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Database products and other applications impose heavy
demands on physical memory. The newest version of
DIGITAL’s OpenVMS Alpha operating system extends
its very large memory (VLM) support and allows large
caches to remain memory resident. OpenVMS Alpha
version 7.1 enables applications to take advantage of
both 64-bit virtual addressing and very large memories
consistent with the OpenVMS shared memory model.
In this paper, we describe the new 64-bit VLM capabili-
ties designed for the OpenVMS Alpha version 7.1 oper-
ating system. We explain application flexibility and the
system management issues addressed in the design and
discuss the performance improvements realized by 
64-bit VLM applications. 

Overview

A VLM system is a computer with more than 4 giga-
bytes (GB) of main memory. A flat, 64-bit address
space is commonly used by VLM applications to
address more than 4 GB of data. 

A VLM system allows large amounts of data to
remain resident in main memory, thereby reducing
the time required to access that data. For example,
database cache designers implement large-scale caches
on VLM systems in an effort to improve the access
times for database records. Similarly, VLM database
applications support more server processes than ever
before. The combination of large, in-memory caches
and an increased number of server processes signifi-
cantly reduces the overall time database clients wait to
receive the data requested.1

The OpenVMS Alpha version 7.0 operating system
took the first steps in accommodating the virtual
address space requirements of VLM applications by
introducing 64-bit virtual addressing support. Prior to
version 7.0, large applications—as well as the OpenVMS
operating system itself—were becoming constrained by
the limits imposed by a 32-bit address space. 

Although version 7.0 eased address space restric-
tions, the existing OpenVMS physical memory man-
agement model did not scale well enough to
accommodate VLM systems. OpenVMS imposes spe-
cific limits on the amount of physical memory a
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process can occupy. As a result, applications lacked the
ability to keep a very large object in physical memory.
In systems on which the physical memory is not plen-
tiful, the mechanisms that limit per-process memory
utilization serve to ensure fair-and-equal access to a
potentially scarce resource. However, on systems rich
with memory whose intent is to service applications
creating VLM objects, the limitations placed on per-
process memory utilization inhibit the overall perfor-
mance of those applications. As a result, the benefits of
a VLM system may not be completely realized. 

Applications that require very large amounts of
physical memory need additional VLM support. The
goals of the OpenVMS Alpha VLM project were the
following: 

■ Maximize the operating system’s 64-bit capabilities 
■ Take full advantage of the Alpha Architecture 
■ Not require excessive application change 
■ Simplify the system management of a VLM system 
■ Allow for the creation of VLM objects that exhibit

the same basic characteristics, from the program-
mer’s perspective, as other virtual memory objects
created with the OpenVMS system service pro-
gramming interface 

These goals became the foundation for the follow-
ing VLM technology implemented in the OpenVMS
Alpha version 7.1 operating system: 

■ Memory-resident global sections—shared memory
objects that do not page to disk 

■ Shared page tables—page tables mapped by multiple
processes, which in turn map to memory-resident
global sections 

■ The reserved memory registry—a memory reserva-
tion system that supports memory-resident global
sections and shared page tables 

The remainder of this paper describes the major
design areas of VLM support for OpenVMS and dis-
cusses the problems addressed by the design team, the
alternatives considered, and the benefits of the extended
VLM support in OpenVMS Alpha version 7.1. 

Memory-resident Global Sections 

We designed memory-resident global sections to
resolve the scaling problems experienced by VLM
applications on OpenVMS. We focused our design on
the existing shared memory model, using the 64-bit
addressing support. Our project goals included simpli-
fying system management and harnessing the speed of
the Alpha microprocessor. Before describing memory-
resident global sections, we provide a brief explanation
of shared memory, process working sets, and a page
fault handler. 

Global Sections 
An OpenVMS global section is a shared memory
object. The memory within the global section is
shared among different processes in the system. Once
a process has created a global section, others may map
to the section to share the data. Several types of global
sections can be created and mapped by calling
OpenVMS system services. 

Global Section Data Structures Internally, a global
section consists of several basic data structures that are
stored in system address space and are accessible to all
processes from kernel mode. When a global section is
created, OpenVMS allocates and initializes a set of
these data structures. The relationship between the
structures is illustrated in Figure 1. The sample global
section is named “SHROBJ” and is 2,048 Alpha pages
or 16 megabytes (MB) in size. Two processes have
mapped to the global section by referring to the global
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section data structures in their process page table
entries (PTEs). 

Process PTEs Mapping to Global Sections When a
process maps to a global section, its process PTEs refer
to global section pages in a one-to-one fashion. A page
of physical memory is allocated when a process
accesses a global section page for the first time. This
results in both the process PTE and the global section
page becoming valid. The page frame number (PFN)
of the physical page allocated is stored in the process
PTE. Figure 2 illustrates two processes that have
mapped to the global section where the first process
has accessed the first page of the global section. 

When the second process accesses the same page as
the first process, the same global section page is read
from the global section data structures and stored in
the process PTE of the second process. Thus the two
processes map to the same physical page of memory. 

The operating system supports two types of global
sections: a global section whose original contents are
zero or a global section whose original contents are
read from a file. The zeroed page option is referred to
as demand zero. 

Backing Storage for Global Sections Global section
pages require backing storage on disk so that more fre-
quently referenced code or data pages can occupy
physical memory. The paging of least recently used
pages is typical of a virtual memory system. The back-
ing storage for a global section can be the system page
files, a file opened by OpenVMS, or a file opened by
the application. A global section backed by system
page files is referred to as a page-file-backed global sec-
tion. A global section backed by a specified file is
referred to as a file-backed global section. 

When a global section page is invalid in all process
PTEs, the page is eligible to be written to an on-disk

backing storage file. The physical page may remain in
memory on a list of modified or free pages. OpenVMS
algorithms and system dynamics, however, determine
which page is written to disk. 

Process Working Sets 
On OpenVMS, a process’ valid memory is tracked
within its working set lists. The working set of a
process reflects the amount of physical memory a
process is consuming at one particular point in time.
Each valid working set list entry represents one page of
virtual memory whose corresponding process PTE is
valid. A process’ working set list includes global sec-
tion pages, process private section pages, process pri-
vate code pages, stack pages, and page table pages. 

A process’ working set quota is limited to 512 MB
and sets the upper limit on the number of pages that
can be swapped to disk. The limit on working set
quota matches the size of a swap I/O request.2 The
effects on swapping would have to be examined to
increase working set quotas above 512 MB. 

Process working set lists are kept in 32-bit system
address space. When free memory is plentiful in the sys-
tem, process working set lists can increase to an extended
quota specified in the system’s account file for the user.
The system parameter, WSMAX, specifies the maximum
size to which a process working set can be extended.
OpenVMS specifies an absolute maximum value of 4 GB
for the WSMAX system parameter. An inverse relation-
ship exists between the size specified for WSMAX and the
number of resident processes OpenVMS can support,
since both are maintained in the 32-bit addressable por-
tion of system space. For example, specifying the maxi-
mum value for WSMAX sharply decreases the number of
resident processes that can be specified. 

Should OpenVMS be required to support larger
working sets in the future, the working set lists would
have to be moved out of 32-bit system space. 
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Page Fault Handling for Global Section Pages 
The data within a global section may be heavily
accessed by the many processes that are sharing the
data. Therefore, the access time to the global section
pages may influence the overall performance of the
application. 

Many hardware and software factors can influence
the speed at which a page within a global section is
accessed by a process. The factors relevant to this dis-
cussion are the following: 

■ Is the process PTE valid or invalid? 
■ If the process PTE is invalid, is the global section

page valid or invalid? 
■ If the global section page is invalid, is the page on

the modified list, free page list, or on disk within the
backing storage file? 

If the process PTE is invalid at the time the page is
accessed, a translation invalid fault, or page fault, is
generated by the hardware. The OpenVMS page fault
handler determines the steps necessary to make the
process PTE valid. 

If the global section page is valid, the PFN of the
data is read from the global section data structures.
This is called a global valid fault. This type of fault is
corrected quickly because the data that handles this
fault is readily accessible from the data structures in
memory. 

If the global section page is invalid, the data may still
be within a physical page on the modified or free page
list maintained by OpenVMS. To correct this type of
fault, the PFN that holds the data must be removed
from the modified or free page list, and the global sec-
tion page must be made valid. Then the fault can be
handled as if it were a global valid fault. 

If the page is on disk within the backing storage file,
an I/O operation must be performed to read the data
from the disk into memory before the global section
page and process PTE can be made valid. This is the
slowest type of global page fault, because performing a
read I/O operation is much slower than manipulating
data structures in memory. 

For an application to experience the most efficient
access to its shared pages, its process PTEs should be
kept valid. An application may use system services to
lock pages in the working set or in memory, but typi-
cally the approach taken by applications to reduce
page fault overhead is to increase the user account’s
working set quota. This approach does not work when
the size of the global section data exceeds the size of
the working set quota limit of 512 MB. 

Database Caches as File-backed Global Sections 
Quick access to a database application’s shared mem-
ory is critical for an application to handle transactions
quickly. 

Global sections implement shared memory on
OpenVMS, so that many database processes can share
the cached database records. Since global sections
must have backing storage on disk, database caches are
either backed by the system’s page files or by a file cre-
ated by the database application. 

For best performance, the database application
should keep all its global section pages valid in the
process PTEs to avoid page fault and I/O overhead.
Database processes write modified buffers from the
cache to the database files on an as-needed basis.
Therefore, the backing storage file required by
OpenVMS is redundant storage. 

Very Large Global Sections 
The OpenVMS VLM project focused on VLM data-
base cache design. An additional goal was to design
the VLM features so that other types of VLM applica-
tions could benefit as well. 

Consider a database cache that is 6 GB in size.
Global sections of this magnitude are supported on
OpenVMS Alpha with 64-bit addressing support. If
the system page files are not used, the application must
create and open a 6-GB file to be used as backing stor-
age for the global section. 

With the maximum quota of 512 MB for a process
working set and with the maximum of a 4-GB working
set size, no process could keep the entire 6-GB data-
base cache valid in its working set at once. When an
OpenVMS global section is used to implement the
database cache, page faults are inevitable. Page fault
activity severely impacts the performance of the VLM
database cache by causing unnecessary I/O to and
from the disk while managing these pages. 

Since all global sections are pageable, a 6-GB file
needs to be created for backing storage purposes. In
the ideal case, the backing storage file is never used.
The backing storage file is actually redundant with the
database files themselves. 

VLM Design Areas 
The VLM design team targeted very large global sec-
tions (4 GB or larger) to share data among many
processes. Furthermore, we assumed that the global
section’s contents would consist of zeroed memory
instead of originating from a file. The team explored
whether this focus was too narrow. We were con-
cerned that implementing just one type of VLM global
section would preclude support for certain types of
VLM applications. 

We considered that VLM applications might use
very large amounts of memory whose contents origi-
nate from a data file. One type of read-only data from
a file contains program instructions (or code). Code
sections are currently not pushing the limits of 32-bit
address space. Another type of read-only data from a
file contains scientific data to be analyzed by the VLM
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application. To accommodate very large read-only
data of this type, a large zeroed global section can be
created, the data from the file can be read into mem-
ory, and then the data can be processed in memory. 

If writable pages are initially read from a file instead
of zeroed, the data will most likely need to be written
back to the original file. In this case, the file can be
used as the backing storage for the data. This type of
VLM global section is supported on OpenVMS Alpha
as a file-backed global section. The operating system’s
algorithm for working set page replacement keeps the
most recently accessed pages in memory. Working set
quotas greater than 512 MB and working set sizes
greater than 4 GB help this type of VLM application
scale to higher memory sizes. 

We also considered very large demand-zero private
pages, “malloc” or “heap” memory. The system page
files are the backing storage for demand-zero private
pages. Currently, processes can have a page file quota
as large as 32 GB. A VLM application, however, may
not want these private data pages to be written to a
page file since the pages are used in a similar fashion as
in-memory caches. Larger working set quotas also
help this type of VLM application accommodate ever-
increasing memory sizes. 

Backing Storage Issues 
For many years, database cache designers and database
performance experts had requested that the
OpenVMS operating system support memory with no
backing storage files. The backing storage was not
only redundant but also wasteful of disk space. The
waste issue is made worse as the sizes of the database
caches approach the 4-GB range. As a result, the
OpenVMS Alpha VLM design had to allow for non-
file-backed global sections. 

The support of 64-bit addressing and VLM has always
been viewed as a two-phased approach, so that function-
ality could be delivered in a timely fashion.3 OpenVMS
Alpha version 7.0 provided the essentials of 64-bit
addressing support. The VLM support was viewed as an
extension to the memory management model and was
deferred to OpenVMS Alpha version 7.1. 

Working Set List Issues. Entries in the process work-
ing set list are not required for pages that can never be
written to a backing storage file. The fundamental con-
cept of the OpenVMS working set algorithms is to sup-
port the paging of data from memory to disk and back
into memory when it is needed again. Since the focus
of the VLM design was on memory that would not be
backed by disk storage, the VLM design team realized
that these pages, although valid in the process PTEs,
did not need to be in the process’ working set list. 

VLM Programming Interface 
The OpenVMS Alpha VLM design provides a new pro-
gramming interface for VLM applications to create,

map to, and delete demand-zero, memory-resident
global sections. The existing programming interfaces
did not easily accommodate the new VLM features. 

To justify a new programming interface, we looked
at the applications that would be calling the new system
service routines. To address more than 4 GB of mem-
ory in the flat OpenVMS 64-bit address space, a 32-bit
application must be recompiled to use 64-bit pointers
and often requires source code changes as well.
Database applications were already modifying their
source code to use 64-bit pointers and to scale their
algorithms to handle VLM systems.1 Therefore, calling
a new set of system service routines was considered
acceptable to the programmers of VLM applications. 

Options for Memory-resident Global Sections 
To initialize a very large memory-resident global sec-
tion mapped by several processes, the overhead of
hardware faults, allocating zeroed pages, setting
process PTEs valid, and setting global section pages
valid is eliminated by preallocating the physical pages
for the memory-resident global section. Preallocation
is performed by the reserved memory registry, and is
discussed later in this paper. Here we talk about
options for how the reserved memory is used. 

Two options, ALLOC and FLUID, are available 
for creating a demand-zero, memory-resident global
section. 

ALLOC Option The ALLOC option uses preallocated,
zeroed pages of memory for the global section. When
the ALLOC option is used, pages are set aside during
system start-up specifically for the memory-resident
global section. Preallocation of contiguous groups of
pages is discussed in the section Reserving Memory
during System Start-up. Preallocated memory-resident
global sections are faster to initialize than memory-
resident global sections that use the FLUID option. 

Run-time performance is improved by using the
Alpha Architecture’s granularity hint, a mechanism we
discuss later in this paper. To use the ALLOC option,
the system must be rebooted for large ranges of physi-
cally contiguous memory to be allocated. 

FLUID Option The FLUID option allows pages not
yet accessed within the global section to remain fluid
within the system. This is also referred to as the fault
option because the page fault algorithm is used to allo-
cate the pages. When the FLUID (or fault) option 
is used, processes or the system can use the physical
pages until they are accessed within the memory-
resident global section. The pages remain within the
system’s fluid memory until they are needed. This type
of memory-resident global section is more flexible
than one that uses the ALLOC option. If an applica-
tion that uses a memory-resident global section is run
on a system that cannot be rebooted due to system
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One important difference with memory-resident
global sections is that once a global section page
becomes valid, it remains valid for the life of the global
section. Global section pages by definition can never
become invalid for a memory-resident global section. 

When a process maps to a memory-resident global
section, the process PTE can be either valid for the
ALLOC option or invalid for the FLUID option.
When the ALLOC option is used, no page faulting
occurs for the global section pages. 

When a process first accesses an invalid memory-
resident global section page, a page fault occurs just as
with traditional file-backed global sections. Because
the same data structures are present, the page fault
code initially executes the code for a demand-zero,
file-backed global section page. A zeroed page is allo-
cated and placed in the global section data structures,
and the process PTE is set valid. 

The working set list manipulation steps are skipped
when the MRES flag is encountered in the global sec-
tion data structures. Because these global section
pages are not placed in the process working set list,
they are not considered in its page-replacement algo-
rithm. As such, the OpenVMS Alpha working set
manipulation code paths remained unchanged. 

System Management and Memory-resident Global
Sections 
When a memory-resident global section is used
instead of a traditional, pageable global section for a
database cache, there is no longer any wasted page file
storage required by OpenVMS to back up the global
section. 

The other system management issue alleviated by
the implementation of memory-resident global sec-
tions concerns working set sizes and quotas. When a
file-backed global section is used for the database
cache, the database processes require elevated working

availability concerns, it can still use the FLUID option.
The system will not allow this application to run unless
enough pages of memory are available in the system
for the memory-resident global section. 

The system service internals code checks the
reserved memory registry to determine the range of
pages preallocated for the memory-resident global
section or to determine if the FLUID option will be
used. Therefore the decision to use the ALLOC or the
FLUID option is not made within the system services
routine interface. The system manager can determine
which option is used by specifying preferences in the
reserved memory registry. An application can be
switched from using the ALLOC option to using the
FLUID option without requiring a system reboot. 

Design Internals 
The internals of the design choices underscore the mod-
ularity of the shared memory model using global sec-
tions. A new global section type was easily added to the
OpenVMS system. Those aspects of memory-resident
global sections that are identical to pageable global sec-
tions required no code modifications to support. 

To support memory-resident global sections, the
MRES and ALLOC flags were added to the existing
global section data structures. The MRES flag indi-
cates that the global section is memory resident, and
the ALLOC flag indicates that contiguous pages were
preallocated for the global section. 

The file-backing storage information within global
section data structures is set to zero for memory-
resident global sections to indicate that no backing
storage file is used. Other than the new flags and the
lack of backing storage file information, a demand-
zero, memory-resident global section looks to
OpenVMS Alpha memory management like a demand-
zero, file-backed global section. Figure 3 shows the
updates to the global section data structures. 
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Memory-resident Global Section Data Structures
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set quotas to accommodate the size of the database
cache. This is no longer a concern because memory-
resident global section pages are not placed into the
process working set list. 

With the use of memory-resident global sections,
system managers may reduce the value for the
WSMAX system parameter such that more processes
can remain resident within the system. Recall that a
process working set list is in 32-bit system address
space, which is limited to 2 GB. 

Shared Page Tables 

VLM applications typically consume large amounts of
physical memory in an attempt to minimize disk I/O
and enhance overall application performance. As the
physical memory requirements of VLM applications
increase, the following second-order effects are
observed due to the overhead of mapping to very large
global sections: 

■ Noticeably long application start-up and shut-
down times 

■ Additional need for physical memory as the num-
ber of concurrent sharers of a large global section
increases 

■ Unanticipated exhaustion of the working set quota
and page file quota 

■ A reduction in the number of processes resident in
memory, resulting in increased process swapping 

The first two effects are related to page table map-
ping overhead and size. The second two effects, as
they relate to page table quota accounting, were also
resolved by a shared page tables implementation. The
following sections address the first two issues since
they uniquely pertain to the page table overhead. 

Application Start-up and Shut-down Times 
Users of VLM applications can observe long applica-
tion start-up and shut-down times as a result of creat-
ing and deleting very large amounts of virtual
memory. A single process mapping to a very large 
virtual memory object does not impact overall system
performance. However, a great number of processes
that simultaneously map to a very large virtual mem-
ory object have a noticeable impact on the system’s
responsiveness. The primary cause of the performance
degradation is the accelerated contention for internal
operating system locks. This observation has been 
witnessed on OpenVMS systems and on DIGITAL
UNIX systems (prior to the addition of VLM support.) 

On OpenVMS, the memory management spinlock
(a synchronization mechanism) serializes access to priv-
ileged, memory-management data structures. We have
observed increased spinlock contention as the result 
of hundreds of processes simultaneously mapping to

large global sections. Similar lock contention and sys-
tem unresponsiveness occur when multiple processes
attempt to delete their address space simultaneously. 

Additional Need for Physical Memory 
For pages of virtual memory to be valid and resident,
the page table pages that map the data pages must also
be valid and resident. If the page table pages are not in
memory, successful address translation cannot occur. 

Consider an 8-GB, memory-resident global section
on an OpenVMS Alpha system (with an 8-kilobyte page
size and 8-byte PTE size). Each process that maps the
entire 8-GB, memory-resident global section requires 
8 MB for the associated page table structures. If 100
processes are mapping the memory-resident global sec-
tion, an additional 800 MB of physical memory must be
available to accommodate all processes’ page table
structures. This further requires that working set list
sizes, process page file quotas, and system page files be
large enough to accommodate the page tables. 

When 100 processes are mapping to the same 
memory-resident global section, the same PTE data is
replicated into the page tables of the 100 processes. 
If each process could share the page table data, only 
8 MB of physical memory would be required to map
an 8-GB, memory-resident global section; 792 MB of
physical memory would be available for other system
purposes. 

Figure 4 shows the amount of memory used for
process page tables mapping global sections ranging in
size from 2 to 8 GB. Note that as the number of
processes that map an 8-GB global section exceeds
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1,000, the amount of memory used by process page
tables is larger than the global section itself. 

Shared Memory Models 
We sought a solution to sharing process page tables
that would alleviate the performance problems and
memory utilization overhead yet stay within the
shared memory framework provided by the operating
system and the architecture. Two shared memory
models are implemented on OpenVMS, shared system
address space and global sections. 

The OpenVMS operating system supports an address
space layout that includes a shared system address
space, page table space, and private process address
space. Shared system address space is created by plac-
ing the physical address of the shared system space
page tables into every process’ top-level page table.
Thus, every process has the same lower-level page
tables in its virtual-to-physical address translation
path. In turn, the same operating system code and
data are found in all processes’ address spaces at the
same virtual address ranges. A similar means could be
used to create a shared page table space that is used to
map one or more memory-resident global sections. 

An alternative for sharing the page tables is to create
a global section that describes the page table structure.
The operating system could maintain the association
between the memory-resident global section and the
global section for its shared page table pages. The
shared page table global section could be mapped at
the upper levels of the table structure such that each
process that maps to it has the same lower-level page
tables in its virtual-to-physical address translation
path. This in turn would cause the data to be mapped
by all the processes. 

Figure 5 provides a conceptual representation of the
shared memory model. Figure 6 extends the shared
memory model by demonstrating that the page tables
become a part of the shared memory object. 

The benefits and drawbacks of both sharing models
are highlighted in Table 1 and Table 2. 

Model Chosen for Sharing Page Tables 
After examining the existing memory-sharing models
on OpenVMS and taking careful note of the composi-
tion and characteristics of shared page tables, the design
team chose to implement shared page tables as a global
section. In addition to the benefits listed in Table 2, the
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Table 1
Shared Page Table Space—Benefits and Drawbacks 

Benefits Drawbacks

Shared page table space begins at the same The virtual address space is reserved for every process.
virtual address for all processes. Processes not using shared page tables are penalized

by a loss in available address space. 
Shared page table space is at least 8 GB in size,
regardless of whether the entire space is used.
A significant amount of new code would need to be
added to the kernel since shared system space is man-
aged separately from process address space.

Table 2
Global Sections for Page Tables—Benefits and Drawbacks 

Benefits Drawbacks

The same virtual addresses can be used by all Shared page tables are mapped at different virtual
processes, but this is not required. addresses per process unless additional steps are taken.
The amount of virtual address space mapped by shared 
page tables is determined by application need. 
Shared page tables are available only to those processes 
that need them.
Shared page tables allow for significant reuse of existing 
global section data structures and process address space 
management code.
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Figure 6
Shared Memory Objects Using Shared Page Tables



42 Digital Technical Journal Vol. 9 No. 4 1997

design team noticed that shared page table pages bear
great resemblance to the memory-resident pages they
map. Specifically, for a data or code page to be valid and
resident, its page table page must also be valid and resi-
dent. The ability to reuse a significant amount of the
global section management code reduced the debug-
ging and testing phases of the project. 

In the initial implementation, shared page table
global sections map to memory-resident global sec-
tions only. This decision was made because the design
focused on the demands of VLM applications that use
memory-resident global sections. Should significant
demand exist, the implementation can be expanded to
allow the mapping of pageable global sections. 

Shared page tables can never map process private data.
The design team had to ensure that the shared page table
implementation kept process private data from entering
a virtual address range mapped by a shared page table
page. If this were to happen, it would compromise the
security of data access between processes. 

Shared Page Tables Design 
The goals for the design of shared page tables included
the following: 

■ Reduce the time required for multiple users to map
the same memory-resident global section 

■ Reduce the physical memory cost of maintaining
private page tables for multiple mappers of the same
memory-resident global section 

■ Do not require the use of a backing storage file for
shared page table pages 

■ Eliminate the working set list accounting for these
page table pages 

■ Implement a design that allows upper levels of the
page table hierarchy to be shared at a later time 

Figure 6 demonstrates the shared page table global
section model. The dark gray portion of the figure
highlights the level of sharing supplied in OpenVMS
Alpha version 7.1. The light gray portion highlights
possible levels of sharing allowed by creating a shared
page table global section consisting of upper-level
page table pages. 

Modifications to Global Section Data Structure Table 2
noted as a benefit the ability to reuse existing data
structures and code. Minor modifications were
exacted to the global section data structures so that
they could be used to represent a shared page table
global section. A new flag, SHARED_PTS, was added
to the global section data structures. Coupled with
this change was the requirement that a memory-
resident global section and its shared page table global
section be uniquely linked together. The correspon-
dence between the two sets of global sections is man-
aged by the operating system and is used to locate the
data structures for one global section when the struc-
tures for the other global section are in hand. Figure 7
highlights the changes made to the data structures. 

Creating Shared Page Tables To create a memory-
resident global section, an application calls a system
service routine. No flags or extra arguments are
required to enable the creation of an associated shared
page table global section. 

The design team also provided a means to disable
the creation of the shared page tables in the event that
a user might find shared page tables to be undesirable.
To disable the creation of shared page tables, the
reserved memory registry entry associated with the
memory-resident global section can specify that page
tables are not to be used. Within the system service
routine that creates a memory-resident global section,
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the reserved memory registry is examined for an entry
associated with the named global section. If an entry
exists and it specifies shared page tables, shared page
tables are created. If the entry does not specify shared
page tables, shared page tables are not created. 

If no entry exists for the global section at all, shared
page tables are created. Thus, shared page tables are
created by default if no action is taken to disable their
creation. We believed that most applications would
benefit from shared page tables and thus should be
created transparently by default. 

Once the decision is made to create shared page
tables for the global section, the system service routine
allocates a set of global section data structures for the
shared page table global section. These structures are
initialized in the same manner as their memory-
resident counterparts, and in many cases the fields in
both sets of structures contain identical data. 

Note that on current Alpha platforms, there is one
shared page table page for every 1,024 global section
pages or 8 MB. (The number of shared page table
pages is rounded up to accommodate global sections
that are not even multiples of 8 MB in size.) 

Shared PTEs represent the data within a shared page
table global section and are initialized by the operating
system. Since page table pages are not accessible
through page table space4 until the process maps to
the data, the initialization of the shared page table
pages presented some design issues. To initialize the
shared page table pages, they must be mapped, yet
they are not mapped at the time that the global section
is created. 

A simple solution to the problem was chosen. Each
shared page table page is temporarily mapped to a sys-
tem space virtual page solely for the purposes of initial-
izing the shared PTEs. Temporarily mapping each
page allows the shared page table global section to be
fully initialized at the time it is created. 

An interesting alternative for initializing the pages
would have been to set the upper-level PTEs invalid,
referencing the shared page table global section. The
page fault handler could initialize a shared page table
page when a process accesses a global section page,
thus referencing an invalid page table page. The
shared page table page could then be initialized
through its mapping in page table space. Once the
page is initialized and made valid, other processes 
referencing the same data would incur a global valid
fault for the shared page table page. This design was
rejected due to the additional overhead of faulting
during execution of the application, especially when
the ALLOC option is used for the memory-resident
global section. 

Mapping to a Shared Page Table Global Section Map-
ping to a memory-resident global section that has
shared page tables presented new challenges and con-

straints on the mapping criteria normally imposed by
the virtual address space creation routines. The map-
ping service routines require more stringent mapping
criteria when mapping to a memory-resident global
section that has shared page tables. These require-
ments serve two purposes: 

1. Prevent process private data from being mapped
onto shared page tables. If part of a shared page
table page is unused because the memory-resident
global section is not an even multiple of 8 MB, the
process would normally be allowed to create private
data there. 

2. Accommodate the virtual addressing alignments
required when mapping page tables into a process’
address space. 

For applications that cannot be changed to conform
to these mapping restrictions, a memory-resident
global section with shared page tables can be mapped
using the process’ private page tables. This capability is
also useful when the memory-resident global section is
mapped read-only. This mapping cannot share page
tables with a writable mapping because the access pro-
tection is stored within the shared PTEs. 

Shared Page Table Virtual Regions The virtual region
support added in OpenVMS Alpha version 7.0 was
extended to aid in prohibiting process private pages
from being mapped by PTEs within shared page
tables. Virtual regions are lightweight objects a
process can use to reserve portions of its process 
virtual address space. Reserving address space prevents
other threads in the process from creating address
space in the reserved area, unless they specify the 
handle of that reserved area to the address space cre-
ation routines. 

To control which portion of the address space 
is mapped with shared page tables, the shared page
table attribute was added to virtual regions. To map a
memory-resident global section with shared page
tables, the user must supply the mapping routine with
the name of the appropriate global section and the
region handle of a shared page table virtual region. 

There are two constraints on the size and alignment
of shared page table virtual regions. 

1. The size of a shared page table virtual region must
be an even multiple of bytes mapped by a page table
page. For an 8-KB page system, the size of any
shared page table virtual region is an even multiple
of 8 MB. 

2. The caller can specify a particular starting virtual
address for a virtual region. For shared page table
virtual regions, the starting virtual address must be
aligned to an 8-MB boundary. If the operating 
system chooses the virtual address for the region, it
ensures the virtual address is properly aligned. 
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If either the size or the alignment requirement for a
shared page table virtual region is not met, the service
fails to create the region. 

The size and alignment constraints placed on shared
page table virtual regions keep page table pages from
spanning two different virtual regions. This allows the
operating system to restrict process private mappings
in shared page table regions and shared page table
mappings in other regions by checking the shared
page table’s attribute of the region before starting the
mapping operation. 

Mapping within Shared Page Table Regions The address
space mapped within a shared page table virtual region
also must be page table page aligned. This ensures that
mappings to multiple memory-resident global sec-
tions that have unique sets of shared page tables do
not encroach upon each other. 

The map length is the only argument to the map-
ping system service routines that need not be an even
multiple of bytes mapped by a page table page. This 
is allowed because it is possible for the size of the
memory-resident global section to not be an even
multiple of bytes mapped by a page table page. A
memory-resident global section that fits this length
description will have a portion of its last shared page
table page unused. 

The Reserved Memory Registry 

OpenVMS Alpha VLM support provides a physical
memory reservation system that can be exploited by
VLM applications. The main purpose of this system is
to provide portions of the system’s physical memory
to multiple consumers. When necessary, a consumer
can reserve a quantity of physical addresses in an
attempt to make the most efficient use of system com-
ponents, namely the translation buffer. More efficient
use of the CPU and its peripheral components leads to
increased application performance. 

Alpha Granularity Hint Regions 
A translation buffer (TB) is a CPU component that
caches recent virtual-to-physical address translations
of valid pages. The TB is a small amount of very fast
memory and therefore is only capable of caching a lim-
ited number of translations. Each entry in the TB rep-
resents a single successful virtual-to-physical address
translation. TB entries are purged either when a
request is made by software or when the TB is full and
a more recent translation needs to be cached. 

The Alpha Architecture coupled with software can
help make more effective use of the TB by allowing
several contiguous pages (groups of 8, 64, or 512) to
act as a single huge page. This single huge page is

called a granularity hint region and is composed of
contiguous virtual and physical pages whose respective
first pages are exactly aligned according to the number
of pages in the region. When the conditions for a gran-
ularity hint region prevail, the single huge page is
allowed to consume a single TB entry instead of sev-
eral. Minimizing the number of entries consumed for
contiguous pages greatly reduces turnover within the
TB, leading to higher chances of a TB hit. Increasing
the likelihood of a TB hit in turn minimizes the num-
ber of virtual-to-physical translations performed by
the CPU.5 

Since memory-resident global sections are nonpage-
able, mappings to memory-resident global sections
greatly benefit by exploiting granularity hint regions.
Unfortunately, there is no guarantee that a contiguous
set of physical pages (let alone pages that meet the
alignment criteria) can be located once the system is
initialized and ready for steady-state operations. 

Limiting Physical Memory 
One technique to locate a contiguous set of PFNs on
OpenVMS (previously used on Alpha and VAX plat-
forms) is to limit the actual number of physical pages
used by the operating system. This is accomplished by
setting the PHYSICAL_MEMORY system parameter
to a value smaller than the actual amount of physical
memory available in the system. The system is then
rebooted, and the PFNs that represent higher physical
addresses than that specified by the parameter are allo-
cated by the application. 

This technique works well for a single application
that wishes to allocate or use a range of PFNs not used
by the operating system. Unfortunately, it suffers from
the following problems: 

■ It requires the application to determine the first
page not used by the operating system. 

■ It requires a process running this application to be
highly privileged since the operating system does
not check which PFNs are being mapped. 

■ Since the operating system does not arbitrate access
to the isolated physical addresses, only one applica-
tion can safely use them. 

■ The Alpha Architecture allows for implementations
to support discontiguous physical memory or phys-
ical memory holes. This means that there is no
guarantee that the isolated physical addresses are
successively adjacent. 

■ The PFNs above the limit set are not managed by
the operating system (physical memory data struc-
tures do not describe these PFNs). Therefore, the
pages above the limit cannot be reclaimed by the
operating system once the application is finished
using them unless the system is rebooted. 
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The Reserved Memory Solution 
The OpenVMS reserved memory registry was created
to provide contiguous physical memory for the pur-
poses of further improving the performance of VLM
applications. The reserved memory registry allows the
system manager to specify multiple memory reserva-
tions based on the needs of various VLM applications. 

The reserved memory registry has the ability to
reserve a preallocated set of PFNs. This allows a set of
contiguous pages to be preallocated with the appro-
priate alignment to allow an Alpha granularity hint
region to be created with the pages. It can also reserve
physical memory that is not preallocated. Effectively,
the application creating such a reservation can allocate
the pages as required. The reservation ensures that the
system is tuned to exclude these pages. 

The reserved memory registry can specify a reserva-
tion consisting of prezeroed PFNs. It can also specify
that a reservation account for any associated page
tables. The reservation system allows the system man-
ager to free a reservation when the corresponding
consumer no longer needs that physical memory. 

The memory reserved by the reserved memory reg-
istry is communicated to OpenVMS system tuning
facilities such that the deduction in fluid memory is
noted when computing system parameters that rely on
the amount of physical memory in the system. 

SYSMAN User Interface The OpenVMS Alpha 
SYSMAN utility supports the RESERVED_MEMORY
command for manipulating entries in the reserved
memory registry. A unique character string is specified
as the entry’s handle when the entry is added, modi-
fied, or removed. A size in megabytes is specified for
each entry added. 

Each reserved memory registry entry can have the
following options: preallocated PFNs (ALLOC), zeroed
PFNs, and an allotment for page tables. VLM applica-
tions enter their unique requirements for reserved
memory. For memory-resident global sections, zeroed
PFNs and page tables are usually specified. 

Reserving Memory during System Start-up To ensure
that the contiguous pages can be allocated and that
run-time physical memory allocation routines can be
used, reserved memory allocations occur soon after
the operating system’s physical memory data struc-
tures have been initialized. 

The reserved memory registry data file is read to
begin the reservation process. Information about each
entry is stored in a data structure. Multiple entries
result in multiple structures being linked together in a
descending-order linked list. The list is intentionally
ordered in this manner, so that the largest reservations
are honored first and contiguous memory is not frag-
mented with smaller requests. 

For entries with the ALLOC characteristic, an
attempt is made to locate pages that will satisfy the
largest granularity hint region that fits within the
request. For example, reservation requests that are
larger than 4 MB result in the first page allocated to be
aligned to meet the requirements of a 512-page gran-
ularity hint region. 

The system’s fluid page counter is reduced to
account for the amount of reserved memory specified
in each entry. This counter tracks the number of phys-
ical pages that can be reclaimed from processes or the
system through paging and swapping. Another system-
defined value, minimum fluid page count, is calculated
during system initialization and represents the
absolute minimum number of fluid pages the system
needs to function. Deductions from the fluid page
count are always checked against the minimum fluid
page count to prevent the system from becoming
starved for pages. 

Running AUTOGEN, the OpenVMS system tuning
utility, after modifying the reserved memory registry
allows for proper initialization of the fluid page
counter, the minimum fluid page count, and other sys-
tem parameters, thereby accommodating the change
in reserved memory. AUTOGEN considers entries in
the reserved memory registry before selecting values
for system parameters that are based on the system’s
memory size. Failing to retune the system can lead to
unbootable system configurations as well as poorly
tuned systems. 

Page Tables Characteristic The page table reserved
memory registry characteristic specifies that the
reserved memory allotment for a particular entry
should include enough pages for its page table
requirements. The reserved memory registry reserves
enough memory to account for lower-level page table
pages, although the overall design can accommodate
allotments for page tables at any level. 

The page table characteristic can be omitted if
shared page tables are not desired for a particular
memory-resident global section or if the reserved
memory will be used for another purpose. For exam-
ple, a privileged application such as a driver could call
the kernel-mode reserved memory registry routines
directly to use its reservation from the registry. In this
case, page tables are already provided by the operating
system since the reserved pages will be mapped in
shared system address space. 

Using Reserved Memory Entries are used and
returned to the reserved memory registry using a set
of kernel-mode routines. These routines can be called
by applications running in kernel mode such as the 
system service routines that create memory-resident
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global sections. For an application to create a memory-
resident global section and use reserved memory, the
global section name must exactly match the name of
the reserved memory registry entry. 

After the system service routine has obtained the
reserved memory for the memory-resident global sec-
tion, it calls a reserved memory registry routine again
for the associated shared page table global section. If
page tables were not specified for the entry, the system
service routine does not create a shared page table
global section. 

A side benefit of using the ALLOC option for the
memory-resident global section is that the shared page
tables can be mapped into page table space using gran-
ularity hint regions as well. 

Returning Reserved Memory The memory used by
a memory-resident global section and its associated
shared page table global section is returned to the
reserved memory registry (by calling a kernel-mode
routine) when the global section is deleted. Reserved
memory is only returned when a memory-resident
global section has no more outstanding references.
Preallocated pages are not returned to the system’s
free page list. 

Freeing Reserved Memory Preallocated reserved mem-
ory that is unused or partially used can be freed to the
system’s free page list and added to the system’s fluid
page count. Reserved fluid memory is returned to the
system’s fluid page count only. 

Once an entry’s reserved memory has been freed,
subsequent attempts to use reserved memory with the
same name may be able to use only the FLUID option,
because a preallocated set of pages is no longer set
aside for the memory-resident global section. (If the
system’s fluid page count is large enough to accom-
modate the request, it will be honored.) 

The ability to free unused or partially used reserved
memory registry entries adds flexibility to the manage-
ment of the system. If applications need more mem-
ory, the registry can still be run with the FLUID
option until the system can be rebooted with a larger
amount of reserved memory. A pool of reserved mem-
ory can be freed at system start-up so that multiple
applications can use memory-resident global sections
to a limit specified by the system manager in the
reserved memory registry. 

Reserved Memory Registry and Other Applications
Other OpenVMS system components and applications
may also be able to take advantage of the reserved
memory registry. 

Applications that relied upon modifications to the
PHYSICAL_MEMORY system parameter as a means

of gaining exclusive access to physical memory can
enter kernel mode and call the reserved memory reg-
istry kernel-mode routines directly as an alternative.
Once a contiguous range of PFNs is obtained, the
application can map the pages as before. 

Using and returning reserved memory registry
entries requires kernel-mode access. This is not viewed
as a problem because applications using the former
method (of modifying the PHYSICAL_MEMORY
system parameter) were already privileged. Using the
reserved memory registry solves the problems associ-
ated with the previous approach and requires few code
changes. 

Performance Results 

In a paper describing the 64-bit option for the Oracle7
Relational Database System,1 the author underscores
the benefits realized on a VLM system running the
DIGITAL UNIX operating system. The test results
described in that paper highlight the benefits of being
able to cache large amounts of data instead of resort-
ing to disk I/O. Although the OpenVMS design team
was not able to execute similar kinds of product tests,
we expected to realize similar performance improve-
ments for the following reasons: 

■ More of a VLM application’s hot data is kept resi-
dent instead of paging between memory and sec-
ondary storage. 

■ Application start-up and shut-down times are sig-
nificantly reduced since the page table structures
for the large shared memory object are also shared.
The result is that many fewer page tables need to be
managed and manipulated per process. 

■ Reducing the amount of PTE manipulations results
in reduced lock contention when hundreds of
processes map the large shared memory object. 

As an alternative to product testing, the design team
devised experiments that simulate the simultaneous
start-up of many database server processes. The exper-
iments were specifically designed to measure the 
scaling effects of a VLM system during application
start-up, not during steady-state operation. 

We performed two basic tests. In the first, we used a
7.5-GB, memory-resident global section to measure
the time required for an increasing number of server
processes to start up. All server processes mapped to
the same memory-resident global section using shared
page tables. The results shown in Figure 8 indicate
that the system easily accommodated 300 processes.
Higher numbers of processes run simultaneously
caused increasingly large amounts of system stress due
to the paging of other process data. 
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In another test, we used 300 processes to measure
the time required to map a memory-resident global
section with and without shared page tables. In this
test, the size of global section was varied. Note that the
average time required to start up the server processes
rises at nearly a constant rate when not using shared
page tables. When the global section sizes were 5 GB
and greater, the side effect of paging activity caused
the start-up times to rise more sharply as shown in
Figure 9. 

The same was not true when using shared page
tables. The time required to map the increasing sec-
tion sizes remained constant at just under three sec-
onds. The same experiment on an AlphaServer 8400
system with 28 GB of memory showed identical con-
stant start-up times as the size of the memory-resident
global section was increased to 27 GB. 

Conclusion

The OpenVMS Alpha VLM support available in ver-
sion 7.1 is a natural extension to the 64-bit virtual
addressing support included in version 7.0. The 64-bit
virtual addressing support removed the 4-GB virtual
address space limit and allowed applications to make
the most of the address space provided by Alpha sys-
tems. The VLM support enables database products or
other applications that make significant demands on
physical memory to make the most of large memory
systems by allowing large caches to remain memory
resident. The programming support provided as part
of the VLM enhancements enables applications to take
advantage of both 64-bit virtual addressing and very
large memories in a modular fashion consistent with
the OpenVMS shared memory model. This combina-
tion enables applications to realize the full power of
Alpha VLM systems. 

The Oracle7 Relational Database Management
System for OpenVMS Alpha was modified by Oracle
Corporation to exploit the VLM support described in
this paper. The combination of memory-resident
global sections, shared page tables, and the reserved
memory registry has not only improved application
start-up and run-time performance, but it has also
simplified the management of OpenVMS Alpha VLM
systems. 
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