cryptlib

The Need for Security

The information age has seen the development of el ectronic pathways which
carry vast amounts of valuable commercial, scientific, and educational
information between financial institutions, companies, individuals, and
government organisations. Unfortunately the unprecedented levels of access
provided by systems like the Internet also expose this data to breaches of
confidentiality, disruption of service, and outright theft. Asaresult, thereisan
enormous (and still growing) demand for the means to secure these online
transactions. One report by the Computer Systems Policy Project (a consortium
of virtually every large US computer company, including Apple, AT&T, Compaq,
Digital, IBM, Silicon Graphics, Sun, and Unisys) estimates that the potential
revenue arising from these security requirements in the US alone could be as
much as US$30-60 billion by the year 2000, and the potential exposure to global
users from alack of this security is projected to reach between US$320 and 640
billion by the year 2000.

Unfortunately the security systems required to protect data are generally extremely

difficult to design and implement, and even when available tend to require

considerable understanding of the underlying principlesin order to be used. This

has lead to a proliferation of “snake oil” products which offer only illusionary
security, or to organisations holding back from deploying online information
systems because the means to secure them aren’t readily available, or (in the case
of US products) because they employ weak, easily broken security which is
unacceptable to users.

The cryptlib security toolkit is one answer to this problem. A complete
description of the capabilities provided by cryptlib is given below.

cryptlib Overview

cryptlib is a powerful security toolkit which allows even inexperienced crypto
programmers to easily add encryption and authentication security services to their
software. The high-level interface provides anyone with the ability to add
internationally recognised strong encryption and authentication capabilities to an
application in as little as half an hour, without needing to know any of the low-
level details which make the encryption or authentication work. Because of this,
cryptlib dramatically reduces the cost involved in adding security to new or
existing applications.

cryptlib provides a transparent and consistent interface to a number of widely-
used security services and algorithms which are accessed through a
straightforward, standardised interface with parameters such as the algorithm and
key size being selectable by the user. Included as core components are
implementations of the most popular encryption and authentication algorithms,
Blowfish, CAST, DES, triple DES, IDEA, RC2, RC4, RC5, Safer, Safer-SK, and
Skipjack, conventional encryption, MD2, MD4, MD5, RIPEMD-160 and SHA
hash algorithms, HMAC-MD5, HMAC-SHA, HMAC-RIPEMD-160, and MDC-2
MAC algorithms, and Diffie-Hellman, DSA, Elgamal, and RSA public-key

encryption, with elliptic-curve encryption currently under development. The
algorithm parameters are summarised below:

Algorithm Key size | Block size
Blowfish 448 64
CAST-128 128 64
DES 56 64
Triple DES 112/ 168 64
IDEA 128 64
RC2 1024 64
RC4 2048 8
RC5 832 64
Safer 128 64
Safer-SK 128 64
Skipjack 80 64
MD2 — 128
MD4 — 128
MD5 — 128
MDC-2 — 128
RIPEMD-160 — 160
SHA — 160
HMAC-MD5 128 128
HMAC-SHA 160 160
HMAC-RIPEMD-160 160 160
Diffie-Hellman 4096 —
DSA 4096 —
ElGamal 4096 —
RSA 4096 —

Unlike similar products sourced from the US, cryptlib contains no deliberately
weakened encryption or backdoors, and allows worldwide use of keys of up to
4096 bhits. In contrast products originating from the US contain either extremely
weak encryption with keys a mere 40 bits in length (sometimes referred to as “8-
cent keys” in reference to the cost of breaking one key), or, if they use longer
keys, are required to contain backdoors which allow easy access by the US
government (and, by extension, US business interests) to all data “protected” by
the encryption. This makes US products unsuited for protecting sensitive,
confidential data, and gives cryptlib an automatic advantage over all US products.

On top of the basic encryption services, cryptlib provides an extensive range of
high-level capabilities including full X.509 certificate handling with support for

all X.509v3 and IETF PKIX certificate features as well as support for SET,
Microsoft AuthentiCode, S/IMIME, and SSL client and server certificates,

handling of certification requests and CRL'’s including automated checking of
certificates against CRL’s, creation and processing of PKCS #7 certificate chains,
and a full range of certification authority (CA) functions. Alongside the certificate
handling, cryptlib provides a sophisticated key database interface which allows the
use of a wide range of key database types ranging from simple PGP keyrings

1 The DSA standard only defines key sizes from 512 to 1024 bits, cryptlib supports longer keys but
there is no extra security to be gained from using these keys.

through to commercial-grade RDBMS'’s and LDAP directories with optional SSL
protection. To complement its key management capabilities, cryptlib provides a
complete S/IMIME implementation with full-strength encryption, allowing email,
files, and EDI transactions to be authenticated with digital signatures and
encrypted in an industry-standard format.

In addition to its built-in capabilities, cryptlib can make use of the crypto
capabilities of a variety of external crypto devices such as hardware crypto
accelerators, Fortezza cards, PKCS #11 devices, and crypto smart cards. The
crypto device interface also provides a convenient general-purpose plug-in
capability for adding new functionality which will be automatically used by
cryptlib.

cryptlib features

cryptlib provides a standardised interface to a number of popular encryption
algorithms, as well as providing a high-level interface which hides most of the
implementation details and provides an operating-system-independent encoding
method which makes it easy to transfer secured data from one operating
environment to another. Although use of the high-level interface is recommended,
experienced programmers can directly access the lower-level encryption routines
for implementing custom encryption protocols or methods not directly provided

by cryptlib.

Programming Interface

The application programming interface (API) serves as an interface to a range of
plug-in encryption modules which allow encryption algorithms to be added in a
fairly transparent manner, so that adding a new algorithm or replacing an existing
software implementation with custom encryption hardware can be done without
any trouble. The standardised API allows any of the algorithms and modes
supported by cryptlib to be used with a minimum of coding effort. In addition the
easy-to-use high-level routines allow for the exchange of encrypted session keys
and data and the creation and checking of digital signatures with a minimum of
programming overhead.

cryptlib has been written to be as foolproof as possible. On initialization it
performs extensive self-testing against test data from encryption standards
documents, and the API's check each parameter and function call for errors before
any actions are performed, with error reporting down to the level of individual
parameters. In addition logical errors such as, for example, a key exchange
function being called in the wrong sequence, are checked for and identified.

Standards Compliance

All algorithms, security methods, and data encoding systems in cryptlib either
comply with one or more national and international banking and security
standards, or are implemented and tested to conform to a reference
implementation of a particular algorithm or security system. Compliance with
national and international security standards is automatically provided when
cryptlib is integrated into an application. These standards include ANSI X3.92,
ANSI X3.106, ANSI X9.9, ANSI X9.17, ANSI X9.30-1, ANSI X9.30-2, ANSI

X9.31-1, FIPS PUB 46-2 FIPS PUB 74, FIPS PUB 81, FIPS PUB 113, FIPS
PUB 180, FIPS PUB 180-1, FIPS PUB 186, ISO/IEC 8372, ISO/IEC 8731
ISO/IEC 8732, ISO/IEC 8824/ITU-T X.680, ISO/IEC 8825/ITU-T X.690,
ISO/IEC 9797, ISO/IEC 10116, |SO/IEC 10118, PKCS#1, PKCS#3, PKCS #7,
PKCS #9, PKCS #10, RFC 1319, RFC 1320, RFC 1321, RFC 1750, RFC 2104,
RFC 2144, RFC 2268, RFC 2312, RFC 2313, RFC 2314, RFC 2315, and RFC
2459. Because of the use of internationally recognised and standardised security
algorithms, cryptlib users will avoid the problems caused by homegrown,
proprietary algorithms and security techniques which often fail to provide any
protection against attackers, resulting in embarrassing bad publicity and expensive
software recalls.

Y2K Compliance

cryptlib handles all date information using the ANSI/ISO C time format which

does not suffer from Y 2K problems. Although earlier versions of the X.509

certificate format do have Y 2K problems, cryptlib transparently converts the date
encoded in certificates to and from the ANSI/ISO format, so cryptlib users will

never seethis. cryptlib’s own time/date format is not affected by any Y2K
problems, and cryptlib itself conforms to the requirements in the British Standards
Institutions DISC PD2000-1:1998 Y2K compliance standard.

Encrypted Object Management

cryptlibs powerful object management interface provides the ability to add
encryption and authentication capabilities to an application without needing to
know all the low-level details which make the encryption or authentication work.
The automatic object-management routines take care of encoding issues and
cross-platform portability problems, so that a single function call is enough to
export a public-key encrypted session key with all the associated information and
parameters needed to recreate the session key on the other side of a
communications channel, or to generate a digital signature on a piece of data.
This provides a considerable advantage over other encryption toolkits which often
require hundreds of lines of code and the manipulation of complex encryption
data structures to perform the same task.

S/MIME

cryptlib employs the IETF-standardised Cryptographic Message Syntax (CMS,
formerly called PKCS #7) format as its native data format. CMS is the underlying
format used in the S/IMIME secure mail standard, as well as a number of other
standards covering secure EDI and related systems like HL7 messaging. As an
example of its use in secure EDI, cryptlib provides security services for the
Sypmhonia EDI messaging toolkit which is used to communicate medical lab
reports, patient data, drug prescription information, and similar information
requiring a high level of security.

The S/MIME implementation uses cryptlibs enveloping interface which allows
simple, rapid integration of strong encryption and authentication capabilities into
existing email agents and messaging software. The resulting signed data format
provides message integrity and origin authentication services, the enveloped data
format provides confidentiality. The complexity of the S/IMIME format means

that the few other toolkits which are available require ahigh level of programmer
knowledge of SSMIME processing issues. In contrast cryptlib’s enveloping

interface makes the process as simple as pushing raw data into an envelope and
popping the processed data back out, a total of three function calls, plus one more
call to add the appropriate encryption or signature key.

Certificate Management

cryptlib implements full X.509 certificate support, including all X.509 version 3
extensions as well as extensions defined in the IETF PKIX certificate profile.
cryptlib also supports additional certificate types and extensions including SET
certificates, Microsoft AuthentiCode and Netscape and Microsoft server-gated
crypto certificates, SIMIME and SSL client and server certificates, and various
vendor-specific extensions such as Netscape certificate types and the Thawte
secure extranet.

In addition to certificate handling, cryptlib allows the generation of PKCS #10
certification requests with CMMF extensions suitable for submission to
certification authorities (CA'’s) in order to obtain a certificate. Since cryptlib is
itself capable of processing certification requests into certificates, it is also
possible to use cryptlib to provide full CA services. cryptlib also supports the
creating and handling of the certificate chains required for S/IMIME, SSL, and
other applications, and the creation of certificate revocation lists (CRL’s) with the
capability to check certificates against existing or new CRL’s either automatically
or under programmer control.

cryptlib can import and export certification requests, certificates, and CRL's in
straight binary format, as PKCS #7 certificate chains, and as Netscape certificate
sequences, with or without base64 armouring. This covers the majority of
certificate and certificate transport formats used by a wide variety of software
such as web browsers and servers.

The certificate types which are supported include:
» Basic X.509 version 1 certificates

» Extended X.509 version 3 certificates

« Certificates conformant to the IETF PKIX profile
* SSL server and client certificates

+ S/MIME email certificates

o SET certificiates

« AuthentiCode code signing certificates

« |IPSEC server, client, end-user, and tunneling certificates
e Server-gated crypto certificates

» Timestamping certificates

In addition cryptlib supports all X.509v3, IETF, SIMIME, and SET certificate
extensions and a many vendor-specific extensions including ones covering public
and private key usage, certificate policies, path and name constraints, policy

constraints and mappings, and alternative names and other identifiers. This
comprehensive coverage makes cryptlib a single solution for almost al certificate
processing requirements.

The diagram below shows atypical cryptlib application, in which it provides the
full functionality of both a CA (processing certification requests, storing the
issued certificates locally in a certificate database, and optionally publishing the
certificates on the web or in an LDARP directory) and an end entity (generating
certification reguests, submitting them to a CA, and retrieving the result from the
web or adirectory service).

CA certificate
database

Web
» server SSL
CA i » server LDAP
: ' » directory
y Publish
Certification
request
User «
Retrieve

Local certificate
database

To handle certificate trust and revocation issues, cryptlib includes a certificate

trust manager which can be used to automatically manage CA trust settings, for
example a CA can be designated as a trusted issuer which will alow cryptlib to
automatically evaluate trust along certificate chains. Similarly, cryptlib can
automatically check certificates against CRL’s published by CA’s, removing from
the user the need to perform complex manual checking.

Key Database Interface

cryptlib utilizes commercial-strength RDBMS's to store keys in the internationally
standardised X.509 format. The key database integrates seamlessly into existing
databases and can be managed using existing tools. For example a key database
stored on an MS SQL Server might be managed using Visual Basic or MS Access;
a key database stored on an Oracle server might be managed through SQL*Plus.
cryptlib currently supports Beagle SQL, mSQL, MySQL, Oracle, Postgres, Raima
Velocis, and Solid databases under Unix, and most databases which can be
accessed through Windows ODBC drivers. This includes MS Access, dBase,
Oracle, Paradox, MS SQL Server, and many more. Extending the interface to
support new database types requires approximately 200 lines of code to tie the
cryptlib routines into a particular database backend.

In addition to key databases, cryptlib supports the storage and retrieval of
certificates in LDAP directories. This interface provides full LDAPv3 support,
with optional SSL protection of the connection to the directory. cryptlib also

supports HTTP access for keys accessible via the web, as well as externa flat-file
key collections such as PGP key rings. The key collections may be freely mixed
(so for example a private key could be stored in adisk file, a PGP keyring or on a
smart card with the corresponding X.509 public key certificate being stored in an
Oracle or SQL Server database, an LDAP directory, or on the web).

Private keys may be stored on disk encrypted with an algorithm such astriple

DES (selectable by the user), with the password processed using several hundred
iterations of a hashing algorithm such as SHA-1 (also selectable by the user).

Where the operating system supportsit, cryptlib will apply system security

features such as ACL’s under Windows NT and file permissions under Unix to the
private key file to further restrict access.

Smart Card Support

cryptlib allows private keys to be stored on a variety of smart cards accessed
through a selection of smart card readers — use of cryptlib won't tie you to a

single card or reader vendor. As an extra precaution, cryptlib encrypts all data
written to the smart card so that even if the card is hacked, the data remains
secure. Support for new smart card types and/or readers can be added on request.

Crypto Devices

In addition to its built-in capabilities, cryptlib can make use of the crypto
capabilities of a variety of external crypto devices such as:

e Hardware crypto accelerators
* Fortezza cards

* PKCS #11 devices

e Crypto smart cards.

In addition, the crypto device interface provides a convenient general-purpose
plug-in capability for adding new functionality which will be automatically used
by cryptlib in its higher-level routines which handle key management, digital
signatures, and message encryption.

Security Features

cryptlib implements a security perimeter around the encryption core, with all
encryption related data being referred to through arbitrary handles which are used
by cryptlib to reference data which is hidden from the calling program. No

outside access to state variables or keying information is possible (unless the
operating system security itself is compromised, and even then cryptlib takes steps
to make outside access to the most sensitive information as difficult as possible).

If the underlying implementation is in hardware, all cryptovariables will be

securely locked inside the hardware with no external access possible.

If the operating system supports it, all sensitive information used will be page-
locked to ensure it is never swapped to disk from where it could be recovered
using a disk editor. All memory corresponding to security-related data is managed
by cryptlib and will be automatically sanitized and freed when cryptlib shuts down

even if the calling program forgets to rel ease the memory itself.

Where the operating system supportsit, cryptlib will apply operating system
security features to any objectsit creates or manages. For example under
Windows NT cryptlib private key fileswill be created with an access control list
(ACL) which allows only the key owner access to the file; under Unix the file
permissions will be set to achieve the same result.

Performance

cryptlib isre-entrant and completely thread-safe, allowing it to be used with
multithreaded applications under Windows 95/98 and Windows NT, OS/2, and
Unix systems which support threads. Because it is thread-safe, lengthy cryptlib
operations can be run in the background if required while other processing is
performed in the foreground. In addition cryptlib itself is multithreaded so that
computationally intensive internal operations take place in the background without
impacting the performance of the calling application.

Most of the core algorithms used in cryptlib have been implemented in assembly
language in order to provide the maximum possible performance. These routines
provide an unprecedented level of performance, in some cases running faster than
expensive, specialised encryption hardware designed to perform the same task.
This means cryptlib can be used for high-bandwidth applications such as
video/audio encryption and online network and disk encryption without the need
to resort to expensive, hard-to-get encryption hardware.

Cryptographic Random Number Management

cryptlib contains an internal secure random data management system which
provides the cryptographically strong random data used to generate session keys
and public/private keys, in public-key encryption operations, and in various other
areas which require secure random data. The random data pool is updated with
unpredictable process-specific information as well as system-wide data such as
current disk 1/0 and paging statistics, network, SMB, LAN manager, and NFS
traffic, packet filter statistics, multiprocessor statistics, process information, users,
VM statistics, process statistics, open files, inodes, terminals, vector processors,
streams, and loaded code, objectsin the global heap, loaded modules, running
threads, process, and tasks, and an equally large number of system performance-
related statistics covering virtually every aspect of the operation of the system.

The exact data collected depends on the hardware and operating system, but
generaly includes quite detailed operating statistics and information. 1n addition
if a/ dev/ r andomstyle randomness driver (which continually accumul ates
random data from the system) is available, cryptlib will use thisis a source of
randomness. Finally, cryptlib supports a number of cryptographically strong
hardware random number generators such as the Protego SG100 and various
serial-port-based generators which can be used to supplement or replace the
internal generator. Thislevel of secure random number management ensures that
security problems such as those present in Netscape’s web browser (which
allowed encryption keys to be predicted without breaking the encryption because
the random data gathered wasn’t at all random) can’t occur with cryptlib.

Configuration Options

cryptlib works with a configuration database which can be used to tune its
operation for different environments using the Windows registry or Unix r c files.
This allows a system administrator to set a consistent security policy (for example
mandating the use of 1024-bit public keys on a company-wide basis instead of the
insecure 512-bit keys used in most US-sourced products). These configuration
options are then automatically applied by cryptlib to operations such as key
generation and data encryption and signing, although they can be overridden on a
per-application or per-user basisif required.

cryptlib Applications

The security services provided by cryptlib can be used in virtually any situation
which requires the protection or authentication of sensitive data. Some areasin
which cryptlib is currently used include:

* Protection of medical records transmitted over electronic links.
* Protection of financial information transmitted between branches of banks.
e Trangparent disk encryption.

» Strong security services added to web browsers with weak, exportable
Security.

« Encrypted electronic mail.

* Fileencryption.

« Digitally signed electronic forms.
* Secure database access.

A typical application, in which a number of machines running various versions of
Microsoft Windows use cryptlib to communicate securely with a server running
Unix, is shown below:

Unix server

Transaction processing Commercial
software RDBMS

N

cryptlib security services

| Unix sockets | eg Oracle, Ingres,
Postgres

LAN

| Winsock

cryptlib security services

| Client software

Windows 3.x / Win95 / NT client PC's
cryptlib Architecture

cryptlib consists of a set of layered security services and associated programming
interfaces which provide an integrated set of information and communications
security capabilities. Much like the OSI networking reference model, cryptlib
contains a series of layers which provide each level of abstraction, with higher
layers building on the capabilities provided by the lower layers.

At the lowest level are basic components such as core encryption and
authentication routines, which are usually implemented in software but may also
be implemented in hardware for speed (due to the speed of the software
components used in cryptlib, some of the software is actually faster than dedicated
hardware).

At the next level are components which wrap up the specialised and often quite

complex core components in alayer which provides abstract functionality and

ensures complete cross-platform portability of data. These functions typically

cover areas such as “create a digital signature” or “exchange an encryption key”.

At the highest level are extremely powerful and easy-to-use functions such as
“encrypt a message”, “sign a message”, and “create a digital certificate” which
require no knowledge of encryption techniques, and which take care of complex
issues such as key management, data encoding, en/decryption, and digital

signature processing.

cryptlib consists of a multi-platform architecture which provides these services
across all major operating system environments, including BeOS, DOS, 0S/2,
Windows 3.x, Windows 95/98, Windows NT, the Tandem environment, and a
large variety of Unix versions such as AlX, A/UX, Digital Unix, DGUX,
FreeBSD/NetBSD/OpenBSD, HPUX, IRIX, Linux, OSF/1, SCO, Solaris, SunOS,
and Ultrix.

The overall cryptlib architecture is as follows:

Secure communications session

‘Secure data enveloping ‘ ‘ Certificate management ‘

[Security services interface |

‘ Key ‘ ‘ Digital ‘ Key ‘ Key management ‘
exchange signature generation
___________________________________ m—----_____---------—-—---
| Encryption services interface | Database services interface |
[Adaptation layer] [Adaptation layer] | Adaptation layer
Native - - ! Native -
encryption Third-party Third-party : database Third-party
services software. hardwarg : services databgse
crypto service crypto service |, service
1

The key database services are implemented as an interface layer which
communicates with various key storage technologies and mechanisms. This layer
is as follows:

Relational Database

BSQL
MS Access
mSQL
MySQL
ODBC
Oracle
Postgres
Raima Velocis
Solid
SQL Server

X.500
| LDAP |

Flat File
cryptlib
PGP
X.509/SET
Other

| Smart card |

Key Database Interface

The low-level encryption services are implemented as plug-in modules which can
be added and removed asrequired. Thislayer isasfollows:

Conventional algorithms

Blowfish
CAST-128
DES
Triple DES
IDEA
Safer/Safer-SK
Skipjack
RC2
RC4
RC5

Public-key algorithms

732579, e

Diffie-Hellman Hortat oy
DSA

ElGamal
RSA

Hash algorithms

MD2
MD4
MD5
MDC-2
SHA
RIPEMD-160

Encryption services interface

MAC algorithms

HMAC-MDS
HMAC-SHA
HMAC-RIPEMD

Encryption
hardware

CEIl SuperCrypt
Fortezza
PKCS #11
Smart Cards

L
00 1 A O

=

Encryption Code Example
The best way to illustrate what cryptlib can do iswith an example. The following

code digitally signs a message:

/* Create an envel ope for the nessage */
crypt Creat eEnvel ope(&crypt Envel ope);

/* Get our signature key froma smart card */

crypt Keyset Open(&crypt Keyset, CRYPT_KEYSET_ SMARTCARD, "Genpl us",
CRYPT_KEYSET_READONLY) ;

crypt Get Privat eKey(cryptKeyset, &signatureKey, "John Doe",
"Password");

crypt Keyset C ose(crypt Keyset);

/* Push our signature key into the envel ope */
crypt AddEnvi nf oNurreri c(crypt Envel ope, CRYPT_ENVI NFO_SI GNATURE,
si gnat ureKey);

/* Push in the nessage data and pop out the signed result */

crypt PushDat a(crypt Envel ope, nessage, nessageSize, &bytesln);

crypt PopDat a(crypt Envel ope, encryptedMessage, encryptedSi ze,
&yt esQut);

/* Clean up */

crypt DestroyEnvel ope(crypt Envel ope);

This performs the same task as a program like PGP, using just 6 function calls

(and with smart card support which PGP doesn’t have). All data management is
handled automatically by cryptlib, so there’s no need to worry about encryption
modes and algorithms and keylengths and key types and initialisation vectors and
other details (although cryptlib provides the ability to specify all this if you feel

the need).

The code shown above results in cryptlib performing the following actions:
1. Hash the message using the default hash algorithm (usually SHA-1).
2. Sign the hash using the given signature key.

3. Wrap up the message in an OS-independent manner to allow it to be
decoded on any platform.

4. Wrap up the signature alongside the signed message.
5. Pass the result back to the user.

However unless you want to call cryptlib using the low-level interface, you never
need to know about any of this. cryptlib will automatically know what to do with
the data based on the resources you add to the envelope — if you add a signature
key it will sign the data, if you add an encryption key it will encrypt the data, and

so on.

Certificate Management Code Example
The following code demonstrates cryptlibs certificate management capabilities by
generating a certification request:

/* Create a certification request and add the public key to it */
crypt CreateCert(cryptCert Request, CRYPT_CERTTYPE CERTREQUEST);
crypt AddCert Conponent Nuneri c(crypt Cert Request,

CRYPT_CERTI NFO_SUBJECTPUBLI CKEYl NFO, pubKeyContext);

/* Add identification information */

[

/* Sign the certification request with the private key and export it

*/

crypt SignCert(cryptCert Request, privKeyContext)

crypt ExportCert(certRequest, CRYPT_CERTFORMAT_CERTI FI CATE,
&cert Request Lengt h, crypt Cert Request);

/* Destroy the certification request */
cryptDestroyCert(certRequest);

and converting it into an X.509v3 certificate by signing it with a key belonging to
a certification authority (CA):
/* Import the certification request and check its validity */

cryptlnmportCert(certRequest, &cryptCertRequest);
crypt CheckCert (crypt Cert Request, CRYPT_UNUSED);

/* Create a certificate and add the information fromthe
certification request to it */

cryptCreateCert(&cryptCert, CRYPT_CERTTYPE_CERTI FI CATE);

crypt AddCert Conponent Nuneri c(crypt Cert, CRYPT_CERTI NFO _CERTI FI CATE,
crypt Cert Request);

* Sign the certificate with the CA’s private key and export it */

cryptSignCert(cryptCert, caPrivateKey);

cryptExportCert(cert, CRYPT_CERTFORMAT_CERTIFICATE, &certLength,
cryptCert);

/* Destroy the certificate and certification request */

cryptDestroyCert(cryptCert);

cryptDestroyCert(cryptCertRequest);

This code sample forms the basic core of a certification authority.

As with the encryption example, cryptlib is performing a great deal of work in the
background, including automatic key management, encoding and decoding of
certificate data, adding and processing X.509v3 certificate extensions, and
performing signature and validity checking on the data.

Security Design and Consulting Services

In addition to providing the cryptlib components required to add encryption and
security services to a particular application, we can also provide security design
and consulting to assist customersin integrating cryptlib’s security services into
their projects. This allows us to provide a finished security solution for
applications which include:

» Protection of medical records transmitted over electronic links.

* Encrypted electronic mail.

» Protection of financial information transmitted between branches of banks.
» Software authentication and secure software distribution.

« File encryption.

» Digitally signed electronic forms.

e Secure database access.

» Secure data/file backup facilities.

Our input can range from providing advice on the use of cryptlib through to
creating a complete, customer-specific solution based on cryptlib components. If
you would like to use our design and consulting services, please contact one of the

cryptlib salespeople with your reguirements.

Pricing

Most other encryption libraries and toolkits are provided in an al-in-one form

which bundles all the capabilities of the toolkit into a single package which must

be licensed, at significant cost, as asingle unit. In recognition of the fact that

many users won't require some of the more advanced (and expensive) capabilities
provided by cryptlib, it can be used as one of four versions:

Version Features

cryptlib lite Conventional encryption, hashing, and MAC algorithms
and related functions to handle passwords and keys.

cryptlib cert As cryptlib lite but with digital signatures, X.509
certificate management and key database. This is
currently in beta, please contact the cryptlib technical
contact for usage details.

cryptlib pro As cryptlib cert but with digital enveloping and
S/MIME support.

Most applications which require basic security features such as password
encryption or the protection of sensitive information like database records will be
able to use the relatively inexpensargptlib lite, more demanding applications

can use the digital signature and X.509 certificate management features provided
in cryptlib cert, and complete crypto-enabled applications can use the full range
of services provided ioryptlib pro. Licensing terms can be based on the number
of end users, use on servers, or using a royalty-based system.

Per-user licenses No.of cryplib lite cryptlib cryptlib
users cert pro
20 $500 $1,000 $1,500

100 $2,000 $4,000 $6,000
1000 $10,000 $20,000 $30,000
5000+ | Please contact cryptlib sales person.

Server licenses Please contact cryptlib sales person.
Royalty-based licensing

Source code license $20,000

Annual maintenance 15% of runtime license

Sales and Licensing Contacts

International Sales and Licensing

Sean Rudd

Digital Data Security Ltd
St.John Building

1 Beresford St
Auckland

Postal address:

email: sales@datasec.co.nz
Phone +64 9 357-6323 x3301
Fax +64 9 357-6324

Digital Data Security Ltd
PO Box 8273

Auckland

New Zealand

US and Canada Sales and Licensing

Stexel Corporation
P.O. Box 431
Smithville

Texas 78957

USA

email: cryptlib@stexel.com
Phone +1 512 237 2757 x210
Fax +1 512 237 2866

Technical Contact

Peter Gutmann

email: pgut001l@cs.auckland.ac.nz

