

IPACT
Queue & Routing

Services

I P A

C T

ntegrated rocess utomation &
ontrol echnologies

IPACT Queue and Router Services

User Reference Manual

Document Revision: March 20, 2006

Software Version: 4.1

Operating System: OpenVMS AXP

Integrated Process Automation and Control Technologies
260 South Campbell

Valparaiso, IN 46383

(219) 464-7212

Fax: (219) 462-5387

March 2006

This document is the property of and is proprietary to Integrated Process Automation and Control

Technologies (IPACT). The information in this document is subject to change without notice and should not

be construed as a commitment by IPACT. IPACT assumes no responsibility for any errors that may appear

in this document.

This document is given to the public domain and may be recreated and edited by the end user as long as

credits are given to IPACT.

Integrated Process Automation and Control Technologies makes no representations that the use of its

products in the manner described in this publication will not infringe on existing or future patent rights, nor

do the descriptions contained in this publication imply the granting of licenses to make, use, or sell

equipment or software in accordance with the description.

Copyright © 2006 by Integrated Process Automation and Control Technologies

All Rights Reserved

USA

The data furnished in this document is subject to the terms of the copyright page and remain the property of

IPACT Inc. No part of this document or included distribution media shall be duplicated, used, stored, or

disclosed in whole or in part except as provided by the license agreement.

The following are trademarks of Compaq: Alpha AXP, AXP, VMS, DEC, DECnet, VMS, and VAX.

IPACT is a trademark of Integrated Process Automation and Control Technologies. TCPware is a trademark

of Process Software Corporation.

Please notify IPACT of any errors or omissions of this document.

This document was created using Microsoft Word for Windows.

TABLE OF CONTENTS

1. INTRODUCTION____________ 1

1.1 Introduction 1

1.2 Supported Systems 1

1.3 Audience 1

1.4 Document Structure 1

2. OVERVIEW________________ 3

2.1 General Information 3

2.2 IQR Components 3
2.2.1 Hub 3
2.2.2 Message Queue 4
2.2.3 IQR Router 5

2.3 IQR System Service 6

2.4 Message Flow 6

3. INSTALLATION ____________ 7

3.1 Command Procedure 7

3.2 Sample Directory Structure 8

3.3 IQR Logicals 9

3.4 Command Procedures 10

3.5 Test Utilities 10

3.6 Required Privileges 11

3.7 Sample Installation Procedure 11

4. IQR SYSTEM SERVICE

LIBRARY _____________________ 17

4.1 iqr_ack_read 17

4.2 iqr_add_message_q 19

4.3 iqr_allocate_msgblks 22

4.4 iqr_attach_h 25

4.5 iqr_backup_rna 28

4.6 iqr_connect_read 30

4.7 iqr_connect_write 33

4.8 iqr_deallocate_msgblks 35

4.9 iqr_delete_q 37

4.10 iqr_disconnect_h 39

4.11 iqr_disconnect_q 40

4.12 iqr_fill_msgblks 42

4.13 iqr_get_q_info 45

4.14 iqr_modify_q 47

4.15 iqr_read_hmb 50

4.16 iqr_read_q 52

4.17 iqr_read_qn 54

4.18 iqr_read_qw 58

4.19 iqr_read_segment 60

4.20 iqr_reset_stat_h 63

4.21 iqr_reset_stat_q 64

4.22 iqr_rtr_write_q 66

4.23 iqr_thread_msgblks 69

4.24 iqr_write_q 71

5. RETURN STATUS CODES ___ 75

5.1 Successful Status Codes 75

5.2 Failure Status Codes 75

6. USING THE SYSTEM

SERVICES ____________________ 77

6.1 Code Generation 77

6.2 Using IQR with C 78

6.3 Using IQR with FORTRAN 78

7. COMPATIBILITY ___________ 79

7.1 MAQ System Service Patch Library 80

7.2 MQD System Service Patch Library 82

7.3 BEA Message Q 84

7.4 Microsoft Message Queue 84

8. IQR ROUTER______________ 87

8.1 Introduction 87

8.2 TCP/IP IQR Router 87

8.3 DECnet Router Routing Database 87

8.4 DECnet Routing Utilities 92

8.5 TCP/IP Router Routing Database 92
8.5.1 TCP/IP Router Database [GLOBAL]

Section 92
8.5.2 TCP/IP Router Database

[INCOMING] Section 93
8.5.3 TCP/IP Router Database

[OUTGOING] Section 93

8.6 TCPIQRSTAT TCP/IP Routing Utility96

9. UTILITIES ________________ 99

9.1 DMPQUE 99

9.2 DMPRTR 102

9.3 DQIT 104

9.4 IQU 106
9.4.1 IQU /ADD 106
9.4.2 IQU /CREATE 107
9.4.3 IQU /DELETE 107
9.4.4 IQU /INFO 108
9.4.5 IQU /INSTALL 108
9.4.6 IQU /MODIFY 108
9.4.7 IQU /REMOVE 109
9.4.8 IQU /RESET 110

9.5 LSTRTR 111

9.6 QIT 113

9.7 RTRDBS 114

9.8 TCPIQRSTAT 114

10. APPENDIX ______________ 117

10.1 IQR Glossary 117

IPACT Queuer and Router
©1996 by IPACT, Inc. Introduction

Introduction

Page 1

1. Introduction

1.1 Introduction

The IPACT Queuer and Router Services (IQR) provides a standard Application Programming Interface

(API) for sending messages. By using IQR, application programmers relieved of the burden of

developing messaging methods between applications on the same or multiple nodes (via a network

connection or through a cluster).

IQR provides delivery, recovery, and connectivity between n multiple nodes using a router installed

over DECnet or TCP/IP. IQR services are provided that allow for the addition of user-supplied routers

to alternate networks. IPACT has a library of other routers written for process control devices, SNA,

and other networks.

A link library is provided that interfaces the Manufacturing Automation Queuing and Routing Software

(available from DECUS).

The need to deliver transactions and events reliably between different computer systems has been

identified for most process control computer systems. Neither TCP/IP or DECnet guarantee the

delivery of messages at the application layer. The IQR router and IQR services provide this end-to-end

delivery guarantee. The use of these two mechanisms provides the ability to deliver information from

one computer system to another in applications where such guarantees are required (e.g. the CIM

environment). Messages are not deleted or lost until the receiving process acknowledges the message.

This can be thought of in a similar manner as a database “commit”.

1.2 Supported Systems

The IPACT Queuer and Router Services currently supports the AXP/Open VMS v6.1 and higher

operating system.

1.3 Audience

This document is designed for the Application Programmer and the System Manager. The casual

reader may choose to only read the Overview Chapter. This manual is intended for the programmer

and installer of the IPACT Queuer and Router Services. This document assumes that the reader has

sufficient knowledge of the VMS calling standards, system services, and typical system management

skills.

1.4 Document Structure

This document contains an overview and a detailed description of the IQR product. The Overview

Chapter gives a description of the product and the component parts. The API, the router, installation,

and utilities are all documented in separate chapters.

IPACT Queuer and Router
©1996 by IPACT, Inc. Overview

General Information

Page 3

2. Overview

2.1 General Information

The IQR software is designed to provide guaranteed message delivery between two different locations.

This is done by creating a messaging hub which contains message queues. Each message queue

contains actual messages to be read. Also, the IQR software provides a router which will move a

message from one hub to another (even across different nodes).

2.2 IQR Components

2.2.1 Hub

A hub is an individual “container” that holds all the information required for a group of message

queues and their respective messages.

Each hub is created by using the IQU utility. When created, the hub occupies both system memory and

a disk container file. System memory is used to store general hub information, as well as non-

journaled message queues. The container file holds a backup of hub information and journaled

message queues.

All hubs can contain a pre-defined number of message queues, either journaled or non-journaled.

The hub is created in protected memory, so as to not allow someone to accidentally “damage” its

information.

Container

Disk

File

Journaled SpaceNon-journaled Space

Message

Queue

Replicating

Message

Queue

Message

Queue
Message

Queue

Message

Queue

Message

Queue

HUB REGION

Local Node Memory

An example of a hub
on a node. This
shows the mapping
of the Journaled
space to a container
disk file, and how a
replicating message
queue can write to
messages within a
hub.

IPACT Queuer and Router
©1996 by IPACT, Inc. Overview

IQR Components

Page 4

2.2.2 Message Queue

Within any hub are usually many message queues. A message queue has a number of properties that all

can be defined by the process creating a message queue. Message queues are created by using the IQU

utility or by using the IQR System Service.

Messages are written to a message queue using utilities (like QIT), system service routines, or from

another hub via the router. Messages are then read from a message queue using utilities (like DQIT),

system service routines, or sent to another hub via the router.

All message queues are remembered between system startups. There is no need to create the queues

after each startup as they will exist when the hub is re-installed using the IQU utility (see Utility

Chapter). The characteristics of each message queue is also maintained over a system startup for all

message queues.

The following is a list of properties that can be defined for any message queue:

Properties Description

Name All message queues have a name that consists of up to 16

characters. No two message queues in a hub can have the same

name.

Size Messages written to a message queue can be of many varying

sizes. Each message queue can specify the size (in bytes) of the

largest message that can be written to it.

Location A message queue can be either journaled or non-journaled.

Journaled message queues are saved in a disk file and are

recoverable after abnormal events like a system crash.

Additionally, journaled message queues can be shared over a

cluster. Non-journaled message queues are stored in memory and

offer a speed advantage over journaled message queues, but are

not recoverable in the event of a system shutdown and cannot be

shared over a cluster.

Volatility Message queues can be created so that messages written to it are

volatile. A volatile message always has the possibility of being

lost in the event that the message queue has run out of room and

requires more space to write a new message. In this case, the

oldest message is deleted from the message queue.

Number of Messages A message queue can be specified to hold only a certain number

of messages at any one time, regardless of the size of the actual

message. An example would be a volatile message queue that can

hold only two messages at a time. Any time a message is written

to it that would exceed the two message limit, the oldest message

is deleted.

IPACT Queuer and Router
©1996 by IPACT, Inc. Overview

IQR Components

Page 5

Acknowledgment All messages must be acknowledged from a message queue after

being read. Acknowledging a message indicates to the queue that

the receiver has properly received the message, and the message

queue is now clear to delete the message from the queue.

Acknowledgment is usually done by the user; however, it can be

set up to be done automatically after a message is read.

Number of Readers To read a message from a message queue, you must first connect

to it and declare yourself as a reader. A message queue can only

have one (or two) readers connected to it at a time. The number

of readers allowed is defined at the time the message queue is

created. If more readers try to connect than are allowed, an error

is returned. The first reader to connect is the Primary Reader

and the second reader to connect is the Secondary Reader.

Stale Messages Message queues can be set up to have stale messages. A message

becomes stale when it exists on a queue for longer than a preset

amount of time. After a message becomes stale, it is deleted from

the queue (without a chance to be read).

Replication Some message queues can be created to replicate any message

written to it to other message queues within its hub. This can aid

in the ability to perform just one write to a message queue that in

turn will automatically write the message to up to four other

message queues. Messages are never actually written to a

replicating message queue; therefore readers are not allowed to

connect to this kind of queue.

Within each message queue are its contained messages. Each message is stored in FIFO (first in, first

out) order. All messages will remain in the queue until one of the following conditions is met:

• A reader acknowledges a message

• A process requests to delete a message

• A message becomes stale

• A volatile message queue runs out of space.

Messages are not stored in any particular format. It is up to the writer/reader of the messages to

interpret the actual message being passed. It is important to remember that all messages that are read

must be acknowledged. If a read message is never acknowledged, the reading process will not be able

to read another message until it acknowledges the current one. If, however, the process would

abnormally exit and never acknowledge the message, the read message is again placed at the front of

the queue. This will insure that a process will properly read each message.

2.2.3 IQR Router

The IQR Router is responsible for routing messages from message queues in a particular hub to other

hubs or remote nodes. The IQR product currently supports both DECnet and TCP/IP. The remote

nodes may be any DECnet, or TCP/IP, compatible node that supports the IQR Router protocol (to

include routers of the MAQ/MQD and IMS type).

IPACT Queuer and Router
©1996 by IPACT, Inc. Overview

IQR System Service

Page 6

.

Message
Queue

Message
Queue

Message
Queue

Local Node

Router

Hub Region

Message
Queue

Message
Queue

Message
Queue

Hub Region

Message
Queue

Message
Queue

Message
Queue

Local Node

Router

Hub Region

Message
Queue

Message
Queue

Message
Queue

Hub Region

Router

2.3 IQR System Service

The interface to the IQR software is through an Application Programming Interface (API). This API is

written as an user written system service and is installed with protected privileges. The system service

allows the ability of the IQR software to protect the files, shared regions, and access methods from

errant user programs. All of the data structures are protected in either executive or kernel mode. The

following is a list of the common services provided. The IQR System Service Library Descriptions

Chapter gives a more complete description of the system service calls including those typically only

used by the IQR router and the IQR utilities.

• IQR_ACK_READ - Acknowledge a message read from a message queue

• IQR_ATTACH_H - Attach to a hub

• IQR_BACKUP_RNA - Negative acknowledgment of a message from a message queue

• IQR_CONNECT_READ - Connect to a message queue with intent to read

• IQR_CONNECT_WRITE - Connect to a message queue with intent to write

• IQR_READ_Q - Read a message from a message queue

• IQR_READ_QW - Read or wait for a message from a message queue

• IQR_WRITE_Q - Write a message to a message queue

2.4 Message Flow

When a VMS process writes a message to a message queue, the IQR services determine if and where

the message can be queued. This determination depends on how the message queue was defined. If

successful, the message will be placed in region or hub container file depending if the message queue is

journaled or not. The reader process reads the message, processes the message, and then acknowledges

the message from the message queue. Until the message is acknowledged the message is not deleted.

An example of how
routers
communicate. Note
that a router can talk
within its own node
and across a
network to a different
router.

IPACT Queuer and Router
©1996 by IPACT, Inc. Installation

Command Procedure

Page 7

3. Installation

3.1 Command Procedure

The IQR Software is installed using the VAX/VMS INSTALL procedure in the SYS$UPDATE

directory. The product name is of the form: IQRvvr (where vv=version and r=revision). The install kit

will request a minimal number of questions to help customize your installation.

To begin your installation, insure that any previous versions of IQR are not operational. If you are

installing a new version of IQR, it is recommended that you dump the messages from your message

queues before beginning the installation process. To remove messages, use the following from the

command line:

DQIT /ID=[mesg_queue] /HUB=[hub] /ALL /DUMPFILE=[filename] /ADD

Enter this command line for each message queue within a hub that you want to save. All messages

within a message queue will be appended to the dumpfile filename. Note that you must have a separate

filename for each hub that you want to back up. After installation, you can restore the messages by

adding the message queues to the hub and then using the QIT utility to repopulate the message queues.

To begin the actual installation, enter at the command line:

$ @SYS$UPDATE:VMSINSTAL

This will begin the installation procedure. Follow the on-screen prompts and answer all questions to

complete the installation. The name of the product is IQR.

Additionally, after the IQR software is installed you have the option of running the IVP (Installation

Verification Procedure). This will create a test hub, create some message queues, write and read to

them, and then remove the message queue. Successful operation of this process will indicate that your

IQR software is now properly installed.

After the installation is completed, a file named IQR_STARTUP.COM is created in your

SYS$STARTUP directory. This file must be executed before attempting to use any of the IQR System

Services. The installation program will automatically execute this file; however, in order to use it after

a system reset, a call to this routine should be placed into your SYSTARTUP.COM file. Use the

following to execute the command procedure:

$ @SYS$STARTUP:IQR_STARTUP

Additionally, you will need to execute the following command procedure during your login to use the

IQR commands. If you are getting errors regarding unknown commands, you should try executing this

command procedure first:

$ @IQR$PROD:IQR_COMMANDS

IPACT Queuer and Router
©1996 by IPACT, Inc. Installation

Sample Directory Structure

Page 8

3.2 Sample Directory Structure

The default directory structure created by the installation process is as follows:

DEF DOCS PROD SOURCE

MAQ MQD TEST

UTILITY

IQR

SYS$COMMON:

HUB RTR

IQR

DEVICE:

Alternatively, the installation routine can install the SYS$COMMON files onto a separate device. In

addition, a command procedure, IQR_STARTUP.COM, is created in your SYS$STARTUP directory.

The subroutines in each of the directories will contain the following:

Directory Name Contents

DEF Contains all of the C and FORTRAN header files to be used by a

user’s source code. A library is also created (in the SOURCE

directory) for all of the C header files.

DOCS This contains your online documentation and release notes.

PROD This contains all of the executable code and the system service. The

logical IQR$PROD is defined to this directory.

SOURCE This contains any necessary object files, libraries, or linkable code.

The logical IQR$LIB is defined to this directory.

HUB The location for all hub container files. The logical IQR$QQQQ is

defined to this directory.

RTR The location for all router database files. The logical IQR$RTR is

defined to this directory.

MAQ Test utility for MAQ compatibility.

MQD Test utility for MQD compatibility.

TEST Test utility for IQR System Service functionality.

This device name is

specified during

installation.

This is the default

installation directory.

You can change this

during installation.

IPACT Queuer and Router
©1996 by IPACT, Inc. Installation

IQR Logicals

Page 9

3.3 IQR Logicals

The following are the defined logicals used by the IQR System Service. Most of these logicals are set

up by running the command procedure IQR_STARTUP.COM in the SYS$STARTUP directory.

Logical Name Type Description

IQRSS System This is assigned to the directory containing

the IQR System Service shared system

service file (IQRSS.EXE).

IQR$PROD System This is assigned to the directory containing

all of the executable code for the IQR

Software. This includes all utilities and

command procedures.

IQR$LIB System This is assigned to the directory that contains

all linkable object libraries, header libraries,

text libraries, and object files.

IQR$RTR System/Group This is assigned to the directory that contains

the router database files.

IQR$QQQQ System/Group This is assigned to the directory that contains

the hub message queue container files.

IQR$EXAMPLES System This is assigned to the directory that contains

the example programs in C and FORTRAN.

IQRHUB System/Group This is defined to be the default hub name.

RTRDEF System/Group This is defined to be the default router

database name.

IPACT Queuer and Router
©1996 by IPACT, Inc. Installation

Command Procedures

Page 10

3.4 Command Procedures

The following command procedures are included with the installation:

Procedure Name Location Description

IQR_COMMANDS.COM IQR$PROD This will setup all of the IQR utility

commands as foreign commands. You

should execute this file during login if

you intend on using the IQR utility.

This may not be necessary if you

installed the CLD files into your

system command definition file.

IQR_STARTUP.COM SYS$STARTUP This will define all system-wide

logicals necessary for the operation of

the IQR System Service. In addition,

it will install the System Service into

memory.

xxxx_START.COM IQR$RTR This will start the router named xxxx.

This command procedure is created by

the RTRDBS utility when it compiles

a router database.

IQR_START_xxxx.COM IQR$PROD This will start your default hub (named

xxxx) that you specified during

installation. This will not initially

create the hub. To create the hub, see

the IQU /CREATE utility chapter of

this manual.

3.5 Test Utilities

The installation routine will install some test utilities to test the functionality of the IQR System

Service. The test utilities are provided along with their source code. To run the test utilities the user

must first compile the programs with the included command procedure in their respective directories.

The base location for the utilities is normally the SYS$COMMON:[IQRvvr.UTILITIES] directory.

The following test routines are provided:

Test Utility Description

IQR_TEST This tests all of the basic IQR System Service calls. To

compile, execute IQR_TEST.COM and then run

IQR_TEST.EXE.

MQD This tests the compatibility of the IQR System Service to the

older MQD System Service. To compile, execute

MENU_MQD.COM and then run MENU.EXE. You must

have already installed a HUB on your system with message

queues to use this program.

IPACT Queuer and Router
©1996 by IPACT, Inc. Installation

Required Privileges

Page 11

MAQ This tests the compatibility of the IQR System Service to the

older MAQ System Service. To compile, execute

MENU_MAQ.COM and then run MENU.EXE. You must

have already installed a HUB on your system to use this

program.

3.6 Required Privileges

The installer should have the following privileges in order to install the IQR System Service:

• CMEXEC

• GRPNAM

• GRPPRV

• PRMGBL

• SETPRV

• SYSGBL

• SYSNAM

3.7 Sample Installation Procedure

The following is a dump from a sample installation of the IQR product. You can use it to compare

against your specific installation. Items in bold reflect user input.

IPCALP$ @SYS$UPDATE:VMSINSTAL

OpenVMS AXP Software Product Installation Procedure V6.2

It is 9-AUG-1995 at 13:30.

Enter a question mark (?) at any time for help.

* Are you satisfied with the backup of your system disk [YES]? YES
* Where will the distribution volumes be mounted: DVA0

Enter the products to be processed from the first distribution volume set.
* Products: IQR
* Enter installation options you wish to use (none):

The following products will be processed:

 IQR Vxx.x

 Beginning installation of IQR Vxx.x at 13:30

%VMSINSTAL-I-RESTORE, Restoring product save set A ...

 * IPACT Queuer and Router Services *

 Copyright (C) 1995 by:

 IPACT Inc.
 260 South Campbell
 Valparaiso, IN 46383
 (219) 464-7212 fax (219) 462-5387

 All rights reserved.

Your IQR Serial number: xxx-xxxxxx-xxxx

About to begin installation of the IQR Services. If
you do not want to install at this time, please
enter a N at the prompt. Otherwise, press RETURN
and answer all questions presented.

* Are you ready to begin installation? [Y]? Y

***************** SELECT DEFAULT PATHS *****************

The IQR System Service, all source code, all executables,

IPACT Queuer and Router
©1996 by IPACT, Inc. Installation

Sample Installation Procedure

Page 12

all utilities, and the development environment are all
placed in the SYS$COMMON:[IQRxxx] directory.

Alternatively, any drive can be selected. Common service

files will be placed in <drive>:[IQRxxx]. The drive

selected should be one that is mounted upon system
startup such that the system service can be installed.

* Place IQR Service in SYS$COMMON: directory? [Y]? Y

*********************** SELECT FACILITY CODE ************************

The facility code for the system service and the routing process
error messages are selected by the following question. The user
should be aware that the message codes are in the range of 1 to 2047.
The actual value is supposed to be assigned by digital, but since
this code does not come from digital, we are not able to or desire
to go through the hassle. Instead, we will let you select the
factility number. One should be aware, as should all users of the
queue service (not really a problem with the router), what factility
number was chosen. If a user selects the same number, then the
translation of error messages can be all messed up (ie: QUESUC may
translate to a user defined facility code that means: BADINPUT). The
normal standard defined of facility codes for digital products can be
found in the QUEMSG macro.

The system manager may choose to add the error codes for queue
services for all users or for an individual user. The following
command will define all of the queue service error codes.

 SET MESSAGE IQR$LIB:IQR_MSG.EXE

* Enter the QUEUE SERVICE facility number (1 to 2047) [9]: 9

**************** SELECT CONTAINER DEVICE ****************

The IQR System Service stores all HUB and ROUTER database
information on any mounted disk. Note that the HUB
container file is implemented as an RMS paged file that
stores your entire hub information and all journaled
messages.

Ideally, this should NOT be your system disk. This disk
should be on a disk that is not heavily used or at least
some thought should be given to partitioning loads for
the I/O required to checkpoint the global section to the
RMS page file. Also, a disk with a high access and read
speeds will greatly improve the speed of the IQR services
that reference the HUB container file.

This disk will need to be mounted before any IQR operations
can be performed (ideally in your system startup).

* Which device should contain Queue container file: DKA500

The hub file itself can be any size but will require system
global pages and disk space. You should use the INSTALL
utility to determine how many free pages are available, and
add the number you intend to allocate for the Queue container
file. Finally, each process that connects to the global
section must be able to map the queue container file,
therefore, the virtual page count must be large enough. For
this software 3000 plus the number of pages allocated for the
queue file is adequate. A normal size for the queue file is
2000 to 5000 pages.

Below are the current settings of these sysgen parameters.

Number pages allocated for global sections: 166208
Current number of global pages free: 48576
System Process largest Virtual Address Space: 139264

* Do you wish to change these and reinstall this kit later [N]? N

****************** DEFAULT HUB NAME ******************

The installation routine will set up a file that will
initalize a default HUB for your message queues. This
must be no more than 8 characters and have no blanks.
The file will be called IQR_START_<name>.COM and should
be executed in order to install the hub on the system.
Note that you may have to first create the hub on the
system before you can install it. See the user's
manual on the IQU utility for more information.

* Enter the name of default message hub file: ALPHA

****************** COMMAND DEFINITON ******************

You have the option of installing the IQR commands into
your system CLD tables. If you do this, then anyone
who logs in with a copy of these tables will get access
to the IQR commands. If you do not choose this option,
then you will have to run the following command
procedure in order to set up the IQR utilities as
foreign commands:

 @IQR$PROD:IQR_COMMANDS

This is the recommended procedure which will keep

IPACT Queuer and Router
©1996 by IPACT, Inc. Installation

Sample Installation Procedure

Page 13

things from getting messed up in the event the
system CLD tables are replaced.

* Install CLD files? [N]? N

****************** END Q/A SESSION ******************

* Are you happy with your answers [Y]? Y

**************** CONTINUING INSTALLATION ****************

%IQR-I-MILLERTIME, Interaction section is complete - installation continuing

 Creating common directory tree
 Resulting Directory Tree for this product will be:

 SYS$COMMON:[IQR004]
 +-[DEF]
 +-[DOCS]
 +-[PROD]
 +-[SOURCE]
 +-[UTILITY]-+
 |
 +-[TEST]
 +-[MAQ]
 +-[MQD]
 _IPCALP$DKA500:[IQR004]
 +-[HUB]
 +-[RTR]

Creating directory tree
%VMSINSTAL-I-SYSDIR, This product creates system disk directory IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004].
%CREATE-I-EXISTS, _IPCALP$DKA500:[IQR004] already exists
Creating definitions directory
%VMSINSTAL-I-SYSDIR, This product creates system disk directory IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004.DEF].
Creating documentation directory
%VMSINSTAL-I-SYSDIR, This product creates system disk directory IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004.DOCS].
Creating production directory
%VMSINSTAL-I-SYSDIR, This product creates system disk directory IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004.PROD].
Creating source files directory
%VMSINSTAL-I-SYSDIR, This product creates system disk directory IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004.SOURCE].
Creating utility directory
%VMSINSTAL-I-SYSDIR, This product creates system disk directory IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004.UTILITY].
Creating utility:test directory
%VMSINSTAL-I-SYSDIR, This product creates system disk directory
IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004.UTILITY.TEST].
Creating utility:maq directory
%VMSINSTAL-I-SYSDIR, This product creates system disk directory IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004.UTILITY.MAQ].
Creating utility:mqd directory
%VMSINSTAL-I-SYSDIR, This product creates system disk directory IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004.UTILITY.MQD].
Creating hub container storage directory
Creating route directory
Loading documentation directory
Loading source directory
Loading default queue directory
Loading default router directory
Loading MQD test utilities
Loading MAQ test utilities
Loading IQR test utilities
Loading definitions directory
Loading production directory
Building IQR_MSG
Linking IQR_MSG and replacing in HUB Library
Linking IQR System Service
Linking utility: DMPQUE
Linking utility: DMPRTR
Linking utility: DQIT
Linking utility: QIT
Linking utility: IQU
Linking utility: LSTRTR
Linking utility: RTRDBS
Linking utility: IQR_RTR
Creating IQR startup procedure

************ INSTALLATION VERIFICATION PROCEDURE ************

This kit is supplied with an IVP that is part of
the VMSINSTAL kit. If you choose to execute the IVP, then
the IQRSS system service will be installed. A test hub named
TEST_HUB will then be created. Two message queues will be
created, TESTMID1 and TESTMID2. Some messages will then be
written to the queues. Both message queues should only contain
two messages after writing. Then, the queues are displayed and
then read off of the message queue. Finnaly, the test hub is
removed from memory (and disk) and an indication of your
installation configuration is displayed.

* Execute IVP [Y]? Y

************************* FINISHING UP *************************

Your installation is now complete. After the files are moved,
we will test your installation if you requested it.

Please remember to read the user's manual for more information
about configuring the installation for your particular needs.

%VMSINSTAL-I-MOVEFILES, Files will now be moved to their target directories...
 Installing IQRSS and defining logicals

IPACT Queuer and Router
©1996 by IPACT, Inc. Installation

Sample Installation Procedure

Page 14

%INSTALL-W-NOPREV, no previous entry exists - new entry created for
IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004.PROD]IQRSS.EXE;1

++++ IQR installation verification procedure ++++

Defining IQR symbols
Creating TEST_HUB test container
Creating message queues

Writing messages to message queues
 Writing to message queue: TESTMID1
 Writing to message queue: TESTMID1
 Writing to message queue: TESTMID1
 Writing to message queue: TESTMID1
 Writing to message queue: TESTMID2
 Writing to message queue: TESTMID2

HUB information for: TEST_HUB on IPCALP::

HUB Operational since 9-AUG-1995 13:32:42.79 Up for 0 00:00:01.48

Location Size Free Blk Write Cntr Read Cntr Act Queues
--------- -------- -------- ---------- --------- ----------
Container 12104 12096 0 0 0
Region 197 120 6 0 2

Queue Name Flags CurMsg MaxMsg Last Wrt Last Ack CumTran
-------------- -------- ------ ------ -------- -------- -------
TESTMID2 2 20 13:32:44 00:00:00 0:00:00
TESTMID1 V 2 2 13:32:43 13:32:43 0:00:00

 Read from message queue: TESTMID1
 Header follows:
 Source node name:
 Destination node name:
 Message type: 0
 Sequence number: 3
 Message length: 22
 On Queue time: 9-AUG-1995 13:32:43.74
 Total on queue time: 0days and 00:00:00.78
 ------- MESSAGE FOLLOWS ---------
 this is test message3

 Header follows:
 Source node name:
 Destination node name:
 Message type: 0
 Sequence number: 4
 Message length: 22
 On Queue time: 9-AUG-1995 13:32:43.86
 Total on queue time: 0days and 00:00:00.89
 ------- MESSAGE FOLLOWS ---------
 this is test message4
 End of message queue reached.
%IQRSRV-W-NOMESS, No message for the specified message queue

 Read from message queue: TESTMID2
 Header follows:
 Source node name:
 Destination node name:
 Message type: 0
 Sequence number: 1
 Message length: 22
 On Queue time: 9-AUG-1995 13:32:43.97
 Total on queue time: 0days and 00:00:00.95
 ------- MESSAGE FOLLOWS ---------
 this is test message1

 Header follows:
 Source node name:
 Destination node name:
 Message type: 0
 Sequence number: 2
 Message length: 22
 On Queue time: 9-AUG-1995 13:32:44.09
 Total on queue time: 0days and 00:00:00.99
 ------- MESSAGE FOLLOWS ---------
 this is test message2
 End of message queue reached.
%IQRSRV-W-NOMESS, No message for the specified message queue

 Removing TEST_HUB from memory and disk

IQR -- IPACT Queuer and Router

Serial #xxx-xxxxxx-xxxx
 Version : xx
 Revision: x

 **** Verification procedure complete ****

 Installation of IQR Vxx.x completed at 13:32

 Adding history entry in VMI$ROOT:[SYSUPD]VMSINSTAL.HISTORY
 Creating installation data file: VMI$ROOT:[SYSUPD]IQR004.VMI_DATA

Enter the products to be processed from the next distribution volume set.
* Products:

 VMSINSTAL procedure done at 13:33

IPACT Queuer and Router
©1996 by IPACT, Inc. Installation

Sample Installation Procedure

Page 15

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_ack_read

Page 17

4. IQR System Service Library

4.1 iqr_ack_read

Acknowledge an already read message from a message queue.

FORMAT
iqr_ack_read (hub, queue_name, queue_index)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of acknowledgment of message from the message queue.

ARGUMENTS
hub

Type: Record of type hbkdef

Access: Read only

Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service defined by the

structure HBKDEF in the file HBKDEF.H

queue_name

Type: Descriptor

Access: Read only

Mechanism: By reference

Message queue name to acknowledge.

queue_index

Type: Longword

Access: Read only

Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the

iqr_connect_read or iqr_connect_write service routines for the message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_ack_read

Page 18

DESCRIPTION
This routine will acknowledge a message that has been read but not yet

acknowledged on a particular message queue. For any message, once it has been

read, it will need to be acknowledged from the queue to re-allocate space in the

queue. An acknowledgment will indicate that the calling process has properly

received the message and that the queue may delete the message and prepare to

read the next.

Also, further messages will be unable to be read until the last read message is

acknowledged. Message queues that are set up with the MQD_M_ACKREAD

flag set will automatically acknowledge the message from the message queue

once it is read via iqr_read_q or iqr_read_qw.

Failure to acknowledge a message from the queue and then disconnecting will

result in a stale message being left on the message queue. When a reader

reconnects to the message queue, the stale message will be placed back at the

head of the message queue.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully acknowledge the message off of

the queue.

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not

writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.

Examine extended status in hbk and contact

developers.

QUE_NOTFOUND Requested message queue was not found

within the current hub.

QUE_NOTCONREAD The caller has not yet connected for read to

this queue.

QUE_NORNAMESS No message was read off of the queue -- the

RNA has not been set. You need to first read

a message before you can acknowledge it.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_add_message_q

Page 19

4.2 iqr_add_message_q

Creates a new message queue (journaled or non-journaled) within a specific hub.

FORMAT
iqr_add_message_q (hub, queue_name, max_messages,
stale_time, type, max_mesg_size)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of queue creation including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read only

Mechanism: By reference

Hub is a buffer that was returned by the iqr_attach_h service. This is defined by

the structure HBKDEF in the file HBKDEF.H

queue_name

Type: Character descriptor

Access: Read only

Mechanism: By reference

This is the name of the queue to be created in descriptor format - maximum of 16

characters.

max_messages

Type: Longword

Access: Read only

Mechanism: By value

This will indicate the maximum number of queued messages that will be allowed

on the queue at any one time. This does not include messages currently read but

not yet acknowledged.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_add_message_q

Page 20

stale_time

Type: Longword

Access: Read only

Mechanism: By value

This value will reference the number of minutes that messages on the queue will

remain as valid messages. After that time, messages will become stale and

deleted from the queue. Requires the value MQD_M_TIMED to be set for type.

type

Type: Longword

Access: Read only

Mechanism: By value

This is set to indicate the type of message queue to be created. Valid types are as

follows:

MQD_M_ACKREAD Automatically acknowledge a message when

it is read.

MQD_M_DUALREAD Message queue supports both a primary and

secondary reader (two readers).

MQD_M_JOURNALED Messages are kept in journaled space (on

disk) instead of within memory.

MQD_M_READER Do not queue (write) messages unless there

is a reader connected to the message queue.

MQD_M_REPLICATING Writing to this message queue will instead

queue the message to multiple message

queues on the current hub (replicate).

MQD_M_TIMED Timed message queue. Stale messages are

removed from the queue. Requires a value

for stale_time.

MQD_M_VOLATILE Message queue can contain volatile

messages. The oldest message will be

deleted if there is not room for a new one.

max_mesg_size

Type: Longword

Access: Read only

Mechanism: By value

This is set to the size (in bytes) of the largest message that will be allowed to be

written to the queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_add_message_q

Page 21

DESCRIPTION
This routine is used to create or add a new message queue to an existing hub. In

order to be able to read/write messages to a queue, the queue must first be created

with iqr_add_message_q.

If the message queue already exists within the hub (and has not been deleted), an

error message is returned.

The routine will build the message queue in memory (or on disk if the

MQD_M_JOURNALED option is specified) and reset all message queue

counters.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully created the message queue.

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hbk was invalid. Missing or not

writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.

Examine extended status in hbk and contact

developers.

QUE_CONTAINERFULL The disk container is at its maximum size.

QUE_NOCACHE No cache space available for the message

queue.

QUE_ADDED The queue was successfully added.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_allocate_msgblks

Page 22

4.3 iqr_allocate_msgblks

Allocate space in a message queue for a multi-packet message.

FORMAT
iqr_allocate_msgblks (hub, queue_name, msg_size, hmb_blck,
queue_index)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of allocation, including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read

Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined

by the structure HBKDEF in the file HBKDEF.H

queue_name

Type: Descriptor

Access: Read only

Mechanism: By reference

This is the name of the message queue to write to.

msg_size

Type: Longword

Access: Read only

Mechanism: By value

This is the size of the message to be written. This does not include the message’s

header.

hmb_blck

Type: Longword

Access: Write

Mechanism: By reference

This is the returned value of the block number for the header message block

created by the routine. This is used by other calls to iqr_fill_msgblks and

iqr_thread_msgblks.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_allocate_msgblks

Page 23

queue_index

Type: Longword

Access: Read

Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the

iqr_connect_read or iqr_connect_write service routines for the message queue.

DESCRIPTION
This service entry is called by a router or another program that desires to allocate

space for a message that will later be populated and then threaded into the

message queue chain. If the allocated blocks are not needed after they are

allocated, then the service iqr_deallocate_msgblks may be used to return them

back to the free space.

This routine is used in conjunction with the routines iqr_fill_msgblks and

iqr_thread_msgblks to first populate and then thread the message into the queue.

This service requires that the user has the SYSNAME privilege. This test is made

to ensure that the caller is a more knowledgeable user. The privilege is not

actually needed by the service.

The service functions somewhat like the iqr_write_q service by checking to

make sure that the message queue will accept another message and that the user is

correctly connected to the message queue before actually doing anything to the

queue.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successful completion.

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not

writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.

Examine extended status in hbk and contact

developers.

QUE_NOTFOUND Requested message queue was not found

within the current hub.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_allocate_msgblks

Page 24

QUE_NOTCONWRITE The caller has not yet connected for write (or

read) to this queue.

QUE_MQDFULL The message queue is full (the number of

messages in the queue exceeds that set by

iqr_add_message_q).

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_attach_h

Page 25

4.4 iqr_attach_h

Attach to a messaging hub.

FORMAT
iqr_attach_h (hub [, hub_name] [, mqd_count])

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of hub attachment including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read/Write

Mechanism: By reference

This is the returned hub reference required for any calls to the IQR service

routines.

hub_name

Type: Descriptor

Access: Read only

Mechanism: By reference

Contains the name of the hub to map, maximum of 8 characters. (Optional.

Defaults to Hub defined by logical IQRHUB)

mqd_count

Type: Longword

Access: Read only

Mechanism: By value

This specifies the maximum number of message queues that the caller intends to

connect to. (Optional. Defaults to an internal value of 4)

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_attach_h

Page 26

DESCRIPTION

This routine creates an area for the process (PEX - process expanded region)

where the process can store information on the queue process and provide

working space for other queue services.

The starting and ending address of the PEX is returned to the caller in the hub

parameter.

Additionally, the routine establishes an exit handler for the process which will

disconnect from all queues and the hub upon exit.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully attached to the message hub.

QUE_PREATT Informational: indicates that the message hub

has already been attached.

QUE_INVALIDPEX User passed hbk was invalid. Missing or not

writeable. Usually caused by not having the

hbk initialized through the iqr_attach_h

routine.

QUE_BADHNAME User passed hub name was invalid. Name was

too short, too long, or was not accessible for

read.

QUE_DEFHNAME Unable to translate the default hub name.

Most likely logical not defined by the system

manager.

QUE_BADCCTMQD The user specified number of message queues

exceeds a reasonability test defined by the

software. Contact developers if this is too low

for your environment. The maximum number

was specified when the software was

packaged.

QUE_BADPRCINF The queue service was unable to get

information about the current process.

Examine the condition code in the extended

status field of the hbk. Contact the developers.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_attach_h

Page 27

QUE_PRCLCKNM The queue service was unable to create a

process lock. Examine the condition code in

the extended status field of the hbk.

QUE_BADSIG The queue service was unable to establish a

signal resource lock. Examine the condition

code in the extended status field of the hbk.

QUE_BADPRCLCK Unable to capture process lock. Examine the

condition code in the extended status field of

the hbk.

QUE_BADSRV Internal error. Unable to demote lock on the

signal resource.

Additionally, extended status is provided in the hub structure. If the error is QUE_ACCVIO, the

number of the parameter that was not readable or writeable is stored in this entry if the hub was at least

writeable.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_backup_rna

Page 28

4.5 iqr_backup_rna

Restore a read, but not yet acknowledged message back onto the front of a

message queue.

FORMAT
iqr_backup_rna (hub, queue_name, queue_index)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of restore, including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read

Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined

by the structure HBKDEF in the file HBKDEF.H

queue_name

Type: Descriptor

Access: Read only

Mechanism: By reference

This is the name of the message queue to backup the message.

queue_index

Type: Longword

Access: Read

Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the

iqr_connect_read or iqr_connect_write service routines for the message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_backup_rna

Page 29

DESCRIPTION
This service is called to backup a message that has been read but not yet

acknowledged to the front of the message queue. After reading a message from a

message queue, the message will remain “held” until the message is

acknowledged off of the queue. If the reader desires to return the message back

to queue, then call this routine before acknowledging the message. All backed-up

messages are returned to the front of the message queue.

This action is usually done during abnormal process rundown, but the user may

also desire a way to easily return a message back onto the queue to be read again

later.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully restored the message back onto

the message queue.

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not

writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.

Examine extended status in hbk and contact

developers.

QUE_NOTFOUND Requested message queue was not found

within the current hub.

QUE_NOTCONREAD The caller has not yet connected for read to

this queue.

QUE_NORNAMESS No message was read off of the queue -- the

RNA has not been set. You need to first read

a message before you can acknowledge it.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_connect_read

Page 30

4.6 iqr_connect_read

Connect to a message queue for subsequent reading.

FORMAT
iqr_connect_read (hbk, queue_name, event_sync, queue_index)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of message queue connection, including possible VMS and RMS status

codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read

Mechanism: By reference

Hub is a buffer that was returned by the iqr_attach_h service. This is defined by

the structure HBKDEF in the file HBKDEF.H

queue_name

Type: Descriptor

Access: Read only

Mechanism: By reference

Message queue name, 16 characters max.

event_sync

Type: Longword

Access: Read only

Mechanism: By value

Event flag for synchronization.

queue_index

Type: Longword

Access: Write

Mechanism: By reference

This is a pointer to a longword that will hold the memory address for the

Connected Message Queue (CMQ) definition created by the connection. This

value will be required by any subsequent calls that use this particular message

queue.

DESCRIPTION

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_connect_read

Page 31

This service defines the calling process as a reader of a particular message queue.

In order to connect for read, the user must have already attached to the message

hub and the message queue must already exist.

If these conditions are met, a new connect message queue block is allocated in the

user's process expanded region. Then an attempt is made to capture the message

queue lock. If the lock can be captured in exclusive mode, then the caller is the

one and only primary reader of the message queue. If the lock cannot be

captured, then another user is currently connected for read and an error is

returned. Also, an AST is created by the service which will set the caller’s event

flag when one of the IQR Service routines wishes to notify all readers of this

message queue that a new message has arrived.

If the message queue was created with the MQD_M_DUALREAD option, then a

secondary reader can also be connected as well. At any one time, only one

primary and one secondary reader can be connected. Any other attempts to

connect as a reader will result in the error QUE_TOOMANYRDR.

Upon connection the message queue is checked for messages that have been read

but not yet acknowledged. If the reader who read the message is no longer

connected to the queue, then that message is again re-queued at the beginning of

the queue.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully attached to the message queue for

read within the hub.

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length. Can also

indicate trying to connect to a replicating

queue (which is invalid).

QUE_INVARG User passed argument invalid, or not readable.

QUE_MAXMSGQUEUES User has exceeded the maximum number of

message queues that may be attached. The

number specified on the iqr_attach_h or

mqd_count must be increased.

QUE_TOOMANYRDR Maximum number of readers already

connected to the message queue.

QUE_INVALIDPEX User passed hbk was invalid. Missing or not

writeable.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_connect_read

Page 32

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.

Examine extended status in hbk and contact

developers.

QUE_NOTFOUND Requested message queue was not found

within the current hub.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_connect_write

Page 33

4.7 iqr_connect_write

Connect to a message queue for subsequent writing.

FORMAT
iqr_connect_write (hub, queue_name, queue_index)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of connection, including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read

Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined

by the structure HBKDEF in the file HBKDEF.H

queue_name

Type: Descriptor

Access: Read only

Mechanism: By reference

This is the name of the message queue to connect to, maximum of 16 characters.

queue_index

Type: Longword

Access: Write

Mechanism: By reference

This is a pointer to a longword that will hold the memory address for the

Connected Message Queue (CMQ) definition created by the connection. This

value will be required by any subsequent calls that use this particular message

queue.

DESCRIPTION
This routine defines the caller as a writer to a particular message queue. In order

to connect for write, the user must have already attached to the message hub and

the message queue must already exist.

If the conditions are met, then the caller is connected for write to the message

queue. Any number of writers can be connected to the queue at any one time.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_connect_write

Page 34

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully attached to the message queue for

write within the hub.

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_MAXMSGQUEUES User has exceeded the maximum number of

message queues that may be attached. The

number specified on the iqr_attach_h or

mqd_count must be increased.

QUE_INVALIDPEX User passed hub was invalid. Missing or not

writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.

Examine extended status in hbk and contact

developers.

QUE_NOTFOUND Requested message queue was not found

within the current hub.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_deallocate_msgblks

Page 35

4.8 iqr_deallocate_msgblks

This will release allocated blocks (from iqr_allocate_msgblks) back to the

queue.

FORMAT
iqr_deallocate_msgblks (hub, queue_name, hmb_blck,
queue_index)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of deallocation, including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read

Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined

by the structure HBKDEF in the file HBKDEF.H

queue_name

Type: Descriptor

Access: Read only

Mechanism: By reference

This is the name of the message queue to use, 16 characters maximum.

hmb_blck

Type: Longword

Access: Read

Mechanism: By value

This is a pointer to the value of the block number of the header message block for

the message that is to be deallocated.

queue_index

Type: Longword

Access: Read

Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the

iqr_connect_read or iqr_connect_write service routines for the message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_deallocate_msgblks

Page 36

DESCRIPTION
This routine will release blocks that have been allocated to a message and its

header for a particular message queue.

These blocks must have been allocated with the iqr_allocate_msgblks service.

Generally, this routine is used as a rundown or error condition service to free

allocated blocks back to the message queue if the message could not be properly

written.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successful return.

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not

writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.

Examine extended status in hbk and contact

developers.

QUE_NOTFOUND Requested message queue was not found

within the current hub.

QUE_NOTCONWRITE The caller has not yet connected for write (or

read) to this queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_delete_q

Page 37

4.9 iqr_delete_q

This routine will mark a message queue as deleted from a specific hub.

FORMAT
iqr_delete_q (hub, queue_name)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of queue deletion, including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read only

Mechanism: By reference

Hub is a buffer that was returned by the iqr_attach_h service. This is defined by

the structure HBKDEF in the file HBKDEF.H

queue_name

Type: Character descriptor

Access: Read only

Mechanism: By reference

This is the name of the queue to be deleted in descriptor format - maximum of 16

characters.

DESCRIPTION
This routine will search for the passed message queue name within the indicated

hub. If it is found, then it will mark that queue as being deleted. Any future

attempts to read/write to the queue will not be allowed. The message queue must

not contain any waiting messages in order to be deleted.

Note that the information for the queue is not actually deleted -- it is only marked

as invalid. This can allow for the re-creation of the queue in the event it is

needed.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_delete_q

Page 38

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successful modification of the message queue.

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

Also can indicate that the message queue still

has waiting messages.

QUE_INVALIDPEX User passed hbk was invalid. Missing or not

writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.

Examine extended status in hbk and contact

developers.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_disconnect_h

Page 39

4.10 iqr_disconnect_h

Disconnect the calling process from all connected hubs and message queues

(rundown service).

FORMAT
iqr_disconnect_h (hub)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of disconnection, including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read

Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined

by the structure HBKDEF in the file HBKDEF.H

DESCRIPTION
This service is used as a part of the general rundown for the IQR System Service.

It will disconnect the caller from all connected message queues, zeroing out the

caller’s process expanded region. Also, it will remove all process locks created

by the IQR Service calls.

This routine should be called upon completion of the caller’s program to insure

that all locks are released and resources are returned to the system.

Additionally, this service is called as a part of the CTRL-Y AST handler in order

to properly allow for a rundown of the IQR services.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully completed.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_disconnect_q

Page 40

4.11 iqr_disconnect_q

This service will allow the caller to disconnect from a message queue.

FORMAT
iqr_disconnect_q (hub, queue_name, queue_index)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of disconnect, including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read

Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined

by the structure HBKDEF in the file HBKDEF.H

queue_name

Type: Descriptor

Access: Read only

Mechanism: By reference

This is the name of the message queue to disconnect.

queue_index

Type: Longword

Access: Write

Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the

iqr_connect_read or iqr_connect_write service routines for the message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_disconnect_q

Page 41

DESCRIPTION
This service will disconnect the caller from a particular message queue. If the

caller has connected for read or write, this routine will disconnect him from the

message queue and mark his connection block as invalid.

To access a message queue again, you must reconnect using iqr_connect_read or

iqr_connect_write service.

You should call this service when you have finished working with a message

queue. This will insure that all information is properly handled within the queue,

and in the case of readers, will open up the availability for another process to

connect as a reader.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully disconnected from the message

queue.

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hbk was invalid. Missing or not

writeable.

QUE_INTERNALFAULT Contact developers.

QUE_NOTFOUND Requested message queue was not found

within the current hub.

QUE_INVALQIDX The queue_index is not valid.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_fill_msgblks

Page 42

4.12 iqr_fill_msgblks

Fill previously allocated message blocks in a message queue.

FORMAT
iqr_write_q (hub, queue_name, size, offset, buffer, hmb_blck,
queue_index)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of fill, including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read

Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined

by the structure HBKDEF in the file HBKDEF.H

queue_name

Type: Descriptor

Access: Read only

Mechanism: By reference

This is the name of the message queue to write to.

size

Type: Longword

Access: Read only

Mechanism: By value

This is the size (in bytes) of the current segment to be written to the queue. This

is not the total size of the message, but just the size for the current packet. Unless

this is the last segment to be written, the value must be a multiple of 512 bytes.

offset

Type: Longword

Access: Read only

Mechanism: By value

The current byte offset of the current packet that is being written to a message

queue. The offset is relative to the start of the message and should always be a

multiple of 512 bytes.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_fill_msgblks

Page 43

buffer

Type: Longword block index

Access: Read

Mechanism: By reference

This is a pointer to a block buffer where the information is to be placed on the

queue. This does not include a message header.

hmb_blck

Type: Longword

Access: Read

Mechanism: By value

This is the value of the block number of the header message block for the message

that is to be threaded.

queue_index

Type: Longword

Access: Write

Mechanism: By reference

This is the Connected Message Queue (CMQ) value returned by the

iqr_connect_read or iqr_connect_write service routines for the message queue.

DESCRIPTION
This service is designed to allow a privileged user the ability to populate the

blocks of a message that was previously allocated using the

iqr_allocate_msgblks. Since there exists the ability to corrupt the threads in the

hub, this service will test to ensure that the caller has the SYSNAM privilege.

This service is primarily used to fill allocated message space with multiple

“packets”. Each packet is a small part of the entire message, and when

completed, will fill the blocks in the queue identical to that of a basic

iqr_write_q service. The parameters size and offset are used to keep track of the

current position being written in the current message. Size must always be a

multiple of 512 bytes (unless you are writing the final packet, in which size may

be smaller than 512 bytes). Offset is a user-maintained value that tells the service

where in the message you are currently writing. Offset is calculated from the

beginning of the actual message, disregarding any headers, and must always be a

multiple of 512 bytes.

Before writing any data, the hmb block is checked to make sure it is valid. The

hmb_blck value passed must match that which was stored there by the

iqr_allocate_msgblks service.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_fill_msgblks

Page 44

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successful completion.

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not

writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.

Examine extended status in hbk and contact

developers.

QUE_NOTFOUND Requested message queue was not found

within the current hub.

QUE_INVALUSERBUF The buffer passed by the user is invalid

QUE_NOTCONWRITE The caller has not yet connected for write (or

read) to this queue.

QUE_MQDFULL The message queue is full (the number of

messages in the queue exceeds that set by

iqr_add_message_q).

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_get_q_info

Page 45

4.13 iqr_get_q_info

Gather information about a specific message queue.

FORMAT
iqr_get_q_info (hub, queue_name, q_info)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of message queue connection, including possible VMS and RMS status

codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read

Mechanism: By reference

Hub is a buffer that was returned by the iqr_attach_h service. This is defined by

the structure HBKDEF in the file HBKDEF.H

queue_name

Type: Descriptor

Access: Read only

Mechanism: By reference

Message queue name, 16 characters max.

q_info

Type: Record structure MQDDEF

Access: Write

Mechanism: by reference

This is a pointer to a buffer with a structure type of MQDDEF (found in

MQDDEF.H) to hold the message queue information.

DESCRIPTION
This routine will copy all of a message queue’s information into the passed

structure pointed to by q_info.

Some notable information presented in the message queue are:

q_info->mqd._q.L_type Type of message queue

q_info->mqd._q.Lcnt Number of messages in the queue

q_info->mqd._q.L_rna Last read, but not yet acknowledged

message id

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_get_q_info

Page 46

q_info->mqd._q.L_srna Last read, but not yet acknowledged

message id via secondary reader.

q_info->mqd._q.max_cnt Maximum number of messages

allowed on a message queue.

q_info->mqd._q.expire Time (in minutes) before a message

becomes stale.

q_info->mqd._q.msg_name Name of the message queue

q_info->mqd._q.L_lost Number of messages lost due to full

message queue.

Note that the information returned represents just a copy of the current state of the

message queue. Therefore, the actual state of the queue may change after you

have received your information.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully attached to the message queue for

write within the hub.

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.

Examine extended status in hbk and contact

developers.

QUE_NOTFOUND Requested message queue was not found

within the current hub.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_modify_q

Page 47

4.14 iqr_modify_q

Modifies a specific message queue’s parameters including message queue type

flags, time for stale messages, maximum message size, and maximum number of

messages in the queue at one time.

FORMAT
iqr_modify_q (hub, queue_name, max_mesg, stale_time,
queue_type, max_msgsize)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of queue modification, including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read only

Mechanism: By reference

Hub is a buffer that was returned by the iqr_attach_h service. This is defined by

the structure HBKDEF in the file HBKDEF.H

queue_name

Type: Character descriptor

Access: Read only

Mechanism: By reference

This is the name of the queue to be modified in descriptor format - maximum of

16 characters.

max_messages

Type: Longword

Access: Read only

Mechanism: By value

This will indicate the maximum number of queued messages that will be allowed

on the queue at any one time. Set this value to zero if you do not wish to modify

this parameter.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_modify_q

Page 48

stale_time

Type: Longword

Access: Read only

Mechanism: By value

This value will reference the number of minutes that messages on the queue will

remain as valid messages. After that time, messages will become stale and

deleted from within the queue. Requires the value MQD_M_TIMED to be set for

type. Set this value to zero if you do not wish to modify this parameter.

type

Type: Longword

Access: Read only

Mechanism: By value

Set this argument to any of the following codes to modify the message queue’s

parameters. If you do not specify a code it will then be cleared in the message

queue. Logical OR the following codes to select more than one option. Valid

types are as follows:

MQD_M_ACKREAD Automatically acknowledge a message when

it is read.

MQD_M_DUALREAD Message queue supports both a primary and

secondary reader (two readers).

MQD_M_READER Do not queue (write) messages unless there

is a reader connected to the message queue.

MQD_M_TIMED Timed message queue. Stale messages are

removed from the queue. Requires a value

for stale_time.

MQD_M_VOLATILE Message queue can contain volatile

messages. The oldest message will be

deleted if there is not room for a new one.

MQD_M_NOCHANGE Use this value if you do not want to change

any of the current values for the message

queue flags.

max_mesg_size

Type: Longword

Access: Read only

Mechanism: By value

This is set to the size (in bytes) of the largest message that will be allowed to be

written to the queue. Set this value to zero if you do not wish to modify this

parameter.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_modify_q

Page 49

DESCRIPTION
This routine is used to modify an existing message queue on an existing hub

region. Use this routine if you wish to modify one of the passed parameters for

the message queue.

NOTE: If you do not want to change the flags for the queue, you must pass the

parameter MQD_Q_NOCHANGE. Failure to do so will result in all of the flags

being reset to a value of zero.

If you do not want to change any of the other parameters (stale time, maximum

message size, etc.), set them to a value of zero.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successful modification of the message queue.

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hbk was invalid. Missing or not

writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.

Examine extended status in hbk and contact

developers.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_hmb

Page 50

4.15 iqr_read_hmb

This service is used to only read the header of the next available message on a

message queue.

FORMAT
iqr_read_hmb (hub, queue_name, user_header, queue_index)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of read, including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read

Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined

by the structure HBKDEF in the file HBKDEF.H

queue_name

Type: Descriptor

Access: Read only

Mechanism: By reference

This is the name of the message queue to read from.

user_header

Type: Record structure hdrdef

Access: Write

Mechanism: By reference

This will hold the header information for the current message being read from the

queue.

queue_index

Type: Longword

Access: Write

Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the

iqr_connect_read or iqr_connect_write service routines for the message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_hmb

Page 51

DESCRIPTION
This service will read the next message’s header information from the queue. All

queue information is preserved, including the current message on the queue.

This routine is used to let the calling program determine the characteristics of the

next message to be read on the queue (such as message size, time written, etc.)

without actually reading the message off of the queue.

It is possible, with dual readers, that the message read from iqr_read_hmb will

not be the same one read by a successive read call. This can happen if the other

reader reads the message before the calling process actually gets to read the

message. In order to avoid this conflict, it is recommended that message queues

for processes that require using this routine (including the IQR Router) be set up

to not use dual readers.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successful read of header from the queue.

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not

writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.

Examine extended status in hbk and contact

developers.

QUE_NOTFOUND Requested message queue was not found

within the current hub.

QUE_NOTCONREAD The caller has not yet connected for read to

this queue.

QUE_USRBUFSML The size of the passed buffer is too small.

QUE_NOMESS The message queue is currently empty. No

messages exist to read.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_q

Page 52

4.16 iqr_read_q

Read the next message from a message queue.

FORMAT
iqr_read_q (hub, queue_name, buffer, queue_index)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of read, including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read

Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined

by the structure HBKDEF in the file HBKDEF.H

queue_name

Type: Descriptor

Access: Read only

Mechanism: By reference

This is the name of the message queue to read from.

buffer

Type: Descriptor

Access: Write

Mechanism: By reference

This is a descriptor for the buffer where the read information is to be written.

This buffer must be large enough to hold both the message header block

(HMBDEF) and the message itself.

queue_index

Type: Longword

Access: Write

Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the

iqr_connect_read or iqr_connect_write service routines for the message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_q

Page 53

DESCRIPTION
This routine will attempt to read the next message from the given message queue.

If a message exists, then the message’s header information and the message itself

are returned in the passed buffer location. The actual message will be located at

an offset of size HBKDEF (or HDR$K_SIZ) from the start of the buffer.

If the message queue is empty, then a condition of QUE_NOMESS is a returned

indication that there are no messages currently in the queue.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully read a message.

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not

writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.

Examine extended status in hbk and contact

developers.

QUE_NOTFOUND Requested message queue was not found

within the current hub.

QUE_INVALUSERBUF The buffer passed by the user is invalid.

QUE_NOTCONREAD The caller has not yet connected for read to

this queue.

QUE_USRBUFSML The size of the passed buffer is too small.

QUE_NOMESS The message queue is currently empty. No

messages exist to read.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_qn

Page 54

4.17 iqr_read_qn

Read the next message from a message queue

or if empty, trigger user AST when new

message arrives.

FORMAT
iqr_read_qn (hub, queue_name, buffer,
queue_index,ast,astprm)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of read, including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read

Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined

by the structure HBKDEF in the file HBKDEF.H

queue_name

Type: Descriptor

Access: Read only

Mechanism: By reference

This is the name of the message queue to read from.

buffer

Type: Descriptor

Access: Write

Mechanism: By reference

This is a descriptor for the buffer where the read information is to be written.

This buffer must be large enough to hold both the message header block

(HMBDEF) and the message itself.

queue_index

Type: Longword

Access: Write

Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the

iqr_connect_read or iqr_connect_write service routines for the message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_qn

Page 55

ast

Type: Longword

Access: Write

Mechanism: By value

This is the user mode AST procedure to be called.

Astprm

Type: Longword

Access: Write

Mechanism: By value

This is the parameter that is passed to the user procedure.

DESCRIPTION
This routine will attempt to read the next message from the given message queue.

If a message exists, then the message’s header information and the message itself

are returned in the passed buffer location. The actual message will be located at

an offset of size HBKDEF (or HDR$K_SIZ) from the start of the buffer.

If the message queue is empty, then a condition of QUE_NOMESS is a returned

indication that there are no messages currently in the queue and the queue is

marked to receive a notification when a writer completes a write to the queue. It

should be noted that the notification does not always guarantee a message has

been placed into the queue as there are conditions which can result in a false

trigger. A typical FORTRAN usage is shown below (only portions of the code

actually shown):

Program main

integer*4 Notify_ast

external Notify_ast

STATUS=IQR_READ_QN(HUB,ID,d_buffer,%val(index),notify_ast,21)

end

Subroutine notify_ast(p_ast,r0,r1,psl,pc)

integer*4 p_ast,r0,r1,psl,pc

integer*4 astparm_ast

call sys$setef(%val(1))

return

end

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully read a message.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_qn

Page 56

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable

(e.g., AST parameter is null)

QUE_INVALIDPEX User passed hub was invalid. Missing or not

writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.

Examine extended status in hbk and contact

developers.

QUE_NOTFOUND Requested message queue was not found

within the current hub.

QUE_INVALUSERBUF The buffer passed by the user is invalid.

QUE_NOTCONREAD The caller has not yet connected for read to

this queue.

QUE_USRBUFSML The size of the passed buffer is too small.

QUE_NOMESS The message queue is currently empty. No

messages exist to read.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_qw

Page 57

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_qw

Page 58

4.18 iqr_read_qw

Read the next message from a message queue if one does not exist, wait for one

to arrive.

FORMAT
iqr_read_qw (hub, queue_name, buffer, queue_index)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of read, including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read

Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined

by the structure HBKDEF in the file HBKDEF.H

queue_name

Type: Descriptor

Access: Read only

Mechanism: By reference

This is the name of the message queue to read from.

buffer

Type: Descriptor

Access: Write

Mechanism: By reference

This is a descriptor for the buffer where the read information is to be written.

This buffer must be large enough to hold both the message header block

(HMBDEF) and the message itself.

queue_index

Type: Longword

Access: Write

Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the

iqr_connect_read or iqr_connect_write service routines for the message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_qw

Page 59

DESCRIPTION
This routine is very much like iqr_read_q except that it will wait for a message

to arrive if none currently exists in the queue.

If a message exists, then the message’s header information and the message itself

are returned in the passed buffer location. The actual message will be located at

an offset of size HDR$K_SIZ from the start of the buffer.

If the message queue is empty, then the routine will wait for a message to arrive at

the queue. After the message arrives, it will then repeat the process of reading the

message.

Note that with two readers (primary and secondary) only one of the readers will

be able to get a message when it first arrives to an empty queue. The one that is

unable to get the message will again go into a wait mode unless more messages

exist in the queue.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully read a message from the queue.

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not

writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.

Examine extended status in hbk and contact

developers.

QUE_NOTFOUND Requested message queue was not found

within the current hub.

QUE_INVALUSERBUF The buffer passed by the user is invalid.

QUE_NOTCONREAD The caller has not yet connected for read to

this queue.

QUE_USRBUFSML The size of the passed buffer is too small.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_segment

Page 60

4.19 iqr_read_segment

This service is used to read messages off of the queue in individual segments at a

time.

FORMAT
iqr_read_segment (hub, user_header, buffer_size, buffer,
queue_index)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of read, including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read

Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined

by the structure HBKDEF in the file HBKDEF.H

user_header

Type: Record structure hdrdef

Access: Write

Mechanism: By reference

This will hold the header information for the current message being read from the

queue.

buffer_size

Type: Longword

Access: Read

Mechanism: By value

This is the size (in bytes) of the read buffer. The size must be a multiple of 512

bytes (one block)

buffer

Type: Descriptor

Access: Write

Mechanism: By reference

This is a descriptor for the buffer where the message segment is to be written.

The buffer will contain only the current message segment -- no headers.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_segment

Page 61

queue_index

Type: Longword

Access: Write

Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the

iqr_connect_read or iqr_connect_write service routines for the message queue.

DESCRIPTION
This service will read messages off of the queue in individual segments at a time.

This routine will keep track of where it is currently reading from in the message.

Upon the initial read of a message, the service will return the header information

of the message along with the first message segment. Further calls to the service

will return successive segments of the message with each call (along with the

header). Upon reading the last segment of the message, the routine will return a

status code of QUE_LASTSEG, signaling that the end of the message has been

reached.

You may acknowledge the message off of the queue at any time during the read

of the segments, but will not be able to read a new message until the current one

is acknowledged. In order to insure that you do not prematurely acknowledge a

message, wait until this service returns a status code of QUE_LASTSEG before

acknowledging.

Normally, this routine is used by the router reading segments of a message and

then sending the segments to another router.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_LASTSEG Successfully read segment from the queue (no

more segments exist, must acknowledge

message before reading again).

QUE_SUCCESS Successfully read segment from the queue

(more segments still exist for message).

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not

writeable.

QUE_INTERNALFAULT Contact developers.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_segment

Page 62

QUE_ALLOCLOCK Unable to capture hub allocation lock.

Examine extended status in hbk and contact

developers.

QUE_NOTFOUND Requested message queue was not found

within the current hub.

QUE_INVALUSERBUF The buffer passed by the user is invalid.

QUE_NOTCONREAD The caller has not yet connected for read to

this queue.

QUE_USRBUFSML The size of the passed buffer is too small.

QUE_NOMESS The message queue is currently empty. No

messages exist to read.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_reset_stat_h

Page 63

4.20 iqr_reset_stat_h

This service is used to reset statistical counters and timers for a message hub.

FORMAT
iqr_reset_stat_h (hub)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of read, including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read

Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined

by the structure HBKDEF in the file HBKDEF.H

DESCRIPTION
This service will reset statistics for a message hub. All timers, except for the time

of modification, will be reset to a time of zero. In addition, the number of reads

and writes for the message queues will be reset to zero.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully read segment from the queue

(more segments still exist for message).

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not

writeable.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_reset_stat_q

Page 64

4.21 iqr_reset_stat_q

This service is used to reset statistical counters and timers for a message queue.

FORMAT
iqr_reset_stat_q (hub, queue_name)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of read, including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read

Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined

by the structure HBKDEF in the file HBKDEF.H

queue_name

Type: Descriptor

Access: Read

Mechanism: By reference

This is the name of the message queue to reset statistics for.

DESCRIPTION
This service will reset statistics for a message queue. All timers for reads, writes,

acknowlegment, and cumulative timers will be reset to a time of zero. In

addition, the number of reads and writes for the message queue will be reset to

zero.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_reset_stat_q

Page 65

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully read segment from the queue

(more segments still exist for message).

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not

writeable.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_rtr_write_q

Page 66

4.22 iqr_rtr_write_q

Write a message to a message queue using a buffer formatted with header

information.

FORMAT
iqr_rtr_write_q (hub, queue_name, buffer, queue_index)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of write, including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read

Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined

by the structure HBKDEF in the file HBKDEF.H

queue_name

Type: Descriptor

Access: Read only

Mechanism: By reference

This is the name of the message queue to write to.

buffer

Type: Descriptor

Access: Read

Mechanism: By reference

This is a descriptor for the buffer where the information is to be placed on the

queue. This buffer contains both a filled header (of type HDRDEF) followed by

its message. The descriptor length must include the length of the header

(HDR$K_SIZ), but the buffer location should point to the actual message. The

header portion must immediately precede the message buffer address passed.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_rtr_write_q

Page 67

queue_index

Type: Longword

Access: Write

Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the

iqr_connect_read or iqr_connect_write service routines for the message queue.

DESCRIPTION
This routine will attempt to write a new message to a message queue using the

provided message header information passed in the buffer.

The caller must have already connected either for read or write (both allow write

access). The message in the user’s buffer is then copied onto the queue to await

for reading. If there were no messages currently waiting in the queue, then the

routine will attempt to notify any processes that are currently waiting for a new

message to arrive.

Note that there are two limits to the number of messages that can be written to the

queue. At any one time, there is a maximum size to both the messages allowed

and the size of the queue itself. If your message exceeds either of these limits,

then an error is returned. Also, the message queue was set up with a maximum

number of messages allowed. Exceeding this value will also return an error

condition.

This particular routine is similar to iqr_write_q, but differs in that the caller must

pass both the header information and message to the service. Use this service if

you have a header for a message that you want to preserve along with the

message. Pay special attention to the format of the buffer (see above)! This

service will preserve the header onto the queue, updating only necessary

information. This service is usually called by the router when moving a message

from another router.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successful completion.

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not

writeable.

QUE_INTERNALFAULT Contact developers.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_rtr_write_q

Page 68

QUE_ALLOCLOCK Unable to capture hub allocation lock.

Examine extended status in hbk and contact

developers.

QUE_NOTFOUND Requested message queue was not found

within the current hub.

QUE_INVALUSERBUF The buffer passed by the user is invalid.

QUE_NOTCONWRITE The caller has not yet connected for write (or

read) to this queue.

QUE_MQDFULL The message queue is full (the number of

messages in the queue exceeds that set by

iqr_add_message_q).

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_thread_msgblks

Page 69

4.23 iqr_thread_msgblks

Thread allocated and filled message blocks into a message queue.

FORMAT
iqr_thread_msgblks (hub, queue_name, hmb_blck, queue_index)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of threading, including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read

Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined

by the structure HBKDEF in the file HBKDEF.H

queue_name

Type: Descriptor

Access: Read only

Mechanism: By reference

This is the name of the message queue to use.

hmb_blck

Type: Longword

Access: Read

Mechanism: By value

This is the value of the block number of the header message block for the message

that is to be threaded.

queue_index

Type: Longword

Access: Read

Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the

iqr_connect_read or iqr_connect_write service routines for the message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_thread_msgblks

Page 70

DESCRIPTION
This service entry is called by the router or another process that needs to thread a

message that has been filled into the message queue's message thread. This

service requires that the user has the SYSNAM privilege. This test is to ensure

that the caller is a knowledgeable user. The privilege is not actually needed by

the service.

The blocks of the message have been assumed to have been allocated using the

iqr_allocate_msgblks and populated with the iqr_fill_msgblks.

Note: Since the test for full message queues is done at the time of allocation, it is

possible to end up with a message queue that has more messages than allowed.

This should not; however, affect the overall operation of the queue service.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successful return.

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not

writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.

Examine extended status in hbk and contact

developers.

QUE_NOTFOUND Requested message queue was not found

within the current hub.

QUE_NOTCONWRITE The caller has not yet connected for write (or

read) to this queue.

QUE_MQDFULL The message queue is full (the number of

messages in the queue exceeds that set by

iqr_add_message_q).

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_write_q

Page 71

4.24 iqr_write_q

Write a message to a message queue.

FORMAT
iqr_write_q (hub, queue_name, buffer, queue_index)

RETURNS
VMS usage: Condition code

Type: Longword

Mechanism: By value

Result of write, including possible VMS and RMS status codes.

ARGUMENTS
hub

Type: Record structure hbkdef

Access: Read

Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined

by the structure HBKDEF in the file HBKDEF.H

queue_name

Type: Descriptor

Access: Read only

Mechanism: By reference

This is the name of the message queue to write to.

buffer

Type: Descriptor

Access: Read

Mechanism: By reference

This is a descriptor for the buffer where the information is to be placed on the

queue.

queue_index

Type: Longword

Access: Write

Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the

iqr_connect_read or iqr_connect_write service routines for the message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_write_q

Page 72

DESCRIPTION
This routine will attempt to write a new message to a message queue.

The caller must have already connected either for read or write (both allow write

access). The message in the user’s buffer is then copied onto the queue to await

for reading. If there were no messages currently waiting in the queue, then the

routine will attempt to notify any processes that are currently waiting for a new

message to arrive.

Note that there are two limits to the number of messages that can be written to the

queue. At any one time there is a maximum size to both the messages allowed

and the size of the queue itself. If your message would exceed either of these

limits, then an error is returned. Also, the message queue was set up with a

maximum number of messages allowed. Exceeding this value will also return an

error condition.

If the message queue is full, then it is checked for any stale or volatile messages

that can be deleted before writing to the message queue. Deleted messages

cannot be recovered.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successful completion

QUE_INVALQNAME User passed message queue name was not

valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not

writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.

Examine extended status in hbk and contact

developers.

QUE_NOTFOUND Requested message queue was not found

within the current hub.

QUE_INVALUSERBUF The buffer passed by the user is invalid

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_write_q

Page 73

QUE_NOTCONWRITE The caller has not yet connected for write (or

read) to this queue.

QUE_MQDFULL The message queue is full (the number of

messages in the queue exceeds that set by

iqr_add_message_q).

IPACT Queuer and Router
©1996 by IPACT, Inc. Return Status Codes

Successful Status Codes

Page 75

5. Return Status Codes

This is a summary of status condition codes returned from IQR System Service routines.

5.1 Successful Status Codes

VMS Error Code Description

QUE_ADDED A new message queue was successfully added. Only returned

from iqr_add_message_q.

QUE_LASTSEG Successful read of a segment from the queue (no more segments

exist, must ACK message before reading again). Only returned

from iqr_read_segment.

QUE_SUCCESS Normal, successful return.

5.2 Failure Status Codes

VMS Error Code Description

QUE_ALLOCLOCK Unable to capture hub allocation lock. Examine extended status

in hbk and contact developers.

QUE_BADCCTMQD The user specified number of message queues exceeds a

reasonability test defined by the software. Contact developers if

this is too low for your environment. The maximum number was

specified when the software was packaged.

QUE_BADHNAME User passed hub name was invalid. Name was too short, too

long, or was not accessible for read.

QUE_BADPRCINF The queue service was unable to get information about the current

process. Examine the condition code in the extended status field

of the hbk. Contact the developers.

QUE_CONTAINERFULL The disk container is at its maximum size. Either remove waiting

messages in a message queue, remove a message queue, or

increase the size of the container file.

QUE_DEFHNAME Unable to translate the default hub name. IQRHUB logical not

defined by the system manager.

QUE_INTERNALFAULT Contact developers.

QUE_INVALIDPEX User passed hub value was invalid. Missing or not writeable.

Usually caused by not having the hub initialized through the

iqr_attach_h routine.

IPACT Queuer and Router
©1996 by IPACT, Inc. Return Status Codes

Failure Status Codes

Page 76

QUE_INVALQIDX The queue_index is not valid. Usually caused by not successfully

connecting to a message queue via iqr_connect_read or

iqr_connect_write or trying to access a queue after

disconnecting.

QUE_INVALQNAME User passed message queue name was not valid. Not readable, or

long length. Can also indicate the message queue name does not

match that given by the queue_index.

QUE_INVALUSERBUF The buffer passed by the user is invalid. Either too small or not a

valid memory index passed.

QUE_INVARG User passed argument invalid, or not readable.

QUE_MAXMSGQUEUES User has exceeded the maximum number of message queues that

may be attached. The number specified on the iqr_attach_h or

mqd_count must be increased.

QUE_MQDFULL The message queue is full (the number of messages in the queue

exceeds that set by iqr_add_message_q).

QUE_NOCACHE No cache space available for the message queue.

QUE_NOMESS The message queue is currently empty. No messages exist to

read.

QUE_NORNAMESS No message was read off of the queue -- the RNA has not been

set. You need to first read a message before you can

acknowledge it.

QUE_NOTCONREAD The caller has not yet connected for read to this queue.

QUE_NOTCONWRITE The caller has not yet connected for write to this queue.

QUE_NOTFOUND Requested message queue was not found within the current hub.

QUE_PRCLCKNM The queue service was unable to create a process lock. Examine

the condition code in the extended status field of the hbk.

QUE_PREATT Informational status indicating that the message hub has already

been attached.

QUE_TOOMANYRDR Maximum number of readers already connected to the message

queue.

QUE_USRBUFSML The size of the passed buffer is too small.

IPACT Queuer and Router
©1996 by IPACT, Inc. Using the System Services

Code Generation

Page 77

6. Using the System Services

6.1 Code Generation

While the bulk of the IQR software was written in DEC C, header files are provided for both C and

FORTRAN. Specific information relative to each programming environment is provided in following

sections.

Program code written to use the IQR System Service usually follows some basic patterns in order to

read/write to message queues. They are:

• First, attach to a specific hub by calling iqr_attach_h. The returned hub value must be saved

for future service calls that reference this particular messaging hub.

• Insure that the message queue you are going to use exists. If it does not, you can create it with

the IQU utility, or call the iqr_add_message_q service. If the message queue does not exist,

then any attempts to connect to the message queue will fail.

• Connect for read or write to a particular message queue, depending on what you intend to do.

The number of readers on a queue is limited, so unless you intend to read from a queue, select

to connect as a writer. Readers can both read and write messages. Call iqr_connect_read or

iqr_connect_write according to your intentions. Be sure to save the returned queue_index

value for future service calls that refer to these message queues.

• Actually performs the read/write. Reading can be done with a number of services such as:

◊ iqr_read_q - read a message from the queue (normal read).

◊ iqr_read_qw - read a message from the queue. If none exists, wait for one to arrive.

◊ iqr_read_segment - read a part of a message from the queue. Successive calls to

this service are needed to read in the entire message.

◊ iqr_read_hmb - call this service to just check the information about the next

message on the queue. The message remains at the head of the queue.

After reading from the queue, you will need to acknowledge the message. This lets the queue

know that you are done with the message and may remove it from the message queue. You

may not have to do this if the message queue was set up as auto acknowledging (see

iqr_modify_q or iqr_add_message_q). Use the routine iqr_ack_read to acknowledge the

message.

Writing a message can be done with these services:

◊ iqr_write_q - the normal write routine

◊ iqr_rtr_write_q - this will write a message to a queue, preserving an already built

header for the message.

◊ iqr_allocate_msgblks, iqr_fill_msgblks, and iqr_thread_msgblks - these services

combined allow the caller to fill a message on the queue using separate segments.

• When you have finished working with a specific message queue, you should disconnect from

it (especially if you are a reader; other readers may need to connect). Call iqr_disconnect_q

to disconnect yourself from the message queue. Further access to the message queue will

require that you reconnect again. If you are completely done with a message queue, or as a

rundown service, you may wish to execute the service iqr_disconnect_h which disconnects

the program from the hub and shutdown all opened message queues.

IPACT Queuer and Router
©1996 by IPACT, Inc. Using the System Services

Using IQR with C

Page 78

6.2 Using IQR with C

The following suggestions are for people who wish to program in C:

• In source code that uses IQR routines or definitions, you need to include the following

header file:

 #include IQR

• When compiling programs that use the IQR system service, you need to make reference to

the header library. Do this by:

CC <source> <options> + IQR$LIB:HUB.TLB/LIBRARY

• To link programs to the IQR system service, do the following:

$ LINK <source> SYS$INPUT/OPTIONS
 <options>
 IQR$LIB:HUB/LIBRARY
 IQR$PROD:IQRSS/SHARE

6.3 Using IQR with FORTRAN

The following suggestions are for people who wish to program in FORTRAN:

• In source code that uses IQR routines or definitions, you need to include the following

header file:

 INCLUDE ‘IQR$LIB:HUB_FOR(IQR)’

• When compiling programs that use the IQR system service, you need to cancel warnings

about structure alignment. Do this by:

FORTRAN /NOWARN=ALIGN <options> <source>

• To link programs to the IQR system service, do the following:

$ LINK <source> SYS$INPUT/OPTIONS
 <options>
 IQR$LIB:HUB/LIBRARY
 IQR$PROD:IQRSS/SHARE

IPACT Queuer and Router
©1996 by IPACT, Inc. Compatibility

Using IQR with FORTRAN

Page 79

7. Compatibility

The IQR System Services includes a patch library that will enable users to link older MAQ or MQD

software to the current version of the IQR System Service. The IQR Service and Router were designed

to be compatible with these previous queuing software programs. However, complete compatibility is

not entirely possible, and some general notes for both MAQ and MQD versions of software are given

below:

• The IQR System Service requires that the user pass an index value in the service calls. In

order to provide compatibility, the patch library will check for a valid index argument,

and if not found, will attempt to search the callers connected message queues for a valid

index. If the index is still not found, then an attempt will be made to connect to the

message queue to get an index. If the user is a reader of a message queue, he must

connect before attempting to read from the queue -- the patch library will not perform a

connect_read.

• The IQR System Service no longer provides the user with a valid RNA value. This

number is now kept internally by the IQR software. To provide compatibility, the patch

routines will return a value of one (1) for all routines that return a valid RNA value.

• MAQ/MQD System calls that relied upon the gathering of information from the message

queue will not work under the new IQR System Service -- mainly due to the

incompatibility of how the message queues are actually stored on each software platform

and the format of data structures. If you desire information about a message queue, use

the provided IQR System Service utilities or calls.

• MAQ/MQD System calls that actually perform message queue functions (i.e. read, write,

delete, attach) are all supported through the use of a patch library that is included along

with the IQR System Service. Original source code will need to be re-linked (and

possibly recompiled) with the new patch library in order to work with the IQR System

Service.

Specific information regarding the two versions of queuing software is described below.

IPACT Queuer and Router
©1996 by IPACT, Inc. Compatibility

MAQ System Service Patch Library

Page 80

7.1 MAQ System Service Patch Library

The patch library for the MAQ System Service supports MAQ version 5.3. For more specific

information of function calls, see the MAQ manual. The following function calls are currently

supported:

MAQ Service Calls Notes

ack_read Acknowledge last read message.

ack_sec_read Outdated service. Calling this routine will actually perform

ack_read.

add_message_id Adds a new message queue to a hub with default parameters except

for the max_count parameter.

attach_q Will attach to a messaging hub. For a default hub name, you must

have IQRHUB defined in either the group or system tables.

attach_qe Identical to attach_q.

backup_rna Backup the RNA of the current read message.

backup_srna Outdated service. Calling this routine will actually perform

backup_rna.

change_message_id Performs a limited form of the iqr_modify_q service. This will

only allow the caller to modify the maximum number of messages

in a queue at one time.

con_secread Outdated service. Calling this routine will actually perform

connect_read.

connect_read Connects the caller as either a primary or secondary reader to a

message queue.

delete_message_id Delete a message queue from a hub.

detach_q Detaches the current process from all connected message queues

(rundown handler).

disconnect_read This will disconnect a reader (or writer) from a message queue.

get_mid_index Actually performs an iqr_connect_write. This is used to get an

index value for writers to a message queue.

read_q Reads a message from a message queue.

read_qrec Read a message from the queue (record format).

read_sq Outdated service. Actually performs the read_q service.

IPACT Queuer and Router
©1996 by IPACT, Inc. Compatibility

MAQ System Service Patch Library

Page 81

write_q Writes a message to a message queue.

write_qrec Writes a message to a message queue (record format).

The following MAQ routines are not supported and will return a QUE_NOTSUPP warning error.

Unsupported MAQ Service Calls Notes

display_message_id Invalid data under IQR.

display_queue_head Invalid data under IQR.

display_region Invalid data under IQR.

find_q_processes Not supported in IQR.

opr_fao_msg Not supported in IQR.

read_msg Not yet supported.

rtr_write_q Not yet supported.

shutdown_q Not yet supported.

IPACT Queuer and Router
©1996 by IPACT, Inc. Compatibility

MQD System Service Patch Library

Page 82

To compile MAQ Service programs, the following must be done:

• Compile all source code. In particular, on the Alpha platform. It is imperative that some

of the data structures be aligned properly. This usually will either require a special

command line switch or a command statement in the source code. The following data

structures must be compiled so as to be byte aligned, otherwise strange data and errors

may appear (particularly when dealing with messages going to/from the router):

◊ HDRDEF

If you need to know how to compile a module so as to be aligned, see your compiler’s

documentation. For FORTRAN code, use the following technique for the included file:

cdec$options/align=(record=packed) !Turn on byte alignment

 INCLUDE 'QUEUE.TLB(HDRDEF)' !Aligns this module
cdec$end options !Restore to normal alignment

In addition, add the /NOWARN=ALIGN switch to the FORTRAN compiler command line to

disable reports about misalignment.

• Include the IQR Patch MAQ Library (iqr_patch_maq), IQR System Service (iqrss), and

service messages library (hub) in the link statement of your program. This should be like

the following:

$ LINK <source> SYS$INPUT/OPTIONS
 <options>
 IQR$LIB:PATCH_MAQ/LIBRARY
 IQR$PROD:IQRSS/SHARE

7.2 MQD System Service Patch Library

The patch library for the MQD System Service supports MQD version 4.0. For more specific

information of function calls, see the MQD manual. The following function calls are currently

supported:

IPACT Queuer and Router
©1996 by IPACT, Inc. Compatibility

MQD System Service Patch Library

Page 83

MQD Service Calls Notes

mqd$ack_read Acknowledge last read message.

mqd$attach_q Will attach to a messaging hub. For a default hub

name, you must have IQRHUB defined in either the

group or system tables.

mqd$attach_qe Identical to attach_q.

mqd$backup_rna Backup the RNA of the current read message.

mqd$connect_read Connects the caller as either a primary or secondary

reader to a message queue.

mqd$detach_q Detaches the current process from all connected

message queues (rundown handler).

mqd$get_mid_index Actually performs an iqr_connect_write. This is

used to get an index value for writers to a message

queue.

mqd$ack_read Acknowledge last read message.

mqd$add_message_id Adds a new message queue to a hub.

mqd$attach_q Will attach to a messaging hub. For a default hub

name, you must have IQRHUB defined in either the

group or system tables.

mqd$backup_rna Backup the RNA of the current read message.

mqd$change_message_id Modifies the number of messages allowed on a

message queue.

mqd$connect_read Connects the caller as either a primary or secondary

reader to a message queue.

mqd$connect_write Connects the caller as a writer to a message queue.

mqd$delete_message_id Deletes a message queue from a hub.

mqd$detach_q Detaches the current process from all connected

message queues (rundown handler).

mqd$disconnect_id Disconnect from a message queue.

mqd$read_q Reads a message from a message queue.

mqd$read_qn Reads a message from a message queue and if no

message is present, will trigger a user written AST

when a message arrives.

mqd$read_qw Reads a message from a message queue (wait for

message to arrive).

mqd$write_q Writes a message to a message queue.

mqd$read_q Reads a message from a message queue.

mqd$read_qrec Read a message from a message queue (record

format).

mqd$write_q Writes a message to a message queue.

mqd$write_qrec Write a message to a message queue (record

format).

IPACT Queuer and Router
©1996 by IPACT, Inc. Compatibility

BEA Message Q

Page 84

7.3 BEA Message Q

BEA Message Q, formerly DEC Message Q (DMQ) provides much of the same functionality as IQR

Services do. Currently there is no compatibility library for DMQ but one could easily be created.

Differences that would need to be addressed are:

Message Bus- This would map to a Hub in the IQR environment

Cross Bus Connections- A router process would provide this cross over

Different message classifications- Class and type message type are provided by DMQ. The DMQ

allows for selective delivery of message by class. This would need to be provided by a second message

queue in the IQR environment.

Numeric Message Queues- DMQ uses numeric message queues while the IQR Services uses symbolic

message queues and numeric once a queue is connected. One could maintain a simple cross reference

for these as the DMQ$INIT.TXT file does or one could change the prototype for the DMQ call and the

definition of the DMQ text include file used by user code and actually use a symbolic queue name like

IQR does.

7.4 Microsoft Message Queue

Microsoft Message Queue also provides a similar service to IQR. A router running in the Microsoft

Windows environment could easily bridge the IQR and MSMQ queues. Currently IQR only runs on

OpenVMS Itanium and OpenVMS Alpha (it has never been compiled on OpenVMS VAX, but this

should not be a difficult task).

IPACT Queuer and Router
©1996 by IPACT, Inc. Compatibility

Microsoft Message Queue

Page 85

The following MQD routines are not supported and will return a QUE_NOTSUPP warning error.

Unsupported MQD Service Calls Notes

mqd$attach_d Invalid data under IQR.

mqd$cplx_time Not supported in IQR.

mqd$display_message_id Invalid data under IQR.

mqd$display_queue_head Invalid data under IQR.

mqd$display_region Invalid data under IQR.

mqd$rtr_write_q Not yet supported.

mqd$set_ctime Not supported in IQR.

To compile MQD Service programs, the following must be done:

• Compile all source code. In particular, on the Alpha platform, it is imperative that some

of the data structures be aligned properly. This usually will either require a special

command line switch or a command statement in the source code. The following data

structures must be compiled so as to be byte aligned, otherwise strange data and errors

may appear:

◊ HDRDEF

If you need to know how to compile a module so as to be aligned, see your compiler’s

documentation. For FORTRAN code, use the following technique for the included file:

cdec$ options/align=(record=packed) !Turn on byte alignment
 INCLUDE 'QUEUE.TLB(HDRDEF)' !Aligns this module
cdec$ end options !Restore to normal

In addition, add the /NOWARN=ALIGN switch to the FORTRAN compiler command line to

disable reports about misalignment.

• Include the IQR Patch MQD Library (iqr_patch_mqd), IQR System Service (IQRSS), and

service messages library (hub) in the link statement of your program. This should be

similar to the following:

$ LINK <source> SYS$INPUT/OPTIONS
 <options>
 IQR$LIB:IQR_PATCH_MQD/LIBRARY
 IQR$PROD:IQRSS/SHARE

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

Introduction

Page 87

8. IQR Router

8.1 Introduction

The IQR Routers provides the ability to route message queues to other nodes. Currently, DECnet and

TCP/IP transports are supported. The remote nodes may be any DECnet or TCP/IP compatible node

that supports the IQR Router protocol. This protocol and example test programs are available from

IPACT to any end user who desires to write their own router to communicate with the IQR Router.

The TCP/IP IQR Router can be used in conjunction with the MAQ product as well as with the IQR

product. MAQ is a package available to the public through the DECUS organization. It provides a

queuing service to OpenVMS VAX environments. The TCP/IP IQR Router can be installed on a

system having the MAQ product, and will route the MAQ messages to other nodes supporting the IQR

Router Protocol.

Applications and their message queues should be partitioned such that a particular router may be taken

down while still allowing other applications to function.

8.2 TCP/IP IQR Router

The TCP/IP IQR Router is a threads based application that facilitates the transmission of queue

messages from one hub/node to another over a standard TCP/IP connection. The router uses standard

Posix Compliant thread calls and standard TCP/IP socket services. This router variation has been tested

on OpenVMS VAX and OpenVMS AXP. OpenVMS must be at least version 6.2 to support the

threads environment. Two TCP/IP stacks have been tested with this version of TCP/IP Router. DEC

(Compaq) TCP/IP Services version 4.2 or greater and Process Software Corporation’s TCPWARE

version 5.2 or greater have been used successfully with this product. Other stacks should function as

well, if they provide a standard socket library to the OpenVMS environment.

The TCP/IP IQR Router is provided as a standard part of the IQR product. It can also be used in the

MAQ environment by obtaining a recent version of the MAQ kit from IPACT. You will then be able to

route messages between IQR and MAQ over TCP/IP in addition to DECnet.

8.3 DECnet Router Routing Database

The IQR Router uses a routing database that specifies which message queues are to be received by a

particular router and which are to be transmitted by a router. Each IQR Router has its own unique

routing database. Multiple routers may be present on a single node such that applications can be

partitioned. Each router has the ability to connect to one or more hubs (beta release only supports a

single hub connection). A router is known to other routers by its node name and its object name.

Object names should reflect the functionality of the router. DECnet requires that object names be

unique.

To generate a routing database for a router the following language is provided. The language is then

compiled and built into a routing database image by the RTRDBS utility. The RTRDBS utility also

creates a startup command procedure for the router that can be used by the system manager to start the

particular IQR Router. This command procedure specifies adequate resources needed by the router

based on the information contained within the routing database.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

DECnet Router Routing Database

Page 88

The following four statements that are used to define the routing database are as follows:

• ROUTER - Specifies information for the IQR Router process

• NODE - Specifies connection to remote nodes

• ROUTE_QUEUE_OUT - Specify message queues to be routed off this node by this

router

• RECEIVE_QUEUE - Specify message queues to be received by this router

Each of the statements are shown below with their syntax. All parameters are separated by commas

and are free of format. All lines beginning with an exclamation point and the remainder of any line

after an exclamation point is considered to be a comment. Parameters enclosed by square brackets “[]”

are optional and a default value will be supplied by the RTRDBS utility. All statements must end with

a semicolon. The language is translated to upper case prior to parsing. Therefore, all message queues,

process names, object names, and hub names are all converted to upper case. The user may not use any

of the reserved words shown in capital letters.

ROUTER

 OUTBUF_SIZE=blkcnt,

 OUTBUF_COUNT=bufcnt,

 PROCESS_NAME=pname,

 DENCET_OBJECT_NAME=objname,

 [QUEUE_NOACK_TIMER=tvalue];

blkcnt = Size of the output buffers. This number is specified in 512 byte blocks (e.g. a value of 2

specifies a 1024 byte buffer)

bufcnt = Number of output buffers. This effects the number of messages that may be transmitted by

the router at a single time. It also effects the buffer I/O quota required by the router.

pname = Process name that the router should define itself. The router will change its process name to

this name when it begins running. This is done to ensure that there can never be two routers running

against the same routing database. Standard VMS process names are valid.

objname = This is the DECnet object that will be mapped within the router database that is used to

identify itself to DECNET. This name must be unique. The system manager can use the following

VMS command to determine if the object name is unique: “NCP SHOW KNOWN OBJECTS”.

tvalue = This is a timer specified in seconds that indicates how long a message written to a remote

node will be considered, not acknowledged. This value is defaulted to fifteen seconds.

NODE

 NODE_NAME=logical node name,

 NODE_LIST=(node1[,node2,node3,node4]),

 OBJECT=object name,

 MAX_RECV_MSG_SIZE=blkcnt,

 [FLAGS=(flag1,flag2)],

 [RETRY_TIMER=rtime];

logical node name = This is a logical name for a node or nodes where the local router may send

outbound message queues. Normally, this is specified as a service name on the remote node. Typical

names might be: “lineups, production, development”. This name must be sixteen characters or less.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

DECnet Router Routing Database

Page 89

(node1,..,node4) = This is a list of DECnet node names of where a remote router might exist. This list

may be from one to four in number. The router will attempt to connect to the object name indicated at

each of the nodes with a one minute interval between attempts. If the DECnet object is not available on

any of the nodes, then the router will delay for “RETRY_TIMER” minutes before trying the list again.

object name = This is the DECnet object on each of the remote nodes where the router should attempt

to connect. The router uses the same object name for each of the nodes in the NODE_LIST.

blkcnt = This is the largest message that may be received from the remote node in 512 byte blocks.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

DECnet Router Routing Database

Page 90

(flag1,..,flagn) = These are character flags that are used by the router for particular functioning to a

remote router. Currently, the following flags are defined:

• RSX - If this flag is set, the router will use the non-multipacked router protocol used by

the MAQ router on the RSX platform or the MAQ router for VMS releases less than 5.3.

The MAQ router for RSX is available from IPACT or DECUS.

• MQD - If this flag is set, the router will use the multipacked router protocol used by the

MQD router. The MQD router is a proprietary router developed by IPACT for Inland

Steel.

rtime = Time in minutes between attempts of the route list. If none of the nodes in the route list are

found to be reachable or are unable to connect to the remote router on any of the nodes in the route list,

then the router will wait this amount of time before trying the list again. The default value is fifteen

minutes.

ROUTE_QUEUE_OUT

 QUEUE_NAME=message queue,

 FROM_HUB=hub,

 TO_NODE=logical node name,

 [FULL_TIMER=ftime,]

 [AS_QUEUE=alternate message queue name];

message queue = This is the name of a message queue that the router will connect as a reader to and

attempt to route to a remote router.

hub = This is the hub where the message queue resides.

logical node name = This specifies which node the messages contained in the message queue are to be

routed. There must be a node statement with the “NODE_NAME” specified to this.

ftime = If the router receives a response from a remote router that its hub is full, then the router will

wait this amount of time before trying to send this message to the remote router again.

alternate message queue name = This allows the ability to change the name of the message queue

when it is routed off node.

RECEIVE_QUEUE

 QUEUE_NAME=message queue,

 TO_HUB=hub

message queue = This is a message queue that this router should expect to receive from any of the

nodes that connects to it.

hub = This is the hub where the router should place the message queue when it is received.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

DECnet Router Routing Database

Page 91

A sample routing database follows:

!
! -- A sample router database file for use with the TEST_IQR hub --
!
!
! This section defines global parameters for the router that uses this
! router database.
!
ROUTER
 OUTBUF_COUNT=4, ! Number of output buffers
 OUTBUF_SIZE=4, ! Size of output buffers in 512Kb blocks
 PROCESS_NAME=TEST_RTR, ! Name of the process when running
 DECNET_OBJECT_NAME=TEST_RTR, ! DECNET object name of this router
 QUEUE_NOACK_TIMER=60; ! Timer if a message is sent to a remote
 ! node and no acknowledge is received (in
 ! seconds)
!
! This section defines the NODE names that the router can connect to. Each node
! name actually can have up to four named nodes in it.
!
NODE
 NODE_NAME= MV3, ! Define remote logical node service as this name
 NODE_LIST=(IPCMV3), ! List of nodes in this group that we try to connect
 OBJECT=IPCMV3_RTR, ! Remote router object name is this
 MAX_RECV_MSG_SIZE=10, ! Largest message to be received
 ! from this node is in 512 Kb blocks
 FLAGS=(MQD), ! Some flags
 RETRY_TIMER=15; ! And if we can't connect any of the nodes in
 ! route list, how long to wait before
 ! trying the route list again (in minutes)
!
! This section defines outbound routed message queues. You must have a separate
! entry for every message queue to be routed out.
!
ROUTE_QUEUE_OUT
 QUEUE_NAME=MSG_OUT, ! Msg queue from this hub to be routed outbound
 AS_QUEUE=MSG_OUT, ! Routed queue name
 FROM_HUB=TEST_IQR, ! and from this hub
 TO_NODE=MV3, ! to this target node
 FULL_TIMER=120; ! if full, how long before trying again in seconds
!
! This section defines a message queue that is capable of receiving routed
! messages from another router. You must have a seperate section for each
! message queue to be received.
!
RECEIVE_QUEUE
 QUEUE_NAME=MSG_IN, ! Receive into this message queue from anyone
 TO_HUB=TEST_IQR; ! Which is located in this hub

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

DECnet Routing Utilities

Page 92

8.4 DECnet Routing Utilities

To help diagnose the actions of the router the following utilities are supplied:

• DMPRTR - This utility will display the connection status of all the remote routers. It

will also display statistics for each of the paths.

• LSTRTR - This utility will display the message queues transmitted or received by the

router.

These utilities are fully described in the Utilities Chapter.

8.5 TCP/IP Router Routing Database

The function of the TCP/IP Router’s Routing Database is similar in nature to the one used by the

DECnet Router. The main difference between the two being, the method used to generate the actual

database. The database, or initialization file, used by the TCP/IP IQR Router is a simple text file which

is created using your favorite text editor. Its structure is similar to the structure used in many Windows

based applications having initialization files.

The database is created by opening a standard text file using a text editor. The name of the file is

usually chosen to be representative of the environment to be serviced by the specific router. The length

of the file name is limited only by the operating system on which the router will be running.

The database file is partitioned into three major sections. Each major section name is delimited by a

pair of open an closed square brackets “[]”. Section parameter values are specified following each

section identifier by using a set of predefined and unique keywords. Each section and each keyword for

these sections is discussed in the following paragraphs. Each keyword is assigned a value by forming a

definition such as HUB = ABCDEF_GH or PORT = 12345.

The following three sections are used in combination to define the TCP/IP routing database:

• GLOBAL - Specifies information for the IQR Router process

• INCOMING - Specifies connection to remote nodes

• OUTGOING - Specify message queues to be routed off this node by this router

References to “Nodes” in the context of the TCP/IP IQR Router refer to a name entry in the hosts file

of the local node. These names are subsequently translated into complete TCP/IP addresses by use of

standard socket service calls. Relationships may be established, by the System or Network

administrator, which result in specific paths being used for connections to remote routers. Please

consult your TCP/IP stack provider’s management guide or contact your administrator for assistance in

these areas.

8.5.1 TCP/IP Router Database [GLOBAL] Section

The first section to be defined in the Routing Database of a TCP/IP IQR Router is the [Global] section,

not to be confused with a global section of memory. This section of the Router Database, or

initialization file, describes the hub to which this instance of router will attach and then service. The

Global section has only 3 parameters. All three of these parameters are optional. If they are not

explicitly defined, a default is used for the parameter.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

TCP/IP Router Routing Database

Page 93

Hub -The first of the optional parameters for the [GLOBAL] section is the HUB parameter. This

parameter identifies the hub to which this instance of router is to attach. If the hub parameter is not

defined, the logical name IQRHUB is translated to obtain the default hub name on this node. The hub

name is limited to eight characters in length.

Port -The next [GLOBAL] parameter is the TCP/IP port on which to listen for incoming connections

from other routers or utility applications such as TCPIQRSTAT. If a port is not specified in the global

section of the initialization file, a default of port 3000 is used. If a port other than 3000 is used, the port

number must also be specified in utility operations as well. TCPIQRSTAT will use port 3000 by

default. When choosing a port number it is best to check with the system or network administration for

your network. You must insure that the chosen port number is not used by any other applications on

your network. Unexpected behavior will result if other applications are using the same port number.

BufferSize -The last parameter which can be specified for the Global section is BufferSize. This

parameter is only used in environments which are using the MAQ product mentioned previously in this

document. The MAQ product is only able to deliver a complete queue message to the router when read,

unlike the IQR product which feeds the router smaller portions of a queue message for processing.

Given this mode of operation by the MAQ, it is necessary that the TCP/IP IQR Router have sufficient

buffer space to accommodate the largest message being queued within the MA Queue. If a value is not

provided in the initialization file, a default value of 8192 bytes is used by default. The minimum size

that may be specified is currently 1024 bytes. The largest buffer that may be specified is currently

32767 bytes. If the router is being used in an IQR environment, the buffersize parameter is ignored.

Calculate the correct buffersize by determining the largest message contained in the hub and adding

106 bytes to that value. This is the correct size for parameter BufferSize.

8.5.2 TCP/IP Router Database [INCOMING] Section

The next section of the TCP/IP Router Database is the Incoming section. It defines a list of queues to

which incoming messages are expected to be routed to, from other routers. A queue specified in this

section is attached to by the router for write access. Only a single parameter is supported in the

Incoming section of the initialization file.

QueueName – This parameter defines the name of a message queue, in the attached hub, to which this

instance of the router will write messages. Any number of QueueName entries may follow the Incoming

section heading. The number of entries is limited only by the number of queues defined in the attached

hub. The remote router sending messages to this queue will have a corresponding entry in the Outgoing

section of its initialization file.

8.5.3 TCP/IP Router Database [OUTGOING] Section

The last section of the TCP/IP Router Database is the Outgoing section. This section defines those

queues, whose messages are destined for other cooperating TCP/IP Routers. Entries in this section

describe local message queues and the destination routers for the messages contained within them.

There are six parameters supported in the Outgoing section of the initialization file. The first two

parameters are required for each outgoing queue. The next four parameters are optional.

QueueName – This is the first parameter to be defined for an entry in the Outgoing section of the

initialization file. It specifies the name of a queue whose messages are destined for another hub. The

TCP/IP Router is notified when a message is deposited in the specified local message queue. The router

is then responsible for delivering the message to the specified cooperating router for entry in that

router’s target hub.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

TCP/IP Router Routing Database

Page 94

RemoteNode – The next parameter used in defining an outgoing queue is the RemoteNode parameter.

It is a required parameter for an outgoing queue. The parameter can be used in two distinct ways. If the

parameter is used horizontally, such as RemoteNode = NodeABCD, NodeJKLM, the nodes specified

on the line are treated as primary and secondary. If a send to the first node is unsuccessful, a connection

is made to the secondary node and an attempt is made to send the queued message to that node.

Attempts are then made at defined intervals to these nodes, in a round robin fashion, until a successful

send occurs. That node then becomes the current primary node for that message queue.

If multiple RemoteNode entries are present for an outgoing message queue, each node in the list is sent

a copy of the message being routed, if the number of nodes connected is greater than or equal to the

number specified by parameter Mincon. If that number of connections have not been established for

the current outgoing queue, no messages are sent. When the specified number of connections are finally

made, the messages are then transmitted by the router to the list of nodes.

You may also use a combination of the two RemoteNode specifications. You may choose to have

multiple RemoteNode lines specified for an outgoing queue in addition to supplying a many as two

nodes per RemoteNode parameter line.

Bear in mind that a TCP/IP socket is consumed for each active connection to a remote router from the

local router. If you have you have defined eight incoming and eight outgoing queues you have just

consumed a minimum of 16 TCP/IP sockets for this configuration. If you have specified multiple

RemoteNode parameter lines for outgoing queues you have increased the original number of sockets

consumed by the number of additional RemoteNode lines present. An additional socket is used by the

main router thread to listen for incoming connect request from remote routers. One final socket us used

by the TCPIQRSTAT utility in order to obtain routing information from a TCP/IP router. Attention

must be paid to the number of sockets being consumed as the limit on socket usage for the router at

present is 64. Exceeding this number will result in unpredictable behavior of the router and message

delivery.

RemotePort – The RemotePort parameter designates the port to which a connection should be made at

the remote router. If not specified, the default port of 3000 is used. This is an optional parameter.

RemoteQName –The RemoteQName parameter is used when the target queue at the remote end

differs from the queue name locally. Under normal circumstances the specified QueueName is also

used as the name of the target queue at the remote destination. In fact that is the default case when the

RemoteQName parameter is omitted. This is an optional parameter.

RetryTimer – The RetryTimer parameter is used to set the retry interval for reconnection attempts

between the local router and the remote router for this queue. The parameter is specified as an integer

number of minutes between retry attempts to a disconnected router. This parameter is optional. If

unspecified, a default of 1 minute is used.

MinCon – The MinCon parameter specifies the minimum number of remote connections required

before forwarding of messages from this queue will begin. This parameter is especially important when

using multiple RemoteNode parameter lines for a single outgoing queue. This parameter is optional. If

unspecified, a default of 1 is used for the parameter. An example of its use would be specifying three

RemoteNode parameter lines each with a single node identified. If a MinCon value of 2 is specified, the

router must have established a connection with at least 2 of the three routers specified in the

RemoteNode parameter lines before any message will be forwarded from the local message queue.

Example of TCP/IP IQR Router Database initialization file:

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

TCP/IP Router Routing Database

Page 95

!***
! This version of the TCPIQR initialization file was created as an example *
! of how you might structure your initialization file. *
!***
! TCP/IP IQR Router definition file
!
! This file is read during startup of the TCPIQR process to configure
! global buffers for local and remote queue access. The file has a
! structure similar to other Windows based application initialization files
! as shown below.
!
! Specify sections with brackets used to designate the beginning of a
! section, such as: [SECTION_NAME]. Valid sections are GLOBAL,
! INCOMING, and OUTGOING
!
! Specify section parameters as PARAMETER = VALUE
! You may have spaces/tabs around both PARAMETER and VALUE. Leading
! and trailing spaces are stripped by TCPIQR. Valid paramters for the
! various sections are shown below.
!
!
! GLOBAL parameters. All are optional.
!
! Parameters:
! HUB name of hub to attach to. If not supplied use logical name IQRHUB
! to derive the hub name.
! PORT is the port number on which the router listens for incoming
! connect requests. If not supplied, the default port of 3000 is used.
! BUFFERSIZE
! Only used on MAQ based systems to specify largest expected message
! to be read from a local queue. It is optional. It is ignored on
! IQR based systems. 8192 is the default buffersize when not specified.
!
[GLOBAL]
HUB=TEST_HUB
!
! Incoming section. Specifications in this section pertain to local queues
! which are to be written to by other routers. These routers may be located
! on remote nodes or the same node.
!
!
! INCOMING parameters. Only a single parameter is currently supported.
!
! Parameters:
! QUEUENAME Is the name of the local que to be written to by the router
! upon receipt of a message designated for that queue.
!
[INCOMING]
QueueName=LOCAL_QUE1 ! Incoming queue name
QueueName=LOCAL_QUE2 ! Incoming queue name
QueueName=LOCAL_QUE3 ! Incoming queue name
!
! OUTGOING Parameters. Specify a list of queues that are located outside
! of our local hub, plus attributes for these associations.
!
! Parameters:
! QUEUENAME The name of a queue whose messages are to routed outside
! of the local hub.
! REMOTENODE A list of nodes to which messages are to be routed from
! the previously specified queue. At least one node must
! be in the list for automatic message routing to occur.
! As many as two nodes may be in the list. If there are
! no nodes specified, the queue becomes a "POLLED" queue.
! Remote clients may then poll the queue for messages. The
! parameter may be either an IP address or a name which
! can be translated to an IP address using standard socket
! services.
! REMOTEPORT The port on which the remote router listens for incoming
! connect requests. (OPTIONAL) If not specified, the default
! port number of 3000 is used.
! REMOTEQNAME The name of the remote queue to which messages from our

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

TCPIQRSTAT TCP/IP Routing

Page 96

! queue are routed. (OPTIONAL) Only specified if the name
! of the remote queue differs from the local QUEUENAME.
! RETRYTIMER Is the wait period (in minutes) between attempts to
! connect with a remote node.(OPTIONAL) A default of 1
! minute is used if the parameter is not specified.
! MINCON Is another (OPTIONAL) parameter which can specified. It
! determines how many remote routers must be connected
! before the local router is allowed to route messages from
! the local queue.
!
! Comment delimeters are !
!
[OUTGOING] ! OUTGOING QUEUES
QueueName=REMOTE_QUE1 ! Queue name
 RemoteNode=PRIMARY_NODE,BACKUP_NODE ! list of nodes (up to 2 names/addresses)
 RetryTimer=1 !retry connections (every minute)
 MinCon=1 ! Minimum connections required
QueueName=REMOTE_QUE2 ! Queue name
 RemoteNode=PRIMARY_NODE,BACKUP_NODE ! List of nodes (Up to 2 names/addresses)
 RetryTimer=1 !retry connections (every minute)
 MinCon=1 ! Minimum connections required
QueueName=REMOTE_QUE3 ! Queue name
 RemoteNode=PRIMARY_NODE,BACKUP_NODE ! List of nodes (Up to 2 names/addresses)
 RemoteNode=PRIME_NODE2,BACKUP_NODE2 ! List of nodes (Up to 2 names/addresses)
 RemotePort=2999 ! Alternate port used at remote router
 RemoteQName=PRIME_QUE3 ! Name of remote queue to forward to
 RetryTimer=1 ! retry connections (every minute)
 MinCon=1 ! Minimum connections required

8.6 TCPIQRSTAT TCP/IP Routing Utility

The TCPIQRSTAT utility is similar in function to the DMPRTR utility except that it returns

information pertaining to the TCP/IP IQR Router rather than the DECnet Router. The information is

arranged in 4 logical area when output to the user. The first three sections relate directly to the three

sections described in the TCP/IP IQR Router Database discussion in the previous chapter.

The top section of the output pertains to the [GLOBAL] parameters for the router. The name of the hub

to which the designated router is attached, the port number to which the router is listening for incoming

connections, and current date and time.

The next section shows information related to the [INCOMING] section of the router. All incoming

queues are listed with the current sequence number for the messages as well as the time of the last write

to the queue by the router.

The next section shows information related to the output queues as defined for this router. It lists all the

queues which this router will be reading and forwarding to a remote router. Within this section, for

each queue, is the time of last read from the queue, the node to which the queue messages are being

forwarded, the sequence number of the last message, the state of the connection to the remote router,

the length of time that the connection has been established, and the time of the last packet transfer to

the remote router.

The last section of the output shows information related to connections which were made to the local

router from remote routers. It shows the node which initiated the connection, the sequence number of

the last transaction with that router on the connection, the length of time that the connection has been

established, and the time at which the last message packet was received from the remote router.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

TCPIQRSTAT TCP/IP Routing

Page 97

The utility is invoked from the OpenVMS DCL command line with the following syntax:

$ TCPIQRSTAT [hostname] [port]<cr>

If the hostname and port are omitted, it is assumed that the router is located on the local host and is

using port 3000 for listening. A connection is made with the router at the designated port for retrieval

of router statistics as shown in the following diagram.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

DMPQUE

Page 99

9. Utilities

9.1 DMPQUE

This utility is provided to browse the message queues within a hub and to display individual statistics

about each of the message queues it contains. The following is displayed for each message queue:

• Time last written

• Time last read

• Elapsed time from read to acknowledge of the last message

• Total elapsed time from read to acknowledge

• VMS process connected for read to the message queue

Calling format:

DMPQUE [/COUNT=nn][/SINCE=["DD-mmm-yyyy hh:mm:ss"]] [/MONITOR]

[/FULL]

[/BRIEF] [hubname]

 [/ACTIVE]

where:

/COUNT Display only message queues with at least nn messages in the message

queue.

/SINCE This will only display message queues that have been read, written, or

acknowledged since the provided time stamp. Note that the On_Queue time

for a message may still be older than the time specified. By not providing a

time stamp, only message queues modified for the current day will be

displayed.

/MONITOR This will activate the monitoring feature of DMPQUE. This will provide a

continuously updated display of the hub’s message queue information every

three seconds. Press CTRL-Y to cancel the display.

/FULL This causes DMPQUE to display all message queues for the hub, to include

deleted message queues. Normally, deleted message queues are not

displayed.

/BRIEF This will cause the output to display only 80 columns of data. Because of

the smaller screen size, some of the queue information will not be shown.

/ACTIVE Displays only those queues that are active (i.e. times are not zero).

hubname Name of the hub from which to display messages. If not given, DMPQUE

will attempt to translate the GROUP or SYSTEM definition of IQRHUB for

the default hub name.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

DMPQUE

Page 100

The following is a sample screen dump of the called routine:

$dmpque/full

HUB information for hub name: TEST_IQR on IPCALP::
HUB Operational since 27-JUL-1995 11:35:44.95 Up for 3 07:00:36.49

Location Size Free Blk Write Cntr Read Cntr Act Queues Last Update
--------- -------- -------- ---------- --------- ---------- -----------------------
Container 4038 4030 16 28 3 27-JUL-1995 12:51:37.34
Region 197 128 41 41 6 27-JUL-1995 12:31:05.15

Queue Name Flags CurMsg MaxMsg LostCnt Last Wrt Last Rd Last Ack Last Trans CumTran Primary Reader SecondaryReader
-------------- -------- ------ ------ ------- -------- -------- -------- ---------- ------- ---------------- ---------------
REPL ..R..... Replicate to: TEST, MSG_IN
TEST 2. 0 20 0 12:29:53 12:31:05 12:31:05 1:11.48 0:08:05
MIKE ...TW... 0 5 0 00:00:00 00:00:00 00:00:00 0:00.00 0:00:00 IQR_ROUTER
TRACY 2. 0 10 0 00:00:00 00:00:00 00:00:00 0:00.00 0:00:00
MESSAGES A2. 0 25 0 10:50:36 10:50:45 10:50:54 0:09.04 0:00:19 IQR_3 IQR_2
MSG_IN .J....2. 0 20 0 12:51:06 12:51:13 12:51:14 0:07.38 0:02:45
IPACT XJ....2. 0 20 0 00:00:00 00:00:00 00:00:00 0:00.00 0:00:00
EARL .J.T..2V 3 10 3 11:20:27 11:20:34 11:20:58 0:23.42 0:00:24 IQR_1
ROUTER .J..W... 2 10 0 11:31:55 11:32:04 11:32:05 0:00.33 0:00:04 IQR_ROUTER

The first line shows the name of the hub and the location of the container file. The next line will show

the time the hub was installed in addition to how long the hub has been operational. The top portion of

the next display area shows general information about the hub for both its journaled and non-journaled

space. The given information is as follows:

Location This will either be “Container” or “Region”. This will indicate what

information on the current line is given. Container information is for

journaled message queues and Region information is for non-journaled

message queues.

Size This is the size of the area in 512 byte blocks.

Free Blk The number of free blocks.

Write Cntr The number of writes made to this particular area.

Read Cntr The number of reads made to this particular area.

Act Queues The total number of active message queues in this area. Deleted message

queues are not included in the count.

Last Update The last time the area was updated with information.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

DMPQUE

Page 101

The bottom portion of the window shows information about individual message queues on the hub.

Given information is as follows:

Queue Name This is the name of the message queue.

Flags This will show current status flags for the message queue. A flag is shown

when it is active; otherwise a dot is displayed. Valid codes are as follows:

 X Deleted

 J Journaled message queue

 R Replicating message queue

 T Timed message queue (deletes stale messages)

 W A reader must be connected in order to write to the queue

 A Automatically acknowledge a message read from the queue

 2 Dual readers allowed (primary and secondary)

 V Volatile message queue

CurMsg The current number of messages in the queue that are waiting to be read.

MaxMsg The maximum number of messages that can be in the queue waiting to be

read.

LostCnt The number of messages that were deleted in order to make room for new

messages (volatile message queue).

Last Write The time of the last write to the queue.

Last Read The time of the last read from the queue.

Last Ack The time of the last acknowledge of a message on the queue.

Last Trans Time (in seconds) that it took between writing a message to the queue and

then acknowledging the message.

CumTran The cumulative time that it took between writing a message to the queue

and then acknowledging the message.

Primary

Reader

The process name of the currently connected primary reader.

Secondary

Reader

The process name of the currently connected secondary reader.

Replicating message queues will not have the usual information found in a regular message queue.

Instead, it will list the name of the message queues it will be sending messages to.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

DMPRTR

Page 102

9.2 DMPRTR

This utility displays statistics about an IQR router logical link connection status. The format for this

utility is as follows:

DMPRTR [router]

where router is an optionally provided name of a currently running router. If not given, then DMPRTR

will default to the name of the router defined by the GROUP or SYSTEM definition of RTRDEF.

The following is a sample display from DMPRTR:

$DMPRTR TEST_RTR

Log Node Flags DEC Node DECnet Obj Rem. Link Uptime In Seq# Out Seq#
---------------- ------ ------- ----------- ---------------- ------- --------
MV3 AM IPCMV3 IPCMV3_RTR 0 00:52:30.49 2 47
ALPHA DTM ** No link, retry at: 30-MAY-1995 15:08:05.71 **

 RTR Mids [Buffers]
Object Name Links In Out Inp Out Resp RTR Time RTR Cntr
-------------------- ----- --- --- ---- ----- ----- --------- ------------
 TEST_RTR 2 001 001 0002 00001 00004 14:53:05 10

Size of output buffers: 2048

The first section shows the information on all logical links to remote nodes. The information given is

as follows:

Log Node The name of a node group defined in the router database.

Flags This can be any of the following:

D Remote link down

C Local connect for remote node in progress

L Local disconnect from remote node in progress

Y Outbound remote link established and connected

R Remote node requesting connection

A Logical link established with remote node

T Connect timer active

X Routing shutdown in progress

P No outbound messages routed by this node

W This node connect race winner

O Remote node is of the old type

M Node supports multipacket messages

J Sending multipacket message

N Negotiate buffer size

B Receiving multipacket message

U Waiting for multipacket size message

DEC Node Actual name of node on the network.

DECnet Obj Name of the router on the DECnet node that is communicatingwith this

router.

Rem Link This is elapsed time that the link to the remote node has been up and

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

DMPRTR

Page 103

Uptime operational.

In Seq # Current input sequence number of current node.

Out Seq # Current output sequence number of current node.

If the remote link is not raised, the flags item will contain the status, followed by possible

future connection information for the node.

The second part of the display shows information about the local router. Information is as follows:

Object Name Name of the local router.

RTR Links Number of links to remote nodes.

MIDS In The number of Message ID’s that are being routed to this node.

MIDS Out The number of Message ID’s that are being routed from this node.

Buffers Inp The number of input buffers allocated.

Buffers Out The number of output buffers allocated.

Buffers Resp The number of response buffers allocated.

RTR Time The current time on the local router (adjusted for the network).

RTR Cntr The number of I/O operations performed by the router.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

DQIT

Page 104

9.3 DQIT

The DQIT utility provides a simple method of removing/reading messages from a particular message

queue within a specific hub. It also has the ability of placing the removed messages into a dump file

that can be read by QIT. The command syntax is:

$DQIT /ID=message_id [/HUB=hub_name] [/TIME] [/NOPRINT] [/COUNT=nn]

[/WAIT] [/SYMBOL=symbol] [/NOACK] [/DUMPFILE=file] [/ADD] [/ALL]

where:

/ID=message_id This will indicate the message queue from which messages are to be

read. This parameter is required.

/HUB=hub_name This allows the user to specify the name of the particular hub from

which the message_id is to be found. If not specified, the default

specified by the logical IQRHUB will be used.

/TIME This will take the first 8 bytes of the message and convert them into a

VMS equivalent 23 character time using SYS$ASCTIM.

/NOPRINT Will not print out the message or its header information to the display.

/COUNT=nn Specifying this parameter will instruct DQIT to remove nn number of

messages from the queue. If there are not at least nn messages, then

all of the messages in the queue will be read. If a nn is set to zero,

then all messages will be removed from the queue. The default value

of /COUNT is one.

/WAIT Instructs DQIT to wait for a message to arrive in the message queue if

the queue is currently empty. Normally, DQIT will return with an

error if the message queue is empty.

/SYMBOL

=symbol

This will set the DCL symbol to the value read by DQIT.

/NOACK This will not acknowledge the message read from the queue. Use this

to just browse the top message in a message queue, without actually

removing it from the queue. You cannot use this option with

/DUMPFILE or /COUNT.

/DUMPFILE =file Messages read from the queue will be placed in a special dump file

named file. This file can then be used by QIT to re-populate message

queues.

/ADD This option is only valid with /DUMPFILE. If specified the messages

read will be added to the current dumpfile specified by /DUMPFILE.

This can be used to create one large dump file with all messages for a

particular hub and multiple message queues.

/ALL This will dump all messages from a message queue. This works the

same as setting /COUNT=0.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

DQIT

Page 105

DQIT has the ability to backup a hub. To do so, use the following command format. You must run

this command for each message queue you want backed up. Note that DQIT will remove messages

from the queue, so it may be a good idea to insure that no one is using the message queues before

backing them up. Also, the message will be deleted after performing this operation. To restore the

queues to their status before the backup, just use QIT to place the messages back onto the queue. The

format is:

DQIT /ID=message_id /HUB=hub_name /DUMPFILE=file /ADD /ALL

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

IQU

Page 106

9.4 IQU

The IQU utility is responsible for maintaining the IQR hub. It creates, installs, and allows the user to

define message queues and their characteristics. The IQU utility is invoked via the command prompt.

Its function is to provide communication with the IQR hub process and serve as a maintenance tool for

the various global sections.

The following major functions are supported:

• IQU /ADD Create a new message queue on a HUB

• IQU /CREATE Create a new HUB

• IQU /DELETE Delete a message queue on a HUB

• IQU /INFO Show current info about the IQR software

• IQU /INSTALL Install a HUB onto the system

• IQU /MODIFY Modify an existing message queue

• IQU /REMOVE Remove a HUB from the system

9.4.1 IQU /ADD

IQU_ADD creates a message queue based on parameters and qualifiers entered on the command line.

The command used to start this routine and its parameter and qualifiers is as follows:

IQU/ADD=msg_que [/loc=directory] [/lngmax=nnnn] [/descrp=description]

[/jrn] [/vol] [/cntmax=nnnn] [/noack] [/dual] [/expire=nnnn] [/reader]

[/replicate=(msg_que1[,...msg_que4])] hub_name

where:

msg_que The name of the message queue (max 16 characters).

hub_name The name of the hub (max 8 characters). If not specified, it will

default to the logical IQRHUB.

/loc Location of hub container file. Default is IQR$QQQQ

/lngmax=nnnn Maximum message size in nnnn bytes. Default is 8192 bytes

/descrp=description A description of the message queue (max 80 characters).

/jrn Messages are journaled. Default is messages non-journaled.

/vol Messages are volatile.

/cntmax=nnnn The maximum number of messages (nnnn) in the message queue at

any one time. Default is 20.

/noack Message acknowledgment not required. Automatically performed

upon successful read of message queue.

/dual Dual readers allowed.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

IQU

Page 107

/expire=nnnn Messages will become stale (and deleted) after nnnn minutes in the

queue.

/reader A reader is required to write to the queue.

/replicate Makes this message queue a replicating queue. Enter for

(msg_que1[,...msg_que4]) up four message queues that you want this

one to replicate to.

You cannot add a message queue that already exists in a hub.

9.4.2 IQU /CREATE

This command will allow the user to create a new hub based on parameters and qualifiers entered on

the command line.

The command used to start this routine and its parameter and qualifiers is as follows:

IQU/CREATE [/fsize=nnnn] [/oldh=filename] [/dump=filename] [/loc=directory]

hub_name

where:

hub_name The name of the hub to create. If not specified, it will default to the

logical IQRHUB.

/fsize=nnnn Size of hub container data in nnnn 512 byte disk blocks. Default is

12096 blocks.

/loc=directory Location of new hub and QND files. Default is IQR$QQQQ

Use this command to prepare a new mesaging hub on your local node. The new hub will contain no

messages or message queues.

Creating a new hub while one is in use will create a new hub file. However, the new hub will not be

used until it is installed. The new hub will not use any of the current message queue definitions or

messages.

Do not use IQU/CREATE after a IQU/REMOVE or a system restart unless you want to completely

remove all information from your hub!

9.4.3 IQU /DELETE

This command will delete a message queue from a hub. The format for this command is as follows:

IQU/DELETE=msg_que [/loc=directory] hub_name

where:

msg_que The name of the message queue (max 16 characters).

hub_name The name of the hub (max 8 characters). If not specified, it will

default to the logical IQRHUB.

/loc Location of hub container file. Default is IQR$QQQQ

Message queues to be deleted must contain no waiting messages.

!

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

IQU

Page 108

Note that message queues are not actually deleted, but marked as being so. They will eventually either

be removed during a re-install of the hub or when a new message queue is created over it.

9.4.4 IQU /INFO

Issuing this command will display information about your IQR software installation. The command

format is:

IQU/INFO

Information presented will include your IQR serial number, version numbers, and any other possible

information about your installation.

9.4.5 IQU /INSTALL

IQU_INSTALL will actually install a hub and prepare it for use by the IQR services.

The command used to start this routine and its parameter and qualifiers is as follows:

IQU/INSTALL [/loc=directory] [/msize=nnnn] [/cchmaxmqd=nnnn]

[/regmaxmqd=nnnn] hub_name

where:

hub_name The name of the hub to create. If not specified, it will default to the

logical IQRHUB.

/loc=directory Location of hub and QND files

/msize=nnnn Size of hub region data in nnnn 512 byte memory blocks

/cchmaxmqd=nnnn Maximum number of cached journal message queues

/regmaxmqd=nnnn Maximum number of non-journal message queues

If the hub experiences an abnormal shutdown (i.e. power failure, system crash) or is rundown using the

IQU/REMOVE utility, use IQU/INSTALL to restart the hub. This will preserve only journaled

message queues and their respective messages. Non-journaled message queues will be re-created, but

their messages will be lost.

9.4.6 IQU /MODIFY

IQU MODIFY allows you to modify a message queue’s existing configuration based on parameters and

qualifiers entered on the command line.

The command used to start this routine and its parameter and qualifiers is as follows:

IQU/MODIFY=msg_que [/loc=directory] [/lngmax=nnnn] [/descrp=description][/vol]

[/cntmax=nnnn] [/noack] [/dual] [/expire=nnnn] [/reader] hub_name

where:

msg_que The name of the message queue (max 16 characters).

hub_name The name of the hub (max 8 characters). If not specified, it will

default to the logical IQRHUB.

/loc Location of hub container file.

/lngmax=nnnn Maximum message size in nnnn bytes.

/descrp=description A description of the message queue (max 80 characters).

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

IQU

Page 109

/vol Messages are volatile.

/cntmax=nnnn The maximum number of messages (nnnn) in the message queue at

any one time.

/noack Message acknowledgment not required. Automatically performed

upon successful read of message queue.

/dual Dual readers allowed.

/expire=nnnn Messages will become stale (and deleted) after nnnn minutes in the

queue.

/reader A reader is required to write to the queue.

The message queue to modify must already exist on the hub and can not be a replicating message

queue. When making modifications, insure that you include all of the switches for all of the options

you want -- including those that may already be defined. If you do not define a switch, it will be

cleared or reset to its default value.

9.4.7 IQU /REMOVE

IQU_REMOVE marks an existing hub for deletion. When no more processes are connected to the hub,

it is removed.

The command used to start this routine and it parameter and qualifiers is:

IQU/REMOVE hub_name

where:

hub_name The name of the hub to remove. If not specified, it will default to the

logical IQRHUB.

After a hub is removed, it can again be installed by using IQU/INSTALL. If you wish to create a new,

empty hub, use the IQU/CREATE command.

Note: Using this command will stop all message queue activity. If any messages existed in the non-

journaled region, they will be deleted. All journaled messages will remain if you re-install the hub.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

IQU

Page 110

9.4.8 IQU /RESET

This command will reset the statistical counters for either a hub or a message queue. The command

format is:

IQU /RESET[=msg_que] [/loc=directory] hub_name

where:

msg_que The name of the message queue to reset (max 16 characters). If this

is not specified, the hub itslef will be reset.

hub_name The name of the hub (max 8 characters). If not specified, it will

default to the logical IQRHUB.

/loc Location of hub container file. Default is IQR$QQQQ

If the msg_que is specified, then that message queue will have it’s transaction counters reset to zero

along with all of its timers.

If the msg_que is not specified, then the transaction counters for the hub will be reset to zero.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

LSTRTR

Page 111

9.5 LSTRTR

This utility displays statistics about all message queues routed by a particular router. The format for

this utility is as follows:

LSTRTR [router]

where router is an optional name of a currently running router. If not given, then LSTRTR will default

to the name of the router defined by the GROUP or SYSTEM definition of RTRDEF.

A sample output is shown below:

$LSTRTR TEST_RTR

MESSAGE DESTINATION TIME
SENT NODE COUNTER DD HH:MM:SS STATUS
------- ----------- ------- ----------- ------
MSG_OUT MV3 42 30 09:50:30
ROUTE MV3 12 30 10:12:24 AP

MESSAGE SENDING TIME
RECVD NODE COUNTER DD HH:MM:SS STATUS
------- ------- ------- ----------- ------
MSG_IN IPCMV3 1 30 09:53:22
DATA IPACT 23 30 10:05:11

The first portion lists all message queues that are being routed out of this node. The information

displayed is as follows:

Message ID This is the name of the message queue.

Destination

Node

This is the name of the group of nodes defined in the routing database

where this message queue will be routed.

Counter The number of messages routed from this message queue.

Time The last time a message was sent from this message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

LSTRTR

Page 112

Status Can be any of the following:

F Remote message id queue is full

U Remote message id is unknown

Q Message id not found in local hub

Z Unable to acknowledge message id

S Packet being sent

E Error reading message id from queue

A Message sent to remote, waiting for ack

X Abort transmission

W Error sending packet

P Sending message as a multipacket

W Multipacket wait

H Multipacket wait

N Destination node is unavailable

R RNA for this message id

The second part lists all the message queues that remote routers will connect to and write on this node.

The following information is given:

Message ID This is the name of the message queue.

Sending

Node

This is the name of the node that will write to this message queue.

Counter The number of messages routed to this message queue.

Time The last time a message was last received by this message queue.

Status Can be any of the following:

M Multipacket message in progress

A Ack being sent

Q Message id was not found in local hub

E Queue write error

F Message queue full error

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

QIT

Page 113

9.6 QIT

The QIT utility provides a simple method of sending messages to a particular message queue within a

specific hub. It also has the ability of re-populating messages onto multiple message queues from a

dump file created by DQIT. The command syntax is as follows:

$QIT /ID=message_id [/HUB=hub] [/TIME] [/DUMPFILE] [/DATAFILE] data

where:

/ID=message_id This will indicate the message queue to which the typed message data

is to be written. If the /DUMPFILE option is specified, then this

option is ignored.

/HUB=hub_name This allows the user to specify the name of the particular hub from

which the message_id is to be found. If not specified, the default

specified by the logical IQRHUB will be used.

/TIME This will convert the time specified by data into an 8 byte VMS time

and place it onto the indicated message queue.

/DUMPFILE This will re-populate the hub with messages dumped into the file of

file name data. The dump file is created with the DQIT utility. If the

/ID parameter is specified, all messages in the dump file will be

written to the message queue specified by message_id, regardless of

their actual origin.

/DATAFILE This will write the message given in the file named data to the

message queue.

data Provided without the switch /DATAFILE or /DUMPFILE, this is the

message to be written to the message queue.

A popular use of QIT is to restore a backup of messages onto a hub. Before restoring, the hub must

already contain the message queues that are in the dump file. To restore a backup, enter at the

command line:

QIT /HUB=hub /DUMPFILE filename

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

RTRDBS

Page 114

9.7 RTRDBS

The RTRDBS command will compile a router database so it may be used by the router. The router

database should normally exist in the IQR$RTR directory. The program will also create a command

procedure that can be executed that will start the router using this routing database. The format for the

command is as follows:

$RTRDBS database

where databse is the name of the routing database to be compiled. See the chapter on the Router for

more information about the router databse and use of the RTRDBS utility.

9.8 TCPIQRSTAT

The TCPIQRSTAT utility is similar in function to the DMPRTR utility except that it returns

information pertaining to the TCP/IP IQR Router rather than the DECnet Router. The information is

arranged in 4 logical area when output to the user. The first three sections relate directly to the three

sections described in the TCP/IP IQR Router Database discussion in the previous chapter.

The top section of the output pertains to the [GLOBAL] parameters for the router. The name of the hub

to which the designated router is attached, the port number to which the router is listening for incoming

connections, and current date and time.

The next section shows information related to the [INCOMING] section of the router. All incoming

queues are listed with the current sequence number for the messages as well as the time of the last write

to the queue by the router.

The next section shows information related to the output queues as defined for this router. It lists all the

queues which this router will be reading and forwarding to a remote router. Within this section, for

each queue, is the time of last read from the queue, the node to which the queue messages are being

forwarded, the sequence number of the last message, the state of the connection to the remote router,

the length of time that the connection has been established, and the time of the last packet transfer to

the remote router.

The last section of the output shows information related to connections which were made to the local

router from remote routers. It shows the node which initiated the connection, the sequence number of

the last transaction with that router on the connection, the length of time that the connection has been

established, and the time at which the last message packet was received from the remote router.

The utility is invoked from the OpenVMS DCL command line with the following syntax:

$ TCPIQRSTAT [hostname] [port]<cr>

If the hostname and port are omitted, it is assumed that the router is located on the local host and is

using port 3000 for listening. A connection is made with the router at the designated port for retrieval

of router statistics as shown in the following output from TCPIQRSTAT.

TCPIQR info on 127.0.0.1 Port:3000 Mon Apr 17 12:07:00 2000
HUB:TCPAL3_Q

INPUT QUEUES (4)
QUEUE SEQ# LAST WT

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

TCPIQRSTAT

Page 115

TO_ALPHAQ1 0
TO_ALPHAQ2 0
FROM_ALP 0
TEST_QUE 3731568 12:06:59

OUTPUT QUEUES (0)
QUEUE LAST RD TO_NODE SEQ# STAT UP TIME LAST
PKT

INCOMING CONNECTIONS

IP ADDR SEQ# UP TIME LAST PKT ON QUEUE MD
IPCMV3:: 3731527 6d 19:38:22 12:06:59 TEST_QUE WT

IPACT Queuer and Router Services
©1995 by IPACT, Inc. INDEX

Page 117

10. Appendix

10.1 IQR Glossary

Term Definition

Acknowledge When a user reads a message from a message queue, it will need to be

acknowledged. Acknowledging a message indicates that the caller has

read the message and is done with the message -- it can now be deleted

from the message queue.

Container File This is the actual disk location of the hub’s data files.

CMQ Connected Message Queue definition. This is a segment of memory

created by connection to a message queue. When connecting a

message queue, this value is returned to the caller. It is then passed on

to any routines that will use the connected message queue.

DMPQUE A utility that displays message queue information about a particular

hub.

DMPRTR A utility that displays information about a currently running router.

DQIT A utility that will allow the user to remove messages from a message

queue.

Hub This is a named location on a particular node in which actual message

queues are contained. Each hub can have a set number of message

queues, each holding a set number of messages.

Journaled A journaled message queue is stored in the disk container file. This

will allow for message recovery in the event of a shutdown or system

crash.

LSTRTR A utility that gives information about the routed message queues for a

particular router.

MAQ The Manufacturing Automation Queue and Routing software. The

IQR Software is compatible (using a patch library) with MAQ v5.3.

Message Header A portion of a message (of size HDR$K_SIZ) that contains

information about the message itself.

Message Queue A queue within a hub that contains actual messages. Each message

queue can contain a set number of messages.

MQD The Manufacturing Automation Disk Based Queuer and Router

Services. The IQR Software is compatible (using a patch library) with

MQD v4.0

Non-journaled A type of message queue. A non-journaled message queue only exists

within memory on a local node. Messages in a non-journaled message

queue can be lost after a system crash or shutdown.

PEX Process Expanded Region. An area mapped in memory when the user

attaches to a particular hub.

IPACT Queuer and Router Services
©1995 by IPACT, Inc. INDEX

Page 118

QIT A utility that will allow the user to place messages onto a message

queue.

queue_index A special argument used in many of the IQR System Service calls.

This value contains an index into the user’s PEX that holds

information about the currently connected message queue.

Replicate A message queue type that will replicate a message written to it onto

other defined local message queues. No messages are actually written

to a replicating message queue.

Router A program that will move messages to/from a message queue on the

current node to/from a remote node’s message queue. The remote

router can be of the IQR, MAQ, or MQD type.

Router Database A data file written by the user and compiled using the RTRDBS utility.

This file contains the information about the nodes and message queues

to be routed by the IQR Router.

RTRDBS A utility that compiles the Router Database.

Stale A message queue type that indicates that messages can become stale

after a certain amount of time. When a stale message is found (one

that has existed on the queue longer than its allotted time), it is deleted

from the queue. Deleted messages cannot be recovered.

Volatile A message queue type that indicates messages can be volatile. A

volatile message is one that may be deleted if no more room exists to

write a new message. Deleted messages cannot be recovered. If the

queue is not volatile and the message queue is full, then an error is

returned to the caller.

IPACT Queuer and Router Services
©1995 by IPACT, Inc. INDEX

INDEX

IPACT Queuer and Router Services
©1995 by IPACT, Inc. INDEX

A

ack_read • 78

ack_sec_read • 78

acknowledge • 6, 16, 18, 27, 46, 59,

74, 75, 97, 99, 102, 110

Acknowledge • 115

add_message_id • 78

API • 1

AST • 29, 37

attach_q • 78

attach_qe • 78

B

backup_rn • 78

backup_srna • 78

C

C • 76

change_message_id • 78

CMQ • 15, 21, 26, 28, 31, 33, 38,

41, 48, 50, 52, 56, 59, 65, 67, 69,

115

Code Generation • 75

Command Procedures • 10

Compatability • 77

Compile • 80, 83

con_secrea • 78

connect_rea • 78

container • 6, 19, 73, 98, 105

Container File • 115

CTRL-Y • 37, 97

D

DEC C • 75

DECnet • 1, 5, 85, 86, 87, 100

DECUS • 1, 88

delete_message_id • 78

detach_q • 78

disconnect_read • 78

DMPQUE • 97, 115

DMPRTR • 90, 100, 115

DQIT • 7, 102, 103, 111, 115

E

Error Code • 73

F

FORTRAN • 8, 75, 76, 80, 83

G

get_mid_index • 78

H

HDR$K_SIZ • 51, 53, 64, 115

header file • 76

Hub • 115

HUB.TLB • 76

HUB_FOR • 76

I

INCLUDE • 76

index value • 77

Initialization file • 90

INSTALL_TEST_HUB.COM • 10

Installation • 7

Introduction • 1

IQR Logicals • 9

IQR Router • 5, 6, 49, 85, 86, 90

IQR System Service • 6, 15, 73, 75,

77, 80, 83

IQR$LIB • 8, 9

IQR$PROD • 8, 9, 10

IQR$QQQQ • 8, 9

IQR$RTR • 8, 9, 10

iqr_ack_read • 15, 75

iqr_add_message_q • 17, 19, 22, 42,

66, 68, 71, 73, 74, 75

iqr_allocate_msgblks • 20, 33, 34,

41, 68, 75

iqr_attach_h • 15, 17, 20, 23, 24,

26, 28, 29, 31, 32, 33, 35, 37, 38,

40, 43, 45, 48, 50, 52, 56, 58, 61,

62, 64, 67, 69, 73, 74, 75

iqr_backup_rna • 26

iqr_connect_read • 28, 39, 74, 75

iqr_connect_write • 31, 39, 74, 75,

78, 81

iqr_deallocate_msgblks • 21, 33

iqr_delete_q • 35

iqr_disconnect_h • 37

iqr_disconnect_q • 38, 75

iqr_fill_msgblks • 20, 21, 40, 68, 75

iqr_get_q_info • 43

iqr_modify_q • 45, 75, 78

iqr_read_hmb • 48, 49, 75

iqr_read_q • 16, 50, 57, 75

iqr_read_qn • 52

iqr_read_qw • 16, 56, 75

iqr_read_segment • 58, 61, 62, 73,

75

iqr_reset_stat_h • 61

iqr_reset_stat_q • 62

iqr_rtr_write_q • 64, 75

IQR_START_xxxx.COM • 10

IQR_STARTUP.COM • 7, 8, 9, 10

IQR_TEST • 10

iqr_thread_msgblks • 20, 21, 67, 75

iqr_write_q • 21, 40, 41, 65, 69, 75

IQRDEF • 9, 78, 81, 97, 102, 111

IQRSS • 9

IQU /ADD • 104

IQU /CREATE • 10, 104, 105

IQU /DELETE • 104, 105

IQU /INFO • 104, 106

IQU /INSTALL • 104, 106

IQU /MODIFY • 104, 106

IQU /REMOVE • 104, 107

IQU /RESET • 108

IVP • 7

J

Journal • 115

journaled • 6, 17, 18, 98, 104

L

LINK • 76, 80, 83

LSTRTR • 90, 109, 115

M

MAQ • 8, 11, 85, 115

MAQ System Service • 78, 80

Message Flow • 6

message header • 41, 50, 52, 56, 65

Message Header • 115

Message Queue • 15, 115

MQD • 8, 10, 115

MQD System Service • 80

mqd$ack_read • 81

mqd$add_message_i • 81

mqd$attach_q • 81

mqd$backup_rna • 81

mqd$change_message_id • 81

mqd$connect_read • 81

mqd$connect_write • 81

mqd$delete_message_id • 81

mqd$detach_q • 81

mqd$disconnect_id • 81

IPACT Queuer and Router Services
©1995 by IPACT, Inc. INDEX

mqd$get_mid_index • 81

mqd$read_q • 81

mqd$read_qn • 81

mqd$read_qw • 81

mqd$write_q • 81

MQD_M_ACKREAD • 16, 18, 46

O

Overview • 3

P

Patch Library • 78, 80, 83

PEX • 115

privileges • 11

Q

QIT • 102, 111, 112, 116

QUE_ADDED • 73

QUE_ALLOCLOCK • 73

QUE_BADCCTMQD • 73

QUE_BADHNAME • 73

QUE_BADPRCINF • 73

QUE_CONTAINERFULL • 73

QUE_DEFHNAME • 73

QUE_INTERNALFAULT • 73

QUE_INVALIDPEX • 73

QUE_INVALQIDX • 74

QUE_INVALQNAME • 74

QUE_INVALUSERBUF • 74

QUE_INVARG • 74

QUE_LASTSEG • 73

QUE_MAXMSGQUEUES • 74

QUE_MQDFULL • 74

QUE_NOCACHE • 74

QUE_NOMESS • 74

QUE_NORNAMESS • 74

QUE_NOTCONREAD • 74

QUE_NOTCONWRITE • 74

QUE_NOTFOUND • 74

QUE_PRCLCKNM • 74

QUE_PREATT • 74

QUE_SUCCESS • 73

QUE_TOOMANYRDR • 74

QUE_USRBUFSML • 74

queue_index • 116

R

read_q • 78

read_qrec • 78

read_sq • 78

Replicate • 116

Required Privileges • 11

RNA • 74, 77

Router • 116

Router Database • 116

routing database • 112

Routing Database • 90

Routing Utilities • 90

RSX • 88

RTRDBS • 85, 86, 112, 116

RTRDEF • 9, 100, 109

rundown • 27, 34, 37, 78, 81

S

Stale • 116

stale_time • 17, 18, 45, 46

Status Codes • 73

SYS$UPDATE • 7

T

TCP/IP • 1, 5, 85

TCP/IP IQR Router • 85

TCPIQRSTAT • 112

Test Utilities • 10

TEST_RTR_START.COM • 10

U

Utilities • 97

V

VMS$INSTAL • 7

VMSINSTAL • 7

volatile • 18, 46, 70, 99, 104, 107

Volatile • 116

W

write_q • 79

write_qrec • 79

IPACT Queuer and Router Services
©1995 by IPACT, Inc. INDEX

