod_mul(), BN_mod_exp() and BN_gcd() are
available in all versions of SSLeay and OpenSSL. The ctx argument to BN_mul() was added in SSLeay
0.9.1b. BN_exp() appeared in SSLeay 0.9.0. BN_nnmod(), BN_mod_add(), BN_mod_sub(), and BN_mod_sqr()
were added in OpenSSL 0.9.7.

277

BN _add_word

NAME

BN_add_word, BN_sub_word, BN_mul_word, BN_div_word, BN_mod_word — arithmetic functions
on BIGNUMs with integers

Synopsis

#include <openssl/bn.h>

int BN_add_word(BIGNUM *a, BN_ULONG w) ;

int BN_sub_word (BIGNUM *a, BN_ULONG w) ;

int BN_mul_word (BIGNUM *a, BN_ULONG w) ;

BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) ;
BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) ;

DESCRIPTION

These functions perform arithmetic operations on BIGNUMs with unsigned integers. They are much more
efficient than the normal BIGNUM arithmetic operations.

BN_add_word() adds w to a (a+=w).

BN_sub_word() subtracts w from a (a-=w).

BN_mul_word() multiplies ¢ and w (a*=b).

BN_div_word() divides a by w (a/=w) and returns the remainder.
BN_mod_word() returns the remainder of ¢ divided by w (a%m).

For BN_div_word() and BN_mod_word(), w must not be 0.

RETURN VALUES

BN_add_word(), BN_sub_word() and BN_mul_word() return 1 for success, 0 on error. The error codes can be
obtained by ERR_get_error (3).

BN_mod_word() and BN_div_word() return a%uw.

SEE ALSO
bn (3), ERR_get_error (3), BN_add (3)

HISTORY

BN_add_word() and BN_mod_word() are available in all versions of SSLeay and OpenSSL. BN_div_word()
was added in SSLeay 0.8, and BN_sub_word() and BN_mul_word() in SSLeay 0.9.0.

278

BN bn2bin

NAME
BN_bn2bin, BN_bin2bn, BN_bn2hex, BN_bn2dec, BN_hex2bn, BN_dec2bn, BN_print,
BN_print_fp, BN_bn2mpi, BN_mpi2bn — format conversions

Synopsis

#include <openssl/bn.h>

int BN_bn2bin(const BIGNUM *a, unsigned char *to);

BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret);
char *BN_bn2hex (const BIGNUM *a) ;

char *BN_bn2dec (const BIGNUM *a) ;

int BN_hex2bn (BIGNUM **a, const char *str);

int BN_dec2bn (BIGNUM **a, const char *str);

int BN_print (BIO *fp, const BIGNUM *a);

int BN_print_fp (FILE *fp, const BIGNUM *a);

int BN_bn2mpi (const BIGNUM *a, unsigned char *to);

BIGNUM *BN_mpi2bn(unsigned char *s, int len, BIGNUM *ret);

DESCRIPTION

BN_bn2bin() converts the absolute value of @ into big-endian form and stores it at to. o must point to
BN_num_bytes(a) bytes of memory.

BN_bin2bn() converts the positive integer in big-endian form of length len at s into a BIGNUM and places it
in ret. If ret is NULL, a new BIGNUM is created.

BN_bn2hex() and BN_bn2dec() return printable strings containing the hexadecimal and decimal encoding of
a respectively. For negative numbers, the string is prefaced with a leading '-'. The string must be freed later
using OPENSSL_free().

BN_hex2bn() converts the string s¢r containing a hexadecimal number to a BIGNUM and stores it in **bn. If
*bn is NULL, a new BIGNUM is created. If bn is NULL, it only computes the number's length in hexadecimal
digits. If the string starts with -, the number is negative. BN_dec2bn() is the same using the decimal system.

BN_print() and BN_print_fp() write the hexadecimal encoding of a, with a leading '-' for negative numbers, to
the BIO or FILE fp.

BN_bn2mpi() and BN_mpi2bn() convert BIGNUMs from and to a format that consists of the number's length
in bytes represented as a 4-byte big-endian number, and the number itself in big-endian format, where the
most significant bit signals a negative number (the representation of numbers with the MSB set is prefixed
with null byte).

BN_bn2mpi() stores the representation of a at to, where to must be large enough to hold the result. The size
can be determined by calling BN_bn2mpi(a, NULL).

BN_mpi2bn() converts the len bytes long representation at s to a BIGNUM and stores it at ret, or in a newly
allocated BIGNUM if ret is NULL.

RETURN VALUES

BN_bn2bin() returns the length of the big-endian number placed at to. BN_bin2bn() returns the BIGNUM,
NULL on error.

279

BN_bn2hex() and BN_bn2dec() return a null-terminated string, or NULL on error. BN_hex2bn() and
BN_dec2bn() return the number's length in hexadecimal or decimal digits, and 0 on error.

BN_print_fp() and BN_print() return 1 on success, 0 on write errors.

BN_bn2mpi() returns the length of the representation. BN_mpi2bn() returns the BIGNUM, and NULL on
error.

The error codes can be obtained by ERR_get_error (3).

SEE ALSO
bn (3), ERR_get_error (3), BN_zero (3), ASN1_INTEGER_to_BN (3), BN_num_bytes (3)

HISTORY

BN_bn2bin(), BN_bin2bn(), BN_print_fp() and BN_print() are available in all versions of SSLeay and
OpenSSL.

BN_bn2hex(), BN_bn2dec(), BN_hex2bn(), BN_dec2bn(), BN_bn2mpi() and BN_mpi2bn() were added in
SSLeay 0.9.0.

280

BN_cmp

NAME

BN_cmp, BN_ucmp, BN_is_zero, BN_is_one, BN_is_word, BN_is_odd — BIGNUM comparison and
test functions

Synopsis

#include <openssl/bn.h>

int BN_cmp (BIGNUM *a, BIGNUM *b) ;

int BN_ucmp (BIGNUM *a, BIGNUM *b);

int BN_is_zero (BIGNUM *a) ;

int BN_is_one (BIGNUM *a) ;

int BN_is_word(BIGNUM *a, BN_ULONG w) ;
int BN_is_odd(BIGNUM *a) ;

DESCRIPTION

BN_cmp() compares the numbers a and 6. BN_ucmp() compares their absolute values.

BN_is_zero(), BN_is_one() and BN_is_word() test if a equals 0, 1, or w respectively. BN_is_odd() tests if a is
odd.

BN_is_zero(), BN_is_one(), BN_is_word() and BN_is_odd() are macros.

RETURN VALUES

BN_cmp() returns -1 ifa < b, 0 ifa == b and 1 if a > b. BN_ucmp() is the same using the absolute values of a
and b.

BN_is_zero(), BN_is_one() BN_is_word() and BN_is_odd() return 1 if the condition is true, 0 otherwise.

SEE ALSO
bn (3)

HISTORY

BN_cmp(), BN_ucmp(), BN_is_zero(), BN_is_one() and BN_is_word() are available in all versions of SSLeay
and OpenSSL. BN_is_odd() was added in SSLeay 0.8.

281

BN_copy
NAME
BN_copy, BN_dup — copy BIGNUMs
Synopsis
#include <openssl/bn.h>

BIGNUM *BN_copy (BIGNUM *to, const BIGNUM *from) ;
BIGNUM *BN_dup (const BIGNUM *from) ;

DESCRIPTION

BN_copy() copies from to to. BN_dup() creates a new BIGNUM containing the value from.

RETURN VALUES

BN_copy() returns to on success, NULL on error. BN_dup() returns the new BIGNUM, and NULL on error.
The error codes can be obtained by ERR_get_error (3).

SEE ALSO
bn (3), ERR_get_error (3)

HISTORY
BN_copy() and BN_dup() are available in all versions of SSLeay and OpenSSL.

282

BN CTX new

NAME
BN_CTX_new, BN_CTX_init, BN_CTX_free — allocate and free BN_CTX structures

Synopsis

#include <openssl/bn.h>
BN_CTX *BN_CTX_ new (void) ;
void BN_CTX_ init (BN_CTX *c);
void BN_CTX_ free(BN_CTX *c);

DESCRIPTION

A BN_CTX is a structure that holds BIGNUM temporary variables used by library functions. Since dynamic
memory allocation to create BIGNUMs is rather expensive when used in conjunction with repeated
subroutine calls, the BN_CTX structure is used.

BN_CTX_new() allocates and initializes a BN_CTX structure. BN_CTX _init() initializes an existing
uninitialized BN_CTX.

BN_CTX_free() frees the components of the BN_CTX, and if it was created by BN_CTX_new(), also the
structure itself. If BN_CTX_start (3) has been used on the BN_CTX, BN_CTX_end (3) must be called before
the BN_CTX may be freed by BN_CTX_free().

RETURN VALUES

BN_CTX_new() returns a pointer to the BN_CTX. If the allocation fails, it returns NULL and sets an error
code that can be obtained by ERR_get_error (3).

BN_CTX init() and BN_CTX free() have no return values.

SEE ALSO
bn (3), ERR_get_error (3), BN_add (3), BN_CTX _start (3)

HISTORY

BN_CTX _new() and BN_CTX_free() are available in all versions on SSLeay and OpenSSL. BN_CTX_init()
was added in SSLeay 0.9.1b.

283

BN CTX start

NAME
BN_CTX start, BN_CTX_get, BN_CTX_end — use temporary BIGNUM variables

Synopsis

#include <openssl/bn.h>

void BN_CTX_ start (BN_CTX *ctx);
BIGNUM *BN_CTX_ get (BN_CTX *ctx) ;
void BN_CTX_end (BN_CTX *ctx);

DESCRIPTION

These functions are used to obtain temporary BIGNUM variables from a BN_CTX (which can been created by
using BN_CTX_new (3)) in order to save the overhead of repeatedly creating and freeing BIGNUMs in
functions that are called from inside a loop.

A function must call BN_CTX _start() first. Then, BN_CTX_get() may be called repeatedly to obtain
temporary BIGNUMs. All BN_CTX_get() calls must be made before calling any other functions that use the
ctx as an argument.

Finally, BN_CTX_end() must be called before returning from the function. When BN_CTX_end() is called, the
BIGNUM pointers obtained from BN_CTX_get() become invalid.

RETURN VALUES

BN_CTX start() and BN_CTX end() return no values.

BN_CTX_get() returns a pointer to the BIGNUM, or NULL on error. Once BN_CTX_get() has failed, the
subsequent calls will return NULL as well, so it is sufficient to check the return value of the last
BN_CTX_get() call. In case of an error, an error code is set, which can be obtained by ERR_get_error (3).

SEE ALSO
BN_CTX_new (3)

HISTORY
BN_CTX _start(), BN_CTX_get() and BN_CTX_end() were added in OpenSSL 0.9.5.

284

BN_generate_prime
NAME

BN_generate_prime, BN_is_prime, BN_is_prime_fasttest — generate primes and test for primality

Synopsis

#include <openssl/bn.h>

BIGNUM *BN_generate_prime (BIGNUM *ret, int num, int safe, BIGNUM *add, BIGNUM *rem, void
(*callback) (int, int, void *), void *cb_arg);

int BN_is_prime (const BIGNUM *a, int checks, void (*callback) (int, int, wvoid *), BN_CTX
*ctx, void *cb_arg) ;

int BN_is_prime_fasttest (const BIGNUM *a, int checks, void (*callback) (int, int, wvoid ¥*),
BN_CTX *ctx, void *cb_arg, int do_trial_division);

DESCRIPTION

BN_generate_prime() generates a pseudo-random prime number of num bits. If ret is not NULL, it will be
used to store the number.

If callback is not NULL, it is called as follows:

e callback(0, i, cb_arg) is called after generating the i-th potential prime number.

e While the number is being tested for primality, callback(1, j, cb_arg) is called as described below.
¢ When a prime has been found, callback(?, i, cb_arg) is called.

The prime may have to fulfill additional requirements for use in Diffie-Hellman key exchange:

If add is not NULL, the prime will fulfill the condition p % add == rem (p % add == 1 if rem == NULL) in
order to suit a given generator.

If safe is true, it will be a safe prime (i.e. a prime p so that (p-1)/2 is also prime).

The PRNG must be seeded prior to calling BN_generate_prime(). The prime number generation has a
negligible error probability.

BN_is_prime() and BN_is_prime_fasttest() test if the number a is prime. The following tests are performed
until one of them shows that a is composite; if a passes all these tests, it is considered prime.

BN_is_prime_fasttest(), when called with do_trial_division == 1, first attempts trial division by a number of
small primes; if no divisors are found by this test and callback is not NULL, callback(1, -1, cb_arg) is called. If
do_trial_division == 0, this test is skipped.

Both BN_is_prime() and BN_is_prime_fasttest() perform a Miller-Rabin probabilistic primality test with
checks iterations. If checks == BN_prime_checks, a number of iterations is used that yields a false positive rate
of at most 27-80 for random input.

If callback is not NULL, callback(1, j, cb_arg) is called after the j-th iteration (j = 0, 1, ...). ctx is a pre-allocated
BN_CTX (to save the overhead of allocating and freeing the structure in a loop), or NULL.

RETURN VALUES

BN_generate_prime() returns the prime number on success, NULL otherwise.

BN_is_prime() returns 0 if the number is composite, 1 if it is prime with an error probability of less than
0.25”checks, and -1 on error.

285

The error codes can be obtained by ERR_get_error (3).

SEE ALSO
bn (3), ERR_get_error (3), rand (3)

HISTORY

The cb_arg arguments to BN_generate_prime() and to BN_is_prime() were added in SSLeay 0.9.0. The ret
argument to BN_generate_prime() was added in SSLeay 0.9.1. BN_is_prime_fasttest() was added in
OpenSSL 0.9.5.

286

bn mul words
NAME

bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words, bn_add_words, bn_sub_words,
bn_mul_comba4, bn_mul_comba8, bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words,
bn_mul_normal, bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive,
bn_mul_low_recursive, bn_mul_high, bn_sqr_normal, bn_sqr_recursive, bn_expand, bn_wexpand,

bn_expand2, bn_fix_top, bn_check_top, bn_print, bn_dump, bn_set_max, bn_set_high, bn_set_low —
BIGNUM library internal functions

Synopsis

BN_ULONG bn_mul_words (BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) ;

BN_ULONG bn_mul_add_words (BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) ;

void bn_sgr_words (BN_ULONG *rp, BN_ULONG *ap, int num);

BN_ULONG bn_div_words (BN_ULONG h, BN_ULONG 1, BN_ULONG d);

BN_ULONG bn_add_words (BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp, int num);
BN_ULONG bn_sub_words (BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp, int num);

void bn_mul_comba4 (BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);

void bn_mul_comba8 (BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);

void bn_sgr_ comba4 (BN_ULONG *r, BN_ULONG *a);

void bn_sgr_comba8 (BN_ULONG *r, BN_ULONG *a);

int bn_cmp_words (BN_ULONG *a, BN_ULONG *b, int n);

void bn_mul_normal (BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);

void bn_mul_low_normal (BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);

void bn_mul_recursive (BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, int dna, int
dnb, BN_ULONG *tmp) ;

void bn_mul_part_recursive (BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, int tna, int tnb,
BN_ULONG *tmp) ;

void bn_mul_low_recursive (BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, BN_ULONG *tmp) ;
void bn_mul_high (BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *1, int n2, BN_ULONG tmp) ;
void bn_sgr normal (BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp) ;

void bn_sqgr recursive (BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp) ;

void mul (BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c) ;

void mul_add (BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);

void sgr (BN_ULONG r0, BN_ULONG rl, BN_ULONG a) ;

BIGNUM *bn_expand(BIGNUM *a, int bits);

BIGNUM *bn_wexpand (BIGNUM *a, int n);

BIGNUM *bn_expand2 (BIGNUM *a, int n);

void bn_fix top (BIGNUM *a); void bn_check top(BIGNUM *a) ;

void bn_print (BIGNUM *a);

void bn_dump (BN_ULONG *d, int n);

void bn_set_max (BIGNUM *a) ;

void bn_set_high(BIG