HP OpenVMS System Services
Reference Manual: GETUTC-Z

Order Number: BA554-90010

July 2006

This manual describes a set of routines that the HP OpenVMS operating
system uses to control resources, to allow process communication, to
control I/0, and to perform other such operating system functions.

Revision/Update Information: This manual supersedes the HP
OpenVMS System Services Reference
Manual: GETUTC-Z, Version 8.2

Software Version: OpenVMS 164 Version 8.3
OpenVMS Alpha Version 8.3

Hewlett-Packard Company
Palo Alto, California

© 2006 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Printed in the US

7K6244
The HP OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface ix

System Service Descriptions

SGETUTC ..\ oo e e e SYS2-3
$GET ALIGN_FAULT DATA (Alpha and I64)\, SYS2-4
$GET_ARITH EXCEPTION (Alpha only)ovuroreenen.. SYS2-6
$GET DEFAULT_TRANS . ..ottt SYS2-8
$GET_GALAXY_LOCK_INFO (Alpha Only)couuuuunenn.. SYS2-10
$GET_GALAXY_LOCK_SIZE (Alpha Only)o, SYS2-12
$GET REGION_INFO (Alpha and I64) oovoeee e SYS2-14
$GET SECURITY . ..ottt e SYS2-19
$GET_SYS_ALIGN FAULT DATA (Alpha and 164). SYS2-27
$GET UNWIND_ENTRY _INFO (I64 Only) oo oo SYS2-29
$GET USER_CAPABILITY (Alpha and 164)o oo, SYS2-31
$GOTO_UNWIND (Alpha Only) . ..o ot SYS2-34
$GOTO_UNWIND_64 (Alpha and I64).o o eee e SYS2-36
SGRANTID .. . vovee e et e e e SYS2-38
SHASH PASSWORDo oottt et e SYS2-42
SHIBER . . . oottt e e e e e SYS2-45
SICC_ACCEPT . . . o oot e e SYS2-47
$ICC_CLOSE_ASSOC . .\ttt e SYS2-50
SICC_CONNECT . . . oo oot e e e SYS2-52
$ICC_CONNECTW . . oo ot e SYS2-57
$ICC_DISCONNECTo oo et e SYS2-58
$ICC_DISCONNECTW . ..o ot et e SYS2-61
SICC_OPEN_ASSOC . . oottt e e e SYS2-62
SICC_RECEIVE\ oottt e SYS2-69
$SICC_RECEIVEW . ..o\ttt SYS2-72
SICC_REJECT . . . oo oo e e e e e SYS2-73
SICC_REPLY . . .\ oot e e e SYS2-75
SICC_REPLYW .. oottt e e SYS2-78
$ICC_TRANSCEIVEot o e SYS2-79
$ICC_TRANSCEIVEW o oot e e SYS2-83
SICC_TRANSMIT . ..ottt e e e SYS2-84
SICC_TRANSMITW . . . o oottt e e SYS2-87
SIDTOASC . . o o v e e e e e e e e SYS2-88
$IEEE_SET FP_CONTROL (Alpha and I64)\ vreeeennn.. SYS2-92
$IEEE_SET PRECISION _MODE (I64 Only) oo voeee e SYS2-95

$IEEE_SET ROUNDING MODE (I64Only) SYS2-97

$INIT_SYS_ALIGN_FAULT REPORT (Alpha and I64) SYS2-99
SINIT_VOL . .ottt e e e e e e e e SYS2-102
$IO_CLEANUP (Alphaand I64), SYS2-117
$IO_FASTPATH (Alpha and I64)t SYS2-118
$I0_FASTPATHW (Alpha and I64) oiuin... SYS2-120
$IO_PERFORM (Alpha and I64) SyS2-121
$IO_PERFORMW (Alpha and I64). SYS2-124
$IO_SETUP (Alpha and I64)ttt SYS2-125
BJOIN_RM . . .ottt e e SYS2-128
SJOIN_RMW . e SYS2-134
SLCKPAG . . .ot SYS2-135
$LCKPAG 64 (Alpha and I64) SYS2-138
SLKWSET . . .ot e SYS2-141
$LKWSET 64 (Alphaand I64).t SYS2-144
SMGBLSC . ..ot SYS2-148
$MGBLSC_64 (Alpha and I64).ttt SYS2-154
$MGBLSC_GPFN_64 (Alphaand I64), SYS2-164
SMOD_HOLDERottt e e SYS2-170
SMOD_IDENTottt e e e e e e SYS2-173
SMOUNT . . ot e e e SYS2-177
SMTACCESS . .ot SYS2-191
SNUMTIM . . .ot e e e e e e e SYS2-194
SNUMUTC . . . oottt e e e e e e SYS2-196
ENXTVOL . .ot SYS2-198
BOPEN . . .o SYS2-199
BPARSE . . o SYS2-200
SPARSE _ACL . . .ottt SYS2-201
$PERM_DIS_ALIGN_FAULT_REPORT (Alpha and 164) SYS2-204
$PERM_REPORT ALIGN_FAULT (Alpha and164).................. SYS2-205
$PERSONA_ASSUME (VAX Only). . ..o ovi i SYS2-207
$PERSONA_ASSUME (Alpha and I64)c........ SYS2-209
$PERSONA_CLONE (Alpha and 164) SYS2-211
$PERSONA_CREATE (VAX Only)ot SYS2-213
$PERSONA_CREATE (Alpha and I64) SYS2-215
$PERSONA_CREATE_EXTENSION (Alpha and 164) SYS2-220
$PERSONA _DELEGATE (Alpha and 164) SYS2-223
$PERSONA DELETE e SYS2-225
$PERSONA_DELETE_EXTENSION (Alpha and I64) SYS2-226
$PERSONA_EXTENSION_LOOKUP (Alpha and 164) SYS2-228
$PERSONA FIND (Alpha and I64), SYS2-230
$PERSONA_MODIFY (Alpha and I64) SYS2-234
$PERSONA_QUERY (Alpha and I64) SYS2-237
$PERSONA_RESERVE (Alpha and I64) SYS2-242
$PROCESS_AFFINITY (Alpha and I64) SYS2-244
$PROCESS_CAPABILITIES (Alpha and 164) SYS2-249
SPROCESS SCAN . . .ot e SYS2-254

BPURGWS . .o SYS2-269

$PURGE_WS (Alpha and I64) oottt SYS2-271
SPUT o et e e e SYS2-273
SPUTMSG . .« o o oottt e e e e e e e SYS2-274
SQIO et SYS2-282
SQIOW . . . oo e e e SYS2-288
SREAD . . . o oo et SYS2-289
SREADEFottt SYS2-290
$REGISTRY (Alpha and I64)o ottt SYS2-292
$REGISTRYW (Alpha and I64)t SYS2-317
SRELEASE . .. @\ttt e SYS2-318
$RELEASE_GALAXY_LOCK (Alpha Only)vovveeeenenn.. SYS2-319
$RELEASE_VP (VAX OnlY) . .« vt et e SYS2-321
SREMOVE . . . o vttt e e e e SYS2-322
$REM_HOLDERttt SYS2-323
SREM_IDENT . ..\ttt e e SYS2-325
SRENAMEottt e e e e e SYS2-327
SRESCHEDo ottt et e e e SYS2-328
$RESTORE_VP_EXCEPTION (VAX Only) . . .« vveeeee e SYS2-329
$RESTORE_VP_STATE (VAX Only)vvveeneeee e, SYS2-331
SRESUME . . .ottt e e e SYS2-333
SREVOKID ...\ttt et e SYS2-335
SREWIND . .ottt e e e SYS2-339
SRMSRUNDWN . .« o o oottt e SYS2-340
$RPCC_64 (Alpha and I64)t SYS2-342
$SAVE_VP_EXCEPTION (VAX ONly) . ..o ovneeeeeaeenenn. SYS2-343
$SCAN_INTRUSIONo o oot et e e SYS2-345
SSCHDWEK . . . ottt e e e e e e e SYS2-350
SSCHED ..o oottt e SYS2-353
SSEARCH . . ottt e SYS2-358
SSETAST . . o oot et e e SYS2-359
$SETCLUEVT . . .\ oo oottt e e SYS2-360
SSETDDIR . . . o o veeee e e e e e e e SYS2-363
SSETDFPROTo oottt e e e e e SYS2-365
SSETDTL . . . oottt e e e e e e e e e e SYS2-367
SSETDTIW . . oottt e e e e e e e e e SYS2-373
SSETEF . . . o oottt e e e SYS2-374
SSETEXV . . o oottt e SYS2-375
SSETFLT . . o o oottt e SYS2-377
SSETFLT 64 . . v oot e e e e e e e e SYS2-380
SSETIME . . . o o vt ee e e e e e e e e SYS2-383
SSETIMR . . . o oo ove e e e e e e e e e SYS2-385
SSETPRA . . . o ot e et e e e e e e SYS2-388
SSETPRI . .. oottt e e e SYS2-390
SSETPRN . . . o ottt et e e e SYS2-394
SSETPRT . . . o oottt SYS2-395
$SETPRT 64 (Alpha and I64)o, SYS2-398

vi

BSETPRYV . . ot SYS2-401

SSETRWMottt SYS2-405
SSETSHLYV . . . oot SYS2-407
BOE T ST . . . SYS2-409
$SETSTK_64 (Alpha and I64) SYS2-411
B E T S WM . . . SYS2-413
SSETUAL SYS2-415
$SETUP_AVOID PREEMPT SYS2-428
$SET_DEFAULT_TRANSttt SYS2-429
$SET_DEFAULT_TRANSW e SYS2-433
$SET DEVICE e SYS2-434
SSET DEVICEW e e e e e e e e SYS2-439
$SET_IMPLICIT_AFFINITY (Alphaand 164) SYS2-440
$SET_PROCESS_PROPERTIESW (Alpha and 164) SYS2-444
$SET RESOURCE_DOMAIN SYS2-449
$SET_RETURN_VALUE (Alpha and I64) SYS2-454
$SET_SECURITY\ttt e SYS2-456
$SET_SYSTEM_EVENT (Alphaand I164) SYS2-463
$SET_UNWIND_TABLE (I64 Only)t SYS2-466
$SHOW_INTRUSION e SYS2-469
SSIGNAL_ARRAY 64t e e e e e e e e e e e e SYS2-474
SSNDERR . . . SYS2-476
BSNDIBC SYS2-477
SSINDIBCW . . . SYS2-536
$SNDOPRo SYS2-537
BSPACE SYS2-551
$START_ALIGN_FAULT _REPORT (Alpha and I64) SYS2-552
$START _BRANCHot e SYS2-556
$START_BRANCHWo e SYS2-563
BSTART TRANS . .. e e e e e e SYS2-564
SSTART TRANSW . . . e e e e e e e e e SYS2-570
$STOP_ALIGN_FAULT REPORT (Alphaand 164) SYS2-571
$STOP_SYS_ALIGN_FAULT REPORT (Alpha and 164) SYS2-572
$SUBSYSTEMttt SYS2-573
BSUSPND . ..ot SYS2-575
SSYNCH . ..ottt SYS2-578
STIMCON ..ot SYS2-580
STRANS EVENT e e e e e e SYS2-582
STRANS EVENTW . . e e e e e e e e SYS2-587
BT RNLN DM . . . SYS2-588
STRUNCATE e e e e e e e e e e e e e e SYS2-595
$TSTCLUEVT e SYS2-596
SULKPAGttt e e e SYS2-598
$ULKPAG 64 (Alpha and I64), SYS2-600
SULWSET . .. SYS2-603
$ULWSET 64 (Alpha and I64)t SYS2-606
BUNWIND . .. e e e e e e e e e SYS2-609

SUPDSEC . ..ttt e SYS2-611

SUPDSECW . . .ottt e e e SYS2-616
$UPDSEC 64 (Alphaand I64)ttt SYS2-617
$UPDSEC_64W (Alphaand I64), SYS2-622
SVERIFY_PROXY . ..ottt e e SYS2-623
BWALT . .. SYS2-628
SWAITFR . . .o e e e SYS2-629
BWAKE . .o SYS2-631
SWELAND . . . e SYS2-633
SWELOR . . .o SYS2-635
SWRITE . . . SYS2-637

A Obsolete Services

Index

Tables
SYS2-—1

SYS2-2
SYS2-3

SYS2-4
SYS2-5
SYS2-6
SYS2-7
SYS2-8
SYS2-9
SYS2-10
SYS2-11
SYS2-12
SYS2-13
SYS2-14
SYS2-15

Postcondition When $GET _DEFAULT TRANS Completes

Successfully e SYS2-8
Region Summary Buffer Format SYS2-17
Format of the IEEE Floating-Point Control Register (Alpha and

164) . o SYS2-92
$JOIN_RM Option Flagso .. SYS2-128
Flags Used with $PROCESS_SCAN.t SYS2-263
Valid Function Codes SYS2-296
Item Code Summary SYS2-306
$SETDTI Operation Flag SYS2-367
$SETDTI Function Codesuniiiinn.. SYS2-369
$SET_DEFAULT_TRANS Option Flag. SYS2-429
CPU Time Limit Decision Table. SYS2-500
Working Set Decision Table SYS2-523
$START_BRANCH Option Flags SYS2-556
$START_TRANS Option Flagso oii i SYS2-564
Completion Semantics of the $TRANS_EVENT Service. SYS2-584

vii

Preface

Intended Audience

This manual is intended for system and application programmers who want to
call system services.

System Services Support for OpenVMS Alpha 64-bit Addressing

As of Version 7.0, the OpenVMS Alpha operating system provides support

for 64-bit virtual memory addresses. This support makes the 64-bit virtual
address space defined by the Alpha architecture available to the OpenVMS Alpha
operating system and to application programs. In the 64-bit virtual address
space, both process-private and system virtual address space extend beyond 2
GB. By using 64-bit address features, programmers can create images that map
and access data beyond the previous limits of 32-bit virtual addresses.

New OpenVMS system services are available, and many existing services have
been enhanced to manage 64-bit address space. The system services descriptions
in this manual indicate the services that accept 64-bit addresses. A list of the
OpenVMS system services that accept 64-bit addresses is available in the HP
OpenVMS Programming Concepts Manual.

The following section briefly describes how 64-bit addressing support affects
OpenVMS system services. For complete information about OpenVMS Alpha
64-bit addressing features, refer to the HP OpenVMS Programming Concepts
Manual.

64-Bit System Services Terminology

32-Bit System Service

A 32-bit system service only supports 32-bit addresses on any of its arguments
that specify addresses. If passed by value on OpenVMS Alpha, a 32-bit virtual
address is actually a 64-bit address that is sign-extended from 32 bits.

64-Bit Friendly Interface

A 64-bit friendly interface can be called with all 64-bit addresses. A 32-bit system
service interface is 64-bit friendly if, without a change in the interface, it needs
no modification to handle 64-bit addresses. The internal code that implements
the system service might need modification, but the system service interface will
not.

64-Bit System Service

A 64-bit system service is defined to accept all address arguments as 64-bit
addresses (not necessarily 32-bit sign-extended values). A 64-bit system service
also uses the entire 64 bits of all virtual addresses passed to it.

Use of the _64 Suffix

The 64-bit system services include the _64 suffix for services that
accept 64-bit addresses by reference. For promoted services, this suffix
distinguishes the 64-bit capable version from its 32-bit counterpart. For
new services, it is a visible reminder that a 64-bit-wide address cell will
be read/written.

Sign-Extension Checking

The OpenVMS system services that do not support 64-bit addresses and all user-
written system services that are not explicitly enhanced to accept 64-bit addresses
receive sign-extension checking. Any argument passed to these services that is
not properly sign-extended causes the error status SS$_ARG_GTR_32_BITS to be
returned.

Related Documents

The HP OpenVMS Programming Concepts Manual contains useful information
for anyone who wants to call system services.

High-level language programmers can find additional information about calling
system services in the language reference manual and language user’s guide
provided with the OpenVMS language.

Application developers using XA-compliant or other resource managers should
refer to the HP OpenVMS Programming Concepts Manual.

The following documents might also be useful:

e HP OpenVMS Programming Concepts Manual

* Guide to OpenVMS File Applications

e HP OpenVMS Guide to System Security

e DECnet-Plus for OpenVMS Introduction and User’s Guide

e OpenVMS Record Management Services Reference Manual

e HP OpenVMS 1/0 User’s Reference Manual

e HP OpenVMS Guide to Upgrading Privileged-Code Applications

For additional information about HP OpenVMS products and services, visit the
following World Wide Web address:

http://www.hp.com/products/openvms

Reader’s Comments

HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZK0O3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation

For information about how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

A horizontal ellipsis in examples indicates one of the following
possibilities:

e Additional optional arguments in a statement have been
omitted.

¢ The preceding item or items can be repeated one or more
times.

e Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In the HP OpenVMS System Services Reference Manual,

brackets generally indicate default arguments. If an argument
is optional, it is specified as such in the argument text.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{} In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold type Bold type represents the introduction of a new term. It also
represents the name of an argument, an attribute, or a reason.

italic type Italic type indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device

type).

Xi

Xii

UPPERCASE TYPE

Example

numbers

Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

This typeface indicates code examples, command examples, and
interactive screen displays. In text, this type also identifies
URLs, UNIX commands and pathnames, PC-based commands
and folders, and certain elements of the C programming
language.

A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

System Service Descriptions

System services provide basic operating system functions, interprocess
communication, and various control resources.

Condition values returned by system services indicate not only whether the
service completed successfully, but can also provide other information. While
the usual condition value indicating success is SS$_NORMAL, other values are
also defined. For example, the condition value SS$_BUFFEROVERF, which

is returned when a character string returned by a service is longer than the
buffer provided to receive it, is a success code, but it also provides additional
information.

Warning returns and some error returns indicate that the service might have
performed some, but not all, of the requested function.

The particular condition values that each service can return are described in the
Condition Values Returned section of each individual service description.

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO.

System Service Descriptions

$GETUTC

$GETUTC
Get UTC Time

Returns the current time in 128-bit UTC format.

On Alpha and 164 systems, this service accepts 64-bit addresses.
Format

SYS$GETUTC utcadr
C Prototype

int sys$getutc (unsigned int *utcadr [4]);
Arguments

utcadr

OpenVMS usage: coordinated universal time

type: utc_date_time

access: write only

mechanism: by 32- or 64-bit reference (Alpha and 164); by 32-bit reference

Description

(VAX)
The 128-bit time value to be returned.

The Get UTC Time service returns the current system time in 128-bit UTC
format. System time is updated every 10 milliseconds.

On Alpha and 164 systems, the frequency at which system time is updated varies,
depending on the clock frequency of the Alpha or 164 processor.

Required Access or Privileges
None

Required Quota
None

Related Services
$ASCUTC, $BINUTC, $NUMUTC, $TIMCON

Condition Values Returned

SS$ NORMAL The service completed successfully.

SS$_ACCVIO The argument was not accessible for write in the
mode of the caller.

SYS2-3

System Service Descriptions
$GET_ALIGN_FAULT_DATA (Alpha and 164)

SGET_ALIGN_FAULT_DATA (Alpha and 164)
Get Alignment Fault Data

On Alpha and 164 systems, obtains data from the user image alignment fault
buffer if buffered user alignment fault data reporting has been enabled.

This service accepts 64-bit addresses.

Format
SYS$GET_ALIGN_FAULT _DATA buffer ,buffer_size ,return_size

C Prototype

int sys$get_align_fault_data (void *buffer, int buffer_size, int *return_size);

Arguments
buffer
OpenVMS usage: address
type: longword (unsigned)
access: read/write
mechanism: by 32- or 64-bit reference

The user buffer in which the alignment fault data is to be stored. The buffer is
the 32- or 64-bit address of this user buffer.

buffer_size

OpenVMS usage: byte count

type: longword (signed)
access: read

mechanism: by value

The size, in bytes, of the buffer specified by the buffer argument.

return_size

OpenVMS usage: longword_signed

type: longword (signed)

access: write

mechanism: by 32- or 64-bit reference

The amount of data, in bytes, stored in the buffer. The return_size argument is
the 32- or 64-bit address of a naturally aligned longword into which the service
returns the size of the buffer. The return_size is set to 0 if there is no data in
the buffer.

Description

The Get Alignment Fault Data service obtains data from the user image
alignment fault buffer if buffered user alignment fault data reporting has
been enabled.

When buffered user alignment fault data reporting is enabled, the operating
system writes each alignment fault into a user-defined buffer. The user must poll
this buffer periodically to read the data.

SYS2-4

System Service Descriptions
SGET_ALIGN_FAULT_DATA (Alpha and 164)

The user must call the $START ALIGN_FAULT REPORT service to enable
buffered user alignment fault data reporting.

For more information about buffered user alignment fault data reporting, see the
$START_ALIGN_FAULT_REPORT system service.

Required Access or Privileges

None

Required Quota
None

Related Services

$GET_SYS_ALIGN_FAULT DATA, $INIT SYS_ALIGN_FAULT REPORT,
$PERM_DIS_ALIGN_FAULT REPORT, $PERM_REPORT_ALIGN_FAULT,
$START ALIGN_FAULT REPORT, $STOP_ALIGN_FAULT REPORT, $STOP_
SYS_ALIGN_FAULT_REPORT

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$_ACCVIO The buffer named in the buffer argument is not
accessible.
SS$_AFR_NOT ENABLED Alignment fault reporting has not been enabled.
SS$ BADPARAM The buffer size is smaller than the minimum
defined by the AFR$K_USER_LENGTH
symbol.

SYS2-5

System Service Descriptions
$GET_ARITH_EXCEPTION (Alpha only)

$SGET_ARITH_EXCEPTION (Alpha only)
Get Arithmetic Exception Information

Format

C Prototype

Arguments

Description

SYS2-6

On Alpha systems, returns information about the exception context for a given
arithmetic exception. There are two forms the signal argument vectors: one for
use with 32-bit addresses and one for use with 64-bit addresses.

For more information, see the section “Signal Argument Vector” in the HP
OpenVMS Calling Standard.

SYS$GET_ARITH_EXCEPTION sigarg ,mcharg ,buffer

int sys$get_arith_exception (void *sigarg, void *mcharg, void *buffer);

sigarg

OpenVMS usage: signal array

type: vector_longword_signed
access: read only

mechanism: by reference

Address of the signal array for the given arithmetic exception.

mcharg

OpenVMS usage: mech array

type: vector_quadword_unsigned
access: read only

mechanism: by reference

Address of the mechanism array for the given arithmetic exception.

buffer

OpenVMS usage: vector_quadword

type: vector_quadword_unsigned
access: write only

mechanism: by descriptor

Four-quadword buffer to receive additional exception context. The buffer
argument is the address of a descriptor that points to this buffer.

The Get Arithmetic Exception Information service returns, to the buffer specified
by the buffer argument, the following information for a given arithmetic
exception in an array of quadwords:

e First quadword, the PC of the triggering instruction in the trap shadow
e Second quadword, a copy of the triggering instruction
e Third quadword, the exception summary

¢ Fourth quadword, the register write mask

Required Access or Privilege
None

Required Quota
None

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO
SS$ BADBUFLEN

System Service Descriptions
$GET_ARITH_EXCEPTION (Alpha only)

The service completed successfully.
The specified buffer cannot be written.

The specified buffer length is invalid or out of
range.

SYS2-7

System Service Descriptions
$GET_DEFAULT_TRANS

SGET DEFAULT TRANS
Get Default Transaction

Returns the default transaction of the calling process.

Format
SYS$GET DEFAULT TRANS tid

C Prototype
int sys$get_default_trans (unsigned int tid [4]);

Arguments
tid
OpenVMS usage: trans_id
type: octaword (unsigned)
access: write only
mechanism: by reference

Address of an octaword in which the identifier (TID) of the default transaction of
the calling process is returned.

Description

A precondition for the successful completion of $GET_DEFAULT_TRANS is that
the calling process must have a default transaction.

$GET_DEFAULT_TRANS may fail for various reasons, including:
¢ The precondition was not met.
e The default transaction was being changed at the time of the call.

The postcondition on successful completion of $GET_DEFAULT TRANS is
described in Table SYS2-1:

Table SYS2-1 Postcondition When $GET_DEFAULT_TRANS Completes
Successfully

Postcondition Meaning

The identifier of the default The identifier (TID) of the default
transaction of the calling process transaction of the calling process is
is returned. returned in the tid argument.

Required Privileges
None

Required Quotas
None

SYS2-8

System Service Descriptions
$GET_DEFAULT_TRANS

Related Services

$ABORT_TRANS, $ABORT _TRANSW, $ACK_EVENT, $ADD_BRANCH, $ADD_
BRANCHW, $CREATE_UID, $DECLARE_RM, $DECLARE_RMW, $END_
BRANCH, $END_BRANCHW, $END_TRANS, $END_TRANSW, $FORGET_RM,
$FORGET_RMW, $GETDTI, $GETDTIW, $JOIN_RM, $JOIN_RMW, $SETDTI,
$SETDTIW, $SET _DEFAULT _TRANS, $SET DEFAULT TRANSW, $START _
BRANCH, $START BRANCHW, $START TRANS, $START TRANSW, $TRANS_
EVENT, $TRANS_EVENTW

Condition Values Returned

SS$ NORMAL The request was successful.

SS$_INSFARGS A required argument was missing.

SS$_INSFMEM There was insufficient system dynamic memory
for the operation.

SS$_NOCURTID The calling process did not have a default
transaction.

SS$_WRONGSTATE The default transaction was being changed at the

time of the call.

SYS2-9

System Service Descriptions
$GET_GALAXY_LOCK_INFO (Alpha Only)

$SGET_GALAXY_LOCK_INFO (Alpha Only)
Get OpenVMS Galaxy Lock Information

Returns "interesting" fields from the specified lock.

Note that this system service is supported only in an OpenVMS Alpha Galaxy
environment. For more information about programming with OpenVMS Galaxy
system services, refer to the HP OpenVMS Alpha Partitioning and Galaxy Guide.

Format

SYS$GET_GALAXY_LOCK_INFO handle ,name ,timeout ,size ,ipl ,rank ,flags
[,name_length]

C Prototype

int sys$get_galaxy_lock_info (unsigned __int64 lock_handle, char *name, unsigned
int *timeout, unsigned int *size, unsigned int ~ipl,
unsigned int *rank, unsigned short int *flags unsigned
short int *name_length);

Arguments
handle
OpenVMS usage: handle for the galaxy lock
type: quadword (unsigned)
access: read
mechanism: input by value

The 64-bit lock handle that identifies the lock on which to return information.
This value is returned by SYS$CREATE_GALAXY_LOCK.

name

OpenVMS usage: address

type: zero-terminated string
access: write

mechanism: output by reference

Pointer to a buffer. This buffer must be large enough to receive the name of the
lock. Locks names are zero-terminated strings with a maximum size of 16 bytes.

timeout

OpenVMS usage: address

type: longword (unsigned)
access: write

mechanism: output by reference

Pointer to a longword. The value returned is the timeout value of the lock.

size

OpenVMS usage: address

type: longword (unsigned)
access: write

mechanism: output by reference

Pointer to a longword. The value returned is the size of the lock in bytes.

SYS2-10

Description

System Service Descriptions
$GET_GALAXY_LOCK_INFO (Alpha Only)

ipl

OpenVMS usage: address

type: longword (unsigned)
access: write

mechanism: output by reference

Pointer to a longword. The value returned is the IPL of the lock.

rank

OpenVMS usage: address

type: longword (unsigned)
access: write

mechanism: output by reference

Pointer to a longword. The value returned is the rank of the lock.

flags

OpenVMS usage: address

type: word (unsigned)
access: write

mechanism: output by reference

Pointer to a word. The value returned is the word mask of lock flags.

name_length
OpenVMS usage: address

type: word (unsigned)
access: write
mechanism: output by reference

Length of the string returned in the name argument.

This service returns all "interesting" fields from the specified lock. See the
$CREATE_GALAXY_LOCK service for detailed information regarding these
values.

Required Access or Privileges
Read access to lock.

Required Quota
None

Related Services

$ACQUIRE_GALAXY_LOCK, $CREATE_GALAXY_LOCK,
$CREATE_GALAXY _LOCK_TABLE, $DELETE_GALAXY_LOCK,
$DELETE_GALAXY_LOCK_TABLE, $GET_GALAXY_LOCK_SIZE,
$RELEASE_GALAXY_LOCK

Condition Values Returned

SS$_NORMAL Normal completion.
SS$_IVLOCKID Invalid lock id.
SS$_IVLOCKTBL Invalid lock table.

SYS2-11

System Service Descriptions
$GET_GALAXY_LOCK_SIZE (Alpha Only)

$SGET_GALAXY_LOCK_SIZE (Alpha Only)
Get OpenVMS Galaxy Lock Size

Returns the minimum and maximum size of an OpenVMS Galaxy lock.

Note that this system service is supported only in an OpenVMS Alpha Galaxy
environment.

For more information about programming with OpenVMS Galaxy system services,
refer to the HP OpenVMS Alpha Partitioning and Galaxy Guide.

Format
SYS$GET_GALAXY_LOCK_SIZE min_size ,max_size

C Prototype

int sys$get_galaxy_lock_size (unsigned int *min_size, unsigned int *max_size);

Arguments
min_size
OpenVMS usage: address
type: longword (unsigned)
access: write
mechanism: output by reference

Pointer to a longword. The value returned is minimum legal size of a galaxy lock

structure.

max_size

OpenVMS usage: address

type: longword (unsigned)
access: write

mechanism: output by reference

Pointer to a longword. The value returned is maximum legal size of a galaxy lock
structure.

Description

This service returns the minimum and maximum size of an OpenVMS Galaxy
lock. If a lock is created with the maximum size, the locking services will record
acquire and release information in the lock.

The lock sizes can be used to determine the value of the section_size parameter
to the $CREATE _GALAXY LOCK TABLE service.

Required Access or Privileges
Read access to lock.

Required Quota
None

SYS2-12

System Service Descriptions
$GET_GALAXY_LOCK_SIZE (Alpha Only)

Related Services

$ACQUIRE_GALAXY_LOCK, $CREATE_GALAXY_LOCK,
$CREATE_GALAXY LOCK _TABLE, $DELETE_GALAXY_LOCK,
$DELETE_GALAXY_LOCK_TABLE, $GET_GALAXY_ LOCK_INFO,
$RELEASE_GALAXY_LOCK

Condition Values Returned

SS$_NORMAL Normal completion.

SYS2-13

System Service Descriptions
$GET_REGION_INFO (Alpha and 164)

$GET_REGION_INFO (Alpha and 164)
Get Information About a Specified Virtual Region

On Alpha and 164 systems, gets information about a specified virtual region.

This service accepts 64-bit addresses.

Format

SYS$GET_REGION_INFO function_code ,region_id_64 ,start_va_64 ,nullarg
,buffer_length ,buffer_address_64 ,return_length_64

C Prototype

int sys$get_region_info (unsigned int function_code, struct _generic_64
*region_id_64, void *start_va_64, void *reserved, unsigned
int buffer_length, void *buffer_address_64, unsigned int
*return_length_64);

Arguments

function_code
OpenVMS usage: function code

type: longword (unsigned)
access: read only
mechanism: by value

Function code specifying how the information you are requesting should be looked
up. All function codes return region summary information in the return buffer in
the format of the Region Summary Buffer. The Region Summary Buffer format is
shown in the table in the buffer_address_64 argument.

If less buffer space is specified than the length of the Region Summary Buffer,
only the amount of information requested is returned. If more buffer space is
specified than the length of the Region Summary Buffer, the service will fill in the
buffer. The return length will reflect the amount of useful information written to
the buffer, the size of the Region Summary Buffer.

The file VADEF.H in SYS$STARLET C.TLB and the $VADEF macro in
STARLET.MLB define a symbolic name for each function code.

The following function codes are defined:

Symbolic Name Description

VA$ REGSUM _BY_ID Return the region summary information
for the region whose ID is specified in the
region_id_64 argument.

VA$ REGSUM_BY_VA Return the region summary information for
the region that contains the virtual address
specified in the start_va_64 argument.

SYS2-14

System Service Descriptions
$GET_REGION_INFO (Alpha and 164)

Symbolic Name Description

VA$ NEXT REGSUM_BY VA Return the region summary information for
the region containing the starting address. If
the starting address is not in a region, return
the region summary information for the next
region with a starting address higher than the
specified address.

Note: For the VA$ NEXT REGSUM BY VA
function, OpenVMS checks for a start_va_64
argument in the inaccessible address range in
P2 space. If it finds one, OpenVMS adjusts
the address to account for the discontinuity.
For more information about the layout of

the 64-bit virtual address space, see the HP
OpenVMS Programming Concepts Manual.

This function code can be used for wildcard
operations. See the description of the
start_va_64 argument for information on
how to program a wildcard operation on

regions.
region_id_64
OpenVMS usage: region identifier
type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

The region ID associated with the region about which information is requested.
This argument is read only if the function code VA$_REGSUM_BY_ID is specified.

The file VADEF.H in SYS$STARLET C.TLB and the $VADEF macro in
STARLET.MLB define a symbolic name for each of the three default regions
in PO, P1, and P2 space.

The following region IDs are defined:

Symbol Region

VA$C_PO Program region

VA$C _P1 Control region
VA$C_P2 64-bit program region

Other region IDs, as returned by the $CREATE_REGION_64 service, can be
specified.

start_va_64

OpenVMS usage: input address
type: quadword address
access: read only
mechanism: by value

Virtual address associated with region about which information is requested. This
argument is read only if the function_code argument is VA$_REGSUM_BY_VA
or VA$_NEXT_REGSUM_BY_VA.

SYS2-15

System Service Descriptions
$GET_REGION_INFO (Alpha and 164)

SYS2-16

If the function_code argument is VA$_REGSUM_BY_VA, this argument is a
virtual address within the region about which you are requesting information.

To perform a wildcard search on all regions, specify VA$_NEXT REGSUM_BY_
VA as the function code and begin with the start_va_64 argument specified as
-1. For subsequent calls, specify start_va_64 as the sum of the previous region’s
start address and length. Call the $GET_REGION_INFO service in a loop until
the condition SS$_NOMOREREG is returned.

Note

Before performing the lookup function, OpenVMS sign-extends the 64-bit
starting address so that it represents a properly formed virtual address
for the CPU.

nullarg

OpenVMS usage: null_arg

type: longword (unsigned)
access: read only
mechanism: by value

Placeholding argument reserved to HP.

buffer_length
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Length of the buffer into which information is returned.

buffer_address_64
OpenVMS usage: varying_arg

type: unspecified
access: write only
mechanism: by 32- or 64-bit reference

The 32- or 64-bit virtual address of a quadword-aligned buffer into which to
return information if the buffer_length argument is nonzero.

This argument is ignored if the buffer_length argument is zero.

Table SYS2-2 shows the format of the Region Summary Buffer:

System Service Descriptions
$GET_REGION_INFO (Alpha and 164)

Table SYS2-2 Region Summary Buffer Format
Field
Field Size Offset
Field name Meaning (Bytes) (Decimal)
VA$L_FLAGS Flags used when region was 4 8
created
VA$L REGION PROTECT Create and owner mode of region 4 12
VA$Q_REGION_ID Region identifier 8 0
VA$PQ_START VA Starting (lowest) virtual address 8 16
of region
VA$Q_REGION_SIZE Total length of region 8 24
VA$PQ FIRST FREE_VA First free virtual address in 8 32
region
VA$C_REGSUM_LENGTH Length of Region Summary Buffer constant 40

Description

The file VADEF.H in SYS$STARLET C.TLB and the $VADEF MACRO in
STARLET.MLB define the REGSUM structure.

return_length_64
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

The 32- or 64-bit virtual address of a naturally aligned longword into which the
service returns the length of the information in bytes.

The Get Information About a Specified Virtual Region service is a kernel mode
service that can be called from any mode. This service gets the requested
information about the specified region or the next region in a wildcard search.

If the returned value of this service is not a successful condition value, a value
cannot be returned in the memory locations pointed to by the buffer_address_64
or return_length_64 arguments.

Required Privileges
None

Required Quota
None

Related Services
$CREATE_REGION_64, $DELETE_REGION_64

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The buffer_address_64 argument or the
return_length_64 argument cannot be written
by the caller.

SYS2-17

System Service Descriptions
$GET_REGION_INFO (Alpha and 164)

SS$ BADPARAM Unrecognized function code.

SS$_IVREGID Invalid region ID specified in conjunction with
the VA$_ REGSUM_BY ID function code.

SS$_NOMOREREG No region at a higher address than specified in

the start_va_64 argument, which was specified
in conjunction with the wildcard function code
VA$_NEXT_REGSUM_BY_VA.

SS$_PAGNOTINREG The value specified in the start_va_64
argument is not within a region and was

specified in conjunction with the function code
VA$_REGSUM_BY_VA.

SYS2-18

System Service Descriptions
$GET_SECURITY

$GET_SECURITY
Get Security Characteristics

Retrieves the security characteristics of an object.

Format

SYS$GET_SECURITY [clsnam] ,[objnam] ,[objhan] ,[flags] ,[itmlst] ,[contxt]
,[acmode]

C Prototype

int sys$get_security (void *clsnam, void *objnam, unsigned int *objhan, unsigned int
flags, void *itmlst, unsigned int *contxt, unsigned int *acmode);

Arguments
clsnam
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

Name of the object class. The clsnam argument is the address of a descriptor
pointing to a string containing the name of the object class.

The following is a list of protected object class names:

CAPABILITY
COMMON_EVENT_CLUSTER
DEVICE

FILE
GLXSYS_GLOBAL_SECTION
GLXGRP_GLOBAL_SECTION
GROUP_GLOBAL_SECTION
ICC_ASSOCIATION
LOGICAL_NAME_TABLE
QUEUE
RESOURCE_DOMAIN
SECURITY_CLASS
SYSTEM_GLOBAL_SECTION

VOLUME
objnam
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

Name of the protected object whose associated security profile is going to be
retrieved. The objnam argument is the address of a descriptor pointing to a
string containing the name of the protected object.

SYS2-19

System Service Descriptions
$GET_SECURITY

SYS2-20

The format of an object name is class specific. The following table lists object
names and describes their formats:

Object Class Object Name Format
CAPABILITY A character string. Currently, the only
capability object is VECTOR.

COMMON_EVENT _CLUSTER Name of the event flag cluster, as defined in
the Associate Common Event Flag Cluster
($ASCEFC) system service.

DEVICE Standard device specification, described in the
OpenVMS User’s Manual.
FILE Standard file specification, described in the

OpenVMS User’s Manual.

GROUP_GLOBAL_SECTION Section name, as defined in the Create and Map
Section (SCRMPSC) system service.

ICC_ASSOCIATION ICC security object name node::association_
name. The special node name, ICC$::, refers to
entries in the clusterwide registry. For registry
entries, the Access Access Type does not apply.

LOGICAL_NAME_TABLE Table name, as defined in the Create Logical
Name Table ($CRELNT) system service.

QUEUE Standard queue name, as described in the Send
to Job Controller ($SNDJBC) system service.

RESOURCE_DOMAIN An identifier or octal string enclosed in
brackets.

SECURITY_CLASS Any class name shown in column 1, or a

class name followed by a period (.) and the
template name. Use the DCL command SHOW
SECURITY to display possible template names.

SYSTEM_GLOBAL_SECTION Section name, as defined in the Create and Map
Section (SCRMPSC) system service.

VOLUME Volume name or name of the device on which
the volume is mounted.

objhan

OpenVMS usage: object_handle

type: longword (unsigned)
access: read only
mechanism: by reference

Data structure identifying the object whose associated characteristics are going
to be retrieved. The objhan argument is an address of a longword containing
the object handle. You can use the objhan argument as an alternative to the
objnam argument; for example, channel number clearly specifies the file open on
the channel and can serve as an object handle.

The following table shows the format of the object classes:

System Service Descriptions
$GET_SECURITY

Object Class Object Handle Format
COMMON_EVENT CLUSTER Event flag number
DEVICE Channel number
FILE Channel number
RESOURCE_DOMAIN Resource domain identifier
VOLUME Channel number
flags

OpenVMS usage: flags

type: mask_longword

access: read only

mechanism: by value

Mask specifying processing options. The flags argument is a longword bit vector
wherein a bit, when set, specifies the processing option. The flags argument
requires the contxt argument.

The following table describes each flag:

Symbolic Name Description

0SS$M_RELCTX Release the context structure at the completion of this
request.

OSS$M_WLOCK Maintain a write lock on the security profile at the

completion of this request. $GET_SECURITY ignores
the flag if the context has already been established.

These symbolic names are defined in the $OSSDEF macro. You construct the
flags argument by specifying the symbolic names of each flag.

itmist

OpenVMS usage: item_list_3

type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying which information about the process or processes is to be
returned. The itmlst argument is the address of a list of item descriptors, each of
which describes an item of information. The list of item descriptors is terminated
by a longword of 0.

With the item list, the user retrieves the protected object’s characteristics. The
user defines which security characteristics to retrieve. If this argument is not
present, only the flags argument is processed. Without the itmlst argument, you
can only manipulate the security profile lock or release contxt resources.

The following diagram depicts a single item descriptor:

SYS2-21

System Service Descriptions
$GET_SECURITY

SYS2-22

31 15 0

Item code Buffer length

Buffer address

Return length address

ZK-5186A-GE
The following table describes the item descriptor fields:
Descriptor Field Definition
Buffer length A word containing an integer specifying the length

(in bytes) of the buffer in which $GET_SECURITY
is to write the information. The length of the buffer
needed depends on the item code specified in the
item code field of the item descriptor. If the value
of buffer length is too small, $GET_SECURITY
truncates the data.

Item code A word containing a symbolic code specifying the
item of information that $GET SECURITY is to
return. The $OSSDEF macro defines these codes.
A description of each item code is given in the Item
Codes section.

Buffer address A longword containing the address of the buffer in
which $GET SECURITY is to write the information.
Return length address A longword containing the address of a word in

which $GET_SECURITY writes the length (in
bytes) of the information it actually returns.

contxt

OpenVMS usage: context

type: longword (unsigned)
access: modify

mechanism: by reference

Value used to maintain the processing context when dealing with a single
protected object across multiple $GET_SECURITY/$SET_SECURITY calls.
Whenever the context value is nonzero, the class name, object name, or object
handle arguments are disregarded. An input value of 0 indicates that a new
context should be established.

Because an active context block consumes process memory, be sure to release the
context block by setting the RELCTX flag when the profile processing is complete.
$GET_SECURITY sets the context argument to 0 once the context is released.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by reference

Access mode to be used in the object protection check. The acmode argument is
the address of a longword containing the access mode. The acmode argument

Item Codes

System Service Descriptions
$GET_SECURITY

defaults to kernel mode; however, the system compares acmode with the caller’s
access mode and uses the least privileged mode. The access modes are defined
in the system macro $PSLDEF library. HP recommends that this argument be

omitted (passed as zero).

The following table provides a summary of item codes that are valid in an item
descriptor in the itmlst argument. Complete descriptions of each item code are

provided after the table.

Item Identifier

Description

0SS$_ACCESS_NAMES
0SS$_ACCESS NAMES LENGTH

0SS$_ACL_FIND_ENTRY
0SS$_ACL_FIND_NEXT
0SS$_ACL_FIND_TYPE
0SS$_ACL_GRANT_ACE

0SS$_ACL_LENGTH
0SS$_ACL_POSITION_BOTTOM
0SS$_ACL_POSITION_TOP

0SS$_ACL_READ
0SS$_ACL_READ_ENTRY
0SS$_CLASS NAME
0SS$_FIRST TEMPLATE

OSS$_NEXT_OBJECT
0SS$_NEXT TEMPLATE
0SS$_OBJECT _NAME
OSS$_OWNER

0SS$_PROTECTION

Returns access bitname translation table
for the class.

Returns the size (in bytes) of the access
bitname translation table.

Locates an access control entry (ACE).
Positions to the next ACE.
Locates an ACE of specified type.

Locates an ACE that either grants or
denies access.

Returns the length of the access control list

(ACL).

Sets a marker that points to the end of the
ACL.

Sets a marker that points to the beginning
of the ACL.

Reads the entire ACL.
Reads an ACE.
Returns the full object class name.

Returns the name of the first template
profile of a Security_Class object.

Returns the name of the next Security_
Class object.

Returns the name of the next template
profile of a Security_Class object.

Returns the name of the object. The FILE
class does not return an object name.

Returns the UIC or general identifier of
the object’s owner.

Returns the protection code of the object.

0SS$_ACCESS_NAMES

Returns the access name translation table in the buffer pointed to by the buffer

address field of the item descriptor.

SYS2-23

System Service Descriptions
$GET_SECURITY

SYS2-24

The access name translation table is a 32-quadword vector followed by a variable
section containing the access names. Each bit in the vector represents a single
access type. The contents of the quadword is a string descriptor that corresponds
to the ASCII bitname string. Undefined access types have zero-length names.
The return length, if present, returns the length of the table.

0SS$_ACCESS_NAMES_LENGTH
Returns the length of the access name translation table.

0SS$_ACL_FIND_ENTRY

Locates an ACE pointed to by the buffer address. OSS$_ACL_FIND_ENTRY
sets the position within the ACL for succeeding ACL operations; for example,
for a deletion or modification of the ACE. If the buffer address is 0, it returns
SS$_ACCVIO.

OSS$_ACL_FIND_NEXT
Advances the current position to the next ACE in the ACL.

OSS$_ACL_FIND_TYPE

Returns an ACE of a particular type if there is one in the buffer pointed to by
the buffer address. OSS$_ACL_FIND_TYPE sets the position within the ACL for
succeeding ACL operations. If the buffer address is 0, it returns SS$_ACCVIO.

0OSS$_ACL_GRANT_ACE

Returns the ACE in the object’s ACL that grants or denies the user access to that
object. OSS$_ACL_GRANT_ACE returns the ACE found in the buffer pointed to
by the buffer address.

0SS$_ACL_LENGTH
Returns the size (in bytes) of the object’s ACL. The buffer address field points to a
longword that receives the size.

OSS$_ACL_POSITION_BOTTOM
Sets the ACL position to point to the bottom of the ACL.

0OSS$_ACL_POSITION_TOP
Sets the ACL position to point to the top of the ACL.

0OSS$_ACL_READ
Returns the portion of the object’s ACL to the buffer pointed to by the buffer
address.

0OSS$_ACL_READ_ENTRY
Reads the ACE pointed to by the buffer address.

0SS$_CLASS_NAME

Returns the full object class name.

0SS$_FIRST_TEMPLATE

Returns the name of the first template profile for the object named in the objnam
argument. This item code is valid only for security class objects. If the clsnam is
not Security_Class, SS$_INVCLSITM is returned.

0SS$_NEXT_OBJECT

Returns the name of the next object. A return length of 0 indicates the end of the
list. This item code is valid only for security class objects. If the clsnam is not
Security_Class, SS$_INVCLSITM is returned.

Description

System Service Descriptions
$GET_SECURITY

0OSS$_NEXT_TEMPLATE
Returns the name of the next template. This item code allows you to step through
a list of an object’s templates. A return length of 0 indicates the end of the list.

This item code is valid only for security class objects. If the clsnam is not
Security_Class, SS$_INVCLSITM is returned.

0OSS_OBJECT_NAME
Returns the name of the object.

0SS$_OWNER

Returns the owner of the object.

0SS$_PROTECTION

Returns the protection code of the object.

The Get Security service returns information about security characteristics

of a selected object. Security characteristics include such information as the
protection code, the owner, and the access control list (ACL). The security
management services, $GET_SECURITY and $SET_SECURITY, maintain a
single master copy of a profile for every security object in an OpenVMS Cluster
environment. They also ensure that only one process at a time can modify an
object’s security profile.

There are different ways of identifying which protected object $GET_SECURITY
should process:

e Whenever the contxt argument has a nonzero value, $§GET_SECURITY uses
the context to select the object and ignores the class name, object name, and
object handle.

e With some types of objects, such as a file or a device, it is possible to select an
object on the basis of its objhan and clsnam values.

e If neither a nonzero contxt argument nor an objhan argument is provided,
$GET_SECURITY uses an object’s class name (clsnam) and object name
(objnam) to select the object.

When you call $GET_SECURITY, the service selects the specified protected object
and fetches a local copy of the object’s security profile.

The context for a security management operation can be established through
either $GET_SECURITY or $SET_SECURITY. Whenever the context is set

by one service, the other service can use it, provided the necessary locks are
being held. If you intend to modify the profile, you must set the write lock flag
(0OSS$M_WLOCK) when you establish the context.

There are many situations in which the contxt argument is essential. By
establishing a context for an ACL operation, for example, a caller can retain

an ACL position across calls to $GET_SECURITY so that a set of ACEs can be
read and modified sequentially. A security context is released by a call to $SET_
SECURITY or $GET_SECURITY that sets the OSS$M_RELCTX flag. Once the
context is released, the user-supplied context longword is set to 0.

Required Access or Privileges
Read or control access to the object is required.

SYS2-25

System Service Descriptions
$GET_SECURITY

Required Quota
None

Related Services
$SET SECURITY

Condition Values Returned

SYS2-26

SS$ NORMAL
SS$_ACCVIO

SS$ BADPARAM

SS$_INSFARG

SS$ INVCLSITM

SS$ NOCLASS
SS$_OBJLOCKED

The service completed successfully.

The parameter cannot be read and the buffer
cannot be written.

You specified an invalid object, attribute code, or
item size.

The clsnam and objnam arguments are not
specified, the clsnam and objhan arguments
are not specified, or the contxt argument is not
specified.

The item code that you specified is not supported
for the class.

The named security class does not exist.
The selected object is currently write locked.

System Service Descriptions
$GET_SYS_ALIGN_FAULT_DATA (Alpha and 164)

$GET_SYS_ALIGN_FAULT_DATA (Alpha and 164)
Get System Alignment Fault Data

On Alpha and 164 systems, obtains data from the system alignment fault buffer if
buffered system alignment fault data reporting has been enabled.

This service accepts 64-bit addresses.

Format
SYS$GET _SYS_ALIGN_FAULT_DATA buffer ,buffer_size ,return_size

C Prototype

int sys$get_sys_align_fault_data (void *buffer, int buffer_size, int *return_size);

Arguments
buffer
OpenVMS usage: address
type: longword (unsigned)
access: read/write
mechanism: by 32- or 64-bit reference
The user buffer in which the alignment fault data is to be stored. The buffer
argument is the 32- or 64-bit virtual address of this buffer.
buffer_size
OpenVMS usage: byte count
type: longword (signed)
access: read
mechanism: by value
The size, in bytes, of the buffer specified by the buffer argument.
return_size
OpenVMS usage: longword_signed
type: longword (signed)
access: write
mechanism: by 32- or 64-bit reference
The amount of data, in bytes, stored in the buffer. The return_size argument is
the 32- or 64-bit virtual address of a naturally aligned longword into which the
service returns the amount of data, in bytes, stored in the buffer. The return_
size argument is set to 0 if there is no data in the buffer.
Description

The Get System Alignment Fault Data service obtains data from the system
alignment fault buffer if buffered system alignment fault data reporting has been
enabled.

When buffered system alignment fault data reporting is enabled, the operating
system writes each alignment fault into a system-allocated buffer. The user must
poll this buffer periodically to read the data.

SYS2-27

System Service Descriptions
$GET_SYS_ALIGN_FAULT_DATA (Alpha and 164)

The user must call the $INIT SYS_ALIGN_FAULT REPORT service to enable
buffered system alignment fault data reporting. For more information, see the
$INIT_SYS_ALIGN_FAULT_REPORT service.

Required Access or Privileges
CMKRNL privilege is required.

Required Quota
None

Related Services

$GET_ALIGN_FAULT DATA, $INIT SYS_ALIGN_FAULT _REPORT, $PERM_
DIS_ALIGN_FAULT_REPORT, $PERM_REPORT_ALIGN_FAULT, $START
ALIGN_FAULT REPORT, $STOP_ALIGN_FAULT REPORT, $STOP_SYS_
ALIGN_FAULT_REPORT

Condition Values Returned

SYS2-28

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The buffer named in the buffer argument is not
accessible.

SS$_AFR_NOT ENABLED Alignment fault reporting has not been enabled.

SS$ BADPARAM The buffer size is smaller than the minimum

defined by the AFR$K_VMS_LENGTH or the
AFR$K_EXTENDED_LENGTH symbol.

System Service Descriptions
SGET_UNWIND_ENTRY_INFO (164 Only)

$SGET_UNWIND_ENTRY_INFO (164 Only)
Get Unwind Entry Info Routine

Gets fixed-up unwind entry information.

Format
SYS$GET_UNWIND_ENTRY_INFO pc, get_ue_block, name

C Prototype
int SYS$GET_UNWIND_ENTRY_INFO (unsigned _ _int64 pc, void *get_ue_block,

void *name);
Arguments
pc
OpenVMS usage: PC value
type: quadword (unsigned)
access: read only
mechanism: by value

Input quadword, target PC (that is, the PC for a code region the user wants
unwind information for).

get_ue_block
OpenVMS usage: unwind_entry_data_block

type: quadword (unsigned)
access: write
mechanism: by reference

Address of a 4-quadword block to be filled in. That is, input the address of a 4
quadword block and, on successful returned status, that block will be updated
with the following information:

e code_start_va - Output quadword, the process virtual starting ¢ unwind
region containing the input IP.

e code_end_va - Output quadward, the process virtual ending code address of
the unwind region containing the input IP.

e uib_start_va - Output quadword, the process virtual address of the UIB for
the unwind region containing the input IP.

e gp_value - Output quadword, the GP value for this code region.

name

OpenVMS usage: pseudo-image-name

type: character-code-text-string

access: modify

mechanism: by descriptor-fixed-length string descriptor

Optional, that is, may be zero. If the name parameter is specified and if a name
was registered for the unwind region, then the descriptor pointer and length
are updated to point to that stored name. Note that if the name parameter is
specified but no name exists in the unwind tables, then the name descriptor is
updated to zero length.

SYS2-29

System Service Descriptions
$GET_UNWIND_ENTRY_INFO (164 Only)

Description

Get fixed up unwind entry information relevant to the input instruction pointer
Ip).

Required Access or Privileges

None

Required Quota
None

Related Services

SYSSET_UNWIND_TABLE, SYSCLEAR_UNWIND TABLE. Also see
LIB$GET_UIB_INFO in HP OpenVMS Calling Standard.

Condition Values Returned

SYS2-30

SS$_NORMAL Routine completed successfully.
SS$_IVADDR Invalid PC.
SS$ NODATA No unwind information found.

System Service Descriptions
$GET_USER_CAPABILITY (Alpha and 164)

$GET_USER_CAPABILITY (Alpha and 164)
Reserve a User Capability

On Alpha and 164 systems, reserves a user capability, indicating to other
processes that the resource is in use.

This service accepts 64-bit addresses.

Format

SYS$GET_USER_CAPABILITY cap_num [,select_num] [,select_mask]
[,prev_maskK] [,flags]

C Prototype

int sys$get_user_capability (*cap_num, int *select_num, struct _generic_64
*select_mask, struct _generic_64 *prev_mask, struct
_generic_64 *flags);

Arguments
cap_num
OpenVMS usage: longword
type: longword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Capability number to be reserved by the calling kernel thread. This number
can range from 1 to 16 for an explicit request, or the symbolic constant CAP$K_
GET_FREE_CAP can be specified to get the next available user capability. The
cap_num argument is the 32- or 64-bit address of the longword containing the
user capability number or symbolic constant.

select_num

OpenVMS usage: longword

type: longword (unsigned)
access: write only

mechanism: by 32- or 64-bit reference

The number of the user capability selected by the service call. The select_num
argument is the 32- or 64-bit address of a longword into which the system writes
the user capability number. For an explicit numeric request, the value returned
in this longword will match that specified in cap_num; otherwise, this cell
contains the next available user capability.

select_mask

OpenVMS usage: mask_quadword

type: quadword (unsigned)
access: write only

mechanism: by 32- or 64-bit reference

A quadword bit mask with a single bit position set, reflecting the user capability
selected by the service. The select_mask argument is the 32- or 64-bit address
of a quadword into which the system writes the selected user capability bit
mask. This bit mask is the most efficient method for indicating the reserved

SYS2-31

System Service Descriptions
$GET_USER_CAPABILITY (Alpha and 164)

user capability with the $CPU_CAPABILITIES and $PROCESS_CAPABILITIES

services.

prev_mask

OpenVMS usage: mask_quadword

type: quadword (unsigned)
access: write only

mechanism: by 32- or 64-bit reference

The previous user capability reservation mask before execution of this service
call. The prev_mask argument is the 32- or 64-bit address of a quadword into
which the service writes a quadword bit mask specifying the previously reserved
user capabilities taken from the global cell SCH$GQ_RESERVED_USER_CAPS.

flags

OpenVMS usage: mask_quadword

type: quadword (unsigned)
access: read only

mechanism: by 32- or 64-bit reference

Options selected for the user capability reservation. The flags argument is a
quadword bit vector wherein a bit corresponds to an option.

Each option (bit) has a symbolic name, which the $CAPDEF macro defines. The
flags argument is constructed by performing a logical OR operation using the
symbolic names of each desired option.

At this time, all bits are reserved to HP and must be 0.

Description

The Reserve a User Capability service provides a way for discrete processes to
communicate and synchronize their use of a user capability in the system. This
service uses the global cell SCH$GQ_RESERVED_USER_CAPS to indicate that
a particular user capability has been reserved. $GET_USER_CAPABILITY can
also return the current reservation state of all user capabilities in the system.

Reservation of a user capability can be made for an explicit number or for the
next available number. The selected user capability is returned to the caller
through a numeric value in select_num or by a quadword bit mask in select_
mask.

This service does not directly enforce unique use of the individual user
capabilities; it simply provides a common informational and control resource

for processes using the other capability scheduling services. Code threads that
do not use this service to verify whether a user capability is available are still at
risk if differing usages conflict.

Required Privileges

The caller must have both ALTPRI and WORLD privileges to call $GET_
USER_CAPABILITY to reserve a user capability. No privileges are required

if §GET_USER_CAPABILITY is called only to retrieve the current user capability
reservation mask.

Required Quota

None

SYS2-32

System Service Descriptions
$GET_USER_CAPABILITY (Alpha and 164)

Related Services

$FREE_USER_CAPABILITY, $CPU_CAPABILITIES, $PROCESS_
CAPABILITIES

Condition Values Returned

SS$ NORMAL The service completed successfully.

SS$ ACCVIO The service cannot access the locations specified
by one or more arguments.

SS$_INSFARG Fewer than the required number of arguments
were specified, or no operation was specified.

SS$_NOPRIV Insufficient privilege for the attempted operation.

SS$_NOSUCH_OBJECT No more user capabilities are available.

SS$_OBJECT_EXISTS A specifically requested user capability has
already been reserved.

SS$_TOO_MANY_ARGS Too many arguments were presented to the

system service.

SYS2-33

System Service Descriptions
$GOTO_UNWIND (Alpha Only)

$GOTO_UNWIND (Alpha Only)
Unwind Call Stack

On Alpha systems, unwinds the call stack. On 164 systems, do not use this
service; use $GOTO_UNWIND_64 instead.

Format
SYS$GOTO_UNWIND target_invo ,target_pc ,[new_r0] ,[new_r1]

C Prototype

int sys$goto_unwind (void *target_invo, void *(*(target_pc)), unsigned _ _int64
*new_r0, unsigned _ _int64 *new_r1);

Arguments
target_invo
OpenVMS usage: invo_handle
type: longword (unsigned)
access: read only
mechanism: by reference

The address of a location that contains a handle for the target invocation.

If you do not specify the target_invo argument, or if the handle value is 0, an
exit unwind is initiated.

target_pc

OpenVMS usage: address

type: longword (unsigned)
access: read only
mechanism: by reference

The address of a location that contains the address at which execution should
continue in the target invocation.

If the target_pc argument is omitted or the value is 0, a system-defined target
PC is assumed and execution resumes at the location specified at the return
address for the call frame of the target procedure invocation.

new_r0

OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: read only
mechanism: by reference

The address of a location that contains the value to place in the saved RO location
of the mechanism argument vector. The contents of this location are then loaded
into the processor RO register at the time that execution continues in the target
invocation.

If the new_r0 argument is omitted, the contents of the processor RO register at
the time of the call to $GOTO _UNWIND are used.

SYS2-34

Description

System Service Descriptions
$GOTO_UNWIND (Alpha Only)

new_r1

OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: read only
mechanism: by reference

Address of a location that contains the value to place in the saved R1 location
of the mechanism argument vector. The contents of the location are then loaded
into the processor R1 register at the time that execution continues in the target
invocation.

If the new_r1 argument is omitted, the contents of the processor R1 register at
the time of the call to $GOTO_UNWIND are used.

The Unwind Call Stack service provides the function for a procedure to unwind
the call stack.

Required Access or Privileges
None

Required Quota
None

Related Services
$UNWIND

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The specified target_invo, target_pc, new_r0,
or new_r1l argument is not accessible.

SYS2-35

System Service Descriptions
$GOTO_UNWIND_64 (Alpha and 164)

$GOTO_UNWIND_64 (Alpha and 164)
Unwind Call Stack

On Alpha and 164 systems, unwinds the call stack.

Format
SYS$GOTO_UNWIND target_invo ,target_pc ,[NewRetVal] , [NewRetVal2]

C Prototype

int sys$goto_unwind_64 (void *target_invo_64, void *(*(target_pc_64)),
unsigned_int64 *new_retval, unsigned_int64 *newretval2);

Arguments
target_invo
OpenVMS usage: invo_handle
type: quadword (unsigned)
access: read only
mechanism: by reference

The address of a location that contains a handle for the target invocation.

If you do not specify the target_invo argument, or if the handle value is 0, the
effect of the call is undefined.

target_pc

OpenVMS usage: address

type: quadword (unsigned)
access: read only
mechanism: by reference

The address of a location that contains the address at which execution should
continue in the target invocation.

If the target_pc argument is omitted or the value is 0, execution resumes at the
location specified at the return address for the call frame of the target procedure
invocation.

If the target_invo argument is omitted or the value is 0, the target_pc
argument is ignored. In this case, a system-defined target PC is assumed.

NewRetVal

OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: read only
mechanism: by reference

The address of a location that contains the value to place in the saved RetVal
location of the mechanism argument vector. The contents of this location are then
loaded into RetVal at the time that execution continues in the target invocation.

If the NewRetVal argument is omitted, the contents of RetVal at the time of the
call to $GOTO_UNWIND_64 are used.

This argument is called New_RO0 in SYS$GOTO_UNWIND for compatibility with
Alpha.

SYS2-36

System Service Descriptions
$GOTO_UNWIND_64 (Alpha and 164)

NewRet2

OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: read only
mechanism: by reference

The address of a location that contains the value to place in the saved RetVal2
location of the mechanism argument vector. The contents of the location are then
loaded into RetVal2 at the time that execution continues in the target invocation.

If the NewRet2 argument is omitted, the contents of RetVal2 at the time of the
call to $§GOTO_UNWIND_64 are used.

This argument is called New_R1 in SYS$GOTO_UNWIND for compatibility with
Alpha.

Description

The Unwind Call Stack service provides the function for a procedure to unwind
the call stack.

Required Access or Privileges
None

Required Quota
None

Related Services
$UNWIND

Condition Values Returned

SS$_ACCVIO An invalid address was given.

SYS2-37

System Service Descriptions
$GRANTID

SGRANTID
Grant Identifier to Process

Adds the specified identifier record to the rights list of the process or the system.

Format
SYS$GRANTID [pidadr] ,[prcnam] ,[id] ,[name] ,[prvatr]

C Prototype

int sys$grantid (unsigned int *pidadr, void *prcnam, struct _generic_64 *id, void
*name, unsigned int *prvatr, unsigned int segment);

Arguments
pidadr
OpenVMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) number of the process affected when $GRANTID
completes execution. The pidadr argument is the address of a longword
containing the PID of the process to be affected. You use —1 to indicate the
system rights list. When pidadr is passed, it is also returned; therefore, you
must pass it as a variable rather than a constant. If you specify neither pidadr
nor prcnam, your own process is used.

prcnam

OpenVMS usage: process_name

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Process name on which $GRANTID operates. The precnam argument is the
address of a character string descriptor containing the process name. The
maximum length of the name is 15 characters. Because the UIC group number
is interpreted as part of the process name, you must use pidadr to specify the
rights list of a process in a different group. If you specify neither pidadr nor
prcnam, your own process is used.

id

OpenVMS usage: rights_holder

type: quadword (unsigned)
access: modify

mechanism: by reference

Identifier and attributes to be granted when $GRANTID completes execution.
The id argument is the address of a quadword containing the binary identifier
code to be granted in the first longword and the attributes in the second longword.

Use the id argument to modify the attributes of the identifier.

SYS2-38

System Service Descriptions
$GRANTID

Symbol values are offsets to the bits within the longword. You can also obtain
the values as masks with the appropriate bit set using the prefix KGB$M rather
than KGB$V. The following symbols for each bit position are defined in the macro
library ($KGBDEF):

Bit Position Meaning When Set

KGB$V_DYNAMIC Allows holders of the identifier to remove
it from or add it to the process rights
database using the DCL command SET
RIGHTS_LIST.

KGB$V_NOACCESS Makes any access rights of the identifier
null and void. This attribute is intended
as a modifier for a resource identifier or
the Subsystem attribute.

KGB$V_RESOURCE Allows holders of an identifier to charge
disk space to the identifier. It is used
only for file objects.

KGB$V_SUBSYSTEM Allows holders of the identifier to create
and maintain protected subsystems by
assigning the Subsystem ACE to the
application images in the subsystem.

You must specify either id or name. Because the id argument is returned as
well as passed if you specify name, you must pass it as a variable rather than a
constant in this case.

name

OpenVMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Name of the identifier granted when $GRANTID completes execution. The name
argument is the address of a descriptor pointing to the name of the identifier.
The identifier is granted as it is created. You must specify either id or name.

prvatr

OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Previous attributes of the identifier. The prvatr argument is the address of a
longword used to store the attributes of the identifier if it was previously present
in the rights list. If you added rather than modified the identifier, prvatr is
ignored.

SYS2-39

System Service Descriptions

$GRANTID

Description

SYS2-40

The Grant Identifier to Process service adds the specified identifier to the rights
list of the process or the system. If the identifier is already in the rights list,
its attributes are modified to those specified. This service is meant to be used
by a privileged subsystem to alter the access rights profile of a user, based on
installation policy. It is not meant to be used by the general system user.

The result of passing the pidadr or the prenam argument, or both, to
SYS$GRANTID is summarized in the following table:

prcnam pidadr Result

Omitted Omitted Current process ID is used; process ID is not
returned.

Omitted 0 Current process ID is used; process ID is
returned.

Omitted Specified Specified process ID is used.

Specified Omitted Specified process name is used; process ID is not
returned.

Specified 0 Specified process name is used; process ID is
returned.

Specified Specified Specified process ID is used and process name is
ignored.

The result of passing the name or the id argument, or both, to SYS$GRANTID is
summarized in the following table:

name id Result

Omitted Omitted Illegal. The INSFARG condition value is
returned.

Omitted Specified Specified identifier value is used.

Specified Omitted Specified identifier name is used; identifier value

is not returned.

Specified 0 Specified identifier name is used; identifier value
is returned.

Specified Specified Specified identifier value is used and identifier
name is ignored.

Note that a value of 0 in either of the preceding tables indicates that the contents
of the address specified by the argument is the value 0. The word omitted
indicates that the argument was not supplied.

Required Access or Privileges

You need CMKRNL privilege to invoke this service. In addition, you need GROUP
privilege to modify the rights list of a process in the same group as the calling
process (unless the process has the same UIC as the calling process). You need
WORLD privilege to modify the rights list of a process outside the caller’s group.
You need SYSNAM privilege to modify the system rights list.

Required Quota
None

Related Services

System Service Descriptions
$GRANTID

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHECK_ACCESS, $CHKPRO,
$CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER, $FINISH_RDB,
$FORMAT ACL, $FORMAT AUDIT, $GET_SECURITY, $HASH_PASSWORD,
$IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID, $SET_SECURITY

Condition Values Returned

SS$_WASCLR
SS$_WASSET

SS$_ACCVIO

SS$_INSFARG
SS$_INSFMEM

SS$_IVIDENT

SS$_IVLOGNAM
SS$_NONEXPR
SS$_NOPRIV

SS$_NOSUCHID

SS$_NOSYSNAM
SS$_RIGHTSFULL
RMS$_PRV

The service completed successfully; the rights list
did not contain the specified identifier.

The service completed successfully; the rights list
already held the specified identifier.

The pidadr argument cannot be read or written;
prcnam cannot be read; id cannot be read or
written; the name cannot be read; or prvatr
cannot be written.

You did not specify either the id or the name
argument.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier name is invalid; the
identifier name is longer than 31 characters,
contains an illegal character, or does not contain
at least one nonnumeric character.

You specified an invalid process name.
You specified a nonexistent process.

The caller does not have CMKRNL privilege or
is not running in executive or kernel mode, or

the caller lacks GROUP, WORLD, or SYSNAM
privilege as required.

The specified identifier name does not exist
in the rights database. Note that the binary
identifier, if given, is not validated against the
rights database.

The operation requires SYSNAM privilege.
The rights list of the process or system is full.

The user does not have read access to the rights
database.

Because the rights database is an indexed file accessed with OpenVMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, see the OpenVMS Record
Management Services Reference Manual.

SYS2-41

System Service Descriptions
$HASH_PASSWORD

SHASH PASSWORD
Hash Password

Applies the hash algorithm you select to an ASCII password string and returns a
quadword hash value that represents the encrypted password.

Format
SYS$HASH_PASSWORD pwd ,alg ,[salt] ,usrnam ,hash

C Prototype

int sys$hash_password (void *pwd, unsigned char alg, unsigned short int salt, void
*usrnam, struct _generic_64 *hash);

Arguments
pwd
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

ASCII password string to be encrypted. The pwd argument is the address of a
character string descriptor pointing to the ASCII password. The password string
can contain between 1 and 32 characters and use the uppercase characters A
through Z, the numbers 0 through 9, the dollar sign ($), and the underscore (_).

The caller must validate the password string before calling $HASH_PASSWORD
to ensure that only permitted characters are included.

alg

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by value

Algorithm used to hash the ASCII password string. The alg argument is an
unsigned byte specifying the hash algorithm.

The operating system recognizes the following algorithms:

Symbolic Name Description

UAI$K _AD II Uses a CRC algorithm and returns a longword hash
value. This algorithm was used in releases prior to
VAX VMS Version 2.0.

UAI$C_PURDY Uses a Purdy algorithm over salted input. It expects
a blank-padded user name and returns a quadword
hash value. This algorithm was used during VAX VMS
Version 2.0 field test.

SYS2-42

System Service Descriptions
$HASH_PASSWORD

Symbolic Name Description

UAI$C_PURDY_V Uses the Purdy algorithm over salted input. It expects
a variable-length user name and returns a quadword
hash value. This algorithm was used in releases prior
to VMS Version 5.4.

UAI$K_PURDY_S Uses the Purdy algorithm over salted input. It expects
a variable-length user name and returns a quadword
hash value. This algorithm is used to hash all new
passwords in VMS Version 5.4 and later.

UAI$C_PREFERED_ Represents the latest encryption algorithm that the

ALGORITHM! operating system uses to encrypt new passwords.
Currently, it equates to UAI$C_PURDY_S. HP
recommends that you use this symbol in source
modules because it always equates with the most
recent algorithm.

1 The value of this symbol might be changed in future releases if an additional algorithm is
introduced.

Values ranging from 128 to 255 are reserved for customer use; the constant
UAI$K_CUST_ALGORITHM defines the start of this range.

You can use the UAI$ ENCRYPT and UAI$_ENCRYPT?2 item codes with the
$GETUAI system service to retrieve the primary and secondary password hash
algorithms for a user.

salt

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by value

Value used to increase the effectiveness of the hash. The salt argument is an
unsigned word containing 16 bits of data that is used by the hash algorithms
when encrypting a password for the associated user name. The $GETUAI item
code UAI$_SALT is used to retrieve the SALT value for a given user. If you do
not specify a SALT value, $HASH_PASSWORD uses the value of 0.

usrnam

OpenVMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Name of the user associated with the password. The usrnam argument is the
address of a descriptor pointing to a character text string containing the user
name. The current password encryption algorithm (UAI$C_PURDY_S) folds the
user name into the ASCII password string to ensure that different users with the
same password produce different hash values. This argument must be supplied
for all calls to $HASH_PASSWORD but is ignored when using the CRC algorithm
(UAI$C_AD_II).

SYS2-43

System Service Descriptions
$HASH_PASSWORD

Description

hash

OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: write only
mechanism: by reference

Output hash value representing the encrypted password. The hash argument is
the address of an unsigned quadword to which $HASH_PASSWORD writes the
output of the hash. If you use the UAI$C_AD_II algorithm, the second longword
of the hash is always set to 0.

The Hash Password service applies the hash algorithm you select to an ASCII
password string and returns a quadword hash value that represents the
encrypted password.

Other OpenVMS password services allow spaces, tabs, and other blank characters
from the user, but they remove those spaces before passing the string to $HASH_
PASSWORD. Before calling $HASH_PASSWORD, all white space must be
removed from the password string to ensure proper comparison with passwords
created by other services.

Required Access or Privileges
None

Required Quota
None

Related Services
$GETUAI $SETUAL

Use $GETUALI to get the values for the salt and alg arguments. Use $SETUALI to
store the resulting hash using the item codes UAI$_PWD and UAI$_PWD2.

For more information, see the appendix on implementing site-specific security
policies in the HP OpenVMS Programming Concepts Manual.

Condition Values Returned

SYS2-44

SS$_ NORMAL The service completed successfully.

SS$_ACCVIO The input or output buffer descriptors cannot be
read or written to by the caller.

SS$_BADPARAM The specified hash algorithm is unknown or
invalid.

System Service Descriptions

$SHIBER
SHIBER
Hibernate
Allows a process to make itself inactive but to remain known to the system so
that it can be interrupted; for example, to receive ASTs.
Format

SYS$HIBER

C Prototype
int sys$hiber (void);

Arguments

None.

Description

The Hibernate service allows a process to make itself inactive but to remain
known to the system so that it can be interrupted; for example, to receive ASTs.
A hibernate request is a wait-for-wake-event request. When you call the Wake
Process from Hibernation (§WAKE) service or when the time specified with the
Schedule Wakeup ($SCHDWK) service occurs, the process continues execution at
the instruction following the Hibernate call.

In VAX MACRO, you can call the Hibernate service only by using the $name_S
macro.

A hibernating process can be swapped out of the balance set if it is not locked
into the balance set.

An AST can interrupt the wait state caused by $HIBER if the access mode at
which the AST is to execute is equal to or more privileged than the access mode
from which the hibernate request was issued and the process is enabled for ASTs
at that access mode.

When the AST service routine completes execution, the system reexecutes the
$HIBER service on behalf of the process. If a wakeup request has been issued
for the process during the execution of the AST service routine (either by itself
or another process), the process resumes execution. If a wakeup request has not
been issued, it continues to hibernate.

If one or more wakeup requests are issued for the process while it is not
hibernating, the next hibernate call returns immediately; that is, the process
does not hibernate. No count of outstanding wakeup requests is maintained.

Although this service has no arguments, a Fortran function reference must use
parentheses to indicate a null argument list, as in the following example:

ISTAT=SYSSHIBER ()

Required Access or Privileges
None

Required Quota
None

SYS2-45

System Service Descriptions
$HIBER

Related Services

$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJPIW, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRYV,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SS$_NORMAL The service completed successfully.

SYS2-46

System Service Descriptions
$ICC_ACCEPT

$ICC_ACCEPT

Accept for

Format

C Prototype

Arguments

Intra-Cluster Communications (ICC)
Responds to an incoming connection request. This call is used to complete an ICC

connection from the server side.

On Alpha and 164 systems, this service accepts 64-bit addresses.

SYSS$ICC_ACCEPT conn_handle ,[accept_buf] ,[accept_len] ,[user_context] ,[flags]

int sys$icc_accept (unsigned int conn_handle, char * accept_buf, unsigned int
accept_len, unsigned int user_context, unsigned int flags);

conn_handle
OpenVMS usage: connection_id

type: longword (unsigned)
access: read only
mechanism: by value

The handle of the requested connection.

accept_buf

OpenVMS usage: byte_stream

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)

A buffer of up to 1000 bytes of accept data that is sent to the source of the
connection at the completion of the connection process.

accept_len

OpenVMS usage: buffer_length

type: longword (unsigned)
access: read only
mechanism: by value

The actual number of bytes in accept_buf to be sent.

user_context
OpenVMS usage: user_arg

type: longword (unsigned) (VAX); quadword (Alpha and 164)
access: read only
mechanism: by value

A user-specified value that is subsequently returned on any disconnect or data
events on this connection.

SYS2-47

System Service Descriptions

$ICC_ACCEPT
flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Description

ICC$M_SYNCH_MODE can be specified to indicate that the data transmission
and reception routines $ICC_TRANSMIT, $ICC_RECEIVE, and $ICC_REPLY are
allowed to return the status SS$_SYNCH in the case of synchronous completion,
and that the AST will not be called.

This service is used by a server to respond to an incoming connection request.
The $ICC_ACCEPT service may only be called after receiving a connection
request AST.

At the completion of the service, the connection is open and data can be
exchanged. Once opened, there is no logical distinction between a connection
opened by a client with the Connect service or a server with the Accept service.

A server can reject a Connection request by calling the $ICC_REJECT service.

Required Access or Privileges
None.

Required Quota
$ICC_ACCEPT changes the process BYTLM quota for the length of the
accept_buf parameter, as well as a fixed value for each potential Receive buffer

on the connection. The number of potential Receive buffers is specified by the
MAXFLOWBUFCNT parameter in the $ICC_OPEN_ASSOC service.

Related Services

$ICC_CLOSE_ASSOC, $ICC_CONNECT, $ICC_CONNECTW,
$ICC_DISCONNECT, $ICC_DISCONNECTW, $ICC_OPEN_ASSOC,
$ICC_RECEIVE, $ICC_RECEIVEW, $ICC_REJECT, $ICC_REPLY,
$ICC_REPLYW, $ICC_TRANSCEIVE, $ICC_TRANSCEIVEW, $ICC_TRANSMIT,
$ICC_TRANSMITW

Condition Values Returned

SYS2-48

SS$_NORMAL Normal completion.

SS$ _ACCVIO Access violation on parameter.

SS$_BADPARAM Bad parameter value specified.

SS$ CLEARED Remote association closed the link before it was
accepted.

SS$_EXQUOTA Exceeded BYTCNT/BYTLM.

SS$_INSFARG Too few arguments supplied.

SS$_INSFMEM Not enough system resources or process virtual
memory available.

SS$_IVMODE Attempted to accept a connection from a more
privileged access mode than the requested
association.

SS$_IVCHAN
SS$_LINKDISCON

SS$_TOO_MANY_ARGS
SS$_WRONGSTATE

System Service Descriptions
$ICC_ACCEPT

Connection not found or Invalid connection
handle.

The connection is valid, but the physical link has
started to disconnect.

Too many arguments specified.
Connection is in the wrong state for the request.

SYS2-49

System Service Descriptions
$ICC_CLOSE_ASSOC

$ICC_CLOSE_ASSOC
Close Association for Intra-Cluster Communications (ICC)

Closes the application’s association with ICC.

Format
SYS$ICC_CLOSE_ASSOC assoc_handle

C Prototype

int sys$icc_close_assoc (unsigned int assoc_handle);

Arguments

assoc_handle
OpenVMS usage: association_id

type: longword (unsigned)
access: read only
mechanism: by value

The handle of the association to be closed.

Description

This service closes the application’s association with ICC. If multiple associations
are open, only the specified association is closed. When an association is closed,
any active connections on that association are disconnected. If not explicitly
closed by the application, associations opened in user mode will be closed at image
exit; associations opened in inner modes will be closed at process termination.

All operations on an association must occur in the access mode at which the
association was opened.

When an association is closed, the entry (if any) in the simple clusterwide
association registry is removed.

Required Access or Privileges
None.

Required Quota
None.

Related Services

$ICC_ACCEPT, $ICC_CONNECT, $ICC_CONNECTW, $ICC_DISCONNECT,
$ICC_DISCONNECTW, $ICC_OPEN_ASSOC, $ICC_RECEIVE,
$ICC_RECEIVEW, $ICC_REJECT, $ICC_REPLY, $ICC_REPLYW,
$ICC_TRANSCEIVE, $ICC_TRANSCEIVEW, $ICC_TRANSMIT,
$ICC_TRANSMITW

SYS2-50

Condition Values Returned

SS$_NORMAL
SS$_INSFARG
SS$_IVCHAN
SS$_IVMODE

SS$_TOO_MANY_ARGS

System Service Descriptions
$ICC_CLOSE_ASSOC

Normal completion.
The assoc_handle was not supplied.
Invalid association handle.

Attempted to close an association from a more
privileged access mode than the requested
association.

Too many arguments specified.

SYS2-51

System Service Descriptions
$ICC_CONNECT

$ICC_CONNECT
Connect for Intra-Cluster Communications (ICC)

Establishes a connection to a remote application over an open association.

On Alpha and 164 systems, this service accepts 64-bit addresses.

Format

SYS$ICC_CONNECT ios_icc ,[astadr] ,[astprm] ,assoc_handle ,conn_handle
,remote_assoc ,[remote_node] ,[user_context] ,[conn_buf]
,[conn_buf_len] ,[return_buf] ,[return_buf_len] ,[retlen_addr]
[flags]

C Prototype

int sys$icc_connect (struct _ios_icc *ios_icc, void (*astadr)(__unknown_params),
__int64 astprm, unsigned int assoc_handle, unsigned int
*conn_handle, void *remote_assoc, void *remote_node,
unsigned int user_context, char *conn_buf, unsigned int
conn_buf_len, char *return_buf, unsigned int return_buf_len,
unsigned int *retlen_addr, unsigned int flags);

Arguments
ios_icc
OpenVMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)
I/0O status block:

+2 0

Undefined Completion status

ios_icc$1_remstat
+6 +4
VM-0462A-Al

Completion status values:

SS$_NORMAL, SS$_BUFFEROVF, SS$ EXQUOTA, SS$_INSFMEM,
SS$_IVBUFLEN, SS$_LINKABORT, SS$_LINKDISCON, SS$ NOLOGNAM,
SS$_NOSUCHOBJ, SS$_NOSUCHNODE, SS$_PATHLOST, SS$_REJECT,
SS$_SSFAIL, SS§ UNREACHABLE, SS$_ WRONGSTATE

The second longword is undefined unless the completion code is SS$_REJECT. In
this case, the application-defined rejection reason code is supplied by the server
when $ICC_REJECT is called.

astadr

OpenVMS usage: ast_procedure

type: procedure_entry_mask
access: call without stack unwinding

SYS2-52

System Service Descriptions
$ICC_CONNECT

mechanism: by 32-bit or 64-bit linkage reference (Alpha and 164); by 32-bit
reference (VAX)

The AST routine to be executed when the operation completes.

astprm

OpenVMS usage: user_arg

type: quadword (unsigned) (Alpha and 164); longword (unsigned)
(VAX)

access: read only

mechanism: by 64-bit value (Alpha and 164); by 32-bit value (VAX)

The parameter to be passed to the AST routine.

assoc_handle
OpenVMS usage: association_id

type: longword (unsigned)
access: read only
mechanism: by value

The handle of the association on which the connection is to be opened. The
constant ICC$C_DFLT _ASSOC_HANDLE, if used, indicates that the default
association is to be used (and opened if necessary).

conn_handle
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)

The 32-bit or 64-bit address (on Alpha and 164 systems) or the 32-bit address (on
VAX systems) of a longword into which $ICC_CONNECT writes the connection
handle of the created connection on a successful call.

remote_assoc
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by 32-bit or 64-bit descriptor (Alpha and 164); by 32-bit

descriptor (VAX)

An ASCII character string (31 characters maximum) specifying the name of the
target application to connect to. Association names are case sensitive.

remote_node
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by 32-bit or 64-bit descriptor (Alpha and 164); by 32-bit

descriptor (VAX)

The name of the node where the target association resides. A null or blank string
can be used to indicate the local node. If omitted (by passing zero by value),

the simple clusterwide association registry is to be used. Each node name is a
one-to-six character SCS node name. A comma-delimited list of nodes may be
specified, indicating that one is to be chosen at random.

SYS2-53

System Service Descriptions
$ICC_CONNECT

SYS2-54

user_context
OpenVMS usage: user_arg

type: longword (unsigned) (VAX); quadword (Alpha and 164)
access: read only
mechanism: by value

A user-specified value to be subsequently returned on any disconnect or data
events on this connection.

conn_buf

OpenVMS usage: byte_stream

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)

A buffer of up to 1000 bytes of connection data to be sent to the target of the
connection during the connection process.

conn_buf_len
OpenVMS usage: buffer_length

type: longword (unsigned)
access: read only
mechanism: by value

The number of bytes in conn_buf to be sent.

return_buf

OpenVMS usage: byte_stream

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)

A buffer of up to 1000 bytes in length to receive any incoming connection accept
or reject data returned.

return_buf _len
OpenVMS usage: buffer_length

type: longword (unsigned)
access: read only
mechanism: by value

The length of the supplied return_buf.

retlen_addr

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: write only

mechanism: by 32-bit or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)

The 32-bit or 64-bit address (on Alpha and 164 systems) or the 32-bit address (on
VAX systems) of a longword into which $ICC_CONNECT writes the actual length
(in bytes) of any user accept or reject data returned in the buffer return_buf.

Description

System Service Descriptions
$ICC_CONNECT

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

ICC$M_SYNCH_MODE can be specified to indicate that the data transmission
and reception routines $ICC_TRANSMIT, $ICC_RECEIVE, and $ICC_REPLY are
allowed to return the status SS$_SYNCH in the case of synchronous completion,
indicating that the AST will not be called.

This service establishes a connection to a remote application over an

open association. Connections must be opened in the same mode as

their association. If the user provides the default association constant
ICC$C_DFLT_ASSOC_HANDLE as its association handle, the default association
will be used; it will be opened if it is not already open. Multiple connections

are possible over a single association. When completion is signaled by the AST
routine, the application must check the completion status field of the IOS_ICC

to determine if the server has accepted or rejected the connection request. The
number of connections is subject to process BYTLM quota.

At image exit, as a result of closing any open user mode associations, all user
mode connections are disconnected. Inner mode connections are the responsibility
of the inner mode code, but are disconnected at process termination when inner
mode associations are closed. Connections are only visible to the mode in which
they were opened.

A client opens connections with the $ICC_CONNECT service; a server opens
connections with the $ICC_ACCEPT service.

Required Access or Privileges

SYSNAM, or access via ICC Security Object. For more information, see the HP
OpenVMS System Manager’s Manual.

Required Quota
$ICC_CONNECT changes the process BYTLM quota for the length of the conn_
buf parameter, as well as a fixed value for each potential Receive buffer on

the connection. The number of potential Receive buffers is specified by the
MAXFLOWBUFCNT parameter in the $ICC_OPEN_ASSOC service.

If $ICC_OPEN_ASSOC is not called before $ICC_CONNECT, the default value of
MAXFLOWBUFCNT is used (currently 5).

Related Services

$ICC_ACCEPT, $ICC_CLOSE_ASSOC, $ICC_CONNECTW,
$ICC_DISCONNECT, $ICC_DISCONNECTW, $ICC_OPEN_ASSOC,
$ICC_RECEIVE, $ICC_RECEIVEW, $ICC_REJECT, $ICC_REPLY,
$ICC_REPLYW, $ICC_TRANSCEIVE, $ICC_TRANSCEIVEW, $ICC_TRANSMIT,
$ICC_TRANSMITW

SYS2-55

System Service Descriptions
$ICC_CONNECT

Condition Values Returned

SYS2-56

SS$ NORMAL
SS$_ACCVIO

SS$ BADPARAM
SS$_BUFFEROVF
SS$_EXQUOTA

SS$_INSFARG
SS$_INSFMEM

SS$_INSFP1POOL
SS$ IVBUFLEN

SS$_IVCHAN
SS$_IVMODE
SS$_LINKABORT
SS$_LINKDISCON

SS$_NOLINKS
SS$ NOLOGNAM

SS$ NOPRIV

SS$_NOSUCHOBJ

SS$_NOSUCHNODE

SS$_PATHLOST

SS$_REMRSRC
SS$ REJECT

SS$ TOO_MANY_ARGS
SS$ UNREACHABLE

SS$_WRONGSTATE

Normal completion.

Access violation on parameter.

Bad parameter value specified.

Overflow on inbound accept or reject data.

Not enough AST quota (asynchronous request) or
insufficient BYTLM/BYTCNT.

Too few arguments were supplied, or required
arguments not supplied.

Not enough system resources or process virtual
memory available.

Not enough process P1 space available.

The length of the context data or the accept or
reject data buffer is more than 1000 bytes.

Invalid association handle.

Attempted to open a connection from a more
privileged access mode than the requested
association.

The communications link to the target node was
lost.

The communications link to the target node was
lost.

Too many connections open.

The underlying layers failed to start properly
during system initialization.

No privilege to connect to the specified
association. Connection access is granted either
through an ICC security object or through the
SYSNAM privilege. If no security object exists
and the caller lacks the SYSNAM privilege,
SS$ NOPRIV is returned rather than SS$
NOSUCHOB/J.

The remote association name and/or node was
not found.

The target node is not known.

The communications link to the target node was
lost.

Insufficient resources at remote node.

The remote association or node rejected the
connection request.

Too many arguments specified.
Target node currently unreachable.
Connection is in the wrong state for the request.

System Service Descriptions
$ICC_CONNECTW

SICC_CONNECTW
Connect for Intra-Cluster Communications and Wait

Establishes a link between two ICC associations.

The $ICC_CONNECTW service completes synchronously; that is, it returns to the
caller after the server has either accepted or rejected the connection request.

For asynchronous completion, use the $ICC_CONNECT service; $ICC_CONNECT
returns to the caller as soon as the connection request has been sent to the server,
without waiting for a response from the server.

On Alpha and 164 systems, this service accepts 64-bit addresses.

Format

SYSS$ICC_CONNECTW ios_icc, [astadr], [astprm], assoc_handle, conn_handle,
remote_assoc, [remote_node], [user_context], [conn_buf],
[conn_buf_len], [return_buf], [return_buf_len], [retlen_addr],
[flags]

C Prototype

int sys$icc_connectw (struct _ios_icc *ios_icc, void (*astadr)(__unknown_params),
__int64 astprm, unsigned int assoc_handle, unsigned int
*conn_handle, void *remote_assoc, void *remote_node,
unsigned int user_context, char *conn_buf, unsigned int
conn_buf_len, char *return_buf, unsigned int return_buf_len,
unsigned int *retlen_addr, unsigned int flags);

SYS2-57

System Service Descriptions
$ICC_DISCONNECT

SICC_DISCONNECT
Disconnect for Intra-Cluster Communications (ICC)

Terminates the specified connection.

On Alpha and 164 systems, this service accepts 64-bit addresses.

Format

SYSS$ICC_DISCONNECT conn_handle ,iosb ,[astadr] ,[astprm] ,[disc_buf]
,[disc_buf_len]

C Prototype

int sys$icc_disconnect (unsigned int conn_handle, struct _iosb, *iosb, void
(*astadr)(_ _unknown_params), _ _int64 astprm, char *
disc_buf, unsigned int disc_buf_len);

Arguments

conn_handle
OpenVMS usage: connection_id

type: longword (unsigned)
access: read only
mechanism: by value

The ID of the connection to be disconnected.

iosb

OpenVMS usage: io_status_block

type: quadword (unsigned)

access: write only

mechanism: by 32-bit or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)
I/0 status block:

+2 0

Undefined Completion status

Unused Unused
+6 +4
VM-0463A-Al

Completion status values:
SS$_NORMAL, SS$_EXQUOTA, SS$_LINKDISCON, $ICC_REJECT

astadr

OpenVMS usage: ast_procedure

type: procedure_entry_mask

access: call without stack unwinding

mechanism: by 32-bit or 64-bit linkage reference (Alpha and 164); by 32-bit

reference (VAX)

The AST routine to be executed when the operation completes.

SYS2-58

Description

System Service Descriptions
$ICC_DISCONNECT

astprm

OpenVMS usage: user_arg

type: quadword (unsigned) (Alpha and 164); longword (unsigned)
(VAX)

access: read only

mechanism: by 64-bit value (Alpha and 164); by 32-bit value (VAX)

The parameter to be passed to the AST routine.

disc_buf

OpenVMS usage: byte_stream

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)

A buffer of up to 1000 bytes of disconnect data to be sent to the partner in the
connection when notifying it that disconnection is being initiated. Delivery of this
data is not guaranteed.

disc_buf _len
OpenVMS usage: buffer_length

type: longword (unsigned)
access: read only
mechanism: by value

The number of bytes in disc_buf to be sent.

This service must be called in the mode in which the association was opened.

This service terminates the specified connection. After this service is called,
no further communication is possible over this connection. All outstanding
data transmission and reception functions are terminated with an error before
completion is signaled by calling the AST (if supplied).

A connection may be disconnected by either party. Proper programming procedure
for network communications strongly recommends that the party that last
received a message initiate the disconnection. If the party that last sent a
message initiates the disconnection, there is no guarantee that the message was
delivered.

Similarly, although this interface provides the ability to send disconnect data,
only noncritical information should be transmitted with the disconnect data
mechanism, because there is no guarantee that the data will have been received
or acted upon by the other party to the connection.

Required Access or Privileges

None.

Required Quota
BYTLM (disc_buf)

SYS2-59

System Service Descriptions
$ICC_DISCONNECT

Related Services

$ICC_ACCEPT, $ICC_CLOSE_ASSOC, $ICC_CONNECT, $ICC_CONNECTW,
$ICC_DISCONNECTW, $ICC_OPEN_ASSOC, $ICC_RECEIVE,
$ICC_RECEIVEW, $ICC_REJECT, $ICC_REPLY, $ICC_REPLYW,
$ICC_TRANSCEIVE, $ICC_TRANSCEIVEW, $ICC_TRANSMIT,

$ICC_TRANSMITW

Condition Values Returned

SYS2-60

SS$_NORMAL
SS$_ACCVIO
SS$_BADPARAM
SS$ INSFMEM
SS$_IVBUFLEN

SS$_IVCHAN

SS$_IVMODE

SS$_LINKDISCON

SS$_TOO_MANY_ARGS

Normal successful completion.
Access violation on parameter.
Bad parameter value specified.
Not enough nonpaged pool.

The length of the disconnect data buffer is more
than 1000 bytes.

Unknown connection specified or invalid
connection handle.

Attempted to disconnect a connection from a
more privileged access mode than the requested
connection.

The remote association closed the connection
before it was accepted or rejected.

Too many arguments specified.

System Service Descriptions
$ICC_DISCONNECTW

$ICC_DISCONNECTW
Disconnect and Wait for Intra-Cluster Communications (ICC)

Terminates a link between two ICC associations.

The $ICC_DISCONNECTW service completes synchronously; that is, it returns to
the caller after the connection has completely finished the disconnection request.

For asynchronous completion, use the $ICC_DISCONNECT service;
$ICC_DISCONNECT returns to the caller as soon as the disconnection request
has been sent to the transport layer, without waiting for notification that the
disconnection has completed.

On Alpha and 164 systems, this service accepts 64-bit addresses.

Format
SYSS$ICC_DISCONNECTW conn_handle ,iosb ,[astadr] ,[astprm] ,[disc_buf]
,[disc_buf_len]
C Prototype

int sys$icc_disconnectw (unsigned int conn_handle, struct _iosb, *iosb, void
(*astadr)(__unknown_params), _ _int64 astprm, char *
disc_buf, unsigned int disc_buf_len);

SYS2-61

System Service Descriptions
$ICC_OPEN_ASSOC

$ICC_OPEN_ASSOC
Open Association for Intra-Cluster Communications (ICC)

Declares an application association with ICC.

On Alpha and 164 systems, this service accepts 64-bit addresses.

Format

SYSS$ICC_OPEN_ASSOC assoc_handle ,[assoc_name] ,[logical_name]
J[logical_table] ,[conn_event_rtn] ,[disc_event_rin]
,[recv_rin] ,[maxflowbufcnt] ,[prot]

C Prototype

int sys$icc_open_assoc (unsigned int *assoc_handle, void *assoc_name,
void *logical_name, void *logical_table, void
(*conn_event_rtn)(_ _unknown_params), void
(*disc_event_rtn)(__unknown_params), void
(*recv_rtn)(__unknown_params), unsigned int
maxflowbufcnt, unsigned int prot);

Arguments

assoc_handle
OpenVMS usage: association_id

type: longword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)

The 32-bit or 64-bit address (on Alpha and 164 systems) or the 32-bit address (on
VAX systems) of a longword into which $ICC_OPEN_ASSOC writes the handle
assigned to the opened association.

assoC_hame
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by 32-bit or 64-bit descriptor (Alpha and 164); by 32-bit

descriptor (VAX)

An ASCII character string of up to 31 characters in length specifying the name
of the application opening the association. Null (0 length), and empty or blank
association names are not allowed. If this argument is omitted (that is, a zero
is passed in by value), it signifies that the user wants to open the default
association. This argument is case sensitive.

logical_name
OpenVMS usage: logical name

type: character-coded text string
access: read only
mechanism: by 32-bit or 64-bit descriptor (Alpha and 164); by 32-bit

descriptor (VAX)

SYS2-62

System Service Descriptions
$ICC_OPEN_ASSOC

A logical name in a clusterwide logical name table used to maintain the simple
association registry. The logical name represents the name of the service provided
by the application. Logical names are case sensitive.

logical_table

OpenVMS usage: logical name table

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit descriptor (Alpha and 164); by 32-bit

descriptor (VAX)

The table containing the logical name logical_name. Logical name tables
are converted to uppercase. Unless your application requires an application-
specific logical name table, this argument should be either the default

ICC Registry search list ICC$REGISTRY), or the default registry table
(ICC$REGISTRY_TABLE).

conn_event_rtn
OpenVMS usage: user_routine

type: procedure_entry_mask
access: call without stack unwinding
mechanism: by 32-bit or 64-bit linkage reference (Alpha and 164); by 32-bit

reference (VAX)

The address of the AST routine to be called for incoming connect events. This
routine will be called in the mode of the caller. (No mechanism is provided for the
routine to be called at a different mode).

You must have a conn_event_rtn to operate as a server.

disc_event_rtn
OpenVMS usage: user_routine

type: procedure_entry_mask
access: call without stack unwinding
mechanism: by 32-bit or 64-bit linkage reference (Alpha and 164); by 32-bit

reference (VAX)

The address of the AST routine to be called for incoming disconnect events. This
routine will be called in the mode of the caller. (No mechanism is provided for the
routine to be called at a different mode). The arguments, conn_event_rtn, and
disc_event_rtn, may reference the same routine.

recv_rtn

OpenVMS usage: user_routine

type: procedure_entry_mask

access: call without stack unwinding

mechanism: by 32-bit or 64-bit linkage reference (Alpha and 164); by 32-bit

reference (VAX)
The address of the AST routine to be called for incoming new data events.

If the user provides this routine, it indicates that the user will supply a buffer

of the size required (specified in an argument to the recv_rtn at each call) each
time one is requested. If the user supplies this routine, receive calls should only
be issued after receive events arrive and sufficient buffer space has been allocated
to handle the incoming data.

SYS2-63

System Service Descriptions
$ICC_OPEN_ASSOC

This routine will be called in the mode of the caller. (No mechanism is provided
for the routine to be called at a different mode).

maxflowbufcnt
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by value

The maximum number of pending inbound messages (per connection) that ICC
will allow the user before initiating flow control. A message is pending if it is
being held within ICC but no receive call(s) are outstanding from the user.

Default = 5 (Pass 0 to get the default)

prot

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

This argument is ignored for non-server applications.
The default protection scheme for this association is as follows:

0 - access for everyone (default)
1 - stops WORLD access
2 - stops both WORLD and GROUP access

Advanced access control is provided by ICC Security objects. For information
about ICC system management and security, see the HP OpenVMS System
Manager’s Manual.

Description

This service declares an application association with ICC. Servers must make
this call to declare or register their name and to indicate their readiness to
receive incoming connections. Although a client is permitted to call this routine,
it is unnecessary for simple applications. A client application that wishes to

be notified of disconnection events or Receive Data events must call the $ICC_
OPEN_ASSOC service.

A client can open a connection without specifying an open association; this
automatically creates a default association name of ICC$PID_nnnnnnnn (where
nnnnnnnn is a character representation of the Process ID).

NETMBX privilege is required to open any association.

The association name space is a controlled resource. For information about
managing this resource, see the HP OpenVMS System Manager’s Manual.

An attempt to open an association with a name not authorized as described
in the HP OpenVMS System Manager’s Manual will fail with the error SS$_
NOPRIV returned to the caller. In addition to making entries in the system’s
local association name space, a call to $ICC_OPEN_ASSOC may also make an
entry in a simple clusterwide registry of active associations.

An association may only be accessed from the mode in which it was opened. Inner
modes are prevented from using the default association.

SYS2-64

System Service Descriptions
$ICC_OPEN_ASSOC

An application can open any number of associations subject to available process
BYTLM quota. Currently, there is a systemwide limit of 512 open associations.
There is no limit imposed clusterwide.

Description of User-Supplied Routines (ASTs)

When opening an association, the user may optionally supply a connect/disconnect
AST and/or a Data Event AST. These routines will be used for all connections
established over the specified association. In addition, for any of the
asynchronous services (those provided with both an immediate return and a

"W" form), a completion AST may be supplied by the user. This section describes
these ASTs.

1. Connect and Disconnect AST

The user chooses the name of this routine and supplies the procedure name as an
argument to the Open Association service. Seven arguments will be passed to the
user.

The first argument notifies the user whether this is an incoming new connection
or a disconnection of an existing connection. The second identifies the connection.
The third and fourth provide access to incoming connect or disconnect data (if
any) sent by the cooperating application. The fifth argument provides the number
of bytes available for any optional Accept or Reject data (in the case of a connect
request) or the disconnect reason supplied by the cooperating application (if any).

For connect events, the sixth and seventh arguments are the EPID and user
name of the process requesting the connect, respectively.

The user has the choice of using and declaring a common routine or separate
routines as specified when calling $OPEN_ASSOCIATION.

Format
ConnDiscRtn event_type ,conn_handle ,data_len ,data_bfr ,P5 ,P6 ,P7

C Prototype

void ConDiscRtn (unsigned int event_type, unsigned int conn_handle,
unsigned int data_len, char *data_bfr,
unsigned int P5, unsigned int P6, char *P7);

Arguments

event_type

Type: longword (unsigned)
Access: read only

Mechanism: by value

This field will contain a code describing the type of event. The possible event
codes are defined in ICCDEF:

ICCSC_EV_CONNECT - Connection event
ICCSC_EV_DISCONNECT - Disconnection event
conn_handle

Type: longword (unsigned)

Access: read only

Mechanism: by value

The handle of the connection associated with the event.

data_len
Type: longword (unsigned)
Access: read only

Mechanism: by value

SYS2-65

System Service Descriptions
$ICC_OPEN_ASSOC

SYS2-66

The length (in bytes) of the incoming data. This value specifies the length of the
buffer data_bfr, and will be between 0 and 1000, with zero indicating no data.

data_bfr
Type: character-coded text string
Access: read only

Mechanism: by 32-bit or 64-bit value (Alpha and I64); by 32-bit value (VAX)

The 32-bit address of the P1-space buffer containing the data, or zero if no data is
available. The length of this buffer is specified by the argument data_len.

Upon return from the AST, the address of the data is no longer valid. An
application wishing to reference the Connection or Disconnection data after
Return must copy the data from the supplied buffer to storage owned by the
application.

P5
Type: longword (unsigned)
Access: read only

Mechanism: by value

The usage of this argument is dependent on the specified event type code
(event_type).

For connect events (event_type=ICC$C_EV_CONNECT), this argument contains
the length (in bytes) of the buffer available for a reply.

For disconnect events (event_type=ICC$C_EV_DISCONNECT), this argument
contains the user-defined disconnect reason/status from the remote partner.

P6
Type: longword (unsigned) (VAX); quadword (Alpha and I64)
Access: read only

Mechanism: by value

The usage of this argument is dependent on the specified event type code
(event_type).

For connect events (event_type=ICC$C_EV_CONNECT), this argument contains
the EPID of the process requesting the connection, passed by value.

For disconnect events (event_type=ICC$C_EV_DISCONNECT), this argument
contains the user-defined user_context supplied when the connection was
opened. For a client, the user_context is that supplied to the $ICC_CONNECT
call. For a server, it is the value supplied to $ICC_ACCEPT.

P7
Type: character-coded text string
Access: read only

Mechanism: by reference

For connect events: Username, passed by reference (to P1 space buffer) as a
12-character, space-filled string.

The application must copy this information to local storage before exiting from
the connect routine.

For disconnect events, this argument is zero (0).

System Service Descriptions
$ICC_OPEN_ASSOC

2. Data Event Routine

This routine, if supplied by the user when opening the association, allows the
user to be notified of any pending data events over any connections subsequently
opened over that association.

If the user has supplied this routine, the Receive service must only be called in
response to incoming data events signaled by this routine, and must be called
with a buffer large enough to handle the message size specified.

Use of this routine obligates the user to allocate buffers up to the size requested
by the cooperating application. The only recovery provided at this time if a
sufficiently large buffer cannot be allocated is to disconnect the connection.
Failure to issue a receive call or disconnect may stall all further communication
on this connection.

Format
DataEventRtn message_size ,conn_handle ,user_context

C Prototype

void DataEventRtn (unsigned int message_size, unsigned int conn_handle,
unsigned int user_context);

Arguments

message_size

Type: longword (unsigned)
Access: read only
Mechanism: by value

This field will contain the number of bytes in the pending data event.

conn_handle

Type: longword (unsigned)
Access: read only
Mechanism: by value

The handle of the connection associated with the event. This value should be
used as the conn_handle argument to $ICC_RECEIVE.

user_context

Type: longword (unsigned) (VAX); quadword (Alpha and I64)
Access: read only

Mechanism: by value

The user-defined user_context supplied when the connection was opened. For a
client, the user context is that supplied to the $ICC_CONNECT call. For a server,
it is the value supplied to $ICC_ACCEPT.

3. Completion ASTs

Completion ASTs may be supplied to the $ICC_CONNECT[W],
$ICC_DISCONNECT[W], $ICC_TRANSMIT[W], $ICC_RECEIVE[W],
$ICC_TRANSCEIVE[W], and $ICC_REPLY[W] services. In all cases, they are
called at the completion of the requested operation, with the single argument, the
AST parameter supplied when the original service was called, passed by value.

Completion ASTs are not called if the service returns an error prior to
initiating the operation. $ICC_CONNECT and $ICC_ACCEPT accept the flag
ICC$V_SYNCH_MODE which indicates that the routines $ICC_TRANSMIT[W],
$ICC_RECEIVE[W], and $ICC_REPLY[W] are permitted to return the status
SS$_SYNCH, which will indicate that completion has already occurred and the
AST will not be called.

SYS2-67

System Service Descriptions
$ICC_OPEN_ASSOC

Required Access or Privileges

For more information, see the HP OpenVMS System Manager’s Manual.

Required Quota
BYTCNT, BYTLM

Related Services

$ICC_ACCEPT, $ICC_CLOSE_ASSOC, $ICC_CONNECT, $ICC_CONNECTW,
$ICC_DISCONNECT, $ICC_DISCONNECTW, $ICC_RECEIVE,
$ICC_RECEIVEW, $ICC_REJECT, $ICC_REPLY, $ICC_REPLYW,
$ICC_TRANSCEIVE, $ICC_TRANSCEIVEW, $ICC_TRANSMIT,

$ICC_TRANSMITW

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO
SS$ BADPARAM
SS$ DUPLNAM
SS$ EXQUOTA

SS$_INSFARG
SS$_INSFMEM

SS$_IVMODE

SS$_NOLINKS
SS$ NONETMBX
SS$_NOPRIV

SS$_SSFAIL

SS$_TOO_MANY_ARGS

Normal completion.
Access violation on parameter.
Bad parameter value specified.

Specified association name is already registered
(already exists), or default association is already
open.

One or more process quotas has been exceeded
(probably BYTCNT/BYTLM).

Too few arguments supplied.

Not enough system resources or process virtual
memory available.

Attempt to open default association from other
than user mode.

Too many associations open for this process.
Request requires NETMBX privilege.

No privilege for association name access or
logical name table access if using the Registry.
Transport association name table is full,
systemwide.

Too many arguments were specified.

Any failures from the system services: $ENQ,
$DEQ, $CRELNM, $TRNLNM.

System Service Descriptions
$ICC_RECEIVE

SICC_RECEIVE
Receive for Intra-Cluster Communications (ICC)

Receives a single message over a connection.

On Alpha and 164 systems, this service accepts 64-bit addresses.

Format

SYSS$ICC_RECEIVE conn_handle ,ios_icc ,[astadr] ,[astprm] ,recv_buf
,recv_buf_len

C Prototype

sysSicc_receive (unsigned int conn_handle, struct _ios_icc *ios_icc, void
(*astadr)(_ _unknown_params) int64 astprm, char *recv_buf,
unsigned int recv_buf_len);

| J—

Arguments

conn_handle
OpenVMS usage: connection_id

type: longword (unsigned)
access: read only
mechanism: by value

The handle of the fully established connection.

ios_icc

OpenVMS usage: io_status_block

type: four longwords (unsigned)

access: write only

mechanism: by 32-bit or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)
I/O status block:

+2 0
Undefined Completion status
ios_icc$1_rcv_len: recvlen +4
ios_icc$1_req_handle: request_handle +8
ios_icc$1_reply_len: reply_len +12
VM-0464A-Al

Completion codes:

SS$_NORMAL, SS$_EXQUOTA, SS$_INSFMEM, SS$_LINKDISCON,
SS$_BUFOVL, SS$_ACCVIO

astadr

OpenVMS usage: ast_procedure

type: procedure_entry_mask

access: call without stack unwinding

mechanism: by 32-bit or 64-bit linkage reference (Alpha and 164); by 32-bit

reference (VAX)

SYS2-69

System Service Descriptions
$ICC_RECEIVE

SYS2-70

The AST routine to be executed when the operation completes.

astprm

OpenVMS usage: user_arg

type: quadword (unsigned) (Alpha and 164); longword (unsigned)
(VAX)

access: read only

mechanism: by 64-bit value (Alpha and 164); by 32-bit value (VAX)

The parameter to be passed to the AST routine.

recv_buf

OpenVMS usage: byte_stream

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)

The 32-bit or 64-bit address (on Alpha and 164 systems) or the 32-bit address (on
VAX systems) of the buffer to receive the incoming data. The length of this buffer
is specified by the argument recv_buf _len.

recv_buf_len
OpenVMS usage: buffer_length

type: longword (unsigned)
access: read only
mechanism: by value

The length (in bytes) of the buffer available to hold the incoming data. This value
specifies the length of the buffer recv_buf.

I0S_ICC Arguments:
recvien (output)
OpenVMS usage: longword unsigned

type: longword (unsigned)
access: write only
mechanism: by value

This parameter is returned in the ios_ice. $ICC_RECEIVE writes the actual
length of the incoming data message received from the target application (in
bytes) into offset ios_ice$l_rev_len of the ios_ice.

request_handle (output)
OpenVMS usage: request_id

type: longword (unsigned)
access: write only
mechanism: by value

This parameter is returned in the ios_ice. $ICC_RECEIVE writes the
Request/Response handle into offset ios_ice$l_req_handle of the ios_icc. The
request_handle argument is nonzero if the application is expected to reply to
this message.

Description

reply_len (output)

System Service Descriptions
$ICC_RECEIVE

OpenVMS usage: longword_unsigned

type:
access: write only
mechanism: by value

longword (unsigned)

This parameter is returned in the ios_ice. The $ICC_RECEIVE service writes
the maximum length (in bytes) of the expected Reply message into offset
ios_icc$l_reply_len of the ios_ice, if request_handle is nonzero.

This service receives a single message over a connection. If a Request ID is
returned at completion, the partner has used a Transceive system service and
requires data to be returned with a Reply service.

For efficiency reasons, the number of parameters on this routine has been limited
to six parameters. Three additional values are returned by the ios_icc data

structure.

Required Access or Privileges

None.

Required Quota
BYTLM

Related Services

$ICC_ACCEPT, $ICC_CLOSE_ASSOC, $ICC_CONNECT, $ICC_CONNECTW,
$ICC_DISCONNECT, $ICC_DISCONNECTW, $ICC_OPEN_ASSOC,
$ICC_RECEIVEW, $ICC_REJECT, $ICC_REPLY, $ICC_REPLYW,
$ICC_TRANSCEIVE, $ICC_TRANSCEIVEW, $ICC_TRANSMIT,

$ICC_TRANSMITW

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO
SS$_EXBYTLM
SS$_EXQUOTA
SS$_INSFARG
SS$ IVCHAN

SS$_IVMODE

SS$_LINKDISCON
SS$_SYNCH

SS$_TOO_MANY_ARGS
SS$_WRONGSTATE

Normal completion.

Access violation on parameter.

Insufficient byte count quota.

One or more process quotas has been exceeded.
Too few arguments supplied.

Unknown connection specified or invalid
connection handle.

Attempted to use a connection from a more
privileged access mode than the mode in which it
was opened.

The connection has been disconnected.

If synchronous mode was requested at connection
time, this return value indicates that completion
has already occurred and the AST routine, if
specified, will not be called.

Too many arguments specified.
Connection is in the wrong state for the request.

SYS2-71

System Service Descriptions
$ICC_RECEIVEW

$ICC_RECEIVEW
Receive and Wait for Intra-Cluster Communications (ICC)

The Intra-Cluster Communications Receive and Wait service queues a receive
request to the specified connection.

The $ICC_RECEIVEW service completes synchronously; that is, it returns to the
caller with data.

For asynchronous completion, use the $ICC_RECEIVE service; $ICC_RECEIVE
returns to the caller as soon as the receive request is queued, without waiting for
data on the connection.

On Alpha and 164 systems, this service accepts 64-bit addresses.

Format

SYSS$ICC_RECEIVEW conn_handle ,ios_icc ,[astadr] ,[astprm] ,recv_buf
,recv_buf_len

C Prototype

sysSicc_receivew (unsigned int conn_handle, struct _ios_icc *ios_icc, void
(*astadr)(__unknown_params) int64 astprm, char *recv_buf,
unsigned int recv_buf_len);

SYS2-72

System Service Descriptions
$ICC_REJECT

SICC_REJECT
Reject for Intra-Cluster Communications (ICC)

Format

C Prototype

Arguments

Refuses a connection request.

On Alpha and 164 systems, this service accepts 64-bit addresses.

SYSS$ICC_REJECT conn_handle, [reject_buf], [reject_buf_len], [reason]

int sys$icc_reject (unsigned int conn_handle, char * reject_buf, unsigned int
reject_buf_len, unsigned int reason);

conn_handle
OpenVMS usage: connection_id

type: longword (unsigned)
access: read only
mechanism: by value

The handle of the requested connection.

reject_buf

OpenVMS usage: byte_stream

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)

A buffer of up to 1000 bytes of reject data to be sent to the source of the
connection at the completion of the rejection process.

reject_buf_len
OpenVMS usage: buffer_length

type: longword (unsigned)
access: read only
mechanism: by value

The number of bytes in reject_buf to be sent.

reason

OpenVMS usage: cond_code

type: longword (unsigned)
access: read only
mechanism: by value

User-specified reject reason code to be supplied to the remote application.

Default = SS$_REJECT

SYS2-73

System Service Descriptions
$ICC_REJECT

Description

This service is used by a server to refuse an incoming connection request. The
$ICC_REJECT service may only be called after receiving a connection request
AST. After the completion of the service, the client is notified that the connection
was not opened.

Required Access or Privileges
None.

Required Quota
None.

Related Services

$ICC_ACCEPT, $ICC_CLOSE_ASSOC, $ICC_CONNECT, $ICC_CONNECTW,
$ICC_DISCONNECT, $ICC_DISCONNECTW, $ICC_OPEN_ASSOC,
$ICC_RECEIVE, $ICC_RECEIVEW, $ICC_REPLY, $ICC_REPLYW,
$ICC_TRANSCEIVE, $ICC_TRANSCEIVEW, $ICC_TRANSMIT,
$ICC_TRANSMITW

Condition Values Returned

SS$_NORMAL Normal completion.

SS$_ACCVIO Access violation on parameter.

SS$_BADPARAM Bad parameter value specified.

SS$ CLEARED Remote association closed the link before it was
rejected.

SS$_INSFARG Too few arguments supplied.

SS$_IVCHAN Connection not found or Invalid connection
handle.

SS$_LINKDISCON The transport layer has initiated disconnect
before the Reject could be sent to the requester.

SS$ TOO_MANY ARGS Too many arguments specified.

SS$_WRONGSTATE Connection is already open and cannot

be rejected. To close the connection, call

$ICC_DISCONNECT.

SYS2-74

System Service Descriptions
$ICC_REPLY

$ICC_REPLY
Reply for Intra-Cluster Communications (ICC)

Sends a single message over a connection. This service is used in response to the
reception of a Request Handle in a previous $ICC_RECEIVE system service.

On Alpha and 164 systems, this service accepts 64-bit addresses.

Format
SYSS$ICC_REPLY conn_handle ,ios_icc ,[astadr] ,[astprm] ,reply_buf ,reply_len

C Prototype

sysSicc_reply (unsigned int conn_handle, struct _ios_icc *ios_icc, void
(*astadr)(_ _unknown_params) int64 astprm, char *reply_buf,
unsigned int reply_len);

Arguments

conn_handle
OpenVMS usage: connection_id

type: longword (unsigned)
access: read only
mechanism: by value

The handle of the fully established connection.

ios_icc

OpenVMS usage: io_status_block

type: quadword (unsigned)

access: modify

mechanism: by 32-bit or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)
I/O status block:

+2 0

Undefined Completion status

ios_icc$1_replyto_handle: request_handle +4

VM-0465A-Al

Completion status values:

SS$ NORMAL, SS$ EXQUOTA, SS$_INSFMEM, SS$ LINKABORT,
SS$_LINKDISCON

astadr

OpenVMS usage: ast_procedure

type: procedure_entry_mask

access: call without stack unwinding

mechanism: by 32-bit or 64-bit linkage reference (Alpha and 164); by 32-bit

reference (VAX)

The AST routine to be executed when the operation completes.

SYS2-75

System Service Descriptions

$ICC_REPLY
astprm
OpenVMS usage: user_arg
type: quadword (unsigned) (Alpha and 164); longword (unsigned)
(VAX)
access: read only
mechanism: by 64-bit value (Alpha and 164); by 32-bit value (VAX)

Description

SYS2-76

The parameter to be passed to the AST routine.

reply_buf

OpenVMS usage: byte_stream

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)

The 32-bit or 64-bit address (on Alpha and 164 systems) or the 32-bit address (on
VAX systems) of the buffer containing the reply data to be sent. The length of
this buffer is specified by the argument reply_len.

reply_len

OpenVMS usage: buffer_length

type: longword (unsigned)
access: read only
mechanism: by value

The length (in bytes) of the reply data to be sent over the connection. This
value specifies the length of the buffer reply_buf. ICC segments larger buffers
internally.

The maximum Reply length is the smaller of the Reply buffer size supplied in the
$ICC_RECEIVE call, or 1MB.

I0S_ICC Argument:
request_handle (input)
OpenVMS usage: request_id

type: longword (unsigned)
access: read only
mechanism: by value

This parameter is passed through the ios_icc. The Request/Response
handle from the received Transceive request is placed at offset
ios_ice$l_replyto_handle of the ios_ice.

This service is almost identical to the $ICC_TRANSMIT system service in that it
sends a single message over a connection. The only difference is that it is used in
response to the reception of a Request Handle in a previous Receive Data system
service.

When completion is signaled by calling the AST (if supplied), the data has been
delivered to the communications system, but not necessarily to the application at
the other end of the connection. The user can reuse the buffer after completion
has been signaled.

System Service Descriptions
$ICC_REPLY

Alternatively, if the synchronous completion option was requested at connection
time, the service may return the optional success status, SS$_SYNCH. When
SS$_SYNCH is returned, completion has occurred, and no AST will be delivered.

Required Access or Privileges

None.

Required Quota

BYTLM (for Reply buffer)

Related Services

$ICC_ACCEPT, $ICC_CLOSE_ASSOC, $ICC_CONNECT, $ICC_CONNECTW,
$ICC_DISCONNECT, $ICC_DISCONNECTW, $ICC_OPEN_ASSOC,
$ICC_RECEIVE, $ICC_RECEIVEW, $ICC_REJECT, $ICC_REPLYW,
$ICC_TRANSCEIVE, $ICC_TRANSCEIVEW, $ICC_TRANSMIT,

$ICC_TRANSMITW

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO
SS$ BADPARAM
SS$_EXBYTLM
SS$_INSFARG
SS$ IVCHAN

SS$_IVMODE

SS$_LINKDISCON

SS$_NOSUCHID
SS$_SYNCH

SS$_TOO_MANY_ARGS
SS$_WRONGSTATE

Normal completion.

Access violation on parameter.
Bad parameter value specified.
Insufficient byte count quota.
Too few arguments supplied.

Unknown connection specified or invalid
connection handle.

Attempted to use a connection from a more
privileged access mode than the mode in which it
was opened.

An Incoming disconnect event is already in
progress.

The request_handle is invalid.

If synchronous mode was requested at connection
time, this return value indicates that completion
has already occurred and the AST routine, if
specified, will not be called.

Too many arguments specified.
Connection is in the wrong state for the request.

SYS2-77

System Service Descriptions
$ICC_REPLYW

$ICC_REPLYW
Reply and Wait for Intra-Cluster Communications (ICC)

The Intra-Cluster Communications Reply and Wait service transmits a single
message over a connection in response to a $ICC_TRANSCEIVE[W] request.

The $ICC_REPLYW service completes synchronously; that is, it returns to the
caller when the underlying transport layer has released use of the reply buffer.

For asynchronous completion, use the $ICC_REPLY service; $ICC_REPLY returns
to the caller as soon as the transmission request has been queued to the transport
layer, without waiting for notification that the transport layer has released control
of the data buffer.

On Alpha and 164 systems, this service accepts 64-bit addresses.

Format
SYS$ICC_REPLYW conn_handle, ios_icc, [astadr], [astprm], reply_buf, reply_len

C Prototype

sysSicc_replyw (unsigned int conn_handle, struct _ios_icc *ios_icc, void
(*astadr)(__unknown_params) int64 astprm, char *reply_buf,
unsigned int reply_len);

SYS2-78

System Service Descriptions
$ICC_TRANSCEIVE

SICC_TRANSCEIVE
Transceive for Intra-Cluster Communications (ICC)

Sends a single message over a connection and then waits for a reply.

On Alpha and 164 systems, this service accepts 64-bit addresses.

Format

SYSS$ICC_TRANSCEIVE conn_handle ,ios_icc ,[astadr] ,[astprm] ,send_buf
,send_len

C Prototype

sysSicc_transceive (unsigned int conn_handle, struct _ios_icc *ios_icc, void
(*astadr)(_ _unknown_params) int64 astprm, char *send_buf,
unsigned int send_len);

Arguments

conn_handle
OpenVMS usage: connection_id

type: longword (unsigned)
access: read only
mechanism: by value

The handle of the fully established (open) connection.

ios_icc

OpenVMS usage: io_status_block

type: five longwords (unsigned)

access: modify

mechanism: by 32-bit or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)
I/O status block:

+2 0
Undefined Completion status
jos_icc$1_txrcv_len: returned_data_len +4
ios_icc$a_reply_buffer: reply_buf +8
+12
ios_icc$1_txreply_len: reply_buf_len +16
VM-0466A-Al

Completion status values:

SS$_NORMAL, SS$_EXQUOTA, SS$_INSFMEM, SS$_BUFOVFL,
SS$_LINKABORT, SS$_LINKDISCON

astadr

OpenVMS usage: ast_procedure

type: procedure_entry_mask

access: call without stack unwinding

mechanism: by 32-bit or 64-bit linkage reference (Alpha and 164); by 32-bit

reference (VAX)

SYS2-79

System Service Descriptions
$ICC_TRANSCEIVE

SYS2-80

The AST routine to be executed when the operation completes.

astprm

OpenVMS usage: user_arg

type: quadword (unsigned) (Alpha and 164); longword (unsigned)
(VAX)

access: read only

mechanism: by 64-bit value (Alpha and 164); by 32-bit value (VAX)

The parameter to be passed to the AST routine.

send_buf

OpenVMS usage: byte_stream

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)

The 32-bit or 64-bit address (on Alpha and 164 systems) or the 32-bit address
(on VAX systems) of the buffer containing the data to be sent. The length of this
buffer is specified by the argument send_len.

send_len

OpenVMS usage: buffer size

type: longword (unsigned)
access: read only
mechanism: by value

The length (in bytes) of the data to be sent over the connection. This value
specifies the length of the buffer send_buf.

I0S_ICC Arguments:
returned_data_len (output)
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by value

This parameter is passed through the ios_icec. The $ICC_TRANSCEIVE
service writes the actual length (in bytes) of the reply data received into offset
ios_icc$l_txrev_len of the ios_ice. This value represents how much data in
reply_buf was returned by the target application.

reply_buf (input)
OpenVMS usage: byte_stream

type: character-coded text string
access: write only
mechanism: by 32-bit or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)

This parameter is passed through the ios_icc. The 32-bit or 64-bit address (on
Alpha and 164 systems) or the 32-bit address (on VAX systems) of the buffer
available to receive the incoming reply message is placed in offset ios_icc$a_
reply_buffer of the ios_icc.

Description

System Service Descriptions
$ICC_TRANSCEIVE

reply_buf_len (input)
OpenVMS usage: buffer_size

type: longword (unsigned)
access: read only
mechanism: by value

This parameter is passed through the ios_ice. The length (in bytes) of the
buffer to receive the reply message. This value specifies the length of the buffer
reply_buf. This value is placed in offset ios_icc$l_txreply_len of the ios_ice.

This service sends a single message over a connection and then waits for a
reply. When completion is signaled by calling the AST (if supplied), the data
has been delivered to the application at the other end of the connection and that
application has delivered a reply, now present in the reply buffer. The user can
reuse the send and reply buffers after completion.

For efficiency reasons, the number of parameters on this routine has been limited
to six parameters. Three additional parameters are passed by the ios_ice data
structure.

Required Access or Privileges
None.

Required Quota
BYTLM (Send and Reply buffers)

Related Services

$ICC_ACCEPT, $ICC_CLOSE_ASSOC, $ICC_CONNECT, $ICC_CONNECTW,
$ICC_DISCONNECT, $ICC_DISCONNECTW, $ICC_OPEN_ASSOC,
$ICC_RECEIVE, $ICC_RECEIVEW, $ICC_REJECT, $ICC_REPLY,
$ICC_REPLYW, $ICC_TRANSCEIVEW, $ICC_TRANSMIT, $ICC_TRANSMITW

Condition Values Returned

SS$_NORMAL Normal completion.

SS$_ACCVIO Access violation on parameter.

SS$_ BADPARAM Bad parameter value specified.

SS$_EXBYTLM Insufficient byte count quota.

SS$_INSFARG Too few arguments were supplied.

SS$_INSFMEM Insufficient process or system memory to
complete the request.

SS$_IVCHAN Unknown connection specified or invalid
connection handle.

SS$ IVMODE Attempted to use a connection from a more

privileged access mode than the mode in which it
was opened.

SS$_LINKDISCON An Incoming disconnect event is in progress.

SYS2-81

System Service Descriptions
$ICC_TRANSCEIVE

SYS2-82

SS$_SYNCH

SS$_TOO_MANY_ARGS
SS$_ WRONGSTATE

If synchronous mode was requested at connection
time, this return value indicates that completion
has already occurred and the AST routine, if
specified, will not be called.

Too many arguments were specified.

Connection is in wrong state for request.

System Service Descriptions
$ICC_TRANSCEIVEW

$SICC_TRANSCEIVEW
Transceive and Wait for Intra-Cluster Communications (ICC)

Format

C Prototype

Sends a single message over a connection and waits for a reply.

The $ICC_TRANSCEIVEW service completes synchronously; that is, it returns to
the caller when the data from the reply is available.

For asynchronous completion, use the $ICC_TRANSCEIVE service;
$ICC_TRANSCEIVE returns to the caller when the transmit portion of the
tranceive request has been queued to the transport layer, but without waiting for
notification that the transport layer has released control of the data buffer or for
the reply data from the receiving end of the connection.

On Alpha and 164 systems, this service accepts 64-bit addresses.

SYS$ICC_TRANSCEIVEW conn_handle ,ios_icc ,[astadr] ,[astprm] ,send_buf
,send_len

sysSicc_transceivew (unsigned int conn_handle, struct _ios_icc *ios_icc, void
(*astadr)(__unknown_params), _ _int64 astprm, char
*send_buf, unsigned int send_len);

SYS2-83

System Service Descriptions
$SICC_TRANSMIT

SICC_TRANSMIT
Transmit for Intra-Cluster Communications (ICC)

Sends a single message over a connection.

On Alpha and 164 systems, this service accepts 64-bit addresses.

Format
SYS$ICC_TRANSMIT conn_handle ,ios_icc ,[astadr] ,[astprm] ,send_buf ,send_len

C Prototype

sys$icc_transmit (unsigned int conn_handle, struct _ios_icc *ios_icc, void
(*astadr)(_ _unknown_params) int64 astprm, char *send_buf,
unsigned int send_len);

| J—

Arguments

conn_handle
OpenVMS usage: connection_id

type: longword (unsigned)
access: read only
mechanism: by value

The handle of the fully established (open) connection to send the data over.

ios_icc

OpenVMS usage: ios_status_block

type: structure I0S_ICC

access: write only

mechanism: by 32-bit or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)
I/0 status block:

+2 0
Undefined Completion status
Unused
+6 +4
VM-0467A-Al

Completion status values:

SS$ NORMAL, SS$ EXQUOTA, SS$ INSFMEM, SS$_LINKABORT,
SS$_LINKDISCON

astadr

OpenVMS usage: ast_procedure

type: procedure_entry_mask

access: call without stack unwinding

mechanism: by 32-bit or 64-bit linkage reference (Alpha and 164); by 32-bit

reference (VAX)

The AST routine to be executed when the operation completes.

SYS2-84

Description

System Service Descriptions
$SICC_TRANSMIT

astprm

OpenVMS usage: user_arg

type: quadword (unsigned) (Alpha and 164); longword (unsigned)
(VAX)

access: read only

mechanism: by 64-bit value (Alpha and 164); by 32-bit value (VAX)

The parameter to be passed to the AST routine.

send_buf

OpenVMS usage: byte_stream

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)

The 32-bit or 64-bit address (on Alpha and 164 systems) or the 32-bit address
(on VAX systems) of the buffer containing the data to be sent. The length of this
buffer is specified by the argument send_len.

send_len

OpenVMS usage: buffer_length

type: longword (unsigned)
access: read only
mechanism: by value

The length (in bytes) of the data to be sent over the connection. This value
specifies the length of the buffer send_buf. The maximum transmission size is
1MB.

This service sends a single message over a connection. When completion is
signalled by calling the AST (if supplied), the data has been delivered to the
communications system, but not necessarily to the system or application at the
other end of the connection. After completion, the user can reuse the buffer.

Alternatively, if the synchronous completion option was requested at connection
time, the service may return the optional success status, SS$_SYNCH. When
SS$_SYNCH is returned, completion has occurred, and no AST will be delivered.

Required Access or Privileges
None.

Required Quota
BYTLM (send_buf)

Related Services

$ICC_ACCEPT, $ICC_CLOSE_ASSOC, $ICC_CONNECT, $ICC_CONNECTW,
$ICC_DISCONNECT, $ICC_DISCONNECTW, $ICC_OPEN_ASSOC,
$ICC_RECEIVE, $ICC_RECEIVEW, $ICC_REJECT, $ICC_REPLY,
$ICC_REPLYW, $ICC_TRANSCEIVE, $ICC_TRANSCEIVEW,
$ICC_TRANSMITW

SYS2-85

System Service Descriptions
$SICC_TRANSMIT

Condition Values Returned

SYS2-86

SS$ NORMAL
SS$_ACCVIO
SS$ BADPARAM
SS$_EXBYTLM
SS$_INSFARG
SS$_INSFMEM

SS$_IVCHAN

SS$_IVMODE

SS$_LINKDISCON
SS$_SYNCH

SS$_TOO_MANY_ARGS
SS$_WRONGSTATE

Normal completion.

Access violation on parameter.
Bad parameter value specified.
Insufficient byte count quota.

Too few arguments were supplied.

Insufficient process or system memory to
complete the request.

Unknown connection specified or invalid
connection handle.

Attempted to use a connection from a more
privileged access mode than the mode in which it
was opened.

An Incoming disconnect event is in progress.

If synchronous mode was requested at connection
time, this return value indicates that completion
has already occurred and the AST routine, if
specified, will not be called.

Too many arguments were specified.

Connection is in the wrong state for the request.

System Service Descriptions
$ICC_TRANSMITW

$SICC_TRANSMITW
Transmit and Wait for Intra-Cluster Communications (ICC)

Sends a single message over a connection.

The $ICC_TRANSMITW service completes synchronously; that is, it returns to
the caller when the underlying transport layer has released use of the Transmit
buffer. This does not mean that the data has been received by the partner
application.

For asynchronous completion, use the $ICC_TRANSMIT service. The
$ICC_TRANSMIT service returns to the caller as soon as the transmission
request has been queued to the transport layer, without waiting for notification
that the transport layer has released control of the data buffer.

On Alpha and 164 systems, this service accepts 64-bit addresses.

Format
SYSS$ICC_TRANSMITW conn_handle ,ios_icc ,[astadr] ,[astprm] ,send_buf
,send_len
C Prototype

sys$icc_transmitw (unsigned int conn_handle, struct _ios_icc *ios_icc, void
(*astadr)(_ _unknown_params) int64 astprm, char *send_buf,
unsigned int send_len);

SYS2-87

System Service Descriptions

$IDTOASC

$IDTOASC

Translate Identifier to Identifier Name

Format

C Prototype

Arguments

SYS2-88

Translates the specified identifier value to its identifier name.

On Alpha and 164 systems, this service accepts 64-bit addresses.

SYS$IDTOASC id ,[namlen] ,[nambuf] ,[resid] ,[attrib] ,[contxt]

int sys$idtoasc (unsigned int id, unsigned short int *namlen, void *nambuf, unsigned
int *resid, unsigned int *attrib, unsigned int *contxt);

id

OpenVMS usage: rights_id

type: longword (unsigned)
access: read only
mechanism: by value

Binary identifier value translated by $IDTOASC. The id argument is a longword
containing the binary value of the identifier. To determine the identifier names
of all identifiers in the rights database, you specify id as —1 and call $IDTOASC
repeatedly until it returns the status code SS$_NOSUCHID. The identifiers are
returned in alphabetical order.

namlen

OpenVMS usage: word_unsigned

type: word (unsigned)

access: write only

mechanism: by 32- or 64-bit reference (Alpha and 164); by 32-bit reference

(VAX)

Number of characters in the identifier name translated by $IDTOASC. The
namlen argument is the 32- or 64-bit address (on Alpha and 164 systems) or the
32-bit address (on VAX systems) of a word containing the length of the identifier
name written to nambuf.

nambuf

OpenVMS usage: char_string

type: character-coded text string

access: write only

mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

(Alpha and 164); by 32-bit descriptor-fixed-length string
descriptor (VAX)

Identifier name text string returned when $IDTOASC completes the translation.
The nambuf argument is the 32- or 64-bit address (on Alpha and 164 systems)
or the 32-bit address (on VAX systems) of a descriptor pointing to the buffer in
which the identifier name is written.

System Service Descriptions

SIDTOASC
resid
OpenVMS usage: rights_id
type: longword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference (Alpha and 164); by 32-bit reference

(VAX)

Identifier value of the identifier name returned in nambuf. The resid argument
is the 32- or 64-bit address (on Alpha and 164 systems) or the 32-bit address (on
VAX systems) of a longword containing the 32-bit code of the identifier.

attrib

OpenVMS usage: mask_longword

type: longword (unsigned)

access: write only

mechanism: by by 32- or 64-bit reference (Alpha and 164); by 32-bit

reference (VAX)

Mask of attributes associated with the identifier returned in resid. The attrib
argument is the 32- or 64-bit address (on Alpha and 164 systems) or the 32-bit
address (on VAX systems) of a longword containing the attribute mask.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The following symbols for each bit position are defined in the system
macro library ($KGBDEF):

Bit Position Meaning When Set

KGB$V_DYNAMIC Allows holders of the identifier to remove
it from or add it to the process rights list
using the DCL command SET RIGHTS_
LIST.

KGB$V_NAME HIDDEN Allows holders of an identifier to have it
translated, either from binary to ASCII
or vice versa, but prevents unauthorized
users from translating the identifier.

KGB$V_NOACCESS Makes any access rights of the identifier
null and void. This attribute is intended
as a modifier for a resource identifier or
the Subsystem attribute.

KGB$V_RESOURCE Allows holders of an identifier to charge
disk space to the identifier. It is used
only for file objects.

KGB$V_SUBSYSTEM Allows holders of the identifier to create
and maintain protected subsystems by
assigning the Subsystem ACE to the
application images in the subsystem.

contxt

OpenVMS usage: context

type: longword (unsigned)

access: modify

mechanism: by 32- or 64-bit reference (Alpha and 164); by 32-bit reference

(VAX)

SYS2-89

System Service Descriptions

$IDTOASC

Description

Context value used when repeatedly calling $IDTOASC. The contxt argument
is the 32- or 64-bit address (on Alpha and 164 systems) or the 32-bit address (on
VAX systems) of a longword used while $IDTOASC searches for all identifiers.
The context value must be initialized to the value 0, and the resulting context of
each call to $IDTOASC must be presented to each subsequent call. After contxt
is passed to $IDTOASC, you must not modify its value.

The Translate Identifier to Identifier Name service translates the specified binary
identifier value to an identifier name. While the primary purpose of this service
is to translate the specified identifier to its name, you can also use it to find all
identifiers in the rights database. Owner or read access to the rights database

is required. To determine all the identifiers, call $IDTOASC repeatedly until it
returns the status code SS$_NOSUCHID. When SS$_NOSUCHID is returned,
$IDTOASC has returned all the identifiers, cleared the context value, and
deallocated the record stream.

If you complete your calls to $IDTOASC before SS$_NOSUCHID is returned, use
$FINISH_RDB to clear the context value and deallocate the record stream.

When you use wildcards with this service, the records are returned in identifier
name order.

Required Access or Privileges

None, unless the id argument is NAME_HIDDEN, in which case you must hold
the identifier or have read access to the rights list.

Required Quota
None

Related Services

$ADD _HOLDER, $ADD_IDENT, $ASCTOID, $CHECK_ACCESS, $CHKPRO,

$CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER, $FINISH_RDB,
$FORMAT ACL, $FORMAT AUDIT, $GET_SECURITY, $GRANTID, $HASH_
PASSWORD, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ACL,

$REM_HOLDER, $REM_IDENT, $REVOKID, $SET_SECURITY

Condition Values Returned

SYS2-90

SS$_ NORMAL The service completed successfully.

SS$_ACCVIO The namlen, nambuf, resid, attrib, or contxt
argument cannot be written by the caller.

SS$_INSFMEM The process dynamic memory is insufficient for
opening the rights database.

SS$_IVCHAN The contents of the context longword are not
valid.

SS$_IVIDENT The specified identifier is of invalid format.

SS$ NOIOCHAN No more rights database context streams are
available.

System Service Descriptions
$IDTOASC

SS$_NORIGHTSDB The rights database does not exist.
SS$_NOSUCHID The specified identifier name does not exist in

the rights database, or the entire rights database
has been searched if the ID is —1.

Because the rights database is an indexed file that you access with OpenVMS
RMS, this service can also return RMS status codes associated with operations
on indexed files. For descriptions of these status codes, refer to the OpenVMS
Record Management Services Reference Manual.

SYS2-91

System Service Descriptions
SIEEE_SET_FP_CONTROL (Alpha and 164)

SIEEE_SET_FP_CONTROL (Alpha and 164)
Set IEEE Floating-Point Control Register

Format

C Prototype

Arguments

On Alpha and 164 systems, modifies IEEE floating-point state and, optionally,
returns the previous value.

The service provides the mechanism to set the specified state bits, to clear the
specified state bits, and to swap one set of state bits for another.

SYSS$IEEE_SET_FP_CONTROL [cIrmsk] ,[setmsk] ,[prvmsk]

int sys$ieee_set_fp_control (struct _ieee *clrmsk, struct _ieee *setmsk, struct _ieee

*prvmsk);
clrmsk
OpenVMS usage: mask_quadword
type: quadword (unsigned)
access: read only
mechanism: by reference

Address of a quadword bit mask to be cleared in the IEEE floating-point control
register.

The $IEEEDEF macro defines symbols for the floating-point control register.
Table SYS2—-3 shows the symbols, their corresponding masks, and their
meaning:

Table SYS2-3 Format of the IEEE Floating-Point Control Register (Alpha and 164)

Symbol Mask Meaning

IEEE$M_TRAP ENABLE INV 2 Enable invalid operation exception
IEEE$SM_TRAP_ENABLE_DZE 4 Enable divide by 0 exception
IEEE$M_TRAP_ENABLE _OVF 8 Enable overflow exception
IEEE$M_TRAP_ENABLE UNF 10 Enable underflow exception
IEEE$M_TRAP ENABLE INE 20 Enable inexact exception
IEEE$SM_TRAP_ENABLE_DNOE 40 Enable denormal operand exception
IEEE$SM_MAP_DNZ 2000 Denormal operands are mapped to 0.0
IEEE$M_MAP UMZ 4000 Underflow results are mapped to 0.0
IEEE$M_INHERIT 8000 Inherit FP state on thread create
IEEE$M_STATUS_INV 20000 Invalid operation
IEEE$M_STATUS_DZE 40000 Divide by 0

IEEE$M_STATUS_OVF 80000 Overflow

SYS2-92

(continued on next page)

System Service Descriptions
SIEEE_SET_FP_CONTROL (Alpha and 164)

Table SYS2-3 (Cont.) Format of the IEEE Floating-Point Control Register (Alpha and 164)

Symbol Mask Meaning
IEEE$M_STATUS_UNF 100000 Underflow
IEEE$M_STATUS_INE 200000 Inexact
IEEE$M_STATUS DNO 400000 Denormal operand
setmsk
OpenVMS usage: mask_quadword
type: quadword (unsigned)
access: read only
mechanism: by reference
Address of a quadword bit mask to be set in the IEEE floating-point control
register.
Table SYS2-3 shows the format of the IEEE floating-point control register.
prvmsk
OpenVMS usage: mask_quadword
type: quadword (unsigned)
access: write only
mechanism: by reference
Address of a quadword to receive the previous value of the IEEE floating-point
control register.
Description

The Set IEEE Floating-Point Control Register service updates the IEEE floating-
point control register, maintained by the operating system, with the values
supplied by the calling program.

The following steps are used to update the register:

1. If the prvmsk argument is specified, $IEEE_SET_FP_CONTROL first reads
the previous value of the IEEE floating-point control register.

2. If the clrmsk argument is specified, $IEEE_SET_FP_CONTROL then clears
the specified bit masks in the clrmsk argument.

3. If the setmsk argument is specified, $IEEE_SET_FP_CONTROL then sets
the specified bit masks in the setmsk argument.

A program can swap the IEEE floating-point control register (that is, save the old
value and specify a new value) by specifying the following:

e The clrmsk argument with the address of a quadword of all 1s

¢ The setmsk argument with the address of a quadword that holds the new
register value

¢ The prvmsk argument with the address of a quadword to save the old
register value

SYS2-93

System Service Descriptions
SIEEE_SET_FP_CONTROL (Alpha and 164)

On 164 systems, the initial state value and the scope of the modified state
values differ depending on the location of the call to this routine, as shown in the
following table.

Location of

Call State Value Scope of New State Value

Mainline Determined by the compiler Change is in effect until this
switches used when compiling service is called again, with the
the modules. exception of ASTs (see below).

Condition The same as the state in effect Change is in effect until all

handler when the condition occurs, remaining condition handlers
unless the setting was changed have been called or this service
by a previous condition handler. is called again.

AST Determined by the compiler Change is in effect only until

routine switches used when compiling the AST completes or this

the modules, regardless of the
state value in effect when the
AST was triggered.

service is called again.

On Alpha systems, calling this routine changes the setting for ASTs as well as
the mainline program.

Required Access or Privilege

None

Required Quota

None

Related Services

$IEEE_SET PRECISION_MODE
$IEEE_SET ROUNDING_MODE

Condition Values Returned

SYS2-94

SS$_NORMAL
SS$_ACCVIO

The service completed successfully.

The specified argument cannot be read or cannot

be written.

System Service Descriptions
$SIEEE_SET_PRECISION_MODE (164 Only)

$IEEE_SET_PRECISION_MODE (164 Only)
Set IEEE Precision Mode

On 164 systems, modifies the IEEE precision mode and, optionally, returns the
previous value.

Format
SYS$IEEE_SET_PRECISION_MODE new_value , [*prev_value]

C Prototype

int sys$ieee_set_rounding_mode (int new_value, int *prev_value);

Arguments
new_value
OpenVMS usage: IEEE precision mode
type: longword (unsigned)
access: read only
mechanism: by value
The new value can be one of the following:
Symbol Value Meaning
IEEE$C PM_NO CHANGE -1 No change. Just
get previous value
IEEE$C PM _SINGLE 0 Single Precision
IEEE$C_PM_DOUBLE 2 Double Precision
IEEE$C_PM_DOUBLE_EXTENDED 3 Double-Extended
Precision
prev_value
OpenVMS usage: IEEE precision mode
type: longword (unsigned)
access: write only
mechanism: by reference
The previous value is a pointer to a return value that can be one of the last three
items from the table showing new values.
Description

The initial precision mode and the scope of the modified precision mode differ
depending on the location of the call to this routine, as shown in the following
table.

SYS2-95

System Service Descriptions
$SIEEE_SET_PRECISION_MODE (164 Only)

SYS2-96

Location of
Call Initial Precision Mode Scope of New Precision Mode
Mainline Determined by the compiler Change is in effect until this
switches used when compiling service is called again with the
the modules. exception of ASTs (see below).
Condition The same as the precision mode Change is in effect until all
handler in effect when the condition remaining condition handlers
occurs, unless the setting was have been called or this service
changed by a previous condition is called again.
handler.
AST Determined by the compiler Change is in effect only until
routine switches used when compiling the AST completes or this

the modules, regardless of the
precision in effect when the AST
was triggered.

service is called again.

Required Access or Privileges

None

Required Quotas

None

Related Services

$IEEE_SET FP_CONTROL
$IEEE_SET ROUNDING_MODE

System Service Descriptions
$SIEEE_SET_ROUNDING_MODE (164 Only)

$SIEEE_SET_ROUNDING_MODE (164 Only)
Set IEEE Rounding Mode

On 164 systems, modifies the IEEE rounding mode and, optionally, returns the
previous value.

Format
SYS$IEEE_SET_ROUNDING_MODE new_value , [*prev_value]

C Prototype

int sys$ieee_set_rounding_mode (int new_value, int *prev_value); ,

Arguments
new_value
OpenVMS usage: IEEE rounding mode
type: longword (unsigned)
access: read only
mechanism: by value
The new value can be one of the following:
Symbol Value Meaning
IEEE$C RM _NO CHANGE -1 No change. Just get previous value
IEEE$C_ RM NEAREST 0 Nearest (or even)
IEEE$C_RM_DOWN 1 -Infinity (down)
IEEE$C_RM_UP 2 +Infinity (up)
IEEE$C RM TRUNCATE 3 Zero (truncate/chop)
prev_value
OpenVMS usage: IEEE rounding mode
type: longword (unsigned)
access: write only
mechanism: by reference
The previous value is a pointer to a return value that can be one of the last four
items from the table showing new values.

Description

The initial rounding mode and the scope of the modified rounding mode differ
depending on the location of the call to this routine, as shown in the following
table.

SYS2-97

System Service Descriptions
$SIEEE_SET_ROUNDING_MODE (164 Only)

SYS2-98

Location of
Call Initial Rounding Mode Scope of New Rounding Mode
Mainline Determined by the compiler Change is in effect until this
switches used when compiling service is called again, with the
the modules. exception of ASTs (see below).
Condition The same as the rounding mode Change is in effect until all
handler in effect when the condition remaining condition handlers
occurs, unless the setting was have been called or this service
changed by a previous condition is called again.
handler.
AST Determined by the compiler Change is in effect only until
routine switches used when compiling the AST completes or this

the modules, regardless of the
rounding in effect when the AST
was triggered.

service is called again.

Required Access or Privileges

None

Required Quota

None

Related Services

$IEEE_SET FP_CONTROL
$IEEE_SET PRECISION_MODE

System Service Descriptions
SINIT_SYS_ALIGN_FAULT_REPORT (Alpha and 164)

SINIT_SYS_ALIGN_FAULT_REPORT (Alpha and 164)
Initialize System Alignment Fault Reporting

On Alpha and 164 systems, initializes system process alignment fault reporting.

This service accepts 64-bit addresses.

Format
SYSS$INIT_SYS_ALIGN_FAULT_REPORT match_table ,buffer_size ,flags

C Prototype

int sys$init_sys_align_fault_report (void *match_table, int buffer_size, unsigned int

flags);
Arguments
match_table
OpenVMS usage: address
type: longword (unsigned)
access: read
mechanism: by 32-bit or 64-bit reference

Describes the system fault match table. The match_table argument is the 32-bit
or 64-bit virtual address of an array of longwords describing the system fault
match table. The first longword is the number of match entries; the remaining
longwords are the match entries.

The match table is used to restrict the number of alignment faults reported. Each
entry in the table is a bit mask divided into three groups: mode bits, program
counter (PC) space bits, and virtual address (VA) space bits.

The following table lists the symbols that can be used to define these bits:

Bit Type Symbols

Mode bits AME$M_KERNEL_MODE Kernel mode
AME$M_EXEC_MODE Executive mode
AMES$M _SUPER_MODE Supervisor mode
AME$M USER_MODE User mode

Program counter bits ~AME$M_USER_PC PC in User space
AME$M_SYSTEM_PC PC in System space

Virtual address bits AME$M _SYSTEM VA VA in System space
AME$M_USER_VA_PO VA in User PO space
AME$M_USER_VA_P1 VA in User P1 space
AME$M_USER_VA_P2 VA in User P2 space

The following diagram illustrates the data structure of the match table:

SYS2-99

System Service Descriptions
SINIT_SYS_ALIGN_FAULT_REPORT (Alpha and 164)

Description

SYS2-100

Length n

Entry 0

Entry n

ZK-4981A-GE

When an alignment fault occurs, a fault bit mask is created with one bit set
in each group. The alignment fault handler then compares this fault bit mask
against each entry in the match table. If the fault bit mask is a subset of an
entry in the match table, the fault is reported.

buffer_size

OpenVMS usage: byte count

type: longword (signed)
access: read

mechanism: by value

The number of bytes to allocate, from nonpaged pool, to save the alignment fault
data. The buffer you allocate must be sufficient to accommodate one data item of
the size specified in the flags argument.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag bit mask specifying options for the $GET_SYS_ALIGN_FAULT DATA
operation.

If the flags argument is 0, data items of size AFR$K_VMS_LENGTH will be
returned. If the flags argument is AFR$M_USER_INFO, the user name and
image name are added to each data item and they are returned in a buffer of
length AFR$K_EXTENDED_LENGTH. If the user name and image name are not
available, an empty string is returned in the data item.

The Initialize System Alignment Fault Reporting service initializes system
alignment fault reporting.

System alignment faults must be written to a buffer. The following diagram
illustrates the format in which system alignment fault data is saved in the buffer:

63 0

AFR$Q_FAULT_PC

AFR$Q_FAULT_VA

AFR$Q_RESERVED

ZK-4982A-GE

System Service Descriptions
SINIT_SYS_ALIGN_FAULT_REPORT (Alpha and 164)

Only one user on a system can initialize system alignment fault reporting at any
time. Subsequent calls will return SS$_AFR_ENABLED.

System alignment fault reporting is disabled when the program that called the
service completes.

Required Access or Privileges

CMKRNL privilege is required.

Required Quota
None

Related Services

$GET_ALIGN_FAULT_DATA, $GET_SYS_ALIGN_FAULT_DATA, $PERM_DIS_
ALIGN_FAULT_REPORT, $PERM_REPORT_ALIGN_FAULT, $START ALIGN_
FAULT_REPORT, $STOP_ALIGN_FAULT_REPORT, $STOP_SYS ALIGN_
FAULT_REPORT

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$ ACCVIO The match table is not read accessible.
SS$_AFR_ENABLED The service was already called.

SS$ BADPARAM The buffer_size argument is less than the

minimum size required. If the flags argument
is 0, AFR$K_VMS_LENGTH + 32 is required. If
the flags argument is 1, AFR$K_EXTENDED_
LENGTH + 32 is required.

SS$_NOPRIV The caller does not have CMKRNL privilege.

SYS2-101

System Service Descriptions
SINIT_VOL

SINIT _VOL
Initialize Volume

Formats a disk or magnetic tape volume and writes a label on the volume. At the
end of initialization, the disk is empty except for the system files containing the
structure information. All former contents of the volume are lost.

Format
SYSS$INIT_VOL devnam, volnam [,itmist]

C Prototype

int sys$init_vol (void *devnam, void *volnam, void *itmist);

Arguments
devnam
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the device on which the volume is physically mounted. The descriptor
must point to the device name, a character string of 1 to 64 characters. The
device name can be a physical device name or a logical name; if it is a logical
name, it must translate to a physical name.

The device does not have to be currently allocated; however, allocating the device
before initializing it is recommended.

volnam

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Identification to be encoded on the volume. The descriptor must point to the
volume name, a character string of 1 to 12 characters. For a disk volume name,
you can specify a maximum of 12 ANSI characters; for a magnetic tape volume
name, you can specify a maximum of 6 ANSI “a” characters.

Any valid ANSI “a” characters can be used; these include numbers, uppercase
letters, and any one of the following nonalphanumeric characters:

Y% () *F+,-. /5 <=>

HP strongly recommends that a disk volume name consist of only alphanumeric
characters, dollar signs ($), underscores (_), and hyphens (-).

itmlist

OpenVMS usage: item_list_3

type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options that can be used when initializing the volume.
The itmlst argument is the address of a list of item descriptors, each of which

SYS2-102

System Service Descriptions
SINIT_VOL

describes one option. The list of item descriptors is terminated by a longword of
0.

The following diagram depicts the format of a single item descriptor:
31 15 0

ltem code Buffer length

Buffer address

Return length address

ZK-5186A-GE
The following table defines the item descriptor fields:
Descriptor Field Definition
Buffer length A word specifying the length (in bytes) of the buffer

that supplies the information $INIT_VOL needs to
process the specific item code. The length of the
buffer needed depends on the item code specified in
the item descriptor.

Item code A word containing an option for the initialize
operation. These codes are defined by the
$INITDEF macro. There are three types of item
codes:

Boolean item code Boolean item codes specify
a true or false value. The
form INIT$_code specifies
a true value and the form
INIT$_NO_code specifies
a false value. For Boolean
item codes, the buffer
length and buffer address
fields of the item descriptor
must be 0.

Symbolic value item Symbolic value item codes

code specify one of a specified
range of possible choices.
The buffer length and
buffer address fields of the
item descriptor must be 0.

Input value item code Input value item codes
specify a value to be used
by $INIT_VOL. The buffer
length and buffer address
fields of the item descriptor
must be nonzero.

Buffer address A longword containing the address of the buffer that
supplies information to $INIT_VOL.

SYS2-103

System Service Descriptions

$INIT_VOL

Item Codes

SYS2-104

Descriptor Field Definition

Return length address This field is not used.

INIT$_ACCESSED
An input item code that specifies the number of directories allowed in system
space on the volume.

You must specify an integer between 0 and 255 in the input buffer. The default
value is 3.

The INIT$_ACCESSED item code applies only to Files-11 On-Disk Structure
Level 1 disks.

INITS_ BADBLOCKS_LBN

An input item code that enables $INIT_VOL to mark bad blocks on the volume;
no data is written to those faulty areas. INIT$_BADBLOCKS_LBN specifies
faulty areas on the volume by logical block number and block count.

The buffer from which $INIT_VOL reads the option information contains an
array of quadwords containing information in the following format:

31 0
Logical block number

Count

ZK-1590A-GE

The following table describes the information to be specified for INIT$_
BADBLOCKS_LBN:

Field Symbol Name Description
Logical block INIT$L._BADBLOCKS_LBN Specifies the logical block
number number of the first block to be
marked as allocated.
Count INIT$L_BADBLOCKS Specifies the number of
COUNT blocks to be allocated. This

range begins with the first
block, as specified in INIT$L_
BADBLOCKS_LBN.

For example, if the input buffer contains the values 5 and 3, INIT_VOL starts at
logical block number 5 and allocates 3 blocks.

The number of entries in the buffer is determined by the buffer length field in the
item descriptor.

All media supplied by HP and supported on the operating system, except disks
and TU58 cartridges, are factory formatted and contain bad block data. The Bad
Block Locator utility (BAD) or the diagnostic formatter EVRAC can be used to
refresh the bad block data or to construct it for the disks and TU58 cartridges.
The INIT$_BADBLOCKS_LBN item code is necessary only to enter bad blocks
that are not identified in the volume’s bad block data. For more information, see
the OpenVMS Bad Block Locator Utility Manual (available on the Documentation
CD-ROM).

System Service Descriptions
SINIT_VOL

The INIT$_BADBLOCKS_LBN item code applies only to disks.

INIT$_BADBLOCKS_SEC

An input item code that specifies faulty areas on the volume by sector, track,
cylinder, and block count. $INIT_VOL marks the bad blocks as allocated; no data
is written to them.

The input buffer must contain an array of octawords containing information in
the following format:

31 0
Sector
Count
Track
Cylinder
ZK-1591A-GE

The following table describes the information to be specified for INIT$_
BADBLOCKS_SEC:

Field Symbol Name Description
Sector INIT$L._ BADBLOCKS Specifies the sector number of
SECTOR the first block to be marked as
allocated.
Count INIT$L_BADBLOCKS _ Specifies the number of blocks
COUNT to be allocated.
Track INIT$L. BADBLOCKS_ Specifies the track number of
TRACK the first block to be marked as
allocated.
Cylinder INIT$L_BADBLOCKS_ Specifies the cylinder number
CYLINDER of the first block to be marked

as allocated.

For example, if the input buffer contains the values 12, 3, 1, and 2, INIT_VOL
starts at sector 12, track 1, cylinder 2, and allocates 3 blocks.

The number of entries in the buffer is determined by the buffer length field in the
item descriptor.

All media supplied by HP and supported on the operating system, except disks
and TU58 cartridges, are factory formatted and contain bad block data. The Bad
Block Locator utility (BAD) or the diagnostic formatter EVRAC can be used to
refresh the bad block data or to construct it for the disks and TU5S8 cartridges.
The INIT$_BADBLOCKS_SEC item code is necessary only to enter bad blocks
that are not identified in the volume’s bad block data. For more information, see
the OpenVMS Bad Block Locator Utility Manual.

The INIT$_BADBLOCKS_SEC item code applies only to disks.

INIT$_CLUSTERSIZE

An input item code that specifies the minimum allocation unit in blocks. The
input buffer must contain a longword value. The maximum size that can be
specified for a volume is one-hundredth the size of the volume; the minimum size
is calculated with the following formula:

SYS2-105

System Service Descriptions

$INIT_VOL

SYS2-106

volume size in blocks/(255 * 4096)

The INIT$_CLUSTERSIZE item code applies only to Files-11 On-Disk Structure
Level 2 disks (for Files-11 On-Disk Structure Level 1 disks, the cluster size is 1).
For Files-11 On-Disk Structure Level 2 disks, the cluster size default depends on
the disk capacity:

e Disks that are 50,000 blocks or larger have a default cluster size of 16.
e Disks smaller than 50,000 blocks have a default value of 1.

Note

This item code applies to ODS-5 disks as well as to ODS-2 disks. For
more information, see the INITIALIZE command in the HP OpenVMS
DCL Dictionary.

INIT$_COMPACTION

INIT$_NO_COMPACTION—Default

A Boolean item code that specifies whether data compaction should be performed
when writing the volume.

The INIT$_COMPACTION item code applies only to TA90 drives.

INIT$_DENSITY
A symbolic item code that specifies the density value for magnetic tapes and
diskettes.

For magnetic tape volumes, the INIT$_DENSITY item code specifies the density.

The DENSITY item code is dependent on the type of tape device. If a tape
device is seen as capable of using the MT3 density codes the buffer for MNT$_
DENSITY item code must contain a longword with one of the MT3 codes, as
defined in SYS$LIBRARY:STARLET (MT3$K_TK50, MT3$K_3480, M53$K _
DSDLT, MT3$K_AIT2 and so on). Refer to the MT3_SUPPORTED argument for
$GETDVI.

If the device does not support MT3 densities, the buffer specifies the density in
bytes per inch (bpi) at which the magnetic tape is written. The following are
possible symbolic values for tapes:

e INIT$K_DENSITY_800_BPI
e INIT$K DENSITY_1600_BPI
e INIT$K _DENSITY_6250_BPI

The specified density value must be supported by the drive. If you do not specify
a density item code for a blank magnetic tape, the system uses a default density
of the highest value allowed by the tape drive. If the drive allows 6250, 1600,
and 800 bpi operation, the default density is 6250. If the drive allows only 1600
and 800 bpi operation, the default density is 1600. If you do not specify a density
item code for a magnetic tape that has been previously written, the system uses
the previously set volume density.

For diskettes, the INIT$_DENSITY item code specifies how the diskette is to be
formatted. Possible symbolic values for diskettes are as follows:

e INIT$K DENSITY_SINGLE_DISK
e INIT$K_DENSITY DOUBLE_DISK

System Service Descriptions
SINIT_VOL

e INIT$K DENSITY_DD_DISK
e INIT$K DENSITY HD_DISK

For disk volumes that are to be initialized on RX02, RX23, or RX33 diskette
drives, the following values specify how the disk is to be formatted:

e INIT$K_DENSITY_SINGLE_DISK

e INIT$K_DENSITY_DOUBLE_DISK

e INIT$K DENSITY_DD_DISK

e INIT$K_DENSITY_HD_DISK

Diskettes are initialized as follows:

e RX23 diskettes—DD or HD density

e RX33 diskettes—double density only

e RXO02 dual-density diskette drives—single or double density

If you do not specify a density item code for a disk, the system leaves the volume
at the density at which it was last formatted. RX02 disks purchased from HP are
formatted in single density.

Note

Disks formatted in double density cannot be read or written by the console
block storage device (an RX01 drive) of a VAX-11/780 processor until they
have been reformatted in single density.

INIT$_DIRECTORIES

An input item code that specifies the number of entries to preallocate for user
directories. The input buffer must contain a longword value in the range of 16 to
16000. The default value is 16.

The INIT$_DIRECTORIES item code applies only to disks.

INIT$_ERASE

INIT$_NO_ERASE—Default

A Boolean item code that specifies whether deleted data should be physically
destroyed by performing the data security erase (DSE) operation on the volume
before initializing it. The INIT$_ERASE item code applies to the following
devices:

e ODS-2 disk volumes

e ANSI magnetic tape volumes on magnetic tape devices that support the
hardware erase function, for example, TU78 and MSCP magnetic tapes

For disk devices, this item code sets the ERASE volume attribute, causing each
file on the volume to be erased when it is deleted.

INITS_ERASE_ON_DELETE

A Boolean item code that sets the HM2$V_ERASE bit. The volume is marked so
that when files are deleted, the blocks that they formerly occupied are erased.
See the DCL command SET VOLUME/ERASE for more information.

SYS2-107

System Service Descriptions

$INIT_VOL

SYS2-108

INIT$_ERASE_ON_INIT
A Boolean item code that specifies whether to perform the data security erase
(DSE) operation immediately.

INIT$_EXTENSION

An input item code that specifies, by the number of blocks, the default extension
size for all files on the volume. The extension default is used when a file increases
to a size greater than its initial default allocation during an update.

For Files-11 On-Disk Structure Level 2 disks, the buffer must contain a longword
value in the range 0 to 656535. For Files-11 On-Disk Structure Level 1 disks, the
input buffer must contain a longword value in the range of 0 to 255. The default
value is 5 for both Structure Level 1 and Structure Level 2 disks.

The default extension set by this item code is used only if the following conditions
are in effect:

¢ No default extension for the file has been set.

e No default extension for the process has been set using the SET RMS
command.

Note

This item code applies to ODS-5 disks as well as to ODS-2 disks. For
more information, see the INITIALIZE command in the HP OpenVMS
DCL Dictionary.

INIT$_FPROT

An input item code that specifies the default protection applied to all files on the
volume. The input buffer must contain a longword protection mask that contains
four 4-bit fields. Each field grants or denies read, write, create, and delete access
to a category of users. Cleared bits grant access; set bits deny access.

The following diagram depicts the structure of the protection mask on systems:

World Group Owner System

p|c|w|r|p|c|w|r[p[c|w|[r[p[c]w|[r
1514131211109 8 7 6 5 4 3 2 1 0
ZK-5893A-GE

The INIT$_FPROT item code applies only to Files-11 On-Disk Structure
Level 1 disks and is ignored if it is used on an OpenVMS system. OpenVMS
systems use the default file extension set by the DCL command SET
PROTECTION/DEFAULT.

INIT$_HEADERS

An input item code that specifies the number of file headers to be allocated for
the index file. The input buffer must contain a longword value within the range
of 16 to the value set by the INIT$_MAXFILES item code. The default value is
16.

The INIT$_HEADERS item code applies only to disks.

System Service Descriptions
SINIT_VOL

INIT$_GPT—Default on 164

INIT$_NO_GPT—Default on Alpha

A Boolean item code that specifies whether or not to create a Global Universal ID
(GUID) Partition Table (GPT) structure.

INIT$_HIGHWATER—Default

INIT$_NO_HIGHWATER

A Boolean item code that sets the file highwater mark (FHM) volume attribute,
which guarantees that users cannot read data that they have not written.

INIT$_NO_HIGHWATER disables FHM for a volume.

The INIT$_HIGHWATER and INIT$_NO_HIGHWATER item codes apply only to
Files-11 On-Disk Structure Level 2 disks.

INITS_HOMEBLOCKS

Specifies where the volume’s homeblock and spare copy of the homeblock are
placed on disk. This item code applies to Files-11 ODS-2 volumes, and can have
the following values:

e INIT$K HOMEBLOCKS_GEOMETRY

Causes the homeblocks to be placed at separate locations on disk, to protect
against failure of a disk block. Placement depends on the reported geometry
of the disk.

e INIT$K HOMEBLOCKS_FIXED

Causes the homeblocks to be placed at separate fixed locations on the disk;
this is the default. Placement is independent of the reported geometry of the
disk. This caters for disks that report different geometries according to the
type of controller to which they are attached.

e INIT$K HOMEBLOCKS_CONTIGUOUS

Causes the homeblocks to be placed contiguously at the start of the disk. This
allows container file systems to maximize the amount of contiguous space on
the disk, when used with the INIT$_INDEX_BEGINNING item code.

Note

This item code applies to ODS-5 disks as well as to ODS-2 disks. For
more information, see the INITIALIZE command in the HP OpenVMS
DCL Dictionary.

INIT$_INDEX_BEGINNING

A symbolic item code that places the index file for the volume’s directory structure
at the beginning of the volume. By default, the index is placed in the middle of
the volume.

When issuing calls to $INIT_VOL, using this item code in conjunction with
INIT$_INDEX_BLOCK results in an error. If you specify both item codes from
DCL, INIT$_INDEX_BLOCK takes precedence.

This item code applies only to disks.

SYS2-109

System Service Descriptions

$INIT_VOL

SYS2-110

INIT$_INDEX_BLOCK

An input item code that specifies the location of the index file for the volume’s
directory structure by logical block number. The input buffer must contain a
longword value specifying the logical block number of the first block of the index
file. By default, the index is placed in the middle of the volume.

When issuing calls to $INIT_VOL, using this item code with INIT$_INDEX_
BEGINNING, INIT$_INDEX_MIDDLE, or INIT$_INDEX_END results in an
error. From DCL, if you specify INIT$_INDEX_ BLOCK with INIT$_INDEX_
BEGINNING, INIT$_INDEX_MIDDLE, or INIT$_INDEX_END, then INIT$_
INDEX_BLOCK takes precedence.

The INIT$_INDEX_BLOCK item code applies only to disks.

INIT$_INDEX_END

A symbolic item code that places the index file for the volume’s directory structure
at the end of the volume. The default is to place the index in the middle of the
volume.

When issuing calls to $INIT_VOL, using this item code with INIT$_INDEX_
BLOCK results in an error. If you specify both item codes from DCL, INIT$_
INDEX_BLOCK takes precedence.

This item code applies only to disks.

INIT$_INDEX_MIDDLE
A symbolic item code that places the index file for the volume’s directory structure
in the middle of the volume. This is the default location for the index.

When issuing calls to $INIT_VOL, using this item code with INIT$_INDEX_
BLOCK results in an error. If you specify both item codes from DCL, INIT$_
INDEX_BLOCK takes precedence.

This item code applies only to disks.

INIT$_INTERCHANGE

An input item code that specifies that the magnetic tape ANSI VOL1 volume
label is to be used for interchange in a heterogeneous vendor environment. On
OpenVMS, this item code overrides creation of the ANSI VOL2 volume label,
which contains security attributes specific to OpenVMS systems.

For more information about the INIT$ INTERCHANGE item code and about
magnetic tape labeling and tape interchange, see the HP OpenVMS System
Manager’s Manual, Volume 1: Essentials.

INIT$_LABEL_ACCESS

An input item code that specifies the character to be written in the volume
accessibility field of the ANSI volume label VOL1 on an ANSI magnetic tape.
Any valid ANSI “a” characters can be used; these include numbers, uppercase
letters, and any one of the following nonalphanumeric characters:

Y% () ¥+ ,-./:;<=>
By default, the operating system provides a routine SYS$MTACCESS that checks

this field in the following manner:

e If the magnetic tape was created on a version of the operating system
that conforms to Version 3 of ANSI, this item code is used to override any
character except an ASCII space.

System Service Descriptions
SINIT_VOL

e If the magnetic tape conforms to an ANSI standard that is later than
Version 3, this item code is used to override any character except an ASCII 1
character.

INIT$_LABEL_VOLO

An input item code that specifies the text that is written in the owner identifier
field of the ANSI volume label VOL1 on an ANSI magnetic tape. The owner
identifier field can contain up to 14 valid ANSI “a” characters.

INIT$_MAXFILES

An input item code that restricts the maximum number of files that the volume
can contain. The input buffer must contain a longword value between 0 and a
value determined by the following calculation:

volume size in blocks/cluster factor + 1

Once initialized, the maximum number of files can be increased only by
reinitializing the volume.

The default maximum number of files is calculated as follows:
volume size in blocks/(cluster factor + 1) * 2

The INIT$_MAXFILES item code applies only to disks.

Note

This item code applies to ODS-5 disks as well as to ODS-2 disks. For
more information, see the INITIALIZE command in the HP OpenVMS
DCL Dictionary.

INIT$_OVR_ACCESS

INIT$_NO_OVR_ACCESS—Default

A Boolean item code that specifies whether to override any character in the
accessibility field of the ANSI volume label VOL1 on an ANSI magnetic tape. For
more information, see the HP OpenVMS System Manager’s Manual.

To specify INIT$_OVR_ACCESS, the caller must either own the volume or have
VOLPRO privilege.

INIT$_OVR_EXP

INIT$_NO_OVR_EXP—Default

A Boolean item code that specifies whether the caller writes to a magnetic tape
that has not yet reached its expiration date. This item code applies only to the
magnetic tapes that were created before VAX VMS Version 4.0 and that use the
D% format in the volume owner identifier field.

To specify INIT$_OVR_EXP, the caller must either own the volume or have
VOLPRO privilege.

INIT$_OVR_VOLO

INIT$_NO_OVR_VOLO—Default

A Boolean item code that allows the caller to override processing of the owner
identifier field of the ANSI volume label VOL1 on an ANSI magnetic tape.

To specify INIT$_OVR_VOLO, the caller must either own the volume or have
VOLPRO privilege.

SYS2-111

System Service Descriptions

$INIT_VOL

SYS2-112

INIT$_OWNER

An input item code that specifies the UIC that will own the volume. The input
buffer must contain a longword value, which is the UIC. The default is the UIC
of the caller.

For magnetic tapes, no UIC is written unless protection on the magnetic tape
is specified. If the INIT$_VPROT item code is specified but the INIT$_OWNER
item code is not specified, the UIC of the caller is assigned ownership of the
volume.

INIT$_READCHECK
INIT$_NO_READCHECK—Default
A Boolean item code that specifies whether data checking should be performed for

all read operations on the volume. For more information about data checking, see
the HP OpenVMS I/0 User’s Reference Manual.

The INIT$_READCHECK item code applies only to disks.

INIT$_SIZE

An input item code that specifies the number of blocks allocated for a RAM disk
with a device type of DT$_RAM_DISK. The input buffer must contain a longword
value.

INIT$_STRUCTURE_LEVEL _1

INIT$_STRUCTURE_LEVEL_2—Default

Symbolic item codes that specify whether the volume should be formatted in
Files-11 On-Disk Structure Level 1 or Structure Level 2. Structure Level 1 is
incompatible with the following item codes:

e INIT$ READCHECK
e INIT$ WRITECHECK
e INIT$ CLUSTERSIZE

The default protection for a Structure Level 1 disk is full access to system, owner,
and group users, and read access to all other users.

The INIT$_STRUCTURE_LEVEL_1 item code applies only to disks.

INIT$_USER_NAME

An input item code that specifies the user name that is associated with

the volume. The input buffer must contain a character string from 1 to 12
alphanumeric characters, which is the user name. The default is the user name
of the caller.

INIT$_VERIFIED

INIT$_NO_VERIFIED

A Boolean item code that indicates whether the disk contains bad block data.
INIT$_NO_VERIFIED indicates that any bad block data on the disk should be
ignored. For disks with 4096 blocks or more, the default is INIT$_VERIFIED.

INIT$_NO_VERIFIED is the default for the following:
¢ Disks with fewer than 4096 blocks

e DIGITAL Storage Architecture (DSA) devices

¢ Disks that are not last-track devices

The INIT$_VERIFIED item codes apply only to disks.

System Service Descriptions
SINIT_VOL

INIT$_VOLUME_LIMIT
An input item code that specifies the maximum logical volume size. For more
information, see the DCL command INITIALIZE/LIMIT.

INIT$_VPROT

An input item code that specifies the protection assigned to the volume. The
input buffer must contain a longword protection mask that contains four 4-bit
fields. Each field grants or denies read, write, create, and delete access to a
category of users. Cleared bits grant access; set bits deny access.

The following diagram depicts the structure of the protection mask:

World Group Owner System

p|c|w|r|[p[c|w|r]|p|c|w|r|p|c|w|[r
1514131211109 8 7 6 5 4 3 2 1 0
ZK-5893A-GE

The default is the default protection of the caller.

For magnetic tape, the protection code is written to a specific volume label. The
system applies only read and write access restrictions; execute and delete access
are ignored. Moreover, the system and the owner are always given read and write
access to magnetic tapes, regardless of the protection mask specified.

When you specify a protection mask for a disk volume, access type E (execute)
indicates create access.

For Files-11 On-Disk Structure Level 2 volumes, an initial security profile is
created from the VOLUME .DEFAULT profile, with the owner and protection as
currently defined for INITIALIZE.

You can use the $SET_SECURITY service to modify the security profile after the
volume is initialized and mounted.

The caller needs read, write, or control access to the device.

INIT$_WINDOW

The INIT$_WINDOW item code specifies the number of mapping pointers to be
allocated for file windows. The input buffer must contain a longword value in the
range 7 to 80. The default is 7.

When a file is opened, the file system uses the mapping pointers to access the
data in the file.

The INIT$_WINDOW item code applies only to disks.

INIT$_WRITECHECK
INIT$_NO_WRITECHECK—Default
A Boolean item code that specifies whether data checking should be performed for

all read operations on the volume. For more information about data checking, see
the HP OpenVMS I/0 User’s Reference Manual.

The INIT$_ WRITECHECK item code applies only to disks.

SYS2-113

System Service Descriptions

$INIT_VOL

Description

The Initialize Volume system service formats a disk or magnetic tape volume and
writes a label on the volume. At the end of initialization, the disk is empty except
for the system files containing the structure information. All former contents of
the volume are lost.

A blank magnetic tape can sometimes cause unrecoverable errors when it is read.
$INIT_VOL attempts to read the volume unless the following three conditions are
in effect:

e INIT$_OVR_ACCESS Boolean item code is specified.
e INIT$_OVR_EXP Boolean item code is specified.

e (Caller has VOLPRO privilege.

If the caller has VOLPRO privilege, $INIT_VOL initializes a disk without
reading the ownership information; otherwise, the ownership of the volume is
checked.

A blank disk or a diskette with an incorrect format can sometimes cause a fatal
drive error. Such a diskette can be initialized successfully by specifying the
INIT$_DENSITY item code to format the diskette.

Required Access or Privileges

To initialize a particular volume, the caller must either have volume protection
(VOLPRO) privilege or the volume must be one of the following:

¢ Blank disk or magnetic tape; that is, a volume that has never been written
e Disk that is owned by the caller’s UIC or by the UIC [0,0]

e Magnetic tape that allows write access to the caller’s UIC or that was not
protected when it was initialized

Required Quota
None

Related Services

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SET_SECURITY, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS2-114

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The item list or an address specified in the item
list cannot be accessed.

SS$ BADPARAM A buffer length of 0 was specified with a nonzero
item code or an illegal item code was specified.

SS$_IVSSRQ A concurrent call to SYS$INIT _VOL is already
active for the process.

SS$_NOPRIV The caller does not have sufficient privilege to

initialize the volume.

SS$_NOSUCHDEV

System Service Descriptions
SINIT_VOL

The specified device does not exist on the host
system.

The $INIT_VOL service can also return the following condition values, which are
specific to the Initialize Volume utility:

INIT$_ALLOCFAIL
INIT$_BADACCESSED

INIT$_BADBLOCKS
INIT$_BADCLUSTER

INIT$ BADDENS
INIT$_BADDIRECTORIES

INIT$_BADEXTENSION
INIT$_BADHEADERS
INIT$_BADMAXFILES

INIT$_BADOWNID
INIT$_BADRANGE
INIT$_BADVOL1
INIT$_BADVOLACC

INIT$_BADVOLLBL
INIT$_BADWINDOWS

INIT$_BLKZERO
INIT$_CLUSTER
INIT$_CONFQUAL
INIT$_DIAGPACK
INIT$_ERASEFAIL
INIT$_FACTBAD
INIT$_ILLOPT

INIT$_INDEX
INIT$_LARGECNT
INIT$_MAXBAD
INIT$_MTLBLLONG

INIT$_MTLBLNONA

Index file allocation failure.

Value for INIT$_ACCESSED item code out of
range.

Invalid syntax in bad block list.

Value for INIT$ CLUSTER_SIZE item code out
of range.

Invalid value for INIT$ DENSITY item code.

Value for INIT$_DIRECTORIES item code out of
range.

Value for INIT$_EXTENSION item code out of
range.

Value for INIT$ HEADER item code out of
range.

Value for INIT$ _MAXFILES item code out of
range.

Invalid value for owner ID.
Bad block address not on volume.
Bad VOL1 ANSI label.

Invalid value for INIT$_LABEL_ACCESS item
code.

Invalid value for ANSI tape volume label.

Value for INIT$ WINDOWS item code out of
range.

Block 0 is bad—volume not bootable.
Unsuitable cluster factor.
Conflicting options were specified.
Disk is a diagnostic pack.

Volume not completely erased.
Cannot read factory bad block data.

Item codes not appropriate for the device were
specified.

Invalid index file position.
Disk too large to be supported.
Bad block table overflow.

Magnetic tape label specified is longer than 6
characters.

Magnetic tape label specified contains non-ANSI
“a” characters.

SYS2-115

System Service Descriptions

$INIT_VOL

SYS2-116

INIT$_NOBADDATA
INIT$_NONLOCAL
INIT$_NOTRAN
INIT$_NOTSTRUC1

INIT$_UNKDEV

Bad block data not found on volume.
Device is not a local device.
Logical name cannot be translated.

Options not available with Files-11 On-Disk
Structure Level 1.

Unknown device type.

System Service Descriptions
$10_CLEANUP (Alpha and 164)

$10_CLEANUP (Alpha and 164)
Clean Up Fast 1/O0

On Alpha and 164 systems, returns all resources allocated by $10_SETUP.

This service accepts 64-bit addresses.

Format
SYS$IO_CLEANUP fandle

C Prototype

int sys$io_cleanup (unsigned __int64 fandl);

Arguments

fandle

OpenVMS usage: fandle

type: 64-bit integer (unsigned)

access: read only

mechanism: by value

A fandle, passed by value, returned by a previous call to $I0_SETUP.
Description

The Clean Up Fast I/O system service returns various internal resources allocated
by the $IO_SETUP system service. Buffer objects passed to $IO_SETUP cannot
be deleted until every $I0_SETUP call has had a corresponding $I0_CLEANUP
call.

Image rundown executes any required $I0_CLEANUP operations on behalf of the
process.

Required Privileges
None

Required Quota
None

Related Services
$I0_PERFORM(W), $I0_SETUP

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$ BADFANDLE Argument was not a valid fandle.
SS$_BUSY The fandle cannot be cleaned up because an I/O

is in progress. Reissue the call to $I0_CLEANUP
after the I/O has finished.

SYS2-117

System Service Descriptions
$10_FASTPATH (Alpha and 164)

$10_FASTPATH (Alpha and 164)
Control Fast Path Devices

On Alpha and 164 systems, provides the ability to control the set of Fast Path
devices and their assignment to CPUs enabled for Fast Path use.

Format

SYS$IO_FASTPATH efn ,cpu_mask ,function_code, [iosb], [astadr], [astprm]
[,[mask_length]]

C Prototype

int sys$io_fastpath (unsigned int efn, UINT32_PQ cpu_mask, int function_code,
struct_iosb *iosb, void (*astadr)(_ _unknown_params), __int64
astprm, ...) ;)

Arguments
efn
OpenVMS usage: integer
type: longword bit mask (unsigned)
access: read
mechanism: by value

Number of the event flag to be set when the IO_FASTPATH(W) operation
completes. The efn argument is a longword containing the number of the event

flag.

cpu_mask

OpenVMS usage: bitmap

type: quadword bitmap

access: read

mechanism: by 32- or 64-bit reference

The epu_mask argument specifies a set of CPUs to be operated upon.

function_code
OpenVMS usage: integer

type: longword (unsigned)
access: read
mechanism: by value

The function_code specifies the operation to be performed. Note that there is
currently only one function code:

FP$K_BALANCE_PORTS - Distribute Fast Path ports across CPUs.

mask_length
OpenVMS usage: integer

type: longword length
access: read
mechanism: by value

The mask_length specifies the length of the cpu_mask bitmap in bytes. If the
mask_length is not supplied or is specified as zero, a length of 4 bytes is used.

SYS2-118

Description

System Service Descriptions
$10_FASTPATH (Alpha and 164)

The $I0_FASTPATH system service performs operations on the set of Fast
Path devices and CPUs enabled for Fast Path use. The $I0_FASTPATHW
system service completes synchronously. That is, it returns after the operation is
complete.

The FP$K_BALANCE_PORTS function code specifies that the system service is
to distribute the set of system assignable Fast Path ports across the intersection
of a caller-supplied set of candidate CPUs (cpu_mask) and the current set of

usable CPUs. Usable CPUs are the intersection of the set of CPUs both enabled
for Fast Path use by I0$_PREFERRED_CPUS and whose current state is RUN.

The service does this by:

1. Eliminating all CPUs not in the set of usable CPUs from the set of candidate
CPUs.

2. Restoring any user assigned ports that are not currently on the user’s
preferred CPU to the user’s preferred CPU, if that CPU is in the set of usable
CPUs.

3. Spreading the system assignable Fast Path ports, and any Fast Path ports
whose user preferred CPU is unavailable, evenly across the set of usable
candidate CPUs.

If the primary CPU is in the set of usable candidate CPUs, the distribution
will be biased against the primary CPU in that a port will only be assigned
to the primary after ports have been assigned to each of the other usable
candidate CPUs.

Required Access or Privileges
PHYS_IO

Required Quota
None.

Related Services
$GETDVI, $QIO

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$_BADPARAM Unsupported value for cpu_mask.
SS$_ILLIOFUNC Illegal function code.

SYS2-119

System Service Descriptions
$10_FASTPATHW (Alpha and 164)

$10_FASTPATHW (Alpha and 164)
Control Fast Path Devices

On Alpha and 164 systems, performs operations on the set of Fast Path devices
and CPUs enabled for Fast Path use.

The $I0_FASTPATHW system service is functionally equivalent to the
$I0_FASTPATH service except that it completes synchronously. That is, it
returns after the operation is complete.

Format
SYS$IO_FASTPATHW efn ,cpu_mask ,function_code

C Prototype

int sys$io_fastpathw (unsigned int efn, UINT32_PQ cpu_mask, unsigned int
function_code);

SYS2-120

System Service Descriptions
$10_PERFORM (Alpha and 164)

$10_PERFORM (Alpha and 164)
Perform Fast I/0

On Alpha and 164 systems, starts the Fast I/O operation. The $I0_PERFORM
service completes asynchronously. For synchronous completion, use the Perform
Fast I/O and Wait ($I0_PERFORMW) service.

This service accepts 64-bit addresses.

Format
SYS$I0O_PERFORM fandle ,chan ,iosadr ,bufadr ,buflen ,devdata

C Prototype

int sys$io_perform (unsigned _ _int64 fandl, unsigned short int chan, struct _iosa
*iosadr, void *bufadr, unsigned _ _int64 buflen, unsigned _ _int64

devdata);
Arguments
fandle
OpenVMS usage: fandle
type: 64-bit integer (unsigned)
access: read only
mechanism: by value

A fandle returned by a previous call to $I0_SETUP.

chan

OpenVMS usage: channel

type: word (unsigned)
access: read
mechanism: by value

Software I/0 channel number.

iosadr

OpenVMS usage: address
type: address
access: read only
mechanism: by value

Address of the I/O Status Area (IOSA). This value cannot be 0; that is, an IOSA
is required. The iosadr must be aligned to a quadword boundary.

bufadr

OpenVMS usage: char_string
type: address
access: read only
mechanism: by value

The process buffer address. Must be aligned on a 512-byte boundary.

SYS2-121

System Service Descriptions
$10_PERFORM (Alpha and 164)

Description

buflen

OpenVMS usage: byte count
type: 64-bit integer
access: read only
mechanism: by value

The byte count for the I/O. The buflen argument must be a multiple of 512 bytes.
Drivers have further limitations on the maximum size of an I/O request.

devdata

OpenVMS usage: address

type: pointer or integer
access: read only
mechanism: by value

A hardware integer passed unchanged to the driver. For disk devices, this is the
media address for the transfer; that is, the virtual block number (VBN) for virtual
I/O functions or the logical block number (LBN) for logical I/O functions. This
argument is ignored for tape devices.

For drivers with complex parameters, devdata would be the address of a
descriptor or buffer specific to the device and function and would be documented
with the driver.

The Perform Fast I/O system service initiates an I/O operation on the channel
number specified by the chan argument. The bytes specified by the buflen
argument are transferred between the location (devdata) on the device driver
and the user’s buffer starting at the process buffer address (bufadr). The byte
count is read or written according to the function code previously specified in the
$I0_SETUP call associated with the fandle argument.

Upon completion, the I/O status is written to the IOSA starting at the location
specified by iosadr, and an AST is delivered to the astadr address supplied in
the $I0_SETUP call associated with fandle. The IOSA address is passed to the
AST as the AST parameter.

Required Privileges

None

Required Quota
None

Related Services
$I0_CLEANUP, $10_SETUP, $10_PERFORMW

Condition Values Returned

SYS2-122

SS$_NORMAL The service completed successfully.

SS$_BADBUFADR The data buffer does not reside within the
bounds of the data buffer object for the fandle.

SS$_BADIOSADR The IOSA does not reside within the bounds of

the IOSA buffer object for this fandle.

System Service Descriptions
$10_PERFORM (Alpha and 164)

SS$_FANDLEBUSY The operation using this fandle is already in
progress.
SS$_IVCHAN An invalid channel number was specified; that is,

a channel number of 0 or a number larger than
the number of channels available.

SS$ UNALIGNED The buffer specified by bufadr or iosadr is not
properly aligned.
SS$ WRONGACMODE The request is invalid because the fandle was

created from a more privileged access mode, or
the channel was assigned from a more privileged
access mode.

Condition Values Returned in the 1/0 Status Block

The HP OpenVMS 1/0 User’s Reference Manual lists these device-specific
condition values for each device.

SYS2-123

System Service Descriptions
$10_PERFORMW (Alpha and 164)

$10_PERFORMW (Alpha and 164)
Perform Fast I/0 and Wait

On Alpha and 164 systems, starts a Fast I/O operation. The $I0_PERFORMW
service completes synchronously; that is, it returns to the caller after performing
the Fast I/O operation.

In all other respects, $I0_PERFORMW is identical to $I0_PERFORM. For all
other information about the I0_PERFORMW service, see the description of $10_
PERFORM in this manual.

Format

SYS$IO_PERFORMW fandle ,chan ,iosadr ,bufadr ,buflen ,devdata

C Prototype

int sys$io_performw (unsigned _ _int64 fandl, unsigned short int chan, struct _iosa
*iosadr, void *bufadr, unsigned _ _int64 buflen, unsigned
__int64 devdata);

SYS2-124

System Service Descriptions
$10_SETUP (Alpha and 164)

$10_SETUP (Alpha and 164)
Set Up Fast 1/O0

Format

C Prototype

Arguments

On Alpha and 164 systems, allocates resources for Fast 1/0.

This service accepts 64-bit addresses.

SYS$IO_SETUP func ,bufobj ,iosobj ,astadr ,flags ,return_fandle

int sys$io_setup (unsigned int func, struct _generic_64 *bufobj, struct _generic_64
*josobj, void (*astadr)(struct _iosa *), unsigned int flags, unsigned
__int64 *return_fandle);

func

OpenVMS usage: function_code
type: longword
access: read only
mechanism: by value

I/0 function code. Must be one of the following:
e I0$_READVBLK

e JO$_WRITEVBLK

e J0$_READLBLK

e I0O$_WRITELBLK

Various function modifiers are supported, depending on the device and driver.
Disk drivers support IO$M_NOVCACHE and I0$M_DATACHECK. Some
tape devices support IO$M_REVERSE. Illegal modifiers are detected by the
$I0_PERFORM(W) service.

bufobj

OpenVMS usage: buffer object

type: quadword (unsigned)
access: read only

mechanism: by 32- or 64-bit reference

Handle describing the buffer object that contains the user’s buffer. This identifier
cannot be 0.

iosobj

OpenVMS usage: object handle

type: vector longword (unsigned)
access: read only

mechanism: by 32- or 64-bit reference

Buffer object handle describing the buffer object that contains the I/O Status Area
(IOSA). This might or might not be the same identifier as the bufobj argument.
This identifier cannot be 0.

SYS2-125

System Service Descriptions
$10_SETUP (Alpha and 164)

Description

SYS2-126

astadr

OpenVMS usage: ast_procedure

type: procedure value

access: read only

mechanism: by 32- or 64-bit reference

Completion AST routine address (0, if none). There is no AST parameter
argument. When the AST routine is called, the AST parameter will be the
address of the IOSA for the operation. Applications can store data in the IOSA at
offset IOSA$IH_CONTEXT.

flags

OpenVMS usage: mask_longword

type: 64-bit integer (unsigned)
access: read only

mechanism: by value

Flag mask. The flags argument is a bit vector in which each bit corresponds to a
flag. Flags are defined in the module IOSADEF.

The following table describes the flags that are valid for the $I0_SETUP service:

Flag Description

FIO$M_EXPEDITE This is a high priority I/0; that is, it is to be given
preferential treatment by the I/O subsystem. Use of
this bit requires ALTPRI or PHY_IO privilege.

FIO$M_AST The AST procedure does not use, or call any procedure
NOFLOAT that uses, any floating-point registers. This is a
performance option. If set, AST delivery will neither
save nor restore floating-point registers. Caution:
Use of floating-point registers when FIO$M_AST
NOFLOAT has been specified can cause unpredictable,
difficult to detect, error conditions.

All other bits in the flags argument are reserved for future use by HP and should
be specified as 0.

return_fandle
OpenVMS usage: fandle

type: 64-bit integer (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

Address of an aligned quadword to receive the fandle for this I/O operation.

The Set Up Fast I/O system service allocates and initializes a number of internal
objects based on the parameters supplied. Because these objects are then ready
for use when a subsequent $I0_PERFORM or $I0_PERFORMW is issued, the
I/O operation will require less CPU time and fewer multiprocessor steps.

Required Privileges

If you use the flags argument FIO$M_EXPEDITE, a process must have ALTPRI
or PHY_IO privilege.

Required Quota
Byte count

Related Services

System Service Descriptions
$10_SETUP (Alpha and 164)

$I0_CLEANUP, $10_PERFORM(W)

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_BADPARAM
SS$_EXBUFOBJLM

SS$_ILLBUFOBJ
SS$_ILLIOFUNC
SS$_ILLMODIFIER
SS$_INSFMEM

SS$_INSFSPTS
SS$_IVSTSFLG
SS$_NOBUFOBJID

SS$_NOPRIV

SS$_PAGNOTWRITE
SS$_PAGOWNVIO

SS$_UNALIGNED

The service completed successfully.

The fandle does not have 8 bytes of writability,
or the two buffer objects do not have 8 bytes of
readability each.

Invalid flags options specified.

Buffer object cannot be created because it would
bring the total number of buffer object pages
above the systemwide limit MAXBOBMEM.

The buffer object is not valid.
The function code is not valid.
The I/O function modifier is not permitted.

There is no pool available from which to create a
fandle vector, or the fandle vector is already full
and an attempted expansion failed.

Insufficient system page table entries.
The specified status flag is invalid.

The process attempted to create a buffer object
from user mode but was not holding required
rights identifier VMS$BUFFER_OBJECT_USER.

Valid flag options were specified but from user
mode.
A page within the address range is not writable.

Page owner violation. The pages could not be
put into the buffer object because the access
mode associated with the call to $I0_SETUP was
less privileged than the access mode associated
with the pages. See $CREATE_BUFOBJ_64 for
additional information.

The I/0 Status Area (IOSA) or data buffer is not
aligned on a quadword boundary.

SYS2-127

System Service Descriptions
$JOIN_RM

$JOIN_RM
Join Resource Manager

Adds a new Resource Manager (RM) participant to a transaction.

Format
SYS$JOIN_RM [efn] ,[flags] ,iosb ,[astadr] ,[astprm] ,rm_id [,[tid] ,[part_name]
,[rm_context] ,[timout] ,[bid]]
C Prototype

int sys$join_rm (unsigned int efn, unsigned int flags, struct _iosb *iosb, void
(*astadr)(__unknown_params), int astprm, unsigned int rm_id,...);

Arguments
efn
OpenVMS usage: ef number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag that is set when the service completes. If this argument
is omitted, event flag 0 is used.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flags specifying options for the service. The flags argument is a longword bit
mask in which each bit corresponds to an option flag. The $DDTMDEF macro
defines symbolic names for these option flags described in Table SYS2—4. All
undefined bits must be 0. If this argument is omitted, no flags are used.

Table SYS2-4 $JOIN_RM Option Flags
Flag Name Description

DDTM$M_COORDINATOR Set this flag to specify that the new RM
participant is to be a coordinator of the
transaction on this node.

DDTM$M_SYNC Specifies successful synchronous completion by
returning SS$_SYNCH. When SS$_SYNCH is
returned, the AST routine is not called, the event
flag is not set, and the I/O status block is not

filled in.
iosb
OpenVMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

SYS2-128

System Service Descriptions
$JOIN_RM

The I/O status block in which the completion status of the service is returned as
a condition value. See the Condition Values Returned section.

The following diagram shows the structure of the I/O status block:

31 15 0

Reserved by HP Condition Value
Reserved by HP

VM-0778A-Al

astadr

OpenVMS usage: ast_procedure

type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

The AST routine that is executed when the service completes, if SS$_NORMAL
is returned in RO. The astadr argument is the address of the entry mask of this
routine. The routine is executed in the same access mode as that of the caller of
the $JOIN RM service.

astprm

OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

The AST parameter that is passed to the AST routine specified by the astadr
argument.

rm_id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by value

The identifier of the RMI with which the new RM participant is associated. This
identifies:

e Types of event that are to be reported to the new RM participant.

e Event handler to which these event reports are to be delivered, and the access
mode in which its ASTs are to be fired.

e Minimum access mode that the new RM participant must be in to
acknowledge one of these event reports by calling $ACK_EVENT.

e Whether or not the DECdtm transaction manager may log information about
the new RM participant.

tid

OpenVMS usage: trans_id

type: octaword (unsigned)
access: read only
mechanism: by reference

SYS2-129

System Service Descriptions

$JOIN_RM

SYS2-130

The identifier (TID) of the transaction to which the new RM participant is to be
added.

If this argument is omitted (the default) or its value is zero, $JOIN_RM adds an
RM participant to the default transaction of the calling process.

part_name

OpenVMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

The name of the new RM participant.

Used by recoverable resource managers to specify the RM participant to use in a
subsequent call to $GETDTI or $SETDTI during recovery.

This argument has no effect if the RMI is volatile. If this argument is omitted
(the default) or its value is zero, the name of the new RM participant is the same
as that of the RMI with which it is associated.

The string passed in this argument can be no longer than 32 characters.

To ensure smooth operation in a mixed-network environment, refer to the chapter
entitled Managing DECdtm Services in the HP OpenVMS System Manager’s
Manual, for information on defining node names.

rm_context

OpenVMS usage: userarg

type: longword (unsigned)
access: read only
mechanism: by value

The context associated with the new RM participant. This is passed in the event
reports subsequently delivered to the new RM participant.

If this argument is omitted (the default) or is zero, the context associated with the
new RM participant is the same as that of the RMI with which it is associated.

timout

OpenVMS usage: date_time

type: quadword (unsigned)
access: read only
mechanism: by reference

Reserved to HP.

bid

OpenVMS usage: branch_id

type: octaword (unsigned)
access: write only
mechanism: by reference

The identifier of an authorized branch (BID) that may be added to the transaction
by a subsequent call to $START_BRANCH on the same node as that of the RMI.
This argument is ignored if the DDTM$M_COORDINATOR flag is clear in the
flags argument. The call to $START_BRANCH should specify the node of the
RMI for the tm_name argument.

Description

System Service Descriptions
$JOIN_RM

The $JOIN_RM system service:

e Adds a new RM participant to the specified transaction. The new RM
participant is associated with the RMI whose identifier is passed in the rm_
id argument.

¢ Introduces a new transaction to DECdtm if the new RM participant is a
coordinator and the specified transaction is unknown to DECdtm.

e Authorizes a new branch of the transaction if the new RM participant is a
coordinator.

Preconditions for the successful completion of $JOIN_RM are:

e Unless the DDTM$M_COORDINATOR flag is set, the calling process must
contain at least one branch of the specified transaction.

e The calling process must contain the specified RMI.

¢ The caller must not be in a less privileged mode than the access mode of the
specified RMI.

e If the DDTM$M_COORDINATOR flag is set, either the calling process must
have the SYSPRYV privilege, or the caller must be in executive or kernel mode.

e If the DDTM$M_COORDINATOR flag is set, the specified RMI must not be
volatile. That is, the DDTM$M_VOLATILE flag must not have been set on
the call to the $DECLARE_RM that created it.

e The access mode of the specified RMI must not be less privileged than that of
the specified transaction in this process.

$JOIN_RM can fail for various reasons, including:
¢ Preconditions were not met.

e The DDTM$M_COORDINATOR flag was set, but no bid argument was
supplied.

When $JOIN_RM completes successfully, a new RM participant running in the
calling process is added to the transaction. This RM participant is associated
with the specified RMI.

The DECdtm transaction manager will report to the new RM participant the
types of event specified in the call to $DECLARE_RM that created the RMI
with which it is associated. Note however that events of type prepare, one-
phase commit, and commit are never reported to RM participants that set the
DDTM$M_COORDINATOR flag on the call to $JOIN_RM.

If the call to $DECLARE_RM requested prepare and one-phase commit events,
and the $JOIN_RM call does not set the DDTM$M_COORDINATOR flag, the
new RM participant is entitled to a vote on the outcome of the transaction.

If the $JOIN_RM call sets the DDTM$M_COORDINATOR flag, then the new
RM participant is expected to initiate commit or abort processing by a call to
$TRANS_EVENT. No events of type prepare, one-phase commit, or commit are
delivered to the RM participant.

Events of type abort are reported to the RM participant.

SYS2-131

System Service Descriptions

$JOIN_RM

SYS2-132

The new RM participant is removed from the transaction when the first of the
following conditions is met:

® On successful completion of a call to SACK_EVENT that acknowledges
an event report delivered to that RM participant, if the event and its
acknowledgment were one of those listed in the following table:

Event Acknowledgment (report_reply)

Abort SS$_FORGET

Commit SS$_FORGET or SS$ REMEMBER
Prepare SS$_FORGET

One-phase commit SS$ NORMAL or SS$ VETO

e On completion of a successful call to $TRANS_EVENT that specifies a commit
or abort event, if the DDTM$M_COORDINATOR flag is set.

e When a commit or abort event occurs, and no associated event report is
delivered to the RM participant.

e On successful completion of a call to $FORGET_RM that deletes the RMI
with which it is associated.

e When the current process terminates (normally or abnormally).
e When the current image terminates (normally or abnormally).
If the DDTM$M_COORDINATOR flag is set:

¢ A new branch is authorized for the transaction and its identifier is returned
in the octaword that the bid argument points to. $JOIN_RM uses the
$CREATE_UID system service to generate the BID. No other call to $ADD_
BRANCH, $JOIN_RM, or $CREATE_UID on any other node ever returns the
same BID value.

e The transaction cannot commit until the new branch has been started by
a matching call to $START_BRANCH. (See the description of $START_
BRANCH for the definition of a matching call to $START BRANCH.)

e If the transaction is not already known to this process, then the transaction
is introduced to this process with an access mode equal to the access mode
of the caller. (See the description of $START _TRANS for a definition of the
access mode of a transaction.)

There is also a wait form of the service, $JOIN_RMW.

Required Privileges
If the DDTM$M_COORDINATOR flag is set, then either the calling process must
have the SYSPRV privilege or the caller must be in executive or kernel mode.

Required Quotas
BYTLM, ASTLM

Related Services

$ABORT_TRANS, $ABORT_TRANSW, $ACK_EVENT, $ADD_BRANCH, $ADD_
BRANCHW, $CREATE_UID, $DECLARE_RM, $DECLARE_RMW, $END_
BRANCH, $END_BRANCHW, $END_TRANS, $END_TRANSW, $FORGET_

RM, $FORGET_RMW, $GETDTI, $GETDTIW, $GET_DEFAULT_TRANS, $JOIN_
RMW, $SETDTI, $SETDTIW, $SET DEFAULT TRANS, $SET_DEFAULT_

System Service Descriptions
$JOIN_RM

TRANSW, $START BRANCH, $START BRANCHW, $START TRANS, $START
TRANSW, $TRANS_EVENT, $TRANS_EVENTW

Condition Values Returned

SS$_NORMAL

SS$_SYNCH

SS$_ACCVIO
SS$_BADPARAM

SS$_EXASTLM
SS$_EXQUOTA

SS$ ILLEFC
SS$_INSFARGS
SS$_INSFMEM

SS$_INVBUFLEN

SS$_NOSYSPRIV

SS$_NOCURTID

SS$_NOSUCHTID

SS$ NOSUCHRM
SS$_WRONGACMODE

SS$_WRONGSTATE

If returned in RO, the request was successfully
queued. If returned in the I/O status block, the
service completed successfully.

The service completed successfully and
synchronously (returned only if the DDTM$M _
SYNC flag is set).

An argument was not accessible to the caller.
The options flags were invalid, the specified tid
was invalid, or DTM$M_COORDINATOR set but
no bid supplied.

The process AST limit (ASTLM) was exceeded.

The job buffered I/O byte limit quota (BYTLM)
was exceeded.

The event flag number was invalid.
A required argument was missing.

There was insufficient system dynamic memory
for the operation.

The string passed in the part_name argument
was too long.

The DDTM$M_COORDINATOR flag was set and
the caller was in user or supervisor mode but
the calling process did not have the SYSPRV
privilege.

An attempt was made to add a new participant
to the default transaction (the tid argument was
zero or omitted) but the calling process did not
have a default transaction.

The DDTM$M_COORDINATOR flag was clear
and the calling process did not contain any
branches in the transaction.

The calling process did not contain the specified
RMI.

The caller was in a less privileged access mode
than that of the RMI.

The transaction was in the wrong state for the
attempted operation because either:

e An abort event had occurred for the
transaction.

e A call to $END_TRANS to end the
transaction was in progress and it is too
late to add a new RM participant to the
transaction.

SYS2-133

System Service Descriptions
$JOIN_RMW

$JOIN_RMW
Join Resource Manager and Wait

Adds a new Resource Manager (RM) participant to a transaction.
$JOIN_RMW always waits for the request to complete before returning to the
caller. Other than this, it is identical to $JOIN_RM.
Format
SYS$JOIN_RMW [efn] ,[flags] ,iosb ,[astadr] ,[astprm] ,rm_id [,[tid] ,[part_name]
,[rm_context] ,[timout] ,[bid]]
C Prototype

int sys$join_rmw (unsigned int efn, unsigned int flags, struct _iosb *iosb, void
(*astadr)(_ _unknown_params), int astprm, unsigned int rm_id,...);

SYS2-134

System Service Descriptions
SLCKPAG

SLCKPAG
Lock Pages in Memory

Locks a page or range of pages in memory. The specified virtual pages are forced
into the working set and then locked in memory. A locked page is not swapped
out of memory if the working set of the process is swapped out. These pages are
not candidates for page replacement and in this sense are locked in the working
set as well.

Format
SYS$LCKPAG inadr ,[retadr] ,Jacmode]

C Prototype

int sys$lckpag (struct _va_range *inadr, struct _va_range *retadr, unsigned int

acmode);
Arguments
inadr
OpenVMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses of the range of pages to be locked. The
inadr argument is the address of a 2-longword array containing, in order, the
starting and ending process virtual addresses. Only the virtual page number

portion of each virtual address is used; the low-order byte-within-page bits are
ignored.

On VAX systems, if the starting and ending virtual addresses are the same, a
single page is locked.

retadr

OpenVMS usage: address_range

type: longword (unsigned)
access: write only
mechanism: by reference

Starting and ending process virtual addresses of the pages that $LCKPAG
actually locked. The retadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the pages to be locked. The acmode argument
is a longword containing the access mode. The $PSLDEF macro defines the four
access modes.

SYS2-135

System Service Descriptions

$LCKPAG

Description

The most privileged access mode used is the access mode of the caller. For the
$LCKPAG service to complete successfully, the resultant access mode must be
equal to or more privileged than the access mode already associated with the
pages to be locked.

The Lock Pages in Memory service locks a page or range of pages in memory. The
specified virtual pages are forced into the working set and then locked in memory.
A locked page is not swapped out of memory if the working set of the process is
swapped out. These pages are not candidates for page replacement and in this
sense are locked in the working set as well.

If more than one page is being locked and you need to determine specifically
which pages were previously locked, the pages should be locked one at a time.

If an error occurs while the $LCKPAG service is locking pages, the return array,
if requested, indicates the pages that were successfully locked before the error
occurred. If no pages are locked, both longwords in the return address array
contain the value —1.

On Alpha and 164 systems, if you are attempting to lock executable code, you
should issue multiple $LCKPAG calls: one to lock the code pages and others to
lock the linkage section references into these pages.

Required Access or Privileges

The calling process must have PSWAPM privilege to lock pages into memory.

Required Quota
None

Related Services
You can unlock pages locked in memory with the Unlock Pages from Memory
($ULKPAG) service. Locked pages are automatically unlocked at image exit.

For more information, see the chapter on memory management in the HP
OpenVMS Programming Concepts Manual.

Condition Values Returned

SYS2-136

SS$_WASCLR The service completed successfully. All of the
specified pages were previously unlocked.

SS$ WASSET The service completed successfully. At least one
of the specified pages was previously locked.

SS$_ACCVIO The input array cannot be read; the output array

cannot be written; the page in the specified range
is inaccessible or nonexistent; or an attempt to
lock pages was made by a caller whose access
mode is less privileged than the access mode
associated with the pages.

SS$ LCKPAGFUL The system-defined maximum limit on the
number of pages that can be locked in memory
has been reached.

System Service Descriptions
SLCKPAG

SS$_LDWSETFUL The locked working set is full. If any more pages
are locked, not enough dynamic pages will be
available to continue execution.

SS$_NOPRIV The process does not have the privilege to lock
pages in memory.
SS$_ PAGOWNVIO The pages could not be locked because the access

mode associated with the call to $LCKPAG was
less privileged than the access mode associated
with the pages that were to be locked.

SYS2-137

System Service Descriptions
$SLCKPAG_64 (Alpha and 164)

SLCKPAG_64 (Alpha and 164)
Lock Pages in Memory

On Alpha and 164 systems, locks a range of pages in memory. The specified
virtual pages are forced into the working set and then locked in memory. A
locked page is not swapped out of memory if the working set of the process is
swapped out. These pages are not candidates for page replacement and, in this
sense, are locked in the working set as well.

This service accepts 64-bit addresses.

Format
SYS$LCKPAG_64 start_va_64 ,length_64 ,acmode ,return_va_64 ,return_length_64

C Prototype

int sys$lckpag_64 (void *start_va_64, unsigned _ _int64 length_64, unsigned
int acmode, void *(*(return_va_64)), unsigned _ _int64
*return_length_64);

Arguments
start_va_64
OpenVMS usage: address
type: quadword address
access: read only
mechanism: by value

The starting virtual address of the pages to be locked. The specified virtual
address will be rounded down to a CPU-specific page boundary.

length_64

OpenVMS usage: byte count

type: quadword (unsigned)
access: read only
mechanism: by value

Length of the virtual address space to be locked. The specified length will be
rounded up to a CPU-specific page boundary so that it includes all CPU-specific
pages in the requested range.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode associated with the pages to be locked. The acmode argument is a
longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET C.TLB define the following symbols and their values for the
four access modes:

SYS2-138

Description

System Service Descriptions
SLCKPAG_64 (Alpha and 164)

Value Symbolic Name Access Mode
0 PSL$C_KERNEL Kernel

1 PSL$C_EXEC Executive

2 PSL$C_SUPER Supervisor

3 PSL$C USER User

The most privileged access mode used is the access mode of the caller. For the
$LCKPAG_64 service to complete successfully, the resultant access mode must
be equal to or more privileged than the access mode already associated with the
pages to be locked.

return_va_64
OpenVMS usage: address

type: quadword address
access: write only
mechanism: by 32- or 64-bit reference

The lowest process virtual address of the pages locked in memory. The
return_va_64 argument is the 32- or 64-bit virtual address of a naturally
aligned quadword into which the service returns the virtual address.

return_length_64
OpenVMS usage: byte count

type: quadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

The 32- or 64-bit virtual address of a naturally aligned quadword into which the
service returns the length of the virtual address range locked in bytes.

The Lock Pages in Memory service locks a range of pages in memory. The
specified virtual pages are forced into the working set and then locked in memory.
A locked page is not swapped out of memory if the working set of the process is
swapped out. These pages are not candidates for page replacement and, in this
sense, are locked in the working set as well.

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_va_64 and
return_length_64 arguments. If a condition value other than SS$_ACCVIO

is returned, the returned address and returned length indicate the pages that
were successfully locked before the error occurred. If no pages were locked,

the return_va_64 argument will contain the value -1, and a value cannot be
returned in the memory location pointed to by the return_length_64 argument.

Required Privileges
A process must have PSWAPM privilege to call the $LCKPAG_64 service.

Required Quota
None

Related Services
$LCKPAG, $ULKPAG, $ULKPAG_64

SYS2-139

System Service Descriptions
$SLCKPAG_64 (Alpha and 164)

Condition Values Returned

SS$_ WASCLR The service completed successfully. All of the
specified pages were previously unlocked.
SS$_WASSET The service completed successfully. At least one

of the specified pages was previously locked in
the working set.

SS$_ACCVIO The return_va_64 argument or the
return_length_64 argument cannot be written
by the caller, or an attempt was made to lock
pages by a caller whose access mode is less
privileged than the access mode associated with
the pages.

SS$ LCKPAGFUL The system-defined maximum limit on the
number of pages that can be locked in memory
has been reached.

SS$_LKWSETFUL The locked working set is full. If any more pages

are locked, not enough dynamic pages will be
available to continue execution.

SS$_NOPSWAPM The process does not have the privilege to lock
pages in memory.
SS$_ PAGOWNVIO The pages could not be locked because the access

mode associated with the call to $LCKPAG 64
was less privileged than the access mode
associated with the pages that were to be locked.

SYS2-140

System Service Descriptions
SLKWSET

SLKWSET
Lock Pages in Working Set

Locks a range of pages in the working set; if the pages are not already in the
working set, it brings them in and locks them. A page locked in the working set
does not become a candidate for replacement.

Format
SYS$LKWSET inadr ,[retadr] ,Jacmode]

C Prototype
int sys$lkwset (struct _va_range *inadr, struct _va_range *retadr, unsigned int

acmode);
Arguments
inadr
OpenVMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses of the range of pages to be locked in
the working set. The inadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses. Only
the virtual page number portion of each virtual address is used; the low-order
byte-within-page bits are ignored.

On VAX systems, if the starting and ending virtual addresses are the same, a
single page is locked.

On Alpha and 164 systems, if the first address in the 2-longword array is within
an image mapped to your process, the entire image specified by the address is
locked in the working set.

Be sure to check calls to the SYS$LKWSET and SYS$LKWSET_64 system
services for correct arguments. This affects only process-based code running
above IPL2. Compiler and linker differences might cause your program layout
to change from Alpha, resulting in incorrectly calculated starting and ending
addresses for calls to SYS$LKWSET and SYS$LKWSET 64. Calling these
services with incorrect arguments and then executing this code above IPL2 could
cause PGFIPLHI bugchecks. Note that SYSSLKWSET and SYS$LKWSET 64
automatically lock linker-generated short data sections associated with code
sections locked in the working set.

retadr

OpenVMS usage: address_range

type: longword (unsigned)
access: write only
mechanism: by reference

Starting and ending process virtual addresses of the range of pages actually
locked by $LKWSET. The retadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses.

SYS2-141

System Service Descriptions

SLKWSET

Description

SYS2-142

On Alpha and 164 systems, if the inadr argument specifies an address within an
image mapped to your process, retadr specifies only one range of pages locked in
the working set. Many ranges of pages might be locked.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the pages to be locked. The acmode argument
is a longword containing the access mode. The $PSLDEF macro defines the four
access modes.

The most privileged access mode used is the access mode of the caller. For the
$LKWSET service to complete successfully, the resultant access mode must be
equal to or more privileged than the access mode already associated with the
pages to be locked.

The Lock Pages in Working Set service locks a range of pages in the working set;
if the pages are not already in the working set, it brings them in and locks them.
A page locked in the working set does not become a candidate for replacement.

If more than one page is being locked and you need to determine specifically
which pages were previously locked, the pages should be locked one at a time.

If an error occurs while the $LKWSET service is locking pages, the return array,
if requested, indicates the pages that were successfully locked before the error
occurred. If no pages are locked, both longwords in the return address array
contain the value —1.

Global pages with write access cannot be locked into the working set.

On Alpha and 164 systems, if the first address specified to SYS$LKWSET is
within an image mapped to your process, a success status indicates that the
entire image containing the specified address is locked in the working set.

This behavior helps to ensure that privileged processes entering kernel mode
and raising IPL higher than IPL 2 do not access an invalid page and cause a
PGFIPLHI bugcheck. The system keeps a count of the number of times each
image within your process is locked in the working set. This count is maintained
so that calls to SYS$ULWSET unlock the image only when it has been called the
same number of times as SYS$LKWSET.

If an attempt to lock an image in the working set returns SS$_LKWSETFUL,
you might consider moving all kernel mode code within the image to a separate,
smaller sharable image. Otherwise, you might consider increasing the working
set quota of the process.

The LIBRTL routine LIB$LOCK IMAGE and LIB$UNLOCK_IMAGE are
preferable to SYS$LKWSET and SYS$ULKWSET for locking code and related
data in the working set. For more information about locking images in the
working set, see the LIBRTL manual and the descriptions of LIBSLOCK_IMAGE
and LIBSUNLOCK_IMAGE.

Required Access or Privileges
None

Required Quota
None

Related Services

System Service Descriptions
SLKWSET

You can unlock pages locked in the working set with the Unlock Page from
Working Set (JULWSET) service.

For more information, see the chapter on memory management in the HP
OpenVMS Programming Concepts Manual.

Condition Values Returned

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

SS$_LKWSETFUL

SS$_NOPRIV

SS$_PAGOWNVIO

The service completed successfully. All of the
specified pages were previously unlocked. The
entire image might have been locked in the
working set.

The service completed successfully. At least one
of the specified pages was previously locked in
the working set. If the image has been locked
in the working set, the count of times the image
has been locked in the working set has been
incremented.

The input address array cannot be read; the
output address array cannot be written; a page in
the specified range is inaccessible or nonexistent;
or an attempt was made to lock pages by a caller
whose access mode is less privileged than the
access mode associated with the pages.

The locked working set is full. If any more pages
are locked, not enough dynamic pages will be
available to continue execution. If the image is
being locked in the working set, the image is too
large to be entirely locked in the working set.

A page in the specified range is in the system
address space, or a global page with write access
was specified.

The pages could not be locked because the access
mode associated with the call to $LKWSET was
less privileged than the access mode associated
with the pages that were to be locked.

SYS2-143

System Service Descriptions
SLKWSET_64 (Alpha and 164)

SLKWSET_64 (Alpha and 164)
Lock Pages in Working Set

Format

C Prototype

Arguments

SYS2-144

On Alpha and 164 systems, locks a range of virtual addresses in the working set.
If the pages are not already in the working set, the service brings them in and
locks them. A page locked in the working set does not become a candidate for
replacement.

This service accepts 64-bit addresses.

SYS$LKWSET_64 start_va_64 ,length_64 ,acmode ,return_va_64 ,return_length_64

int sys$lkwset_64 (void *start_va_64, unsigned __int64 length_64, unsigned
int acmode, void *(*(return_va_64)), unsigned _ _int64
*return_length_64);

start_va_64

OpenVMS usage: address

type: quadword address
access: read only
mechanism: by value

The starting virtual address of the pages to be locked in the working set. The
specified virtual address will be rounded down to a CPU-specific page boundary.

length_64

OpenVMS usage: byte count

type: quadword (unsigned)
access: read only
mechanism: by value

Length of the virtual address space to be locked in the working set. The specified
length will be rounded up to a CPU-specific page boundary so that it includes all
CPU-specific pages in the requested range.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode associated with the pages to be locked. The acmode argument is a
longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

Description

System Service Descriptions
SLKWSET_64 (Alpha and 164)

Value Symbolic Name Access Mode
0 PSL$C_KERNEL Kernel

1 PSL$C_EXEC Executive

2 PSL$C_SUPER Supervisor

3 PSL$C USER User

The most privileged access mode used is the access mode of the caller. For the
$LKWSET 64 service to complete successfully, the resultant access mode must
be equal to or more privileged than the access mode already associated with the
pages to be locked.

return_va_64
OpenVMS usage: address

type: quadword address
access: write only
mechanism: by 32- or 64-bit reference

The lowest process virtual address of the pages locked in the working set. The
return_va_64 argument is the 32- or 64-bit virtual address of a naturally aligned
quadword into which the service returns the virtual address.

return_length_64
OpenVMS usage: byte count

type: quadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

The length of the virtual address range locked in the working set. The
return_length_64 argument is the 32- or 64-bit virtual address of a naturally
aligned quadword into which the service returns the length of the virtual address
range in bytes.

The Lock Pages in Working Set service locks a range of pages in the working set;
if the pages are not already in the working set, it brings them in and locks them.
A page locked in the working set does not become a candidate for replacement.

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_va_64 and
return_length_64 arguments. If a condition value other than SS$_ACCVIO

is returned, the returned address and returned length indicate the pages that
were successfully locked before the error occurred. If no pages were locked,

the return_va_64 argument will contain the value -1, and a value cannot be
returned in the memory location pointed to by the return_length_64 argument.

Global pages with write access cannot be locked into the working set.

Be sure to check calls to the SYSSLKWSET and SYS$LKWSET_64 system
services for correct arguments. This affects only process-based code running
above IPL2. Compiler and linker differences might cause your program layout
to change from Alpha, resulting in incorrectly calculated starting and ending
addresses for calls to SYS$LKWSET and SYS$LKWSET 64. Calling these
services with incorrect arguments and then executing this code above IPL2 could
cause PGFIPLHI bugchecks. Note that SYSSLKWSET and SYS$LKWSET 64

SYS2-145

System Service Descriptions
SLKWSET_64 (Alpha and 164)

automatically lock linker-generated short data sections associated with code
sections locked in the working set.

On Alpha and 164 systems, if the first address specified to SYS$LKWSET_64

is within an image mapped to your process, a success status indicates that

the entire image containing the specified address is locked in the working set.
This behavior helps to ensure that privileged processes entering kernel mode
and raising IPL higher than IPL 2 do not access an invalid page and cause a
PGFIPLHI bugcheck. The system keeps a count of the number of times each
image within your process is locked in the working set. This count is maintained
so that calls to SYS$ULWSET _64 unlock the image only when it has been called
the same number of times as SYS$LKWSET 64.

If an attempt to lock an image in the working set returns SS$_LKWSETFUL,
you might consider moving all kernel mode code within the image to a separate,
smaller sharable image. Otherwise, you might consider increasing the working
set quota of the process.

The LIBRTL routine LIB$LOCK_IMAGE and LIBSUNLOCK_IMAGE are
preferable to SYS$LKWSET_64 and SYS$ULKWSET _64 for locking code and
related data in the working set. For more information about locking images in
the working set, see the LIBRTL manual and the descriptions of LIBSLOCK_
IMAGE and LIB$UNLOCK_IMAGE.

Required Privileges

None

Required Quota
None

Related Services
$LKWSET, $SULWSET, $ULWSET_64

Condition Values Returned

SYS2-146

SS$_WASCLR The service completed successfully. All of the
specified pages were previously unlocked. The
entire image might have been locked in the
working set.

SS$ WASSET The service completed successfully. At least one
of the specified pages was previously locked in
the working set. If the image has been locked
in the working set, the count of times the image
has been locked in the working set has been
incremented.

SS$ ACCVIO The return_va_64 or return_length_64
argument cannot be written by the caller, or
an attempt was made to lock pages by a caller
whose access mode is less privileged than the
access mode associated with the pages.

SS$_LKWSETFUL

SS$_NOPRIV
SS$_PAGNOTINREG

SS$_PAGOWNVIO

System Service Descriptions
SLKWSET_64 (Alpha and 164)

The locked working set is full. If any more pages
are locked, not enough dynamic pages will be
available to continue execution. If the image is
being locked in the working set, the image is too
large to be entirely locked in the working set.

No privilege; global pages with write access
cannot be locked into the working set.

A page in the specified range is not within the
specified region.

The pages could not be locked because the access
mode associated with the call to $LKWSET 64
was less privileged than the access mode
associated with the pages that were to be locked.

SYS2-147

System Service Descriptions
$SMGBLSC

SMGBLSC
Map Global Section

Establishes a correspondence between pages (maps) in the virtual address space
of the process and physical pages occupied by a global section.

Format
SYS$MGBLSC inadr ,[retadr] ,Jacmode] ,[flags] ,gsdnam ,[ident] ,[relpag]

C Prototype

int sys$mgblsc (struct _va_range *inadr, struct _va_range *retadr, unsigned int
acmode, unsigned int flags, void *gsdnam, struct _secid *ident,
unsigned int relpag);

Arguments
inadr
OpenVMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses into which the section is to be mapped.
The inadr argument is the address of a 2-longword array containing, in order,
the starting and ending process virtual addresses. Only the virtual page number
portion of each virtual address is used to specify which pages are to be mapped;
the low-order byte-within-page bits are ignored for this purpose.

The interpretation of the inadr argument depends on the setting of
SEC$M_EXPREG in the flags argument and on whether you are using an
Alpha, an 164, or a VAX system. These system types are discussed separately in
this section.

Alpha and 164 System Usage

On Alpha and 164 systems, if you do not set the SEC$M_EXPREG flag, the inadr
argument specifies the starting and ending virtual addresses of the region to

be mapped. Addresses in system space are not allowed. The addresses must be
aligned on CPU-specific pages; no rounding to CPU-specific pages occurs. The
lower address of the inadr argument must be on a CPU-specific page boundary
and the higher address of the inadr argument must be 1 less than a CPU-specific
boundary, thus forming a range, from lowest to highest, of address bytes. You can
use the SYI$_PAGE_SIZE item code in the $GETSYI system service to set the
inadr argument to the proper values. You do this to avoid programming errors
that might arise because of incorrect programming assumptions about page sizes.

If, on the other hand, you do set the SEC$M_EXPREG flag, indicating that the
mapping should take place using the first available space in a particular region,
the inadr argument is used only to indicate the desired region: the program
region (P0) or the control region (P1).

Caution

Mapping into the P1 region is generally discouraged, but, if done, must
be executed with extreme care. Since the user stack is mapped in P1, it

SYS2-148

System Service Descriptions
$SMGBLSC

is possible that references to the user stack might inadvertently read or
write the pages mapped with $CRMPSC.

When the SEC$M_EXPREG flag is set, the second inadr longword is ignored,
while bit 30 (the second most significant bit) of the first inadr longword is used
to determine the region of choice. If the bit is clear, PO is chosen; if the bit is set,
P1 is chosen. On Alpha and 164 systems, bit 31 (the most significant bit) of the
first inadr longword must be 0. To ensure compatibility between VAX and Alpha
or 164 systems when you choose a region, HP recommends that you specify, for
the first inadr longword, any virtual address in the desired region.

VAX System Usage

On VAX systems, if you do not set the SEC$M_EXPREG flag, the inadr argument
specifies the starting and ending virtual addresses of the region to be mapped.
Addresses in system space are not allowed. If the starting and ending virtual
addresses are the same, a single page is mapped.

Note

If the SEC$M_EXPREG flag is not set, HP recommends that the inadr

argument always specify the entire virtual address range, from starting

byte address to ending byte address. This ensures compatibility between
VAX and Alpha or 164 systems.

If, on the other hand, you do set the SEC$M_EXPREG flag, indicating that the
mapping should take place using the first available space in a particular region,
the inadr argument is used only to indicate the desired region: the program
region (PO) or the control region (P1).

Caution

Mapping into the P1 region is generally discouraged, but, if done, must
be executed with extreme care. Since the user stack is mapped in P1, it
is possible that references to the user stack might inadvertently read or
write the pages mapped with $CRMPSC.

When the SEC$M_EXPREG flag is set, the second inadr longword is ignored,
while bit 30 (the second most significant bit) of the first inadr longword is used
to determine the region of choice. If the bit is clear, PO is chosen; if the bit is
set, P1 is chosen. On VAX systems, bit 31 (the most significant bit) of the first
inadr longword is ignored. To ensure compatibility between VAX and Alpha or
164 systems when you choose a region, HP recommends that you specify, for the
first inadr longword, any virtual address in the desired region.

retadr

OpenVMS usage: address_range

type: longword (unsigned)
access: write only
mechanism: by reference

Starting and ending process virtual addresses into which the section was actually
mapped by $MGBLSC. The retadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses.

SYS2-149

System Service Descriptions
$SMGBLSC

On Alpha and 164 systems, the retadr argument returns the starting and ending
addresses of the usable range of addresses. This might differ from the total
amount mapped. The retadr argument is required when the relpag argument
is specified. If the section being mapped does not completely fill the last page
used to map the section, the retadr argument indicates the highest address that
actually maps the section. If the relpag argument is used to specify an offset
into the section, the retadr argument reflects the offset.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the pages mapped into the process virtual
address space. The acmode argument is a longword containing the access mode.
The $PSLDEF macro defines symbols for the four access modes.

The most privileged access mode used is the access mode of the caller.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying options for the operation. The flags argument is a longword
bit vector wherein a bit when set specifies the corresponding option.

The $SECDEF macro defines symbolic names for the flag bits. You construct
the flags argument by specifying the symbolic names of each desired option in a
logical OR operation.

The following table describes each flag option:

Flag Option Description

SEC$M_WRT Map the section with read/write access. By default, the
section is mapped with read-only access. If SEC$M_WRT
is specified and the section is not copy-on-reference, write
access is required.

SEC$M_SYSGBL Map a system global section. By default, the section is a
group global section.

SEC$M_EXPREG Map the section into the first available virtual address
range. By default, the section is mapped into the range
specified by the inadr argument.

See the inadr argument description for a complete
explanation of how to set the SEC$M_EXPREG flag.
SEC$M_ Flag that must be set when a PFN-mapped section is
UNCACHED created if this section must be treated as uncached
memory. Flag is ignored on Alpha systems; it applies
only to 164 systems.

gsdnam
OpenVMS usage: section_name
type: character-coded text string

SYS2-150

System Service Descriptions
$SMGBLSC

access: read only
mechanism: by descriptor—fixed-length string descriptor

Name of the global section. The gsdnam argument is the address of a character
string descriptor pointing to this name string.

For group global sections, the operating system interprets the group UIC as
part of the global section name; thus, the names of global sections are unique to
UIC groups. Further, all global section names are implicitly qualified by their
identification fields.

You can specify any name from 1 to 43 characters. All processes mapping to the
same global section must specify the same name. Note that the name is case
sensitive.

Use of characters valid in logical names is strongly encouraged. Valid values
include alphanumeric characters, the dollar sign ($), and the underscore (). If
the name string begins with an underscore (_), the underscore is stripped and the
resultant string is considered to be the actual name. Use of the colon (:) is not
permitted.

Names are first subject to a logical name translation, after the application of the
prefix GBL$ to the name. If the result translates, it is used as the name of the
section. If the resulting name does not translate, the name specified by the caller
is used as the name of the section.

Additional information on logical name translations and on section name
processing is available in the HP OpenVMS Programming Concepts Manual.

ident

OpenVMS usage: section_id

type: quadword (unsigned)
access: read only
mechanism: by reference

Identification value specifying the version number of a global section and, for
processes mapping to an existing global section, the criteria for matching the
identification. The ident argument is the address of a quadword structure
containing three fields.

The first longword specifies, in the low-order two bits, the matching criteria.
Their valid values, the symbolic names by which they can be specified, and their
meanings are as follows:

Value/Name Match Criteria

0 SEC$K_MATALL Match all versions of the section.

1 SEC$K_MATEQU Match only if major and minor identifications match.
2 SEC$K_MATLEQ Match if the major identifications are equal and the

minor identification of the mapper is less than or equal
to the minor identification of the global section.

The version number is in the second longword and contains two fields: a minor
identification in the low-order 24 bits and a major identification in the high-order
8 bits.

If you do not specify ident or specify it as the value 0 (the default), the version
number and match control fields default to the value 0.

SYS2-151

System Service Descriptions

$MGBLSC

Description

SYS2-152

relpag

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Relative page number within the section of the first page to be mapped. The
relpag argument is a longword containing this number.

On Alpha and 164 systems, the relpag argument is interpreted as an index into
the section file, measured in pagelets for a file-backed section or CPU-specific
pages for a PFN-mapped section.

On Alpha, 164, and VAX systems, if you do not specify relpag or specify it as the
value 0 (the default), the global section is mapped beginning with the first virtual
block in a file-backed section or the first CPU-specific page in a PFN-mapped
section.

The Map Global Section service establishes a correspondence between pages
(maps) in the virtual address space of the process and physical pages occupied by
a global section. The protection mask specified at the time the global section is
created determines the type of access (for example, read/write or read only) that a
particular process has to the section.

When $MGBLSC maps a global section, it adds pages to the virtual address
space of the process. The section is mapped from a low address to a high address,
whether the section is mapped in the program or control region.

If an error occurs during the mapping of a global section, the return address
array, if specified, indicates the pages that were successfully mapped when the
error occurred. If no pages were mapped, both longwords of the return address
array contain the value —1.

Required Access or Privileges

Read access is required. If the SEC$M_WRT flag is specified, write access is
required.

Required Quota

The working set quota (WSQUOTA) of the process must be sufficient to
accommodate the increased size of the virtual address space when the $MGBLSC
service maps a section.

If the section pages are copy-on-reference, the process must also have sufficient
paging file quota (PGFLQUOTA).

This system service causes the working set of the calling process to be adjusted to
the size specified by the working set quota (WSQUOTA). If the working set size
of the process is less than quota, the working set size is increased; if the working
set size of the process is greater than quota, the working set size is decreased.

Related Services

$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $SLKWSET, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

For more information, see the chapter on memory management in the HP
OpenVMS Programming Concepts Manual.

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_ENDOFFILE
SS$_EXQUOTA

SS$_INSFWSL

SS$_INVARG

SS$_IVLOGNAM

SS$_IVSECFLG
SS$_IVSECIDCTL

SS$_NOPRIV

SS$_NOSHPTS

SS$_NOSUCHSEC
SS$_PAGOWNVIO

SS$_SECREFOVF

SS$ TOOMANYLNAM

SS$_VA_IN_USE

SS$_VASFULL

System Service Descriptions
$SMGBLSC

The service completed successfully.

The input address array, the global section name
or name descriptor, or the section identification
field cannot be read by the caller; or the return
address array cannot be written by the caller.

The starting virtual block number specified is
beyond the logical end-of-file.

The process exceeded its paging file quota,
creating copy-on-reference pages.

The working set limit of the process is not large
enough to accommodate the increased virtual
address space.

Invalid argument specified to service. Common
sources are the incorrect specification of relpag
or the values in the inadr array.

The global section name has a length of O or has
more than 43 characters.

You set a reserved flag.

The match control field of the global section
identification is invalid.

The file protection mask specified when the
global section was created prohibits the type of
access requested by the caller; or a page in the
input address range is in the system address
space.

The region ID of a shared page-table region was
specified.

The specified global section does not exist.

A page in the specified input address range is
owned by a more privileged access mode.

The maximum number of references for a global
section has been reached (2,147,483,647).
Logical name translation of the gsdnam string
exceeded the allowed depth.

The existing underlying page cannot be deleted
because it is associated with a buffer object.

The virtual address space of the process is full,
no space is available in the page tables for the
pages created to contain the mapped global
section.

SYS2-153

System Service Descriptions
$SMGBLSC_64 (Alpha and 164)

SMGBLSC_64 (Alpha and 164)
Map to Global Section

On Alpha and 164 systems, establishes a correspondence between pages in the
virtual address space of the process and the pages occupied by a global disk file,
page file, or demand-zero section and can map to a demand-zero section with
shared page tables.

This service accepts 64-bit addresses.

Format

SYS$SMGBLSC_64 gs_name_64 ,ident_64 ,region_id_64 ,section_offset_64
Jlength_64 ,acmode ,flags ,return_va_64 ,return_length_64
[,start_va_64]

C Prototype

int sys$mgblsc_64 (void *gsdnam_64, struct _secid *ident_64, struct _generic_64
*region_id_64, unsigned _ _int64 section_offset_64, unsigned
__int64 length_64, unsigned int acmode, unsigned int flags, void
((return_va_64)), unsigned _ _int64 *return_length_64,...);

Arguments
gs_name_64
OpenVMS usage: section_name
type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Name of the global section. The gs_name_64 argument is the 32- or 64-bit
virtual address of a naturally aligned 32-bit or 64-bit string descriptor pointing to
this name string.

You can specify any name from 1 to 43 characters. All processes mapping to the
same global section must specify the same name. Note that the name is case
sensitive.

Use of characters valid in logical names is strongly encouraged. Valid values
include alphanumeric characters, the dollar sign ($), and the underscore (). If
the name string begins with an underscore (_), the underscore is stripped and the
resultant string is considered to be the actual name. Use of the colon (:) is not
permitted.

Names are first subject to a logical name translation, after the application of the
prefix GBL$ to the name. If the result translates, it is used as the name of the
section. If the resulting name does not translate, the name specified by the caller
is used as the name of the section.

Additional information on logical name translations and on section name
processing is available in the HP OpenVMS Programming Concepts Manual.

ident_64

OpenVMS usage: section_id

type: quadword (unsigned)
access: read only

SYS2-154

System Service Descriptions
$SMGBLSC_64 (Alpha and 164)

mechanism: by 32- or 64-bit reference

Identification value specifying the version number of a global section. The
ident_64 argument is a quadword containing three fields. The ident_64
argument is the 32- or 64-bit virtual address of a naturally aligned quadword
that contains the identification value.

The first longword specifies the matching criteria in its low-order two bits.

The valid values, symbolic names by which they can be specified, and their
meanings are as follows:

Value Symbolic Name Match Criteria

0 SEC$K_MATALL Match all versions of the section.

1 SEC$K_MATEQU Match only if major and minor identifications
match.

2 SEC$K_MATLEQ Match if the major identifications are equal

and the minor identification of the mapper is
less than or equal to the minor identification
of the global section.

If you specify the ident_64 argument as 0, the version number and match control
fields default to 0.

The version number is in the second longword. The version number contains two
fields: a minor identification in the low-order 24 bits and a major identification
in the high-order 8 bits. You can assign values for these fields by installation
convention to differentiate versions of global sections. If no version number is
specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

region_id_64

OpenVMS usage: region identifier

type: quadword (unsigned)
access: read only

mechanism: by 32- or 64-bit reference

The region ID associated with the region to map the global section. The file
VADEF.H in SYS$STARLET C.TLB and the $VADEF macro in STARLET.MLB
define a symbolic name for each of the three default regions in PO, P1, and P2
space.

The following region IDs are defined:

Symbol Region

VA$C_PO Program region

VA$C P1 Control region
VA$C_P2 64-bit program region

Other region IDs, as returned by the $CREATE_REGION_64 service, can be
specified.

SYS2-155

System Service Descriptions
$SMGBLSC_64 (Alpha and 164)

SYS2-156

section_offset_64
OpenVMS usage: byte offset

type: quadword (unsigned)
access: read only
mechanism: by value

Offset into the global section at which to start mapping into the process’s virtual
address space.

If a map to a global disk file section is being requested, the section_offset_64
argument specifies an even multiple of disk blocks. If a map to a global page
file or demand-zero section is being requested, the section_offset_64 argument
specifies an even multiple of CPU-specific pages. If zero is specified, the global
section is mapped beginning with the first page of the section.

If the region_id_64 argument specifies a shared page table region, section_
offset_64 must be an even multiple of pages mapped by a page table page.

length_64

OpenVMS usage: byte count

type: quadword (unsigned)
access: read only
mechanism: by value

Length, in bytes, of the desired mapping of the global disk file section.

If a map to a global section is being requested, the length_64 argument must
specify an even multiple of disk blocks. If a map to a global page file or demand-
zero section is being requested, the length_64 argument must specify an even
multiple of CPU-specific pages. If zero is specified, the size of the disk file is used.

If a shared page-table region is specified by the region_id_64 argument, length_
64 must be an even multiple of the number of bytes that can be mapped by a
CPU-specific page-table page or must include the last page within the memory-
resident global section.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping.
This is also the read access mode and, if the SEC$M_WRT flag is specified, the
write access mode. The acmode argument is a longword containing the access
mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET C.TLB define the following symbols and their values for the
four access modes:

Value Symbolic Name Access Mode
0 PSL$C_KERNEL Kernel

1 PSL$C_EXEC Executive

2 PSL$C_SUPER Supervisor

System Service Descriptions
$SMGBLSC_64 (Alpha and 164)

Value Symbolic Name Access Mode

3 PSL$C_USER User

The most privileged access mode used is the access mode of the caller. Address
space cannot be created within a region that has a create mode associated
with it that is more privileged than the caller’s mode. The condition value
SS$_IVACMODE is returned if the caller is less privileged than the create mode
for the region.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying options for the operation. The flags argument is a longword
bit vector in which each bit corresponds to a flag. The $SECDEF macro and the
SECDEF.H file define a symbolic name for each flag. You construct the flags
argument by performing a logical OR operation on the symbol names for all
desired flags.

The following table describes each flag that is valid for the $MGBLSC_64 service:

Flag Description

SEC$M_EXPREG Pages are mapped into the first available space at the
current end of the specified region.

If /ALLOCATE was specified when the memory-resident
global section was registered in the Reserved Memory
Registry, virtually aligned addresses after the first
available space are chosen for the mapping.
It the region_id_64 argument specifies a shared page-
table region, the first available space is round up to the
beginning of the next CPU-specific page-table page.
SEC$M_GBL Pages form a global section. By default, this flag is always
present in this service and cannot be disabled.

SEC$M_NO_ Pages cannot overmap existing address space.
OVERMAP
SEC$M_SHMGS On OpenVMS Galaxy systems, create a shared-memory

global section.

SEC$M_SYSGBL The global section map is a system global section. By
default, the section is a group global section.

SEC$M_WRT Map the section with read/write access.

All other bits in the flags argument are reserved for future use by HP and
should be specified as 0. The condition value SS$_IVSECFLG is returned if any
undefined bits are set or if an attempt is made to use the SEC$M_PAGFIL flag,
which applies only to the creation of a page-file backed section.

return_va_64

OpenVMS usage: address

type: quadword address
access: write only

SYS2-157

System Service Descriptions
$SMGBLSC_64 (Alpha and 164)

SYS2-158

mechanism: by 32- or 64-bit reference

The process virtual address into which the global disk or page file section was
mapped. The return_va_64 argument is the 32- or 64-bit virtual address of a
naturally aligned quadword into which the service returns the virtual address.

Upon successful completion of this service, if the section_offset_64 argument
was specified, the virtual address returned in the return_va_64 argument
reflects the offset into the global section mapped such that the virtual address
returned cannot be aligned on a CPU-specific page boundary. The virtual address
returned will always be on an even virtual disk block boundary.

return_length_64
OpenVMS usage: byte count

type: quadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

The length of the usable virtual address range mapped. The return_length_64
argument is the 32- or 64-bit virtual address of a naturally aligned quadword
into which the service returns the length of the virtual address range mapped in
bytes.

Upon successful completion of this service, the value in the return_length_64
argument might differ from the total amount of virtual address space
mapped. The value in the return_va_64 argument plus the value in the
return_length 64 argument indicates the address of the first byte beyond the
end of the mapping of the global disk file section.

If the value in the section_offset_64 argument plus the value in the length_64
argument did not specify to map the entire global section, this byte can be located
at an even virtual disk block boundary within the last page of the mapping.

If the section being mapped does not completely fill the last page used to
represent the global disk file section, this byte can be mapped into your address
space; however, it is not backed up by the disk file.

start_va_64

OpenVMS usage: address

type: quadword address
access: read only
mechanism: by value

The starting virtual address to which to map the global section. The specified
virtual address must be a CPU-specific page-aligned address. If the flag
SEC$M_EXPREG is specified, the start_va_64 argument must not be specified or
must be specified as 0. If SEC$M_EXPREG is set and the start_va_64 argument
is nonzero, the condition value SS$_IVSECFLG is returned.

If the region_id_64 argument specifies a shared page-table region, start_va_64
must be aligned to a CPU-specific page-table page boundary.

Description

System Service Descriptions
$SMGBLSC_64 (Alpha and 164)

The Map to Global Section service establishes a correspondence between pages in
the virtual address space of the process and pages occupied by a global disk file,
page file, or memory-resident demand-zero section. This service adds pages to the
virtual address space of the process.

If a global disk file or page file backed section is being mapped, invalid page table
entries are placed in the process page table.

If a memory-resident global section is being mapped, global pages are not charged
against the process’s working set quota when the virtual memory is referenced
and the global pages are not charged against the process’s pagefile quota.

If the memory-resident global section was not registered in the Reserved Memory
Registry or INOALLOCATE was specified when the global section was registered,
invalid page table entries are placed in the process page table.

If the memory-resident global section was registered in the Reserved Memory
Registry and /ALLOCATE was specified when the memory-resident global section
was registered, valid page table entries are placed in the process page tables.

If a global disk file or page file backed section is being mapped, and the flag
SEC$M_EXPREG is set, the first free virtual address within the specified region
is used to start mapping to the global section.

To use the shared page tables associated with a memory-resident global section,
you must first create a shared page table region (with SYS$CREATE_REGION_
64). To map to the memory-resident global section using the shared page tables
you must do the following:

e Specify a shared page table region in the region_id_64 argument.
e Specify SEC$M_WRT in the flags argument.

e Set the flag SEC$M_EXPREG or provide a CPU-specific page-table page-
aligned virtual address in the start_va_64 argument.

e Specify a CPU-specific page-table page-aligned value for the section_offset_
64 argument or zero.

e Specify a value for the map_length_64 argument that is an even multiple of
bytes mapped by a CPU-specific page-table page, or include the last page of
the section or zero.

See the description of $CREATE_REGION_64 for information about calculating
virtual addresses that are aligned to a CPU-specific page table page boundary.

A memory-resident global section can be mapped with shared page tables

or private page tables. The following table lists the factors associated with
determining whether the mapping occurs with shared page tables or private page
tables:

Shared Page-Table

Global Section Created Region Specified by Type of Page Tables Used in
with Shared Page Tables region_id_64 Mapping
No No Private
No Yes Private

SYS2-159

System Service Descriptions
$SMGBLSC_64 (Alpha and 164)

SYS2-160

Shared Page-Table

Global Section Created Region Specified by Type of Page Tables Used in
with Shared Page Tables region_id_64 Mapping
Yes No Private
Yes Yes Shared

In general, if the flag SEC$M_EXPREG is set, the first free virtual address
within the specified region is used to map to the global section.

If the flag SEC$M_EXPREG is set, a memory-resident global section is being
mapped and the region_id_64 argument indicates a shared page-table region,
the first free virtual address within the specified region is rounded up to a
CPU-specific page-table page boundary and used to map to the global section.

If the flag SEC$M_EXPREG is set and the /ALLOCATE qualifier was specified
with the SYSMAN command RESERVED_MEMORY ADD for the memory-
resident global section, the first free virtual address within the specified region
is rounded up to the same virtual alignment as the physical alignment of the
preallocated pages and used to map to the global section. Granularity hints are
set appropriately for each process private page-table entry (PTE).

In general, if the flag SEC$M_EXPREG is clear, the virtual address in the start_
va_64 argument is used to map to the global section.

If the flag SEC$M_EXPREG is clear and a memory-resident global section is
being mapped, the value specified in the start_va_64 argument can determine
if the mapping is possible and if granularity hints are used in the private page
tables. If a shared page-table region is specified by the region_id_64 argument,
the virtual address specified by the start_va_64 argument must be on an even
CPU-specific page-table page boundary or an error is returned by this service. If
the region_id_64 argument does not specify a shared page-table region and the
/ALLOCATE qualifier was specified with the SYSMAN command RESERVED _
MEMORY ADD for this global section, granularity hints are used only if the
virtual alignment of start_va_64 is appropriate for the use of granularity hints:

¢ On Alpha systems, granularity hints mean multiples of pages, regardless of
page size. The multiples 8, 64, and 512 pages are architected.

e On I64 systems, OpenVMS initially supports page sizes of 64KB, 256KB, and
4MB instead of granularity hints. Additional pages sizes will be supported in
the future.

Whenever granularity hints are being used within the mapping of a memory-
resident global section, if the length_64 argument is not an exact multiple of
the alignment factor, lower granularity hints factors are used as appropriate

at the higher addressed portion of the global section. If the section_offset_64
argument is specified, a lower granularity hint factor can be used throughout the
mapping of the global section to match the physical alignment of the first page
mapped.

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_va_64 and
return_length_64 arguments.

If a condition value other than SS$_ACCVIO is returned, the returned address
and returned length indicate the pages that were successfully mapped before the
error occurred. If no pages were mapped, the return_va_64 argument contains
the value —1.

System Service Descriptions
$SMGBLSC_64 (Alpha and 164)

Required Privileges
None

Required Quota

If private page tables are used to map to the global section, the working set limit
quota (WSQUOTA) of the process must be sufficient to accommodate the increased
size of the process page tables required by the increase in virtual address space
when the section is mapped.

If private page tables are used to map to a memory-resident global section, the
pagefile quota (PGFLQUOTA) of the process must be sufficient to accommodate
the increased size of the process page tables required by the increase in virtual
address space.

If the process is mapping to a global copy-on-reference section, the pagefile quota
(PGFLQUOTA) of the process must be sufficient to accommodate the increased
size of the virtual address space.

Related Services

$CREATE_GDZRO, $CREATE_GFILE, $CREATE_GPFILE, $CREATE_REGION_
64, $CRMPSC_GDZRO_64, $CRMPSC_GFILE_64, $CRMPSC_GPFILE_64,
$DELETE_REGION_64, $DELTVA_64, $LCKPAG_64, $LKWSET 64, $MGBLSC,
$MGBLSC_GPFN_64, $PURGE_WS, $ULKPAG 64, SULWSET 64, $SUPDSEC_
64, SUPDSEC_64W

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The gs_name_64 argument cannot be read by
the caller, or the return_va_64 argument or the
return_length_64 argument cannot be written
by the caller.

SS$_EXPGFLQUOTA The process’s page file quota is not large enough
to accommodate the increased virtual address
space.

SS$_GBLSEC_MISMATCH Global section type mismatch. The specified
global section was found; however, it is not a
global disk-file, page-file, or demand-zero section.

SS$_INSFWSL The process’s working set limit is not large
enough to accommodate the increased virtual
address space.

SS$_IVACMODE The specified access mode is greater than PSL$_
USER or the caller’s mode is less privileged than
the create mode associated with the region. Or,
if a shared page table region is specified by the
region_id_64 argument, the acmode argument
does not match the access mode of the shared

PTEs.

SS$_IVLOGNAM The specified global section name has a length of
0 or has more than 43 characters.

SS$_IVREGID An invalid region ID was specified.

SYS2-161

System Service Descriptions
$SMGBLSC_64 (Alpha and 164)

SS$_IVSECFLG

SS$_IVSECIDCTL

SS$ LEN_NOTBLKMULT

SS$_LEN_NOTPAGMULT

SS$_NOSHPTS

SS$_NOSHPTS

SS$_NOSUCHSEC
SS$_OFF_NOTPAGALGN

SS$_OFFSET _TOO_BIG
SS$ PAGNOTINREG

SS$_PAGOWNVIO

SS$ PROTVIO

SS$ REGISFULL

SS$_SECREFOVF
SS$_SECTBLFUL

SS$ TOOMANYLNAM

SYS2-162

An invalid flag, a reserved flag, or an invalid
combination of flags was specified.

The match control field of the global section
identification is invalid.

The length_64 argument is not a multiple of
virtual disk blocks if a map to a global section
was requested (SEC$M_PAGFIL is clear in the
flags argument).

The length_64 argument is not a multiple of
CPU-specific pages and a map to a global page
file section was requested.

The region ID of a shared page-table region was
specified, and a gobal section was specified that
is not a memory-resident demand-zero section.

The region ID of a shared page table region was
specified.

The specified global section does not exist.

The section_offset_64 argument is not CPU-
specific page aligned if a map to a global page-file
or demand-zero section is requested. Or, if a
shared page table region is specified by the
region_id_64 argument, the section_offset_64
argument is not CPU-specific page-table page
aligned.

The section_offset_64 argument specified is
beyond the logical end-of-file.

A page in the specified input address range is not
within the specified region.

A page in the specified input address range
already exists and cannot be deleted because it is
owned by a more privileged access mode.

The file protection mask specified when the
global section was created prohibits the type of
access requested by the caller.

The specified virtual region is full; no space is
available in the region for the pages created to
contain the mapped section.

The maximum number of references for a global
section has been reached (2,147,483,647).

There are no entries available in the system
global section table.

The logical name translation of the gs_name_64
argument exceeded the allowed depth of 10.

SS$_VA_IN_USE

SS$_VA_NOTPAGALGN

SS$_NOWRTACC

System Service Descriptions
$SMGBLSC_64 (Alpha and 164)

A page in the specified input address range

is already mapped and the flag SEC$M_NO_
OVERMAP is set, or a page in the specified input
address range is in another region, in system
space, or inaccessible; or, the existing underlying
page cannot be deleted because it is associated
with a buffer object.

The start_va_64 argument is not CPU-specific
page aligned. Or, if a shared page table region
is specified by the region_id_64 argument,
the start_va_64 argument is not CPU-specific
page-table page aligned.

The specified global section is not copy-on-
reference and does not allow write access.

SYS2-163

System Service Descriptions
$SMGBLSC_GPFN_64 (Alpha and 164)

SMGBLSC_GPFN_64 (Alpha and 164)
Map Global Page Frame Section

On Alpha and 164 systems, establishes a correspondence between pages in the
virtual address space of the process and the pages occupied by a global page
frame section.

This service accepts 64-bit addresses.

Format

SYS$MGBLSC_GPFN_64 gs_name_64 ,ident_64 ,region_id_64 ,relative_page
,page_count ,acmode ,flags ,return_va_64
,return_length_64 [,start_va_64]

C Prototype

int sys$mgblsc_gpfn_64 (void *gsdnam_64, struct _secid *ident_64, struct
_generic_64 *region_id_64, unsigned int relative_page,
unsigned int page_count, unsigned int acmode, unsigned
int flags, void *(*(return_va_64)), unsigned __int64
*return_length_64,...);

Arguments
gs_name_64
OpenVMS usage: section_name
type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Name of the global section. The gs_name argument is the 32- or 64-bit virtual
address of a naturally aligned 32-bit or 64-bit descriptor pointing to this name
string.

You can specify any name from 1 to 43 characters. All processes mapping to the
same global section must specify the same name. Note that the name is case
sensitive.

Use of characters valid in logical names is strongly encouraged. Valid values
include alphanumeric characters, the dollar sign ($), and the underscore (). If
the name string begins with an underscore (_), the underscore is stripped and the
resultant string is considered to be the actual name. Use of the colon (:) is not
permitted.

Names are first subject to a logical name translation, after the application of the
prefix GBL$ to the name. If the result translates, it is used as the name of the
section. If the resulting name does not translate, the name specified by the caller
is used as the name of the section.

Additional information on logical name translations and on section name
processing is available in the HP OpenVMS Programming Concepts Manual.

ident_64

OpenVMS usage: section_id

type: quadword (unsigned)
access: read only

SYS2-164

System Service Descriptions
$SMGBLSC_GPFN_64 (Alpha and 164)

mechanism: by 32- or 64-bit reference

Identification value specifying the version number of a global section. The
ident_64 argument is a quadword containing three fields. The ident_64
argument is the 32- or 64-bit virtual address of a naturally aligned quadword
that contains the identification value.

The first longword specifies the matching criteria in its low-order two bits. The
valid values, symbolic names by which they can be specified, and their meanings
are as follows:

Value Symbolic Name Match Criteria

0 SEC$K_MATALL Match all versions of the section.

1 SEC$K_MATEQU Match only if major and minor identifications
match.

2 SEC$K_MATLEQ Match if the major identifications are equal

and the minor identification of the mapper is
less than or equal to the minor identification
of the global section.

If you specify the ident_64 argument as 0, the version number and match control
fields default to 0.

The version number is in the second longword. The version number contains two
fields: a minor identification in the low-order 24 bits and a major identification
in the high-order 8 bits. You can assign values for these fields by installation
convention to differentiate versions of global sections. If no version number is
specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

region_id_64

OpenVMS usage: region identifier

type: quadword (unsigned)
access: read only

mechanism: by 32- or 64-bit reference

The region ID associated with the region to map the private page frame
section. The file VADEF.H in SYS$STARLET C.TLB and the $VADEF macro

in STARLET.MLB define a symbolic name for each of the three default regions in
PO, P1, and P2 space.

The following region IDs are defined:

Symbol Region

VA$C_PO Program region
VA$C_P1 Control region
VA$C_P2 64-bit program region

Other region IDs, as returned by the $CREATE_REGION_64 service, can be
specified.

SYS2-165

System Service Descriptions
$SMGBLSC_GPFN_64 (Alpha and 164)

SYS2-166

relative_page
OpenVMS usage: CPU-specific page count

type: longword (unsigned)
access: read only
mechanism: by value

Relative CPU-specific page number within the global section to start mapping.

page_count

OpenVMS usage: CPU-specific page count

type: longword (unsigned) on Alpha, quadword (unsigned) on 164
access: read only

mechanism: by value

Length of mapping in CPU-specific pages. If zero is specified, the global page
frame section is mapped to the end of the section.

acmode

OpenVMS usage: access-mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the pages mapped into the process virtual
address space. The acmode argument is a longword containing the access mode.
The $PSLDEF macro defines symbols for the four access modes.

The most privileged access mode used is the access mode of the caller. Address
space cannot be created within a region that has a create mode associated
with it that is more privileged than the caller’s mode. The condition value
SS$_IVACMODE is returned if the caller is less privileged than the create mode
for the region.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying options for the operation. The flags argument is a longword
bit vector in which each bit corresponds to a flag. The $SECDEF macro and the
SECDEF.H file define a symbolic name for each flag. You construct the flags
argument by performing a logical OR operation on the symbol names for all
desired flags.

The following table describes each flag that is valid for the $MGBLSC_GPFN_64
service:

Flag Description

SEC$M_ARGS64 Indicates that all parameters, specifically start_pfn and
page_count, are passed as 64-bit numbers. This flag
is ignored on OpenVMS Alpha but must be set on 164
systems. If the flag is not set on 164, the error code SS$_
IVSECFLG is returned.

System Service Descriptions
$SMGBLSC_GPFN_64 (Alpha and 164)

Flag Description

SEC$M_GBL Pages form a global section. By default, this flag is always
present in this service and cannot be disabled.

SEC$M_EXPREG Map the section into the first available space at the
current end of the specified region. If this flag is specified,
the start_va_64 argument is not used.

SEC$M_PERM Pages are permanent. By default, this flag is always
present in this service and cannot be disabled.

SEC$M_PFNMAP Pages form a page frame section. By default, this flag is
always present in this service and cannot be disabled.

SEC$M_PAGFIL Pages form a global page-file section. SEC$M_PAGFIL
also implies SEC$M_WRT and SEC$M_DZRO.

SEC$M_SYSGBL Map a system global section. By default, the section is a
group global section.

SEC$M_ Flag accepted but ignored on 164 systems. The

UNCACHED cached/uncached characteristic is stored as a section
attribute, and the system uses this attribute when the
section is mapped. Refer to this flag in the documentation
of the SYS§CREATE_GPFN system service.

SEC$M_WRT Map the section with read/write access. By default, the
section is mapped with read-only access. If SEC$M_WRT
is specified, write access is required.

All other bits in the flags argument are reserved for future use by HP and
should be specified as 0. The condition value SS$_IVSECFLG is returned if any
undefined bits are set or if an illegal combination of flags is set.

return_va_64
OpenVMS usage: address

type: quadword address
access: write only
mechanism: by 32- or 64-bit reference

The lowest process virtual address into which the global page frame section was
mapped. The return_va_64 argument is the 32- or 64-bit virtual address of a
naturally aligned quadword that contains the virtual address.

return_length_64
OpenVMS usage: byte count

type: quadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

The 32- or 64-bit virtual address of a naturally aligned quadword into which the
$MGBLSC_GPFN_64 service returns the length of the virtual address range in
bytes.

start_va_64

OpenVMS usage: address

type: quadword address
access: read only
mechanism: by value

SYS2-167

System Service Descriptions
$SMGBLSC_GPFN_64 (Alpha and 164)

Description

The starting virtual address to map the global section. The specified

virtual address must be a CPU-specified page-aligned address. If the flag
SEC$M_EXPREG is specified, the start_va_64 argument must not be specified or
must be specified as 0. If SEC$M_EXPREG is set and the start_va_64 argument
is nonzero, the condition value SS$_IVSECFLG is returned.

Always refer to the return_va_64 and return_length_64 arguments to
determine the range of virtual addresses mapped.

The Map Global Page Frame Section service establishes a correspondence
between pages in the virtual address space of the process and pages occupied
by a global page frame section. It adds pages to the virtual address space of the
process.

Pages mapped to a global page frame section are not included in or charged
against the process’s working set; they are always valid. Do not lock these pages
in the working set by using $LKWSET; this can result in a machine check if they
are in I/O space.

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_va_64 and
return_length_64 arguments.

If a condition value other than SS$_ACCVIO is returned, the returned address
and returned length indicate the pages that were successfully mapped before
the error occurred. If no pages were mapped, the return_va_64 argument will
contain the value -1, and a value cannot be returned in the memory location
pointed to by the return_length_64 argument.

Required Privileges
Read access is required. If the SEC$M_WRT flag is specified, write access is
required.

Required Quota

The working set quota (WSQUOTA) of the process must be sufficient to
accommodate the increased length of the process page table required by the
increase in virtual address space.

The page file quota (PAGFLQUOTA) of the process must be sufficient to
accommodate the increased number of process page tables required by the

increase in virtual address space. (Note that this service can return the SS$_
EXPGFLQUOTA.)

Related Services

$CREATE_GPFN, $CREATE_REGION_64, $CRMPSC_GPFN_64, $DELETE _
REGION_64, $DELTVA_ 64, $MGBLSC, $MGBLSC_64

Condition Values Returned

SYS2-168

SS$_NORMAL The service completed successfully.
SS$_ACCVIO The gs_name_64 argument cannot be
read by the caller, or the return_va_64 or

return_length_64 argument cannot be written
by the caller.

SS$_GBLSEC_MISMATCH

SS$_ILLRELPAG

SS$_INSFWSL

SS$_IVACMODE
SS$_IVLOGNAM

SS$_IVREGID
SS$_IVSECFLG

SS$_IVSECIDCTL

SS$_NOSUCHSEC
SS$_NOWRTACC

SS$_PROTVIO

SS$_PAGNOTINREG

SS$_PAGOWNVIO

SS$_REGISFULL

SS$ TOOMANYLNAM
SS$_VA_IN_USE

SS$_VA_NOTPAGALGN

System Service Descriptions
$SMGBLSC_GPFN_64 (Alpha and 164)

Global section type mismatch. The specified
global section was found; however, it is not a
global page frame section.

The specified relative page argument is either
larger than the highest page number within the
section or is not a valid 32-bit physical page
frame number.

The working set limit of the process is not large
enough to accommodate the increased virtual
address space.

The caller’s mode is less privileged than the
create mode associated with the region.

The specified global section name has a length of
0 or has more than 43 characters.

Invalid region ID specified.

An invalid flag, a reserved flag, or an invalid
combination of flags was specified.

The match control field of the global section
identification is invalid.

The specified global section does not exist.

The specified global section is not copy-on-
reference and does not allow write access.

The file protection mask specified when the
global section was created prohibits the type of
access requested by the caller.

A page in the specified range is not within the
specified region.

A page in the specified range already exists and
cannot be deleted because it is owned by a more
privileged access mode than that of the caller.

The specified virtual region is full; no space is
available in the region for the pages created to
contain the mapped global section.

The logical name translation of the gs_ name_64
argument exceeded the allowed depth of 10.

The existing underlying page cannot be deleted
because it is associated with a buffer object.

The start_va_64 argument is not CPU-specific
page aligned.

SYS2-169

System Service Descriptions
$MOD_HOLDER

$MOD_HOLDER
Modify Holder Record in Rights Database

Modifies the specified holder record of the target identifier in the rights database.

Format
SYS$MOD_HOLDER id ,holder ,[set_attrib] ,[clr_attrib]

C Prototype

int sys$mod_holder (unsigned int id, struct _generic_64 *holder, unsigned int
set_attrib, unsigned int clr_attrib);

Arguments
id
OpenVMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

Binary value of target identifier whose holder record is modified when $MOD_
HOLDER completes execution. The id argument is a longword containing the
identifier value.

holder

OpenVMS usage: rights_holder

type: quadword (unsigned)
access: read only
mechanism: by reference

Identifier of holder being modified when $MOD_HOLDER completes execution.
The holder argument is the address of a quadword containing the UIC identifier
of the holder in the first longword and the value of 0 in the second longword.

set_attrib

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask of attributes to be enabled for the identifier when $MOD_HOLDER
completes execution. The set_attrib argument is a longword containing the
attribute mask.

The attributes actually enabled are the intersection of those specified and the
attributes of the identifier. If you specify the same attribute in set_attrib and
clr_attrib, the attribute is enabled.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The following symbols for each bit position are defined in the system
macro library ($KGBDEF):

SYS2-170

Description

System Service Descriptions
$MOD_HOLDER

Bit Position Meaning When Set

KGB$V_DYNAMIC Allows holders of the identifier to remove it from or add
it to the process rights list by using the DCL command
SET RIGHTS_LIST.

KGB$V_NOACCESS Makes any access rights of the identifier null and void.
This attribute is intended as a modifier for a resource
identifier or the Subsystem attribute.

KGB$V_RESOURCE Allows the holder to charge resources, such as disk
blocks, to the identifier.

KGB$V_SUBSYSTEM Allows holders of the identifier to create and maintain
protected subsystems by assigning the Subsystem ACE
to the application images in the subsystem.

clr_attrib

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask of attributes to be disabled for the identifier when $MOD_HOLDER
completes execution. The clr_attrib argument is a longword containing the
attribute mask.

If you specify the same attribute in set_attrib and clr_attrib, the attribute is
enabled.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The following symbols for each bit position are defined in the system
macro library (S KGBDEF):

Bit Position Meaning When Set

KGB$V_DYNAMIC Allows holders of the identifier to remove it from or add
it to the process rights list by using the DCL command
SET RIGHTS_LIST.

KGB$V_NOACCESS Makes any access rights of the identifier null and void.
This attribute is intended as a modifier for a resource
identifier or the Subsystem attribute.

KGB$V_RESOURCE Allows the holder to charge resources, such as disk
blocks, to the identifier.

KGB$V_SUBSYSTEM Allows holders of the identifier to create and maintain
protected subsystems by assigning the Subsystem ACE
to the application images in the subsystem.

The Modify Holder Record in Rights Database service modifies the specified
holder record in the rights database. Identifier attributes can be added or
removed.

When you specify both the set_attrib and clr_attrib arguments, the attribute is
cleared first. Thus, if you specify the same attribute bit with each argument, the
result is that the bit is set.

SYS2-171

System Service Descriptions

$MOD_HOLDER

Required Access or Privileges

Write access to the rights database is required.

Required Quota
None

Related Services

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CREATE_RDB, $FIND_HELD,
$FIND_HOLDER, $FINISH_RDB, $GET_SECURITY, $GRANTID, $IDTOASC,
$MOD_IDENT, $REM_HOLDER, $REM_IDENT, $REVOKID, $SET_SECURITY

Condition Values Returned

SYS2-172

SS$ NORMAL
SS$_ACCVIO

SS$ BADPARAM
SS$_INSFMEM
SS$_IVIDENT

SS$_NOSUCHID

RMS$_PRV

The service completed successfully.

The holder argument cannot be read by the
caller.

The specified attributes contain invalid attribute
flags.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier or holder identifier is of
invalid format.

The specified identifier does not exist in the
rights database, or the specified holder identifier
does not exist in the rights database.

The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with OpenVMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the OpenVMS

Record Management Services Reference Manual.

System Service Descriptions
$SMOD_IDENT

$SMOD_IDENT
Modify Identifier in Rights Database

Format

C Prototype

Arguments

Modifies the specified identifier record in the rights database.

SYS$MOD_IDENT id ,[set_attrib] ,[clr_attrib] ,[new_name] ,[new_value]

int sys$mod_ident (unsigned int id, unsigned int set_attrib, unsigned int clr_attrib,
void *new_name, unsigned int new_value);

id

OpenVMS usage: rights_id

type: longword (unsigned)
access: read only
mechanism: by value

Binary value of identifier whose identifier record is modified when $MOD_IDENT
completes execution. The id argument is a longword containing the identifier
value.

set_attrib

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask of attributes to be enabled for the identifier when $MOD_IDENT
completes execution. The set_attrib argument is a longword containing the
attribute mask.

The attributes actually enabled are the intersection of those specified and the
attributes of the identifier. If you specify the same attribute in set_attrib and
clr_attrib, the attribute is enabled.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The following symbols for each bit position are defined in the system
macro library ($KGBDEF):

Bit Position Meaning When Set

KGB$V_DYNAMIC Allows holders of the identifier to remove
it from or add it to the process rights
list by using the DCL command SET_
RIGHTS_LIST.

KGB$V_HOLDER HIDDEN Prevents someone from getting a list of
users who hold an identifier, unless they
own the identifier themselves.

SYS2-173

System Service Descriptions

SMOD_IDENT
Bit Position Meaning When Set
KGB$V_NAME HIDDEN Allows holders of an identifier to have it

translated—either from binary to ASCII
or vice versa—but prevents unauthorized
users from translating the identifier.

KGB$V_NOACCESS Makes any access rights of the identifier
null and void. This attribute is intended
as a modifier for a resource identifier or
the Subsystem attribute.

KGB$V_RESOURCE Allows holders of an identifier to charge
disk space to the identifier. It is used
only for file objects.

KGB$V_SUBSYSTEM Allows holders of the identifier to create
and maintain protected subsystems by
assigning the Subsystem ACE to the
application images in the subsystem.

cir_attrib

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask of attributes to be disabled for the identifier when $MOD_IDENT
completes execution. The clr_attrib argument is a longword containing the
attribute mask.

If you specify the same attribute in set_attrib and clr_attrib, the attribute is
enabled.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The following symbols for each bit position are defined in the system
macro library (S KGBDEF):

Bit Position Meaning When Set

KGB$V_DYNAMIC Allows holders of the identifier to remove
it from or add it to the process rights
list by using the DCL command SET_
RIGHTS_LIST.

KGB$V_HOLDER_HIDDEN Prevents someone from getting a list of
users who hold an identifier, unless they
own the identifier themselves.

KGB$V_NAME HIDDEN Allows holders of an identifier to have it
translated—either from binary to ASCII
or vice versa—but prevents unauthorized
users from translating the identifier.

SYS2-174

Description

System Service Descriptions
$SMOD_IDENT

Bit Position Meaning When Set

KGB$V_NOACCESS Makes any access rights of the identifier
null and void. This attribute is intended
as a modifier for a resource identifier or
the Subsystem attribute.

KGB$V_RESOURCE Allows holders of an identifier to charge
disk space to the identifier. It is used
only for file objects.

KGB$V_SUBSYSTEM Allows holders of the identifier to create
and maintain protected subsystems by
assigning the Subsystem ACE to the
application images in the subsystem.

new_name

OpenVMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

New name to be given to the specified identifier. The new_name argument is the
address of the descriptor pointing to the identifier name string.

An identifier name consists of 1 to 31 alphanumeric characters, including dollar
signs ($) and underscores (_), and must contain at least one nonnumeric
character. Any lowercase characters specified are automatically converted to
uppercase.

new_value

OpenVMS usage: rights_id

type: longword (unsigned)
access: read only
mechanism: by value

New value to be assigned to the specified identifier. The new_value argument

is a longword containing the binary value of the specified identifier. When the
identifier value is changed, $MOD_IDENT also changes the value of the identifier
in all of the holder records in which the specified identifier appears.

The Modify Identifier in Rights Database service modifies the specified identifier
record in the rights database. Identifier attributes can be added or removed. The
identifier name or value can be changed. When you specify both the set_attrib
and clr_attrib arguments, the attribute is cleared first. Thus, if you specify the
same attribute bit with each argument, the result is that the bit is set.

Required Access or Privileges

Write access to the rights database is required.

Required Quota
None

SYS2-175

System Service Descriptions
$MOD_IDENT

Related Services

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CREATE_RDB, $FIND_HELD,
$FIND_HOLDER, $FINISH_RDB, $GRANTID, $IDTOASC, $MOD_HOLDER,
$REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_ NOSUCHID The specified identifier does not exist in the
rights database.

SS$ BADPARAM The specified attributes contain invalid attribute
flags.

SS$_DUPIDENT The specified identifier value already exists.

SS$ DUPLNAM The specified identifier name already exists in
the rights database.

SS$_INSFMEM The process dynamic memory is insufficient for
opening the rights database.

SS$_IVIDENT The specified identifier is of invalid format.

RMS$ PRV The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with OpenVMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, see the OpenVMS Record
Management Services Reference Manual.

SYS2-176

System Service Descriptions
SMOUNT

SMOUNT
Mount Volume

Mounts a tape, disk volume, or volume set and specifies options for the mount
operation.

Format
SYS$SMOUNT itmist

C Prototype

int sys$mount (void *itmlst);

Argument
itmlst
OpenVMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the mount operation. The itmlst argument is
the address of a list of item descriptors, each of which specifies an option and
provides the information needed to perform the operation.

The item list must include at least one device item descriptor and is terminated
by a longword value of 0.

The following diagram depicts the format of a single item descriptor:
31 15 0

ltem code Buffer length

Buffer address

Return length address

ZK-5186A-GE
The following table defines the item descriptor fields:
Descriptor Field Definition
Buffer length A word specifying the length (in bytes) of the buffer

that supplies the information $MOUNT needs to
process the specified item code. The required length
of the buffer depends on the item code specified in
the item code field of the item descriptor. If the
value of the buffer length is too small, $MOUNT
truncates the data.

Item code A word containing a user-supplied symbolic code
that specifies an option for the MOUNT operation.
The $MNTDEF macro defines these codes.

SYS2-177

System Service Descriptions

$MOUNT

Item Codes

SYS2-178

Descriptor Field Definition

Buffer address A longword containing the address of the buffer that
supplies information to $MOUNT.

Return length address This field is not used.

MNT$_ACCESSED

Specifies the number of directories that will be in use, concurrently, on the
volume. The buffer must contain a longword integer value in the range 0 to 255.
This value overrides the number of directories specified when the volume was
initialized. To specify MNT$_ACCESSED, the caller must have OPER privilege.
The MNT$_ACCESSED item code applies only to disks.

MNT$_BLOCKSIZE

Specifies the default block size for tape volumes. The buffer must contain a
longword integer value in the range 20 to 65,532 bytes for OpenVMS RMS
operations or 10 to 65,534 bytes for operations that do not use RMS. The MNT$_
BLOCKSIZE item code applies only to tapes.

If you do not specify MNT$_BLOCKSIZE, the default block size is 2048 bytes for
Files-11 tape volumes and 512 bytes for foreign and unlabeled tapes.

You must specify MNT$_BLOCKSIZE when mounting (1) tapes that do not have
ANSI HDR2 labels, (2) tapes to which data will be written from compatibility
mode, and (3) tapes that are to contain records whose size is larger than the
default value.

MNT$_COMMENT

Specifies text to be associated with an operator request. The buffer must contain
a character string of no more than 78 characters. This text will be printed on the
operator’s console if an operator request is issued for the device being mounted.

MNT$_DENSITY

Specifies the density at which data is to be written to a foreign or unlabeled
tape. The DENSITY item code suppled is dependent on the type of

tape device. If a tape device is capable of using the MT3 density codes,

the buffer for the MNT$DENSITY item code must contain a longword

with one of the MT3 codes, as defined in SYS$LIBRARY:STARLET
(MT3$K_TK50, MT3$K_3480, MT3$K_SDLT, MT3$K_AIT2, and so on). Refer to
the MT3_SUPPORTED argument for §GETDVI.

If the device does not support MT3 densities, the buffer must contain a longword
value that specifies one of the following legal densities: 800 bpi, 1600 bpi, or 6250
bpi.

The specified density will be used only if (1) the tape is foreign or unlabeled and
(2) the first operation is a write.

MNT$_DEVNAM

Specifies the name of the device to be mounted. The buffer must contain a
character string of from 1 to 64 characters, which is the device name. The device
name can be a physical device name or a logical name; if it is a logical name, it
must translate to a physical device name.

System Service Descriptions
SMOUNT

The MNT$_DEVNAM item code must appear at least once in an item list, and
it can appear more than once. It appears more than once when a volume set
is being mounted, because, in this case, one device is being mounted for each
volume in the volume set.

MNT$_EXTENSION

Specifies the number of blocks by which files will be extended. The buffer must
contain a longword value in the range 0 to 65,535. The MNT$_EXTENSION item
code applies only to disks.

MNT$_EXTENT

Specifies the size of the extent cache in units of extent pointers. The buffer must
contain a longword value, which specifies this size. To specify MNT$_EXTENT,
you need OPER privilege. The value 0 (the default) disables caching. The MNT$_
EXTENT item code applies only to disks.

MNTS$_FILEID

Specifies the size of the file-ID cache in units of file numbers. The buffer must
contain a longword value, which specifies this size. To specify MNT$_FILEID,
you need OPER privilege. The value 1 disables caching. The MNT$_FILEID item
code applies only to disks.

MNT$_FLAGS
Specifies a 2-longword bit vector wherein each bit specifies an option for the
mount operation. The buffer must contain a quadword, which is the bit vector.

The $MNTDEF macro defines symbolic names for each option (bit) in the bit
vector. You construct the bit vector by specifying the symbolic names for the
desired options in a logical OR operation. In the first longword you logically
OR the MNT$M_ mask bits, and in the second longword you logically OR the
MNT2$M_ mask bits. The following table describes the symbolic names for each
option. The MNT2$M_ options are at the end of the table.

Option Description

MNT$M_CLUSTER The volume is to be mounted for clusterwide access; that is, every
OpenVMS Cluster node can access the volume. $MOUNT mounts
the volume first on the caller’s node and then on every other node
in the existing cluster.

Only system or group volumes can be mounted clusterwide. If you
do not specify MNT$M_GROUP or MNT$M_SYSTEM, $MOUNT
mounts the volume as a system volume, provided the caller has
SYSNAM privilege. To mount a group volume clusterwide, the
caller must have GRPNAM privilege. To mount a system volume
clusterwide, the caller must have SYSNAM privilege.
MNT$M_CLUSTER has no effect if the system is not a member of
a cluster. MNT$M_CLUSTER applies only to disks.
MNT$M_FOREIGN The volume is to be mounted as a foreign volume; a foreign volume
is not Files-11 structured. If you specify MNT$M_FOREIGN, the
following item codes can each appear in the item list only once: the
caller must either own the volume or have VOLPRO privilege.

SYS2-179

System Service Descriptions

$MOUNT

Option

Description

MNT$M_GROUP

MNT$M_INCLUDE

MNT$M_INIT_CONT

MNT$M_MESSAGE

SYS2-180

The logical name for the volume to be mounted is entered in

the group logical name table, and the volume is made accessible
to other users with the same UIC group number as that of the
calling process. To specify MNT$M_GROUP, the caller must have
GRPNAM privilege. MNT$M_GROUP applies only to disks.

Automatically reconstructs a shadow set to the state it was in
before the shadow set was dissolved (due to dismounting or system
failure). Use this option to mount a shadow set or a volume set

of shadow sets. You must specify the exact name of the original
virtual unit and the device name of at least one of the shadow

set members. The shadowing software reads the shadow set
membership information from the named device to determine

the membership of the original shadow set. You can include

the MNT$M_INCLUDE option in executable images to have a
shadow set reconstructed. Using MNT$M_INCLUDE prevents your
having to manually reinstate shadow sets after they have been
dismounted.

If you do not select this option, $MOUNT does not automatically
reconstruct the former shadow set.

Additional volumes in the volume set are to be initialized without
operator intervention. $MOUNT initializes new volumes with the
protections specified for the first magnetic tape of the volume set
and creates unique volume label names for up to 99 volumes in a
volume set.

If MNT$M_INIT_CONT is specified, you must allocate multiple
magnetic tape drives to the volume set. If $MOUNT switches to a
drive that has no magnetic tape loaded or has the wrong magnetic
tape loaded or if $MOUNT tries to read a magnetic tape that is not
loaded, it notifies the operator to load the correct magnetic tape.
$MOUNT will dismount and unload volumes as soon as they have
been read or written. The operator can load the next volume in the
volume set before the current reel of the volume set reaches the end
of the magnetic tape.

If writing to the volume set, $MOUNT automatically (1) switches
to the next magnetic tape drive, (2) initializes that magnetic tape
with the same volume name and protection as specified in the
volume labels of the first volume in the set, and (3) notifies the
operator that the switch has occurred. If reading the volume set,
$MOUNT generates the label for the next volume in the volume set
and reads that volume.

The label name that MOUNT generates for each additional volume
in the volume set consists of six characters: the first four characters
are the same as the first four characters of the label name of the
previous volume; the fifth and sixth characters represent the
number of the volume in the volume set.

MNT$M_INIT _CONT applies only to magnetic tapes.
Messages will be sent to the caller’s SYS$OUTPUT device.

System Service Descriptions

SMOUNT
Option Description
MNT$M _MINICOPY $MOUNT fails if minicopy has not been enabled on the disk.
OPTIONAL
MNT$M_MINICOPY $MOUNT continues even if minicopy has not been enabled on the
REQUIRED disk.

MNT$M_MULTI_VOL

MNT$M_NOASSIST

MNT$M_NOAUTO

MNT$M_NOCACHE

MNT$M_NOCOPY

MNT$M_NODISKQ

Specifies, for foreign or unlabeled magnetic tapes, that subsequent
volumes can be processed by overriding MOUNT’s access checks.
You can use this option when a utility that supports multivolume
magnetic tape sets needs to process subsequent volumes, and
these volumes do not contain labels that MOUNT can interpret.
You need VOLPRO privilege to specify the MNT$M_MULTI_VOL
option. MNT$M_MULTI_VOL can only be used with the MNT$M_
FOREIGN option.

HP recommends the use of this qualifier only when it is not possible
to alter the utility to explicitly perform MOUNT and DISMOUNT
operations on each reel in the set.

$MOUNT does not request operator assistance if errors are
encountered during the mount operation. If not specified, $MOUNT
requests operator assistance to recover from some error conditions.

Automatic volume labeling (AVL) and automatic volume recognition
(AVR) are to be disabled. If MNT$M_NOAUTO is specified, the
operator must enter commands from the console to process each
additional volume in a volume set. When a volume is finished
processing, the operator specifies the drive on which the next
volume is loaded and the label name of the next volume. You might
want to use MNT$M_NOAUTO to disable AVL and AVR when not
reading a volume set sequentially.

You can enable AVL and AVR by specifying MNT$M_INIT_CONT.
MNT$M_NOAUTO applies only to magnetic tapes.

All caching associated with the volume is turned off. Specifying
MNT$M_NOCACHE is equivalent to (1) specifying MNT$M_
WRITETHRU, (2) specifying a value of 1 for the item descriptor
MNT$_FILEID, and (3) specifying a value of 0 for the item
descriptors MNT$M_EXTENT and MNT$M_QUOTA.

Disables full copy operations on all physical devices being mounted
or added to a shadow set. This option provides you with the
opportunity to confirm the states of all of the devices or members
of a shadow set before proceeding with any full copy operation.
This prevents any accidental loss of data that could occur if an
unintended device is added to the shadow set.

If you do not select this option, $MOUNT automatically overwrites
the data on shadow set members that are not current. When you
select this option, a $MOUNT operation fails if any of the specified
potential shadow set members require full copy operations.

Disk quotas are not to be enforced for the volume to be mounted.
If not specified, disk quotas are enforced. To specify MNT$M_
NODISKQ), the caller must either own the volume or have VOLPRO
privilege. MNT$M_NODISKQ applies only to disks.

SYS2-181

System Service Descriptions

$MOUNT

Option

Description

MNT$M_NOHDR3

MNT$M_NOLABEL

MNT$M_NOMNTVER

MNT$M_NOREBUILD

MNT$M_NOUNLOAD

MNT$M_NOWRITE

SYS2-182

ANSI HDR3 and HDR4 labels are not to be written to magnetic
tapes as they are mounted. If not specified, ANSI HDR3 and HDR4
labels are written to all tapes.

Use MNT$M_NOHDRS3 when writing to volumes that will be read
by a system, such as the RT-11 system, which does not process
HDR3 and HDR4 labels correctly. MNT$M_NOHDRS applies only
to tapes.

The volume is to be mounted as a foreign volume; a foreign volume
is not Files-11 structured. If you specify MNT$M_NOLABEL, the
following item codes can each appear in the item list only once:
MNT$_DEVNAM, MNT$_VOLNAM, and MNT$_LOGNAM. To
specify MNT$M_NOLABEL, the caller must either own the volume
or have VOLPRO privilege.

The volume is not marked as a candidate for automatic mount
verification. If not specified, the volume is marked as a candidate
for mount verification.

The volume to be mounted should be returned to active use
immediately, without performing a rebuild operation. This flag
defers the disk rebuild operation, so that the volume to be mounted
is returned to active use immediately. A rebuild operation can
consume a considerable amount of time, depending on the number
of files on the volume and on the number of different file owners (if
quotas are in use). The volume can be rebuilt later with the DCL
command SET VOLUME/REBUILD to recover the free space; for
more information, see the HP OpenVMS DCL Dictionary.

If a disk volume is improperly dismounted, for example, during

a system failure, it must be rebuilt to recover any caching limits
that were enabled on the volume at the time of the dismount. By
default, SMOUNT attempts to rebuild.

When mounting a volume set, you must mount all members of the
set to reclaim all available free space.

MNT$M_NOREBUILD applies only to disks.

The volume to be mounted is not to be unloaded when it is
dismounted. Specifying MNT$M_NOUNLOAD causes the volume
to remain loaded when it is dismounted unless the dismount
explicitly requests that the volume be unloaded.

The volume to be mounted is software write locked. If not specified,
the volume is assumed to have read and write access.

System Service Descriptions
SMOUNT

Option

Description

MNT$M_OVR_ACCESS

MNT$M_OVR_EXP

MNT$M_OVR_IDENT

MNT$M_OVR_LOCK

MNT$M_OVR_SETID

MNT$M_OVR_SHAMEM

If the installation allows, this option overrides any character in
the accessibility field of the volume. The necessity of this option is
defined by the installation. That is, each installation has the option
of specifying a routine that the magnetic tape file system will use
to process this field. By default, the operating system provides a
routine that checks this field in the following manner:

e If the magnetic tape was created on a version of the operating
system that conforms to Version 3 of ANSI, then you must
use this option to override any character other than an ASCII
space.

e If a protection is specified and that magnetic tape conforms to
an ANSI standard that is higher than Version 3, then you must
use this option to override any character other than an
ASCII 1.

To specify MNT$M_OVR_ACCESS, the caller must either own the
volume or have VOLPRO privilege. MNT$M_OVR_ACCESS applies
only to tapes.

A tape that has not yet reached its expiration date can be
overwritten. To specify MNT$M_OVR_EXP, the caller must own
the volume or have VOLPRO privilege.

You can mount the volume without specifying the volume name (by
using the MNT$_VOLNAM item code). If specified, the following
options must not be specified: MNT$M_CLUSTER, MNT$M_
GROUP, MNT$M_SHARE, and MNT$M_SYSTEM.

The software write lock that occurs when a volume has a corrupted
storage bit mask can be overridden.

Checks on the volume set identification are not to be performed
when subsequent reels in the volume set are mounted. MNT$M _
OVR_SETID applies only to tapes.

Allows you to mount former shadow set members outside of

the shadow set. If you do not specify this option, MOUNT
automatically mounts the volume write-locked to prevent accidental
deletion of data. To specify this option, you must either own the
volume or have VOLPRO privilege.

When you use this option, the shadow set generation number is
erased from the volume. If you then remount the volume in the
former shadow set, SMOUNT considers it an unrelated volume and
marks it for a full copy operation.

SYS2-183

System Service Descriptions

$MOUNT

Option

Description

MNT$M_OVR_VOLO

MNT$M_READCHECK

MNT$M_REQUIRE _
MEMBERS

MNT$M_SHARE

MNT$M_SYSTEM

MNT$M_TAPE_DATA_
WRITE

MNT$M_VERIFY_LABEL

MNT$M_WRITECHECK
MNT$M_WRITETHRU

MNT2$M_CDROM

SYS2-184

The volume label’s owner identifier field is not to be processed.
$MOUNT reads volume owner and protection information from the
volume owner field of the volume labels.

The operating system requires that you specify MNT$M_OVR_
VOLO to process magnetic tapes when all of the following
conditions exist: (1) the volume was created on an operating
system other than OpenVMS; (2) the volume was initialized with a
protection specified; and (3) the volume conforms to the Version 3
ANSI label standard.

To specify MNT$M_OVR_VOLO, the caller must either have
VOLPRO privilege or own the volume. MNT$M_OVR_VOLO
applies only to tapes.

Read checks are to be performed following all read operations.

Controls whether every physical device specified with the
/SHADOW qualifier must be accessible when the MOUNT command
is issued in order for the $MOUNT system service to take effect.

Volume is to be mounted shared and is therefore accessible to other
users. MNT$M_SHARE applies only to disks.

If the volume was previously mounted shared by another user and
MNT$M_SHARE is specified in the current call, all other options
specified in the current call are ignored.

If the caller allocated the device and specified MNT$M_SHARE in
the call to $MOUNT, $SMOUNT will deallocate the device so that
other users can access the volume.

The logical name for the volume to be mounted is entered in the
system logical name table, and the volume is made accessible to
all other users, provided that UIC-based protection allows access
to the volume. To specify MNT$M_SYSTEM, the caller must have
SYSNAM privilege. MNT$M_SYSTEM applies only to disks.

Enables the tape controller’s write cache for this device. Enabling
the write cache improves data throughput for write operations. By
default, the tape controller’s write cache is disabled for the device.

This option applies only to tape systems that support a write cache.

Requires that any member to be added to the shadow set have a
volume label of SCRATCH_DISK. This helps ensure that the wrong
disk is not added to a shadow set. If you plan to use VERIFY_
LABEL, you must first assign the disk to a label. You can do this
either by initializing the disk to be added to the set with the label
SCRATCH_DISK, or by specifying the label for the disk with the
SET VOLUME/LABEL command.

Write checks are to be performed after all write operations.

Disables the deferred write feature for file headers. By default
this feature is enabled, which improves the performance of the
applications, such as PATHWORKS, that use it. The deferred write
feature is not available on Files-11 ODS-1 volumes.

Mounts a volume assuming the media to be ISO 9660 (or High
Sierra) formatted.

System Service Descriptions
SMOUNT

Option

Description

MNT2$M_COMPACTION
MNT2$M_DISKQ

MNT2$_DSI

MNT2$_INCLUDE

MNT2$M _
NOCOMPACTION

MNT2$_OVR_LIMITED_
SEARCH

MNT2$M_OVR_NOFE

MNT2$_OVR_SECURITY

MNT2$M_SUBSYSTEM

MNT2$M_XAR

Enables data compaction for those magnetic tapes that support
data compaction (TA90, TA91, and others).

Controls whether quotas are to be enforced on the specified disk
volume.

Enables XAR permissions Owner and Group for XARs containing
DIGITAL System Identifiers (DSI). For more information, see the
OpenVMS Record Management Services Reference Manual.

Automatically reconstructs a former shadow set to the way it
was before the shadow set was dissolved. Applicable only if you
have the volume shadowing option. For more information, see HP
Volume Shadowing for OpenVMS.

Forces the density to no compaction for those magnetic tapes that
support data compaction (TA90, TA91, and others).

For disk type devices that do not provide for bad-block revectoring,
it is possible that the Files-11 homeblock has been placed numerous
I/Os from the start of the volume. To decrease the failover time
when accessing media which does not contain a valid Files-11
homeblock, a limited-search algorithm was implemented. This
switch overrides the limited-search algorithm so that the entire
volume will be searched for a valid Files-11 homeblock.

This bit mask is set to override those SCSI devices that do not
support forced error functionality. By overriding those SCSI devices
not supporting forced error capabilities, MNT2$M_OVR_NOFE
enables those devices to be mounted; otherwise, the shadowing code
would report to $MOUNT that the device does not support forced
error, and the device would not be mounted.

Enables you to continue mounting a volume if an error is returned
because the volume has an invalid SECURITY.SYS file. You must
have the VOLPRO privilege or own the volume to use this keyword.
Enables the processing of protected subsystem identifiers on the
volume. By default, subsystem identifiers are ignored on all but the
system disk. Requires SECURITY privilege.

Enables enforcement of the extended record attribute (XAR) access
controls. For more information about XAR, see the HP OpenVMS
System Manager’s Manual.

MNTS_LIMIT

Specifies the maximum amount of free space in the extent cache. The buffer must
contain a longword value, which specifies the amount of free space in units of
tenths of a percent of the disk’s total free space. The MNT$_LIMIT item code
applies only to disks.

MNTS$_LOGNAM

Specifies a logical name for the volume; this logical name is equated to the device
name specified by the first MNT$_DEVNAM item code. The buffer must contain
a character string from 1 to 64 characters, which is the logical name.

Unless you specify MNT$M_GROUP or MNT$M_SYSTEM, the logical name is
entered in the process logical name table.

SYS2-185

System Service Descriptions

$MOUNT

SYS2-186

MNT$_OWNER

Specifies the UIC to be assigned ownership of the volume. The buffer must
contain a longword octal value, which is the UIC. If the volume is Files-11
structured, the specified value overrides the ownership recorded on the volume.
You need either VOLPRO privilege or ownership of the volume to assign a UIC to
a Files-11 structured volume.

MNT$_PROCESSOR

For magnetic tapes and Files-11 On-Disk Structure Level 1 disks, MNT$_
PROCESSOR specifies the name of the ancillary control process (ACP) that is to
process the volume. The specified ACP overrides the default ACP associated with
the device.

For Files-11 On-Disk Structure Level 2 disks, MNT$_PROCESSOR controls block
cache allocation.

To specify MNT$_PROCESSOR, the caller must have OPER privilege.

The buffer must contain a character string specifying either the string UNIQUE,
a device name, or a file specification. Following is a description of the action
taken for each of these cases:

String Description

UNIQUE For magnetic tapes and Files-11 Structure Level 1 disks,
UNIQUE specifies that SMOUNT create a new process to execute
a copy of the default ACP image associated with the device
specified by the MNT$_DEVNAM item code.
For Files-11 Structure Level 2 disks, UNIQUE allocates a
separate block cache.

ddcu For magnetic tapes and Files-11 Structure Level 1 disks, ddcu
specifies that $MOUNT use the ACP process currently being used
by the device ddcu. The device specified must be in the format
ddcu, for example, DRA3.
For Files-11 Structure Level 1 disks, ddcu specifies that $MOUNT
take the block allocation from the specified device.

filespec Specifies that MOUNT create a new process to execute the ACP
image with the file specification filespec. Wildcard characters are
not allowed in the file specification. The file must be in the disk
and directory specified by the logical name SYS$SYSTEM. This
operation requires CMKRNL privilege.

MNT$_QUOTA

Specifies the size of the quota record cache in units of quota records. The buffer
must contain a longword value, which is this size. To specify MNT$_QUOTA, you
need OPER privilege. The value 0 disables caching. The MNT$_QUOTA item
code applies only to disks.

MNT$_RECORDSIZ

Specifies the number of characters in each record and is used with MNT$_
BLOCKSIZE to specify the data formats for foreign volumes. The buffer must
contain a longword value less than or equal to the block size. The MNT$_
RECORDSIZ item code applies only to tapes.

If you do not specify MNT$_RECORDSIZ, the record size is assumed to be equal
to the block size.

System Service Descriptions
SMOUNT

MNT$_SHAMEM

Specifies the name of a physical device to be mounted into a shadow set. The
MNT$_SHAMEM descriptor is a 1- to 64-character string containing the device
name. The string can be a physical device name or a logical name; if it is a logical
name, it must translate to a physical device name. An item list must contain at
least one item descriptor specifying a member; this item descriptor must appear
after the MNT$_SHANAM item descriptor.

Volume Shadowing for OpenVMS automatically performs a copy or a merge
operation, if necessary, when it mounts the disk into the shadow set.

MNTS$_SHANAM

Specifies the name of the virtual unit to be mounted. The buffer is a 1- to 64-
character string containing the device name. The virtual unit name can be a
logical name; if it is a logical name, it must translate to a virtual unit name.

Because every shadow set is represented by a virtual unit, you must include

at least one MNT$_SHANAM item descriptor in the item list that you pass to
$MOUNT to create and mount the shadow set. If you are mounting a volume set
containing more than one shadow set, you must include one MNT$_SHANAM
item descriptor for each virtual unit included in the volume set.

The relative position of the item descriptors in the item list determines the
membership of the shadow set. That is, it indicates which members should be
bound to a specific virtual unit to form the shadow set. You must first specify
the virtual unit by using the MNT$_SHANAM item code. Then, you can specify
any number of members that are to be represented by that virtual unit by using
one of the following item codes: MNT$_SHAMEM, MNT$_SHAMEM_COPY,

or MNT$_SHAMEM_MGCOPY. If you specify one shadow set and want to
specify a second, specify a second virtual unit item descriptor. The members you
specify subsequently are bound to the shadow set represented by the virtual unit
specified in the second virtual unit item descriptor.

MNT$_UCS

Specifies a descriptor containing a Universal Character Sequence (UCS) defined
by ISO 2022 and used when mounting an ISO 9660 CD-ROM. For more
information, see the HP OpenVMS System Manager’s Manual.

MNTS$_UNDEFINED_FAT
Specifies the default file attributes to be used for the records on ISO 9660 media
for which no record format has been specified.

The buffer contains a 32-bit structure that defines a file’s record format, record
attributes, and maximum record size.

The following diagram depicts the structure of the Undefined File Attributes
buffer:

31 24 23 16 15 0
UNFAT$B_RFM | UNFAT$B_RAT UNFAT$W_MRS

ZK-6644A-GE

The following table defines the buffer fields:

SYS2-187

System Service Descriptions
SMOUNT

Buffer Field Definition

UNFAT$W_MRS Maximum record size; specifies the maximum record
size for all records in a file: 0 to 32767. Applies only
to FIXED or STREAM formats.

UNFAT$B_RAT Record attributes; specifies the attributes for all
records in a file: NONE, CR, FTN, PRN, NOBKS.
Applies only to non-STREAM record formats.

UNFAT$B_RFM Record format; specifies the format for all records in
a file: FIXED, VARIABLE, STREAM, STREAM _
LF, STREAM_CR, LSB_VARIABLE, or MST_
VARIABLE.

MNT$_VOLNAM
Specifies the name of the volume to be mounted on the device. The number of
characters allowed in a volume name depends on the type of device, as follows:

Device Type Number of Characters in Label
Magnetic tape 0-6

Files-11 disk 1-12

ISO 9660 disk 1-32

The operating system requires disk volume labels to be unique in the first 12
characters within a given domain.

The MNT$_VOLNAM item code can appear more than once in an item list; it
appears more than once when a volume set is being mounted because, in this
case, one volume name is given to each volume in the volume set.

When a disk volume set is being mounted, you must specify MNT$_DEVNAM
and MNT$ VOLNAM once for each volume of the volume set. The $MOUNT
service mounts the volume specified by the first MNT$_VOLNAM item code on
the device specified by the first MNT$_DEVNAM item code in the item list; it
mounts the volume specified by the second MNT$_VOLNAM code on the device
specified by the second MNT$_DEVNAM code, and so on for all specified volumes
and devices. Thus, there must be an equal number of these two item codes in the
item list.

When a tape volume set is being mounted, the number of MNT$_DEVNAM item
codes specified need not be equal to the number of MNT$_VOLNAM item codes
specified, because more than one volume can be mounted on the same device.

MNT$_VOLSET
Specifies the name of a volume set. The buffer must contain a character string
from 1 to 12 alphanumeric characters, which is the volume set name.

An ISO 9660 volume set name can be from 1 to 128 characters in length.

Volume set names must be unique in the first 12 characters. In addition, if the
first 12 characters of the volume set name are the same as the first 12 characters
of any volume label, a lock manager deadlock will occur. To avoid this problem,
you must override either the volume label (by using the MNT$_VOLNAM item
code) or the volume set name (by using the MNT$_VOLSET item code).

SYS2-188

Description

System Service Descriptions
SMOUNT

When you specify MNT$_VOLSET, volumes specified by the MNT$_VOLNAM
item code are bound into a new volume set or added to an existing volume set,
depending on whether the name specified by MNT$_VOLSET is a new or already
existing name.

When you specify MNT$_VOLSET to add volumes to an existing volume set, the
root volume (RVN1) must either (1) already be mounted or (2) be specified first
(by the MNT$_DEVNAM and MNT$_VOLNAM item codes) in the item list.

When you specify MNT$_VOLSET to create a new volume set, the first volume
specified (by the MNT$_DEVNAM and MNT$_VOLNAM item codes) in the item
list becomes the root volume.

MNTS$_VPROT

Specifies the protection to be assigned to the volume. The buffer must contain a
longword protection mask, which specifies the four types of access allowed to the
four categories of user.

The protection mask consists of four 4-bit fields. Each field grants or denies
read, write, logical, and physical access to a category of users. Cleared bits grant
access; set bits deny access. The following diagram depicts the structure of the
protection mask:

World Group Owner System
P[L|w|r|p|L|w[r|P|L|W[r|P|L|W|R
1514131211109 8 7 6 5 432 10

ZK-1715-GE

If you do not specify MNT$_VPROT or specify it as the value 0, the volume
receives the protection that it was assigned when it was initialized. To specify
MNT$_VPROT for a Files-11 structured volume, the caller must either own the
volume or have VOLPRO privilege.

MNT$_WINDOW

Specifies the number of mapping pointers to be allocated for file windows. The
buffer must contain a longword value in the range 7 to 80. This value overrides
the default value that was applied when the volume was initialized. The MNT$_
WINDOW item code applies only to disks.

When a file is opened, the file system uses the mapping pointers to access the
data in the file. To specify MNT$_WINDOW, you need OPER privilege.

The Mount Volume service mounts a tape, disk volume, or volume set and
specifies options for the mount operation.

When a subprocess mounts a private volume without explicitly allocating the
device, the master process of the job becomes the owner of this device. This
provision is necessary because the subprocess can be deleted and the volume
should remain privately mounted for this job.

When a subprocess explicitly allocates a device and then mounts a private volume
on this device, this subprocess retains the device ownership. In this case, only
subprocesses of the device owner, and processes with SHARE privilege, have
access to the device.

SYS2-189

System Service Descriptions

$MOUNT

The $MOUNT service uses the following system resources to mount volumes with
group or systemwide access allowed:

e Nonpaged pool
e Paged pool

When $MOUNT mounts a disk volume, the logical name DISK$volume-label
is always created. If you specify a logical name in the mount request that is
different from DISK$volume-label, there will be two logical names associated
with the device.

If the logical name of a volume is in a process-private table, then the name is not
deleted when the volume is dismounted.

Required Access or Privileges

To mount a volume on a device, you must have read or control access to that
device.

To mount a particular volume, the caller must either own or have privilege to
access the specified volume or volumes. The privileges required depend on the
operation and are listed with the item codes that specify the operation.

The calling process must have TMPMBX or PRMMBX privilege to perform an
operator-assisted mount. SECURITY privilege is required to enable protected
subsystems.

Required Quota
None

Related Services

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS2-190

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The item list or an address specified in the item
list cannot be accessed.

SS$ BADPARAM A buffer length of 0 was specified with a nonzero

item code; an illegal item code was specified; or
no device was specified.

SS$_ NOGRPNAM The caller does not have GRPNAM privilege.

SS$ NOHOMEBLK Files-11 home block not found on volume.

SS$_NOOPER The caller does not have the required OPER
privilege.

SS$_NOPRIV The caller does not have sufficient privilege to
access a specified volume.

SS$ NOSUCHDEV The specified device does not exist on the host
system.

SS$_NOSYSNAM The caller does not have SYSNAM privilege.

The $MOUNT service can also return a condition value that is specific to the
Mount utility. The symbolic definition macro $MOUNDEF defines these condition
values.

System Service Descriptions
SMTACCESS

SMTACCESS
Magnetic Tape Accessibility

Allows installations to provide their own routine to interpret and output the
accessibility field in the VOL1 and HDRI1 labels of an ANSI labeled magnetic
tape.

Format
SYS$SMTACCESS Iblnam ,[uic] ,[std_version] ,[access_char] ,[access_spec] ,type

C Prototype

int sys$mtaccess (unsigned int *Iblnam, unsigned int uic, unsigned int std_version,
unsigned int access_char, unsigned int access_spec, unsigned int

type);
Arguments
Iblnam
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

ANSI label to be processed. The Iblnam argument is the address of a longword
containing the label. On input, the label passed is either the VOL1 or HDR1
label read from the magnetic tape; on output of labels, the value of this field is 0.
The type of label passed is determined by type.

uic

OpenVMS usage: uic

type: longword (unsigned)
access: read only
mechanism: by value

UIC of the user performing the operation. The uic argument is a longword
containing the UIC.

std_version
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Decimal equivalent of the ANSI standard version read from the VOLI1 label. The
std_version argument is a longword containing the standard version number.

access_char
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Accessibility character specified by the user. The access_char argument is a
byte containing the accessibility character used for the output of labels.

SYS2-191

System Service Descriptions
SMTACCESS

Description

SYS2-192

access_spec
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Value specifying whether the accessibility character passed in access_char was
specified by the user.

The access_spec argument is a byte containing one of the following values:

Value Meaning
MTA$K_CHARVALID Yes
MTA$K_NOCHAR No

This argument is used only for the output of labels.

type

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Type of accessibility field to process.

The type argument is a byte containing one of the following values:

Value Meaning

MTA$K _INVOL1 Input a VOLI1 label
MTA$K INHDR1 Input a HDR1 label
MTA$K OUTVOL1 Output a VOL1 label
MTA$K OUTHDRI1 Output a HDR1 label

The Magnetic Tape Accessibility service allows installations to provide their own
routine to interpret and output the accessibility field in the VOL1 and HDR1
labels of ANSI labeled magnetic tapes. The installation can override the default
routine by providing an MTACCESS.EXE executive loaded image.

The default installation routine first checks the ANSI standard version of the
label. For magnetic tapes with a version number of 3 or less, the routine outputs
either a blank or the character you specified. On input of these magnetic tapes,
the routine checks for a blank and returns the value SS$_FILACCERR if the field
is not blank.

For magnetic tapes with a version number greater than 3, the routine outputs
either the character specified by the access_char argument or an ASCII 1 if no
character was specified. On input of these magnetic tapes, the routine checks
for a blank. If the field is blank, RO is set to 0. In that case, you are given full
access and protection is not checked. If the field contains an ASCII 1, and the
VOL1 Implementation Identifier field contains the system code, RO is set to
SS$_NORMAL. In that case, the protection is checked.

System Service Descriptions
SMTACCESS

If the field is not blank and does not contain an ASCII 1, RO is set to SS$_
FILACCERR, which forces you to override accessibility checking and allows the
magnetic tape file system to check protection.

The following table summarizes the results of label input check:

Contents of RO Result
SS$_NORMAL Check the protection on the magnetic tape.
0 Give the user full access. Protection is not checked.

SS$_FILACCERR Check for explicit override, then check protection.

Note that the default accessibility routine does not output SS$_NOVOLACC or
SS$_NOFILACC. These statuses are included for the installation’s use, and the
magnetic tape file system handles these cases.

The magnetic tape file system calls MTACCESS to process the accessibility field
in the VOL1 and HDR1 labels. After a call to the system service, the magnetic
tape file system checks that the installation did not move the magnetic tape.

If the magnetic tape was moved, the magnetic tape file system completes the
current operation with an SS$_TAPEPOSLOST error. Finally, it processes the
remainder of the label according to the status returned by $MTACCESS.

Required Access or Privileges

Because accessibility is an installation-provided routine, the operating system
cannot determine which users have the authority to override the processing of
this field. However, the magnetic tape file system allows only operator class users
to deal with blank magnetic tapes so that a user must have both OPER and
VOLPRO privileges to initialize or mount blank magnetic tapes.

Required Quota
None

Related Services

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHECK_ACCESS, $CHKPRO,
$CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER, $FINISH_RDB,
$FORMAT_ACL, $FORMAT AUDIT, $GET_SECURITY, $GRANTID, $HASH_
PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID, $SET_SECURITY

Condition Values Returned

SS$ NORMAL The service completed successfully.

SS$_FILACCERR The accessibility characteristic in the HDR1
label is not blank and you cannot access the file
without overriding the field.

SS$ NOFILACC The user has no access to the file.
SS$_NOVOLACC The user has no access to the volume.

SYS2-193

System Service Descriptions

$SNUMTIM

$NUMTIM

Convert Binary Time to Numeric Time

Format

C Prototype

Arguments

SYS2-194

Converts an absolute or delta time from 64-bit system time format to binary
integer date and time values.

On Alpha and 164 systems, this service accepts 64-bit addresses.

SYSSNUMTIM timbuf ,[timadr]

int sys$numtim (unsigned short int timbuf [7], struct _generic_64 *timadr);

timbuf

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: write only

mechanism: by 32- or 64-bit reference (Alpha and 164); by 32-bit reference

(VAX)

Buffer into which $NUMTIM writes the converted date and time. The timbuf
argument is the 32-bit address (on VAX systems) or the 32- or 64-bit address (on
Alpha and 164 systems) of a 7-word structure.

The following diagram depicts the fields in this structure:

31 15 0
Month of year Year since 0
Hour of day Day of month
Second of minute Minute of hour
Hundredths of second

ZK-1716-GE

If the timadr argument specifies a delta time, $NUMTIM returns the value 0 in
the year since 0 and month of year fields. It returns in the day of month field the
number of days specified by the delta time.

timadr

OpenVMS usage: date_time

type: quadword

access: read only

mechanism: by 32- or 64-bit reference (Alpha and 164); by 32-bit reference

(VAX)

The 64-bit time value to be converted. The timadr argument is the 32-bit
address (on VAX systems) or the 32- or 64-bit address (on Alpha and 164 systems)
of a quadword containing this time. A positive-time value represents an absolute
time, while a negative time value indicates a delta time.

If you do not specify timadr, $NUMTIM returns the current system time.

System Service Descriptions
SNUMTIM

If timadr specifies the value 0, $NUMTIM returns the base date (November 17,
1858).

Condition Values Returned

SS$ NORMAL The service completed successfully.

SS$ ACCVIO The 64-bit time value cannot be read by the
caller, or the buffer cannot be written by the
caller.

SS$_IVTIME The specified delta time is equal to or greater

than 10,000 days.

SYS2-195

System Service Descriptions
$SNUMUTC

SNUMUTC
Convert UTC Time to Numeric Components

Converts an absolute 128-bit binary time into its numeric components. The
numeric components are returned in local time.

On Alpha and 164 systems, this service accepts 64-bit addresses.

Format

SYS$NUMUTC timbuf ,[utcadr]

C Prototype

int sys$numutc (unsigned short int timbuf [13], unsigned int *utcadr [4]);

Arguments
timbuf
OpenVMS usage: vector_word_unsigned
type: word
access: write only
mechanism: by 32- or 64-bit reference (Alpha and 164); by 32-bit reference
(VAX)

Buffer into which $NUMUTC writes the converted date and time. The timbuf
argument is the 32-bit address (on VAX systems) or the 32- or 64-bit address
(on Alpha and 164 systems) of a 13-word structure containing time, inaccuracy
of time, and time differential factor. The time differential factor encoded in the
128-bit buffer is used to convert the UTC to its numerical components. Negative
values in the inaccuracy field indicate an infinite inaccuracy.

The following diagram depicts the fields in this structure:

31 15 0

SYS2-196

Month of year

Year since 0

Hour of day

Day of month

Second of minute

Minute of hour

Inacc days Hundredths of second
Inacc minutes Inacc hours
Inacc hundredths of second Inacc seconds

TDF in minutes

ZK-4631A-GE
utcadr
OpenVMS usage: coordinated universal time
type: utc_date_time
access: read only
mechanism: by 32- or 64-bit reference (Alpha and 164); by 32-bit reference
(VAX)

The 128-bit UTC time value to be converted.

System Service Descriptions
SNUMUTC

The utcadr argument is optional; if it is not used, $NUMUTC will use the
current time.

Condition Values Returned

SS$ NORMAL The service completed successfully.
SS$ INVTIME The 128-bit UTC time is not valid.

SYS2-197

System Service Descriptions
$SNXTVOL

SNXTVOL
Next Volume

The Next Volume service allows you to process the next tape volume in a multiple
volume set. This service applies only to files on magnetic tape volumes.

For additional information about this service, see the OpenVMS Record
Management Services Reference Manual.

SYS2-198

System Service Descriptions
$OPEN

$SOPEN
Opens File

The Open service makes an existing file available for processing by your program.
The Open service specifies the type of record access to be used and determines
whether the file can be shared. The Open service also performs an implicit
Display service.

For additional information about this service, see the OpenVMS Record
Management Services Reference Manual.

SYS2-199

System Service Descriptions
$PARSE

$SPARSE
Analyze File Specification String

The Parse service analyzes the file specification string and fills in various NAM
block fields.

For additional information about this service, see the OpenVMS Record
Management Services Reference Manual.

SYS2-200

System Service Descriptions
SPARSE_ACL

$PARSE_ACL
Parse Access Control List Entry

Parses the specified text string and converts it to the binary representation for an
access control entry (ACE).

Format
SYS$PARSE_ACL aclstr ,aclent ,[errpos] ,[accnam] ,[nullarg]

C Prototype

int sys$parse_acl (void *aclstr, void *aclent, unsigned short int *errpos, void
*accnam, int (*routin)(void));

Arguments
aclstr
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Formatted ACE that is parsed when $PARSE_ACL completes execution. The
aclstr argument is the address of a string descriptor pointing to the text string to

be parsed.

aclent

OpenVMS usage: char_string

type: character-coded text string

access: write only

mechanism: by descriptor—fixed-length string descriptor

Description of the ACE that is parsed when $PARSE_ACL completes execution.
The aclent argument is the address of a descriptor pointing to the buffer in
which the ACE is written. The first byte of the buffer contains the length of the
ACE; the second byte contains a value that identifies the type of ACE, which in
turn defines the format of the ACE.

For information about the ACE types and their associated formats, see
$FORMAT _ACL system service documentation.

errpos
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters from aclstr processed by $PARSE_ACL. The errpos
argument is the address of a word that receives the number of characters actually
processed by the service. If the service fails, this count points to the failing point
in the string.

SYS2-201

System Service Descriptions

$PARSE_ACL
accham
OpenVMS usage: access_bit_names
type: longword (unsigned)
access: read only
mechanism: by reference

Description

SYS2-202

Names of the bits in the access mask when $PARSE_ACL is executing. The
accnam argument is the address of an array of 32 quadword descriptors that
define the names of the bits in the access mask. Each element points to the name
of a bit. The first element names bit 0, the second element names bit 1, and so
on.

You can call LIB§GET_ACCNAM to retrieve the access name table for the class
of object whose ACL is to be formatted. If you omit accnam, the following names
are used:

Bit Name

Bit 0 READ

Bit 1 WRITE
Bit 2 EXECUTE
Bit 3 DELETE
Bit 4 CONTROL
Bit 5 BIT_ 5

Bit 6 BIT 6

Bit 31 BIT_ 31

nullarg

OpenVMS usage: null_arg

type: longword (unsigned)
access: read only
mechanism: by value

Placeholding argument reserved to HP.

The Parse Access Control List Entry service parses the specified text string and
converts it to the binary representation for an access control entry (ACE).

Required Access or Privileges
None

Required Quota
None

Related Services

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHECK_ACCESS, $CHKPRO,
$CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER, $FINISH_RDB,
$FORMAT _ACL, $FORMAT _AUDIT, $GET_SECURITY, $GRANTID, $HASH _
PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS,
$REM_HOLDER, $REM_IDENT, $REVOKID, $SET_SECURITY

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_IVACL

SS$_NOSUCHID

System Service Descriptions
SPARSE_ACL

The service completed successfully.

The string or its descriptor cannot be read by the
caller; the buffer descriptor cannot be read by the
caller; the buffer cannot be written by the caller;
or the buffer is too small to hold the ACL entry.

The format of the access control list entry is not
valid.

The specified identifier does not exist in the
rights database.

SYS2-203

System Service Descriptions
$PERM_DIS_ALIGN_FAULT_REPORT (Alpha and 164)

$SPERM_DIS_ALIGN_FAULT_REPORT (Alpha and 164)
Disable Alignment Fault Reporting

Format

C Prototype

Arguments

Description

On Alpha and 164 systems, disables user process alignment fault reporting.

SYS$PERM_DIS_ALIGN_FAULT_REPORT

int sys$perm_dis_align_fault_report (void);

None.

The Disable Alignment Fault Reporting service disables user process alignment
fault reporting.

See the description of the $PERM_REPORT_ALIGN_FAULT service for an
example of a program that can be used to enable and disable user process
alignment fault reporting.

Required Access or Privileges
None

Required Quota
None

Related Services

$GET_ALIGN_FAULT DATA, $GET_SYS_ALIGN_FAULT DATA, $INIT _SYS_
ALIGN_FAULT REPORT, $PERM_REPORT ALIGN_FAULT, $START ALIGN_
FAULT REPORT, $STOP_ALIGN_FAULT REPORT, $STOP_SYS_ALIGN_
FAULT REPORT

Condition Values Returned

SYS2-204

SS$_NORMAL The service completed successfully.

System Service Descriptions
SPERM_REPORT_ALIGN_FAULT (Alpha and 164)

$PERM_REPORT_ALIGN_FAULT (Alpha and 164)
Report Alignment Fault

On Alpha and 164 systems, initializes user process alignment fault reporting.

Format
SYS$PERM_REPORT_ALIGN_FAULT

C Prototype

int sys$perm_report_align_fault (void);

Arguments

None.

Description

The Report Alignment Fault service allows the user to permanently enable user
process alignment fault reporting for all subsequent images.

This service reports alignment faults only in exception mode. For more
information about reporting modes, see the $START ALIGN_FAULT_REPORT
service.

Image alignment fault reporting takes precedence over process alignment fault
reporting; that is, if both image and process alignment fault reporting are
enabled, faults are reported to the image first.

Required Access or Privileges

None

Required Quota
None

Related Services

$GET_ALIGN_FAULT_DATA, $GET_SYS_ALIGN_FAULT DATA, $INIT_SYS_
ALIGN_FAULT_REPORT, $PERM_DIS_ALIGN_FAULT_REPORT, $START_
ALIGN_FAULT_REPORT, $STOP_ALIGN_FAULT_REPORT, $STOP_SYS_
ALIGN_FAULT_REPORT

Condition Values Returned

SS$ NORMAL The service completed successfully.

SYS2-205

System Service Descriptions
$PERM_REPORT_ALIGN_FAULT (Alpha and 164)

Example
/**/
/* */
/* SET_ALIGN_REPORT.C */
/* */
/* This program can be used to permanently turn on and off */
/* alignment fault reporting for a process. After creating the */
/* executable, do: x/
/* */
/* $ align :== Sdir:set_align_report.exe */
/* $ align on */
/* $ run program ! will generate align faults on screen */
/* $ align off */
/* $ run program ! will not generate align faults */
/* */

/**/

#include <stdio>
#include <ctype>
#include <ssdef>

/* alignment fault reporting system services */
extern sysSperm_report_align_fault(),
sysSperm_dis_align_fault_report();

main(argc, argv)

int argc;

char *argv(];
{

int status;

/* check arguments */

if (argc < 2) {
printf ("Insufficient arguments\n");
return (40);

}
/* check if the argument is on or off */
if ((strcmp ("ON", argv[l]) == 0) || (strcmp ("on", argv[l]) == 0))

/* on, turn alignment fault reporting on for this process */
status = sys$perm_report_align_fault ();
else if ((strcmp ("OFF", argv[l]) == 0) || (strcmp ("off", argv[l]) == 0))
/* off, turn alignment fault reporting off for this process */
status = sysSperm_dis_align_fault_report ();

else
return (SSS_BADPARAM) ;

/* return status */
return (status);

}

This example shows a program that can be used to enable and disable alignment
fault reporting for a process.

SYS2-206

System Service Descriptions
$PERSONA_ASSUME (VAX Only)

$SPERSONA_ASSUME (VAX Only)
Assume Persona

Modifies the context of the current process to match the context of a given
persona. The $PERSONA_ASSUME service allows an OpenVMS process to
assume the identity of another user or to discard a persona to return the process
to its original state.

Format
SYS$PERSONA_ASSUME persona ,[flags]

C Prototype

int sys$persona_assume (unsigned int *persona, unsigned int flags);

Arguments
persona
OpenVMS usage: integer
type: longword (unsigned)
access: read
mechanism: by reference
Address of a longword in which the persona identification handle is expected.
If the value of the context passed is 1, then the current persona is discarded, and
the state of the calling process is returned to the state that existed prior to the
first call to $PERSONA_CREATE.
flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value
Flag mask specifying which Persona services options are to be employed when the
persona is assumed. This argument is ignored when a persona is being discarded.
The following table describes each flag:
Flag Description
IMP$M_ASSUME_SECURITY Assume access rights, UIC, authorized privileges, user
name, and security audit flag.
IMP$M_ASSUME ACCOUNT Assume OpenVMS account.
IMP$M_ASSUME_JOB_WIDE Assume the new persona, even in a multiprocess job.
Description

When assuming a persona using the IMP$M_ASSUME_SECURITY option, any
previously enabled image privileges will be disabled. The caller’s process will
have only the privileges of the impersonated user enabled. These privileges are
enabled in the Current, Process, and Authorized privilege masks.

SYS2-207

System Service Descriptions
$SPERSONA_ASSUME (VAX Only)

When using IMP$M_ASSUME_SECURITY, access to the job logical name table
might no longer be possible because the table is protected by the UIC of the
user on whose behalf the current process was created. Also, a new access to the
process’ controlling terminal might fail, and the process might be in a different
default resource domain for locking.

Any persona is automatically discarded and deleted upon image exit. Hence, it is
not possible to permanently change the persona of a process using $PERSONA_
ASSUME.

The arguments are read in caller’s mode, so an invalid argument can cause an
access violation to be signaled.

Required Access or Privileges
None

Required Quota
None

Related Services
$PERSONA_CREATE, $PERSONA_DELETE

Condition Values Returned

SYS2-208

SS$_NORMAL The service completed successfully; the desired
access is granted.

IMP$ NOCHJIB The Job Information Block cannot be modified.

IMP$_ Invalid persona argument.

PERSONANONGRATA

System Service Descriptions
SPERSONA_ASSUME (Alpha and 164)

$PERSONA_ASSUME (Alpha and 164)
Assume Persona

On Alpha and 164 systems, allows an OpenVMS thread to assume the identity of
another persona.

Format
SYS$PERSONA_ASSUME persona ,[flags], [previous], [acmode]

C Prototype

int sys$persona_assume (unsigned int *persona, unsigned int flags, unsigned int
*previous, unsigned int acmode);

Arguments
persona
OpenVMS usage: persona
type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword in which the persona identification handle is expected.

If the value passed is ISS$C_ID_NATURAL, then the state of the calling thread
is returned to the natural persona.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Ignored.

previous

OpenVMS usage: persona

type: longword (unsigned)
access: write only
mechanism: by reference

Address of a longword into which the persona identification handle of the
currently active persona being replaced is written.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be considered when assuming a persona. The acmode argument
is a longword containing the access mode.

The most privileged access mode used is the access mode of the caller. Only equal
or more privileged access modes can use this persona.

SYS2-209

System Service Descriptions
$PERSONA_ASSUME (Alpha and 164)

Description

This service establishes the specified persona as the active security profile and
returns the persona identification handle of the persona that was active at the
point in which the call to this service was made.

On image exit, the natural persona is assumed and all nonpermanent personae
are deleted.

The arguments are validated against the caller’s mode, so an invalid argument
can cause an access violation to be signaled.

Required Access or Privileges
None

Required Quota
None

Related Services

$PERSONA_CLONE, $PERSONA_CREATE, $PERSONA_CREATE _
EXTENSION, $PERSONA_DELETE_EXTENSION, $PERSONA_DELEGATE,
$PERSONA_DELETE, $PERSONA_EXTENSION_LOOKUP, $PERSONA_FIND,
$PERSONA_MODIFY, $PERSONA_QUERY, $PERSONA_RESERVE

Condition Values Returned

SYS2-210

SS$_NORMAL The service completed successfully; the desired
access is granted.

SS$_ACCVIO Access violation.

SS$_INSFARG Certain required arguments were not specified.

SS$_IVMODE The caller cannot create a persona that is more
privileged than the caller.

SS$_NOPRIV The operation requires IMPERSONATE
privilege.

SS$ PERSONANONGRATA Invalid persona argument.

System Service Descriptions
SPERSONA_CLONE (Alpha and 164)

$SPERSONA_CLONE (Alpha and 164)
Clone Persona

On Alpha and 164 systems, creates a copy of an existing persona within the
context of the current process. The service returns the assigned persona
identification for the new persona in the persona argument. This persona
can be assumed using the $PERSONA_ASSUME service.

Format
SYS$PERSONA_CLONE persona ,[input]

C Prototype

int sys$persona_clone (unsigned int *persona, unsigned int *input);

Arguments
persona
OpenVMS usage: persona
type: longword (unsigned)
access: write only
mechanism: by reference
Address of a longword into which the persona identification handle is written.
input
OpenVMS usage: persona
type: longword (unsigned)
access: write only
mechanism: by reference
Address of a longword containing the persona identification of the persona to
be cloned. If this argument is 0, null, or absent, the currently active persona is
cloned.
Description

The Clone Persona service creates a copy of an existing persona within the
context of the current process. The service returns the assigned persona
identification for the new persona in the persona argument. This persona
can be assumed using the $PERSONA_ASSUME service.

On image exit, the natural persona is assumed and all nonpermanent personae
are deleted.

Required Access or Privileges
None

Required Quota
BYTLM

Related Services

$PERSONA_ASSUME, $PERSONA_CREATE, $SPERSONA_CREATE _
EXTENSION, $PERSONA_DELETE_EXTENSION, $PERSONA_DELEGATE,
$PERSONA_DELETE, $PERSONA_EXTENSION_LOOKUP, $PERSONA_FIND,
$PERSONA_MODIFY, $PERSONA_QUERY, $PERSONA_RESERVE

SYS2-211

System Service Descriptions
$PERSONA_CLONE (Alpha and 164)

Condition Values Returned

SYS2-212

SS$ NORMAL
SS$ ACCVIO
SS$_EXQUOTA

SS$_INSFMEM
SS$_IVMODE

SS$_PERSONANONGRATA

The service completed successfully.
Access violation.

The caller lacks sufficient quota to allocate a new
persona.

Insufficient memory.

The caller cannot create a persona that is more
privileged than the caller.

The persona ID supplied was invalid.

System Service Descriptions
SPERSONA_CREATE (VAX Only)

$SPERSONA_CREATE (VAX Only)
Create Persona

Creates a persona that can be assumed using the $PERSONA_ASSUME service.

Format
SYS$PERSONA_CREATE persona ,usrnam ,flags

C Prototype

int sys$persona_create (unsigned int *persona, void *usrnam, unsigned int flags);

Arguments
persona
OpenVMS usage: integer
type: longword (unsigned)
access: write
mechanism: by reference

Address of a longword into which the persona identification handle is written.

usrnam

OpenVMS usage: char_string

type: character coded text string

access: read only

mechanism: by descriptor - fixed-length descriptor

Name of the user to be impersonated. The usrnam argument is the address of
a descriptor pointing to a character string containing the user name. The string
can contain a maximum of 12 alphanumeric characters.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying which Persona services options are to be employed when
the persona is created.

The following table describes each flag:

Flag Description

IMP$M_ASSUME_DEFPRIV Create a persona with only default privileges.
IMP$M_ASSUME_DEFCLASS Create a persona with default classification.
Description

On calling the Create Persona service, the required information concerning

the OpenVMS user specified by the usrnam argument is read from the User
Authorization File and Rights database and is stored in system memory. A
handle that identifies the created persona is returned in the persona argument.

SYS2-213

System Service Descriptions
$SPERSONA_CREATE (VAX Only)

It is not possible to create a persona for a user name that has been disabled.

No changes are made to the caller’s process as a result of calling $PERSONA_
CREATE.

Some of the $PERSONA_CREATE service executes in the caller’s access mode
(assumed to be user mode). An improper use of the usernam argument can
cause an access violation to be signaled.

Required Access or Privileges

All calls to $PERSONA_CREATE require DETACH privilege and access to the
system authorization database.

Required Quota

None

Related Services
$PERSONA_ASSUME, $PERSONA_DELETE

Condition Values Returned

SYS2-214

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The persona argument cannot be written by the
caller.

SS$_NODETACH Operation requires DETACH privilege.

SS$ INSFMEM Insufficient memory.

IMP$_USERDISABLED User name disabled.

Any condition value returned by the $LKWSET, $GETUAI or, $FIND_HELD can
also be returned.

System Service Descriptions
SPERSONA_CREATE (Alpha and 164)

$PERSONA_CREATE (Alpha and 164)
Create Persona

On Alpha and 164 systems, creates a persona that can be assumed using the
$PERSONA_ASSUME service.

Format
SYS$PERSONA_CREATE persona ,[usrnam] ,[flags], [usrpro], [itmlst]

C Prototype

int sys$persona_create (unsigned int *persona, void *usrnam, unsigned int flags,
unsigned int *usrpro, unsigned int *itmist);

Arguments
persona
OpenVMS usage: persona
type: longword (unsigned)
access: write only
mechanism: by reference

Address of a longword into which the persona identification handle is written.

usrnam

OpenVMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length descriptor

Name of the user to be impersonated. The usrnam argument is the address of
a descriptor pointing to a character string containing the user name. The string
can contain a maximum of 32 alphanumeric characters.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

The $ISSDEF macro defines these codes:

e ISS$V_CREATE_AUTHPRIV - This bit is used to create a persona with the
privilege fields set to the authorized privileges of the specified user.

e ISS$V_CREATE_DEFPRIV - This bit is used for backward compatibility
with the previous implementation of personae. This bit is accepted but not
processed, as it describes the default behavior of the service.

e ISS$V_NOACCESS - Tells $PERSONA_CREATE not to access the SYSUAF
file. Only valid in exec or kernel mode.

SYS2-215

System Service Descriptions
$SPERSONA_CREATE (Alpha and 164)

Item Codes

SYS2-216

usrpro
OpenVMS usage: char_string

type: opaque byte stream
access: read only
mechanism: by descriptor

Buffer containing an encoded security profile. The usrpro argument is the
address of a descriptor pointing to a buffer that contains encoded security profile
data. This profile can be created by calling the SYS§CREATE_USER_PROFILE

system service.

itmlst

OpenVMS usage: item_list_3
type: longword
access: read only
mechanism: by reference

Attributes describing modifications to the security profile. The itmlst argument
is the address of an item_list defining changes to be made to the specified user
profile.

This section lists the ISS$ item codes and definitions.

ISS$_WORKPRIV
$PERSONA_CREATE sets the working privileges for the new persona as a
quadword value.

ISS$_MODE
$PERSONA_CREATE sets the access mode of the new persona as a longword
value. The mode cannot be more privileged than that of the caller.

ISS$_FLAGS
$PERSONA_CREATE sets the flags field of the new persona as a longword bit
mask. The following bits are currently defined for this field:

e ISS$V_PERMANENT - Mark this persona as permanent. It will survive
image activations/deactivations.

e ISS$V_SECAUDIT - Always audit this persona’s operations.

e ISS$V_DEBIT - Debit and credit the process BYTLM/BYTCNT for this
persona. (This flag is always set for user mode persona.)

ISS$_RIGHTS_INDEX

The index indicates into which rights chain the rights are placed. Values for

the index are: ISS$M_ENABLED_PERSONA, ISS$M_ENABLED_SYSTEM,
ISS$M_ENABLED_INSTALLED, ISS$M_ENABLED_SUBSYSTEM, and ISS$M_
ENABLED_TEMPORARY. All subsequent rights item packets use the index until
a new ISS$_RIGHTS_INDEX item changes the index. If a rights index is not
specified, the rights item packets will use the PERSONA chain as the default.
Rights item packets include: ISS$_AUTHRIGHTS, ISS$_RIGHTS, ISS$_ADD_
AUTHRIGHTS, and ISS$_ADD_RIGHTS.

System Service Descriptions
SPERSONA_CREATE (Alpha and 164)

ISS$_AUTHRIGHTS (Reserved for use by HP.)

$PERSONA_CREATE sets the user authorized rights of the new persona as

a list of quadword values. Any existing authorized rights will be overwritten.
By default, the rights will be placed in the PERSONA rights chain. See ISS$_
RIGHTS_INDEX for more information on specifying different indexes.

ISS$_RIGHTS

$PERSONA_CREATE sets the user rights of the new persona as a list of
quadword (paired longword) values. Any existing authorized rights will be
overwritten. By default, the rights will be placed in the PERSONA rights chain.
See ISS$_RIGHTS_INDEX for more information on specifying different indexes.
The format of the list is the same as ISS$ AUTHRIGHTS.

The format of the list is as follows:

Id value

Id flags

Id value

Id flags

Id value

Id flags

).
¢
J)
(¢

Id value

Id flags

VM-0468A-Al

ISS$_USERNAME
$PERSONA_CREATE sets the user name of the new persona as a 32-byte
character string.

ISS$_ACCOUNT
$PERSONA_CREATE sets the account of the new persona as a 32-byte character
string.

ISS$ NOAUDIT
$PERSONA_CREATE sets the No Audit field of the new persona as a longword
value.

ISS$_UIC
$PERSONA_CREATE sets the UIC of the new persona as a longword value.

ISS$_AUTHPRIV
$PERSONA_CREATE sets the authorized privileges for the new persona as a
quadword value.

ISS$_PERMPRIV
$PERSONA_CREATE sets the permanent privileges for the new persona as a
quadword value.

ISS$_IMAGE_WORKPRIV
$PERSONA_CREATE sets the image working privileges for the new persona as a
quadword value.

SYS2-217

System Service Descriptions
$SPERSONA_CREATE (Alpha and 164)

Description

SYS2-218

ISS$_ENABLED

$PERSONA_CREATE sets the Rights Enable field of the new persona as a
longword bit mask. These bits correspond to the indices of the different rights
chains. By setting the bit in the ENABLED field, the corresponding rightslist
chain will be enabled, and its rights will be included in all rights checks. Valid
bits are: ISS$V_ENABLED_PERSONA, ISS$V_ENABLED_SUBSYSTEM,
ISS$V_ENABLED_IMAGE, ISS$V_ENABLED_SYSTEM, and ISS$V_ENABLED_
TEMPORARY.

ISS$_ADD_AUTHRIGHTS

$PERSONA_CREATE adds the rights to the current list of authorized rights.
$PERSONA_CREATE expects the same format as that outlined in ISS$_
AUTHRIGHTS. By default, the rights will be placed in the PERSONA rights
chain. See ISS$_RIGHTS_INDEX for more information on specifying different
indexes.

ISS$_ADD_RIGHTS

$PERSONA_CREATE adds the rights to the current list of rights. $PERSONA_
CREATE expects the same format as that outlined in ISS$_AUTHRIGHTS.

By default, the rights will be placed in the PERSONA rights chain. See ISS$_
RIGHTS_INDEX for more information on specifying different indexes.

When you call this service, you can specify either the usrnam or usrpro
argument, but not both. The required information specifying the OpenVMS user
is read from either the User Authorization File (UAF) and rights database or the
usrpro buffer and is stored in system memory. Any modifications specified in the
itmlst are then applied to complete the new persona. A persona identification
handle that refers to the created persona is returned in the persona argument.
This service creates a default VMS extension for the persona.

It is possible to call $PERSONA_CREATE in any mode. To call $PERSONA _
CREATE in kernel mode, the calling sequence is different. Only the usrpro
argument is valid (usrnam cannot be used because kernel mode access to the
SYSUATF file is not allowed), and it is necessary to set the PSB$M_NOACESS
value in the flags.

No changes are made to the caller’s thread as a result of calling $PERSONA _
CREATE.

The arguments are validated against the caller’s mode, so an invalid argument
can cause an access violation to be signaled.

Required Access or Privileges

All calls to $PERSONA_CREATE require IMPERSONATE privilege and read
access to the system authorization database.

Required Quota
BYTLM

Related Services

$PERSONA_ASSUME, $PERSONA_CLONE, $PERSONA_CREATE _
EXTENSION, $PERSONA_DELETE_EXTENSION, $PERSONA_DELEGATE,
$PERSONA_DELETE, $PERSONA_EXTENSION_LOOKUP, $PERSONA_FIND,
$PERSONA_MODIFY, $PERSONA_QUERY, $PERSONA_RESERVE

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_NOPRIV

SS$_INSFMEM
SS$_USERDISABLED
SS$_IVMODE

SS$_INSFARG
SS$ BADPARAM

SS$ BADCHECKSUM
SS$_BADBUFLEN

SS$_BADITMCOD
SS$_INVARG

SS$_INVSECDOMAIN

System Service Descriptions
SPERSONA_CREATE (Alpha and 164)

The service completed successfully.

The persona argument cannot be written by the
caller.

The operation requires IMPERSONATE
privilege.

Insufficient memory.

User name disabled.

The caller cannot create a persona that is more
privileged than the caller.

Certain required arguments were not specified.

The value of at least one of the arguments is
incorrect.

The buffer specified by usrpro is not valid.

The buffer length for data within the usrpro or
itmlst was invalid.

At least one argument in the item code is invalid.

An incorrect combination of arguments was
specified.

The buffer specified by usrpro contains data
that originated outside the local security domain.

Any condition value returned by the $LKWSET, $GETUAI, or $FIND_HELD

service can also be returned.

SYS2-219

System Service Descriptions
$SPERSONA_CREATE_EXTENSION (Alpha and 164)

$SPERSONA_CREATE_EXTENSION (Alpha and 164)
Create Persona Extension

Format

C Prototype

Arguments

SYS2-220

On Alpha and 164 systems, creates an extension on the current persona. A
persona extension is a mechanism to attach support for additional security
credentials.

SYS$PERSONA_CREATE_EXTENSION persona ,extensionlD ,buffer ,length ,flags

int sys$persona_create_extension (unsigned int *persona, unsigned int
*extensionID, void *buffer, unsigned int *length,
unsigned int *flags);

persona

OpenVMS usage: persona

type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword containing the persona identification to which $PERSONA_
CREATE_EXTENSION attaches a new persona extension.

Two special values for persona are also permitted: 0, which means the current
persona, and -1, which means the process’ natural persona is used.

extensionlD

OpenVMS usage: extension_ID

type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword containing the extension identification (EID) for which
the registered CREATE routine will be called to create a new persona extension
block.

buffer

OpenVMS usage: address

type: longword (unsigned)
access: read only
mechanism: by reference

Address of a buffer containing data to be used in creating the persona extension
data structure. The interpretation of the data within this buffer is the
responsibility of the extension create routine. For example, this data could

be a Type-Length-Value (TLV) structure containing fields in the extension data
structure. Specifying this buffer is optional; a caller who does not want to supply
a buffer should specify an address of zero (0).

Description

System Service Descriptions
SPERSONA_CREATE_EXTENSION (Alpha and 164)

length

OpenVMS usage: size

type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword containing the size, in bytes, of the buffer argument.
Specifying length is optional; a caller who does not want to supply a length
should specify an address of zero (0). Specifying a buffer without a length is the
same as not specifying a buffer.

flags

OpenVMS usage: flags

type: longword (unsigned)
access: read only
mechanism: by reference

Flag mask specifying the options to be employed when the persona extension is
created. Specifying flags is optional; a caller who does not want to supply flags
should specify an address of zero (0).

Flag Description
PXB$V_ This extension is recorded as the persona’s primary extension.
PRIMARY_ If a persona already has a primary extension, the error SS$_

EXTENSION UNSUPPORTED is returned and the extension is not created.
The primary extension is returned when the persona is queried
for its "Primary Extension." There is no other meaning for this
value.

This service creates an extension by calling the registered Extension Create
routine for the specified extension and by attaching it to the persona represented
by the persona argument.

When a return fails, no persona extension is created.

A VMS extension is already associated with every persona. An attempt to create
a VMS extension using this service returns SS$_DUPLNAM.

Required Access or Privileges

This service requires that the caller have the IMPERSONATE privilege enabled
or be in exec or kernel mode.

Required Quota
BYTLM

Related Services

$PERSONA_ASSUME, $PERSONA_CLONE, $PERSONA_CREATE,
$PERSONA_DELETE_EXTENSION, $PERSONA_DELEGATE, $PERSONA _
DELETE, $PERSONA_EXTENSION_LOOKUP, $PERSONA_FIND, $PERSONA _
MODIFY, $PERSONA_QUERY, $PERSONA_RESERVE

SYS2-221

System Service Descriptions
$SPERSONA_CREATE_EXTENSION (Alpha and 164)

Condition Values Returned

SYS2-222

SS$ NORMAL
SS$_ACCVIO

SS$ BADITMCOD
SS$ BADPARAM
SS$_DUPLNAM

SS$_EXQUOTA
SS$_ NOIMPERSONATE
SS$ NOSUCHEXT

SS$ PERSONANONGRATA
SS$_UNSUPPORTED

The service completed successfully.

A buffer or return address specified in the item
list cannot be read.

The item list contains an invalid identifier code.
An invalid parameter was specified.

The persona already has an extension of this
type.

The caller lacks sufficient quota to allocate a new
persona.

The caller does not have the privilege to extend
its original identity/persona.

The extension requested does not exist on the
system.

The persona ID supplied was invalid.

An unsupported request was made; check the
PRIMARY_EXTENSION flags bit.

System Service Descriptions
SPERSONA_DELEGATE (Alpha and 164)

$SPERSONA_DELEGATE (Alpha and 164)
Delegate Persona to a Server Process

On Alpha and 164 systems, delegates or assigns the currently active persona to
another process.

Format
SYS$PERSONA_DELEGATE serverPID ,persona ,input

C Prototype

int sys$persona_delegate (unsigned int *serverPID, unsigned int *persona, unsigned

int *input);
Arguments
serverPID
OpenVMS usage: process_ID
type: longword (unsigned)
access: read only
mechanism: by reference
Address of a longword containing the extended process identification (PID) of the
server process to which PERSONA_DELEGATE grants the current persona.
persona
OpenVMS usage: persona
type: longword (unsigned)
access: read only
mechanism: by reference
Address of a longword containing the identification that the $PERSONA_
RESERVE service reserved in the server’s process for this client’s persona.
input
OpenVMS usage: persona
type: longword (unsigned)
access: read only
mechanism: by reference
Address of a longword containing the persona identification that describes which
persona is delegated to the server. If the input argument is zero (0) or null, or if
the input value is zero (0), the current persona is delegated. If the input value is
-1, then the natural persona of the process is delegated.
Description

This service delegates or assigns either the specified persona or the currently
active persona to another process. The server process must have reserved a

persona slot for the current process to use by calling $PERSONA_RESERVE
before calling this service.

The delegation of persona is only supported for processes residing on the same
node in the cluster. When a return fails, the persona is not delegated.

SYS2-223

System Service Descriptions
$SPERSONA_DELEGATE (Alpha and 164)

Required Access or Privileges

None

Required Quota
BYTLM

Related Services

$PERSONA_ASSUME, $PERSONA_CLONE, $PERSONA_CREATE,
$PERSONA_CREATE_EXTENSION, $PERSONA_DELETE_EXTENSION,
$PERSONA_DELETE, $PERSONA_EXTENSION_LOOKUP, $PERSONA_FIND,
$PERSONA_MODIFY, $PERSONA_QUERY, $PERSONA_RESERVE

Condition Values Returned

SYS2-224

SS$ NORMAL
SS$_ACCVIO
SS$ BADPARAM
SS$_EXQUOTA

SS$_NONEXPR
SS$ PERSONANONGRATA

The service completed successfully.
The arguments cannot be read by the service.
An invalid parameter was specified.

The caller lacks sufficient quota to allocate a new
persona.

The process specified does not exist.
The persona ID supplied was invalid.

System Service Descriptions
SPERSONA_DELETE

SPERSONA_DELETE
Delete Persona

Deletes a persona created using the $PERSONA_CREATE, the $PERSONA_
CLONE, or the $PERSONA_RESERVE service.

Format
SYS$PERSONA_DELETE persona

C Prototype

int sys$persona_delete (unsigned int *persona);

Arguments

persona

OpenVMS usage: persona

type: longword (unsigned)

access: read only

mechanism: by reference

Address of a longword in which the persona identification handle is expected.
Description

The PERSONA_DELETE service frees the resources used by the persona. No
changes to the caller’s process are made as a result of calling $PERSONA_
DELETE.

The persona argument is validated against the caller’s mode, so an invalid
argument can cause an access violation to be signaled.

Required Access or Privileges

None

Required Quota
BYTLM

Related Services

$PERSONA_ASSUME, $PERSONA_CLONE, $PERSONA_CREATE,
$PERSONA_CREATE_EXTENSION, $PERSONA_DELETE_EXTENSION,
$PERSONA_DELEGATE, $PERSONA_EXTENSION_LOOKUP, $PERSONA
FIND, $PERSONA_MODIFY, $PERSONA_QUERY, $PERSONA_RESERVE

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$_ACCVIO Access violation.

SS$_PERSONADELPEND Persona is in use; delete pending on release.
SS$_NODELPERMANENT Permanent personae cannot be deleted.

SYS2-225

System Service Descriptions
$SPERSONA_DELETE_EXTENSION (Alpha and 164)

SPERSONA_DELETE_EXTENSION (Alpha and 164)
Delete Persona Extension

On Alpha and 164 systems, deletes an extension attached to a persona.

Format
SYS$PERSONA_DELETE_EXTENSION persona ,extensionlD

C Prototype

int sys$persona_delete_extension (unsigned int *persona, unsigned int
*extensionID);

Arguments
persona
OpenVMS usage: persona
type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword containing the persona identification for which
$PERSONA_DELETE_EXTENSION calls the registered Extension Delete

function.

extensionlD

OpenVMS usage: extension_ID

type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword containing the extension identification (EID) for which the
registered DELETE routine is called in order to delete a persona extension block
from the specified persona.

Description

This service deletes an extension data structure by calling the registered
Extension Delete routine for the specified extension.

When a return fails, the persona extension is not deleted.

The VMS extension associated with each persona cannot be deleted. An attempt
to delete that extension returns SS$ UNSUPPORTED.

Required Access or Privileges

This service requires that the caller have the IMPERSONATE privilege enabled
or be in exec or kernel mode.

Required Quota
BYTLM

SYS2-226

System Service Descriptions

$SPERSONA_DELETE_EXTENSION (Alpha and 164)

Related Services

$PERSONA_ASSUME, $PERSONA_CLONE, $PERSONA_CREATE,
$PERSONA_CREATE_EXTENSION, $PERSONA_DELEGATE, $PERSONA _
DELETE, $PERSONA_EXTENSION_LOOKUP, $PERSONA_FIND, $PERSONA _
MODIFY, $PERSONA_QUERY, $PERSONA_RESERVE

Condition Values Returned

SS$_NORMAL
SS$_BADPARAM
SS$_NOIMPERSONATE

SS$ NOSUCHEXT

SS$_PERSONANONGRATA
SS$_UNSUPPORTED

The service completed successfully.
An invalid parameter was specified.

The caller does not have the privilege to delete
pieces of the thread’s original identity/persona.

The extension specified does not exist in the
persona.

The persona ID supplied was invalid.
The specified extension cannot be deleted.

SYS2-227

System Service Descriptions
$SPERSONA_EXTENSION_LOOKUP (Alpha and 164)

$SPERSONA_EXTENSION_LOOKUP (Alpha and 164)
Translates an Extension Name

On Alpha and 164 systems, translates a text name of an extension (for example,
VMS or NT) into an extension identification (EID) that can be used in other
persona-related system services.

Format
SYS$PERSONA_EXTENSION_LOOKUP extensionName ,extensionID

C Prototype

int sys$persona_extension_lookup (void *extensionName, unsigned int
*extensionID);

Arguments
extensionName
OpenVMS usage: extension_name
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length descriptor
Address of a character string descriptor pointing to the name of the extension
being looked up.
extensionlD
OpenVMS usage: extension_ID
type: longword (unsigned)
access: write only
mechanism: by reference
Address of a longword into which the value of the extension identification (EID)
returned by the service is written.
Description

This service translates a text name of an extension into an extension
identification (EID) that can be used in other persona-related system services.

There are currently two extension names: VMS and NT.

Required Access or Privileges
None

Required Quota
None

Related Services

$PERSONA_ASSUME, $PERSONA_CLONE, $PERSONA_CREATE,
$PERSONA_CREATE_EXTENSION, $PERSONA_DELETE_EXTENSION,
$PERSONA _DELEGATE, $PERSONA DELETE, $PERSONA_FIND,
$PERSONA_MODIFY, $PERSONA_QUERY, $PERSONA_RESERVE

SYS2-228

System Service Descriptions
SPERSONA_EXTENSION_LOOKUP (Alpha and 164)

Condition Values Returned

SS$ NORMAL The service completed successfully.

SS$_ACCVIO The string descriptor supplied in the
extensionName argument cannot be read by
the service.

SS$_ BADPARAM An invalid argument was specified.

SS$_NOSUCHEXT The supplied extensionName does not exist on

this system.

SYS2-229

System Service Descriptions
$SPERSONA_FIND (Alpha and 164)

SPERSONA_FIND (Alpha and 164)
Find Persona with Characteristics

On Alpha and 164 systems, enables the caller to find the personae within a
process that have certain attributes or settings.

Format
SYS$PERSONA_FIND persona ,itmlst ,contxt

C Prototype

int sys$persona_find (unsigned int *persona, void *itmlst, unsigned int *contxt);

Arguments
persona
OpenVMS usage: persona
type: longword (unsigned)
access: write only
mechanism: by reference

Address of a longword into which the persona identification that matches all of
the items present in the item list is written.

itmlst

OpenVMS usage: item_list_3

type: longword (unsigned)
access: read only
mechanism: by reference

Attributes specifying which information about the persona is to be compared.
The itmlst argument is the address of a list of item descriptors, each describing
an item of information or an item list processing directive. The list of item
descriptors is terminated by a longword value of 0.

The following diagram shows the format of a single item descriptor:
31 15 0

Item code Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following table lists the item descriptor fields and their definitions:

SYS2-230

Description

System Service Descriptions
SPERSONA_FIND (Alpha and 164)

Field Description

Buffer length A word containing a user-supplied integer specifying the
length (in bytes) of the buffer in which $PERSONA_FIND is
to locate the information. The length of the buffer depends
on the item code specified in the item code field of the
item descriptor. If the value of buffer length is too small,
$PERSONA_FIND fails the comparison.

Item code A word containing a user-supplied symbolic code specifying
the item of information $PERSONA_FIND is to test, or
specifying a directive for processing subsequent items. The
$ISSDEF macro defines these codes. Each item code is
described in the Description section.

Buffer address A longword containing the user-supplied address of the buffer
in which $PERSONA_FIND locates the information used for
the comparison.

Return length An unused longword containing the user-supplied address

address of a word into which the system service writes the length in
bytes of the information it returned. This longword is unused
for PERSONA_FIND.

contxt

OpenVMS usage: context

type: longword (unsigned)
access: modify

mechanism: by reference

Context value used when repeatedly calling $PERSONA_FIND. The contxt
argument is the address of a longword used while $PERSONA_FIND searches
for all personae that match the criteria. The context value must be initialized
to zero, and the resulting context of each call to $PERSONA_FIND must be
presented to each subsequent call. After contxt is passed to $PERSONA_FIND,
you must not modify its value.

This service enables the caller to find the personae within a process that have
certain attributes or settings.

A persona identification is returned only if all the items specified in the item list
match those in the persona and its extensions.

The item list cannot be changed between context-saved calls. Results are
unpredictable if the item list is changed between calls.

Repeated calls to $PERSONA_FIND return subsequent matching personae.
When the service returns SS$_ NOMOREPROC, there are no more personae to
examine.

SYS2-231

System Service Descriptions
$SPERSONA_FIND (Alpha and 164)

SYS2-232

OpenVMS Persona ltem Codes

The following table contains the item codes specific to the OpenVMS persona
extension data:

Size
Item Code Uset (bytes) Description
ISS$_USERNAME Q,M,F 32 OpenVMS user name as
text string
ISS$ ACCOUNT Q,M,F 32 OpenVMS account name
as text string
ISS$_DOMAIN QF 32 OpenVMS SCSNODE
as text string as
obtained from $GETJPI’s
nodename
ISS$_PRINCIPAL Q,F 64 OpenVMS user name as
text string
ISS$_EXTENSION QF 32 The text string VMS
ISS$_ WORKPRIV QM 8 Working privilege mask
ISS$_WORKCLASS QM Varying Working classification
ISS$_RIGHTS Q Varying Enabled list of rights
identifiers
ISS$_NOAUDIT QM 4 No audit counter—0
means audits disabled
ISS$_UIC Q,M,F 4 Current UIC
ISS$_AUTHPRIV QM 8 Authorized privilege mask
ISS$_PERMPRIV QM 8 Permanent privilege mask
ISS$_IMAGE_WORKPRIV QM 8 Image working privilege
mask
ISS$ ENABLED Q 4 Mask of enabled rights
chains
ISS$_AUTHRIGHTS Q Varying Authorized list of rights
identifiers
ISS$_MINCLASS Q Varying Minimum classification
ISS$_MAXCLASS Q Varying Maximum classification

tUse descriptions are: Query, Modify, and Find.

Required Access or Privileges

The caller may require extension-specific privileges to search on some data items.
The Persona Item Codes section lists the privileges that are needed.

Required Quota
None

Related Services

$PERSONA_ASSUME, $PERSONA_CLONE, $PERSONA_CREATE,
$PERSONA_CREATE_EXTENSION, $PERSONA_DELETE_EXTENSION,
$PERSONA_DELEGATE, $PERSONA_DELETE, $PERSONA_EXTENSION_
LOOKUP, $PERSONA_MODIFY, $PERSONA_QUERY, $PERSONA_RESERVE

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$ BADPARAM
SS$_BADITMCOD
SS$_BADCONTEXT
SS$_NOIMPERSONATE

SS$_NOMOREPROC
SS$_NOSUCHEXT

System Service Descriptions
SPERSONA_FIND (Alpha and 164)

The service completed successfully.

The item list cannot be read by the caller.
An invalid parameter was specified.

The item list contains an invalid item code.
The context value is invalid.

The caller does not have the privilege to obtain
information about the specified personae.

There are no more personae to check.

The extension requested does not exist on the
system.

SYS2-233

System Service Descriptions
$PERSONA_MODIFY (Alpha and 164)

$SPERSONA_MODIFY (Alpha and 164)
Modify Persona Data

On Alpha and 164 systems, sets attribute values for a persona.

Format
SYS$PERSONA_MODIFY persona ,itmlst

C Prototype

int sys$persona_modify (unsigned int *persona, void *itmlst);

Arguments
persona
OpenVMS usage: persona
type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword containing the persona identification for which this service
is to set information.

itmlst

OpenVMS usage: item_list_3

type: longword (unsigned)
access: read only
mechanism: by reference

Attributes specifying which information in the persona is to be modified. The
itmlst argument is the address of a list of item descriptors, each describing
an item of information or an item list processing directive. The list of item
descriptors is terminated by a longword value of 0.

The following diagram shows the format of a single item descriptor:
31 15 0

Item code Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following table lists the item descriptor fields and their definitions:

Field Description

Buffer length A word containing a user-supplied integer specifying the
length (in bytes) of the buffer from which $PERSONA _
MODIFY is to get information.

SYS2-234

Description

System Service Descriptions
$SPERSONA_MODIFY (Alpha and 164)

Field Description

Item code A word containing a user-supplied symbolic code specifying
the item of information $PERSONA_MODIFY is to change,
or specifying a directive for processing subsequent items.
The $ISSDEF macro defines these codes. Each item code is
described in the Description section.

Buffer address A longword containing the user-supplied address of the buffer
from which $PERSONA_MODIFY is to get the information.

Return length This field is ignored on a call to PERSONA_MODIFY.

address

The Modify Persona Data service sets attribute values for a persona.

OpenVMS Persona ltem Codes

The following table contains the item codes specific to the OpenVMS persona
extension data:

Size
Item Code Uset (bytes) Description
1SS$ USERNAME Q,M,F 32 OpenVMS user name as
text string
ISS$_ACCOUNT Q,M,F 32 OpenVMS account name
as text string
ISS$_DOMAIN QF 32 OpenVMS SCSNODE
as text string as
obtained from $GETJPI’s
nodename
1SS$ PRINCIPAL Q,F 64 OpenVMS user name as
text string
ISS$_EXTENSION QF 32 The text string VMS
ISS$_WORKPRIV QM 8 Working privilege mask
ISS$_WORKCLASS QM Varying Working classification
ISS$_RIGHTS Q Varying Enabled list of rights
identifiers
1SS$ NOAUDIT Q.M 4 No audit counter—O0
means audits disabled
ISS$_UIC Q,M,F 4 Current UIC
ISS$_AUTHPRIV Q.M 8 Authorized privilege mask
ISS$_PERMPRIV QM 8 Permanent privilege mask
ISS$_IMAGE_WORKPRIV QM 8 Image working privilege
mask
1SS$_ ENABLED Q 4 Mask of enabled rights
chains

TUse descriptions are: Query, Modify, and Find.

SYS2-235

System Service Descriptions
$PERSONA_MODIFY (Alpha and 164)

Size
Item Code Uset (bytes) Description
ISS$_AUTHRIGHTS Q Varying Authorized list of rights
identifiers
ISS$_MINCLASS Q Varying Minimum classification
ISS$_MAXCLASS Q Varying Maximum classification

fUse descriptions are: Query, Modify, and Find.

Required Access or Privileges
This service requires that the caller have the IMPERSONATE privilege enabled
or be in exec or kernel mode.

Required Quota
None

Related Services

$PERSONA_ASSUME, $PERSONA_CLONE, $PERSONA_CREATE,
$PERSONA_CREATE_EXTENSION, $PERSONA_DELETE_EXTENSION,
$PERSONA_DELEGATE, $PERSONA_DELETE, $PERSONA_EXTENSION_
LOOKUP, $PERSONA_FIND, $PERSONA_QUERY, $PERSONA_RESERVE

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The item list cannot be read by the caller, or the
buffer cannot be read by the caller.

SS$ BADPARAM An invalid parameter was specified.

SS$ BADITMCOD The item list contains an invalid item code.

SS$_NOIMPERSONATE The caller does not have the privilege to obtain
information about the specified personae.

SS$ NOSUCHEXT The extension requested does not exist on the
system.

SS$_PERSONANONGRATA The persona ID supplied was invalid. This
service may also return status codes associated
with the various extension routines.

SYS2-236

System Service Descriptions
SPERSONA_QUERY (Alpha and 164)

$PERSONA_QUERY (Alpha and 164)
Query for Persona Data

On Alpha and 164 systems, retrieves attribute values from a persona (and
accompanying extensions).

Format
SYS$PERSONA_QUERY persona ,itmlst

C Prototype

int sys$persona_query (unsigned int *persona, void *itmlst);

Arguments
persona
OpenVMS usage: persona
type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword into which the persona identification handle is written.

Two special values for persona are also permitted: 0, which means use the
current persona, and -1, which means use the process’ natural persona.

itmlst

OpenVMS usage: item_list_3

type: longword (unsigned)
access: read only
mechanism: by reference

Attributes describing which information about the persona is to be returned.
The itmlst argument is the address of a list of item descriptors, each of which
describes an item of information or an item list processing directive. The list of
item descriptors is terminated by a longword value of 0.

The following diagram shows the format of a single item descriptor:
31 15 0

ltem code Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following table lists the item field descriptors and their definitions:

SYS2-237

System Service Descriptions
$SPERSONA_QUERY (Alpha and 164)

Description

SYS2-238

Field

Description

Buffer length

Item code

Buffer address

Return length
address

A word containing a user-supplied integer specifying the
length (in bytes) of the buffer into which $PERSONA_
QUERY writes the information. The length of the buffer
depends on the item code specified in the item code field of
the item descriptor. If the value of buffer length is too small,
$PERSONA_QUERY truncates the data.

If the buffer length is specified as 0, the service does not
return any data in the buffer; instead, the service returns
the size of buffer required to contain the data in the Return
Length address. This allows run-time determination of the
size of buffer needed to hold the requested information.

A word containing a user-supplied symbolic code specifying
the item of information $PERSONA_QUERY is to return,
or specifying a directive for processing subsequent items.
The $ISSDEF macro defines these codes. Each item code is
described in the Description section.

A longword containing the user-supplied address of the buffer
into which $PERSONA_QUERY writes the information.

A longword containing the user-supplied address of a word
into which the service writes the length in bytes of the
information it returned. If the buffer length field is zero (0),
then you must specify a return length address.

The Query for Persona Data service returns the requested items in the buffers

supplied.

OpenVMS Persona ltem Codes
The following table contains the item codes specific to the OpenVMS persona

extension data:

Size
Item Code Uset (bytes) Description
ISS$_USERNAME QMF 32 OpenVMS user name as
text string
ISS$_ACCOUNT QMF 32 OpenVMS account name as
text string
ISS$_DOMAIN Q,F 32 OpenVMS SCSNODE as
text string as obtained from
$GETJPI’s nodename
ISS$_PRINCIPAL Q,F 64 OpenVMS user name as
text string
ISS$_EXTENSION Q,F 32 The text string VMS
ISS$_ WORKPRIV QM 8 Working privilege mask

ISS$_WORKCLASS

QM Varying Working classification

TUse descriptions are: Query, Modify, and Find.

System Service Descriptions
SPERSONA_QUERY (Alpha and 164)

Size
Item Code Uset (bytes) Description
ISS$_RIGHTS Q Varying Enabled list of rights
identifiers
ISS$ NOAUDIT QM 4 No audit counter—0 means
audits disabled
ISS$_UIC QMF 4 Current UIC
ISS$_AUTHPRIV QM 8 Authorized privilege mask
1SS$_ PERMPRIV QM 8 Permanent privilege mask
ISS$_IMAGE_WORKPRIV QM 8 Image working privilege
mask
1SS$_ENABLED Q 4 Mask of enabled rights
chains
ISS$_AUTHRIGHTS Q Varying Authorized list of rights
identifiers
ISS$_MINCLASS Q Varying Minimum classification
ISS$_MAXCLASS Q Varying Maximum classification

TUse descriptions are: Query, Modify, and Find.

Common Item Codes

The following table contains the item codes specific to the common persona

extension data:

Size
Item Code Uset (bytes) Description
ISS$_COMMON_ Q varying User name as text string
USERNAME
ISS$_COMMON_ACCOUNT Q varying Account name as text string
ISS$_ COMMON_FLAGS Q 4 Flags as a longword
ISS$_DOMAIN Q varying Domain name as text string
ISS$_COMMON_PRINCIPAL Q varying Principal name as text
string
ISS$ EXTENSION Q 32 Extension name as text
string
ISS$_DOI Q 8 Domain Of Interpretation

quadword

TUse descriptions are: Query, Modify, and Find.

SYS2-239

System Service Descriptions
$SPERSONA_QUERY (Alpha and 164)

SYS2-240

General Persona Iltem Codes

The following table contains the item codes specific to the general persona

extension data:

Size

Item Code Uset (bytes) Description

ISS$_SWITCH_EXTENSION QM 4 Extension ID to be used
for subsequent item code
processing

ISS$_FLAGS Q.M 4 Various flags (ISS$_FLAG_
PERMANENT)

ISS$_MODE Q 4 Persona creation mode
(user, supervisor, exec, or
kernel)

ISS$_UID Q 16 UID assigned when persona
created

ISS$ PERSONA_ID Q 4 Persona ID of this PSB

ISS$ PRIMARY _ QM 4 Extension id of primary

EXTENSION authenticator

ISS$ EXTENSION COUNT Q 4 Count of extensions
attached to persona

ISS$_EXTENSION_ARRAY Q varying Array of longwords

containing extension ids
of all extensions attached
to persona

TUse descriptions are: Query, Modify, and Find.

NT Persona Item Codes

The following table contains the item codes specific to the NT persona extension

data:
Size

Item Code Uset (bytes) Description
ISS$_NT_PRINCIPAL QF varying Principal name as text

string
ISS$_NT_TOKEN_ QF varying NT user name as text
USERNAME string
ISS$_NT_TOKEN_ QF varying NT domain as text string
DOMAINNAME
ISS$_EXTENSION Q,F varying The text string "NT"
ISS$ NT FLAGS Q.M 4 Various flags
ISS$ NT USER_ QM 4 NT-Specific User Field
REFCOUNT
ISS$_NT _CREDENTIALS QM varying All Token and Security info
ISS$_NT NT _OWF_ QM varying NT Password

PASSWORD

TUse descriptions are: Query, Modify, and Find.

System Service Descriptions
SPERSONA_QUERY (Alpha and 164)

Size
Item Code Uset (bytes) Description
ISS$ NT LM_OWF_ QM varying LM Password
PASSWORD
ISS$ NT TOKEN QF 16 User’s session key
USERSESSIONKEY
ISS$ NT TOKEN QF 8 LM session key
LMSESSIONKEY

TUse descriptions are: Query, Modify, and Find.

Required Access or Privileges
No privileges are required to call this service.

Required Quota
None

Related Services

$PERSONA_ASSUME, $PERSONA_CLONE, $PERSONA_CREATE,
$PERSONA_CREATE_EXTENSION, $PERSONA_DELETE_EXTENSION,
$PERSONA_DELEGATE, $PERSONA_DELETE, $PERSONA_EXTENSION _
LOOKUP, $PERSONA_FIND, $PERSONA_MODIFY, $PERSONA_RESERVE

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The item list cannot be read by the caller, or the
buffer length or buffer cannot be written by the
caller.

SS$_ BADPARAM An invalid parameter was specified.

SS$ BADITMCOD The item list contains an invalid item code.

SS$_NOSUCHEXT The extension requested does not exist on the
system.

SS$_ PERSONANONGRATA The persona ID supplied is invalid.

SYS2-241

System Service Descriptions
$PERSONA_RESERVE (Alpha and 164)

$SPERSONA_RESERVE (Alpha and 164)
Reserve Persona Slot

On Alpha and 164 systems, reserves a persona ID in the server’s persona table to
be filled in by the $PERSONA_DELEGATE system service.

Format
SYS$PERSONA_RESERVE clientPID ,persona

C Prototype

int sys$persona_reserve (unsigned int *clientPID, unsigned int *persona);

Arguments
clientPID
OpenVMS usage: process_ID
type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword containing the External Process Identification (EPID) of
the client process for which the server is reserving the slot.

persona

OpenVMS usage: persona

type: longword (unsigned)
access: write only
mechanism: by reference

Address of a longword into which the persona identification is written. This
service sets aside the identification for the client’s to-be-delegated persona.

Description

This service reserves a persona identifier slot within the current process for a
specific client process to use in delegating its persona to this process. A reserved
persona slot can be deleted by a call to the $PERSONA_DELETE service. When
a return fails, no persona slot has been reserved for the client process.

The delegation of persona is only supported for processes residing on the same
node of a cluster.

Required Access or Privileges
IMPERSONATE

Required Quota
BYTLM

Related Services

$PERSONA_ASSUME, $PERSONA_CLONE, $PERSONA_CREATE,
$PERSONA_CREATE_EXTENSION, $PERSONA_DELETE_EXTENSION,
$PERSONA_DELEGATE, $PERSONA_DELETE, $PERSONA_EXTENSION_
LOOKUP, $PERSONA_FIND, $PERSONA_MODIFY

SYS2-242

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO
SS$ BADPARAM
SS$_EXQUOTA

SS$_NONEXPR

System Service Descriptions
SPERSONA_RESERVE (Alpha and 164)

The service completed successfully.
The item list cannot be read by the caller.
An invalid parameter was specified.

The caller lacks sufficient quota to allocate a new
persona.

The specified process does not exist, or an invalid
process identification was specified.

SYS2-243

System Service Descriptions
$PROCESS_AFFINITY (Alpha and 164)

$PROCESS_AFFINITY (Alpha and 164)
Modify Process Affinity

On Alpha and 164 systems, allows modification of the CPU affinity set for a
specified kernel thread.

This service accepts 64-bit addresses.

Format

SYS$PROCESS_AFFINITY [pidadr], [prcnam], [select_mask], [modify_mask],
[prev_mask], [flags] [,[mask_length]]

C Prototype

int sys$process_affinity (unsigned int *pidadr, void *prcnam, struct _generic_64
*select_mask, struct _generic_64 *modify_mask, struct
_generic_64 *prev_mask, struct _generic_64 *flags,...);

Arguments
pidadr
OpenVMS usage: process_id
type: longword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Process identification (PID) of a kernel thread whose affinity mask is to be
modified or returned. The pidadr argument is the 32- or 64-bit address of a
longword that contains the PID.

Process selection is made through a combination of the pidadr and prcnam
arguments. If neither are specified or if both have a zero value, the service
operations are made to the user affinity mask of the current kernel thread of
the calling process. The pidadr argument takes precedence over the prenam
argument in any circumstances where both are supplied in the service call.

prcnam

OpenVMS usage: process_name

type: character-coded text string

access: read only

mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Process name of the process whose affinity mask is to be modified or returned.
The precnam argument is the 32- or 64-bit address of a character string descriptor
pointing to the process name string. A process can be identified with a 1- to 15-
character string. The service operations are made to the user affinity mask of the
initial thread of the specified process.

If pidadr and prenam are both specified, then pidadr is modified or returned
and prcnam is ignored. If neither argument is specified, then the context of the
current kernel thread of the calling process is modified or returned.

SYS2-244

System Service Descriptions
$PROCESS_AFFINITY (Alpha and 164)

select_mask
OpenVMS usage: bitmap

type: quadword bitmap
access: read only
mechanism: by 32- or 64-bit reference

The select-mask argument specifies which bits of the specified process’s affinity

mask are to be modified. The select_mask argument is the 32- or 64-bit address
of a quadword bit vector wherein a bit, when set, specifies that the corresponding
CPU position in the mask is to be modified.

modify_mask
OpenVMS usage: bitmap

type: quadword bitmap
access: read only
mechanism: by 32- or 64-bit reference

Mask specifying the settings for those explicit affinities selected in the select_
mask argument. The modify_mask argument is the 32- or 64-bit address of a
quadword bit vector wherein a bit, when set, specifies that the corresponding CPU
is to be added to the specified process affinity set; when clear, the corresponding
CPU is to be removed from the specified process affinity set.

To add a specific CPU to the affinity mask set, that bit position must be set in
both select_mask and modify_mask. To remove a specific CPU from the affinity
mask set, that bit position must be set in select_mask and clear in modify_
mask.

The constant CAP$K_ALL_CPU_ADD, when specified in modify_mask, indicates
that all CPUs specified in select_mask are to be added to the affinity mask set.
The constant CAP$K _ALL_CPU_REMOVE indicates that all CPUs in select_
mask are to be removed from the affinity mask set.

prev_mask

OpenVMS usage: bitmap

type: quadword bitmap

access: write only

mechanism: by 32- or 64-bit reference

Previous CPU affinity mask for the specified kernel thread before execution of
this call to $PROCESS_AFFINITY. The prev_mask argument is the 32- or 64-bit
address of a quadword into which $PROCESS_AFFINITY writes the previous
explicit affinity bitmap.

flags

OpenVMS usage: mask_quadword

type: quadword (unsigned)
access: read only

mechanism: by 32- or 64-bit reference

Options selected for affinity modification. The flags argument is a quadword bit
vector wherein a bit corresponds to an option. Only the bits specified below are
used; the remainder of the quadword bits are reserved and must be 0.

Each option (bit) has a symbolic name, which the $CAPDEF macro defines. The
flags argument is constructed by performing a logical OR operation using the
symbolic names of each desired option.

SYS2-245

System Service Descriptions
$PROCESS_AFFINITY (Alpha and 164)

SYS2-246

The following table describes the symbolic name of each option:

Symbolic Name

Description

CAP$M_FLAG_PERMANENT

CAP$M_FLAG_CHECK_CPU

CAP$M_FLAG_CHECK_CPU_
ACTIVE

CAP$M_PURGE_WS_IF_NEW_RAD

Indicates whether to modify the
permanent process affinities in addition
to the current image copy. If CAP$M_
FLAG_PERMANENT is set, then both
the permanent and current affinities are
modified. If the flag bit is clear or flags is
unspecified, then just the current image
process affinities are modified.

This bit also determines which of the
affinity masks are returned in prev_
mask. If set, the permanent mask, used
to reinitialize the current set at image
rundown, is returned. If the bit is clear
or the flags argument is not specified, the
current running mask is returned.

Determines whether the kernel thread
can be left in a nonrunnable state under
some circumstances. No operation of
this service will allow a transition from
a runnable to blocked state; however, if
the kernel thread is already at a blocked
state, this bit determines whether the
result of the operation must leave it
runnable. If CAP$M_FLAG_CHECK_
CPU is set or flags is unspecified, the
kernel thread will be checked to ensure
it can safely run on one of the CPUs in
the active set; otherwise, any valid state
operations on kernel threads already in a
blocked state will be allowed.

Indicates whether a check is made to
verify that all CPUs in the select mask
that are about to be selected for affinity
binding are in the active set. This does
not apply to CPUs that are about to be
cleared from the current affinity set.
Unlike CAP$M_FLAG_CHECK_CPU
where only a single CPU has to be valid
for the condition to pass, CAP$M_FLAG_
CHECK_CPU_ACTIVE requires that all
CPUs in the selected set must pass the
criteria.

Causes the working set of the process to
be purged if the choice of affinity results
in a change to the home RAD of the
process.

Description

System Service Descriptions
$PROCESS_AFFINITY (Alpha and 164)

mask_length
OpenVMS usage: bitmap

type: quadword bitmap
access: read only
mechanism: by 32- or 64-bit reference

The mask_length specifies the length in bytes of each of the three bitmaps:
select_mask, modify_mask, prev_mask. If mask_length is not supplied or
specified as zero, a length of 8 bytes is used.

The correct value for mask_length is determined by the number of supported
CPUs on the system. You can compute the number of bytes needed for the bitmap
as follows: Use the $GETSYI system service with an item code of SYI$_MAX_
CPUS to find the minimum number of bits needed, round this number up to a
multiple of 64, and divide the result by 8.

The Modify Process Affinity system service, based on the arguments select_mask
and modify_mask, adds or removes CPUs from the specified kernel thread’s
affinity mask sets. If specified, the previous affinity mask is returned in prev_
mask. With the modify_mask argument, multiple CPUs can be added to or
removed from the process affinity mask set in the same system service call.

Adding a specific CPU to the process affinity mask indicates that the kernel
thread is able to execute only on that CPU or on the others specified in the
mask. Affinity scheduling takes effect as soon as the affinity mask becomes
nonzero, limiting the CPU selection for the kernel thread to what is specified and
available. Thread selection and execution is still subject to standard capability
requirements, but only the affinity CPU set is considered when looking for an
available site. When the affinity mask is cleared, all CPUs are again considered
available and affinity is deactivated.

Either modify_mask or prev_mask, or both, must be specified as arguments. If
modify mask is specified, then select_mask must be specified as an argument.
If modify_mask is not specified, then no modifications are made to the affinity
mask for the specified kernel thread. In this case, select_mask is ignored. If
prev_mask is not specified, then no previous mask is returned.

No service changes will be allowed if the specified kernel thread will transition
from a runnable to blocked state. The CAP$M_FLAG _CHECK_ CPU bit in the
flags argument requires that the final thread state be runnable regardless of
previous state; otherwise, interim changes that maintain a blocked state are
allowed if the thread is already in one.

Required Privileges

The caller must have the ALTPRI privilege to call SYS$PROCESS_AFFINITY to
modify its own affinity mask. To modify another process’ affinity mask, the caller
must have:

ALTPRI—To modify any process with a matching UIC
ALTPRI and GROUP—To modify any process in the same UIC group
ALTPRI and WORLD—To modify any process

SYS2-247

System Service Descriptions
$PROCESS_AFFINITY (Alpha and 164)

To call SYS$PROCESS_AFFINITY simply to retrieve the specific process or global
mask, the caller need only have the following privileges:

None—To retrieve the state of itself or any process with a matching UIC
GROUP—To retrieve the state of any process in the same UIC group
WORLD—To retrieve the state of any process

Related Services

$CPU_CAPABILITIES
$PROCESS_CAPABILITIES

Condition Values Returned

SYS2-248

SS$ NORMAL The service completed successfully.

SS$ BADPARAM One of more arguments has an invalid value.

SS$_ACCVIO The service cannot access the locations specified
by one or more arguments.

SS$_NOPRIV Insufficient privilege for attempted operation.

SS$_ NOSUCHTHREAD The specified kernel thread does not exist.

SS$ NONEXPR The specified process does not exist, or an invalid
process identification was specified.

SS$_IVLOGNAM The process name string has a length of 0 or has
more than 15 characters.

SS$_CPUCAP No CPU can run the specified process with new
affinities.

SS$_INSFARG Fewer than the required number of arguments

were specified or no operation was specified.

System Service Descriptions
$PROCESS_CAPABILITIES (Alpha and 164)

$PROCESS_CAPABILITIES (Alpha and 164)
Modify Process User Capabilities

On Alpha and 164 systems, allows modification of the user capability set for a
specified kernel thread, or for the global user capability process default.

This service accepts 64-bit addresses.

Format

SYS$PROCESS_CAPABILITIES [pidadr] [,prcnam] [,select_mask] [,modify_mask]
[,prev_mask] [,flags]

C Prototype

int sys$process_capabilities (unsigned int *pidadr, void *prcnam, struct _generic_64
*select_mask, struct _generic_64 *modify_mask, struct
_generic_64 *prev_mask, struct _generic_64 *flags);

Arguments
pidadr
OpenVMS usage: process_id
type: longword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Process identification (PID) of a kernel thread whose user capability mask is to
be modified or returned. The pidadr argument is the 32- or 64-bit address of a
longword that contains the PID.

Process selection is made through a combination of the pidadr and prcnam
arguments. If neither are specified or if both have a zero value, the service
operations are made to the user capability mask of the current kernel thread of
the calling process. The pidadr argument takes precedence over the prenam
argument where both are supplied in the service call.

If the constant CAP$M_FLAG_DEFAULT_ONLY is specified in flags, then the
user portion of the default process user capability mask is modified or returned
instead, regardless of the values specified in pidadr.

prcnam

OpenVMS usage: process_name

type: character-coded text string

access: read only

mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Process name of the process whose user capability mask is to be modified or
returned. The precnam argument is the 32- or 64-bit address of a character
string descriptor pointing to the process name string. A process can be identified
with a 1- to 15-character string. The service operations are made to the user
capability mask of the initial thread of the specified process.

You can use the precnam argument only if the process identified by the descriptor
has the same UIC group number as the calling process. To obtain information
about processes in other groups, the pidadr argument must be used.

SYS2-249

System Service Descriptions
$PROCESS_CAPABILITIES (Alpha and 164)

SYS2-250

If pidadr and prenam are both specified, then prenam is ignored. If neither
argument is specified, then the context of the current kernel thread of the calling
process is modified or returned.

select_mask

OpenVMS usage: mask_quadword

type: quadword (unsigned)
access: read only

mechanism: by 32- or 64-bit reference

Mask specifying which bits of the specified process’ user capability mask are to be
modified. The select_mask argument is the 32- or 64-bit address of a quadword
bit vector wherein a bit, when set, specifies that the corresponding user capability
is to be modified.

The individual user capability bits in select_mask can be referenced by their
symbolic bit constant names, CAP$M_USER1 through CAP$M_USER16. These
constants (not zero-relative) specify the position in the mask quadword that
corresponds to the bit name. Multiple capabilities can be selected by ORing
together the appropriate bits.

Alternatively, the constant CAP$K_ALL_USER, when specified as the select_
mask argument, selects all user capabilities.

modify_mask
OpenVMS usage: mask_quadword

type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Mask specifying the settings for those capabilities selected in the select_
mask argument. The modify mask argument is the 32- or 64-bit address of
a quadword bit vector wherein a bit, when set, specifies that the corresponding
user capability is to be added to the specified kernel thread; when clear, the
corresponding user capability is to be removed.

The symbolic bit constants CAP$M_USER1 through CAP$M_USER16 can be used
to modify the appropriate bit position in modify_mask. Multiple capabilities can
be modified by ORing together the appropriate bits.

To add a specific user capability to a kernel thread, that bit position must be set
in both select_mask and modify_mask. To remove a specific user capability
from a kernel thread, that bit position must be set in select_mask and clear in
modify_mask.

The symbolic constant CAP$K_ALL_USER_ADD, when specified in modify_
mask, indicates that all capabilities specified in select_mask are to be added
to the appropriate capability set. The symbolic constant CAP$K_ALL_USER_
REMOVE indicates that all specified capabilities are to be removed from the set.

prev_mask

OpenVMS usage: mask_quadword

type: quadword (unsigned)
access: write only

mechanism: by 32- or 64-bit reference

Previous user capability mask for the specified process or thread before execution
of this call to $PROCESS_CAPABILITIES. The prev_mask argument is the 32-
or 64-bit address of a quadword into which $PROCESS_CAPABILITIES writes

System Service Descriptions
$PROCESS_CAPABILITIES (Alpha and 164)

the previous bit mask. If CAP$M_FLAG_DEFAULT_ONLY is set in the flags
argument, then prev_mask will contain the user portion of the global default
capability mask.

flags

OpenVMS usage: mask_quadword

type: quadword (unsigned)
access: read only

mechanism: by 32- or 64-bit reference

Options selected for the user capability modification. The flags argument is

a quadword bit vector wherein a bit corresponds to an option. Only the bits
specified below are used; the remainder of the quadword bits are reserved and
must be zero.

Each option (bit) has a symbolic name, defined by the $CAPDEF macro. The
flags argument is constructed by performing a logical OR operation using the
symbolic names of each desired option.

The following table describes the symbolic name of each option:

Symbolic Name Description

CAP$M_FLAG DEFAULT ONLY Indicates that the specified operations
are to be performed on the global context
cell instead of on a specific kernel thread.
This bit supersedes any individual kernel
thread specified in pidadr or prcnam.
Specifying this bit constant applies the
service operations to the capabilities for
all newly created processes.

CAP$M_FLAG PERMANENT Indicates whether to modify the
permanent user process capabilities in
addition to the current image copy. If
CAP$M_FLAG_PERMANENT is set,
then both the permanent and current
user process capabilities are modified. If
this bit is clear or flags is unspecified,
then just the current image process
capabilities are modified.

This bit also determines which of the
capability masks are returned in prev_
mask. If set, the permanent mask, used
to reinitialize the current set at image
rundown, is returned. If the bit is clear
or the flags argument is not specified, the
current running mask is returned.

SYS2-251

System Service Descriptions
$PROCESS_CAPABILITIES (Alpha and 164)

Description

SYS2-252

Symbolic Name Description

CAP$M_FLAG _CHECK_CPU Determines whether the kernel thread
can be left in a nonrunnable state under
some circumstances. No operation of
this service will allow a transition from
runnable to blocked state; however, if
the kernel thread is already at a blocked
state, this bit determines whether the
result of the operation must leave it
runnable. If CAP$M_FLAG_CHECK_
CPU is set or flags is unspecified, the
kernel thread will be checked to ensure it
can safely run on one of the CPUs in the
active set; otherwise, any state operations
on kernel threads already in a blocked
state will be allowed.

CAP$M_PURGE_WS_IF_NEW_RAD Causes the working set of the process
to be purged if the choice of capability
results in a change to the home RAD of
the process.

The Modify Process User Capabilities system service, based on the arguments
select_mask and modify_mask, adds or removes user capabilities for the
specified kernel thread. If specified, the previous capability mask is returned in
prev_mask. With the modify_mask argument, multiple user capabilities for a
kernel thread can be added or removed in the same system service call.

Either modify_mask or prev_mask, or both, must be specified as arguments. If
modify_mask is specified, then select_mask must be specified as an argument.
If modify_mask is not specified, then no modifications are made to the user
capability mask for the specified kernel thread. In this case, select_mask is
ignored. If prev_mask is not specified, then no previous mask is returned.

No service changes will be allowed if the specified kernel thread will transition
from a runnable to blocked state. The CAP$M_FLAG _CHECK CPU bit in the
flags argument requires that the final thread state be runnable regardless of
previous state; otherwise, interim changes that maintain a blocked state are
allowed if the thread is already in one.

If the symbolic bit constant CAP$M_FLAG_DEFAULT_ONLY is set in the flags
argument, the user capability modifications or the mask read requests are made
only to the global initialization cell regardless of what process selections values

are specified in the pidadr and prenam arguments.

Required Access or Privileges

The caller must have the ALTPRI privilege to call SYS$PROCESS_
CAPABILITIES to modify its own user capability mask. To modify another
process’ user capability mask, the caller must have:

ALTPRI—To modify any process with a matching UIC
ALTPRI and GROUP—To modify any process in the same UIC group
ALTPRI and WORLD—To modify any process

System Service Descriptions

$PROCESS_CAPABILITIES (Alpha and 164)

To call SYS$PROCESS_CAPABILITIES simply to retrieve the specific process or
global mask, the caller need only have the following privileges:

None—To retrieve the state of itself or any process with a matching UIC
GROUP—To retrieve the state of any process in the same UIC group
WORLD—To retrieve the state of any process

Related Services
$CPU_CAPABILITIES

Condition Values Returned

SS$_NORMAL
SS$ BADPARAM
SS$_ACCVIO

SS$_NOSUCHTHREAD
SS$_NONEXPR

SS$_IVLOGNAM

SS$_NOPRIV
SS$_CPUCAP

SS$_INSFARG

The service completed successfully.
One of more arguments has an invalid value.

The service cannot access the locations specified
by one or more arguments.

The specified kernel thread does not exist.

The specified process does not exist, or an invalid
process identification was specified.

The process name string has a length of 0 or
more than 15 characters.

Insufficient privilege for attempted operation.

No CPU can run the specified process with new
capabilities.

Fewer than the required number of arguments
were specified or no operation was specified.

SYS2-253

System Service Descriptions
$PROCESS_SCAN

SPROCESS SCAN
Process Scan

Creates and initializes a process context that is used by $GETJPI to scan
processes on the local system or across the nodes in an OpenVMS Cluster system.

On Alpha and 164 systems, this service accepts 64-bit addresses.

Format
SYS$PROCESS_SCAN pidctx [,itmlst]

C Prototype

int sys$process_scan (unsigned int *pidctx, void *itmlst);

Arguments
pidctx
OpenVMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by 32- or 64-bit reference (Alpha and 164); by 32-bit reference

(VAX)

Context value supplied by $PROCESS_SCAN to be used as the pidadr argument
of $GETJPI. The pidetx argument is the 32-bit address (on VAX systems) or the
32- or 64-bit address (on Alpha and 164 systems) of a longword that is to receive
the process context longword. This longword normally contains 0 or a previous
context. If it contains a previous context, the old context is deleted. If it contains
a value other than 0 or a previous context, the old value is ignored.

itmlist

OpenVMS usage: 32-bit item_list_3 or 64-bit item_list_64b

type: longword (unsigned) for 32-bit; quadword (unsigned) for 64-bit
access: read only

mechanism: by 32- or 64-bit reference (Alpha and 164); by 32-bit reference

(VAX)
Item list specifying selection criteria to be used by the scan or to control the scan.

The itmlst argument is the 32-bit address (on VAX systems) or the 32- or 64-bit
address (on Alpha and 164 systems) of a list of item descriptors, each of which
describes one selection criterion or control option. Within each selection criterion
you can include several item entries. An item list in 32-bit format is terminated
by a longword of 0; an item list in 64-bit format is terminated by a quadword of
0. All items in an item list must be of the same format—either 32-bit or 64-bit.

The information in the item list is passed to the item descriptor in one of two
ways. If the item descriptor can always hold the actual value of the selection
criterion, the value is placed in the second longword of the item descriptor and
the buffer length is specified as 0. If the item descriptor points to the actual
value of the selection criterion, the address of the value is placed in the second
longword of the item descriptor and you must specify the buffer length for the
selection criterion. Each item code description specifies whether the information
is passed by value or by reference.

SYS2-254

System Service Descriptions
$PROCESS_SCAN

The following diagram depicts the format of a 32-bit item descriptor that passes
the selection criterion as a value:

31 15 0
Item code 0

Item value

Item-specific flags

ZK-0949A-GE

The following diagram depicts the format of a 64-bit item descriptor that passes
the selection criterion as a value:

31 15 0
Item code (MBO)
(MBMO)

Item value

ltem-specific flags

ZK-8924A-GE

The following diagram depicts the format of a 32-bit item descriptor that passes
the selection criterion by reference:

31 15 0
ltem code Buffer length

Buffer address

Item—specific flags

ZK-0948A-GE

The following diagram depicts the format of a 64-bit item descriptor that passes
the selection criterion by reference:
31 15 0
Item code (MBO)
(MBMO)

Buffer length

Buffer address

Item-specific flags

ZK-8925A-GE

The following table defines the item descriptor fields:

SYS2-255

System Service Descriptions
$PROCESS_SCAN

Descriptor Field

Definition

Buffer length

Item code

Item value

Buffer address

SYS2-256

Buffer length is specified in a different way for the
two types of item descriptors.

Character string or A word containing a

reference descriptors: user-supplied integer
specifying the length
(in bytes) of the buffer
from which $PROCESS
SCAN retrieves a selection
criterion. The length of the
buffer needed depends on
the item code specified in
the item descriptor.

Immediate value The length of the buffer is
descriptors: always specified as 0.

A word containing the selection criterion. These
codes are defined by the $PSCANDEF macro.

Each item code is described after this list of
descriptor fields.

A longword containing the actual value of the
selection criterion. When you specify an item code
that is passed by value, $PROCESS_SCAN searches
for the actual value contained in the item list.

See the description of the buffer address field for
information about item codes that are passed by
reference.

A longword containing the user-supplied address

of the buffer from which $PROCESS SCAN
retrieves information needed by the scan. When
you specify an item code that is passed by reference,
$PROCESS_SCAN uses the address as a pointer

to the actual value. See the description of the item
value field for information about item codes that are
passed by value.

Item Codes

System Service Descriptions
$PROCESS_SCAN

Descriptor Field Definition

Item-specific flags A longword that contains flags to help control
selection information. Item-specific flags, for
example EQL or NEQ, are used to specify how the
value specified in the item descriptor is compared to
the process value.

These flags are defined by the $PSCANDEF macro.
Some flags are common to multiple item codes;
other flags are specific to an individual item code.
See the description of each item code to determine
which flags are used.

For item codes that describe bit masks or character
strings, these flags control how the bit mask or
character string is compared with that in the
process. By default, they are compared for equality.
For item codes that describe integers, these flags
specify an arithmetic comparison of an integer
item with the process attribute. For example, a
PSCAN$M_GTR selection specifying the value 4
for the item code PSCAN$_PRIB finds only the
processes with a base priority above 4. Without one
of these flags, the comparison is for equality.

MBO Must be 1.
MBMO Must be —1.

PSCANS$_ACCOUNT
When you specify PSCAN$_ACCOUNT, $GETJPI returns information about
processes that match the account field.

If the string supplied in the item descriptor is shorter than the account field,
the string is blank-padded for the comparison unless the item-specific flag
PSCAN$M_PREFIX_MATCH is present.

Because the information is a character string, the selection value is passed
by reference. The length of the buffer is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

Although the current length of the account field is 8 bytes, the PSCAN$_
ACCOUNT buffer can be up to 64 bytes in length. If the buffer length is 0 or
greater than 64, the SS$_IVBUFLEN error is returned.

PSCANS$_AUTHPRI
When you specify PSCAN$_AUTHPRI, $GETJPI returns information about
processes that match the authorized base priority field.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-5.

SYS2-257

System Service Descriptions
$PROCESS_SCAN

SYS2-258

PSCANS$_CURPRIV

When you specify PSCAN$_CURPRIV, $GETJPI returns information about
processes that match the current privilege field. Privilege bits are defined by the
$PRVDEF macro.

Because the bit mask information is too long to be passed by value, the
information is passed by reference. The privilege buffer must be exactly 8
bytes, otherwise the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS2-5.

PSCAN$_GETJPI_BUFFER_SIZE

When you specify PSCAN$_GETJPI_BUFFER_SIZE, you determine the size of a
buffer to be used by $GETJPI to process multiple requests in a single message.
Using this item code can greatly improve the performance of scans on remote
nodes, because fewer messages are needed. This item code is ignored during
scans on the local node.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0. The
buffer is allocated by $PROCESS_SCAN; you do not have to allocate a buffer.

If you use PSCAN$_GETJPI_BUFFER_SIZE with $PROCESS_SCAN, all calls to
$GETJPI using the context established by $PROCESS_SCAN must request the
same item code information. Because $GETJPI locates information for more than
one process at a time, it is not possible to change the item codes or the length of
the buffers used in the $GETJPI item list. SGETJPI checks each call and returns
the error SS$_BADPARAM if an attempt is made to change the item list during
a buffered process scan; however, the buffer addresses can be changed between
$GETJPI calls.

Because the locating and buffering of information by $GETJPI is transparent to a
calling program, you are not required to change the way $GETJPI is called when
you use this item code.

The $GETJPI buffer uses the process quota BYTLM. If the buffer is too large
for the process quota, $GETJPI (not $PROCESS_SCAN) returns the error SS$_
EXBYTLM. If the buffer specified is not large enough to contain the data for at
least one process, $GETJPI returns the error SS$_BADPARAM.

No item-specific flags are used with PSCAN$_GETJPI_BUFFER_SIZE.

PSCANS$_GRP
When you specify PSCAN$_GRP, $GETJPI returns information about processes
that match the UIC group number.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. Because the value of the group number is a
word, the high-order word of the value is ignored. The buffer length must be
specified as 0.

The flags that can be used with this item code are listed in Table SYS2-5.

PSCAN$_HW_MODEL
When you specify PSCAN$_HW_MODEL, $GETJPI returns information about
processes that match the specified CPU hardware model number.

The hardware model number is an integer, such as VAX$K_V8840. The VAX$
symbols are defined by the $VAXDEF macro.

System Service Descriptions
$PROCESS_SCAN

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-5.

PSCANS$_HW_NAME

When you specify PSCAN$_HW_NAME, $GETJPI returns information about
processes that match the specified CPU hardware name, such as VAX-11/780,
VAX 8800, or VAXstation II/GPX.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

The PSCAN$_HW_NAME buffer can be up to 128 bytes in length. If the buffer
length is 0 or greater than 128, the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS2-5.

PSCAN$_JOBPRCCNT

When you specify PSCAN$_JOBPRCCNT, $GETJPI returns information
about processes that match the subprocess count for the job (the count of all
subprocesses in the job tree).

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-5.
PSCANS$_JOBTYPE

When you specify PSCAN$_JOBTYPE, $GETJPI returns information about
processes that match the job type. The job type values include the following:

Value Description

JPI$K LOCAL Local interactive process

JPI$K DIALUP Interactive process accessed by a modem line
JPISK_REMOTE Interactive process accessed by using SET HOST
JPI$K _BATCH Batch process

JPI$K NETWORK Noninteractive network process

JPI$K DETACHED Detached process

These values are defined by the $JPIDEF macro. Note that values checked by
PSCAN$_JOBTYPE are similar to PSCAN$ _MODE values.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-5.

PSCAN$_KT_COUNT
When you specify PSCAN$_KT COUNT, $PROCESS_SCAN uses the current
count of kernel threads for the process as a selection criteria.

The flags that can be used with this item code are listed in Table SYS2-5.

SYS2-259

System Service Descriptions
$PROCESS_SCAN

SYS2-260

PSCAN$_MASTER_PID

When you specify PSCAN$_MASTER_PID, $GETJPI returns information about
processes that are descendants of the specified parent process. The master
process is the first process created in the job tree. The PSCAN$_OWNER item is
similar, but the owner process is the process that created the target process (the
owner process might itself be a subprocess). Although all jobs in a job tree must
have the same master, they can have different owners.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-5.

PSCANS$_MEM
When you specify PSCAN$_MEM, $GETJPI returns information about processes
that match the UIC member number.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. Because the value of the member number is a
word, the high-order word of the value is ignored. The buffer length must be
specified as 0.

The flags that can be used with this item code are listed in Table SYS2-5.
PSCAN$_MODE

When you specify PSCAN$_MODE, $GETJPI returns information about processes
that match the specified mode. Mode values include the following:

Value Description
JPISK_INTERACTIVE Interactive process
JPI$K_BATCH Batch job

JPISK NETWORK Noninteractive network job
JPI$K OTHER Detached and other process

These values are defined by the $JPIDEF macro. Note that values checked by
PSCAN$_MODE are similar to PSCAN$ JOBTYPE values.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-5.

PSCANS$_MULTITHREAD
When you specify PSCAN$_MULTITHREAD, $PROCESS_SCAN uses the
maximum count of kernel threads for the process as a selection criteria.

The flags that can be used with this item code are listed in Table SYS2-5.

PSCAN$_NODE_CSID

When you specify PSCAN$_NODE_CSID, $GETJPI returns information about
processes on the specified nodes. To scan all nodes in an OpenVMS Cluster
system, you specify a CSID of 0 and the item-specific flag PSCAN$M_NEQ.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-5.

System Service Descriptions
$PROCESS_SCAN

PSCAN$_NODENAME
When you specify PSCAN$_NODENAME, $GETJPI returns information about
processes that match the specified node names.

To scan all of the nodes in an OpenVMS Cluster system, specify the node name
using an asterisk wildcard (*) and the PSCAN$M_WILDCARD item-specific flag.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

Although the current length of the node name is 6 bytes, the PSCAN$_
NODENAME buffer can be up to 64 bytes in length. If the buffer length is 0
or greater than 64, the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS2-5.

PSCANS$_OWNER

When you specify PSCAN$_OWNER, $GETJPI returns information about
processes that are immediate descendants of the specified process. The PSCAN$_
MASTER_PID item is similar, but the owner process is the process that created
the target process (the owner process might itself be a subprocess). Although all
jobs in a job tree must have the same master, they can have different owners.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-5.

PSCANS$_PRCCNT

When you specify PSCAN$_PRCCNT, $GETJPI returns information about
processes that match the subprocess count (the count of all immediate
descendants of a given process). The PSCAN$_JOBPRCCNT item code is similar,
except that JOBPRCCNT is the count of all subprocesses in a job.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-5.

PSCAN$_PRCNAM
When you specify PSCAN$_PRCNAM, $GETJPI returns information about
processes that match the specified process names.

The process name string is blank-padded for the comparison unless the item-
specific flag PSCAN$M_PREFIX_MATCH is present.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

Although the current length of the process name field is 15 bytes, the PSCAN$_
PRCNAM buffer can be up to 64 bytes in length. If the buffer length is 0 or
greater than 64, the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS2-5.

PSCANS$_PRI

When you specify PSCAN$_PRI, $GETJPI returns information about processes
that match current priority. Note that the current priority of a process can be
temporarily increased as a result of system events such as the completion of I/0.

SYS2-261

System Service Descriptions
$PROCESS_SCAN

SYS2-262

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-5.

PSCANS_PRIB
When you specify PSCAN$_PRIB, $GETJPI returns information about processes
that match base priority.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-5.

PSCANS_STATE

When you specify PSCAN$_STATE, $GETJPI returns information about processes
that match the specified process state. State values, for example SCH$C_COM
and SCH$C_PFW, are defined by the $STATEDEF macro.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-5.

PSCAN$_STS

When you specify PSCAN$_STS, $GETJPI returns information that matches the
current status mask. Without any item-specific flags, the match is for a process
mask that is equal to the pattern. Status bits, for example PCB$V_ASTPEN or
PCB$V_PSWAPM, are defined by the $PCBDEF macro.

This bit mask item code uses an immediate value descriptor; the selection value
is placed in the second longword of the item descriptor. The buffer length must
be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-5.

PSCAN$_TERMINAL

When you specify PSCAN$_TERMINAL, $GETJPI returns information that
matches the specified terminal names. The terminal name string is blank-padded
for the comparison unless the item-specific lag PSCAN$M_PREFIX_MATCH is
present.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

Although the current length of the terminal name field is 8 bytes, the PSCAN$_
TERMINAL buffer can be up to 64 bytes in length. If the buffer length is 0 or
greater than 64, the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS2-5.

PSCANS$_UIC

When you specify PSCAN$_UIC, $GETJPI returns information about processes
that match the UIC identifier. To convert an alphanumeric identifier name to the
internal identifier, use the $ASCTOID system service before calling $PROCESS_
SCAN.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

System Service Descriptions

$PROCESS_SCAN

The flags that can be used with this item code are listed in Table SYS2-5.

PSCAN$_USERNAME
When you specify PSCAN$_USERNAME, $GETJPI returns information about

processes that match the specified user name.

The user name string is blank-padded for the comparison unless the item-specific
flag PSCAN$M_PREFIX_MATCH is present.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

Although the current length of the user name field is 12 bytes, the PSCANS$_
USERNAME buffer can be up to 64 bytes in length. If the buffer length is 0 or
greater than 64, the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS2-5.

Item-Specific Flags

Table SYS2-5 lists the flags and the item codes that can be used together. The
flags are described in the section following the table:

Table SYS2-5 Flags Used with $PROCESS_SCAN

Iltem-Specific Flag

Description

Common to the Following
$PROCESS_SCAN Item Codes

PSCAN$M_BIT _ALL
PSCAN$M_BIT_ANY
PSCAN$M_CASE_

BLIND
PSCAN$M_EQL
PSCAN$M_GEQ

PSCAN$M_GTR
PSCAN$M_LEQ

PSCAN$M_LSS

PSCAN$M_NEQ
PSCAN$M_OR

PSCAN$M_PREFIX
MATCH

All bits set in pattern set in target
Any bit set in pattern set in target

Match without regard to case of
letters

Match value exactly (the default)

Match if value is greater than or
equal to

Match if value is greater than

Match if value is less than or equal
to

Match if value is less than

Match if value is not equal
Match this value or the next value

Match on leading substring

_CURPRIV
_STS
_ACCOUNT

All except
_BUFFER_SIZE

_AUTHPRI

_GRP
_JOBPRCCNT

_PRI
_PRIB

All except
_BUFFER_SIZE

All except
_BUFFER_SIZE

_HW_NAME

(continued on next page)

SYS2-263

System Service Descriptions
$PROCESS_SCAN

Table SYS2-5 (Cont.) Flags Used with $SPROCESS_SCAN

Common to the Following

Item-Specific Flag Description $PROCESS_SCAN Item Codes
PSCANS$M Match a wildcard pattern _NODENAME
WILDCARD _PRCNAM
_TERMINAL
_USERNAME

SYS2-264

PSCANS$SM_BIT_ALL

If the PSCAN$M_BIT_ALL flag is used, all bits set in the pattern mask specified
by the item descriptor must also be set in the process mask. Other bits in the
process mask can also be set.

For item codes that describe bit masks, such as privilege masks and status words,
this flag controls how the pattern bit mask specified by the item descriptor is
compared with that in the process. By default, the bit masks are compared for
equality.

The PSCAN$M_BIT _ALL flag is used only with bit masks.

PSCANSM_BIT_ANY
If the PSCAN$M_BIT_ANY flag is used, a match occurs if any bit in the pattern
mask is also set in the process mask.

For item codes that describe bit masks, such as privilege masks and status words,
this flag controls how the pattern bit mask specified by the item descriptor is
compared with that in the process. By default, the bit masks are compared for
equality.

The PSCAN$M_BIT_ANY flag is used only with bit masks.

PSCANSM_CASE_BLIND

When you specify PSCAN$M_CASE_BLIND to compare the character string
specified by the item descriptor with the character string value from the process,
$PROCESS_SCAN does not distinguish between uppercase and lowercase letters.

The PSCAN$M_CASE_BLIND flag is used only with character-string item codes.
The PSCAN$M_CASE_BLIND flag can be specified with either the PSCAN$M_
PREFIX_MATCH flag or the PSCAN$M_WILDCARD flag.

PSCANSM_EQL

When you specify PSCAN$M_EQL, $PROCESS_SCAN compares the value
specified by the item descriptor with the value from the process to see if there is
an exact match.

PSCAN$M_EQL and PSCAN$M_NEQ are used with bit masks, character strings,
and integers to control how the item is interpreted. Only one of the flags can be
specified; if more than one of these flags is used, the SS$_BADPARAM error is
returned. If you want to specify that bits not set in the pattern mask must not be
set in the process mask, use PSCAN$M_EQL.

PSCANSM_GEQ

When you specify PSCAN$M_GEQ, $PROCESS_SCAN selects a process if the
value from the process is greater than or equal to the value specified by the item
descriptor.

System Service Descriptions
$PROCESS_SCAN

PSCAN$M_GEQ, PSCAN$M_GTR, PSCAN$M_LEQ, and PSCAN$M_LSS are
used with integer item codes only. Only one of these four flags can be specified; if
more than one of these flags is used, the SS$_ BADPARAM error is returned.

PSCANSM_GTR
When you specify PSCAN$M_GTR, $PROCESS_SCAN selects a process if the
value from the process is greater than the value specified by the item descriptor.

PSCAN$M_GEQ, PSCAN$M_GTR, PSCAN$M_LEQ, and PSCAN$M_LSS are
used with integer item codes only. Only one of these four flags can be specified; if
more than one of these flags is used, the SS$_BADPARAM error is returned.

PSCANSM_LEQ

When you specify PSCAN$M_LEQ, $PROCESS_SCAN selects a process if the
value from the process is less than or equal to the value specified by the item
descriptor.

PSCAN$M_GEQ, PSCAN$M_GTR, PSCAN$M_LEQ, and PSCAN$M_LSS are
used with integer item codes only. Only one of these four flags can be specified; if
more than one of these flags is used, the SS$_BADPARAM error is returned.

PSCANSM_LSS
When you specify PSCAN$M_LSS, $PROCESS_SCAN selects a process if the
value from the process is less than the value specified by the item descriptor.

PSCAN$M_GEQ, PSCAN$M_GTR, PSCAN$M_LEQ, and PSCAN$M_LSS are
used with integer item codes only. Only one of these four flags can be specified; if
more than one of these flags is used, the SS$_BADPARAM error is returned.

PSCANS$SM_NEQ
When you specify PSCAN$M_NEQ, $PROCESS_SCAN selects a process if the
value from the process is not equal to the value specified by the item descriptor.

PSCAN$M_EQL and PSCAN$M_NEQ are used with bit masks, character strings,
and integers to control how the item is interpreted. Only one of the flags can be
specified; if more than one of these flags is used, the SS$_BADPARAM error is
returned.

PSCANSM_OR

When you specify PSCAN$M_OR, $PROCESS_SCAN selects processes whose
values match the current item descriptor or the next item descriptor. The next
item descriptor must have the same item code as the item descriptor with the
PSCAN$M_OR flag. Multiple items are chained together; all except the last item
descriptor must have the PSCAN$M_OR flag.

The PSCAN$M_OR flag can be specified with any other flag and can be used
with bit masks, character strings, and integers. If the PSCAN$M_OR flag is used
between different item codes, or if it is missing between identical item codes, the
SS$ BADPARAM error is returned.

PSCANS$M_PREFIX_MATCH

When you specify PSCAN$M_PREFIX_MATCH, $PROCESS_SCAN compares the
character string specified in the item descriptor to the leading characters of the
requested process value.

SYS2-265

System Service Descriptions
$PROCESS_SCAN

Description

SYS2-266

For example, to find all process names that start with the letters AB, use the
string AB with the PSCAN$M_PREFIX_MATCH flag. If you do not specify
the PSCAN$M_PREFIX_MATCH flag, the search looks for a process with the
2-character process name AB.

The PSCAN$M_PREFIX_MATCH flag also allows either the PSCAN$M_EQL
or the PSCAN$M_NEQ flag to be specified. If you specify PSCAN$M_NEQ, the
service matches those names that do not begin with the specified character string.

The PSCAN$M_PREFIX_MATCH flag is used only with character string item
codes. The PSCAN$M_PREFIX_MATCH flag cannot be specified with the
PSCAN$M_WILDCARD flag; if both of these flags are used, the SS$_BADPARAM
error is returned.

PSCAN$M_WILDCARD

When you specify PSCAN$M_WILDCARD, the character string specified by

the item descriptor is assumed to be a wildcard pattern. Acceptable wildcard
characters are the asterisk (*), which allows the match to substitute any number
of character in place of the asterisk, and the percent sign (%), which allows the
match to substitute any one character in place of the percent sign. For example,
if you want to search for all process names that begin with the letter A and

end with the string ER, use the string A*ER with the PSCAN$M_WILDCARD
flag. If the PSCAN$M_WILDCARD flag is not specified, the search looks for the
4-character process name A*ER.

The PSCAN$M_WILDCARD is used only with character string item codes. The
PSCAN$M_WILDCARD flag cannot be specified with the PSCAN$M_PREFIX _
MATCH flag; if both of these flags are used, the SS$_ BADPARAM error is
returned. The PSCAN$M_NEQ flag can be used with PSCAN$M_WILDCARD to
exclude values during a wildcard search.

The following restrictions apply to the flags above:

e Only one of the flags PSCAN$M_EQL, PSCAN$M_NEQ, PSCAN$M_BIT_
ALL, PSCAN$M_BIT_ANY can be specified.

e PSCAN$M_CASE_BLIND item-specific flag also allows either the PSCAN$M _
EQL or the PSCAN$M_NEQ flag to be specified.

e Only one of the flags PSCAN$M_EQL and PSCAN$M_WILD_CARD can be
specified.

The Process Scan system service creates and initializes a process context that is
used by $GETJPI to scan processes on the local system or across the nodes in
an OpenVMS Cluster system. An item list is used to specify selection criteria to
obtain information about specific processes, for example, all processes owned by
one user or all batch processes.

The output of the $PROCESS_SCAN service is a process context longword
named pidetx. This process context is then provided to $GETJPI as the pidadr
argument. The process context provided by $PROCESS_SCAN enables $GETJPI
to search for processes across the nodes in an OpenVMS Cluster system and to
select processes that match certain selection criteria.

System Service Descriptions
$PROCESS_SCAN

The process context consumes process dynamic memory. This memory is
deallocated when the end of the context is reached. For example, when the
$GETJPI service returns SS$ NOMOREPROC or when $PROCESS_SCAN is
called again with the same pidetx longword, the dynamic memory is deallocated.
If you anticipate that a scan might be interrupted before it runs out of processes,
$PROCESS_SCAN should be called a second time (without an itmlst argument)
to release the memory. Dynamic memory is automatically released when the
current image terminates.

$PROCESS_SCAN copies the item list and user buffers to the allocated dynamic
memory. This means that the item lists and user buffers can be deallocated or
reused immediately; they are not referenced during the calls to $§GETJPI.

The item codes referenced by $PROCESS_SCAN are found in data structures
that are always resident in the system, primarily the process control block (PCB)
and the job information block (JIB). A scan of processes never forces a process
that is swapped out of memory to be brought into memory to read nonresident
information.

See the $GETJPI service for a C program example that uses the $PROCESS_
SCAN service.

Required Access or Privileges
None

Required Quota
See the description for the PSCAN$_GETJPI_BUFFER_SIZE item.

Related Services

$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJPIW, $HIBER, $RESUME, $SETPRI, $SETPRN, $SETPRYV, $SETRWM,
$SUSPND, $WAKE

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The pidctx argument cannot be written by the
caller; the item list cannot be read by the caller;
or a buffer for a reference descriptor cannot be
read.

SS$ BADPARAM The item list contains an invalid item identifier,
or an invalid combination of item-specific flags is
present. Or, an item list containing both 32-bit
and 64-bit item list entries was found.

SS$_IVBUFLEN The buffer length field is invalid. For immediate
value descriptors, the buffer length must be
0. For reference descriptors, the buffer length
cannot be 0 or longer than the maximum for the
specified item code. This error is also returned if
the total length of the item list plus the length of
all of the buffer fields is too large to process.

SYS2-267

System Service Descriptions
$PROCESS_SCAN

SS$_IVSSRQ The pidctx argument was not supplied, or the
item list is improperly formed (for example,
multiple occurrences of a given item code were
interspersed with other item codes).

SYS2-268

System Service Descriptions
$PURGWS

$PURGWS
Purge Working Set

Removes a specified range of pages from the current working set of the calling
process to make room for pages required by a new program segment.

Format
SYS$PURGWS inadr

C Prototype

int sys$purgws (struct _va_range *inadr);

Argument
inadr
OpenVMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference
Starting and ending virtual addresses of the range of pages to be purged. The
inadr argument is the address of a 2-longword array containing, in order, the
starting and ending process virtual addresses. The addresses are adjusted up
or down to fall on CPU-specific page boundaries. Only the virtual page number
portion of each virtual address is used; the low-order byte-within-page bits are
ignored.

Description

The Purge Working Set service removes a specified range of pages from the
current working set of the calling process to make room for pages required by
a new program segment; however, the Adjust Working Set Limit (SADJWSL)
service is the preferred mechanism for controlling a process’s use of physical
memory resources.

The $PURGWS service locates pages within the specified range and removes
them if they are in the working set.

If the starting and ending virtual addresses are the same, only that single page is
purged.

To purge the entire working set, specify a range of pages from 0 through
TFFFFFFF; in this case, the image continues to execute and pages are faulted
back into the working set as