Papillon 0.5.1 — Solaris Security Module
Documentation and Manual

Konrad Rieckkr@roge.org)

14th April 2003— Revision: 1.69
Copyright 2000 — 2003

Contents

1 Introduction 3
2 Papillon’s functionality 4
2.1 Features. e e e e 4
2.1.1 RestrictedProc 4

2.1.2 Pseudo PromiscuousFlag. 5

2.1.3 Secure STDIO File Descriptors 5

2.1.4 ModuleHiding. 6

2.2 Protections e e 6
2.2.1 Symbolic Link Protection. 7

2.2.2 HardLinkProtection 7

2.2.3 FIFOProtection. 8

2.24 ChrootProtection. e 9

2.2.5 Setuid Execution Protection 9

3 Installation and Configuration 10
3.1 Installation 10
3.1.1 Requirements. 10

3.1.2 Compilation Time Configuration. 11

3.1.3 Compilation 13

3.1.4 Testingthebuild. 14

3.2 Runtime Configuration. 16
3.21 ControlToolOptions 16

3.22 CommandLineExamples 17

4 Closing words 18
4.1 KnownProblems. 18
4.2 Feedback. e 19
4.3 Thanks e e 20

1 Introduction

Papillon is a security module designed for the Solaris Operating Environment 8 afid B [
provides security mechanisms and protections that improve the overall security of the system
by adding new functionality to the kernel. The security mechanisms and protections have been
inspired by the OpenwalB] and the HAP P] Linux kernel patches and address common Unix
security issues that are also present in the Solaris Operating Environment.

Papillon follows the philosophy gfrevention through restrictianBy adding minimal restric-

tions to resources, such as symbolic links or FIFOs, compromises based on common attack
techniques can be prevented without influence on the system’s usability. Papillon is a great ad-
dition to already existing security solutions such as the Solaris Basic Security Module (BSM)
and the non-executable stack on the Solaris SPARC Edition. All features and protections of the
Papillon module can be en- and disabled at compilation time or even at runtime, therefore the
functionality can be optimally adapted to a specific system.

Even though there have been several requests, the module is not designed to weaken the super-
user’s privileges and protect against intruders that already compromised the system. Restricting
these privileges requires a special design of the operating system, e.g. in Trusted $2laris [
OpenBSD #], and is nearly impossible to implement using plain loadable kernel modules.

The following documentation and manual is divided into two major parts. The first part intro-
duces Papillon’s functionality and its impact on the system’s security in detail. The second part
describes the compilation, installation and configuration of the Papillon module and its compo-
nents. In order to correctly integrate the module into your system, it is essential to study both
parts of this documentation, in order to learn about the provided functionality and its installation.
Papillon is not one of those simple software packages, incorrect installation or misconfiguration
may have an opposite effect on the security of the target system.

2 Papillon’s functionality

For simplicity Papillon’s functionality has been divided into functional units that act either as so
calledfeaturesor securityprotections

— Features
Features add completely new functionality to the kernel. They can be switchedoff
either at compilation time or later at runtime using the provided controlgaat|

— Protections
Protections restrict access to resources if specific conditions occur. A protection has a
behavior that can beonefor doing nothingwarn for warning only ordenyfor warning
and denying access to the specific resource.

2.1 Features

Following is a description of each feature implemented in the Papillon module 0.5.1 . For each
feature the following part lists a short introduction to the addressed security issue and a descrip-
tion how the module fixes the problem. Additionally some implementation details are provided
that are intended for developers that want to modify or extend the module’s code.

As mentioned above features, loaded with the Papillon module into the Solaris kernel, can be
switchedon or off either at compilation time or later at runtime.

2.1.1 Restricted Proc

By default users in the Solaris Operating Environment are able to monitor all active processes
(e.g. by using the progranms ortop). An attacker that has local access to the system might
gather useful information by watching system daemons and other users’ processes. The public
information about all running processes also represents a lack of privacy, if a system hosts several
users.

If the Restricted Proc feature is enabled, users are only able to view own processes which are run-
ning under their user ID (UID). It is impossible for an attacker to monitor other users’ processes
because Papillon directly restricts access taohee file system which is the global source for

all information about running processes.

In order to allow system’s maintenance the super-user is able to view all processes. A special
group can be added whose members are also able to view running processes when the Restricted
Proc feature is enabled.

Papillon extends thaccess() function of the procfs vnode operations provided gyyn-

odeops in order to implement the above feature. The Solaris OE does set the correct permis-
sions on the files inside theroc file system but does not implement atcess() function

in the procfs kernel module. Papillon simply adds this missiogess() function. The Re-
stricted Proc feature has been inspired by the Opendjdlifux kernel patch and is also briefly
discussed in the presentatid@ by Konrad Rieck and Job de Haas.

2.1.2 Pseudo Promiscuous Flag

The Solaris Operating Environment 9 and previous Solaris versions don't provide a promiscuous
mode flag for network adapters that is exported to the user. An administrator is not able to mon-
itor a network device for an attacker sniffing on the device.

Papillon is able to log all attempts to turn a network device into promiscuous mode that are
done using the DLPI interface. Most sniffers, esgoop or libpcap-based sniffers agpdump

use that interface to communicate with network adapters. Requests that are performed using a
different approach are not detected. Below is an example syslog entry created by the Papillon
module indicating that a network device has been put into promiscuous mode

Mar 26 20:16:37 fluffy papillon: WARNING: Promiscuous mode enabled on
interface hme (cmd: tcpdump, pid: 6179, uid: 0, gid: 1).

Papillon intercepts thputmsg() system call and filters messages that match OQirBiniscuous
onrequests. If such a message is detected a warning is send to the syslog. The module is not able
to detect a network interface changing back from promiscuous mode to normal operation mode.

2.1.3 Secure STDIO File Descriptors

By default Unix uses the file descriptors 0, 1 and 2 for special purposes — the standard 10
(STDIO) which includes in- and output of programs to and from the console. Typically these
in- and outputs can be combined and filtered using so called pipes. Below is a list of the three
STDIO file descriptors.

STDIN | File descriptor O is used for the standard input stream.
STDOUT | File descriptor 1 is used for the standard output stream.
STDERR| File descriptor 2 is used for the standard error stream.

If an attacker closes one of these file descriptors and executes an program with the setuid or set-
gid bit set, a file descriptor inside the program might be assigned to one of the closed STDIO file

descriptors. In this case information written to STDIN, STDOUT or STDERR might be written
to a file. By using this technique an attacker is able to destroy or modify system files.

Papillon intercepts the execution of all binaries that have the setuid or setgid bit set. If one of

the STDIO file descriptors is closed before executing such a program, Papillon fake opens the
descriptor during the execution of the program. Therefore no program with the setuid or setgid
bit set is able to accidentally assign a file to the STDIO file descriptors. Below is an example

entry from the syslog that illustrates the fake opening of STDIO file descriptors.

Mar 26 20:25:47 fluffy papillon: WARNING: Fake opening STDERR before
executing /tmp/a (cmd: sh -c /tmp/a, pid: 6472, uid: 101, gid: 101).

Papillon intercepts thexecve() system call and watches vnodes with the setuid or setgid bit
set. If one of the STDIO file descriptors is closed before execution, it is faked opened using
the kernel allocation routinealloc() and unallocated after execution. The problem of closed
STDIO file descriptors is discussed inside the OpenviglLinux kernel patch.

2.1.4 Module Hiding

In most cases it is not necessary to hide a security module. But if an administrator wants to
monitor an existing attacker, it might be necessary to make the attacker believe that the system
is not protected by any security software.

Papillon is able to remove itself from the list of loaded kernel modules and can operate invisible.

It also denies any access to the module’s files and hides them from directory listings, including

the module itself, init-scripts and the control program. The super-user is able to view and access
all of these files. The list of files that are hidden can be extended at compilation time, but not at

runtime, so that an administrator can add other files that are not visible to the system’s users.

Papillon unlinks itself from the list of loaded modules and relinks itself back in if requested. The
module intercepts theop_lookup() andvop_readdir() functions from the root file system

in order to hide files from direct access and directory listings. The file hiding mechanism is
based on Job de Haas’ kernel modug Directory entries are removed by patching the length
of previousdirent64 entry usingd_len .

2.2 Protections

Following is a description of each protection integrated in the Papillon module 0.5.1 . Similar to
the previous section for each protection an addressed security issue is introduced and a detailed
description of the protection given. Additionally some implementation details are provided that
are intended for developers that want to modify or extend the module’s code.

Protections restrict access to resources (e.g. access to file) if specific conditions occur. A pro-
tection has a behavior that can benefor doing nothing,warn for warning only ordenyfor
warning and denying access to the resource.

2.2.1 Symbolic Link Protection

Directories with the sticky bit (octal mode 1000) and write-all permissions have a specific be-
havior: files created in these directories can only be removed by the file owner or the super-user
even though write permissions are granted to all users. A typical example for such a directory is
the/tmp directory. An attacker can use this specific behavior to perform a symbolic link attack
which is based on a symbolic link that redirects output from a temporary file.

Papillon provides a simple symbolic link protection based on the Open®jallifux kernel
patch. If a user wants to follow a symbolic link that is within a directory with the sticky bit set,
access is denied if all of the following conditions are true:

+ The parent directory of the symbolic link has the sticky bit set.
+ The parent directory of the symbolic link has a different owner than the symbolic link.
+ The symbolic link is not owned by the user who is accessing it.

Due to this protection an attacker is not able to increase his privileges if the super-user executes
a binary that uses temporary files which are vulnerable to a symbolic link attack. Following
is a syslog entry illustrating the output of Papillon if opening a symbolic link is denied by the
module. Instead of denying access, the administrator can also set this protection to warning only
mode.

Mar 26 20:25:47 fluffy papillon: WARNING: Denied following symlink
/tmp/a (cmd: cat /tmp/a, pid: 6448, uid: 0, gid: 1).

Papillon watches all calls to thepen() andopen64() system calls. If a symbolic link should
be opened that is placed in a directory with the sticky bit and the above conditions match, the
open fails with permission denieBRERNL

2.2.2 Hard Link Protection

An attacker can perform most symbolic link attacks by using hard links. If the symbolic links
are protected, it is likely that hard links will be used in future exploits. Therefore it is necessary
to bundle a Hard Link Protection with the existing Symbolic Link Protection of Papillon.

There is also another common problem with hard links in the Solaris Operating Environment.
Users are able to create hard links to file which they don’t own. After the creation of such a hard
link the user is not able to delete the created link.

Papillon fixes both problems. If the hard link protection is enabled users can not create hard links
to files which they don’t own. The super-user is able to create hard links to all files. Following is
an example entry from the syslog.

Mar 26 20:25:47 fluffy papillon: WARNING: Denied creating hardlink
from a to b (cmd: In a b, pid: 6443, uid: 101, gid: 101).

Thelink() system call is intercepted to implement above protection. The module returns per-
mission deniedEPERNIIf a user tries to create a hard link to a file which he doesn’t own.

2.2.3 FIFO Protection

The so called FIFO special file is used to queue input using a first-in first-out algorithm, it can be
created using the commantkfifo . If the sticky bit is set and write-all permissions are granted

to a directory, an attacker is able open a FIFO special file inside this directory with ttREAT

flag and clear all the content stored in the FIFO queue.

Papillon implements a FIFO Protection that prevents a FIFO special file from loosing its content
if an attacker tries to open it and the following conditions occur. For simplicity the term FIFO is
used instead of FIFO special file.

+ The parent directory of the FIFO has the sticky bit set.

+ The parent directory of the FIFO has a different owner than FIFO.
+ TheO_CREATag is set in the opening mode.

+ The FIFO is not owned by the user who is accessing it.

+ The user is not the super-user.

By adding this restriction to the opening of FIFOs all attacks based on the removal of FIFO
special file content can be prevented. Below is an example entry from the syslog that illustrates
a denied open request for a FIFO special file.

Mar 26 20:25:47 fluffy papillon. WARNING: Denied opening FIFO
/tmp/a (cmd: .ffifoattack /tmp/a, pid: 6453, uid: 101, gid: 101).

Papillon watches all calls to thepen() andopen64() system calls, if a FIFO is to be opened
with theO_CREATag in a directory with the sticky bit, access is denied if the above conditions
match. In this case Papillon returns permission deris®ERN This protection is also based on
the Openwall p] Linux kernel patch.

2.2.4 Chroot Protection

Thechroot() system call is often used to create another security layer between an application
and the operating systems, but it has been initially designed as a safe (not secure) installation
environment. An attacker that gained super-user privileges in a chroot environment will focus on
removing the chroot restrictions.

There are several methods for breaking out of a chroot environment, common techniques include:
re-calling thechroot() system call to set a new file system root, mounting an outside resource
into the chroot environment, creating block or character devices to outside resources from inside
the chroot environment, loading malicious kernel modules and changing permissions on admin-
istration binaries inside the chroot environment.

Based on the HAPZ] Linux kernel patch Papillon prevents these attacks if a process runs inside
a chroot environment. Several system calls will restrict access when called from a chroot envi-
ronment, e.g. the system call for creating block or character devices. Below is an example entry
from the syslog showing a denied device creation request inside a chroot environment.

Mar 26 20:25:48 fluffy papillon: WARNING: Denied creating device
node /dev_null chrooted (cmd: ./break, pid: 6481, uid: 0, gid: 1).

Papillon intercepts the following system calls and restricts access if the running process has the
chroot vnode setu(u_rdir): chroot() , mount() , mknod() , xmknod() , modctl) and
chmod() . The system calls returBPERMcalled from inside a chroot environment. The initial
version of this protection has been implemented by Heiko Krupp / MIP GmbH.

2.2.5 Setuid Execution Protection

A lot of vulnerabilities that allow a local attacker to change his privileges exploit bugs in setuid
or setgid binaries. Usually the attacker executes a shell or another program from within the setuid
or setgid binary to gain more privileges.

The Setuid Execution Protection monitors the execution of programs on the system and is acti-
vated whenever a program with the setuid or setgid bit executes a child program. The protection
can be used to simply log the execution of these child programs or might also be used to deny
any execution of child programs from within setuid or setgid programs (which might be too
restrictive). An example output from the syslog is listed below.

Mar 26 19:01:31 fluffy papillon. WARNING: Executing /tmp/a by
setuid parent /tmp/b (cmd: /tmp/b, pid: 5039, uid: 101, gid: 10).

Papillon intercepts thexecve() system call to monitor the execution of programs and their
parent processes. Theexec entry is used to retrieve the parent process’ vnode.

3 Installation and Configuration

3.1 Installation

Papillon can be installed from source or binary packages which are available at the Papillon
website B] (http://www.roge.org/papillon In general it is recommended to compile and install

the module from a source package, even though the installation of binary package has become a
practical and common method. Compiling the Papillon module allows better code optimization
and performance due to the target system’s C compiler and corresponding compiler options, and
also supports compilation time configuration which can be used to minimize the module’s size
and set default values to optimally adapt to the target system.

The following section describes the compilation and installation process including details on
compilation time configuration. The section closes with a few instruction that check the func-
tionality of the installed Papillon software module and its components.

3.1.1 Requirements

In order to compile Papillon you need some general development environment. In most cases
all components have already been installed on your system. For each required component in the
listing below an Internet reference is given that allows free download of the component or an
equivalent software.

Make tool: make

You need a command that automates the compilation process. You can use the Solaris make
lusr/ccs/bin/make from the SUNWsprot package or install GNU make that is part of the
Solaris Companion Softwar8][or available at Sunfreewaré]].

C Compiler: cc or gcc

You need a C compiler that supports the generation of 64 bit objects. You can use the Sun C
Compiler [LO] which is part of theSUNWspro package and bundled with the Sun ONE Studio

7 Compiler Collection or the GNU C Compilet][version 3.x or above available at Sunfree-
ware [L1].

If you choose to use the GNU C Compiler, check that you are usingjon 3.x or abovéor the
correctSolaris version. You can use the command --version to retrieve both information.

10

http://www.roqe.org/papillon

Linker: Id

A linker is also necessary to link the compiled object files. You can use the default linker
lusr/ccs/bin/ld from the SUNWtoo package or the GNU linker which isot part of the
Solaris Companion Software but available at Sunfreewktg [

3.1.2 Compilation Time Configuration

Before building the Papillon module from the source files insidestbie directory. You should
configure the features and protections of the module to fit your needs. The following list shows
files that contain configurable parts.

src/Makefile Compilation details and pathnames
src/papillon.h User and group IDs, communication system call
src/papillon.c Default setting for features and protections

Configuration src/Makefile

You need to decide which features and protections to compile into the module and where to store
the components of Papillon. By default all features and protections are included. Edit the file
src/Makefile and change the following variables if necessary.

SYSCONFDIR=/etc
You should not change your system configuration directory unless you store configuration and
boot scripts in another directory, which is very untypical.

SBINDIR=/usr/shin
This is the location where the control tq@pctl will be installed. You may change this to any
path as long as the Papillon module andghgctl program stay on the same type of file system.

KERNELDIR=/usr/kernel/misc
This is the place where the Papillon module will be installed. There is no need to change this
unless you know what you are doing.

FEATURES=]...]

By changing the values of this variable you can exclude features. To exclude a feature simply
remove its definition from theEATURES/ariable. Excluded features are not compiled into the
module, they cannot be enabled at later time without recompiling the module. Following is a list
of all possible definitions and the feature they enable.

11

-DRSTPROC | Restricted Proc
-DSECSTDFD | Secure STDIO File Descriptors
-DPPROMISC | Pseudo Promiscuous Flag
-DMODHIDING | Module Hiding

PROTECTIONS=]..]

By changing the values of this variable you can exclude protections similar tBENEURE
variable. To exclude a protection simply remove its definition fromRROTECTIONSariable.

As with the features, excluded protection can only be included through recompilation. Following
is a list of all possible definitions and the protection they enable.

-DSYMPROT | Symbolic Link Protection
-DFIFOPROT | FIFO Protection
-DHARDPROT | Hardlink Protection

-DCHROOTPROT| Chroot Protection
-DSEXECPROT | Setuid Execution Protection

CC=gcc

Depending on your C compiler you have to change this variable arcRiheGS32andCFLAGS64
variables. There are uncommented settings for both C compilers in the Makefile. If you are using
the GNU C Compiler, you can also addall to theCOPTSvariable in order to get all warning
messages during the compilation process.

You may also modify other variables in the fide/Makefile but in general everything should
work without further modification on a default installation of the Solaris Operating Environment.

Configuration src/papillon.h

If you are an advanced user and have some experience with kernel modules, you can also edit
other files inside therc/ directory. The following changes can be doneiirpapillon.h

— Changing the super-group
If you want to grant read-access to a group of users inside the Restricted Proc, change the
definition SUSER_GIDto an existing Unix group. By default read-access is granted to the
super-user grou@iD 0.

— Changing the super-user
Papillon associates théiD 0 with the super-user. If for some reason you want to change
this and also restriaflD 0, change the definitioBUSER_UIDto a different user ID.

— Changing the communication system call
Papillon uses an unused system call for communicatmapctl uses this system call

12

to export and import the configuration of Papillon from user space to kernel space and
vice versa. The system call number is definedshg_papcomm If you are sure that this
system call is used on your system, e.g. by a third party software, change the value to
another unused system call. You can retrieve a list of all used system calls by examining
the system header filasr/include/sys/systm.h

Configuration src/papillon.c

If you are really experienced with C source code, you can also configure some settings in the file
src/papillon.c

When the Papillon module is loaded it activates a default configuration, which can be changed
at runtime using the togdapctl . To change this default configuration src/papillon.c :
modify the initial values of th@ap_config_t config struct.

pap_config_t config = {
[* rstproc, ppromisc, modhiding, secstdfd */

ON, ON, OFF, ON,
[* fifoprot, symprot, hardprot, chrootprot, sexecprot */
DENY, DENY, DENY, DENY, WARN
%
The structpap_modfiles_t modfiles[] holds the files to be hidden. If you want to add a
file, e.g. /usr/bin/foobar , extend the struct by adding a new line before the the last triple

NULL line. Note that you can only hide files on the same file system type.

pap_modfiles_t modfiles[] = {

[...]
{ "lusr/bin/ffoobar", NULL, NULL },
{NULL, NULL, NULL}

3.1.3 Compilation

The compilation process itself is rather simple and straight-forward and should build the module
in a few seconds.

cd src
make
cd ..

If an error occurs, check if you configured everything correctly as described in the previous sec-
tion. If you configured parts inside the fil@apillon.h and papillon.c watch for typos,
missing brackets and semicolons.

13

If you still cannot build the module, pipe the output of the make process into a file and send it to
the author. See the sectid for more information about how to create a bug report and where
to send feedback.

3.1.4 Testing the build

Even though Papillon has been designed with stability and compatibility in mind, it is wise to
run some functionality and stability tests before installing the module permanently. As the first
step load the module into the running kernel by executing the following command.

modload ./src/papillon

If the execution of the programmodload fails, it will report the messagéNo such file or di-
rectory” even though all files are in place. Don’t get confused, consult the syslog for informa-
tion about the failure, if necessary extend the syslog logging configuration to catch kernel error
events. If no failure is reported, run the control tpabctl to check if the module has been
loaded successfully and the configuration gets exported.

.Isrc/papctl -g
Current configuration of the Papillon v0.5.0 module:

[.]

In order to allow functionality tests a test suite has been added to the Papillon source package
that consists of several C sources and a shell script that helps generating the test environment.
Compile the test suite by executing the commands below. Maybe it is necessary to make some
changes in the corresponding Makefdst/Makefile

cd test
make

Stay in thetest/ directory and execute the shell scripst.sh that will build a test environ-

ment and launch several fake attacks to test the features and protections of the Papillon module.
All of these fake attacks have been designed with security in mind and minimal privileges by
using thenobody users an attacker, nevertheless you should shutdown critical system services
and disable logins during the execution of the test suite.

.ltest.sh
[...]

* General environment

- Checking for a restricted proc... Yes
- Checking for hardlink attack protection... Yes

- Checking for symlink attack protection... Yes
[...]

Done.

14

The output of the test shell script may vary depending on the compilation time configuration you
have made. If you enable all protections and features the output should sfesatahe end of
each fake attack.

In order to complete the tests, make the module visible and unload imbltiefo to determine
the module ID of Papillon and replage in the last line with this number.

cd ..

.Isrc/papctl -s m=off
modinfo

modunload -i ID

If during the process described above the system panics or any other minor or major problems
occur, please spend some time and create a bug report. See the 4&fitormore information
about how to create a bug report and where to send feedback.

Installation

In order to install the Papillon kernel module and its components execute the following sequence
of programs that will install and launch Papillon. If you have skipped the previous section that
introduced the test suite for Papillon, go back and perform the tests in order to guarantee system’s
stability and Papillon’s functionality.

cd src
make install
letcl/init.d/papillon start

These commands will create the following files on your system and enable Papillon automatically
the next time you reboot your system. If you have modified some of the path variables in the file
src/Makefile , pathnames may differ.

/usr/kernel/misc/papillon The 32 bit kernel module
lusr/kernel/misc/sparcv9/papillon The 64 bit kernel module
lusr/shin/papctl The control tool
letc/init.d/papillon The init script to load papillon
letc/rc*.d/*papillon The hard links to the init script

If you don’t like Papillon, you can use the following sequence of programs to uninstall the mod-
ule and the corresponding files. Note that is necessary to unload the module from the kernel
before removing the file when module hiding is activated.

make uninstall

If you don't like Papillon, why not drop a note to the author about the things you dislike? See
sectiond.2for contact information.

15

3.2 Runtime Configuration

If Papillon is loaded, you can use the control tpapctl to toggle features and protections.
Below is a list of the command line options and some examples.

Note that if the Papillon module is loaded and hidden, you are not able to view it on the list of
loaded modules generated tmpdinfo . The control toobapctl is the only way to test if the
module is loaded.

3.2.1 Control Tool Options
This section covers the command line options of the controldaadtl which is available with
the Papillon module and used to communicate from user land with the kernel module.
Usage:
papctl [-fhV] -g | -s variable=value [variable=value ...]

Options:
-g get current configuration of the loaded module.
-s variable=value ... set current configuration of the loaded module.
-f force setting the current configuration.
-h print this help.
-V print version information.

In order to toggle features or protections you have to assign variables the corresponding values.
This is the table of all variables, their values and their description.

Variable Feature Description Possible values
r Restricted Proc on, off
p Pseudo Promiscuous Flag on, off
m Module Hiding on, off

i Secure STDIO File Descriptoron, off

Variable Protection Description Possible values
s Symbolic Link Protection none, warn, deny
h Hardlink Protection none, warn, deny
f Fifo Protection none, warn, deny
Cc Chroot Protection none, warn, deny
X Setuid Execution Protection none, warn, deny

16

3.2.2 Command Line Examples

1. One of the most common situations is the manual unloading of the module. In general this
can be done by using the init script, but for completeness the following example demon-
strates how to turn of the module hiding and then unload the module.

papctl -s m=off
ID='modinfo | grep papillon | cut -d1 -f
modunload -i $ID

2. If you want to disable the complete module but not unload it, you have to disable all features and
protections except module hiding. The module will then simply idle and wait to be activated again.
The following example illustrates the long command line for this purpose. Note that the module is
not visible in this exampleni=on).

papctl -s r=off p=off m=on i=off \
s=none h=none f=none c=none x=none

3. If you want to view the current configuration and then enable all features of Papillon and
leave the protections’ configuration untouched, execute the following sequence of com-
mands.

papctl -g
papctl -s r=on p=on m=on i=on

4. This last example demonstrates some of the fake attacks that are performed in the Papillon

test suite. If you have enabled the corresponding features and protections you should notice
the enhanced security.

touch /tmp/a

su nobody -c "In -s /tmp/a /tmp/b"
letcl/init.d/papillon stop

su nobody -c "In /tmp/a /tmp/c"
su nobody -c "ps -e"

cat /tmp/b

rm /tmpl/c

letc/init./papillon start

su nobody -c "In /tmp/a /tmp/c"
su nobody -c "ps -e"

cat /tmp/b

rm /tmp/a tmp/b /tmp/c

17

4 Closing words

4.1 Known Problems

Control tool blocks

The Papillon kernel module uses strict locking mechanisms to prevent data inconsistency there-
fore the internal configuration is protected by a read-write-lock. This lock allows concurrent
execution of the control toglapctl

If a kernel thread operates inside a system call that is intercepted by the module, the control tool
papctl might return the following error message and doesn’t update the configuration.

papctl -s m=off
Error 16
Configuration blocked.

Usually this is a temporary problem and waiting a few seconds is a possible solution. If the
control tool still blocks, some application’s kernel thread is blocked within an intercepted sys-
tem call. The best solution is to find this application and terminate it, in most cases leaving the
graphical interface solves the problem. Unfortunately finding the application can be an annoy-
ing challenge. You can use the option to force setting the configuration, but you will risk
inconsistency in Papillon’s configuration.

papctl -f -s m=off

Lost Inodes

Some people have reported lost inodes if rebooting the system after the Papillon kernel module
has been loaded. The inodes loose their reference if the module is lvadethto the kernel.

Avoid loading the kernel module twice. Before loading the module manually into kernel, check
if the module has been already loaded at boot time and unload it if necessary. You can find out if
the module has been loaded using the control tool.

papctl -g

Error 12
Papillon is not loaded.

18

4.2 Feedback

Papillon is not yet another security solution by a major company, it is an non-commercial open

source project aiming at security enhancing the Solaris Operating Environment. The Papillon
module, its components and the documentation have been written in the free time of the author,
therefore your feedback essential

If you discover a bug, the systems panics, you can’t compile the source or there is anything else
you like to comment, please feel free to drop a mail to Konrad Ri{ea@®roge.org) . If you

are reporting a problem with Papillon include information about your actual system setup, e.g.
by executing the following commands.

uname -a

isainfo -v -b

psrinfo -v

dmesg | tail -10

If you want to report a compilation problem pipe the output of the make process into a file and
attach it to your mail.

make > /tmp/report 2>&1

If the system panics and dumps core, follow the instructions below to generate a stack back-trace
of the core image and include the trace in the email. Please only send these traces and don’t send
core images via email, because they are very large.

cd /var/crash/‘hostname’
echo \$c | mdb unix.0 vmcore.0

If you have ideas or criticism regarding Papillon and its functionality feel free to drop an email
and if you are an experienced programmer take a look Papillon’s source, maybe you can con-
tribute a new feature or security protection.

If you are using Papillon in a company or large network and feel that it is great software, please
send an email or, if you like, a little donation.

19

4.3 Thanks

The author would like to thank the following people (in no special order):

— Job de Haas For his ideas, support and the fun at HAL2001 conference

— Heiko Krupp For contributing the initial implementation of the chroot protection.
— Fabian Kbnner For hosting Papillon’s website.

— Casper Dik For his helpful advices on the system-dependent GCC headers.
— Philipp Stucke For providing test environment during the early development.

Thanks to all the people who sent in bug reports and feedback (in order of "appearance”):

Sergei Rousakov Adam Morley Eric Thern
Michael Parkin Juri Haberland Rikard Skjelsvik
Adam Mazza Erik Parker

20

Bibliography

[1] GNU Compiler CollectionGNU Project, Free Software Foundation.
(http://www.gnu.org/software/gc

[2] HAP Linux Kernel PatchedHank Leininger.
(http://nttp://www.doutlets.com/downloadables/hap.phtml

[3] Kernel Hacking ProjectJob de Haas, ITSX.
(http://www.itsx.com/projects-kernel.hjml

[4] OpenBSD SPARC and SPARC64 P@penBSD Project.
(http://www.openbsd.ojg

[5] Openwall Linux Kernel PatchesSolar Designer, Openwall Project.
(http://www.openwall.com/lingx

[6] Papillon — Solaris Security Modul&Konrad Rieck, Rogefellaz.
(http://www.roge.org/papillon

[7] Solaris 9 Operating Systensun Microsystems, Inc.
(http://www.sun.com/software/solaris

[8] Solaris Companion Softwar&un Microsystems, Inc.
(http://www.sun.com/software/solaris/freeware

[9] Solaris Kernel Programming Presentatioonrad Rieck, Job de Haas, HAL2001.
(http://www.roge.org/solkern/solkern.hjml

[10] Sun ONE Studio 7 Compiler CollectioBun Microsystems, Inc.
(http://www.sun.com/software/sundev/syncc

[11] Sunfreeware — Freeware for SolariSteven M. Christensen and Associates, Inc.
(http://www.sunfreeware.com

[12] Trusted Solaris Operating Environmer@un Microsystems, Inc.
(http://www.sun.com/software/solaris/trustedsolpris

21

http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://

	Introduction
	Papillon's functionality
	Features
	Restricted Proc
	Pseudo Promiscuous Flag
	Secure STDIO File Descriptors
	Module Hiding

	Protections
	Symbolic Link Protection
	Hard Link Protection
	FIFO Protection
	Chroot Protection
	Setuid Execution Protection

	Installation and Configuration
	Installation
	Requirements
	Compilation Time Configuration
	Compilation
	Testing the build

	Runtime Configuration
	Control Tool Options
	Command Line Examples

	Closing words
	Known Problems
	Feedback
	Thanks

