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Chapter 1

Introduction

OmniORB2 is an Object Request Broker (ORB) that implements the 2.0 specification
of the Common Object Request Broker Architecture (CORBA) [OMG96a]. This user
guide tells you how to use omniORB2 to develop CORBA applications. It assumes a
basic understanding of CORBA.

In this chapter, we give an overview of the main features of omniORB2 and what
you need to do to setup your environment to run omniORB2.

1.1 Features

1.1.1 CORBA 2 compliant

OmniORB2 implements the Internet Inter-ORB Protocol (IIOP). This protocol provides
omniORB2 the means of achieving interoperability with the ORBs implemented by
other vendors. In fact, this is the native protocol used by omniORB2 for the commu-
nication amongst its objects residing in different address spaces. Moreover, the IDL to
C++ language mapping provided by omniORB2 conforms to the latest revision of the
CORBA specification.

1.1.2 Multithreading

OmniORB2 is fully multithreaded. To achieve low IIOP call overhead, unnecessary
call-multiplexing is eliminated. At any time, there is at most one call in-flight in each
communication channel between two address spaces. To do so without limiting the
level of concurrency, new channels connecting the two address spaces are created on
demand and cached when there are more concurrent calls in progress. Each channel
is served by a dedicated thread. This arrangement provides maximal concurrency
and eliminates any thread switching in either of the address spaces to process a call.
Furthermore, to maximise the throughput in processing large call arguments, large
data elements are sent as soon as they are processed while the other arguments are
being marshalled.

1



2 CHAPTER 1. INTRODUCTION

1.1.3 Portability

At ORL, the ability to target a single source tree to multiple platforms is very impor-
tant. This is difficult to achieve if the IDL to C++ mapping for these platforms are
different. We avoid this problem by making sure that only one IDL to C++ mapping is
used. We run several flavours of Unices, Windows NT, Windows 95 and our in-house
developed systems for our own hardware. OmniORB2 have been ported to all these
platforms. The IDL to C++ mapping for these targets are all the same.

OmniORB2 uses real C++ exceptions and nested classes. We stay with the CORBA
specification’s standard mapping as much as possible and do not use the alternative
mappings for C++ dialects. The only exception is the mapping of modules to C++
classes instead of namespaces.

OmniORB2 relies on the native thread libraries to provide the multithreading ca-
pability. A small class library (omnithread [Richardson96a]) is used to encapsulated
the (possibly different) APIs of the native thread libraries. In the application code, it
is recommended but not mandatory to use this class library for thread management.
It should be easy to port omnithread to any platform that either supports the POSIX
thread standard or has a thread package that supports similar capabilities.

1.1.4 Missing features

OmniORB2 is not (yet) a complete implementation of the CORBA core. The following
is a list of the missing features.

� The Typecode and the Any type is not supported. Support for these types will
be added shortly.

� The BOA only support the persistent server activation policy. Other dynamic
activation and deactivation policies are not supported.

� The Dynamic Invocation Interface is not supported.

� The Dynamic Skeleton Interface is not supported.

� OmniORB2 does not has its own Interface Repository.

These features may be implemented in the short to medium term.
It is best to check out the latest status on the omniORB2 home page
(http://www.orl.co.uk/omniORB/omniORB.html ).

1.2 Setting Up Your Environment

After you have unpacked the distribution, read all the README files at the top level
of the directory tree. These files contain essential information on installing, building
and using omniORB2 on the supported platforms.

The following is a checklist of what you have to do:
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1. Setup the naming service. An implementation of the COS Naming Service,
called omniNames, is provided in this distribution. If you want to use the ser-
vice, you have to start it up first. Consult the document “The OMNI Naming
Service” for details. When omniNames starts up, it writes the stringified object
reference for its root context on standard error. This is needed by the omniORB2
runtime. See below for how to configure the runtime. You can also use other
naming service implementations provided that you can obtain the stringified
object reference for its root context.

2. Configure the omniORB2 runtime. At startup the omniORB runtime tries to
read the configuration file omniORB.cfg to obtain the object reference to the
root context of the Naming Service. This object reference is returned by the call
resolve_initial_references("NameService") .

(a) On Unix platforms, omniORB2 looks for the environment variable
OMNIORBCONFIG. If this variable is defined, it contains the pathname of
the omniORB2 configuration file. If the variable is not set, omniORB2 will
use the compiled-in pathname (/etc/omniORB.cfg ) to locate the file.

(b) On Win32 platforms (Windows NT, Windows ’95), omniORB2 first checks
the environment variable (OMNIORBCONFIG) to obtain the pathname of
the configuration file. If this is not set, it then attempts to obtain config-
uration data in the system registry. It searches for the data under the key
HKEYLOCALMACHINEnSOFTWAREnORLnomniORBn2.0

The format of the entry is the word NAMESERVICEfollowed by space and the
stringified IOR all on one line. For example:

NAMESERVICE IOR:00fff71c0000002849444c3a6f6d672e6f72672f436f734e616d696e
672f4e616d696e67436f6e746578743a312e300000000001000000000000002c00010000
00000012776962626c652e776f62626c652e636f6d0004d20000000c34c35a8305a931a2
00000001

Aternatively, the stringified IOR can be placed in the system registry
on Win32 platforms, in the (string) value NAMESERVICE, under the key
HKEYLOCALMACHINEnSOFTWAREnORLnomniORBn2.0 .

1.3 Compiler Flags

You should be able to build the whole distribution using the makefiles provided. The
makefiles are configured to supply a set of preprocessor defines that are necessary to
compile omniORB2 programs. The preprocessor defines are needed because the same
set of header files are used for all platforms. If you are to incorporate omniORB2 into
your own development environment, you must specify the following preprocessor
defines to identify a target platform:
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Platform CPP defines
Sun Solaris 2.5 __sparc__ __sunos__ __OSVERSION__=5
Digital Unix 3.2 __alpha__ __osf1__ __OSVERSION__=3
HPUX 10.x __hppa__ __hpux__ __OSVERSION__=10
IBM AIX 4.x __aix__ __powerpc__ __OSVERSION__=4
Linux 2.0 (x86) __x86__ __linux__ __OSVERSION__=2
Linux 2.0 (alpha) __alpha__ __linux__ __OSVERSION__=2
Windows/NT 3.5 __x86__ __NT__ __OSVERSION__=3 __WIN32__
Windows/NT 4.0 __x86__ __NT__ __OSVERSION__=4 __WIN32__
Windows/95 __x86__ __WIN32__
OpenVMS 6.x (alpha) __alpha__ __vms __OSVERSION__=6
OpenVMS 6.x (vax) __vax__ __vms __OSVERSION__=6
ATMos 4.0 __arm__ __atmos__ __OSVERSION__=4
NextStep 3.x __m68k__ __nextstep__ __OSVERSION__=3

You should also specify the preprocessor defines (e.g. -D REENTRANT) for com-
piling multithreaded programs.

In a single source multi-target environment, you can put the preprocessor defines
as the command-line arguments for the compiler. Alternately, you could create a sit-
edef.h file in the same directory as omniORB2/CORBA.h. Write into the file the ap-
propriate set of preprocessor defines and add #include <omniORB2/sitedef.h>
at the beginning of omniORB2/CORBAsysdep.h .



Chapter 2

The Basics

In this chapter, we go through three examples to illustrate the practical steps to use
omniORB2. By going through the source code of each example, the essential concepts
and APIs are introduced. If you have no previous experience with using CORBA, you
should study this chapter in detail. There are pointers to other essential documents
you should be familiar with.

If you have experience with using other ORBs, you should still go through this
chapter because it provides important information about the features and APIs that
are necessarily omniORB2 specific. For instance, the object implementation skeleton
is covered in section 2.4.2.

2.1 The Echo Object Example

Our example is an object which has only one method. The method simply echos the
argument string. We have to:

1. define the object interface in IDL;

2. use the IDL compiler to generate the stub code1;

3. provide the object implementation;

4. write the client code.

The source code of this example is included in the last section of this chap-
ter. A makefile written to be used under the OMNI Development Environment
(ODE) [Richardson96b] is also included.

2.2 Specifying the Echo interface in IDL

We define an object interface, called Echo, as follows:

1The stub code is the C++ code that provides the object mapping as defined in the CORBA 2.0 speci-
fication.

5
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interface Echo {
string echoString(in string mesg);

};

If you are new to IDL, you can learn about its syntax in Chapter 3 of the CORBA
specification 2.0 [OMG96a].

For the moment, you only need to know that the interface consists of a single
operation, echoString, which takes a string as an argument and returns a copy of the
same string.

The interface is written in a file, called echo.idl . If you are using ODE, all IDL
files should have the same extension- .idl and should be placed in the idl directory
of your export tree. This is done so that the stub code will be generated automatically
and kept up-to-date with your IDL file.

For simplicity, the interface is defined in the global IDL namespace. This practice
should be avoided for the sake of object reusuability. If every CORBA developer de-
fines their interfaces in the global IDL namespace, there is a danger of name clashes
between two independently defined interfaces. Therefore, it is better to qualify your
interfaces by defining them inside module names. Of course, this does not eliminate
the chance of a name clash unless some form of naming convention is agreed globally.
Nevertheless, a well-chosen module name can help a lot.

2.3 Generating the C++ stubs

From the IDL file, we use the IDL compiler to produce the C++ mapping of the in-
terface. The IDL compiler for omniORB2 is called omniidl2 . Given the IDL file,
omniidl2 produces two stub files: a C++ header file and a C++ source file. For ex-
ample, from the file echo.idl , the following files are produced:

� echo.hh

� echoSK.cc

If you are using ODE, you don’t need to invoke omniidl2 explicitly. In the example
file dir.mk , we have the following line:

CORBA_INTERFACES = echo

That is all we need to instruct ODE to generate the stubs. Remember, you won’t
find the stubs in your working directory because all stubs are written into the stub
directory at the top level of your build tree.
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2.4 A Quick Tour of the C++ stubs

The C++ stubs conform to the mapping defined in the CORBA 2.0 specification (chap-
ter 16-18). It is important to understand the mapping before you start writing any
serious CORBA applications.

Before going any further, it is worth knowing what the mapping looks like.

2.4.1 Object Reference

The use of an object interface denotes an object reference. For the example interface
Echo, the C++ mapping for its object reference is Echo ptr . The type is defined in
echo.hh. The relevant section of the code is reproduced below:

class Echo;
typedef Echo* Echo_ptr;

class Echo : public virtual omniObject, public virtual CORBA::Object {
public:

virtual char * echoString ( const char * mesg ) = 0;
static Echo_ptr _nil();
static Echo_ptr _duplicate(Echo_ptr);
static Echo_ptr _narrow(CORBA::Object_ptr);

... // methods generated for internal use
};

In a compliant application, the operations defined in an object interface should
only be invoked via an object reference. This is done by using arrow (“!”) on an
object reference. For example, the call to the operation echoString would be written
as obj !echoString(mesg) .

It should be noted that the concrete type of an object reference is opaque, i.e. you
must not make any assumption about how an object reference is implemented. In
our example, even though Echo ptr is implemented as a pointer to the class Echo , it
should not be used as a C++ pointer, i.e. conversion to void*, arithmetic operations,
and relational operations, including test for equality using operation== must not be
performed on the type.

In addition to echoString , the mapping also defines three static member func-
tions in the class Echo: nil , duplicate , and narrow . Note that these are opera-
tions on an object reference.

The nil function returns a nil object reference of the Echo interface. The following
call is guaranteed to return TRUE:

CORBA::Boolean true_result = CORBA::is_nil(Echo::_nil());
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Remember, CORBA::is nil() is the only compliant way to check if an object
reference is nil. You should not use the equality operator==.

The duplicate function returns a new object reference of the Echo interface.
The new object reference can be used interchangeably with the old object reference to
perform an operation on the same object.

All CORBA objects inherit from the generic object CORBA::Object .
CORBA::Object ptr is the object reference for CORBA::Object . Any object
reference is therefore conceptually inherited from CORBA::Object ptr . In other
words, an object reference such as Echo ptr can be used in places where a
CORBA::Object ptr is expected.

The narrow function takes an argument of the type CORBA::Object ptr and
returns a new object reference of the Echo interface. If the actual (runtime) type of the
argument object reference can be widened to Echo ptr , narrow will return a valid
object reference. Otherwise it will return a nil object reference.

To indicate that an object reference will no longer be accessed, you can call the
CORBA::release operation. Its signature is as follows:

class CORBA {
static void release(CORBA::Object_ptr obj);
... // other methods

};

You should not use an object reference once you have called CORBA::release .
This is because the associated resources may have been deallocated. Notice that we
are referring to the resources associated with the object reference and not the object
implementation. Here is a concrete example, if the implementation of an object re-
sides in a different address space, then a call to CORBA::release will only caused
the resources associated with the object reference in the current address space to be
deallocated. The object implementation in the other address space is unaffected.

As described above, the equality operator== should not be used on object ref-
erences. To test if two object references are equivalent, the member function
is equivalent of the generic object CORBA::Object can be used. Here is an ex-

ample of its usage:

Echo_ptr A;
... // initialised A to a valid object reference
Echo_ptr B = A;
CORBA::Boolean true_result = A->_is_equivalent(B);
// Note: the above call is guaranteed to be TRUE

You have now been introduced to most of the operations that can be invoked
via Echo ptr . The generic object CORBA::Object provides a few more operations
and all of them can be invoked via Echo ptr . These operations deal mainly with
CORBA’s dynamic interfaces. You do not have to understand them in order to use the
C++ mapping provided via the stubs. For details, please read the CORBA specifica-
tion [OMG96a] chapter 17.
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Since object references must be released explicitly, their usage is prone to error and
can lead to memory leakage. The mapping defines the object reference variable type
to make life easier. In our example, the variable type Echo var is defined2.

The Echo var is more convenient to use because it will automatically release its
object reference when it is deallocated or when assigned a new object reference. For
many operations, mixing data of type Echo var and Echo ptr is possible without
any explicit operations or castings 3. For instance, the operation echoString can be
called using the arrow (“!”) on a Echo var , as one can do with a Echo ptr .

The usage of Echo var is illustrated below:

Echo_var a;
Echo_ptr p = ... // somehow obtain an object reference

a = p; // a assumes ownership of p, must not use p anymore

Echo_var b = a; // implicit _duplicate

p = ... // somehow obtain another object reference

a = Echo::_duplicate(p); // release old object reference
// a now holds a copy of p.

2.4.2 Object Implementation

Unlike the client side of an object, i.e. the use of object references, the CORBA spec-
ification 2.0 deliberately leave many of the necessary functionalities to implement an
object unspecified. As a consequence, it is very unlikely the implementation code of
an object on top of two different ORBs can be identical. However, most of the code are
expected to be portable. In particular, the body of an operation implementation can
normally be ported with no or little modification.

OmniORB2 uses C++ inheritance to provide the skeleton code for object imple-
mentation. For each object interface, a skeleton class is generated. In our example,
the skeleton class sk Echo is generated for the Echo IDL interface. An object imple-
mentation can be written by creating an implementation class that derives from the
skeleton class.

The skeleton class sk Echo is defined in echo.hh . The relevant section of the
code is reproduced below.

class _sk_Echo : public virtual Echo {
public:

_sk_Echo(const omniORB::objectKey& k);
virtual char * echoString ( const char * mesg ) = 0;
Echo_ptr _this();

2In omniORB2, all object reference variable types are instantiated from the template type
CORBA ObjRef Var.

3However, the implementation of the type conversion operator() between Echo var and Echo ptr
varies slightly among different C++ compilers, you may need to do an explicit casting when the compiler
complains about the conversion being ambiguous.
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void _obj_is_ready(BOA_ptr);
void _dispose();
BOA_ptr _boa();
omniORB::objectKey _key();
... // methods generated for internal use

};

The code fragment shows the only member functions that can be used in the ob-
ject implementation code. Other member functions are generated for internal use only.
Unless specified otherwise, the description below is omniORB2 specific. The func-
tions are:

echoString it is through this abstract function that an implementation class provides
the implementation of the echoString operation. Notice that its signature is
the same as the echoString function that can be invoked via the Echo ptr
object reference. The signature of this function is specified by the CORBA
specification.

this this function returns an object reference for the target object. The returned value
must be deallocated via CORBA::release . See 2.7 for an example of how this
function is used.

obj is ready this function tells the Basic Object Adaptor4 (BOA) that the object is
ready to serve. Until this function is called, the BOA would not serve any in-
coming calls to this object. See 2.7 for an example of how this function is used.

dispose this function tells the BOA to dispose of the object. The BOA will stop serv-
ing incoming calls of this object and remove any resources associated with it.
See 2.7 for an example of how this function is used.

boa this function returns a reference to the BOA that serves this object.

key this function returns the key that the ORB used to identify this object. The
type omniORB::objectKey is opaque to application code. The function
omniORB::keyToOctetSequence can be used to convert the key to a se-
quence of octets.

2.5 Writing the object implementation

You define an implementation class to provide the object implementation. There is
little constraint on how you design your implementation class except that it has to in-
herit from the stubs’ skeleton class and to implement all the abstract functions defined
in the skeleton class. Each of these abstract functions corresponds to an operation of
the interface. They are hooks for the ORB to perform upcalls to your implementation.

Here is a simple implementation of the Echo object.

4The interface of a BOA is described in chapter 8 of the CORBA specification.
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class Echo_i : public virtual _sk_Echo {
public:

Echo_i() {}
virtual ˜Echo_i() {}
virtual char * echoString(const char *mesg);

};

char *
Echo_i::echoString(const char *mesg) {

char *p = CORBA::string_dup(mesg);
return p;

}

There are three points to note here:

Storage Responsibilities A string, which is used as an IN argument and the return
value of echoString , is a variable size data type. Other examples of variable
size data types include sequences, type “any”, etc. For these data types, you
must be clear about who’s responsibility to allocate and release their associated
storage. As a rule of thumb, the client (or the caller to the implementation func-
tions) owns the storage of all IN arguments, the object implementation (or the
callee) must copy the data if it wants to retain a copy. For OUT arguments and
return values, the object implementation allocates the storage and passes the
ownership to the client. The client must release the storage when the variables
will no longer be used. For details, please refer to Table 24-27 of the CORBA
specification.

Multi-threading As omniORB2 is fully multithreaded, multiple threads may perform
the same upcall to your implementation concurrently. It is up to your implemen-
tation to synchronise the threads’ accesses to shared data. In our simple exam-
ple, we have no shared data to protect so no thread synchronisation is necessary.

Instantiation You must not instantiate an implementation as automatic variables. In-
stead, you should always instantiate an implementation using the new operator,
i.e. its storage is allocated on the heap. The reason behind this restriction will
become clear in section 2.7.

2.6 Writing the client

Here is an example of how a Echo ptr object reference is used.

void
hello(CORBA::Object_ptr obj)
{

Echo_var e = Echo::_narrow(obj); // line 1

if (CORBA::is_nil(e)) { // line 2
cerr << "hello: cannot invoke on a nil object reference.\n" << endl;
return;

}
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CORBA::String_var src = (const char*) "Hello!"; // line 3
CORBA::String_var dest; // line 4

dest = e->echoString(src); // line 5

cerr << "I said,\"" << src << "\"."
<< " The Object said,\"" << dest <<"\"" << endl;

}

Briefly, the function hello accepts a generic object reference. The object reference
(obj ) is narrowed to Echo ptr . If the object reference returned by Echo:: narrow
is not nil, the operation echoString is invoked. Finally, both the argument to and
the return value of echoString are printed to cerr.

The example also illustrates how T var types are used. As it was explained in the
previous section, T var types take care of storage allocation and release automatically
when variables of the type are assigned to or when the variables go out of scope.

In line 1, the variable e takes over the storage responsibility of the object reference
returned by Echo:: narrow . The object reference is released by the destructor of
e. It is called automatically when the function returns. Line 2 and 5 shows how a
Echo var variable is used. As said earlier, Echo var type can be used interchange-
ably with Echo ptr type.

The argument and the return value of echoString are stored in
CORBA::String var variable src and dest respectively. The strings managed by
the variables are deallocated by the destructor of CORBA::String var . It is called
automatically when the function returns. Line 5 shows how CORBA::String var
variables are used. They can be used in place of a string (for which the mapping
is char* )5. As used in line 3, assigning a constant string (const char* ) to a
CORBA::String var causes the string to be copied. On the otherhand, assigning a
char* to a CORBA::String var , as used in line 5, causes the latter to assume the
ownership of the string6.

Under the C++ mapping, T var types are provided for all the non-basic data types.
It is obvious that one should use automatic variables whenever possible both to avoid
memory leak and to maximise performance. However, when one has to allocate data
items on the heap, it is a good practice to use the T var types to manage the heap
storage.

2.7 Example 1 - Colocated Client and Implementation

Having introduced the client and the object implementation, we can now describe
how to link up the two via the ORB. In this section, we describe an example in which
both the client and the object implementation are in the same address space. In the
next two sections, we shall describe the case where the two are in different address
spaces.

5A conversion operator() of CORBA::String var converts a CORBA::String var to a char*.
6Please refer to the CORBA specification 16.7 for the details of the String var mapping. Other T var

types are also covered in chapter 16.
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The code for this example is reproduced below:

int
main(int argc, char **argv)
{

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2"); // line 1
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA"); // line 2

Echo_i *myobj = new Echo_i(); // line 3
myobj->_obj_is_ready(boa); // line 4

boa->impl_is_ready(0,1); // line 5

Echo_ptr myobjRef = myobj->_this(); // line 6
hello(myobjRef); // line 7
CORBA::release(myobjRef); // line 8

myobj->_dispose(); // line 9
return 0;

}

The example illustrates several important interactions among the ORB, the object
implementation and the client. Here are the details:

2.7.1 ORB/BOA initialisation

line 1 The ORB is initialised by calling the CORBA::ORBinit function. The func-
tion uses the 3rd argument to determine which ORB should be returned. To
use omniORB2, this argument must either be “omniORB2” or NULL. If it is
NULL, there must be an argument, -ORBid “omniORB2”, in argv . Like any
command-line arguments understood by the ORB, it will be removed from argv
when CORBA::ORBinit returns. Therefore, an application is not required to
handle any command-line arguments it does not understand. If the ORB identi-
fier is not “omniORB2”, the initialisation will fail and a nil ORBptr will be re-
turned. If supplied, omniORB2 also reads the configuration file omniORB.cfg .
Among other things, the file provides a list of initial object references. One ex-
ample of these object references is the naming service. Its use will be discussed
in section 2.9.1. If any error occurs during the processing of the configuration
file, the system exception CORBA::INITIALIZE is raised.

line 2 The BOA is initialised by calling the ORB’s BOAinit . The 3rd argument
must either be “omniORB2 BOA” or NULL. If it is NULL, then argv must con-
tain an argument, -BOAid “omniORB2 BOA”. If the BOA identifier is not “om-
niORB2 BOA”, the initialisation will fail and a nil BOA ptr will be returned.
Like ORBinit , any command-line arguments understood by BOAinit will be
removed from argv .

2.7.2 Object initialisation

line 3 An instance of the Echo object is initialised using the new operator.
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line 4 The object’s obj is ready is called. This function informs the BOA that this
object is ready to serve. Until this function is called, the BOA will not accept any
invocation on the object and will not perform any upcall to the object.

line 5 The BOA’s impl is ready is called. This function tells the BOA the imple-
mentation is ready. After this call, the BOA will accept IIOP requests from other
address spaces. There are 2 points to note here:

1. boa!impl is ready can be called any time after BOAinit is called (line
2). In other words, object instances can be initialised and advertised to the
BOA before or after this function is called.

2. The 2nd argument7 to impl is ready tells the ORB whether this call
should be non-blocking. The default value of this argument is FALSE(0)
and the call will block indefinitely within the ORB. If there are more things
the main thread should do after it calls impl is ready , as it is the case
in this example, the non-blocking option (TRUE=1) should be specified.
Whether the main thread blocks in this call or not, the ORB is not affected
because its functions are provided by other threads spawned internally.
Notice that the signature of impl is ready in the CORBA specification
does not have the 2nd argument8. Therefore, calling impl is ready with
the non-blocking option is omniORB2 specific.

2.7.3 Client invocation

line 6 The object reference is obtained from the implementation by calling this .
Like any object reference, the return value of this must be released by
CORBA::release when it is no longer needed.

line 7 Call hello with this object reference. The argument is widened implicitly to
the generic object reference CORBA::Object ptr .

line 8 Release the object reference.

One of the important characteristic of an object reference is that it is completely lo-
cation transparent. A client can invoke on the object using its object reference without
any need to know whether the object is colocated in the same address space or resided
in a different address space.

In case of colocated client and object implementation, omniORB2 is able to short-
circuit the client calls to direct calls on the implementation methods. The cost of an
invocation is reduced to that of a function call. This optimisation is applicable not
only to object references returned by the this function but to any object references
that are passed around within the same address space or received from other address
spaces via IIOP calls.

7The 1st argument is a pointer to the implementation definition and is always ignored by omniORB2.
8The CORBA specification does not specify when impl is ready should return. Many ORB vendors

choose to implement impl is ready as blocking until a certain time-out value is exceeded. In a single
threaded implementation this is necessary to give the ORB the time to serve incoming requests.



2.8. EXAMPLE 2 - DIFFERENT ADDRESS SPACES 15

2.7.4 Object disposal

line 9 To dispose of an object implementation and release all the resources associated
with it, the dispose function is called. In fact, this is the only clean way to
get rid of an object implementation. Even though the object is created using
the new operator in the application code, the application should never call the
delete operator on the object directly.

Once an application calls dispose on an object implementation, the pointer to
the object should not be used any more. At the time the dispose call is made, there
may be other threads invoking on the object, omniORB2 ensures that all these calls
are completed before removing the object from its internal tables and releasing the
resources associated with it. The storage associated with the object is released by
omniORB2 using the delete operator. This is why all object implementation should be
initialised using the new operator (section 2.5).

The disposal of an object implementation by omniORB2 may also be deferred
when colocated clients continue to hold on to copies of the object’s reference9. This
behavior is to prevent the short-circuited calls from the clients to fail unpredictably.

To summarise, an application can make no assumption as to when the object is
disposed by omniORB2 after the dispose call returns. If it is necessary to have
better control on when to stop serving incoming requests, the work should be done
by the object implementation itself, such as by keeping track of the current serving
state.

2.8 Example 2 - Different Address Spaces

In this example, the client and the object implementation reside in two different ad-
dress spaces. The code of this example is almost the same as the previous example.
The only difference is the extra work need to be done to pass the object reference from
the object implementation to the client.

The simplest (and quite primitive) way to pass an object reference between two
address spaces is to produce a stringified version of the object reference and to pass
this string to the client as a command-line argument. The string is then converted by
the client into a proper object reference. This method is used in this example. In the
next example, we shall introduce a better way of passing the object reference using
the COS Naming Service.

2.8.1 Object Implementation: Generating a Stringified Object Reference

The main function of the object implementation side is reproduced below. The full
listing (eg2 impl.cc ) can be found at the end of this chapter.

int
main(int argc, char **argv)

9Object references held by clients in other address spaces will not prevent the object implementation
from being disposed of. If these clients invoke on the object after it is disposed, the system exception
INV OBJREF is raised.



16 CHAPTER 2. THE BASICS

{
CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA");

Echo_i *myobj = new Echo_i();
myobj->_obj_is_ready(boa);

{
Echo_var myobjRef = myobj->_this();
CORBA::String_var p;

p = orb->object_to_string(myobjRef); //line 1

cerr << "’" << (char*)p << "’" << endl;
}

boa->impl_is_ready(); // block here indefinitely
// See the explanation in example 1

return 0;
}

The stringified object reference is obtained by calling the ORB’s function
object to string (line 1). This is a sequence starting with the signature “IOR:”

and followed by a hexadecimal string. All CORBA 2.0 compliant ORBs are able to
convert the string into its internal representation of a so-called Interoperable Object
Reference (IOR). The IOR contains the location information and a key to uniquely
identify the object implementation in its own address space10. From the IOR, an ob-
ject reference can be constructed.

2.8.2 Client: Using a Stringified Object Reference

The stringified object reference is passed to the client as a command-line argument.
The client uses the ORB’s function string to object to convert the string into a
generic object reference (CORBA::Object ptr ). The relevant section of the code is
reproduced below. The full listing (eg2 clt.cc ) can be found at the end of this chap-
ter.

try {
CORBA::Object_var obj = orb->string_to_object(argv[1]);
hello(obj);

}
catch(CORBA::COMM_FAILURE& ex) {

... // code to handle communication failure
}

2.8.3 Catching System Exceptions

When omniORB2 detects an error condition, it may raise a system exception. The
CORBA specification defines a series of exceptions covering most of the error condi-
tions that an ORB may encounter. The client may choose to catch these exceptions

10Notice that the object key is not globally unique across address spaces.
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and recover from the error condition11. For instance, the code fragment, shown in sec-
tion 2.8.2, catches the system exception COMM FAILURE which indicates that com-
munication with the object implementation in another address space has failed.

All system exceptions inherit from the class CORBA::SystemException . With
compilers that support RTTI1213, a single catch CORBA::SystemException will
catch all the different system exceptions thrown by omniORB2.

When omniORB2 detects an internal inconsistency that is most likely to be caused
by a bug in the runtime, it raises the exception omniORB::fatalException . When
this exception is raised, it is not sensible to proceed with any operation that involves
the ORB’s runtime. It is best to exit the program immediately. The exception structure
carries by omniORB::fatalException contains the exact location (the file name
and the line number) where the exception is raised. You are strongly encourage to file
a bug report and point out the location.

2.8.4 Lifetime of an Object Implementation

It may be obvious but it has to stated that an object implementation exists only for the
duration of the process’s lifetime. When the same program is run again, a different
instance of the object implementation is created. More significantly, the IOR, and
hence the object reference, of this instance is different from that of the previous
run.

For instance, if you look at the stringified object reference produced by the pro-
gram eg2 impl in different runs, they are all different. The implication is that you
cannot store away the stringified object reference and expect to be able to use it again
later when the original program run has terminated.

For system services and other applications, it may be desirable to have “persis-
tent” object implementations. The objects are “persistent” in the sense that they can
be contacted using the same IOR when they are instantiated in different program runs.
To provide this functionality, omniORB2 needs to be provided with two pieces of in-
formation: the (network) location and the object key. The details of how this can be
done will be described in the later part of this manual.

Alternatively, an indirection from textual pathnames to object references can be
used. Applications can register object implementations at runtime to a naming ser-
vice and bind them to fixed pathnames. Clients can bind to the object implementa-
tions at runtime by asking the naming service to resolve the pathnames to the object
references. CORBA defines a naming service, which is a component of the Common
Object Services (COS) [OMG96b], that can be used for this purpose. The next section
describes an example of how to use the COS Naming Service.

11If a system exception is not caught, the C++ runtime will call the terminate function. This function
is defaulted to abort the whole process and on some system will cause a core file to be produced.

12Run Time Type Identification
13A noticeable exception is the GNU C++ compiler (version 2.7.2). It doesn’t support RTTI unless the

compilation flag -frtti is specified. The omniORB2 runtime is not compiled with the -frtti flag. It is said
that RTTI will be properly supported in the upcoming version 2.8.
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2.9 Example 3 - Using the COS Naming Service

In this example, the object implementation uses the COS Naming Service [OMG96b]
to pass on the object reference to the client. This method is by-far more practical
than using stringified object references. The full listing of the object implementation
(eg3 impl.cc ) and the client (eg3 clt.cc ) can be found at the end of this chapter.

The object reference is bound to the pathname “test/Echo”14. The pathname con-
sists of the context test and the object name Echo. Both the context and the object name
has an attribute kind. This attribute is a string that is intended to be used to describe
the name in a syntax-independent way. The naming service does not interpret, assign,
or manage these values. However both the name and the kind attribute must match
for a name lookup to succeed. In this example, the kind values for test and Echo are
chosen to be “my context” and “Object” respectively. This is an arbitrary choice for
there is no standardised set of kind values.

2.9.1 Obtaining the Root Context Object Reference

The initial contact with the Naming Service can be established via what we called the
root context. The object reference to the root context is provided by the ORB and can be
obtained by calling resolve initial references . The following code fragment
shows how it is used:

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");

CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");

CosNaming::NamingContext_var rootContext;
rootContext = CosNaming::NamingContext::_narrow(initServ);

Remember, omniORB2 constructs its internal list of initial references at
initialisation time using the information provided in the configuration file
omniORB.cfg . If this file is not present, the internal list will be empty and
resolve initial references will raise a CORBA::ORB::InvalidName exception.

2.9.2 The Naming Service Interface

It is beyond the scope of this chapter to describe in detail the Naming Service interface.
You should consult the CORBAservices specification [OMG96b] (chapter 3). The code
listed in eg3 impl.cc and eg3 clt.cc are good examples of how the service can be
used. Please spend time to study the examples carefully.

14A pathname, or in the Naming Service’s terminology- a compound name, is a sequence of textual
names. Each name component except the last one is bound to a naming context. A naming context is
analogous to a directory in a filing system, it can contain names of object references or other naming
contexts. The last name component is bound to an object reference. Note: ’/’ is purely a notation to
separate two components in the pathname. It does not appear in the compound name that is registered
with the Naming Service.
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2.10 Source Listing

2.10.1 echo i.cc

// echo_i.cc - This source code demonstrates an implmentation of the
// object interface Echo. It is part of the three examples
// used in Chapter 2 "The Basics" of the omniORB2 user guide.
//
#include <string.h>
#include "echo.hh"

class Echo_i : public virtual _sk_Echo {
public:

Echo_i() {}
virtual ˜Echo_i() {}
virtual char * echoString(const char *mesg);

};

char *
Echo_i::echoString(const char *mesg) {

char *p = CORBA::string_dup(mesg);
return p;

}
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2.10.2 greeting.cc

// greeting.cc - This source code demonstrates the use of an object
// reference by a client to perform an operation on an
// object. It is part of the three examples used
// in Chapter 2 "The Basics" of the omniORB2 user guide.
//
#include <iostream.h>
#include "echo.hh"

void
hello(CORBA::Object_ptr obj)
{

Echo_var e = Echo::_narrow(obj);

if (CORBA::is_nil(e)) {
cerr << "hello: cannot invoke on a nil object reference.\n" << endl;
return;

}

CORBA::String_var src = (const char*) "Hello!";
CORBA::String_var dest;

dest = e->echoString(src);

cerr << "I said,\"" << src << "\"."
<< " The Object said,\"" << dest <<"\"" << endl;

}
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2.10.3 eg1.cc

// eg1.cc - This is the source code of example 1 used in Chapter 2
// "The Basics" of the omniORB2 user guide.
//
// In this example, both the object implementation and the
// client are in the same process.
//
// Usage: eg1
//
#include <iostream.h>
#include "echo.hh"

#include "echo_i.cc"
#include "greeting.cc"

int
main(int argc, char **argv)
{

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA");

Echo_i *myobj = new Echo_i();
// Note: all implementation objects must be instantiated on the
// heap using the new operator.

myobj->_obj_is_ready(boa);
// Tell the BOA the object is ready to serve.
// This call is omniORB2 specific.
//
// This call is equivalent to the following call sequence:
// Echo_ptr myobjRef = myobj->_this();
// boa->obj_is_ready(myobjRef);
// CORBA::release(myobjRef);

boa->impl_is_ready(0,1);
// Tell the BOA we are ready and to return immediately once it has
// done its stuff. It is omniORB2 specific to call impl_is_ready()
// with the extra 2nd argument- CORBA::Boolean NonBlocking,
// which is set to TRUE (1) in this case.

Echo_ptr myobjRef = myobj->_this();
// Obtain an object reference.
// Note: always use _this() to obtain an object reference from the
// object implementation.

hello(myobjRef);

CORBA::release(myobjRef);
// Dispose of the object reference.

myobj->_dispose();
// Dispose of the object implementation.
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// This call is omniORB2 specific.
// Note: *never* call the delete operator or the dtor of the object
// directly because the BOA needs to be informed.
//
// This call is equivalent to the following call sequence:
// Echo_ptr myobjRef = myobj->_this();
// boa->dispose(myobjRef);
// CORBA::release(myobjRef);

return 0;
}
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2.10.4 eg2 impl.cc

// eg2_impl.cc - This is the source code of example 2 used in Chapter 2
// "The Basics" of the omniORB2 user guide.
//
// This is the object implementation.
//
// Usage: eg2_impl
//
// On startup, the object reference is printed to cerr as a
// stringified IOR. This string should be used as the argument to
// eg2_clt.
//
#include <iostream.h>
#include "omnithread.h"
#include "echo.hh"

#include "echo_i.cc"

int
main(int argc, char **argv)
{

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA");

Echo_i *myobj = new Echo_i();
myobj->_obj_is_ready(boa);

{
Echo_var myobjRef = myobj->_this();
CORBA::String_var p = orb->object_to_string(myobjRef);
cerr << "’" << (char*)p << "’" << endl;

}

boa->impl_is_ready();
// Tell the BOA we are ready. The BOA’s default behaviour is to block
// on this call indefinitely.

return 0;
}
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2.10.5 eg2 clt.cc

// eg2_clt.cc - This is the source code of example 2 used in Chapter 2
// "The Basics" of the omniORB2 user guide.
//
// This is the client. The object reference is given as a
// stringified IOR on the command line.
//
// Usage: eg2_clt <object reference>
//
#include <iostream.h>
#include "echo.hh"

#include "greeting.cc"

extern void hello(CORBA::Object_ptr obj);

int
main (int argc, char **argv)
{

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA");

if (argc < 2) {
cerr << "usage: eg2_clt <object reference>" << endl;
return 1;

}

try {
CORBA::Object_var obj = orb->string_to_object(argv[1]);
hello(obj);

}
catch(CORBA::COMM_FAILURE& ex) {

cerr << "Caught system exception COMM_FAILURE, unable to contact the "
<< "object." << endl;

}
catch(omniORB::fatalException& ex) {

cerr << "Caught omniORB2 fatalException. This indicates a bug is caught "
<< "within omniORB2.\nPlease send a bug report.\n"
<< "The exception was thrown in file: " << ex.file() << "\n"
<< " line: " << ex.line() << "\n"
<< "The error message is: " << ex.errmsg() << endl;

}
catch(...) {

cerr << "Caught a system exception." << endl;
}

return 0;
}
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2.10.6 eg3 impl.cc

// eg3_impl.cc - This is the source code of example 3 used in Chapter 2
// "The Basics" of the omniORB2 user guide.
//
// This is the object implementation.
//
// Usage: eg3_impl
//
// On startup, the object reference is registered with the
// COS naming service. The client uses the naming service to
// locate this object.
//
// The name which the object is bound to is as follows:
// root [context]
// |
// text [context] kind [my_context]
// |
// Echo [object] kind [Object]
//

#include <iostream.h>
#include "omnithread.h"
#include "echo.hh"

#include "echo_i.cc"

static CORBA::Boolean bindObjectToName(CORBA::ORB_ptr,CORBA::Object_ptr);

int
main(int argc, char **argv)
{

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA");

Echo_i *myobj = new Echo_i();
myobj->_obj_is_ready(boa);

{
Echo_var myobjRef = myobj->_this();
if (!bindObjectToName(orb,myobjRef)) {

return 1;
}

}

boa->impl_is_ready();
// Tell the BOA we are ready. The BOA’s default behaviour is to block
// on this call indefinitely.

return 0;
}
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static
CORBA::Boolean
bindObjectToName(CORBA::ORB_ptr orb,CORBA::Object_ptr obj)
{

CosNaming::NamingContext_var rootContext;

try {
// Obtain a reference to the root context of the Name service:
CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");

// Narrow the object returned by resolve_initial_references()
// to a CosNaming::NamingContext object:
rootContext = CosNaming::NamingContext::_narrow(initServ);
if (CORBA::is_nil(rootContext))

{
cerr << "Failed to narrow naming context." << endl;
return 0;

}
}
catch(CORBA::ORB::InvalidName& ex) {

cerr << "Service required is invalid [does not exist]." << endl;
return 0;

}

try {
// Bind a context called "test" to the root context:

CosNaming::Name contextName;
contextName.length(1);
contextName[0].id = (const char*) "test"; // string copied
contextName[0].kind = (const char*) "my_context"; // string copied
// Note on kind: The kind field is used to indicate the type
// of the object. This is to avoid conventions such as that used
// by files (name.type -- e.g. test.ps = postscript etc.)

CosNaming::NamingContext_var testContext;
try {

// Bind the context to root, and assign testContext to it:
testContext = rootContext->bind_new_context(contextName);

}
catch(CosNaming::NamingContext::AlreadyBound& ex) {

// If the context already exists, this exception will be raised.
// In this case, just resolve the name and assign testContext
// to the object returned:
CORBA::Object_var tmpobj;
tmpobj = rootContext->resolve(contextName);
testContext = CosNaming::NamingContext::_narrow(tmpobj);
if (CORBA::is_nil(testContext)) {

cerr << "Failed to narrow naming context." << endl;
return 0;

}
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}

// Bind the object (obj) to testContext, naming it Echo:
CosNaming::Name objectName;
objectName.length(1);
objectName[0].id = (const char*) "Echo"; // string copied
objectName[0].kind = (const char*) "Object"; // string copied

// Bind obj with name Echo to the testContext:
try {

testContext->bind(objectName,obj);
}
catch(CosNaming::NamingContext::AlreadyBound& ex) {

testContext->rebind(objectName,obj);
}
// Note: Using rebind() will overwrite any Object previously bound
// to /test/Echo with obj.
// Alternatively, bind() can be used, which will raise a
// CosNaming::NamingContext::AlreadyBound exception if the name
// supplied is already bound to an object.

// Amendment: When using OrbixNames, it is necessary to first try bind
// and then rebind, as rebind on it’s own will throw a NotFoundexception if
// the Name has not already been bound. [This is incorrect behaviour -
// it should just bind].

}
catch (CORBA::COMM_FAILURE& ex) {

cerr << "Caught system exception COMM_FAILURE, unable to contact the "
<< "naming service." << endl;

return 0;
}
catch (omniORB::fatalException& ex) {

throw;
}
catch (...) {

cerr << "Caught a system exception while using the naming service."<< endl;
return 0;

}
return 1;

}
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2.10.7 eg3 clt.cc

// eg3_clt.cc - This is the source code of example 3 used in Chapter 2
// "The Basics" of the omniORB2 user guide.
//
// This is the client. It uses the COSS naming service
// to obtain the object reference.
//
// Usage: eg3_clt
//
//
// On startup, the client lookup the object reference from the
// COS naming service.
//
// The name which the object is bound to is as follows:
// root [context]
// |
// text [context] kind [my_context]
// |
// Echo [object] kind [Object]
//

#include <iostream.h>
#include "echo.hh"

#include "greeting.cc"

extern void hello(CORBA::Object_ptr obj);

static CORBA::Object_ptr getObjectReference(CORBA::ORB_ptr orb);

int
main (int argc, char **argv)
{

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA");

try {
CORBA::Object_var obj = getObjectReference(orb);
hello(obj);

}
catch(CORBA::COMM_FAILURE& ex) {

cerr << "Caught system exception COMM_FAILURE, unable to contact the "
<< "object." << endl;

}
catch(omniORB::fatalException& ex) {

cerr << "Caught omniORB2 fatalException. This indicates a bug is caught "
<< "within omniORB2.\nPlease send a bug report.\n"
<< "The exception was thrown in file: " << ex.file() << "\n"
<< " line: " << ex.line() << "\n"
<< "The error message is: " << ex.errmsg() << endl;

}
catch(...) {
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cerr << "Caught a system exception." << endl;
}

return 0;
}

static
CORBA::Object_ptr
getObjectReference(CORBA::ORB_ptr orb)
{

CosNaming::NamingContext_var rootContext;

try {
// Obtain a reference to the root context of the Name service:
CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");

// Narrow the object returned by resolve_initial_references()
// to a CosNaming::NamingContext object:
rootContext = CosNaming::NamingContext::_narrow(initServ);
if (CORBA::is_nil(rootContext))

{
cerr << "Failed to narrow naming context." << endl;
return CORBA::Object::_nil();

}
}
catch(CORBA::ORB::InvalidName& ex) {

cerr << "Service required is invalid [does not exist]." << endl;
return CORBA::Object::_nil();

}

// Create a name object, containing the name test/context:
CosNaming::Name name;
name.length(2);

name[0].id = (const char*) "test"; // string copied
name[0].kind = (const char*) "my_context"; // string copied
name[1].id = (const char*) "Echo";
name[1].kind = (const char*) "Object";
// Note on kind: The kind field is used to indicate the type
// of the object. This is to avoid conventions such as that used
// by files (name.type -- e.g. test.ps = postscript etc.)

CORBA::Object_ptr obj;
try {

// Resolve the name to an object reference, and assign the reference
// returned to a CORBA::Object:
obj = rootContext->resolve(name);

}
catch(CosNaming::NamingContext::NotFound& ex)

{



30 CHAPTER 2. THE BASICS

// This exception is thrown if any of the components of the
// path [contexts or the object] aren’t found:
cerr << "Context not found." << endl;
return CORBA::Object::_nil();

}
catch (CORBA::COMM_FAILURE& ex) {

cerr << "Caught system exception COMM_FAILURE, unable to contact the "
<< "naming service." << endl;

return CORBA::Object::_nil();
}
catch(omniORB::fatalException& ex) {

throw;
}
catch (...) {

cerr << "Caught a system exception while using the naming service."<< endl;
return CORBA::Object::_nil();

}
return obj;

}



Chapter 3

IDL to C++ Language Mapping

Now that you are familiar with the basics, it is important to familiar yourselves with the IDL to
C++ language. The mapping is described in detail in [OMG96a]. If you have not done so, you
should obtain a copy of the document and use that as the programming guide to omniORB2.
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Chapter 4

The omniORB2 API

In this chapter, we introduce the omniORB2 API. The purpose of this API is to provide access
points to omniORB2 specific functionalities that are not covered by the CORBA specification.
Obviously, if you use this API in your application, that part of your code is not going to be
portable to run unchanged on other vendors’ ORBs. To make it easier to identify omniORB2
dependent code, this API is defined under the name space “omniORB”1.

4.1 ORB and BOA initialisation options

CORBA::ORBinit accepts the following command-line arguments:

-ORBid ‘‘omniORB2’’ The identifier supplied must be “omniORB2”.

-ORBtraceLevel <level> See section 4.2.

-ORBserverName <string> See section 4.3.

BOAinit accepts the following command-line arguments:

-BOAid ‘‘omniORB2 BOA’’ The identifier supplied must be “omniORB2 BOA”.

-BOAiiop port <port number> This option tells the BOA which TCP/IP port to use to
accept IIOP calls. If this option is not specified, the BOA will use an arbitrary port
assigned by the operating system.

By default, the BOA can work out the IP address of the host machine. This address is
recorded in the object references of the local objects. However, when the host has multiple
network interfaces and multiple IP addresses, it may be desirable for the application to control
what address the BOA should use. This can be done by defining the environment variable
OMNIORBUSEHOSTNAMEVARto contain the preferred host name or IP address in dot-numeric
form.

As defined in the CORBA specification, any command-line arguments understood by the
ORB/BOA will be removed from argv when the initialisation functions return. Therefore, an
application is not required to handle any command-line arguments it does not understand.

4.2 Run-time Tracing and Diagnostic Messages

OmniORB2 uses the C++ iostream cerr to output any tracing and diagnostic messages. Some
or all of these messages can be turned-on/off by setting the variable omniORB::traceLevel .
The type definition of the variable is:

1omniORB is a class name if the C++ compiler does not support the namespace keyword.
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CORBA::ULong omniORB::traceLevel = 1; // The default value is 1

At the moment, the following trace levels are defined:

level 0 turn off all tracing and informational messages

level 1 informational messages only

level 2 the above plus configuration information

level 5 the above plus notifications when server threads are created or communication end-
points are shutdown

level 10-20 the above plus execution traces

The variable can be changed by assignment inside your applications. It can also be
changed by specifying the command-line option: -ORBtraceLevel <level> . For instance:

$ eg2_impl -ORBtraceLevel 5

4.3 Server Name

Applications can optionally specified a name to identify the server process. At the moment,
this name is only used by the host-based access control module. See section 7.5 for details.

The name is stored in the variable omniORB::serverName .

CORBA::String_var omniORB::serverName;

The variable can be changed by assignment inside your applications. It can also be
changed by specifying the command-line option: -ORBserverName <string> .

4.4 Object Keys

OmniORB2 uses a data type omniORB::objectKey to uniquely identify each object imple-
mentation. This is an opaque data type and can only be manipulated by the following func-
tions:

void omniORB::generateNewKey(omniORB::objectKey &k);

omniORB::generateNewKey returns a new objectKey . The return value is guaranteed
to be unique among the keys generated during this program run. On the platforms that have
a realtime clock and unique process identifiers, a stronger assertion can be made, i.e. the keys
are guaranteed to be unique among all keys ever generated on the same machine.

const unsigned int omniORB::hash_table_size;
int omniORB::hash(omniORB::objectKey& k);

omniORB::hash returns the hash value of an objectKey . The value returned by this
function is always between 0 and omniORB:hash table size - 1 inclusively.

omniORB::objectKey omniORB::nullkey();

omniORB::nullkey always returns the same objectKey value. This key is guaranteed
to hash to 0.
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int operator==(const omniORB::objectKey &k1,const omniORB::objectKey &k2);
int operator!=(const omniORB::objectKey &k1,const omniORB::objectKey &k2);

ObjectKeys can be tested for equality using the overloaded operator== and
operator!= .

omniORB::seqOctets*
omniORB::keyToOctetSequence(const omniORB::objectKey &k1);

omniORB::objectKey
omniORB::octetSequenceToKey(const omniORB::seqOctets& seq);

omniORB::keyToOctetSequence takes an objectKey and returns its externalised
representation in the form of a sequence of octets. The same sequence can be converted back
to an objectKey using omniORB::octetSequenceToKey . If the supplied sequence is not
an objectKey , omniORB::octetSequenceToKey raises a CORBA::MARSHALexception.

4.5 GIOP Message Size

omniORB2 sets a limit on the GIOP message size that can be sent or received. The value can
be obtained by calling:

size_t omniORB::MaxMessageSize();

and can be changed by:

void omniORB::MaxMessageSize(size_t newvalue);

The exact value is somewhat arbitrary. The reason such a limit exists is to provide some
way to protect the server side from resource exhaustion. Think about the case when the server
receives a rogue GIOP(IIOP) request message that contains a sequence length field set to 2**31.
With a reasonable message size limit, the server can reject this rogue message straight away.

4.6 Trapping omniORB2 Internal Errors

class fatalException {
public:

const char *file() const;
int line() const;
const char *errmsg() const;

};

When omniORB2 detects an internal inconsistency that is most likely to be caused by a
bug in the runtime, it raises the exception omniORB::fatalException . When this ex-
ception is raised, it is not sensible to proceed with any operation that involves the ORB’s
runtime. It is best to exit the program immediately. The exception structure carries by
omniORB::fatalException contains the exact location (the file name and the line num-
ber) where the exception is raised. You are strongly encourage to file a bug report and point
out the location.
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Chapter 5

The Basic Object Adaptor (BOA)

This chapter describes the BOA implementation in omniORB2. The CORBA specification de-
fines the Basic Object Adaptor as the entity that mediates between object implementations
and the ORB. Unfortunately, the BOA specification is incomplete and does not address the
multi-threading issues appropriately. The end result is that different ORB vendors implement
different extensions to their BOAs. Worse, the implementation of the operations defined in the
specification are different in different ORBs. Recently, a new Object Adaptor specification (the
Portable Object Adaptor- POA) has been adopted and will replace the BOA as the standard
Object Adaptor in CORBA. The new specification recognises the compatibility problems of
BOA and recommends that all BOAs should be considered propriety extensions. OmniORB2
will support POA in future releases. Until then, you have to use the BOA to attach object
implementations to the ORB.

The rest of this chapter describes the interface of the BOA in detail. It is important to
recognise that the interface described below is omniORB2 specific and hence the code using
this interface is unlikely to be portable to other ORBs.

Unless it is stated otherwise, the term “object” will be used below to refer to object imple-
mentations. This should not be confused with “object references” which are handles held by
clients.

5.1 BOA Initialisation

It takes two steps to put the BOA into service. The BOA has to be initialised using BOAinit
and activated using impl is ready .
BOAinit is a member of the CORBA::ORBclass. Its signature is:

BOA_ptr BOA_init(int & argc,
char ** argv,
const char * boa_identifier);

Typically, it is used in the startup code as follows:

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2"); // line 1
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA"); // line 2

The argv parameters may contain BOA options. These options will be removed from the
argv list when BOAinit returns. Other parameters in argv will remain. The supported
options are:
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-BOAiiop port <port number (0-65535)> Use the port number to receive IIOP requests.
This option can be specified multiple times in the command line and the BOA would be
initialised to listen on all of the ports.

-BOAid <id (string)> If this option is used the id must be “omniORB2 BOA”.

If the third argument of BOAinit is non-nil, it must be the string constant “om-
niORB2 BOA”. If the argument is nil, -BOAid must be present in argv .

If there is any problem in the initialisation process, a CORBA::INITIALIZE exception
would be raised.

To register an object with the BOA, the method obj is ready should be called with the
return value of BOAinit as the argument.

BOAinit is thread-safe. It can be called multiple times and the same BOAptr will be
returned. However, only the argv in the first call will be scanned, the argument is ignored in
subsequent calls.

BOAinit returns a pseudo object of type CORBA::BOAptr . Similar to
CORBA::Object ptr , the pointer can be managed using CORBA::BOAvar ,
BOA:: duplicate and CORBA::release . The pointer can be tested using CORBA::is nil
which returns true if the pointer is equivalent to the return value of BOA:: nil .

After BOAinit is called, objects can be registered. However, incoming IIOP requests
would not be despatched until impl is ready is called.

class BOA {
public:

impl_is_ready(CORBA::ImplementationDef_ptr p = 0,
CORBA::Boolean NonBlocking = 0);

};

One of the common pitfall in using the BOA is to forget to call impl is ready. Until this call
returns, there is no thread listening on the port from which IIOP requests are received. The
remote client may hang because of this.

When impl is ready is called with no argument. The calling thread would be blocked
indefinitely in the function until impl shutdown (see below) is called. The thread that is
calling impl is ready is not used by the BOA to perform its internal functions. The BOA
has its own set of threads to process incoming requests and general housekeeping. Therefore,
it is not necessary to have a thread blocked in the call if it can be put into use elsewhere. For
example, the main thread may call impl is ready once in non-blocking mode (see below)
and then enter the event loop to handle the GUI frontend.

If non-blocking behaviour is needed, the NonBlocking argument should be set to 1. For
instance, if you creates a callback object, you might call impl is ready in non-blocking mode
to tell the BOA to start receiving IIOP requests before sending the callback object to the remote
object. The first argument ImplementationDef ptr is ignored by the BOA. Just set the
argument to nil.

impl is ready is thread safe and can be called multiple times. Multiple threads can be
blocked in impl is ready .

5.2 Object Registration

Once the BOA is initialised, objects can be registered. The purpose of object registration is
to let the BOA know of the existence of the object and to dispatch requests for the object as
upcalls into the object.

To register an object, the obj is ready function should be called. obj is ready is a
member function of the implementation skeleton class. The function should be called only
once for each object. The call should be made only after the object is fully initialised.
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The member function obj is ready of the BOA may also be used to register an object.
However, this function has been superseded by obj is ready and should not be used in
new application code.

5.3 Object Disposal

Once an object is registered, it is under the management of the BOA. To remove the object from
the BOA and to delete it (when it is safe to do so), the dispose function should be called.
dispose is a member function of the implementation skeleton class. The function should be

called only once for each object.
Notice the asymmetry in object instantiation and destruction. To instantiate an object, the

application code has to call the new operator. To remove the object, the application should
never call the delete operator on the object directly.

At the time the dispose call is made, there may be other threads invoking on the object,
the BOA ensures that all these calls are completed before removing the object from its internal
tables and calling the delete operator.

Internally, the BOA keeps a reference count on each object. Initially, the reference count
is 0. After a call to obj is ready , the reference count is 1. The BOA increases the reference
count by 1 before an upcall into the object is made. The count is decreased by 1 when the
upcall returns. dispose decreases the reference count by 1, if the reference count is 0, the
delete operator is called. If the count is non-zero, the object is marked as disposed. The object
will be deleted when the reference count eventually goes to zero.

The reference count is also increased by 1 for each object reference held in the same address
space. Hence, the delete operator will not be called when there are outstanding object refer-
ences in the same address space. To ensure that an object is deleted, all its object references in
the same address space should be released using CORBA::release .

Unlike colocated object references, references held by clients in other address spaces would
not prevent the deletion of objects. If these clients invoke on the object after it is disposed, the
system exception INV OBJREF would be raised. The difference in semantics is an undesirable
side-effect of the current BOA implementation. In future, colocated references will have the
same semantics as remote references, i.e. their presence will not delay the deletion of the
objects.

Instead of dispose , it may be useful to have a method to deactivate the object but not
deleting it. This feature is not supported in the current BOA implementation.

5.4 BOA Shutdown

The BOA can be withdrawn from service using member functions impl shutdown and
destroy .

class BOA {
public:

void impl_shutdown();
void destroy();

};

impl shutdown and destroy are the inverse of impl is ready and BOAinit respec-
tively.

impl shutdown deactivates the BOA. When the call returns, all the internal threads and
network connections will be shutdown. Any thread blocking in impl is ready would be
unblocked. After the call, no request from other address spaces will be processed. In other
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words, the BOA will be in the same state as it was in before impl is ready was called. For
example, a remote client may hang if it tries to connect to the server after impl shutdown
was called because no thread is listening on the IIOP port.

impl shutdown does not wait for incoming requests to complete before it closes the net-
work connections. The remote clients will see the network connections shutdown and the
replies may not reach them even if the upcalls have been completed. Therefore, if the applica-
tion is to define an operation in an IDL interface to shutdown the BOA, the operation should
be defined as an oneway operation.

impl shutdown is thread-safe and can be called multiple times. The call is silently ig-
nored if the BOA has already been shutdown. After impl shutdown is called, the BOA can
be reactivated by another call to impl is ready .

It should be noted that impl shutdown does not affect outgoing network connections.
That is, clients in the same address space will still be able to make calls to objects in other
address spaces.

While remote requests are not delivered after impl shutdown is called, the current imple-
mentation does not stop colocated clients from calling the objects. In future, colocated clients
will exhibit the same behaviour as remote clients.

destroy permanently removed the BOA. This function will call impl shutdown implic-
itly if it has not been called. When this call returns, the IIOP port(s) held by the BOA will be
freed. Remote clients will see their requests refused by the operating system when they try to
open a connection to the IIOP port(s).

After destroy is called, the BOA should not be used. If there is any objects still registered
with the BOA, the objects should not be invoked afterwards. The objects are not disposed.
Invoking on the objects after destroy would result in undefined behaviour. Initialisation of
another BOA using BOAinit is not supported. The behaviour of BOAinit after this call is
undefined.

5.5 Unsupported functions

The following member functions are not implemented. Calling these functions do not have
any effect.

� Object ptr create(...)

� ReferenceData* get id(Object ptr)

� Principal ptr get principal(Object ptr,Environment ptr)

� void change implementation(Object ptr, ImplementationDef ptr)

� void deactivate impl(ImplementationDef ptr)

� void deactivate obj(Object ptr)



Chapter 6

Interface Type Checking

This chapter describes the mechanism used by omniORB2 to ensure type safety when object
references are exchanged across the network. This mechanism is handled completely within
the ORB. There is no programming interface visible at the application level. However, for the
sake of diagnosing the problem when there is a type violation, it is useful to understand the
underlying mechanism in order to interpret the error conditions reported by the ORB.

6.1 Introduction

In GIOP/IIOP, an object reference is encoded as an Interoperable Object Reference (IOR) when
it is sent across a network connection. The IOR contains a Repository ID (REPOID) and one or
more communication profiles. The communication profiles describe where and how the object
can be contacted. The REPOID is a string which uniquely identifies the IDL interface of the
object.

Unless the ID pragma is specified in the IDL, the ORB generates the REPOID string in
the so-called OMG IDL Format1. For instance, the REPOID for the Echo interface used in the
examples of chapter 2 is IDL:Echo:1.0 .

When interface inheritance is used in the IDL, the ORB always sends the REPOID of the
most derived interface. For example:

// IDL
interface A {

...
};
interface B : A {

...
};
interface C {

void op(in A arg);
};

// C++
C_ptr server;
B_ptr objB;
A_ptr objA = objB;
server->op(objA); // Send B as A

1For further details of the repository ID formats, see section 6.6 in the CORBA specification.
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In the example, the operation C::op accepts an object reference of type A. The real type of
the reference passed to C::op is B, which inherits from A. In this case, the REPOID of B, and
not that of A, is sent across the network.

The GIOP/IIOP specification allows an ORB to send a null string in the REPOID field of
an IOR. It is up to the receiving end to work out the real type of the object. OmniORB2 never
sends out null strings as REPOID. However, it may receive null REPOID from other ORBs. In
that case, it will use the mechanism described below to ensure type safety.

6.2 Basic Interface Type Checking

The ORB is provided with the interface information by the stubs via the proxyObjectFactory
class. For an interface A, the stub of A contains a A proxyObjectFactory class. This class is
derived from the proxyObjectFactory class. The proxyObjectFactory is an abstract class which
contains 3 virtual functions.

class proxyObjectFactory {
public:

virtual const char *irRepoId() const = 0;

virtual _CORBA_Boolean is_a(const char *base_repoId) const = 0;

virtual CORBA::Object_ptr newProxyObject(Rope *r,
CORBA::Octet *key,
size_t keysize,
IOP::TaggedProfileList
*profiles,
CORBA::Boolean release) = 0;

};

� irRepoId returns the REPOID of the interface.

� is a returns true(1) if the argument is the REPOID of the interface itself or it is that of
its base interfaces.

� newProxyObject returns an object reference based on the information supplied in the
arguments.

A single instance of every * proxyObjectFactory is instantiated at runtime. The instances
are entered into a list inside the ORB. The list constitutes all the interface information known
to the ORB.

When the ORB receives an IOR from the network, it unmarshals and extracts the REPOID
from the IOR. At this point, the ORB has two pieces of information in hand:

1. The REPOID of the object reference received from the network.

2. The REPOID the ORB is expecting. This comes from the unmarshal function that tells
the ORB to receive the object reference.

Using the REPOID received, the ORB searches its proxyObjectFactory list for an exact
match. If there is an exact match, all is well because the runtime can use the is a method of
the proxyFactory to check if the expected REPOID is the same as the received REPOID or if
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it is that of its base interfaces. If the answer is positive, the IOR passes the type checking test
and the ORB can proceed to create an object reference in its own address space to represent
the IOR.

However, the ORB may fail to find a match in its proxyObjectFactory list. This means that
the ORB has no local knowledge of the REPOID. There are three possible causes:

1. The remote end is another ORB and it sends a null string as the REPOID.

2. The ORB is expecting an object reference of interface A. The remote end sends the RE-
POID of B which is an interface that inherits from A. The stubs of A is linked into the
executable but the stubs of B is not.

3. The remote end has sent a duff IOR.

To handle this situation, the ORB must find out the type information dynamically. This is
explained in the next section.

6.3 Interface Inheritance

When the ORB receives an IOR of interface type B when it expects the type to be A, it must
find out if B inherits from A. When the ORB has no local knowledge of the type B, it must
work out the type of B dynamically.

The CORBA specification defines an Interface Repository (IR) from which IDL interfaces
can be queried dynamically. In the above situation, the ORB could contact the IR to find out
the type of B. However, this approach assumes that an IR is always available and contains the
up-to-date information of all the interfaces used in the domain. This assumption may not be
valid in many applications.

An alternative is to use the is a operation to work out the actual type of an object. This
approach is simpler and more robust than the previous one because no 3rd party is involved.

class Object{
CORBA::Boolean _is_a(const char* type_id);

};

The is a operation is part of the CORBA::Object interface and must be implemented
by every object. The input argument is a REPOID. The function returns true(1) if the object is
really an instance of that type, including if that type is a base type of the most derived type of
that object.

In the situation above, the ORB would invoke the is a operation on the object and ask if
the object is of type A before it processes any application invocation on the object.

Notice that the is a call is not performed when the IOR is unmarshalled. It is performed
just prior to the first application invocation on the object. This leads to some interesting failure
mode if B reports that it is not an A. Consider the following example:

\\ IDL
interface A { ... };
interface B : A { ... };
interface D { ... };
interface C {

A op1();
Object op2();

};
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\\ C++

C_ptr objC;
A_ptr objA;
CORBA::Object_ptr objR;

objA = objC->op1(); // line 1
(void) objA->_non_existent(); // line 2

objR = objC->op2(); // line 3
objA = A::_narrow(objR); // line 4

If the stubs of A,B,C,D are linked into the executable and:

Case 1 C::op1 and C::op2 returns a B. Line 1-4 complete successful. The remote object is
only contacted at line 2.

Case 2 C::op1 and C::op2 returns a D. This condition only occurs if the runtime of the
remote end is buggy. The ORB raises a CORBA::Marshal exception at line 1 because it
knows it has received an interface of the wrong type.

If only the stub of A is linked into the executable and:

Case 1 C::op1 and C::op2 returns a B. Line 1-4 completes successful. When line 2 and 4 is
executed, the object is contacted to ask if it is a A.

Case 2 C::op1 and C::op2 returns a D. This condition only occurs if the runtime of the remote
end is buggy. Line 1 completes and no exception is raised. At line 2, the object is con-
tacted to ask if it is a A. If the answer is no, a CORBA::INV OBJREF exception is raised.
The application will also see a CORBA::INV OBJREF at line 4.



Chapter 7

Connection Management

This chapter describes how omniORB2 manages network connections.

7.1 Background

In CORBA, the ORB is the “middleware” that allows a client to invoke an operation on an
object without regard to its implementation or location. In order to invoke an operation on an
object, a client needs to “bind” to the object by acquiring its object reference. Such a reference
may be obtained as the result of an operation on another object (such as a naming service) or
by conversion from a stringified representation previously generated by the same ORB. If the
object is in a different address space, the binding process involves the ORB building a proxy
object in the client’s address space. The ORB arranges for invocations on the proxy object to
be transparently mapped to equivalent invocations on the implementation object.

For the sake of interoperability, CORBA mandates that all ORBs should support IIOP as
the means to communicate remote invocations over a TCP/IP connection. IIOP is asymmetric
with respect to the roles of the parties at the two ends of a connection. At one end is the client
which can only initiate remote invocations. At the other end is the server which can only
receive remote invocations.

Notice that in CORBA, as in most distributed systems, remote bindings are established
implicitly without application intervention. This provides the illusion that all objects are local,
a property known as “location transparency”. CORBA does not specify when such bindings
should be established or how they should be multiplexed over the underlying network con-
nections. Instead, ORBs are free to implement implicit binding by a variety of means.

The rest of this chapter describes how omniORB2 manages network connections and the
programming interface to fine tune the management policy.

7.2 The Model

OmniORB2 is designed from the ground up to be fully multi-threaded. The objective is to
maximise the degree of concurrency and at the same time eliminate any unnecessary thread
overhead. Another objective is to minimise the interference by the activities of other threads on
the progress of a remote invocation. In other words, thread “cross-talk” should be minimised
within the ORB. To achieve these objectives, the degree of multiplexing at every level is kept
to a minimum.

On the client side of a connection, the thread that invokes on a proxy object drives the
IIOP protocol directly and blocks on the connection to receive the reply. On the server side, a
dedicated thread blocks on the connection. When it receives a request, it performs the up-call

45



46 CHAPTER 7. CONNECTION MANAGEMENT

to the object and sends the reply when the upcall returns. There is no thread switching along
the call chain.

With this design, there is at most one call in-flight at any time in a connection. If there is
only one connection, concurrent invocations to the same remote address space would have to
be serialised. To eliminate this limitation, omniORB2 implements a dynamic policy- multiple
connections to the same remote address space are created on demand and cached when there
are concurrent invocations in progress.

To be more precise, a network connection to another address space is only established
when a remote invocation is about to be made. Therefore, there may be one or more object
references in one address space that refers to objects in a different address space but unless the
application invokes on these objects, no network connection is made.

It is wasteful to leave a connection opened when it has been left unused for a considerable
time. Too many idle connections could block out new connections to a server when it runs
out of spare communication channels. For example, most unix platforms has a limit on the
number of file handles a process can open. 64 is the usual default limit. The value can be
increased to a maximum of a thousand or more by changing the “ulimit” in the shell.

7.3 Idle Connection Shutdown

Inside the ORB, two separate threads are dedicated to scan for idle connections. One thread
is responsible for outgoing connections and the other looks after incoming connections. The
thread for incoming connections is only created when the BOA is initialised because only then
will there be any incoming connections.

The threads scan all opened connections once every “scan period”. If a connection is found
to be idle for two consecutive periods, it will be closed. The threads use mark-and-swipe to
detect if a connection is idle. When a connection is checked, a status flag attached to the
connection is set. Every remote invocation using that connection would clear the flag. So if a
connection’s status flag is found to be set in two consecutive scans, the connection has been
idled during the scan period.

The scan period for incoming and outgoing connections can be individually controlled by
the following API:

class omniORB {

public:

enum idleConnType { idleIncoming, idleOutgoing };

static void idleConnectionScanPeriod(idleConnType direction,
CORBA::ULong sec);

static CORBA::ULong idleConnectionScanPeriod(idleConnType direction);

};

The current value of the scan period (in seconds) is returned by the read-only
idleConnectionScanPeriod . The scan period can be changed by the write-only
idleConnectionScanPeriod . The default value (30 seconds) is compiled into the ORB
runtime. The scan can be disabled completely by setting the scan period to 0. The scan period
can be changed at any time. The write function is non-thread safe. Concurrent calls to this
function could results in undefined behaviour.
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7.4 Interoperability Considerations

The IIOP specification allows both the client and the server to shutdown a connection unilat-
erally. When one end is about to shutdown a connection, it should send a closeConnection
message to the other end. It should also make sure that the message will reach the other end
before it proceeds to shutdown the connection.

The client should distinguish between an orderly and an abnormal connection shutdown.
When a client receives a closeConnection message before the connection is closed, the condi-
tion is an orderly shutdown. If the message is not received, the condition is an abnormal shut-
down. In an abnormal shutdown, the ORB should raise a COMMFAILURE exception whereas
in an orderly shutdown, the ORB should not raise an exception and should try to re-establish
a new connection transparently.

OmniORB2 implements this semantics completely. However, it is known that some ORBs
are not (yet) able to distinguish between an orderly and an abnormal shutdown. Usually this is
manifested as the client in these ORBs seeing a COMMFAILURE occasionally when connected
to an omniORB2 server. The workaround is either to catch the exception in the application
code and retries or to turn off the idle connection shutdown inside the omniORB2 server.

7.5 Connection Acceptance

OmniORB2 provides the hook to implement a connection acceptance policy. Inside the ORB
runtime, a thread is dedicated to receive new connections. When the thread is given the han-
dle of a new connection by the operating system, it calls the policy module to decide if the
connection can be accepted. If the answer is yes, the ORB will start serving requests coming
in from that connection. Otherwise, the connection is shutdown immediately.

There can be a number of policy module implementations. The basic one is a dummy
module which just accepts every connection.

In addition, a host-based access control module is available on unix platforms. The mod-
ule uses the IP address of the client to decide if the connection can be accepted. The module
is implemented using tcp wrappers 7.6. The access control policy can be defined as rules in
two access control files: hosts.allow and hosts.deny . The syntax of the rules is described
in the manual page hosts access(5) which can be found in appendix A. The syntax de-
fines a simple access control language that is based on client (host name/address, user name),
and server (process name, host name/address) patterns. When searching for a match on the
server process name, the ORB uses the value of omniORB::serverName . ORBinit uses the
argument argv[0] to set the default value of this variable. This can be overridden by the
application by passing the option: -ORBserverName <string> to ORBinit .

The default location of the access control files is /etc . This can be overridden by the extra
options in omniORB.cfg . For instance:

# omniORB configuration file - extra options
#

GATEKEEPER_ALLOWFILE /project/omni/var/hosts.allow

GATEKEEPER_DENYFILE /project/omni/var/hosts.deny

As each policy module is implemented as a separate library, the choice of policy module
is determined at program linkage time.

For instance, if the host-based access control module is in use:
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% eg1 -ORBtraceLevel 2
omniORB2 gateKeeper is tcpwrapGK 1.0 - based on tcp_wrappers_7.6
I said,"Hello!". The Object said,"Hello!"

Whereas if the dummy module is in use:

% eg1 -ORBtraceLevel 2
omniORB2 gateKeeper is not installed. All incoming are accepted.
I said,"Hello!". The Object said,"Hello!"



Chapter 8

Proxy Objects

When a client acquires a reference to an object in another address space, omniORB2 creates a
local representation of the object and returns a pointer to this object as its object reference. The
local representation is known as the proxy object.

The proxy object maps each IDL operation into a method to deliver invocations to the
remote object. The method implements argument marshalling using the ORB runtime. When
the ORB runtime detects an error condition, it may raise a system exception. These exceptions
will normally be propagated by the proxy object to the application code. However, there may
be applications that prefer to have the system exceptions trapped in the proxy object. For these
applications, it is possible to install exception handlers for individual proxy object or all proxy
objects. The API to do this will be explained in this chapter.

As described in section 6.2, proxy objects are created by instances of the proxyObjectFac-
tory class. For each IDL interface A, the stubs of A contains a derived class of proxyObject-
Factory (A proxyObjectFactory). This derived class is responsible for creating proxy objects
for A. This process is completely transparent to the application. However, there may be ap-
plications that require greater control on the creation of proxy objects or even want to change
the behavior of the proxy objects. To cater for this requirement, applications can override the
default proxyObjectFactories and install their own versions of proxyObjectFactories. The way
to do this will be explained in this chapter.

8.1 System Exception Handlers

By default, all system exceptions, with the exception of CORBA::TRANSIENT, are propagated
by the proxy objects to the application code. Some applications may prefer to trap these excep-
tions within the proxy objects so that the application logic does not have to deal with the error
condition. For example, when a CORBA::COMM FAILURE is received, an application may
just want to retry the invocation until it finally succeeds. This approach is useful for objects
that are persistent and their operations are idempotent.

OmniORB2 provides a set of functions to install exception handlers. Once they are
installed, proxy objects will call these handlers when the target system exceptions are
raised by the ORB runtime. Exception handlers can be installed for CORBA::TRANSIENT,
CORBA::COMM FAILURE and CORBA::SystemException. The last handler covers all system
exceptions other than the two covered by the first two handlers. An exception handler can be
installed for individual proxy object or it can be installed for all proxy objects in the address
space.
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8.1.1 CORBA::TRANSIENT handlers

When a CORBA::TRANSIENT exception is raised by the ORB runtime, the de-
fault behaviour of the proxy objects is to retry indefinitely until the opera-
tion succeeds. Successive retries will be delayed progressively by multiples of
omniORB::defaultTransientRetryDelayIncrement . The delay will be limited
to a maximum specified by omniORB::defaultTransientRetryDelayMaximum . The
unit of both values are in seconds.

The ORB runtime will raised CORBA::TRANSIENT under the following conditions:

1. When a cached network connection is broken while an invocation is in progress. The
ORB will try to open a new connection at the next invocation.

2. When the proxy object has been redirected by a location forward message by the remote
object to a new location and the object at the new location cannot be contacted. In
addition to the CORBA::TRANSIENT exception, the proxy object also resets its internal
state so that the next invocation will be directed at the original location of the remote
object.

3. When the remote object reports CORBA::TRANSIENT.

Applications can override the default behaviour by installing their own exception handler.
The API to do so is summarised below:

class omniORB {

public:

typedef CORBA::Boolean (*transientExceptionHandler_t)(void* cookie,
CORBA::ULong n_retries,
const CORBA::TRANSIENT& ex);

static void installTransientExceptionHandler(void* cookie,
transientExceptionHandler_t fn);

static void installTransientExceptionHandler(CORBA::Object_ptr obj,
void* cookie,
transientExceptionHandler_t fn);

static CORBA::ULong defaultTransientRetryDelayIncrement;
static CORBA::ULong defaultTransientRetryDelayMaximum;

}

The overloaded functions installTransientExceptionHandler can be used to in-
stall the exception handlers for CORBA::TRANSIENT.

Two overloaded forms are available. The first form install an exception handler for all
object references except for those which have an exception handler installed by the second
form, which takes an addition argument to identify the target object reference. The argument
cookie is an opaque pointer which will be passed on by the ORB when it calls the exception
handler.
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An exception handler will be called by proxy objects with three arguments. The cookie
is the opaque pointer registered by installTransientExceptionHandler . The argu-
ment n retries is the number of times the proxy has called this handler for the same in-
vocation. The argument ex is the value of the exception caught. The exception handler is
expected to do whatever is appropriate and returns a boolean value. If the return value is
TRUE(1), the proxy object would retry the operation again. If the return value is FALSE(0), the
CORBA::TRANSIENT exception would be propagated into the application code.

The following sample code installs a simple exception handler for all objects and for a
specific object:

CORBA::Boolean my_transient_handler1 (void* cookie,
CORBA::ULong retries,
const CORBA::TRANSIENT& ex)

{
cerr << ’’transient handler 1 called.’’ << endl;
return 1; // retry immediately.

}

CORBA::Boolean my_transient_handler2 (void* cookie,
CORBA::ULong retries,
const CORBA::TRANSIENT& ex)

{
cerr << ’’transient handler 2 called.’’ << endl;
return 1; // retry immediately.

}

static Echo_ptr myobj;

void installhandlers()
{

omniORB::installTransientExceptionHandler(0,my_transient_handler1);
// All proxy objects will call my_transient_handler1 from now on.

omniORB::installTransientExceptionHandler(myobj,0,my_transient_handler2);
// The proxy object of myobj will call my_transient_handler2 from now on.

}

8.1.2 CORBA::COMM FAILURE

When the ORB runtime fails to establish a network connection to the remote object and none
of the conditions listed above for raising a CORBA::TRANSIENT is applicable, it raises a
CORBA::COMM FAILURE exception.

The default behaviour of the proxy objects is to propagate this exception to the application.
Applications can override the default behaviour by installing their own exception han-

dlers. The API to do so is summarised below:

class omniORB {
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public:

typedef CORBA::Boolean (*commFailureExceptionHandler_t)(void* cookie,
CORBA::ULong n_retries,
const CORBA::COMM_FAILURE& ex);

static void installCommFailureExceptionHandler(void* cookie,
commFailureExceptionHandler_t fn);

static void installCommFailureExceptionHandler(CORBA::Object_ptr obj,
void* cookie,
commFailureExceptionHandler_t
fn);

}

The functions are equivalent to their counterparts for CORBA::TRANSIENT.

8.1.3 CORBA::SystemException

To report an error condition, the ORB runtime may raise other SystemExceptions. If the excep-
tion is neither CORBA::TRANISENT nor CORBA::COMM FAILURE, the default behaviour of
the proxy objects is to propagate this exception to the application.

Application can override the default behaviour by installing their own exception handlers.
The API to do so is summarised below:

class omniORB {

public:

typedef CORBA::Boolean (*systemExceptionHandler_t)(void* cookie,
CORBA::ULong n_retries,
const CORBA::SystemException& ex);

static void installSystemExceptionHandler(void* cookie,
systemExceptionHandler_t fn);

static void installSystemExceptionHandler(CORBA::Object_ptr obj,
void* cookie,
systemExceptionHandler_t fn);

}

The functions are equivalent to their counterparts for CORBA::TRANSIENT.

8.2 Proxy Object Factories

This section describes how an application can control the creation or change the behaviour of
proxy objects.

8.2.1 Background

For each interface A, its stub contains a proxy factory class- A proxyObjectFactory . This
class is derived from proxyObjectFactory and implements three virtual functions:
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class A_proxyObjectFactory : public virtual proxyObjectFactory {
public:

virtual const char *irRepoId() const;

virtual _CORBA_Boolean is_a(const char *base_repoId) const;

virtual CORBA::Object_ptr newProxyObject(Rope *r,
CORBA::Octet *key,
size_t keysize,
IOP::TaggedProfileList
*profiles,
CORBA::Boolean release);

};

As described in chapter 6, the functions allow the ORB runtime to perform type checking.
The function newProxyObject creates a proxy object for A based on its input arguments.
The return value is a pointer to the class proxy A which is automatically re-casted into a
CORBA::Object ptr . proxy A implements the proxy object for A:

class _proxy_A : public virtual A {
public:

_proxy_A (Rope *r,
CORBA::Octet *key,
size_t keysize,IOP::TaggedProfileList *profiles,
CORBA::Boolean release);

virtual ˜_proxy_A();

// plus other internal functions.

};

The stub of A guarantees that exactly one instance of A proxyObjectFactory is instan-
tiated when an application is executed. The constructor of A proxyObjectFactory , via its
base class proxyObjectFactory links the instance into the ORB’s proxy factory list.

Newly instantiated proxy object factories are always entered at the front of the ORB’s
proxy factory list. Moreover, when the ORB searches for a match on the type, it always stops
at the first match. In other words, when additional instances of A proxyObjectFactory
or derived classes of it are created, the last instantiation will override earlier instantiations to
be the proxy factory selected to create proxy objects of A. This property can be used by an
application to install its own proxy object factories.

8.2.2 An Example

Using the Echo example in chapter 2 as the basis, one can tell the ORB to use a modified proxy
object class to create proxy objects. The steps involved are as follows:

8.2.2.1 Define a new proxy class

We define a new proxy class to cache the result of the last invocation of echoString .
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class _new_proxy_Echo : public virtual _proxy_Echo {
public:

_new_proxy_Echo (Rope *r,
CORBA::Octet *key,
size_t keysize,IOP::TaggedProfileList *profiles,
CORBA::Boolean release)

: _proxy_Echo(r,key,keysize,profiles,release) {}
virtual ˜_new_proxy_echo() {}

virtual char* echoString(const char* mesg) {
//
// Only calls the remote object if the argument is different from the
// last invocation.

omni_mutex_lock sync(lock);
if ((char*)last_arg) {

if (strcmp(mesg,(char*)last_arg) == 0) {
return CORBA::string_dup(last_result);

}
}
char* res = _proxy_Echo::echoString(mesg);
last_arg = mesg;
last_result = (const char*) res;
return res;

}

private:
omni_mutex lock;
CORBA::String_var last_arg;
CORBA::String_var last_result;

};

8.2.2.2 Define a new proxy factory class

Next, we define a new proxy factory class to instantiate new proxy Echo as proxy objects
for Echo .

class _new_Echo_proxyObjectFactory : public virtual Echo_proxyObjectFactory
{
public:

_new_Echo_proxyObjectFactory () {}
virtual ˜_new_Echo_proxyObjectFactory() {}

// Only have to override newProxyObject
virtual CORBA::Object_ptr newProxyObject(Rope *r,

CORBA::Octet *key,
size_t keysize,
IOP::TaggedProfileList *profiles,
CORBA::Boolean release) {

_new_proxy_Echo *p = new _new_proxy_Echo(r,key,keysize,profiles,release);
return p;

}
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};

Finally, we have to instantiate a single instance of the new proxy factory in the application
code.

int main(int argc, char** argv)
{

// Other initialisation steps

_new_Echo_proxyObjectFactory* f = new _new_Echo_proxyObjectFactory;

// Use the new operator to instantiate the proxy factory and never
// call the delete operator on this instance.

// From this point onwards, _new_proxy_Echo will be used to create
// proxy objects for Echo.

}

8.2.3 Further Considerations

Notice that the ORB may call newProxyObject multiple times to create proxy objects for the
same remote object. In other words, the ORB does not guarantee that only one proxy object
is created for each remote object. For applications that require this guarantee, it is necessary
to check within newProxyObject whether a proxy object has already been created for the
current request. If the argument Rope* r points to the same structure and the content of the
sequence CORBA::Octet* key is the same, then an existing proxy object can be returned to
satisfy the current request. Do not forget to call CORBA::duplicate() before returning the
object reference.

newProxyObject may be called concurrently by different threads within the ORB. Need-
less to say, the function must be thread-safe.
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Appendix A

hosts access(5)

DESCRIPTION

This manual page describes a simple access control language that is based on client (host
name/address, user name), and server (process name, host name/address) patterns. Exam-
ples are given at the end. The impatient reader is encouraged to skip to the EXAMPLES section
for a quick introduction.

An extended version of the access control language is described in the hosts options(5)
document. The extensions are turned on at program build time by building with -
DPROCESS OPTIONS.

In the following text, daemon is the the process name of a network daemon process, and
client is the name and/or address of a host requesting service. Network daemon process
names are specified in the inetd configuration file.

ACCESS CONTROL FILES

The access control software consults two files. The search stops at the first match:

� Access will be granted when a (daemon,client) pair matches an entry in the
/etc/hosts.allow file.

� Otherwise, access will be denied when a (daemon,client) pair matches an entry in the
/etc/hosts.deny file.

� Otherwise, access will be granted.

A non-existing access control file is treated as if it were an empty file. Thus, access control
can be turned off by providing no access control files.

ACCESS CONTROL RULES

Each access control file consists of zero or more lines of text. These lines are processed in order
of appearance. The search terminates when a match is found.

� A newline character is ignored when it is preceded by a backslash character. This per-
mits you to break up long lines so that they are easier to edit.

� Blank lines or lines that begin with a # character are ignored. This permits you to insert
comments and whitespace so that the tables are easier to read.

� All other lines should satisfy the following format, things between [] being optional:
daemon list : client list [ : shell command ]
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daemon list is a list of one or more daemon process names (argv[0] values) or wildcards
(see below).

client list is a list of one or more host names, host addresses, patterns or wildcards
(see below) that will be matched against the client host name or address.

The more complex forms daemon@host and user@host are explained in the sections on
server endpoint patterns and on client username lookups, respectively.

List elements should be separated by blanks and/or commas.
With the exception of NIS (YP) netgroup lookups, all access control checks are case insen-

sitive.

PATTERNS

The access control language implements the following patterns:

� A string that begins with a . character. A host name is matched if the last components
of its name match the specified pattern. For example, the pattern .tue.nl matches the
host name wzv.win.tue.nl .

� A string that ends with a . character. A host address is matched if its first numeric
fields match the given string. For example, the pattern 131.155. matches the address
of (almost) every host on the Eindhoven University network (131.155.x.x ).

� A string that begins with an character is treated as an NIS (formerly YP) netgroup name.
A host name is matched if it is a host member of the specified netgroup. Netgroup
matches are not supported for daemon process names or for client user names.

� An expression of the form n.n.n.n/m.m.m.m is interpreted as a “net/mask” pair.
A host address is matched if “net” is equal to the bitwise AND of the address and
the “mask”. For example, the net/mask pattern 131.155.72.0/255.255.254.0
matches every address in the range 131.155.72.0 through 131.155.73.255 .

WILDCARDS

The access control language supports explicit wildcards:

ALL The universal wildcard, always matches.

LOCAL Matches any host whose name does not contain a dot character.

UNKNOWNMatches any user whose name is unknown, and matches any host whose name
or address are unknown. This pattern should be used with care: host names may be
unavailable due to temporary name server problems. A network address will be un-
available when the software cannot figure out what type of network it is talking to.

KNOWNMatches any user whose name is known, and matches any host whose name and ad-
dress are known. This pattern should be used with care: host names may be unavailable
due to temporary name server problems. A network address will be unavailable when
the software cannot figure out what type of network it is talking to.

PARANOIDMatches any host whose name does not match its address. When tcpd is built with
-DPARANOID (default mode), it drops requests from such clients even before looking
at the access control tables. Build without -DPARANOID when you want more control
over such requests.
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OPERATORS

EXCEPT Intended use is of the form: list 1 EXCEPT list 2; this construct matches any-
thing that matches list 1 unless it matches list 2. The EXCEPToperator can be used
in daemon lists and in client lists . The EXCEPToperator can be nested: if the
control language would permit the use of parentheses, a EXCEPT b EXCEPT cwould
parse as (a EXCEPT (b EXCEPT c)) .

SHELL COMMANDS

If the first-matched access control rule contains a shell command, that command is subjected to
%<letter> substitutions (see next section). The result is executed by a /bin/sh child process
with standard input, output and error connected to /dev/null. Specify an & at the end of the
command if you do not want to wait until it has completed.

Shell commands should not rely on the PATH setting of the inetd. Instead, they should
use absolute path names, or they should begin with an explicit PATH=whatever statement.

The hosts options(5) document describes an alternative language that uses the shell com-
mand field in a different and incompatible way.

% EXPANSIONS

The following expansions are available within shell commands:

%a (%A) The client (server) host address.

%c Client information: user@host, user@address, a host name, or just an address, depend-
ing on how much information is available.

%d The daemon process name (argv[0] value).

%h (%H) The client (server) host name or address, if the host name is unavailable.

%n (%N) The client (server) host name (or ”unknown” or ”paranoid”).

%p The daemon process id.

%s Server information: daemon@host, daemon@address, or just a daemon name, depend-
ing on how much information is available.

%u The client user name (or ”unknown”).

%%Expands to a single %character.

Characters in % expansions that may confuse the shell are replaced by underscores.

SERVER ENDPOINT PATTERNS

In order to distinguish clients by the network address that they connect to, use patterns of the
form:

process name@host pattern : client list ...
Patterns like these can be used when the machine has different internet addresses with

different internet hostnames. Service providers can use this facility to offer FTP, GOPHER
or WWW archives with internet names that may even belong to different organisations. See
also the “twist” option in the hosts options(5) document. Some systems (Solaris, FreeBSD)
can have more than one internet address on one physical interface; with other systems you
may have to resort to SLIP or PPP pseudo interfaces that live in a dedicated network ad-
dress space. .sp The host pattern obeys the same syntax rules as host names and ad-
dresses in client list context. Usually, server endpoint information is available only with
connection-oriented services.
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CLIENT USERNAME LOOKUP

When the client host supports the RFC 931 protocol or one of its descendants (TAP, IDENT,
RFC 1413) the wrapper programs can retrieve additional information about the owner of a
connection. Client username information, when available, is logged together with the client
host name, and can be used to match patterns like:

daemon list : ... user pattern@host pattern ...
The daemon wrappers can be configured at compile time to perform rule-driven username

lookups (default) or to always interrogate the client host. In the case of rule-driven username
lookups, the above rule would cause username lookup only when both the daemon list and
the host pattern match.

A user pattern has the same syntax as a daemon process pattern, so the same wildcards ap-
ply (netgroup membership is not supported). One should not get carried away with username
lookups, though.

� The client username information cannot be trusted when it is needed most, i.e. when
the client system has been compromised. In general, ALL and (UN)KNOWN are the
only user name patterns that make sense.

� Username lookups are possible only with TCP-based services, and only when the client
host runs a suitable daemon; in all other cases the result is “unknown”.

� A well-known UNIX kernel bug may cause loss of service when username lookups are
blocked by a firewall. The wrapper README document describes a procedure to find
out if your kernel has this bug.

� Username lookups may cause noticeable delays for non-UNIX users. The default time-
out for username lookups is 10 seconds: too short to cope with slow networks, but long
enough to irritate PC users.

Selective username lookups can alleviate the last problem. For example, a rule like:
daemon list : @pcnetgroup ALL@ALL
would match members of the pc netgroup without doing username lookups, but would

perform username lookups with all other systems.

DETECTING ADDRESS SPOOFING ATTACKS

A flaw in the sequence number generator of many TCP/IP implementations allows intruders
to easily impersonate trusted hosts and to break in via, for example, the remote shell service.
The IDENT (RFC931 etc.) service can be used to detect such and other host address spoofing
attacks.

Before accepting a client request, the wrappers can use the IDENT service to find out that
the client did not send the request at all. When the client host provides IDENT service, a
negative IDENT lookup result (the client matches UNKNOWN@host) is strong evidence of a
host spoofing attack.

A positive IDENT lookup result (the client matches KNOWN@host) is less trustworthy. It is
possible for an intruder to spoof both the client connection and the IDENT lookup, although
doing so is much harder than spoofing just a client connection. It may also be that the client’s
IDENT server is lying.

Note: IDENT lookups don’t work with UDP services.

EXAMPLES

The language is flexible enough that different types of access control policy can be expressed
with a minimum of fuss. Although the language uses two access control tables, the most
common policies can be implemented with one of the tables being trivial or even empty.
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When reading the examples below it is important to realise that the allow table is scanned
before the deny table, that the search terminates when a match is found, and that access is
granted when no match is found at all.

The examples use host and domain names. They can be improved by including address
and/or network/netmask information, to reduce the impact of temporary name server lookup
failures.

MOSTLY CLOSED

In this case, access is denied by default. Only explicitly authorised hosts are permitted access.
The default policy (no access) is implemented with a trivial deny file:

/etc/hosts.deny:
ALL: ALL

This denies all service to all hosts, unless they are permitted access by entries in the allow
file.

The explicitly authorised hosts are listed in the allow file. For example:

/etc/hosts.allow:
ALL: LOCAL @some_netgroup
ALL: .foobar.edu EXCEPT terminalserver.foobar.edu

The first rule permits access from hosts in the local domain (no . in the host name)
and from members of the some netgroup netgroup. The second rule permits access
from all hosts in the foobar.edu domain (notice the leading dot), with the exception of
terminalserver.foobar.edu .

MOSTLY OPEN

Here, access is granted by default; only explicitly specified hosts are refused service.
The default policy (access granted) makes the allow file redundant so that it can be omit-

ted. The explicitly non-authorised hosts are listed in the deny file. For example:

/etc/hosts.deny:
ALL: some.host.name, .some.domain
ALL EXCEPT in.fingerd: other.host.name, .other.domain

The first rule denies some hosts and domains all services; the second rule still permits
finger requests from other hosts and domains.

BOOBY TRAPS

The next example permits tftp requests from hosts in the local domain (notice the leading dot).
Requests from any other hosts are denied. Instead of the requested file, a finger probe is sent
to the offending host. The result is mailed to the superuser.

/etc/hosts.allow:
in.tftpd: LOCAL, .my.domain

/etc/hosts.deny:
in.tftpd: ALL: (/some/where/safe\_finger -l @%h | \

/usr/ucb/mail -s %d-%h root) &
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The safe finger command comes with the tcpd wrapper and should be installed in a
suitable place. It limits possible damage from data sent by the remote finger server. It gives
better protection than the standard finger command.

The expansion of the %h (client host) and %d (service name) sequences is described in the
section on shell commands.

Warning: do not booby-trap your finger daemon, unless you are prepared for infinite
finger loops.

On network firewall systems this trick can be carried even further. The typical network
firewall only provides a limited set of services to the outer world. All other services can be
”bugged” just like the above tftp example. The result is an excellent early-warning system.

DIAGNOSTICS

An error is reported when a syntax error is found in a host access control rule; when the length
of an access control rule exceeds the capacity of an internal buffer; when an access control
rule is not terminated by a newline character; when the result of expansion would overflow
an internal buffer; when a system call fails that shouldnt́. All problems are reported via the
syslog daemon.

FILES

/etc/hosts.allow , (daemon,client) pairs that are granted access.
/etc/hosts.deny , (daemon,client) pairs that are denied access.

SEE ALSO

tcpd(8) tcp/ip daemon wrapper program.
tcpdchk(8), tcpdmatch(8), test programs.

BUGS

If a name server lookup times out, the host name will not be available to the access control
software, even though the host is registered.

Domain name server lookups are case insensitive; NIS (formerly YP) netgroup lookups
are case sensitive.

AUTHOR
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