

PL/I
ForOpenVMSSystems
UserManual
Order Number: FIELD_TEST

September 1993

This manual provides an overview of the PL/I language and explains
PL/I programming on the OpenVMS VAX and OpenVMS AXP operating
systems. It describes the operation of the VAX PL/I and DEC PL/I
compilers and the features of the operating systems that are important
to the PL/I programmer.

Revision/Update Information: This revised manual supersedes the
PL/I User’s Manual for VAX VMS,
Order Number AA–H951D–TE.

Operating System and Version: For VAX PL/I: OpenVMS Version 5.4
and higher versions

For DEC PL/I: OpenVMS AXP Version
1.5 and higher versions

Software Version: VAX PL/I Version 3.5
DEC PL/I Version 4.0

Digital Equipment Corporation
Maynard, Massachusetts

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions
as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1980, 1983, 1985, 1987, 1992, 1993.

All Rights Reserved.

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, DEC, DEC 4000,
DECchip, DECnet, DECtalk, DECUS, Digital, MicroVAX, OpenVMS, OpenVMS AXP RMS, RMS–11,
RX50, TK50, VAX, VAX Ada, VAX BASIC, VAX BLISS, VMScluster, VAX CDD/Plus, VAX COBOL,
VAX DATATRIEVE, VAX DIBOL, VAX DOCUMENT, VAX FORTRAN, VAXinfo, VAX MACRO,
VAX Pascal, VAX SCAN, VAXset, VAXTPU, VMS, the AXP logo, and the DIGITAL logo.

The postpaid Reader’s Comments form at the end of this manual requests your critical evaluation
to assist in preparing future documentation.

This document is available on CD–ROM.

Contents

Preface . xvii

1 Overview

2 Developing PL/I Programs at the DCL Command Level

2.1 DCL Commands for Program Development . 2–1
2.2 Creating a PL/I Program . 2–2
2.2.1 Using VAX EDT . 2–3
2.2.2 Using VAX LSE . 2–3
2.2.3 Using VAXTPU . 2–4
2.2.3.1 The EVE Interface . 2–4
2.2.3.2 The EDT Keypad Emulator Interface . 2–5
2.3 Compiling a PL/I Program . 2–5
2.3.1 PLI Command . 2–5
2.3.2 PLI Command Qualifiers . 2–8
2.3.3 PL/I Preprocessor . 2–18
2.3.3.1 Preprocessor Compilation Control . 2–18
2.3.3.2 Preprocessor Procedures . 2–19
2.3.4 Compiler Error Messages . 2–21
2.3.5 Compiler Listings . 2–22
2.3.5.1 PL/I for OpenVMS VAX Compiler Listing 2–23
2.3.5.2 PL/I for OpenVMS AXP Compiler Listing 2–33
2.4 Linking a PL/I Program . 2–39
2.4.1 LINK Command . 2–40
2.4.2 LINK Command Qualifiers . 2–40
2.4.3 Linker Input Files . 2–41
2.4.4 Linker Output Files . 2–42
2.4.5 Object Module Libraries . 2–42
2.4.6 Linker Error Messages . 2–43
2.5 Running a PL/I Program . 2–44

3 Using the VMS Debugger

3.1 Overview . 3–1
3.2 Features of the Debugger . 3–2
3.3 Getting Started with the Debugger . 3–3
3.3.1 Compiling and Linking a Program to Prepare for Debugging 3–3
3.3.2 Starting and Terminating a Debugging Session 3–4
3.3.3 Issuing Debugger Commands . 3–5
3.3.4 Viewing Your Source Code . 3–5
3.3.4.1 Noscreen Mode . 3–6
3.3.4.2 Screen Mode . 3–7

iii

3.3.5 Controlling and Monitoring Program Execution 3–8
3.3.5.1 Starting and Resuming Program Execution 3–8
3.3.5.2 Determining the Current Value of the Program Counter 3–9
3.3.5.3 Suspending Program Execution . 3–10
3.3.5.4 Tracing Program Execution . 3–11
3.3.5.5 Monitoring Changes in Variables . 3–12
3.3.6 Examining and Manipulating Data . 3–14
3.3.6.1 Displaying the Values of Variables . 3–14
3.3.6.2 Changing the Values of Variables . 3–16
3.3.6.3 Evaluating Expressions . 3–16
3.3.6.4 Notes on Debugger Support for PL/I . 3–17
3.3.7 Controlling Symbol References . 3–18
3.3.7.1 Module Setting . 3–18
3.3.7.2 Resolving Multiply Defined Symbols . 3–18
3.4 Sample Debugging Session . 3–19
3.5 Debugger Command Summary . 3–22
3.5.1 Starting and Terminating a Debugging Session 3–22
3.5.2 Controlling and Monitoring Program Execution 3–22
3.5.3 Examining and Manipulating Data . 3–23
3.5.4 Controlling Type Selection and Symbolization 3–23
3.5.5 Controlling Symbol Lookup . 3–23
3.5.6 Displaying Source Code . 3–24
3.5.7 Using Screen Mode . 3–24
3.5.8 Editing Source Code . 3–25
3.5.9 Defining Symbols . 3–25
3.5.10 Using Keypad Mode . 3–25
3.5.11 Using Command Procedures and Log Files . 3–25
3.5.12 Using Control Structures . 3–26
3.5.13 Additional Commands . 3–26

4 The File System

4.1 File Control . 4–1
4.2 Using the OpenVMS File System for I/O . 4–2
4.2.1 PL/I Files and OpenVMS File Specifications . 4–2
4.2.2 Using the TITLE Option . 4–2
4.2.3 Using Logical Names . 4–3
4.2.4 Using the DEFAULT_FILE_NAME Option . 4–5
4.2.5 Expanding File Specifications . 4–6
4.3 Error Handling . 4–8
4.3.1 Values Returned by PL/I Built-In Functions for Error Handling 4–8
4.3.2 Writing an Error Handler . 4–9
4.3.3 Default Error Handling for the File System . 4–9

5 Stream Input/Output

iv

6 Record Input/Output

6.1 File Organizations . 6–1
6.2 Access Modes . 6–3
6.2.1 Sequential Access . 6–4
6.2.2 Random Access . 6–4
6.2.3 Random and Sequential Access . 6–4
6.2.4 Block Input/Output . 6–4
6.2.5 Access by Record Identification . 6–5
6.3 Record Formats . 6–5
6.3.1 Fixed-Length Records . 6–5
6.3.2 Variable-Length Records . 6–6
6.3.3 Variable-Length Records with a Fixed-Length Control Area 6–6
6.4 Carriage Control . 6–7
6.5 Sequential Files . 6–7
6.5.1 Creating a Sequential File . 6–7
6.5.2 Using Magnetic Tape Files . 6–8
6.5.3 Allocated and Spooled Devices . 6–11
6.6 Relative Files . 6–11
6.6.1 Relative File Organization . 6–12
6.6.2 Creating a Relative File . 6–12
6.6.3 Using Relative Files . 6–15
6.6.4 Error Handling . 6–17
6.7 Indexed Sequential Files . 6–18
6.7.1 Indexed File Organization . 6–18
6.7.2 Defining and Creating an Indexed Sequential File 6–19
6.7.2.1 Using EDIT/FDL . 6–21
6.7.2.2 Using a PL/I Program . 6–23
6.7.3 Defining Keys . 6–25
6.7.4 Using Indexed Sequential Files . 6–30

7 Options of the ENVIRONMENT Attribute

7.1 Specifying and Using ENVIRONMENT Options . 7–1
7.1.1 Arguments for ENVIRONMENT Options . 7–1
7.1.1.1 Expressions . 7–2
7.1.1.2 Variable References . 7–2
7.1.1.3 Boolean Values . 7–2
7.1.2 Interpretation of ENVIRONMENT Options for Existing Files 7–2
7.1.3 Determining ENVIRONMENT Options . 7–3
7.1.4 Device Independence of ENVIRONMENT Options 7–3
7.1.5 Conflicting and Invalid ENVIRONMENT Options 7–3
7.2 Summary of ENVIRONMENT Options . 7–3
7.2.1 APPEND Option . 7–8
7.2.2 BACKUP_DATE Option . 7–9
7.2.3 BATCH Option . 7–9
7.2.4 BLOCK_BOUNDARY_FORMAT Option . 7–9
7.2.5 BLOCK_IO Option . 7–10
7.2.6 BLOCK_SIZE Option . 7–11
7.2.7 BUCKET_SIZE Option . 7–11
7.2.8 CARRIAGE_RETURN_FORMAT Option . 7–12
7.2.9 CONTIGUOUS Option . 7–13
7.2.10 CONTIGUOUS_BEST_TRY Option . 7–14
7.2.11 CREATION_DATE Option . 7–14
7.2.12 CURRENT_POSITION Option . 7–14

v

7.2.13 DEFAULT_FILE_NAME Option . 7–15
7.2.14 DEFERRED_WRITE Option . 7–15
7.2.15 DELETE Option . 7–16
7.2.16 EXPIRATION_DATE Option . 7–16
7.2.17 EXTENSION_SIZE Option . 7–16
7.2.18 FILE_ID Option . 7–17
7.2.19 FILE_ID_TO Option . 7–17
7.2.20 FILE_SIZE Option . 7–18
7.2.21 FIXED_CONTROL_SIZE Option . 7–19
7.2.22 FIXED_CONTROL_SIZE_TO Option . 7–19
7.2.23 FIXED_LENGTH_RECORDS Option . 7–20
7.2.24 GROUP_PROTECTION Option . 7–20
7.2.25 IGNORE_LINE_MARKS Option . 7–21
7.2.26 INDEX_NUMBER Option . 7–21
7.2.27 INDEXED Option . 7–22
7.2.28 INITIAL_FILL Option . 7–22
7.2.29 MAXIMUM_RECORD_NUMBER Option . 7–22
7.2.30 MAXIMUM_RECORD_SIZE Option . 7–23
7.2.31 MULTIBLOCK_COUNT Option . 7–24
7.2.32 MULTIBUFFER_COUNT Option . 7–25
7.2.33 NO_SHARE Option . 7–26
7.2.34 OWNER_GROUP Option . 7–26
7.2.35 OWNER_ID Option . 7–27
7.2.36 OWNER_MEMBER Option . 7–28
7.2.37 OWNER_PROTECTION Option . 7–28
7.2.38 PRINTER_FORMAT Option . 7–29
7.2.39 READ_AHEAD Option . 7–33
7.2.40 READ_CHECK Option . 7–33
7.2.41 RECORD_ID_ACCESS Option . 7–33
7.2.42 RETRIEVAL_POINTERS Option . 7–34
7.2.43 REVISION_DATE Option . 7–34
7.2.44 REWIND_ON_CLOSE Option . 7–35
7.2.45 REWIND_ON_OPEN Option . 7–35
7.2.46 SCALARVARYING Option . 7–35
7.2.47 SHARED_READ Option . 7–36
7.2.48 SHARED_WRITE Option . 7–37
7.2.49 SPOOL Option . 7–37
7.2.50 SUPERSEDE Option . 7–38
7.2.51 SYSTEM_PROTECTION Option . 7–38
7.2.52 TEMPORARY Option . 7–39
7.2.53 TRUNCATE Option . 7–40
7.2.54 USER_OPEN Option . 7–40
7.2.55 WORLD_PROTECTION Option . 7–42
7.2.56 WRITE_BEHIND Option . 7–42
7.2.57 WRITE_CHECK Option . 7–43
7.3 ENVIRONMENT Options for File Protection and File Sharing 7–43
7.3.1 File Protection . 7–43
7.3.1.1 Defining a File’s Ownership . 7–44
7.3.1.2 Defining a File’s Protection . 7–44
7.3.2 File Sharing . 7–45
7.3.2.1 Specifying File Sharing . 7–46
7.3.2.2 File Locking . 7–47
7.3.2.3 Record Locking . 7–48
7.3.2.4 Examples of File Sharing . 7–49

vi

7.4 ENVIRONMENT Options for I/O Optimization . 7–50

8 Input/Output Statement Options

8.1 Option Format . 8–1
8.2 Summary of Input/Output Statement Options . 8–1
8.2.1 CANCEL_CONTROL_O Option . 8–3
8.2.2 FAST_DELETE Option . 8–3
8.2.3 FIXED_CONTROL_FROM Option . 8–4
8.2.4 FIXED_CONTROL_TO Option . 8–5
8.2.5 INDEX_NUMBER Option . 8–5
8.2.6 LOCK_ON_READ Option . 8–6
8.2.7 LOCK_ON_WRITE Option . 8–6
8.2.8 MANUAL_UNLOCKING Option . 8–6
8.2.9 MATCH_NEXT Option . 8–6
8.2.10 MATCH_NEXT_EQUAL Option . 8–7
8.2.11 NO_ECHO Option . 8–7
8.2.12 NO_FILTER Option . 8–8
8.2.13 NOLOCK Option . 8–8
8.2.14 NONEXISTENT_RECORD Option . 8–9
8.2.15 PROMPT Option . 8–9
8.2.16 PURGE_TYPE_AHEAD Option . 8–10
8.2.17 READ_REGARDLESS Option . 8–10
8.2.18 RECORD_ID Option . 8–10
8.2.19 RECORD_ID_TO Option . 8–11
8.2.20 TIMEOUT_PERIOD Option . 8–11
8.2.21 WAIT_FOR_RECORD Option . 8–12

9 File-Handling Built-In Subroutines

9.1 DISPLAY Built-In Subroutine . 9–1
9.2 EXTEND Built-In Subroutine . 9–6
9.3 FLUSH Built-In Subroutine . 9–7
9.4 FREE Built-In Subroutine . 9–7
9.5 NEXT_VOLUME Built-In Subroutine . 9–7
9.6 RELEASE Built-In Subroutine . 9–8
9.7 REWIND Built-In Subroutine . 9–8
9.8 SPACEBLOCK Built-In Subroutine . 9–9

10 Error Handling

10.1 RESIGNAL Built-In Subroutine . 10–1
10.2 ON-Unit Actions . 10–2
10.2.1 Handling the Condition . 10–2
10.2.2 Resignaling the Condition . 10–2
10.2.3 Unwinding the Call Stack . 10–4
10.2.4 Stopping the Program . 10–5
10.3 Relationship of OpenVMS Condition Handlers to PL/I ON-Units 10–5
10.4 Search Path for ON-Units . 10–6
10.4.1 Default Handling for Main Procedures . 10–7
10.4.2 Default Handling for Non-Main Procedures . 10–8
10.4.3 Multiple Conditions . 10–10
10.5 Scope of ON-Units . 10–11
10.6 ON-Unit Examples . 10–12

vii

10.7 Condition-Handling Built-In Functions . 10–13
10.7.1 ONARGSLIST Built-In Function . 10–13
10.7.2 ONCODE Built-In Function . 10–16
10.7.3 ONFILE Built-In Function . 10–17
10.7.4 ONKEY Built-In Function . 10–18

11 Using PL/I in the Common Language Environment

11.1 OpenVMS Calling Standard . 11–2
11.1.1 Register and Stack Usage . 11–2
11.1.2 Return of the Function Value . 11–3
11.1.3 The Argument List . 11–4
11.2 Parameter-Passing Mechanisms . 11–5
11.2.1 Passing Parameters by Reference . 11–5
11.2.1.1 Using the ANY Attribute . 11–7
11.2.1.2 Dummy Arguments for Arguments Passed by Reference 11–7
11.2.1.3 Using Pointer Values for Arguments Passed by Reference 11–8
11.2.1.4 Passing Arrays to a FORTRAN Routine by Reference 11–8
11.2.2 Passing Parameters by Descriptor . 11–9
11.2.2.1 Passing Character Strings . 11–10
11.2.2.2 Passing Varying Character Strings . 11–10
11.2.2.3 Using ANY CHARACTER(*) . 11–11
11.2.2.4 Using ANY DESCRIPTOR . 11–12
11.2.2.5 Passing an Actual Descriptor . 11–12
11.2.3 Passing Parameters by Value . 11–13
11.2.3.1 Dummy Arguments for Arguments Passed by Value 11–15
11.2.4 Special Parameter Attributes . 11–15
11.2.4.1 LIST Attribute . 11–15
11.2.4.2 OPTIONAL Attribute . 11–16
11.2.4.3 TRUNCATE Attribute . 11–16
11.2.5 Summary of Rules for Passing Parameters . 11–17
11.3 OpenVMS Run-Time Library Routines . 11–18
11.4 OpenVMS System Service Routines . 11–19
11.5 OpenVMS Utility Routines . 11–20
11.5.1 OpenVMS SORT/MERGE Routines . 11–20
11.6 Calling Routines . 11–21
11.6.1 Determining the Type of Call . 11–21
11.6.2 Declaring an External Routine and Its Arguments 11–21
11.6.3 Calling the External Routine . 11–21
11.6.4 Calling System Routines . 11–21
11.6.4.1 Declaring System Routines . 11–22
11.6.4.2 System Routine Arguments . 11–22
11.6.4.3 Symbol Definitions . 11–28
11.7 Condition Values . 11–28
11.7.1 Testing for Specific Condition Values . 11–30
11.7.2 Setting and Displaying Fields Within a Status Value 11–32
11.8 Examples of Calling System Routines . 11–33
11.8.1 Logical Name Translation . 11–33
11.8.2 Mailbox Services . 11–34
11.8.2.1 Creating the Mailbox . 11–34
11.8.2.2 Deleting the Mailbox . 11–36
11.8.3 Timer and Time Conversion Routines . 11–37
11.8.3.1 Obtaining a Time Value in System Format 11–37
11.8.3.2 Setting the Timer . 11–38

viii

11.8.4 A Ctrl/c-Handling Routine . 11–39
11.8.4.1 Establishing a Ctrl/c-Handling Routine . 11–40
11.8.4.2 Ctrl/c Routine . 11–42
11.8.4.3 Testing the Ctrl/c Routine . 11–42
11.8.5 Obtaining Job/Process Information . 11–43
11.8.6 Using SORT Routines . 11–45

12 Global Symbols

12.1 Using Global Symbols in PL/I Procedures . 12–1
12.1.1 The GLOBALDEF Attribute . 12–2
12.1.2 The GLOBALREF Attribute . 12–2
12.1.3 Defining Global Symbols in PL/I . 12–3
12.1.4 Using MACRO Global Symbols with Multiple Definitions 12–3
12.2 The READONLY and VALUE Attributes . 12–3
12.2.1 The READONLY Attribute . 12–3
12.2.2 The VALUE Attribute . 12–4
12.3 Obtaining Definitions for System Global Symbols 12–4

13 Mailboxes

13.1 Using Mailboxes . 13–1
13.1.1 System Information . 13–1
13.1.2 Applications . 13–2
13.1.3 Effects of the OPEN Statement . 13–3
13.1.4 Effects of the CLOSE Statement . 13–3
13.2 Mailbox Input/Output . 13–3
13.2.1 Synchronous Input/Output . 13–4
13.2.2 Asynchronous Input/Output . 13–5

14 Accessing Files on a Network

14.1 Remote File Access . 14–1
14.2 Task-to-Task Communication . 14–2

15 Storage Allocation

15.1 Program Sections . 15–1
15.1.1 Attributes of Program Sections . 15–1
15.1.2 Program Sections Created by PL/I . 15–2
15.1.3 Sharing Program Sections with FORTRAN Procedures 15–3
15.2 Addressability . 15–4

A PL/I Messages

A.1 Compiler Messages . A–1
A.2 Run-Time Messages . A–50
A.3 %DICTIONARY Error Messages . A–68

ix

B Correspondence of PL/I and RMS

C Optional Programming Productivity Tools

C.1 Using LSE with PL/I . C–1
C.1.1 Entering Source Code Using Tokens and Placeholders C–1
C.1.2 Compiling Source Code . C–3
C.1.3 Examples . C–4
C.1.4 DO Statement . C–5
C.1.5 IF Statement . C–6
C.1.6 Assignment Statement . C–7
C.1.7 DECLARE Statement . C–8
C.1.8 SUBSTR Expression . C–9
C.1.9 %PROCEDURE Statement . C–10
C.2 Using the Source Code Analyzer . C–11
C.2.1 Multimodular Development . C–12
C.2.2 Setting Up an SCA Environment . C–13
C.2.2.1 Creating an SCA Library . C–13
C.2.2.2 Generating the Data Analysis Files . C–13
C.2.2.3 Loading Data Analysis Files into a Local Library C–14
C.2.2.4 Selecting an SCA Library . C–14
C.2.3 Using SCA for Cross-Referencing . C–14

D Rules for Conversion of Data

D.1 Assignments to Arithmetic Variables . D–1
D.1.1 Arithmetic to Arithmetic Conversions . D–1
D.1.2 Pictured to Arithmetic Conversions . D–2
D.1.3 Bit-String to Arithmetic Conversions . D–2
D.1.4 Character String to Arithmetic Conversions . D–2
D.2 Assignments to Bit-String Variables . D–2
D.2.1 Arithmetic and Pictured to Bit-String Conversions D–3
D.2.2 Character-String to Bit-String Conversions . D–3
D.3 Assignments to Character-String Variables . D–3
D.3.1 Arithmetic to Character-String Conversions . D–3
D.3.1.1 Conversion from Fixed-Point Binary or Decimal D–4
D.3.1.2 Conversion from Floating-Point Binary or Decimal D–5
D.3.2 Pictured to Character-String Conversions . D–5
D.3.3 Bit-String to Character-String Conversions . D–5
D.4 Assignments to Pictured Variables . D–6
D.5 Conversions Between Offsets and Pointers . D–6

E The VAX Common Data Dictionary

E.1 PL/I and CDDL Data Types . E–2
E.2 Creating CDD Structure Declarations . E–4
E.3 Using the CDD . E–5

x

Index

Examples

2–1 Default Compiler Listing for VAX Systems . 2–24
2–2 Compiler Storage Map for VAX Systems . 2–26
2–3 Compiler Performance Statistics for VAX Systems 2–29
2–4 Machine Code Listing for VAX Systems . 2–30
2–5 Preprocessor Compiler Listing for VAX Systems 2–32
2–6 Default Compiler Listing for AXP Systems . 2–34
2–7 Compiler Storage Map for AXP Systems . 2–36
2–8 Compiler Performance Statistics for AXP Systems 2–38
2–9 Machine Code Listing for AXP Systems . 2–39
6–1 Creating a Relative File . 6–15
7–1 Explicit Carriage Control . 7–32
10–1 Resignaling the Condition . 10–3
10–2 Unwinding the Call Stack . 10–4
10–3 Execution of an ON-Unit . 10–6
10–4 Search for an ON-Unit . 10–9
10–5 Multiple Conditions . 10–10
10–6 Displaying Arguments Passed to a Condition Handler 10–15
11–1 Writing a Character-String Descriptor . 11–13
11–2 Translating a Logical Name . 11–34
11–3 Creating a Mailbox . 11–36
11–4 Deleting a Mailbox . 11–36
11–5 Obtaining a System Time Value . 11–38
11–6 Setting a Timer . 11–38
11–7 Establishing a Ctrl/c Routine . 11–41
11–8 Ctrl/c Handler . 11–42
11–9 Testing the Ctrl/c Routine . 11–42
11–10 TIMRE and TIMRB . 11–44
11–11 Sorting Files . 11–46
11–12 A Record Sort . 11–48
13–1 Synchronous Mailbox Input/Output . 13–5
13–2 Asynchronous Mailbox Input/Output . 13–7
14–1 A PL/I Network Source Task . 14–3
14–2 A PL/I Target Task . 14–5

Figures

2–1 DCL Commands for Developing Programs . 2–1
3–1 Debugger Keypad Key Functions . 3–6
6–1 A Relative File . 6–12
6–2 An Indexed Sequential File . 6–19
6–3 Creating a Data File . 6–20
10–1 Resignaling a Condition . 10–3
10–2 Unwinding the Call Stack . 10–5

xi

10–3 Execution of an ON-Unit . 10–7
10–4 Search for an ON-Unit . 10–9
10–5 Effect of Multiple Conditions . 10–10
10–6 The Argument List Passed to an ON-Unit . 10–14
11–1 The Call Stack . 11–3
11–2 Structure of an OpenVMS VAX Argument List 11–4
11–3 Example of an OpenVMS VAX Argument List 11–5
11–4 Argument Passing by Reference . 11–6
11–5 Passing a Pointer Value as an Argument . 11–8
11–6 Argument Passing by Descriptor . 11–10
11–7 Argument Passing by Immediate Value . 11–14
11–8 Condition Value Fields . 11–29
C–1 Use of SCA for Multimodular Development . C–12

Tables

2–1 Natural Data Alignment . 2–9
2–2 Compiler Optimization Options for VAX Systems 2–14
2–3 Compiler Optimization Options for AXP Systems 2–14
2–4 Compiler Listing Options . 2–15
2–5 Character Notations That Can Appear in a Listing 2–17
4–1 Default Process Logical Names . 4–5
6–1 Attributes and Access Modes for Record Files 6–2
6–2 Key Data Types . 6–29
7–1 Summary of ENVIRONMENT Options . 7–4
7–2 Printer File Format Carriage Control . 7–30
7–3 Effects of File-Sharing Options . 7–46
7–4 ENVIRONMENT Options for Optimized Disk File Creation 7–50
7–5 ENVIRONMENT Options for Run-Time Optimization of

Input/Output . 7–51
8–1 Summary of Input/Output Statement Options 8–1
9–1 Summary of File-Handling Built-In Subroutines 9–1
9–2 ENVIRONMENT Option Values Returned by DISPLAY 9–2
9–3 File Attribute Information Returned by DISPLAY 9–4
9–4 Device Information Returned by DISPLAY . 9–5
10–1 ONCODE Values for PL/I ON Conditions . 10–16
11–1 VAX Register Usage . 11–2
11–2 AXP Register Usage . 11–2
11–3 Run-Time Library Facilities . 11–19
11–4 System Services . 11–19
11–5 VMS Utilities . 11–20
11–6 PL/I Implementation of OpenVMS Usages . 11–22
12–1 Comparison of Global Symbols and External Variables 12–1
15–1 Program Section Attributes . 15–1
15–2 Program Sections for PL/I Variables . 15–2
A–1 CRX Error Messages . A–68
B–1 RMS Fields for PL/I ENVIRONMENT Options B–1

xii

Preface

Manual Objectives
This manual describes how to use the PL/I compiler on the VMS and OpenVMS
operating systems and contains detailed explanations of the extensions made to
the standard PL/I language for PL/I for OpenVMS VAX and PL/I for OpenVMS
AXP. To aid in program development, it includes information on some commands
and utilities in the operating systems. It also includes information to assist in
writing PL/I programs that use features of the file system and the operating
systems.

Intended Audience
This manual is designed for programmers who have a working knowledge of PL/I
and some familiarity with the VMS and OpenVMS operating systems and the
DIGITAL Command Language (DCL).

Associated Documents
The PL/I for OpenVMS Systems Reference Manual contains a complete definition
of the PL/I language, with detailed reference information on all standard PL/I
language elements.

The PL/I for OpenVMS Systems Installation Guide gives instructions on how to
install the PL/I compilers.

The OpenVMS documentation set gives complete information on the OpenVMS
operating system.

On-Line Examples
All the full program examples in this manual, and some additional examples,
are on line in SYS$COMMON:[SYSHLP.EXAMPLES.PLI]. (This device-directory
specification may have been given the logical name PLI$EXAMPLES during
installation of the PL/I compiler.)

xvii

Conventions

Return A symbol with a key name indicates that you press a key
on the terminal, for example, Return or ESC .

Ctrl/x The symbol Ctrl/x indicates that you press the key ‘‘x’’
while holding down the key labeled Ctrl, for example,
Ctrl/C.

italics Italics indicate the introduction of a term.

$ bold Return In interactive dialogues between the system and the user,
user input is printed in boldface characters.

.

.

.

Vertical ellipses indicate that not all of the text of a
program or program output is illustrated. Only relevant
material is shown in the example.

option, . . . Horizontal ellipses indicate that additional optional
parameters, options, or values are allowed. When a
comma precedes an ellipsis, it indicates that successive
items must be separated by commas.

quotation mark
apostrophe

The term quotation mark is used only to refer to
the double quotation mark character ("). The term
apostrophe is used to refer to the single quotation mark
character (’).

[OPTIONS (option, . . .)] Except in OpenVMS file specifications, brackets indicate
that a syntactic element is optional and you need not
specify it.h

LIST
EDIT

i Brackets surrounding two or more stacked items indicate
conflicting options, one of which can optionally be chosen.

n
EXTERNAL
INTERNAL

o Braces surrounding two or more stacked items indicate
conflicting options, one of which must be chosen.

FILE (file-reference) An uppercase word or phrase indicates a keyword that
must be entered as shown; a lowercase word or phrase
indicates an item for which a variable value must be
supplied. This convention applies to format (syntax) lines,
not to code examples.

Terminological Assumptions
Information in this manual applies to the use of PL/I the OpenVMS VAX
Operating System and the OpenVMS AXP Operating System unless otherwise
indicated.

The terms PL/I for OpenVMS VAX and VAX PL/I are synonymous. Similarly,
the terms PL/I for OpenVMS AXP and DEC PL/I are synonymous.

xviii

1
Overview

PL/I for OpenVMS VAX and PL/I for OpenVMS AXP are implementations
of a comprehensive and powerful programming language useful for systems
programming, scientific computation, and commercial data handling and
data organization. PL/I is a block-structured language that lends itself to the
creation of efficient and maintainable structured programs. It has extensive
string-handling capabilities. The PL/I for OpenVMS VAX and PL/I for OpenVMS
AXP compilers generate optimized, position-independent machine code.

PL/I for OpenVMS VAX and PL/I for OpenVMS AXP are Digital’s
implementations, with extensions, of the American National Standard
PL/I General-Purpose Subset, which is ANSI X3.74-1981. The General-Purpose
Subset is a subset of full PL/I, which is ANSI X3.53-1976.

The General-Purpose Subset was designed for scientific, commercial, and systems
programming on small and medium-size computer systems. The subset includes
features of full PL/I that are easy to learn and use. It excludes features of full
PL/I that are difficult to learn, prone to error, or not often used, and that greatly
increase the complexity of run-time support required by the compiler.

Over and above its conformity to the General-Purpose Subset, PL/I for OpenVMS
VAX and PL/I for OpenVMS AXP offer many enhancements, which are extensions
to that subset. Some of these extensions are features of full PL/I, and some
are features for compatibility with other PL/I implementations in the industry.
Other extensions integrate PL/I for OpenVMS VAX and PL/I for OpenVMS AXP
into the VAX common language environment and into a complete programming
environment. In general, the PL/I for OpenVMS VAX and and PL/I for OpenVMS
AXP extensions are intended for programs that will execute exclusively under the
control of the VMS operating system.

The PL/I for OpenVMS VAX and PL/I for OpenVMS AXP extensions provide
for support of the OpenVMS Calling Standard, allowing PL/I procedures to call
procedures written in other languages. The extensions provide access to the file
capabilities of VAX Record Management Services, the OpenVMS file system; they
provide improved condition handling; and they provide access to system services,
which are operating-system procedures, and to run-time library procedures.
Another notable extension is the preprocessor, which allows for conditional
compilation of programs and for compile-time source transformation; it enables
users to write procedures that will be executed at compile time.

PL/I for OpenVMS VAX and PL/I for OpenVMS AXP can be used with a
number of tools in a complete programming environment. For example, the
VMS Debugger is a powerful tool for debugging programs. Use of the debugger
is described in Chapter 3 of this manual. Other tools are optional products,
including VAX DATATRIEVE, the VAX Common Data Dictionary, and the VAX
Software Engineering Tools (VAXset).

Overview 1–1

VAXset includes several integrated components, including the VAX Code
Management System (CMS), the VAX DEC/Test Manager, the VAX Source
Code Analyzer (SCA), the VAX Program Design Facility (PDF), and the VAX
Language-Sensitive Editor (LSE). Notably, the VAX Language-Sensitive Editor
can be a valuable aid when you write and compile a program, as it includes
built-in intelligence about the source format and syntax of PL/I programs.
Contact your system manager to find out which of these and other optional
products are installed on your system.

Digital’s implementations of the PL/I language are fully described in the
PL/I for OpenVMS Systems Reference Manual. That manual contains further
information on the General-Purpose Subset, the OpenVMS VAX and OpenVMS
AXP extensions, and the differences between Digital’s implementations and other
implementations of the PL/I language.

1–2 Overview

2
Developing PL/I Programs at the DCL

Command Level

This chapter describes how to create, compile, link, and run an OpenVMS VAX or
PL/I for OpenVMS AXP program using DCL commands.

2.1 DCL Commands for Program Development
This section describes the DCL commands that are used to create, compile, link,
and run a PL/I program on an OpenVMS system. These commands are shown in
Figure 2–1. The following sections describe these commands in more detail.

Figure 2–1 DCL Commands for Developing Programs

Action Input/Output Files

AVERAGE.PLI

NU−2480A−RA

Compile the
source program

Link the
object module

Run the
executable

image

Create a
source program

AVERAGE.OBJ

 (AVERAGE LIS)

Libraries

AVERAGE.EXE

(AVERAGE MAP)

1

2

3

4

Developing PL/I Programs at the DCL Command Level 2–1

The following example shows the commands to perform the actions shown in
Figure 2–1:

$ EDIT/EDT AVERAGE.PLI 1
$ PLI AVERAGE 2
$ LINK AVERAGE 3
$ RUN AVERAGE 4

To create a PL/I source program at the DCL level, you must invoke a text editor.
In the previous example, the VAX EDT editor is invoked to create the source
program AVERAGE.PLI. You can, however, use another editor, such as the VAX
Language-Sensitive Editor (LSE) in VAXset. PLI is used as the file type to
indicate that you are creating a PL/I source program. PLI is the conventional file
type for all PL/I source programs.

When you compile your program with the PLI command, you do not have to
specify the file type; the PL/I for OpenVMS VAX compiler searches for PLI by
default.

If your source program compiles successfully, the PL/I for OpenVMS VAX compiler
creates an object file with the file type OBJ.

However, if the PL/I for OpenVMS VAX compiler detects errors in your source
program, the system displays each error on your screen and then displays the
DCL prompt. You can then reinvoke your text editor to correct the errors.

You can include command qualifiers with the PLI command. Command qualifiers
cause the PL/I for OpenVMS VAX compiler to perform additional actions. In
the following example, the /LIST qualifier causes the PL/I for OpenVMS VAX
compiler to produce a listing file.

$ PLI/LIST AVERAGE

For a complete list and explanation of all of the command qualifiers available
with the PLI command, see Section 2.3.2.

Once your program has compiled successfully, you invoke the VMS Linker to
create an executable image file. The VMS Linker uses the object file produced by
PL/I for OpenVMS VAX as input to produce an executable image file as output.

You can specify command qualifiers with the DCL command LINK. For a
complete list and explanation of all the command qualifiers available with the
LINK command, see Section 2.4.2.

Once the executable image file has been created, you can run your program with
the DCL command RUN.

2.2 Creating a PL/I Program
To create and modify a PL/I program, you must invoke a text editor. The
OpenVMS system supports the following text editors: VAX EDT (EDT) and the
Language-Sensitive Editor (LSE). The following sections describe briefly how to
use both EDT and LSE. LSE is a layered extension of the older VAXTPU, which
is also described briefly.

2–2 Developing PL/I Programs at the DCL Command Level

2.2.1 Using VAX EDT
EDT is an interactive general-purpose text editor that offers three editing modes:
keypad, nokeypad, and line. With keypad mode, you issue commands by using
the numeric keypad that appears to the right of your main keyboard. With
nokeypad mode, you issue commands on a command line, which EDT processes
when you press the Return key. Line mode focuses on the line as the unit of text.
With line mode, you issue commands at the line mode asterisk prompt (*).

Keypad mode and nokeypad mode continually display the contents of the file on
your screen. When you begin your editing session, editing in line mode is the
default. Unlike keypad and nokeypad mode, line mode displays only one line of
text on your screen.

The following command line invokes the EDT editor and creates the file PROG_
1.PLI.

$ EDIT/EDT PROG_1.PLI

To change from line mode to keypad mode, type the CHANGE command at the
asterisk prompt. To return to line mode from keypad mode, press Ctrl/z. To
change from line mode to nokeypad mode, type the SET NOKEYPAD command
and then type the CHANGE command.

When you invoke EDT to create a file, a journal file is created automatically. You
can use this journal file to recover your edits if the system fails during an editing
session. To recover your edits, type the EDIT/RECOVER command.

EDT provides an online HELP facility that you can access during an editing
session. In line mode, you can type the HELP command. EDT displays general
information on EDT as well as detailed information on both line mode editing and
nokeypad mode editing. In keypad mode, you can press the Help key or the PF2
key. EDT displays a keypad diagram on your screen and a list of keypad editing
keys. For help on a specific keypad function, press the key you want help on.

For more detailed information on how to use EDT, see the OpenVMS EDT
Reference Manual.

2.2.2 Using VAX LSE
The VAX Language-Sensitive Editor (LSE), a component of VAX Software
Engineering Tools (VAXset), is a multilanguage, programmable editor designed
specifically to help develop and maintain source code. LSE is layered on top of
the VAX Text Processing Utility (VAXTPU), and is available with the EVE and
EDT interfaces. LSE provides language-specific templates for each language it
supports, including PL/I; these templates help the programmer build syntactically
correct programs efficiently.

LSE provides the following features:

• Language-specific source code templates for fast entry of source code

• Compilation, review, and correction of compile-time errors within a single edit
session

• Interactive edit capabilities while debugging

• Ability to customize editing environments

• Integrated access to Source Code Analyzer (SCA) cross-referencing features

• Ability to access SCA or diagnostics file information

Developing PL/I Programs at the DCL Command Level 2–3

• Support for a package facility to define your own subroutine call templates,
with tokens and placeholders available for use by multiple LSE environments

• Source code templates for calls to VMS system services

• Support for user-written diagnostic files, enhancing support for nonsupported
and user-modified compilers

• Besides PL/I, LSE supports the following VAX products:

VAX Ada
VAX BASIC
VAX BLISS-32
VAX C
VAX CDD/Plus
VAX COBOL
VAX DATATRIEVE
VAX DIBOL
VAX DOCUMENT
VAX FORTRAN
VAX MACRO
VAX Pascal
VAXELN Pascal
VAX SCAN

2.2.3 Using VAXTPU
The VAX Text Processing Utility (VAXTPU) is a high-performance, programmable
utility. VAXTPU provides two editing interfaces: the Extensible VAX Editor
(EVE) and the VAXTPU EDT Keypad Emulator. You can also create your own
interfaces.

Like EDT, VAXTPU provides you with an online HELP facility that you can
access during your editing session. When you invoke VAXTPU to create a file, a
journal file is created automatically. You can use this journal file to recover your
edits if the system fails during an editing session. To recover your edits, include
the /RECOVER qualifier on the command line that invokes the editor.

Unlike EDT, VAXTPU provides multiple windows. This feature allows you to
view two files on your screen at the same time.

The following sections describe how to use the EVE interface and the EDT
Keypad Emulator interface.

2.2.3.1 The EVE Interface
EVE is an interactive text editor that allows you to execute common editing
functions using the EVE keypad or to execute more advanced functions by typing
commands on the EVE command line. The following command line invokes the
EVE editor and creates the file PROG_1.PLI:

$ EDIT/TPU PROG_1.PLI

You can define a global symbol for the EDIT/TPU command by placing a symbol
definition in your LOGIN.COM file. For example:

$ EVE == "EDIT/TPU"

Once this command line is executed, you can type EVE at the DCL prompt
followed by the name of the file you want to modify or create.

2–4 Developing PL/I Programs at the DCL Command Level

For more information on using the advanced features of EVE, see the Guide to
VMS Text Processing.

2.2.3.2 The EDT Keypad Emulator Interface
The EDT Keypad Emulator interface provides all of the keypad functions
associated with EDT and uses the same keys to perform each function. It also
provides a subset of the line editing commands of the EDT editor; however, it
does not provide nokeypad editing. The following command line invokes the EDT
Keypad Emulator:

$ EDIT/TPU/SECTION=EDTSECINI.TPU$SECTION

You can define a global symbol for this command by placing a symbol definition in
your LOGIN.COM file. For example:

$ EDTEM == "EDIT/TPU/SECTION=EDTSECINI"

When this command line is executed, you can type EDTEM at the DCL prompt
followed by the name of the file you want to create or modify. For example:

$ EDTEM PROG_1.PLI

For more detailed information on how to use the EDT Keypad Emulator, see the
Guide to VMS Text Processing.

2.3 Compiling a PL/I Program
The PL/I for OpenVMS VAX compiler performs the following functions:

• Detects errors in your source program

• Displays each error on your screen or writes the errors to a file

• Generates machine language instructions from the source statements

• Groups these language instructions into an object module for the VMS Linker

The following sections discuss the PLI command and its qualifiers.

2.3.1 PLI Command
To invoke the PL/I for OpenVMS VAX compiler, use the PLI command. The PLI
command has the following format:

PLI[/qualifier...][file-spec [/qualifier...]],...

/qualifier
Specifies an action to be performed by the compiler on all files or specific files
listed. When a qualifier appears directly after the PLI command, it affects all
files listed. However, when a qualifier appears after a file specification, it affects
only the file that immediately precedes it. When files are concatenated, however,
these rules do not apply.

fi le-spec
Specifies an input source file that contains the program or module to be compiled.
You are not required to specify a file type; the PL/I for OpenVMS VAX compiler
adopts the default file type, PLI.

You can include more than one file specification on the same command line
by separating the file specifications with either a comma (,) or a plus sign
(+). If you separate the file specifications with commas, you can control which
source files are affected by each qualifier. In the following example, the PL/I for

Developing PL/I Programs at the DCL Command Level 2–5

OpenVMS VAX compiler creates an object file for each source file but creates only
a listing file for the source files PROG_1 and PROG_3.

$ PLI /LIST PROG_1, PROG_2/NOLIST, PROG_3

If you separate the file specifications with plus signs, the PL/I for OpenVMS VAX
compiler concatenates each of the specified source files and creates one object
file and one listing file. In the following example, only one object file is created,
PROG_1.OBJ, and only one listing file is created, PROG_1.LIS. Both of these files
are named after the first source file in the list, but contain all three modules.

$ PLI PROG_1 + PROG_2/LIST + PROG_3

Note that any qualifiers specified for a single file within a list of files separated
with plus signs affect all the files in the list.

You can specify a library file in a PLI command. To do this, you must precede the
specification with a plus sign and use the /LIBRARY qualifier. For example:

$ PLI APPLIC+DATAB/LIBRARY

This PLI command compiles the source program APPLIC.PLI and uses the library
DATAB.TLB to locate any INCLUDE files that are referenced in the following
format:

%INCLUDE ’text-module-name’;

The module name must not be enclosed in apostrophes.

When you specify more than one library, PL/I searches the libraries in the order
specified each time it processes a %INCLUDE statement that specifies a text
module name. For example:

$ PLI APPLIC+DATAB/LIBRARY -
$_+NAMES/LIBRARY+GLOBALSYMS/LIBRARY

When PL/I processes a %INCLUDE statement in the source file APPLIC.PLI, it
searches for modules referenced in the libraries DATAB.TLB, NAMES.TLB, and
GLOBALSYMS.TLB, in that order.

On a command that requests multiple compilations, a library must be specified
for each compilation in which it is needed. For example:

$ PLI METRIC+DATAB/LIBRARY,APPLIC+DATAB/LIBRARY

In this example, PL/I compiles METRIC.PLI and APPLIC.PLI separately and
uses the library DATAB.TLB for each compilation.

The order of appearance of the library file specification within a concatenated list
of files is irrelevant. For example, the following are equivalent:

$ PLI ALPHA+MYLIB/LIBRARY+BETA
$ PLI ALPHA+BETA+MYLIB/LIBRARY

You can define one of your private INCLUDE file libraries as a default library
for the PL/I compiler to search. The compiler searches the default library after it
searches libraries specified on the PLI command.

To define a default library, define an equivalence for the logical name
PLI$LIBRARY, as in the following example:

$ DEFINE PLI$LIBRARY DATAB

2–6 Developing PL/I Programs at the DCL Command Level

While this assignment is in effect, the compiler automatically searches the
library DATAB.TLB for any INCLUDE modules that it cannot locate in libraries
explicitly specified on the PLI command.

You can define the logical name PLI$LIBRARY in the process, group, or
system logical name table. If the name is defined in more than one table,
the PL/I compiler uses the equivalence for the first match it finds in the normal
order of search (that is, the process, then group, then system table). Thus, if
PLI$LIBRARY is defined in both the process and group logical name tables, the
process logical name table assignment overrides the group logical name table
assignment.

When it cannot find INCLUDE modules in libraries specified on the PLI command
or in the default library defined by PLI$LIBRARY, PL/I searches the library
identified by the following name:

SYS$LIBRARY:PLI$STARLET.TLB

SYS$LIBRARY is normally defined by the system manager to identify the device
and directory containing system libraries. PLI$STARLET.TLB is a library of
INCLUDE modules supplied by OpenVMS VAX and PL/I for OpenVMS AXP. It
contains declarations for the entry points for OpenVMS system services, local
symbol definitions required for use with them, and variables to test their return
status values. For more information on libraries, see the VMS Librarian Utility
Manual.

Developing PL/I Programs at the DCL Command Level 2–7

2.3.2 PLI Command Qualifiers
The qualifiers available with the PLI command are listed and explained in this
section.

Command Qualifier Default
1 2 3

/[NO]ALIGN[=option]1 /NOALIGN
/[NO]ANALYSIS_DATA[=file-spec]3 /NOANALYSIS_DATA
/[NO]CHECK /NOCHECK
/CHECK[=option] /CHECK=ALL
/[NO]CROSS_REFERENCE /NOCROSS_REFERENCE
/DATA[=option] /DATA=NATIVE
/[NO]DEBUG1 /NODEBUG
/DEBUG[=option]1 /DEBUG=ALL
/[NO]DESIGN[=option,...]3 /NODESIGN
/[NO]DIAGNOSTICS /NODIAGNOSTICS
/[NO]ERROR_LIMIT /NOERROR_LIMIT
/ERROR_LIMIT[=n] /ERROR_LIMIT=100
/FIXED_BINARY[=p] /FIXED_BINARY=31
/FLOAT[=option]2 /FLOAT=D_FLOAT
/[NO]G_FLOAT /NOG_FLOAT
/GRANULARITY[=option]2 /GRANULARITY=QUADWORD
/[NO]LIST[=file-spec] /NOLIST (interactive default)

/LIST (batch default)
/MACHINE_CODE[=option] /MACHINE_CODE=INTERSPERSED (OpenVMS VAX)

AFTER (OpenVMS AXP)
/[NO]OBJECT[=file-spec]1 /OBJECT
/[NO]OPTIMIZE[=option,...] /OPTIMIZE=ALL (OpenVMS VAX)

(LEVEL=4,UNROLL=0) (OpenVMS AXP)
/SHOW[=option,...] /SHOW=NOINCLUDE

NODICTIONARY
NOMAP
SOURCE
NOTRACE
TERMINAL
HEADER (OpenVMS AXP only)
NOEXPANSION
NOSTATISTICS

/VARIANT[= ["]alphanum_string["] /VARIANT=""
/[NO]WARNINGS /WARNINGS[=(option,...)]

Certain pairs of command qualifiers, as follows, are mutually exclusive and
should not be used together in the same command line.

• /FLOAT and /G_FLOAT

• /DATA and /ALIGN

• /DATA and /FIXED_BINARY

1 Options differ for OpenVMS VAX and OpenVMS AXP.
2 Command qualifier is valid for OpenVMS AXP only.
3 Command qualifier is valid for OpenVMS VAX only.

2–8 Developing PL/I Programs at the DCL Command Level

Command qualifiers request processing options of the compiler. You can specify
qualifiers to the PLI command after the command name or an individual file
specification. When a qualifier is specified after the PLI command name, its
action applies to each file in the list, unless overridden by a qualifier specified for
an individual file. When a qualifier is specified after a file specification in a list
of files separated by commas, its action is applied only to the compilation of that
file.

/ALIGN
/NOALIGN (default)
Controls alignment of data within structures and aligned bit strings. If you
specify /ALIGN on a VAX, data is aligned on the natural byte boundary of the
specified data type, as shown in Table 2–1. If you specify /NOALIGN, the default,
data is aligned on the next available byte boundary.

Two options are provided for PL/I for OpenVMS AXP only: packed and natural.

If you specify /ALIGN=natural, data is aligned on the natural byte boundary of
the specified data type, as shown in Table 2–1. If you specify /ALIGN=packed,
data is aligned on the next available byte boundary.

Table 2–1 Natural Data Alignment

Data Type Data Size Alignment

fixed bin (p) p <= 7 byte

fixed bin (p) 7 < p <= 15 word

fixed bin (p) p > 15 longword

fixed dec (p,q) word

float bin (p) p <= 24 longword

float bin (p) 24 < p <= 53 quadword

float bin (p) p > 53 octaword

float dec (p) p <= 7 longword

float dec (p) 7 < p <= 15 quadword

float dec (p) p > 15 octaword

char N/A byte

char aligned N/A byte

char varying N/A word

bit N/A bit

bit aligned N/A longword

pointer c longword

area longword

label c quadword

entry c quadword

file c longword

(continued on next page)

Developing PL/I Programs at the DCL Command Level 2–9

Table 2–1 (Cont.) Natural Data Alignment

Data Type Data Size Alignment

structure varies max of members

picture N/A byte

offset c longword

/ANALYSIS_DATA[=fi le-spec]
/NOANALYSIS_DATA (default)
Controls whether the compiler generates a file of source code analysis
information. The default file name is the file name of the primary source file;
the default file type is ANA.

/CHECK
/NOCHECK (default)
Controls the checking of array subscripts and of positional references in
arguments to the SUBSTR built-in function. If you specify /CHECK, the compiler
checks for the following conditions:

• Whether each reference to the SUBSTR built-in function or pseudovariable
lies within the string’s current length

• Whether each reference to an array specifies subscripts that are within the
bounds declared for the array

• Whether all string lengths are nonnegative and whether all array extents are
positive

The default is /NOCHECK. /CHECK is useful primarily during initial program
debugging; it results in the generation of additional code and, consequently, a
slower program.

Specifying /CHECK is equivalent to specifying /CHECK=ALL or the attribute
/CHECK=BOUNDS. Likewise, /NOCHECK is the equivalent of specifying
/CHECK=NONE or the attribute /CHECK=NOBOUNDS.

/CROSS_REFERENCE
/NOCROSS_REFERENCE (default)
Specifies whether the compiler is to generate, in the listing file, alphabetical
cross-references for variable names. If you specify /CROSS_REFERENCE, the
compiler lists all variable names, including all members of structures as separate
entities in an alphabetical cross-reference listing. The cross-reference entry for
each structure member also lists the name of the structure that contains the
member. The listing contains the line numbers of the lines on which all variables
are referenced.

Note that you must specify /SHOW=MAP with /CROSS_REFERENCE. The full
specification is as follows:

$ PLI/LIST/SHOW=MAP/CROSS_REFERENCE file.PLI

By default, the compiler does not include cross-references in the listing.

2–10 Developing PL/I Programs at the DCL Command Level

/DATA[=option] (OpenVMS AXP only)
Specifies the integer size and whether alignment is enabled. You can select the
following options:

NATIVE Sets the integer size to 32 and enables /ALIGNMENT; equivalent to
ALPHA_AXP32 or MIPS on an OpenVMS AXP system.

VAX Sets the integer size to 32 and enables /NOALIGNMENT

ALPHA_AXP32 Sets the integer size to 32 and enables /ALIGNMENT

/DEBUG[=option]
/NODEBUG (default)
Requests that information be included in the object module for use with the
OpenVMS Debugger.

It is strongly recommended that you use the /NOOPTIMIZE qualifier when you
use the /DEBUG qualifier. Optimization can cause confusing results during a
debugging session.

When /DEBUG is specified, the compiler generates small routines that are used
only by the debugger. When the program is linked with /NODEBUG, these
routines will still be included in the program but will not be used. For this
reason it is recommended that final versions of programs be recompiled with
/NODEBUG (which is the default).

You can select the following options:

ALL Includes symbol table records and traceback records. /DEBUG is
equivalent to /DEBUG=ALL.

SYMBOLS Includes the symbol definitions for all identifiers in the compilation.
This is the default for symbols if the /DEBUG qualifier is used.

NOSYMBOLS Does not include symbol definitions. Without symbol definitions,
traceback is done according to virtual address.

TRACEBACK Includes only traceback records. This is the default if the /DEBUG
qualifier is not present on the command.

NOTRACEBACK Does not include traceback records.

INLINE
(OpenVMS VAX
only)

Generates debug information to cause a STEP command to STEP
/INTO an inlined fuction call.

NOINLINE
(OpenVMS VAX
only)

Generates debug information to cause a STEP command to STEP
/OVER an inlined fuction call.

NONE Does not include any debugging information. Use this option to
exclude all debug information from thoroughly debugged program
modules. /NODEBUG is equivalent to /DEBUG=NONE.

/DESIGN[=(option, . . .)](OpenVMS VAX only)
/NODESIGN (default)
Controls whether the compiler processes the source file as a detailed design,
in conjunction with the VAXset or DECset Program Design Facility (PDF). The
/DESIGN qualifier requires that the /ANALYSIS_DATA also be specified.

If you specify the /DESIGN qualifier, the compiler modifies its parsing and
semantics according to the optional keywords you supply. The design information
is added to the SCA Analysis Data File (.ANA).

Developing PL/I Programs at the DCL Command Level 2–11

You can select from the following options:

[NO]COMMENTS COMMENTS, the default, directs the compiler to search inside
comment fields for program design information. Specifying the
option NOCOMMENTS omits this searching.

[NO]PLACEHOLDERS PLACEHOLDERS, the default, directs the compiler to treat
Language-Sensitive Editor (LSE) placeholders in proper
contexts within the program as valid syntax. Specifying
NOPLACEHOLDERS causes the compiler to treat all LSE
placeholders as invalid syntax.

The options are mutually independent. Specifying /DESIGN without naming
an option is equivalent to /DESIGN=(COMMENTS,PLACEHOLDERS). You
can exclude both options by specifying /NODESIGN or by omitting the
qualifier. To select one option and exclude the other, you must specify
/DESIGN=NOCOMMENTS or /DESIGN=NOPLACEHOLDERS.

/DIAGNOSTICS[=fi le-spec]
/NODIAGNOSTICS (default)
Controls whether the compiler produces a diagnostics file, which contains
compiler messages and diagnostic information.

The file type DIA is the default file type for a diagnostics file. The diagnostics file
is used by Digital layered products such as the Language-Sensitive Editor.

/ERROR_LIMIT[=n]
/NOERROR_LIMIT
Permits you to specify the number of errors acceptable during program
compilation. For example, if you specify /ERROR_LIMIT=5, then compilation
terminates with the sixth error. By default, compilation terminates when the
number of errors exceeds 100, but /NOERROR_LIMIT raises the default number
to 1000. The maximum number of error messages permitted by the system is
32,767.

All error messages (excluding warning messages) are counted toward the error
limit. A fatal error message immediately terminates the compilation.

/FIXED_BINARY[=p]
This qualifier sets the default precision of fixed binary variables. You can specify
either 15 or 31 as the value of p. If you omit this qualifier or specify it without
a precision value, the default precision of fixed binary variables is 31. Normally,
/FIXED_BINARY=15 is specified when compiling for a system whose memory
words are 16 bits long.

/FLOAT[=option] (OpenVMS AXP only)
For AXP computers, specifies the default representation of floating-point
variables. Precision depends upon whether the variable is binary or decimal.
See PL/I for OpenVMS Systems Reference Manual for more information.

The qualifiers /FLOAT and /G_FLOAT are mutually exclusive and should not be
used in the same command line.

/G_FLOAT
/NOG_FLOAT (default)
For OpenVMS VAX and OpenVMS AXP systems equipped with the appropriate
hardware option, specifies the default representation of floating-point variables,
depending upon whether the variable is binary or decimal.

2–12 Developing PL/I Programs at the DCL Command Level

By default, the compiler uses D (double-precision) floating point. Specify /G_
FLOAT to override this default and to request the compiler to use the G-floating-
point type for these variables.

The default and maximum precisions for all floating-point formats are
summarized in the PL/I for OpenVMS Systems Reference Manual.

/GRANULARITY[=option] (OpenVMS AXP only)
Specifies the smallest unit of data that can be cached in a register. The following
options are available:

• byte

• longword

• quadword

For example, quadword granularity would mean that the AXP system would
cache quadword values in registers. The default granularity is quadword.

/LIST[=fi le-spec] (batch default)
/NOLIST (interactive default)
Controls whether a listing file is produced.

When /LIST is in effect, the compiler gives a listing file the same file name as the
source file and a file type of LIS.

If you specify a file specification with /LIST, the compiler uses that file
specification to override the default values applied.

/MACHINE_CODE[=option]
/NOMACHINE_CODE (default)
Controls whether the listing file produced by the compiler includes a listing of the
machine code generated during the compilation.

You can select the following options:

AFTER Puts machine code after the source code (the default if
/MACHINE_CODE is specified on an AXP machine)

BEFORE Puts machine code before the source code

INTERSPERSED
(OpenVMS VAX only)

Intersperses source and machine code (the default if /MACHINE_
CODE is specified on a VAX machine)

No machine code is generated if /NOOBJECT is specified; thus, if /NOOBJECT
/MACHINE_CODE are specified together, no machine code listing is generated.

/OBJECT[=fi le-spec] (default)
/NOOBJECT
Controls whether the compiler produces object modules. By default, the compiler
produces an object module with the same file name as the source file and a file
type of OBJ.

Specify /NOOBJECT when you want to compile a program only to obtain a listing
or when you want the compiler only to check the source program for errors and
display diagnostic messages. The compiler can compile code more rapidly if it
does not need to create an object module.

Developing PL/I Programs at the DCL Command Level 2–13

/OPTIMIZE[=(option,...)]
/NOOPTIMIZE (OpenVMS VAX only)
Controls the optimization performed by the compiler. On an OpenVMS VAX
system, you can select one or more of the options listed in Table 2–2. By default,
all possible optimizations are performed.

If you specify /OPTIMIZE with any options, the other options are not affected.
For example, /OPTIMIZE=NOPEEPHOLE disables the PEEPHOLE option, but
leaves all other options enabled.

Table 2–2 Compiler Optimization Options for VAX Systems

Option Description

ALL Performs all optimizations. This is equivalent
to /OPTIMIZE and is the default.

[NO]COMMON_SUBEXPRESSIONS Eliminates or does not eliminate common
subexpressions.

[NO]DISJOINT Places or does not place local variables in
multiple registers.

[NO]INLINE Provides or does not provide automatic inline
expansion of procedures to provide optimized
code.

[NO]INVARIANT Removes or does not remove invariant
expressions from loops.

[NO]LOCALS_IN_REGISTERS Places or does not place local variables in
registers.

[NO]PEEPHOLE Performs or does not perform pattern
replacement on the generated machine code.

[NO]RESULT_INCORPORATION Collapses or does not collapse binary
arithmetic operations into 3-operand
instructions.

Note that if you specify NOCOMMON_SUBEXPRESSION with the /OPTIMIZE
qualifier to the PLI command, NORESULT_INCORPORATION is implied.

/OPTIMIZE[=(option=n,...)]
/NOOPTIMIZE (OpenVMS AXP)
Controls the optimization performed by the compiler. On an OpenVMS AXP
system, you can specify a value for the options listed in Table 2–3.

Table 2–3 Compiler Optimization Options for AXP Systems

Option Description

LEVEL=n Specifies the level of optimization based
on a value from 0 to 5. Zero (0) specifies
no optimization and is equivalent to
/NOOPTIMIZE. The default value for LEVEL
is 4.

(continued on next page)

2–14 Developing PL/I Programs at the DCL Command Level

Table 2–3 (Cont.) Compiler Optimization Options for AXP Systems

Option Description

UNROLL=n Specifies the number of times to unroll loops,
based on a value from 0 to 16. Causes GEM
to use its default /UNROLL value, which is
4. If the /UNROLL option is not specified, a
default unroll amount of 4 is used. LEVEL
must be specified as 3 or greater in order to
enable loop unrolling.

INLINE=NONE
MANUAL
AUTOMATIC
ALL

Provides or does not provide automatic inline
expansion of procedures to provide optimized
code.

Each subsequent level of optimization includes the optimizations from all lower
levels. The levels of optimization are as follows:

• 0 — No optimizations performed. The only code transformations performed
are block reordering, and intermediate language and final peepholes.

• 1 — Optimizations performed that do not seriously affect readability or
debugging. This includes common subexpression and register history, and
user-directed inlining.

• 2 — Optimizations performed that do not increase code size. This includes
code motion, strength reduction, induction variables, test replacement, split
lifetime analysis, and intermediate language and final scheduling.

• 3 — All optimizations performed except automatic inlining, including while-
repeat transformations, loop unrolling, and final code replication.

• 4 — Full optimization, including automatic inlining. This is the default
optimization level.

• 5 — Full optimization, as in level 4, but with more agressive inlining. This
allows you to indicate that speed is more important than size.

/SHOW[=(option,...)]
Sets or cancels specific compilation listing options. You can select or cancel any of
the options listed in Table 2–4.

Table 2–4 Compiler Listing Options

Option Function

ALL Includes the contents of all files and modules in the program
listing.

NONE Does not include the contents of any of the files and modules in
the program listing.

[NO]INCLUDE Includes or does not include the contents of INCLUDE files and
modules in the program listing.

[NO]DICTIONARY Includes or does not include the contents of Common Data
Dictionary record modules in the program listing.

(continued on next page)

Developing PL/I Programs at the DCL Command Level 2–15

Table 2–4 (Cont.) Compiler Listing Options

Option Function

[NO]MAP Includes or does not include the storage map of the compiled
program in the program listing. The storage map includes a
list of all external entry points, the size and attributes of all
variables that are referenced in the program, and a program
section summary and procedure definition map.

[NO]SOURCE Includes or does not include the source program statements in
the program listing.

[NO]TERMINAL Displays or does not display compilation messages to
SYS$OUTPUT at compile time.

[NO]STATISTICS Includes or does not include performance statistics in the
program listing.

[NO]HEADER Includes or does not include file headers in the program listing.

[NO]TRACE Includes or does not include each step of preprocessor
replacement and rescanning.

[NO]EXPANSION Includes or does not include the final replacement values for
preprocessor variables.

The following options are enabled by default:

NOINCLUDE
NOMAP
NODICTIONARY
SOURCE
TERMINAL
HEADER
NOSTATISTICS
NOTRACE
NOEXPANSION

The /SHOW qualifier must be used in combination with the /LIST qualifier to be
effective. The /LIST qualifier specifies that a source listing is to be made, and the
/SHOW qualifier gives you control over which portions of the source listing you
want to see.

You can also control the content of the source listing by using preprocessor
statements to suppress preprocessor portions in the program text. For example, if
you previously specified /SHOW=INCLUDE, you can suspend included files from
the listing with the %NOLIST_INCLUDE statement in your program.

By default, the /SHOW qualifier yields a listing with two items (P and �) noted

PL/I for OpenVMS VAX
in the column to the right of the line numbers.

If you specify /LIST/SHOW=ALL, the compiler includes the full complement of
character notations

PL/I for OpenVMS AXP
at the beginning of the line, followed by the line numbers.

When you specify any option with the /SHOW qualifier, the settings for other
options are not changed.

2–16 Developing PL/I Programs at the DCL Command Level

Table 2–5 summarizes the character notations that can appear in the listing.

Table 2–5 Character Notations That Can Appear in a Listing

Character Qualifiers Meaning

| (vertical
bar)

/LIST Indicates a line that contains a comment
only.

* (asterisk) /LIST Indicates program text that was not
used at compile time.

" (quotation
mark)

/LIST/SHOW=EXPANSION Indicates a continuation of a previous
line wrapped at the right margin, to
show the complete final replacement
value of a preprocessor expansion.

+ (plus sign) /LIST/SHOW=TRACE Indicates flow of preprocessor procedure
evaluation and out-of-sequence source
processing resulting from %GOTO.

D /LIST/SHOW=DICTIONARY Indicates CDD text included by a
%DICTIONARY statement.

E /LIST/SHOW=EXPANSION Indicates the final replacement value of
a preprocessor variable or procedure.

I /LIST/SHOW=INCLUDE Indicates text included by a %INCLUDE
statement.

P /LIST Indicates lines contained within a
preprocessor procedure.

T /LIST/SHOW=TRACE Indicates each step of preprocessor
replacement and rescanning.

/VARIANT
/VARIANT="" (default)
Permits specification of compilation variants. The value specified for /VARIANT
is available at compile time with the VARIANT preprocessor built-in function.

If /VARIANT is not specified, or if /VARIANT is specified without a value,
/VARIANT ="" is assumed.

/WARNINGS (default)
/WARNINGS=(option list)
/NOWARNINGS
Controls whether the compiler prints diagnostic warning and informational
messages.

By default, the compiler prints all diagnostic messages during compilation.
If you specify /NOWARNINGS to override this default, the compiler does not
print informational and warning messages, including user-generated warning
messages. It does, however, continue to display all error and fatal diagnostic
messages.

The /WARNINGS qualifier has two options:

• NOINFORMATIONALS causes the compiler to suppress informational
messages.

• NOWARNINGS causes the compiler to suppress warning messages.

Note that the informational message SUMMARY cannot be suppressed with
/NOWARNINGS or /WARNINGS=NOINFORMATIONALS.

Developing PL/I Programs at the DCL Command Level 2–17

File Qualifier
/LIBRARY
Indicates that the associated input file is a library containing text modules that
may be included in the compilation of one or more of the specified input files.

The specification of a library file must be preceded by a plus sign. If the file
specification does not contain a file type, PL/I assumes the default file type of
TLB.

2.3.3 PL/I Preprocessor
The PL/I preprocessor permits you to alter a source program at compile time.
Preprocessor statements can be mixed with nonpreprocessor statements in the
source program, but preprocessor statements are executed only at compile time.
The resulting source program is then used for further compilation.

The preprocessor performs two types of preprocessing:

• It interprets preprocessor statements and evaluates preprocessor expressions.

• It replaces the values of preprocessor variables and procedures.

Preprocessor statements allow you to include text from alternative sources
(INCLUDE libraries and the VAX Common Data Dictionary), control the
course of compilation (%DO, %GOTO, %PROCEDURE, and %IF), issue user-
generated diagnostic messages, and selectively control listings and formats. The
preprocessor statements are described in full in the PL/I for OpenVMS Systems
Reference Manual.

2.3.3.1 Preprocessor Compilation Control
At compile time, preprocessor variables, procedures, and variable expressions
are evaluated in the order in which they appear in the source text, and the
new values are substituted in the source program in the same order. Thus, the
course of compilation becomes conditional, and the resulting executable program
may exhibit a variety of unique features. Note that preprocessor variables and
procedures must be declared and activated before replacement occurs.

For example:

%DECLARE HOUR FIXED;
%HOUR = SUBSTR(TIME(),1,2);

%IF HOUR > 7 & HOUR < 18
%THEN

%FATAL ’Please compile this outside of prime time’;
%DECLARE T CHARACTER;
%ACTIVATE T NORESCAN;
%T = ’’’Compiled on ’||DATE()||’’’’;
DECLARE INIT_MESSAGE CHARACTER(40) VARYING INITIAL(T);

2–18 Developing PL/I Programs at the DCL Command Level

%IF VARIANT() = ’’ | VARIANT() = ’NORMAL’
%THEN

%INFORM ’NORMAL’;
%ELSE

%IF VARIANT() = ’SPECIAL’;
%THEN

%INFORM ’SPECIAL’;
%ELSE

%IF VARIANT() = ’NONE’;
%THEN %;
%ELSE

%DO;
%T = ’’’unknown variant’’’;
%WARN T;
INIT_MESSAGE = INIT_MESSAGE||’ with ’||T;
%END;

%END;

PUT LIST (INIT_MESSAGE);

This example illustrates several aspects of the preprocessor. First, this program
must be compiled outside of prime time. Second, depending upon the value of
VARIANT, the program is compiled with a different variant.

Notice the number of single quote marks around the string constant assigned
to T. Single quotes are sufficient if the value of T is used only in a preprocessor
user-generated diagnostic message. That is, the value of T is concatenated
with nonpreprocessor text and assigned to INIT_MESSAGE because during
preprocessing, single quotes are stripped from string constants. To ensure that
the run-time program also has quotes around the string, additional quotes are
needed.

2.3.3.2 Preprocessor Procedures
The %PROCEDURE statement defines the beginning of a preprocessor procedure
block and specifies the parameters, if any, of the procedure. A preprocessor
procedure executes only at compile time. Invocation is similar to a function
reference and occurs in two ways:

• Preprocessor statements can invoke preprocessor procedures. In addition,
preprocessor statements from within preprocessor procedures can invoke
other preprocessor procedures.

• Statements from the source program can invoke preprocessor procedures.

A preprocessor procedure is invoked by the appearance of its entry name and
list of arguments. If the reference occurs in a nonpreprocessor statement, the
entry name must be active before the preprocessor procedure is invoked. If the
entry name is activated with the RESCAN option, the value of the preprocessor
procedure is rescanned for further possible preprocessor variable replacement and
procedure invocation. Preprocessor procedures can be invoked recursively.

Since the preprocessor procedure is always invoked as a function, the
%PROCEDURE statement must also specify (via the RETURNS option) the
data type attributes of the value that is returned to the point of invocation.

The return value replaces the preprocessor procedure reference in the invoking
source code. Preprocessor procedures cannot return values via their parameter
list. The return value must be capable of being converted to one of the data types
CHARACTER, FIXED, or BIT. The maximum precision of the value returned by
the %RETURNS statement is BIT(31), CHARACTER(32500), and FIXED(10).

Developing PL/I Programs at the DCL Command Level 2–19

Preprocessor procedures can have one of two distinctly different types of
argument lists: positional or keyword. Positional argument lists (ending with
a right parenthesis) use parameters sequentially, as in a parenthesized list.
Positional argument lists can be used in any preprocessor procedure. Keyword
argument lists (ending with a semicolon) use parameters in any order, as long as
each keyword matches the name of a parameter. Therefore, the order in which
you list them does not affect the correct matching of parameters and arguments.
Keyword argument lists can only be used when the preprocessor procedure
contains the STATEMENT option and is invoked from a nonpreprocessor
statement.

A keyword argument list ends with a semicolon rather than the right parenthesis.
In this way, the STATEMENT option permits you to use a preprocessor procedure
as if it were a statement. Consequently, preprocessor procedures using the
STATEMENT option permit you to extend the PL/I language by simulating
features that may not otherwise be available.

Preprocessor Statements
All preprocessor statements are preceded by a percent sign (%) and are
terminated by a semicolon (;). All text that appears within these delimiters
is considered part of the preprocessor statement and is executed at compile time.
For example:

%DECLARE HOUR FIXED; /* declaration of a preprocessor
single variable */

%DECLARE (A,B) CHARACTER; /* a factored preprocessor
declaration */

%HOUR = SUBSTR(TIME(),1,2); /* preprocessor assignment
statement using two built-in
functions */

Notice that a percent sign (%) is required only at the beginning of the statement.
Preprocessor built-in functions are contained within preprocessor statements
and consequently do not require a percent sign. However, when you include
Common Data Dictionary record definitions, you may need to include the usual
PL/I punctuation.

Labels are permitted on preprocessor statements and, like other PL/I labels, are
used as the targets of program control statements. A preprocessor label must be
an unsubscripted label constant and must be preceded by a percent sign. As with
other preprocessor statements, the percent sign alerts the compiler that until
the line is terminated with a semicolon, all subsequent text is preprocessor text.
Therefore, no other percent signs are required on that line.

Labels for preprocessor procedures are necessary for the procedure to be invoked.
On a preprocessor procedure, the leading percent sign is only required on the
label; statements within the procedure do not require leading percent signs.

The format for a preprocessor label is as follows:

%label: preprocessor-statement;

For a table summarizing the preprocessor statements and for individual
descriptions of the statements, see the PL/I for OpenVMS Systems Reference
Manual.

2–20 Developing PL/I Programs at the DCL Command Level

Preprocessor Built-In Functions
A number of PL/I preprocessor built-in functions are available for use at compile
time. With few exceptions, they have the same effect as run-time PL/I built-in
functions with the same name. For a table summarizing the preprocessor built-
in functions and for individual descriptions of the functions, see the PL/I for
OpenVMS Systems Reference Manual.

2.3.4 Compiler Error Messages
One of the functions of the PL/I compiler is to identify syntax errors and
violations of language rules in the source program. If the compiler locates
any errors, it writes messages to your default output device; thus, if you enter the
PLI command interactively, the messages are displayed on your terminal. If the
PLI command is executed in a batch job, the messages appear in the batch job log
file.

Each compilation with diagnostic messages terminates with a diagnostic
summary that indicates the number of error, warning, and informational
messages generated by the compiler. The diagnostic summary has the following
format:

%PLIG-I-SUMMARY
Completed with n error(s), n warning(s),
n informational messages.

If the compiler creates a listing file, it also writes the messages to the listing.
Messages typically follow the statement that caused the error.

When it appears on the screen, a message from the compiler has the following
format:

%PLIG-s-ident, message-text At line number n device:[directory]file.ext;x.

PL/I for OpenVMS AXP
The PL/I for OpenVMS AXP compiler generally displays the line containing the
error also, with an ...^ underneath pointing to the error.

%PLIG
Is the facility, or program, name of the PL/I for OpenVMS VAX compiler. (G
denotes the General-Purpose Subset.) This portion indicates that the message is
being issued by PL/I.

s
Specifies the severity of the error. Following are the letters that represent the
possible severities:

F Fatal. The compiler stops executing, does not continue the compilation, and does
not produce an object module. You must correct the error before you can compile the
program.

E Error. The compiler continues, but does not produce an object module. You must
correct the error before you can successfully compile the program.

Developing PL/I Programs at the DCL Command Level 2–21

W Warning. The compiler produces an object module. It attempts to correct the error
in the statement, but you should verify that the compiler’s action is acceptable.
Otherwise, your program may produce unexpected results.

I Information. This message usually appears with other messages to inform you
of specific actions taken by the compiler. Informational messages also indicate
nonstandard constructs and items that are syntactically correct, but that may
contain programming errors. No action is necessary on your part.

ident
Is the message identification. This gives a descriptive abbreviation of the message
text.

message-text
Is the compiler’s message. In many cases, the message text consists of more than
one line of output. The messages generally provide enough information for you to
determine the cause of an error and correct it.

At line number n
Specifies the source file line number of the statement that caused the error. This
is the line number assigned to a statement by the compiler. (It is not necessarily
the same as the line number, if any, assigned by a text editing program.) Line
numbers appear in a listing file.

device:[directory]fi le.ext;x.
Indicates the file specification.

The compiler produces messages with warning severity if it encounters the
following:

• Syntax errors (such as a missing END statement) that the compiler attempts
to fix

• Language elements (such as undeclared variables) that are not part of the
PL/I General-Purpose Subset but do belong to full PL/I

• Legal PL/I General-Purpose Subset usage (such as assignment of a bit-string
value to a fixed-point binary variable) that nonetheless may represent a
programming error or produce unexpected results

Most diagnostic messages are self-explanatory; Appendix A lists the diagnostic
messages and gives additional explanations.

To examine any diagnostic messages that occurred during the compilation, print
the listing file and search for each occurrence of %PLIG.

Section 2.3.5 describes how to read a listing file.

2.3.5 Compiler Listings
Sample annotated listings from the OpenVMS VAX compiler appear in
Section 2.3.5.1. Sample annotated listings from the PL/I for OpenVMS AXP
appear in Section 2.3.5.2.

2–22 Developing PL/I Programs at the DCL Command Level

2.3.5.1 PL/I for OpenVMS VAX Compiler Listing
The OpenVMS VAX compiler listing displays the following information:

• Effects of the options in the /SHOW qualifier

• The machine code generated by PL/I

• Effects of the /CROSS_REFERENCE qualifier

• Effects of the /OBJECT qualifier

Example 2–1 illustrates the default listing (specified with the /LIST qualifier) and
describes the information provided in the listing.

Example 2–2 illustrates a storage map of the program listed in Example 2–1. The
PL/I for OpenVMS VAX compiler generates a storage map if you specify /LIST
/SHOW=MAP on the PLI command; it also generates a cross-reference listing if
you specify /CROSS_REFERENCE.

Example 2–3 illustrates the statistical summary generated if the /LIST
/SHOW=STATISTICS qualifier is specified.

Example 2–4 illustrates a portion of a listing of a program compiled with the
/LIST/OBJ/MACHINE_CODE qualifiers.

Example 2–5 illustrates the effects of /SHOW=(TRACE,EXPANSION), which
shows preprocessor activity in the program listing.

Developing PL/I Programs at the DCL Command Level 2–23

Example 2–1 Default Compiler Listing for VAX Systems

FLOWERS 1 2 16-NOV-1991 11:37:00 PL/I for OpenVMS VAX V3.5-001 3 Page 1
01 4 16-NOV-1991 11:35:49 LI$:[MALCOLM]FLOWERS.PLI;18 (1)

5
1 | /* This procedure obtains data about state flowers from STATEDATA.DAT */
2
3
4 FLOWERS: PROCEDURE OPTIONS(MAIN);
5 1 6
6 1 DECLARE EOF BIT(1) STATIC INIT(’0’B);
7 1
8 1 %INCLUDE ’STATE.TXT’;
23 1
24 1 ON KEY(STATE_FILE) BEGIN;
25 2 PUT SKIP LIST(’Error on key’,ONKEY(),’error no.’,ONCODE());
26 2 STOP;
27 2 END;
28 1
29 1 MODE: BEGIN;
30 2 DECLARE RUN BIT(1);
31 2 GET LIST(RUN) OPTIONS(PROMPT(’List by state? ’));
32 2 IF RUN THEN GOTO LIST_BY_STATE;
33 2 GET LIST(RUN) OPTIONS(PROMPT(’List by flower? ’));
34 2 IF RUN THEN GOTO LIST_BY_FLOWER;
35 2 ELSE BEGIN;
36 3 DECLARE INPUT_FLOWER CHARACTER(30) VARYING;
37 3 GET LIST(INPUT_FLOWER) OPTIONS(PROMPT(’Flower? ’));
38 3 OPEN FILE(STATE_FILE) KEYED ENV(
39 3 INDEX_NUMBER(1),
40 3 SHARED_READ);
41 3 READ FILE(STATE_FILE) SET (STATE_PTR) KEY(INPUT_FLOWER);
42 3 PUT SKIP EDIT(’The flower of’,STATE.NAME,’is the’,FLOWER)
43 3 (3(a));
44 3 END;
45 2 END;
46 1 RETURN;
47 1 LIST_BY_STATE:
48 1 ON ENDFILE(STATE_FILE) EOF = ’1’B;
49 1 OPEN FILE(STATE_FILE) SEQUENTIAL ENV(
50 1 INDEX_NUMBER(0),
51 1 SHARED_READ);
52 1 READ FILE(STATE_FILE) SET (STATE_PTR);
53 1 DO WHILE (^EOF);
54 2 PUT SKIP LIST(STATE.NAME,’flower is ’,FLOWER);
55 2 READ FILE(STATE_FILE) SET (STATE_PTR);
56 2 END;
57 1 CLOSE FILE(STATE_FILE);
58 1 RETURN;
59 1 LIST_BY_FLOWER:
60 1 ON ENDFILE(STATE_FILE) EOF = ’1’B;
61 1 OPEN FILE(STATE_FILE) SEQUENTIAL ENV(
62 1 INDEX_NUMBER(1),
63 1 SHARED_READ);
64 1 READ FILE(STATE_FILE) SET (STATE_PTR);
65 1 DO WHILE (^EOF);
66 2 PUT SKIP LIST(STATE.NAME,’flower is ’,FLOWER);
67 2 READ FILE(STATE_FILE) SET (STATE_PTR);
68 2 END;
69 1 CLOSE FILE(STATE_FILE);
70 1 RETURN;
71 1 END;

COMMAND LINE
------- ----

(continued on next page)

2–24 Developing PL/I Programs at the DCL Command Level

Example 2–1 (Cont.) Default Compiler Listing for VAX Systems

PLI/LIST FLOWERS 7

The following notes are keyed to Example 2–1:

1 The name of the first level-1 procedure in the source program and its
identification. If the main procedure did not specify OPTIONS(IDENT),
the compiler uses 01 for the identification.

2 The date and time of compilation, and the version of the compiler that was
used to compile the program.

3 The page number of the listing file, and the page number of the source file.

4 The date and time that the file containing the source program was created,
and its full file specification (to a maximum of 44 characters).

5 Compiler-generated line numbers. The compiler assigns a number to each
line in the source program, including comment lines and lines read from
INCLUDE files.

Note that these line numbers do not necessarily correspond to the line
numbers, if any, assigned to the file by an editor that is line-number oriented.

A vertical bar (|) character indicates a line that contains only a comment.

6 The nesting level, or depth, of each statement. The outermost procedure is
always level 1. Additional level numbers are assigned to statements within
internal procedures, begin blocks, and DO-groups.

7 The PLI command line as it was entered for compilation.

If the program is compiled with the qualifier /LIST/SHOW=INCLUDE, the
%INCLUDE statements are followed by the contents of the INCLUDE files, with
line numbers. Notice that INCLUDE files are indicated by an ’I’ in the column
to the right of the line numbers.

6 1 DECLARE EOF BIT(1) STATIC INIT(’0’B);
7 1
8 1 %INCLUDE ’STATE.TXT’;
9 I 1 declare 1 state based (state_prt),
10 I 1 2 name character (20), /* Primary key */
11 I 1 2 population fixed binary(31),/* 3rd alternate key */
12 I 1 2 capital,
13 I 1 3 name character (20),
14 I 1 3 population fixed binary(31),
15 I 1 2 largest_cities(2),
16 I 1 3 name character(30),
17 I 1 3 population fixed binary(31),
18 I 1 2 symbols,
19 I 1 3 flower character (30), /* secondary -- 1st alternate -- key */
20 I 1 3 bird character (30), /* tertiary -- 2nd alternate -- key */
21 I 1 state_ptr pointer,
22 I 1 state_file file;
23 1
24 1 ON KEY(STATE_FILE) BEGIN;
25 2 PUT SKIP LIST(’Error on key’,ONKEY(),’error no.’,ONCODE());
26 2 STOP;
27 2 END;
28 1

Example 2–2 illustrates the storage map page of the program listing. This page
is generated if /LIST/SHOW=MAP is specified on the PLI command.

Developing PL/I Programs at the DCL Command Level 2–25

Example 2–2 Compiler Storage Map for VAX Systems

FLOWERS 12-MAR-1991 11:36:16 PL/I for OpenVMS VAX V3.5-001 Page 2
01 16-MAR-1991 11:35:49 LI$:[MALCOLM]FLOWERS.PLI;17 (1)

+-------------+
| Storage Map |
+-------------+

External Entry Points and Variables Declared Outside Procedures 1
--

Identifier Name Storage Size Line Attributes
---------- ---- ------- ---- ---- ----------

FLOWERS 4 ENTRY, EXTERNAL

Procedure FLOWERS on line 3

Identifier Name 2 Storage Size Line Attributes
---------- ---- ------- ---- ---- ----------

BIRD 30 BY 22 OFFSET FROM BASE IS 146 BY, MEMBER OF STRUCTURE
SYMBOLS CHARACTER(30), UNALIGNED

CAPITAL 24 BY 22 OFFSET FROM BASE IS 24 BY, MEMBER OF STRUCTURE
STATE,STRUCTURE

EOF static 1 BI 6 BIT(1), UNALIGNED, INITIAL, INTERNAL

FLOWER 30 BY 22 OFFSET FROM BASE IS 116 BY, MEMBER OF STRUCTURE
SYMBOLS CHARACTER(30), UNALIGNED,

LARGEST_CITIES 68 BY 22 OFFSET FROM BASE IS 48 BY, MEMBER OF STRUCTURE
STATE, STRUCTURE DIMENSION

.

.

.
Begin Block on line 29

Identifier Name Storage Size Line Attributes
---------- ---- ------- ---- ---- ----------

RUN automatic 1 BI 30 BIT(1), UNALIGNED

Begin Block on line 35

Identifier Name Storage Size Line Attributes
---------- ---- ------- ---- ---- ----------

INPUT_FLOWER automatic 32 BY 36 CHARACTER(30), VARYING, UNALIGNED

Psect Name 3 Allocation Attributes
----- ---- ---------- ----------

$CODE 1221 by position-independent, relocatable, share, execute, read
$DATA 1 by position-independent, relocatable, read, write
$ADDRESS_DATA 0 by position-independent, relocatable, read
SYSIN 450 by position-independent, overlay, relocatable, global, read, write
SYSPRINT 450 by position-independent, overlay, relocatable, global, read, write
STATE_FILE 451 by position-independent, overlay, relocatable, global, read, write

(continued on next page)

2–26 Developing PL/I Programs at the DCL Command Level

Example 2–2 (Cont.) Compiler Storage Map for VAX Systems

Procedure Definition Map 4
--------- ---------- ---

Line Name
---- ----

5 FLOWERS
26 BEGIN
31 BEGIN
37 BEGIN

COMMAND LINE 5
------- ----

PLI/LIST/SHOW=MAP FLOWERS

The following notes are keyed to Example 2–2:

1 The compiler lists the names of all external entry points in the module and
their attributes.

2 For each procedure in the source program, the compiler lists each declared
name, giving

The user-specified identifier of the name.

The storage class to which the name belongs.

The amount of storage allocated for the name, where bi indicates that the
size is given in bits and by indicates that the size is given in bytes.

The line number on which the declaration of the name appears. Note
that if a declaration continues on more than one line (for example, in a
structure declaration), the line number is always the number of the line
on which the DECLARE statement is terminated.

The data type attributes of the name. If the name represents a member
of a structure, the attributes are preceded by the offset of the structure
member from the base of the structure.

3 The Program Section (Psect) Synopsis lists the program sections created by
the compiler and their attributes.

4 The Procedure Definition Map lists each procedure and begin block in the
program, giving the line number on which the block is defined.

5 The Command Line shows the PLI command string that was processed,
including input files, qualifiers, and library files.

When PLI/LIST/SHOW=MAP/CROSS_REFERENCE is specified, each name
that is referenced is followed by a list of the numbers of all lines that contain
references to that name. For example:

Identifier Name Storage Size Line Attributes
---------- ---- ------- ---- ---- ----------

BIRD 30 BY 22 OFFSET FROM BASE IS 146 BY, MEMBER OF STRUCTURE
SYMBOLS CHARACTER(30), UNALIGNED
No references.

CAPITAL 24 BY 22 OFFSET FROM BASE IS 24 BY, MEMBER OF STRUCTURE
STATE, STRUCTURE
No references.

EOF static 1 BI 6 BIT(1), UNALIGNED, INITIAL, INTERNAL
Reference lines: 48, 53, 56, 60, 65, 68

Developing PL/I Programs at the DCL Command Level 2–27

FLOWER 30 BY 22 OFFSET FROM BASE IS 116 BY, MEMBER OF STRUCTURE
SYMBOLS CHARACTER(30), UNALIGNED,
Reference lines: 43, 54, 66

Begin Block on line 29

Identifier Name Storage Size Line Attributes
---------- ---- ------- ---- ---- ----------

RUN automatic 1 BI 30 BIT(1), UNALIGNED
Reference lines: 31, 32, 33, 34

Begin Block on line 35

Identifier Name Storage Size Line Attributes
---------- ---- ------- ---- ---- ----------

INPUT_FLOWER automatic 32 BY 36 CHARACTER(30), VARYING, UNALIGNED
Reference lines: 37, 41

Example 2–3 illustrates the statistical summary that PL/I includes in the listing
if the /LIST/SHOW=STATISTICS qualifier is specified. The following notes are
keyed to Example 2–3:

1 The compiler accumulates statistics for each phase of its operation.

2 For each phase of its operation, the compiler lists I/O, memory, and CPU time
usage statistics.

2–28 Developing PL/I Programs at the DCL Command Level

Example 2–3 Compiler Performance Statistics for VAX Systems

FLOWERS 22-MAR-1991 09:59:16 PL/I for OpenVMS VAX V3.5-001 Page 3
01 16-MAR-1991 11:35:49 LI$:[MALCOLM]FLOWERS.PLI;18 (1)

+------------------------+
| Performance Indicators |
+------------------------+

1 2
phase buf i/o dir i/o pageflt virtmem workset cputim
----- ------- ------- ------- ------- ------- ------
pass 1 totals 4 34 116 0 1350 78
declare totals 0 0 4 0 1500 6
pass 2 totals 0 0 64 0 1800 41
live analysis 0 0 29 0 2048 7
reorder invariants 0 0 30 0 2048 3
eliminate redundancy 0 0 12 0 2048 9

optimizer totals 0 0 98 0 2048 32
allocator totals 1 3 28 0 2048 13
generate code list 0 0 26 0 2048 35
register allocation 0 0 0 0 2048 6
peephole optimization 0 0 3 0 2048 13
branch/jump resolution 0 0 0 0 2048 2
write object module 0 0 2 0 2048 8

code generator totals 0 0 34 0 2048 66
total compilation 8 45 827 432 2048 300
71 lines compiled
compilation rate was 1420 lines per minute

If you specify /LIST/OBJECT/MACHINE_CODE when you compile a PL/I
program, the compiler includes the generated assembly language code and object
code in the listing. Example 2–4 illustrates this listing.

Developing PL/I Programs at the DCL Command Level 2–29

Example 2–4 Machine Code Listing for VAX Systems

FLOWERS 22-MAR-1991 10:00:37 PL/I for OpenVMS VAX V3.5-001 Page 1
01 16-MAR-1991 11:35:49 LI$:[MALCOLM]FLOWERS.PLI;18 (1)

1 | /* This procedure obtains data about state flowers from STATEDATA.DAT */
2
3
4 FLOWERS: PROCEDURE OPTIONS(MAIN);

0073 FLOWERS:
C00C 0073 .entry FLOWERS,^m<dv,iv,r2,r3>

5E 10 C2 0075 subl2 #10,sp
00000000* EF 16 0078 jsb PLI$OPTIONSMAIN

5C 00000000 EF 9E 007E movab STATE_FILE,ap
52 00000000 EF 9E 0085 movab $DATA,r2

53 5E D0 008C movl sp,r3
5 1
6 1 DECLARE EOF BIT(1) STATIC INIT(’0’B);
7 1
8 1 %INCLUDE ’STATE.TXT’;
23 1
24 1 ON KEY(STATE_FILE) BEGIN; 1

5E 53 14 C3 008F subl3 #14,r3,sp 2
53 5E D0 0093 movl sp,r3

0C AE 6C 9E 0096 movab (ap),0C(sp)
04 AE 001E8024 8F D0 009A movl #1E8024,04(sp)

08 AE 0D AF 9E 00A2 movab sym.1,08(sp)
6E F4 AD D0 00A7 movl -0C(fp),(sp)
F4 AD 5E D0 00AB movl sp,-0C(fp)

0092 31 00AF brw sym.4
00B2 sym.1:

C000 00B2 .entry vcg.code,^m<dv,iv>
25 2 PUT SKIP LIST(’Error on key’,ONKEY(),’error no.’,ONCODE());

51 5D D0 00B4 movl fp,r1
02 AF 6C FA 00B7 callg (ap),sym.2

7D 11 00BB brb sym.3
00BD sym.2:

C87C 00BD .entry vcg.code,^m<dv,iv,r2,r3,r4,r5,r6,r11>
5E FEF8 CE 9E 00BF movab -0108(sp),sp

5C 00000000 EF 9E 00C4 movab SYSPRINT,ap
50 7C 00CB clrq r0

FE AD 01 B0 00CD movw #1,-02(fp)
52 FE AD 9E 00D1 movab -02(fp),r2

53 7C 00D5 clrq r3
00000000* EF 16 00D7 jsb PLI$PUTFILE_R6

50 81 AF 9E 00DD movab $CODE+61,r0
51 0C 3C 00E1 movzwl #C,r1

00000000* EF 16 00E4 jsb PLI$PUTLCHAR_R6
FF7E CD 9F 00EA pushab -0082(fp)
7E 80 8F 9A 00EE movzbl #80,-(sp)

00000000* EF 02 FB 00F2 calls #2,PLI$ONKEY
52 FF7E CD B0 00F9 movw -0082(fp),r2
50 FF7E CD 9E 00FE movab -0082(fp),r0

51 52 3C 0103 movzwl r2,r1
00000000* EF 16 0106 jsb PLI$PUTLVCHA_R6
50 FF48 CF 9E 010C movab $CODE+58,r0

51 09 3C 0111 movzwl #9,r1
00000000* EF 16 0114 jsb PLI$PUTLCHAR_R6

The following notes are keyed to Example 2–4:

1 The machine code is generated in line with the PL/I source statements.
Thus, you can see the code that is generated by each statement following the
statement itself.

2–30 Developing PL/I Programs at the DCL Command Level

2 The listing shows, in hexadecimal, the object module location of each
generated statement directly to the left of the machine code. To the left of
the object location is the object code generated by the PL/I for OpenVMS VAX
compiler.

If you specify /LIST/SHOW=(INCLUDE,EXPANSION,TRACE) when you compile
a program that uses the embedded preprocessor, the compiler includes additional
preprocessor information in the listing. Example 2–5 illustrates some of the
notations that can appear in the column to the right of the line numbers in the
listing. Except as indicated, the notations seen here are enabled by default.

Developing PL/I Programs at the DCL Command Level 2–31

Example 2–5 Preprocessor Compiler Listing for VAX Systems

WR_SCHEDULE 12-MAR-1991 16:00:27 PL/I for OpenVMS VAX V3.5-001 Page 1
01 12-MAR-1991 15:57:14 APLD$:[MALCOLM]SCHEDULE.PLI;1 (1)

1 WR_SCHEDULE: PROCEDURE OPTIONS (MAIN);
2 1 DECLARE I FIXED BINARY(15);
3 1 %DECLARE (DOWN_PAGE,ACROSS_PAGE) CHAR;
4 1
5 1 %ACROSS_PAGE = ’PAGE(ACROSS)’;
6 1 %DOWN_PAGE = ’PAGE(DOWN)’;
7 1 %IF VARIANT() = ’DAYS’ %THEN %INCLUDE ’DAYS.PLI’;

1 8 |I 1 /* THE INCLUDE FILE ’DAYS.PLI’ CREATES AN ARRAY STRUCTURE DAYS AND */
9 |I 1 /* INITIALIZES IT WITH THE DAYS OF THE WEEK. */
10 I 1
11 I 1 %DO;
12 I 1
13 I 1 %DECLARE SCHEDULE CHAR,NUM_ITEMS FIXED;
14 I 1 %SCHEDULE = ’DAYS’;

2 15 I 1 %NUM_ITEMS = 7;
16 I 1
17 I 1 DECLARE DAYS(7) CHAR(10) INIT(
18 I 1 ’MONDAY’,’TUESDAY’,’WEDNESDAY’,’THURSDAY’,’FRIDAY’,
19 I 1 ’SATURDAY’,’SUNDAY’);
20 I 1 %END;

3 21 * 1 %ELSE %IF VARIANT() = ’MONTHS’ %THEN %INCLUDE ’MONTHS.PLI’;
22 1
23 * 1 %WRITE: PROCEDURE(SCHEDULE,PAGE) STATEMENT RETURNS(CHAR);
24 P 1 DECLARE (SCHEDULE,PAGE,F_SPEC) CHAR;
25 1
26 1 IF PAGE = ’DOWN’
27 P 1 THEN DO;

4 28 P 1 F_SPEC = ’ DO I = 1 TO NUM_ITEMS)) (A(10),SKIP);’;
29 P 1 RETURN (’PUT SKIP EDIT((’||SCHEDULE||’(I)’||F_SPEC);
30 P 1 END;
31 1 ELSE IF PAGE = ’ACROSS’
32 P 1 THEN RETURN (’PUT SKIP LIST (’||SCHEDULE||’);’);
33 P 1 END;
34 1
35 1 WRITE(SCHEDULE) DOWN_PAGE;

5 T WRITE(DAYS) DOWN_PAGE;
T WRITE(DAYS) PAGE(DOWN);
T PUT SKIP EDIT((DAYS(I) DO I = 1 TO 7)) (A(10),SKIP);

6 E PUT SKIP EDIT((DAYS(I) DO I = 1 TO 7)) (A(10),SKIP);
36 1 WRITE(SCHEDULE) ACROSS_PAGE;

T WRITE(DAYS) ACROSS_PAGE;
T WRITE(DAYS) PAGE(ACROSS);
E PUT SKIP LIST (DAYS);

37 1 END;

COMMAND LINE
------- ----

PLI/LIST/SHOW=(INCLUDE,EXPAN,TRACE)/VARIANT=DAYS SCHEDULE

The following notes are keyed to Example 2–5:

1 The operand symbol (|) denotes a line of source text that contains comment
text.

2 The I indicates text from an INCLUDE file. /SHOW=INCLUDE enables this
indicator.

3 The asterisk (*) indicates unused preprocessor text.

4 The P indicates lines contained within a preprocessor procedure.

2–32 Developing PL/I Programs at the DCL Command Level

5 The T indicates each instance of preprocessor variable value replacement.
/SHOW=TRACE enables this indicator.

6 The E indicates the final replacement value for the preprocessor variable.
/SHOW=EXPANSION enables this indicator.

2.3.5.2 PL/I for OpenVMS AXP Compiler Listing
The PL/I for OpenVMS AXP compiler listing displays the the following
information:

Developing PL/I Programs at the DCL Command Level 2–33

Example 2–6 Default Compiler Listing for AXP Systems

FLOWERS 1 Source Listing 2 19-AUG-1993 10:26:27 DEC PL/I V4.0-001 3 Page 1
01 4 19-AUG-1993 10:25:07 DISK$DISK4:[MAZORA.DECPLI.LZ]FLOWERS.PLI;1

| 5 1 /* This procedure obtains data about state flowers from STATEDATA.DAT */
2

3
6 4 FLOWERS: PROCEDURE OPTIONS(MAIN);
1 5
1 6 DECLARE EOF BIT(1) STATIC INIT(’0’B);
1 7
1 8 %INCLUDE ’STATE.TXT’;
1 23
1 24 ON KEY(STATE_FILE) BEGIN;
1 25 PUT SKIP LIST(’Error on key’,ONKEY(),’error no.’,ONCODE());
1 26 STOP;
1 27 END;
1 28
1 29 MODE: BEGIN;
1 30 DECLARE RUN BIT(1);
1 31 GET LIST(RUN) OPTIONS(PROMPT(’List by state? ’));
1 32 IF RUN THEN GOTO LIST_BY_STATE;
1 33 GET LIST(RUN) OPTIONS(PROMPT(’List by flower? ’));
1 34 IF RUN THEN GOTO LIST_BY_FLOWER;
1 35 ELSE BEGIN;
1 36 DECLARE INPUT_FLOWER CHARACTER(30) VARYING;
1 37 GET LIST(INPUT_FLOWER) OPTIONS(PROMPT(’Flower? ’));
1 38 OPEN FILE(STATE_FILE) KEYED ENV(
1 39 INDEX_NUMBER(1),
1 40 SHARED_READ);
1 41 READ FILE(STATE_FILE) SET (STATE_PTR) KEY(INPUT_FLOWER);
1 42 PUT SKIP EDIT(’The flower of’,STATE.NAME,’is the’,FLOWER)
1 43 (3(a));
1 44 END;
1 45 END;
1 46 RETURN;
1 47 LIST_BY_STATE:
1 48 ON ENDFILE(STATE_FILE) EOF = ’1’B;
1 49 OPEN FILE(STATE_FILE) SEQUENTIAL ENV(
1 50 INDEX_NUMBER(0),
1 51 SHARED_READ);
1 52 READ FILE(STATE_FILE) SET (STATE_PTR);
1 53 DO WHILE (^EOF);
1 54 PUT SKIP LIST(STATE.NAME,’flower is ’,FLOWER);
1 55 READ FILE(STATE_FILE) SET (STATE_PTR);
1 56 END;
1 57 CLOSE FILE(STATE_FILE);
1 58 RETURN;
1 59 LIST_BY_FLOWER:
1 60 ON ENDFILE(STATE_FILE) EOF = ’1’B;
1 61 OPEN FILE(STATE_FILE) SEQUENTIAL ENV(
1 62 INDEX_NUMBER(1),
1 63 SHARED_READ);
1 64 READ FILE(STATE_FILE) SET (STATE_PTR);
1 65 DO WHILE (^EOF);
1 66 PUT SKIP LIST(STATE.NAME,’flower is ’,FLOWER);
1 67 READ FILE(STATE_FILE) SET (STATE_PTR);
1 68 END;
1 69 CLOSE FILE(STATE_FILE);
1 70 RETURN;
1 71 END;

COMMAND LINE
------- ----

PLI/LIST FLOWERS 7

2–34 Developing PL/I Programs at the DCL Command Level

The following notes are keyed to Example 2–6:

1 The name of the first level-1 procedure in the source program and its
identification. If the main procedure did not specify OPTIONS(IDENT),
the compiler uses 01 for the identification.

2 The date and time of compilation, and the version of the compiler that was
used to compile the program.

3 The page number of the listing file, and the page number of the source file.

4 The date and time that the file containing the source program was created,
and its full file specification (to a maximum of 44 characters).

5 Compiler-generated line numbers. The compiler assigns a number to each
line in the source program, including comment lines and lines read from
INCLUDE files.

Note that these line numbers do not necessarily correspond to the line
numbers, if any, assigned to the file by an editor that is line-number oriented.

A vertical bar (|) character indicates a line that contains only a comment.

6 The nesting level, or depth, of each statement. The outermost procedure is
always level 1. Additional level numbers are assigned to statements within
internal procedures, begin blocks, and DO-groups.

7 The PLI command line as it was entered for compilation.

If the program is compiled with the qualifier /LIST/SHOW=INCLUDE, the
%INCLUDE statements are followed by the contents of the INCLUDE files, with
line numbers. Notice that INCLUDE files are indicated by an ’I’ in the column
to the right of the line numbers.

Developing PL/I Programs at the DCL Command Level 2–35

Example 2–7 Compiler Storage Map for AXP Systems

FLOWERS Source Listing 19-AUG-1993 10:44:46 DEC PL/I V4.0-001 Page
01 19-AUG-1993 10:25:07 DISK$DISK4:[MAZORA.DECPLI.LZ]FLOWERS.PLI;1

+-------------+
| Storage Map |
+-------------+

External Entry Points and Variables Declared Outside Procedures 1

Identifier Name 2 Storage Size Line Attributes
---------- ---- ------- ---- ---- ----------

FLOWERS 4 ENTRY, EXTERNAL
Procedure FLOWERS on line 4

Identifier Name e Storage Size Line Attributes
---------- ---- ------- ---- ---- ----------

BIRD 30 BY 20 OFFSET FROM BASE IS 146 BY, MEMBER OF STRUCTURE SYMBOLS, CHARACTER(30)
UNALIGNED, NONVARYING

CAPITAL 24 BY 12 OFFSET FROM BASE IS 24 BY, MEMBER OF STRUCTURE STATE, STRUCTURE

EOF static 1 BI 6 BIT(1), UNALIGNED, INTERNAL, INITIAL, NONVARYING

FLOWER 30 BY 19 OFFSET FROM BASE IS 116 BY, MEMBER OF STRUCTURE SYMBOLS, CHARACTER(30)
UNALIGNED, NONVARYING

LARGEST_CITIES 68 BY 15 OFFSET FROM BASE IS 48 BY, MEMBER OF STRUCTURE STATE, STRUCTURE
DIMENSION

.

.

.
Begin Block on line 29

Identifier Name Storage Size Line Attributes
---------- ---- ------- ---- ---- ----------

RUN automatic 1 BI 30 BIT(1), UNALIGNED, NONVARYING

Begin Block on line 35

Identifier Name Storage Size Line Attributes
---------- ---- ------- ---- ---- ----------

INPUT_FLOWER automatic 32 BY 36 CHARACTER(30), VARYING, UNALIGNED

Procedure Definition Map 3
--------- ---------- ---

Line Name
---- ----

4 FLOWERS
24 BEGIN
29 BEGIN
35 BEGIN

COMMAND LINE 4
------- ----

PLI/LIST/SHOW=MAP FLOWERS

The following notes are keyed to Example 2–7:

1 The compiler lists the names of all external entry points in the module and
their attributes.

2–36 Developing PL/I Programs at the DCL Command Level

2 For each procedure in the source program, the compiler lists each declared
name, giving

The user-specified identifier of the name.

The storage class to which the name belongs.

The amount of storage allocated for the name, where bi indicates that the
size is given in bits and by indicates that the size is given in bytes.

The line number on which the declaration of the name appears. Note
that if a declaration continues on more than one line (for example, in a
structure declaration), the line number is always the number of the line
on which the DECLARE statement is terminated.

The data type attributes of the name. If the name represents a member
of a structure, the attributes are preceded by the offset of the structure
member from the base of the structure.

3 The Procedure Definition Map lists each procedure and begin block in the
program, giving the line number on which the block is defined.

4 The Command Line shows the PLI command string that was processed,
including input files, qualifiers, and library files.

Developing PL/I Programs at the DCL Command Level 2–37

Example 2–8 Compiler Performance Statistics for AXP Systems

FLOWERS Compilation statistics 19-AUG-1993 10:56:56 DEC PL/I V4.0-001 Page
01 19-AUG-1993 10:25:07 DISK$DISK4:[MAZORA.DECPLI.LZ]FLOWERS.PLI;1

COMPILER INTERNAL TIMING

Phase 1 CPU 2 Elapsed Page I/O
seconds seconds faults count

pass 1 totals 0.08 1.63 52 5
declare totals 0.01 0.62 3 0
pass 2 totals 0.09 1.34 15 0
translation totals 0.04 2.62 58 0
Optimization 0.19 0.76 5 0
Dominator tree construction 0.00 0.00 0 0
Loop dominator insertion 0.00 0.00 0 0
Lifetime analysis 0.00 0.00 0 0
IDEF computation 0.01 0.00 0 0
DATAFLOW computation 0.06 0.19 1 0
Strength reduction 0.02 0.00 0 0
Loop unroll/Loop optimization 0.00 0.00 0 0
Test replacement 0.01 0.00 0 0
Profitability determination 0.02 0.29 2 0
Profitability reordering 0.00 0.00 0 0
Use propagation 0.00 0.00 0 0
Split lifetime analysis 0.02 0.03 0 0

Code Generation 0.36 2.66 47 0
Context analysis 0.16 1.80 17 0
Register History 0.03 0.25 2 0
Temporary allocation 0.05 0.35 3 0
Code emission 0.07 0.23 18 0

Final 0.13 0.12 0 0
Peepholing 0.03 0.01 0 0
Object scheduling 0.08 0.11 0 0
Branch/jump resolution 0.01 0.00 0 0

Object module generation 0.00 0.67 1 10
Compiler totals 0.98 15.49 253 20

COMPILATION STATISTICS

CPU time: 0.98 seconds
Elapsed time: 15.49 seconds
Pagefaults: 253
I/O Count: 20
Source lines: 71

4346 lines per CPU minute.

If you specify /LIST/OBJECT/MACHINE_CODE when you compile a PL/I
program, the compiler includes the generated assembly language code and object
code in the listing. Example 2–9 illustrates this listing.

2–38 Developing PL/I Programs at the DCL Command Level

Example 2–9 Machine Code Listing for AXP Systems

FLOWERS Machine Code Listing 19-AUG-1993 10:59:36 DEC PL/I V4.0-001 P
01 FLOWERS 19-AUG-1993 10:25:07 DISK$DISK4:[MAZORA.DECPLI.LZ]FLOWERS.

.PSECT $CODE$, OCTA, PIC, CON, REL, LCL, SHR,-
EXE, NORD, NOWRT
0000 FLOWERS:: ; 000004

23DEFF10 0000 LDA SP, -240(SP) ; SP, -240(SP) 1
47FF0419 0004 CLR R25 ; R25
B7FE00A0 0008 STQ R31, 160(SP) ; R31, 160(SP)
B77E0000 000C STQ R27, (SP) ; R27, (SP)
B75E00B8 0010 STQ R26, 184(SP) ; R26, 184(SP)
B45E00C0 0014 STQ R2, 192(SP) ; R2, 192(SP)
B47E00C8 0018 STQ R3, 200(SP) ; R3, 200(SP)
B49E00D0 001C STQ R4, 208(SP) ; R4, 208(SP)
B4BE00D8 0020 STQ R5, 216(SP) ; R5, 216(SP)
B7BE00E0 0024 STQ FP, 224(SP) ; FP, 224(SP)
63FF0000 0028 TRAPB ;
47FE041D 002C MOV SP, FP ; SP, FP
47FB0402 0030 MOV R27, R2 ; R27, R2
23DEFF80 0034 LDA SP, -128(SP) ; SP, -128(SP)
A742FFC8 0038 LDQ R26, -56(R2) ; R26, -56(R2)
A762FFD0 003C LDQ R27, -48(R2) ; R27, -48(R2)
6B5A4000 0040 JSR R26, DPLI$HND_OPTIONS_MAIN ; R26, R26
263F001F 0044 LDAH R17, 31(R31) ; R17, 31(R31) ; 000024
22318024 0048 LDA R17, -32732(R17) ; R17, -32732(R17)
A402FEE8 004C LDQ R0, -280(R2) ; R0, -280(R2)
B3FD0090 0050 STL R31, 144(FP) ; R31, 144(FP)
221D0010 0054 LDA R16, 16(FP) ; R16, 16(FP)
B23D0098 0058 STL R17, 152(FP) ; R17, 152(FP)

.

.

.

Routine Size: 1616 bytes, Routine Base: $CODE$ + 0000

The following notes are keyed to Example 2–9:

1 The machine code is generated in line with the PL/I source statements.
Thus, you can see the code that is generated by each statement following the
statement itself.

2 The listing shows, in hexadecimal, the object module location of each
generated statement directly to the left of the machine code. To the left of
the object location is the object code generated by the PL/I for OpenVMS VAX
compiler.

2.4 Linking a PL/I Program
Once you have compiled a PL/I source program or module, use the DCL command
LINK to combine your object modules into one executable image, which can then
be executed by the OpenVMS system. A source program or module cannot run on
the OpenVMS system until it is linked.

When you execute the LINK command, the OpenVMS Linker performs the
following functions:

• Resolves local and global symbolic references in the object code

• Assigns values to the global symbolic references

• Signals an error message for any unresolved symbolic reference

• Allocates virtual memory space for the executable image

Developing PL/I Programs at the DCL Command Level 2–39

When linking on development systems, you may want to use the /DEBUG
qualifier. The /DEBUG qualifier appends to the image all the symbol and line-
number information appended to the object modules, plus information on global
symbols, and causes the image to run under debugger control when it is executed.

The LINK command produces an executable image by default. However, you
can also use the LINK command to obtain shareable images and system images.
Section 2.4.2 describes LINK command qualifiers.

For a complete discussion of the OpenVMS Linker, see the OpenVMS Linker
Utility Manual.

2.4.1 LINK Command
The LINK command has the following format:

LINK[/command-qualifier]... {file-spec[/file-qualifier...]},...

/command-qualifier...
Specifies output file options.

fi le-spec
Specifies the input files to be linked.

/fi le-qualifier...
Specifies input file options.

If you specify more than one input file, you must separate the input file
specifications with a plus sign (+) or a comma (,).

By default, the linker creates an output file with the name of the first input file
specified and the file type EXE. Therefore, when you link more than one file, it is
good practice to list the file containing the main program first so that the name of
your output file will have the same name as that of your main program module.

The following command line links the object files MAINPROG.OBJ,
SUBPROG1.OBJ, and SUBPROG2.OBJ to produce one executable image called
MAINPROG.EXE.

$ LINK MAINPROG.OBJ, SUBPROG1.OBJ, SUBPROG2.OBJ

2.4.2 LINK Command Qualifiers
The LINK command qualifiers can be used to modify the linker’s output, as well
as to invoke the debugging and traceback facilities. Linker output consists of an
image file and an optional map file.

The following list summarizes some of the most commonly used LINK command
qualifiers. A brief description of each qualifier follows this list. For a complete
list of LINK qualifiers, see the OpenVMS Linker Utility Manual.

Command Qualifiers Default

/[NO]EXECUTABLE[=file-spec] /EXECUTABLE=name.EXE
/[NO]SHAREABLE[=file-spec] /NOSHAREABLE
/BRIEF
/[NO]CROSS_REFERENCE /NOCROSS_REFERENCE
/FULL
/[NO]MAP /NOMAP (interactive)
/[NO]DEBUG /NODEBUG
/[NO]TRACEBACK /TRACEBACK

2–40 Developing PL/I Programs at the DCL Command Level

/EXECUTABLE [=fi le-spec]
/NOEXECUTABLE
Causes the linker to produce or to suppress the production of an executable
image.

/SHAREABLE [=fi le-spec]
/NOSHAREABLE (default)
Causes the linker to create or not create a shareable image.

/BRIEF
Causes the linker to produce a summary of the image’s characteristics and a list
of contributing modules.

/CROSS_REFERENCE
/NOCROSS_REFERENCE (default)
Causes the linker to produce cross-reference information for global symbols or to
suppress its creation.

/FULL
Causes the linker to produce a summary of the image’s characteristics, a list of
contributing modules, listings of global symbols by name and by value, and a
summary of characteristics of image sections in the linked image.

/MAP
/NOMAP (interactive default)
Causes the linker to generate or not generate a map file.

/DEBUG
/NODEBUG (default)
Causes the linker to include or not include the VMS Debugger in the executable
image and generate or not generate a symbol table.

/TRACEBACK (default)
/NOTRACEBACK
Causes the linker to generate symbolic traceback information when error
messages are produced or to suppress its generation.

2.4.3 Linker Input Files
You can specify the object modules to be included in an executable image in any
of the following ways:

• Specify input file specifications for the object modules.

If no file type is specified, the linker searches for an object file with the file
type OBJ.

• Specify one or more object module library files.

You can specify either the name of an object module library with the
/LIBRARY qualifier or the names of object modules contained in an object
module library with the /INCLUDE qualifier. The uses of object module
libraries are described in Section 2.4.5.

• Specify an options file.

Developing PL/I Programs at the DCL Command Level 2–41

An options file can contain additional file specifications for the LINK
command, as well as special linker options. You must use the /OPTIONS
qualifier to specify an options file. For more information on options files, see
the OpenVMS Linker Utility Manual.

The linker uses the following default file types for input files.

File Type File

OBJ Object module

OLB Library

OPT Options file

2.4.4 Linker Output Files
When you issue the LINK command interactively and do not specify any
qualifiers, the linker creates only an executable image file. By default, the
resulting image file has the same file name as the first object module, and a file
type of EXE.

In a batch job, the linker creates both an executable image file and storage map
file by default. The default file type for map files is MAP.

To specify an alternative name for a map file or image file or to specify an
alternative output directory or device, you can include a file specification on
the /MAP or /EXECUTABLE qualifier. In the following example, the LINK
command creates the image file [PROJECT.EXE]UPDATE.EXE and the map file
[PROJECT.MAP]UPDATE.MAP:

$ LINK UPDATE/EXECUTABLE=[PROJECT.EXE]/MAP=[PROJECT.MAP]

2.4.5 Object Module Libraries
You can make program modules accessible to other users by storing them
in an object module library. To link modules contained in an object module
library, use the /INCLUDE qualifier and specify the modules you want to link.
In the following example, the LINK command directs the linker to link the
subprogram modules EGGPLANT, TOMATO, BROCCOLI, and ONION with the
main program module GARDEN:

$ LINK GARDEN,VEGGIES/INCLUDE=(EGGPLANT,TOMATO,BROCCOLI,ONION)

An object module library can also contain a symbol table with the names of
each global symbol in the library, and the name of the module in which they are
defined. You specify the name of the object module library containing symbol
definitions with the /LIBRARY qualifier. When you use the /LIBRARY qualifier
during a linking operation, the linker searches the specified library for all
unresolved references found in the included modules during compilation.

In the following example, the linker uses the library RACQUETS to resolve
undefined symbols in BADMINTON, TENNIS, and RACQUETBALL.

$ LINK BADMINTON, TENNIS, RACQUETBALL, RACQUETS/LIBRARY

You can define an object module library to be your default library by using
the DCL command DEFINE. The linker searches default user libraries for
unresolved references after it searches modules and libraries specified in the
LINK command. For more information about the DEFINE command, see the
OpenVMS DCL Dictionary.

2–42 Developing PL/I Programs at the DCL Command Level

For more information about object module libraries, see the OpenVMS Linker
Utility Manual.

2.4.6 Linker Error Messages
If the linker detects any errors while linking object modules, it displays messages
indicating the cause and severity of the error. If any error or fatal error
conditions occur (that is, errors with severities of E or F), the linker does not
produce an image file.

The messages produced by the linker are descriptive, and you do not usually need
additional information to determine the specific error. Some common errors that
occur during linking are as follows:

• An object module has compilation errors.

This occurs when you attempt to link a module that produced warning or
error messages during compilation. You can usually link compiled modules
for which the compiler generated messages, but you should verify that the
modules will actually produce the output you expect.

• The input file has a file type other than OBJ and no file type was specified on
the command line.

If you do not specify a file type, the linker searches for a file that has a file
type of OBJ by default. If the file is not an object file and you do not identify
it with the appropriate file type, the linker signals an error message and does
not produce an image file.

• You tried to link a nonexistent module.

The linker signals an error message if you misspell a module name on the
command line or if the compilation contains fatal diagnostics.

• A reference to a symbol name remains unresolved.

An error occurs when you omit required module or library names from the
command line and the linker cannot locate the definition for a specified
global symbol reference. In the following example, a main program module
OCEAN.OBJ calls the subprogram modules REEF.OBJ, SHELLS.OBJ, and
SEAWEED.OBJ, and the following LINK command is executed:

$ LINK OCEAN, REEF, SHELLS

Because SEAWEED is not linked, the linker signals the following error
messages:

%LINK-W-NUDFSYMS, 1 undefined symbol
%LINK-I-UDFSYMS, SEAWEED
%LINK-W-USEUNDEF, module "OCEAN" references undefined symbol "SEAWEED"
%LINK-W-DIAGISUED, completed but with diagnostics

If an error occurs when you link modules, you can often correct the error by
reissuing the command string and specifying the correct modules or libraries. If
an error indicates that a program module cannot be located, you may be linking
the program with the wrong PL/I Run-Time Library.

For a complete list of linker messages, from both the OpenVMS VAX and PL/I
for OpenVMS AXP compilers, see OpenVMS System Messages and Recovery
Procedures Reference Manual.

Developing PL/I Programs at the DCL Command Level 2–43

2.5 Running a PL/I Program
Once you have linked your program, you can use the DCL command RUN to
execute it. The RUN command has the following format:

RUN [/[NO]DEBUG] file-spec [/[NO]DEBUG]

/[NO]DEBUG
Is an optional qualifier. Specify the /DEBUG qualifier to invoke the debugger
if the image was not linked with it. You cannot use /DEBUG on images linked
with the /NOTRACEBACK qualifier. If the image was linked with the /DEBUG
qualifier and you do not want the debugger to prompt you, use the /NODEBUG
qualifier. The default action depends on whether the file was linked with the
/DEBUG qualifier.

fi le-spec
Specifies the file you want to run.

The following example executes the image SAMPLE.EXE without invoking the
debugger:

$ RUN SAMPLE/NODEBUG

See Chapter 3 for more information on debugging programs.

During execution, an image can generate a fatal error called an exception
condition. When an exception condition occurs, the system displays an error
message. Run-time errors can also be issued by the operating system or by
certain utilities, such as the VMS Sort Utility.

For example, if an integer divide-by-zero condition occurs and if no ON-unit
for this condition exists in any active procedure block, the following run-time
messages appear:

%PLI-F-ERROR, PL/I ERROR condition signaled
--SYSTEM-F-FLTDIV_F, arithmetic fault, floating divide
by zero at PC=000007C4, PSL=03C000A5

These messages are followed by a traceback message like the following:

%TRACE-F-TRACEBACK, symbolic stack dump follows

module name routine name line relative PC absolute PC

SETUP DIVIDE 9 00000074 000007C4
SETUP BEGIN%4 4 00000035 00000707
SETUP SETUP 4 0000000C 000006D0
LIBS NEXT 14 00000044 000006A3
LIBS LIBS 15 0000004C 0000065E

module name
Indicates the name of a level-1 procedure that was active when the error occurred.
The first module name is the name of the module in which the error occurred.
Each subsequent line gives the name of the caller of the procedure named on the
previous line. In this example, the level-1 procedures are LIBS and SETUP; a
call to SETUP occurred during the execution of LIBS.

routine name
Indicates the entry name of the internal procedure or block in the calling
sequence. When BEGIN%n appears in this column, it indicates that an unlabeled
begin block, a PUT statement, or a GET statement was active when the error
occurred.

2–44 Developing PL/I Programs at the DCL Command Level

PL/I assigns labels to these blocks, giving them names in this form, where n is
the source program line number on which the block is entered.

In this example, an unlabeled begin block or PUT or GET statement occurs on
line 4 of the routine SETUP; within this block or statement, the routine DIVIDE
was invoked. Thus, this traceback indicates that the error occurred during
execution of an instruction generated for the source statement on line 9, in the
procedure DIVIDE.

line
Indicates the source program line number (generated by the compiler) of the
statement at which the error occurred, or at which the call or reference to the
next procedure was made. This line number matches the line numbers on the
listing file created if /LIST was specified to the compiler.

relative PC
Gives the value of the PC (program counter). This value represents the location
in the program image at which the error occurred or at which a procedure was
called. The location is relative to the virtual memory address that the linker
assigned to the code program section of the module indicated by module name.

absolute PC
Gives the value of the PC in absolute terms, that is, the actual address in virtual
memory that represents the location at which the error occurred.

Traceback information is available at run time only for modules that were
compiled and linked with the traceback option in effect. The traceback option
is in effect by default for both the PLI and LINK commands. You can use
the PLI command qualifier /NODEBUG and the LINK command qualifier
/NOTRACEBACK to exclude traceback information. However, it is recommended
that you exclude traceback information only from thoroughly debugged program
modules.

For a complete list of PL/I for OpenVMS VAX run-time error messages, see
Appendix A.

Developing PL/I Programs at the DCL Command Level 2–45

3
Using the VMS Debugger

This chapter is an introduction to using the VMS Debugger with PL/I for
OpenVMS VAX programs. This chapter provides the following information:

• An overview of the debugger

• Information to get you started using the debugger

• A sample terminal session that demonstrates using the debugger

• A list of the debugger commands by function

For complete reference information on the VMS Debugger, see the OpenVMS
Debugger Manual. Online HELP is available during debugging sessions.

3.1 Overview
A debugger is a tool that helps you locate run-time errors quickly. It is used with
a program that has already been compiled and linked successfully, but does not
run correctly. For example, the output may be obviously wrong, or the program
goes into an infinite loop or terminates prematurely. The debugger enables you
to observe and manipulate the program’s execution interactively so that you can
locate the point at which the program stopped working correctly.

The VMS Debugger is a symbolic debugger, which means that you can refer to
program locations by the symbols (names) you used for those locations in your
program—the names of variables, routines, labels, and so on. You do not need to
use virtual addresses to refer to memory locations.

The debugger recognizes the syntax, expressions, data typing, and other
constructs of PL/I for OpenVMS VAX, as well as other VAX languages including:

VAX Ada
VAX BASIC
VAX BLISS
VAX C
VAX COBOL
VAX DIBOL
VAX FORTRAN
VAX MACRO-32
VAX Pascal
VAX RPG II
VAX SCAN

If your program is written in more than one language, you can change from one
language to another during a debugging session. The current source language
determines the format used for entering and displaying data, as well as other
features that have language-specific settings (for example, comment characters,
operators and operator precedence, and case sensitivity or insensitivity).

Using the VMS Debugger 3–1

By issuing debugger commands at your terminal, you can perform the following
operations:

• Start, stop, and resume the program’s execution

• Trace the execution path of the program

• Monitor selected locations, variables, or events

• Examine and modify the contents of variables, or force events to occur

• Test the effect of some program modifications without having to edit,
recompile, and relink the program

Such techniques allow you to isolate an error in your code much more quickly
than you could without the debugger.

Once you have found the error in the program, you can then edit the source code
and compile, link, and run the corrected version.

3.2 Features of the Debugger
The VMS Debugger provides the following features to help you debug your
programs:

• Online HELP

Online HELP is always available during a debugging session and contains
information on all the debugger commands and also information on selected
topics.

• Source Code Display

You can display lines of source code during a debugging session.

3–2 Using the VMS Debugger

• Screen Mode

You can capture and display various kinds of information in scrollable
windows, which can be moved around the screen and resized. Automatically
updated source, instruction, and register displays are available. You can
selectively direct debugger input, output, and diagnostic messages to displays.
(Screen mode displays work best on VT100-series or VT200-series terminals
or MicroVAX workstations.)

• Keypad Mode

When you invoke the debugger, several commonly used debugger command
sequences are assigned by default to the keys of the numeric keypad (if you
have a VT100, VT52, or LK201 keypad).

• Source Editing

As you find errors during a debugging session, you can use the EDIT
command to invoke any editor available on your system. (You specify the
editor you want with the SET EDITOR command.)

• Command Procedures

The debugger allows you to execute a command procedure to recreate a
debugging session, to continue a previous session, or to avoid typing the same
debugger commands many times during a debugging session.

• Symbol Definitions

You can define your own symbols to represent lengthy commands, address
expressions, or values.

• Initialization Files

You can create an initialization file containing commands to set your default
debugging modes, screen display definitions, keypad key definitions, symbol
definitions, and so on. In addition, you may want to have special initialization
files for debugging specific programs.

• Log Files

You can record the commands you issue during a debugging session and the
debugger’s responses to those commands in a log file. You can use log files
to keep track of your debugging efforts, or you can use them as command
procedures in subsequent debugging sessions.

3.3 Getting Started with the Debugger
This section explains how to use the debugger with PL/I for OpenVMS VAX
programs. The section focuses on basic debugger functions, to get you started
quickly. It also provides any debugger information that is specific to PL/I for
OpenVMS VAX. For more detailed information that is not specific to a particular
language, see the OpenVMS Debugger Manual.

3.3.1 Compiling and Linking a Program to Prepare for Debugging
Before you can use the debugger, you must compile and link your program as
explained in this section. The following example shows how to compile and link
a PL/I for OpenVMS VAX program (consisting of a single compilation unit named
INVENTORY) to prepare for using the debugger.

$ PLI/DEBUG/NOOPTIMIZE INVENTORY
$ LINK/DEBUG INVENTORY

Using the VMS Debugger 3–3

The /DEBUG qualifier on the PLI command causes the compiler to write the
debug symbol records associated with INVENTORY into the object module,
INVENTORY.OBJ. These records allow you to use the names of variables and
other symbols declared in INVENTORY in debugger commands. (If your program
has several compilation units, you must compile each unit that you want to debug
with the /DEBUG qualifier.)

You should use the /NOOPTIMIZE qualifier when you compile a program in
preparation for debugging. Otherwise, if the object code is optimized (to reduce
the size of the program and make it run faster), the contents of some program
locations may be inconsistent with what you might expect from viewing the
source code. After debugging the program, you should recompile it without the
/NOOPTIMIZE qualifier.

The /DEBUG qualifier on the LINK command causes the linker to include all
symbol information that is contained in INVENTORY.OBJ in the executable
image. This qualifier also causes the VMS image activator to start the debugger
at run time. (If your program has several object modules, you may need to specify
the other modules in the LINK command.)

3.3.2 Starting and Terminating a Debugging Session
To invoke the debugger, issue the DCL command RUN. The following message
will appear on your screen:

$ RUN INVENTORY

VAX DEBUG Version <VMS_VERSION>

%DEBUG-I-INITIAL, language is PL/I for OpenVMS VAX, module set to ’INVENTORY’
DBG>

The INITIAL message indicates that the debugging session is initialized for a
PL/I for OpenVMS VAX program and that the name of the main program unit
is INVENTORY. The DBG> prompt indicates that you can now type debugger
commands. At this point, if you type the GO command, program execution begins
and continues until it is forced to pause or stop (for example, if the program
prompts you for input, or an error occurs).

If you have a mixed-language program that includes an Ada package, the
following message will appear on your screen instead of the previous one when
you invoke the debugger:

$ RUN INVENTORY

VAX DEBUG Version <VMS_VERSION>

%DEBUG-I-INITIAL, language is PL/I for OpenVMS VAX, module set to ’INVENTORY’
%DEBUG-I-NOTATMAIN, type GO to get to start of main program
DBG>

The NOTATMAIN message indicates that execution is suspended before the start
of the main program, so that you can execute initialization code under debugger
control. Typing the GO command places you at the start of the main program. At
that point, type the GO command again to start program execution. Execution
continues until it is forced to pause or stop (for example, if the program prompts
you for input, or an error occurs).

The following message indicates that your program has completed successfully:

%DEBUG-I-EXITSTATUS, is ’%SYSTEM-S-NORMAL, normal successful completion’
DBG>

3–4 Using the VMS Debugger

To interrupt a debugging session and return to the DCL level, press Ctrl/y. This
is useful if, for example, your program loops or you want to interrupt a debugger
command that is still in progress.

To resume the debugging session after a Ctrl/y interruption, type either the
CONTINUE or the DEBUG command at the DCL level. Use the CONTINUE
command to return to the point at which you interrupted the debugging session.
If you interrupted the session because of an infinite loop, use the DEBUG
command instead. The DEBUG command returns you to the debugger prompt so
that you can type another command. For example:

DBG> GO
.
.
.

Ctrl/y

Interrupt

$ DEBUG
DBG>

To end a debugging session, type the EXIT command or press Ctrl/z:

DBG> EXIT
$

3.3.3 Issuing Debugger Commands
You can issue debugger commands anytime you see the debugger prompt (DBG>).
Type the command at the keyboard and press the Return key. You can issue
several commands on a line by separating the command strings with semicolons
(;). As with DCL commands, you can continue a command string on a new line
by ending the previous line with a hyphen (-).

Alternatively, you can use the numeric keypad to issue certain commands.
Figure 3–1 identifies the predefined key functions. You can also redefine key
functions with the DEFINE/KEY command.

Most keypad keys have three predefined functions—default, GOLD, and BLUE.
(The PF1 key is known as the GOLD key; the PF4 key is known as the BLUE
key.) To obtain a key’s default function, press the key. To obtain its GOLD
function, first press the PF1 key, and then the key. To obtain its BLUE function,
first press the PF4 key, and then the key.

In Figure 3–1, the default, GOLD, and BLUE functions are listed within each
key’s outline, from top to bottom, respectively. For example, pressing keypad
key 0 issues the STEP command; pressing key PF1 and then key 0 issues the
STEP/INTO command; pressing key PF4 and then key 0 issues the STEP/OVER
command.

Type the command HELP KEYPAD to get help on the keypad key definitions.

3.3.4 Viewing Your Source Code
The debugger provides two modes for displaying information: noscreen mode and
screen mode. By default, when you invoke the debugger, you are in noscreen
mode, but you may find that it is easier to view your source code in screen mode.
Both modes are briefly described in the following sections.

Using the VMS Debugger 3–5

Figure 3–1 Debugger Keypad Key Functions

On a LK201 Keyboard:

Press

F17
F18
F19
F20

On a VT−100 Keyboard:

Type

SET KEY/STATE=DEFAULT
SET KEY/STATE=MOVE
SET KEY/STATE=EXPAND
SET KEY/STATE=CONTRACT

Keys 2, 4, 6, 8

Scroll
Move
Expand
Contract

+ * =
+ * =
+ * =
+ * =

Keys 2, 4, 6, 8

Scroll
Move
Expand
Contract

+ * =
+ * =
+ * =
+ * =

NU−2509A−RA

F17

Move

Gold

F18 F19 F20

PF1

7

4

1

0

PF2

8

5

2

9

PF3

9

6

3

−

,

PF4

Enter

Blue

Disp next

*/LEFT */RIGHT

Reset

Scroll
(Default)

Expand

(Expand +)
Contract
(Expand −)

Help Default
Help Gold
Help Blue

Set Mode Screen
Set Mode Noscr
Disp/Generate

Disp Src, Inst, Out
Disp Inst, Reg, Out

*/UP
*/TOP
*/UP...

Disp next at FS
Disp Src, Out

Ex/Sou.0\%PC
Show Calls
Show Calls 3

GO
Sel/Inst next

Examine
Exam^(prev)

*/DOWN
*/Bottom
*/DOWN...

Step
Step/Into
Step/Over

Sel/Scroll next
Sel/Output next
Sel/Source next

3.3.4.1 Noscreen Mode
Noscreen mode is the default, line-oriented mode of displaying input and output.
To invoke noscreen mode from screen mode, press the keypad key sequence
GOLD-PF3. See the sample debugging session in Section 3.4 for a demonstration
of noscreen mode.

In noscreen mode, you can use the TYPE command to display one or more source
lines. For example, the following command displays line 3 of the module whose
code is currently executing:

DBG> TYPE 3
3: I = 7;
DBG>

3–6 Using the VMS Debugger

The display of source lines is independent of program execution. To display
source code from a module other than the one whose code is currently executing,
use the TYPE command with a path name to specify the module. For example,
the following command displays lines 16 through 21 of module TEST:

DBG> TYPE TEST\16:21

3.3.4.2 Screen Mode
To invoke screen mode, press keypad key PF3. In screen mode, the debugger
splits the screen into three displays named SRC, OUT, and PROMPT, by default.
The following example shows how your screen will appear in screen mode.

- SRC: module MAIN -scroll-source------------------------
1: MAIN: PROCEDURE OPTIONS (MAIN);
2: DECLARE (I,J,K) FIXED BINARY;
3: I = 7;

-> 4: J = 4;
5: K = I + J;
6: END;

- OUT -output---
stepped to MAIN\%LINE 4
MAIN\I: 7
MAIN\J: 50331649

- PROMPT -error-program-prompt----------------------------
DBG> STEP 2
DBG> EXAMINE I,J
DBG>

The SRC display, at the top of the screen, shows the source code of the module
(compilation unit) whose code is currently executing. An arrow in the left column
points to the next line to be executed, which corresponds to the current value
of the program counter (PC). The line numbers, which are assigned by the
compiler, match those in a listing file.

The OUT display, in the middle of the screen, captures the debugger’s output in
response to the commands that you issue.

The PROMPT display, at the bottom of the screen, shows the debugger prompt
(DBG>), your input, debugger diagnostic messages, and program output. In
the example, the two debugger commands that have been issued (STEP 2 and
EXAMINE I,J) are displayed.

(The unpredictable value reported by the debugger for J indicates that line 4 has
not been executed yet; line 4 will subsequently assign the value 4 to J.)

The SRC and OUT displays can be scrolled to display information beyond the
window’s edge. Press keypad key 8 to scroll up and keypad key 2 to scroll down.
Use keypad key 3 to change the display to be scrolled (by default, the SRC display
is scrolled). Scrolling a display does not affect program execution.

If the debugger cannot locate source lines for the routine that is currently
executing, it attempts to display source lines in the next routine down on the
call stack for which source lines are available and issues the following message:

%DEBUG-I-SOURCESCOPE, Source lines not available for .0\%PC.
Displaying source in a caller of the current routine.

Using the VMS Debugger 3–7

Source lines may not be available for the following reasons:

• The PC value is within a system routine or a shareable image routine for
which no source code is available.

• The PC value is within a routine that was compiled without the /DEBUG
compiler command qualifier (or with /NODEBUG).

• The PC value is within a routine whose module is not set (module setting is
explained in Section 3.3.7.1).

• The source file was moved to a different directory after it was compiled (the
location of source files is embedded in the object modules).

3.3.5 Controlling and Monitoring Program Execution
This section discusses the following topics:

• Starting and resuming program execution with the GO command

• Stepping through the program’s code with the STEP command

• Determining the current value of the program counter (PC) with the SHOW
CALLS command

• Suspending program execution with breakpoints

• Tracing program execution with tracepoints

• Monitoring changes in variables with watchpoints

3.3.5.1 Starting and Resuming Program Execution
There are two commands for starting or resuming program execution: GO and
STEP. The GO command starts execution. The STEP command executes a
specified number of source lines or instructions.

The GO Command
The GO command starts program execution, which continues until forced to
stop. The GO command is used most often in conjunction with breakpoints,
tracepoints, and watchpoints (described in Sections 3.3.5.3, 3.3.5.4, and 3.3.5.5).
If you set a breakpoint in the path of execution and then issue the GO command,
execution is suspended at that breakpoint. If you set a tracepoint, the path of
execution through that tracepoint is monitored. If you set a watchpoint, execution
is suspended when the value of the watched variable changes.

You can also use the GO command to test for an exception condition or an infinite
loop. If an exception condition that is not handled by your program occurs, the
debugger takes control and displays the DBG> prompt so that you can issue
commands. If you are using screen mode, the pointer in the source display
indicates where execution stopped. You can use the SHOW CALLS command
(explained in Section 3.3.5.2) to identify the currently active routine calls (the call
stack).

If an infinite loop occurs, the program does not terminate, so the debugger prompt
does not reappear. To obtain the prompt, interrupt the program by pressing Ctrl
/y and then issue the DCL command DEBUG. You can then look at the source
display and invoke a SHOW CALLS display to obtain the current PC value.

3–8 Using the VMS Debugger

The STEP Command
The STEP command allows you to execute a specified number of source lines or
instructions, or to execute the program to the next instruction of a particular
kind, for example, to the next CALL instruction.

By default, the STEP command executes a single source line at a time. In the
following example, the STEP command executes one line, reports the action
stepped to . . . , and displays the line number (27) and source code of the next
line to be executed:

DBG> STEP
stepped to TEST\COUNT\%LINE 27

27: X = X + 1;
DBG>

The PC value is now at the first machine code instruction for line 27 of the
module TEST; line 27 is in COUNT, a routine within the module TEST.
TEST\COUNT\%LINE 27 is a path name. The debugger uses path names
to refer to symbols. (You do not need to use a path name in referring to a symbol,
however, unless the symbol is not unique. If the symbol is not unique, the
debugger issues an error message. See Section 3.3.7.2 for more information on
resolving multiply defined symbols.)

The STEP command can execute a number of lines at a time. In the following
example, the STEP command executes three lines:

DBG> STEP 3

Note that only those source lines for which code instructions were generated by
the compiler are recognized as executable lines by the debugger. The debugger
skips over any other lines, for example, comment lines.

Also, if a line contains more than one statement, the debugger executes all the
statements on that line as part of the single step.

You can specify different stepping modes, such as stepping by instruction rather
than by line (SET STEP INSTRUCTION). Also, by default, the debugger steps
over called routines; execution is not suspended within a called routine, although
the routine is executed. Issuing the SET STEP INTO command causes the
debugger to suspend execution within called routines, as well as within the
routine that is currently executing.

3.3.5.2 Determining the Current Value of the Program Counter
The SHOW CALLS command lets you determine the current value of the program
counter (PC) (for example, after returning to the debugger following a Ctrl/y
interruption).

The SHOW CALLS command displays a traceback that lists the sequence of calls
leading to the currently executing routine. For each routine (beginning with the
currently executing routine), the debugger displays the following information:

• The name of the module that contains the routine

• The name of the routine

• The line number at which the call was made (or at which execution is
suspended, in the case of the current routine)

• The corresponding PC addresses (the relative PC address from the start of
the routine, and the absolute PC address of the program)

Using the VMS Debugger 3–9

For example:

DBG> SHOW CALLS
module name routine name line rel PC abs PC

*TEST PRODUCT 18 00000009 0000063C
*TEST COUNT 47 00000009 00000647
*MY_PROG MY_PROG 21 0000000D 00000653
DBG>

This example indicates that execution is currently at line 18 of routine PRODUCT
(in module TEST), which was called from line 47 of routine COUNT (in module
TEST), which was called from line 21 of routine MY_PROG (in module MY_
PROG).

3.3.5.3 Suspending Program Execution
The SET BREAK command lets you select breakpoints, which are locations at
which program execution is suspended. When you reach a breakpoint, you can
issue commands to check the call stack, examine the current values of variables,
and so on.

In the following example, the SET BREAK command sets a breakpoint on the
procedure COUNT. The GO command then starts execution. When the procedure
COUNT is encountered, execution is suspended. The debugger reports that the
breakpoint at COUNT has been reached (break at . . .), displays the source line
(54) where execution is suspended, and prompts you for another command. At
this breakpoint, you could step through the procedure COUNT, using the STEP
command, and use the EXAMINE command (discussed in Section 3.3.6.1) to
check on the current values of X and Y.

DBG> SET BREAK COUNT
DBG> GO

.

.

.
break at PROG2\COUNT

54: COUNT: PROCEDURE (X,Y);
DBG>

When using the SET BREAK command, you can specify program locations
using various kinds of address expressions (for example, line numbers, routine
names, instructions, virtual memory addresses, or byte offsets). With high-level
languages, you typically use routine names, labels, or line numbers, possibly with
path names to ensure uniqueness.

Routine names and labels should be specified as they appear in the source code.
Line numbers may be derived from either a source code display or a listing
file. When specifying a line number, use the prefix %LINE. (Otherwise, the
debugger interprets the line number as a memory location.) For example, the
next command sets a breakpoint at line 41 of the module whose code is currently
executing; the debugger suspends execution when the PC value is at the start of
line 41.

DBG> SET BREAK %LINE 41

Note that you can set breakpoints only on lines that resulted in machine code
instructions. The debugger warns you if you try to do otherwise (for example,
if you try to set a breakpoint on a comment line). To set a breakpoint on a line
number in a module other than the one whose code is currently executing, specify
the module’s name in a path name. For example:

3–10 Using the VMS Debugger

DBG> SET BREAK SCREEN_IO\%LINE 58

You do not always need to specify a particular program location, such as line
58 or COUNT, to set a breakpoint. You can set breakpoints on events, such as
exceptions. You can also use the SET BREAK command with the /LINE qualifier
(but no parameter) to break on every line, or with the /CALL qualifier to break on
every CALL instruction, and so on. For example:

DBG> SET BREAK/LINE
DBG> SET BREAK/CALL

You can conditionalize a breakpoint (with a WHEN clause) or specify that a list
of commands be executed at the breakpoint (with a DO clause). For example,
the next command sets a breakpoint on the label LOOP3. The DO (EXAMINE
TEMP) clause causes the value of the variable TEMP to be displayed whenever
the breakpoint is triggered.

DBG> SET BREAK LOOP3 DO (EXAMINE TEMP)
DBG> GO

.

.

.
break at COUNTER\LOOP3

37: LOOP3: DO I = 1 TO 10
COUNTER\TEMP: 284.19
DBG>

To display the currently active breakpoints, issue the SHOW BREAK command:

DBG> SHOW BREAK
breakpoint at SCREEN_IO\%LINE 58
breakpoint at COUNTER\LOOP3

do (EXAMINE TEMP)
.
.
.

DBG>

If any portion of your program was written in Ada, two breakpoints that are
associated with Ada tasking exception events are automatically established when
you invoke the debugger. When you issue a SHOW BREAK command under
these conditions, the following breakpoints are displayed:

DBG> SHOW BREAK
Breakpoint on ADA event "DEPENDENTS_EXCEPTION" for any value
Breakpoint on ADA event "EXCEPTION_TERMINATED" for any value

These breakpoints are equivalent to issuing the following commands:

DBG> SET BREAK/EVENT=DEPENDENTS_EXCEPTION
DBG> SET BREAK/EVENT=EXCEPTION_TERMINATED

To cancel a breakpoint, issue the CANCEL BREAK command, specifying the
program location or event exactly as you did when setting the breakpoint. The
CANCEL BREAK/ALL command cancels all breakpoints.

3.3.5.4 Tracing Program Execution
The SET TRACE command lets you select tracepoints, which are locations for
tracing the execution of your program without stopping its execution. After
setting a tracepoint, you can start execution with the GO command and then
monitor the path of execution, checking for unexpected behavior. By setting a
tracepoint on a routine, you can also monitor the number of times the routine is
called.

Using the VMS Debugger 3–11

As with breakpoints, every time a tracepoint is reached, the debugger issues
a message and displays the source line. However, at tracepoints, the program
continues executing, and the debugger prompt is not displayed. For example:

DBG> SET TRACE COUNT
DBG> GO

.

.

.
trace at PROG2\COUNT

54: COUNT: PROCEDURE (X,Y);
.
.
.

When using the SET TRACE command, specify address expressions, qualifiers,
and optional clauses exactly as with the SET BREAK command.

The /LINE qualifier causes the SET TRACE command to trace every line and is
a convenient means of checking the execution path. By default, lines are traced
within all called routines, as well as the currently executing routine. If you do not
want to trace through system routines or through routines in shareable images,
use the /NOSYSTEM or /NOSHARE qualifiers. For example:

DBG> SET TRACE/LINE/NOSYSTEM/NOSHARE

The /SILENT qualifier suppresses the trace message and the display of source
code. This is useful when you want to use the SET TRACE command to execute
a debugger command at the tracepoint. For example:

DBG> SET TRACE/SILENT %LINE 83 DO (EXAMINE STATUS)
DBG> GO

.

.

.
SCREEN_IO\CLEAR\STATUS: ’OFF’

.

.

.

3.3.5.5 Monitoring Changes in Variables
The SET WATCH command lets you set watchpoints that will be monitored
continuously as your program executes. With high-level languages, you typically
set watchpoints on variables that have been declared in your program. In
addition, you can set watchpoints on arbitrary program locations. If the program
modifies the value of a watched variable, the debugger suspends execution and
displays the old and new values.

To set a watchpoint on a variable, specify the variable’s name with the SET
WATCH command. For example, the following command sets a watchpoint on the
variable TOTAL:

DBG> SET WATCH TOTAL

Subsequently, every time the program modifies the value of TOTAL, the
watchpoint is triggered.

The following example shows the effect on program execution when your program
modifies the contents of a watched variable.

3–12 Using the VMS Debugger

DBG> SET WATCH TOTAL
DBG> GO

.

.

.
watch of SCREEN_IO\TOTAL at SCREEN_IO\%LINE 13

13: TOTAL = TOTAL + 1;
old value: 16
new value: 17

break at SCREEN_IO.%LINE 14
14: POP(TOTAL);

DBG>

In this example, a watchpoint is set on the variable TOTAL, and the GO
command is issued to start execution. When the value of TOTAL changes,
execution is suspended. The debugger reports the event watch of . . . and
identifies where TOTAL changed (line 13) and the associated source line. The
debugger then displays the old and new values and reports that execution has
been suspended at the start of the next line (14). (The debugger reports break
at . . . , but this is not a breakpoint; it is the effect of the watchpoint.) Finally,
the debugger prompts for another command.

When a change in a variable occurs at a point other than at the start of a source
line, the debugger gives the line number plus the byte offset from the start of the
line.

Note that this general technique for setting watchpoints always applies to static
variables. A static variable is associated with the same virtual memory location
throughout program execution. In PL/I for OpenVMS VAX, only the following
kinds of variables are statically allocated:

STATIC
EXTERNAL
GLOBALDEF
GLOBALREF

A variable that is allocated on the stack or in a register (a nonstatic variable)
exists only when its defining routine is active (on the call stack). In PL/I for
OpenVMS VAX nonstatic variables include the following:

AUTOMATIC
BASED
CONTROLLED
DEFINED
PARAMETER

If you try to set a watchpoint on a nonstatic variable when its defining routine is
not active, the debugger issues a warning like the following:

DBG> SET WATCH Y
%DEBUG-W-SYMNOTACT, nonstatic variable ’Y’ is not active

A convenient technique for setting a watchpoint on a nonstatic variable is to
set a breakpoint on the defining routine, also specifying a DO clause to set the
watchpoint whenever execution reaches the breakpoint. In the following example,
a watchpoint is set on the nonstatic variable Y in routine COUNTER:

Using the VMS Debugger 3–13

DBG> SET BREAK COUNTER DO (SET WATCH Y)
DBG> GO

.

.

.
break at routine MOD4\COUNTER
%DEBUG-I-WPTTRACE, nonstatic watchpoint, tracing every instruction
DBG> SHOW WATCH
watchpoint of MOD4\COUNTER\Y [tracing every instruction]
DBG>

The debugger monitors nonstatic watchpoints by tracing every instruction.
Because this slows execution speed compared to monitoring static watchpoints,
the debugger informs you when it is monitoring nonstatic watchpoints.

When execution eventually returns to the calling routine, the nonstatic variable is
no longer active, so the debugger automatically cancels the watchpoint and issues
a message to that effect.

3.3.6 Examining and Manipulating Data
This section explains how to use the EXAMINE, DEPOSIT, and EVALUATE
commands to display and modify the contents of variables and to evaluate
expressions. It also notes restrictions on the use of these commands with PL/I for
OpenVMS VAX programs.

Note that, before you can examine or deposit into a nonstatic variable (as defined
in the previous section), its defining routine must be active (on the call stack).

3.3.6.1 Displaying the Values of Variables
To display the current value of a variable, use the EXAMINE command. The
EXAMINE command has the following form:

EXAMINE variable-name

The debugger recognizes the compiler-generated data type of the specified
variable and retrieves and formats the data accordingly. The following examples
show some uses of the EXAMINE command.

Examine a string variable:

DBG> EXAMINE EMPLOYEE_NAME
PAYROLL\EMPLOYEE_NAME: "Peter C. Lombardi"
DBG>

Examine three integer variables:

DBG> EXAMINE WIDTH, LENGTH, AREA
SIZE\WIDTH: 4
SIZE\LENGTH: 7
SIZE\AREA: 28
DBG>

Examine a two-dimensional array of integers (three per dimension):

DBG> EXAMINE INTEGER_ARRAY
PROG2\INTEGER_ARRAY

(1,1): 27
(1,2): 31
(1,3): 12
(2,1): 15
(2,2): 22
(2,3): 18

DBG>

3–14 Using the VMS Debugger

Examine element 4 of a one-dimensional array of characters:

DBG> EXAMINE CHAR_ARRAY(4)
PROG2\CHAR_ARRAY(4): "m"
DBG>

Examine the value of a variable declared as FIXED DECIMAL (10,5):

DBG> EXAMINE X
PROG4\X: 540.02700
DBG>

Examine the value of a structure variable:

DBG> EXAMINE PART
MAIN_PROG\INVENTORY_PROG.PART

ITEM: "WF-1247"
PRICE: 49.95
IN_STOCK: 24

DBG>

Examine the value of a pictured variable (note that the debugger displays the
value in quotation marks):

DBG> EXAMINE Q
MAINP\Q: "666.3330"
DBG>

Examine the value of a pointer (which is the virtual address of the variable it
accesses) and display the value in hexadecimal radix instead of decimal (the
default):

DBG> EXAMINE/HEXADECIMAL P
PROG4\SAMPLE.P: 0000B2A4
DBG>

Examine the value of a variable with the BASED attribute; in this case, the
variable X has been declared as BASED(PTR), with PTR its pointer:

DBG> EXAMINE X
PROG5\X: "A"
DBG>

Examine the value of a variable X declared as BASED with a variable PTR
declared as POINTER; here, PTR is associated with X by the following line of
PL/I code (instead of X having been declared as BASED(PTR) as in the preceding
example):

ALLOCATE X SET (PTR);

In this case, you examine the value of X as follows:

DBG> EXAMINE PTR->X
PROG6\PTR->X: "A"
DBG>

The EXAMINE command can be used with any kind of address expression, not
just a variable name, to display the contents of a program location. The debugger
associates certain default data types with untyped locations. You can override the
defaults for typed and untyped locations if you want the data to be interpreted
and displayed in some other data format.

See Section 3.3.6.3 for a comparison of the EXAMINE and EVALUATE
commands.

Using the VMS Debugger 3–15

3.3.6.2 Changing the Values of Variables
To change the value of a variable, use the DEPOSIT command. The DEPOSIT
command has the following form:

DEPOSIT variable-name = value

The DEPOSIT command is like an assignment statement in PL/I for OpenVMS
VAX.

In the following examples, the DEPOSIT command assigns new values to
different variables. The debugger checks that the value assigned, which can
be a language expression, is consistent with the data type and dimensional
constraints of the variable.

Deposit a string value (it must be enclosed in quotation marks or apostrophes):

DBG> DEPOSIT PARTNUMBER = "WG-7619.3-84"

Deposit an integer expression:

DBG> DEPOSIT WIDTH = CURRENTWIDTH + 10

Deposit element 12 of an array of characters (you cannot deposit an entire array
aggregate with a single DEPOSIT command, only an element):

DBG> DEPOSIT C_ARRAY(12) = ’K’

As with the EXAMINE command, the DEPOSIT command lets you specify any
kind of address expression, not just a variable name. You can override the
defaults for typed and untyped locations if you want the data to be interpreted in
some other data format.

3.3.6.3 Evaluating Expressions
To evaluate a language expression, use the EVALUATE command. The
EVALUATE command has the following form:

EVALUATE language-expression

The debugger recognizes the operators and expression syntax of the currently
set language. In the following example, the value 45 is assigned to the integer
variable WIDTH; the EVALUATE command then obtains the sum of the current
value of WIDTH plus 7:

DBG> DEPOSIT WIDTH = 45
DBG> EVALUATE WIDTH + 7
52
DBG>

The following example shows how the EVALUATE and EXAMINE commands
are similar. When the expression following the command is a variable name, the
value reported by the debugger is the same for either command.

DBG> DEPOSIT WIDTH = 45
DBG> EVALUATE WIDTH
45
DBG> EXAMINE WIDTH
SIZE\WIDTH: 45

The following example shows an important difference between the EVALUATE
and EXAMINE commands:

3–16 Using the VMS Debugger

DBG> EVALUATE WIDTH + 7
52
DBG> EXAMINE WIDTH + 7
SIZE\WIDTH: 131584

With the EVALUATE command, WIDTH + 7 is interpreted as a language
expression, which evaluates to 45 + 7, or 52. With the EXAMINE command,
WIDTH + 7 is interpreted as an address expression: 7 bytes are added to the
address of WIDTH, and whatever value is in the resulting address is reported (in
this instance, 131584).

3.3.6.4 Notes on Debugger Support for PL/I
In general, the debugger supports the data types and operators of PL/I and of the
other debugger-supported languages. However, there are certain language-specific
limitations or other differences. (For information on the supported data types and
operators of any of the languages, type the HELP LANGUAGE command at the
DBG> prompt.)

You cannot use the DEPOSIT command with entry or label variables or formats,
or with entire arrays or structures. You cannot use the EXAMINE command with
entry or label variables or formats; use the EVALUATE/ADDRESS command
instead.

You cannot use the EXAMINE command to determine the values or attributes
of global literals (such as GLOBALDEF VALUE literals) because they are static
expressions. Use the EVALUATE command instead.

You cannot use the EXAMINE, EVALUATE, and DEPOSIT commands with
compile-time variables and procedures. You can, however, use EVALUATE and
DEPOSIT (but not EXAMINE) with a compile-time constant, as long as the
constant is the source and not the destination.

Note that an uninitialized automatic variable does not have valid contents until
after a value has been assigned to it. If you examine it before that point, the
value displayed is unpredictable.

You can deposit a value into a pointer variable either by depositing another
pointer’s value into it, thus making symbolic reference to both pointers, or by
depositing a virtual address into it. (You can find out the virtual address of a
variable by using the EVALUATE/ADDRESS command, and then deposit that
address into the pointer.) When you examine a pointer, the debugger displays its
value in the form of the virtual address of the variable that the pointer points to.

Because the default representation of decimal constants in PL/I is packed decimal
rather than fixed binary, debugger commands such as
EVALUATE/HEXADECIMAL 53 display the number’s packed decimal
representation. You can cause conversion to take place, however, either by
specifying a fixed binary variable in the expression, or by using a constant in a
radix other than decimal (because nondecimal radix constants are assumed to be
fixed binary), as in the command:

EVALUATE/HEXADECIMAL 53 + %HEX 0.

Using the VMS Debugger 3–17

3.3.7 Controlling Symbol References
In most cases, the way the debugger handles symbols (variable names and so on)
is transparent to you. However, the following two areas may require action on
your part:

• Module setting

• Multiply defined symbols

3.3.7.1 Module Setting
To facilitate symbol searches, the debugger loads symbol records from the
executable image into a run-time symbol table (RST), where they can be accessed
efficiently. Unless a symbol record is in the RST, the debugger cannot recognize
or properly interpret that symbol.

Because the RST uses memory, the debugger loads it dynamically, anticipating
what symbols you might want to reference during execution. The loading process
is called module setting, because all of the symbol records of a given module are
loaded into the RST at one time.

At debugger startup, only the module containing the image transfer address is
set. As your program executes, whenever the debugger interrupts execution, it
sets the module surrounding the current PC value. This lets you reference the
symbols that should be visible at that location.

If you try to reference a symbol in a module that has not been set, the debugger
issues a warning. For example:

DBG> EXAMINE K
%DEBUG-W-NOSYMBOL, symbol ’K’ is not in symbol table
DBG>

You must then use the SET MODULE command to set the module containing
that symbol manually:

DBG> SET MODULE MOD3
DBG> EXAMINE K
MOD3\ROUT2\K: 26
DBG>

The SHOW MODULE command lists the modules of your program and identifies
which modules have been set.

Note that dynamic module setting may slow down the debugger as more and more
modules are set. If performance becomes a problem, you can use the CANCEL
MODULE command to reduce the number of set modules, or you can disable
dynamic module setting by issuing the SET MODE NODYNAMIC command.
(The SET MODE DYNAMIC command enables dynamic module setting.)

3.3.7.2 Resolving Multiply Defined Symbols
The debugger finds the symbols that you reference in commands according to the
scope and visibility rules of the currently set language. In general, the debugger
first searches for a symbol within the block or routine surrounding the current
PC value. If the symbol is not found in that scope region, the debugger searches
the nesting program unit, then its nesting unit, and so on. (The precise order
of search depends on the currently set language and guarantees that the proper
declaration of a multiply defined symbol is selected.)

3–18 Using the VMS Debugger

The debugger allows you to reference symbols throughout your program, not just
those that are visible at the current PC value, so that you can set breakpoints in
arbitrary areas, examine arbitrary variables, and so on. Therefore, if the symbol
is not visible at the current PC value, the debugger also searches other scope
regions. First, it searches within the currently executing routine, then the caller
of that routine, then its caller, and so on, until the symbol is found. Symbolically,
this search list is denoted 0,1,2, . . . , n, where n is the number of calls in the call
stack. Within each of these scope regions, the debugger uses the visibility rules of
the currently set language to locate symbols.

If the debugger cannot resolve a symbol ambiguity, it issues a warning. For
example:

DBG> EXAMINE Y
%DEBUG-W-NOUNIQUE, symbol ’Y’ is not unique
DBG>

You can then use a path-name prefix to uniquely specify a declaration of the
given symbol. First, use the SHOW SYMBOL command to identify all path
names associated with the given symbol; then use the desired path name when
referencing the symbol. For example:

DBG> SHOW SYMBOL Y
data MOD7\ROUT3\BLOCK1\Y
data MOD4\ROUT2\Y
DBG> EXAMINE MOD4\ROUT2\Y
MOD4\ROUT2\Y: 12
DBG>

If you need to refer to a particular declaration of Y repeatedly, use the SET
SCOPE command to establish a new default scope for symbol lookup. Then,
references to Y without a path-name prefix will specify the declaration of Y that
is visible in the new scope region. For example:

DBG> SET SCOPE MOD4\ROUT2
DBG> EXAMINE Y
MOD4\ROUT2\Y: 12
DBG>

To display the current scope for symbol lookup, use the SHOW SCOPE command.
To restore the default scope, use the CANCEL SCOPE command.

3.4 Sample Debugging Session
This section shows a sample debugging session with a PL/I program, SUM, which
contains a logic error. Line numbers have been added to facilitate the discussion.

Using the VMS Debugger 3–19

1 SUM: PROCEDURE OPTIONS(MAIN);
2 1 DECLARE (I,HIGHEST,TOTAL) FIXED;
3 1 TOTAL=0;
4 1 HIGHEST=1;
5 1 DO WHILE (HIGHEST>0);
6 2 GET LIST (HIGHEST) OPTIONS (PROMPT
7 2 (’Type a number greater than 0, or 0 to quit: ’));
8 2 IF HIGHEST <=0
9 2 THEN
10 2 STOP;
11 2 DO I=1 TO HIGHEST;
12 3 TOTAL=TOTAL+I;
13 3 END;
14 2 PUT SKIP EDIT
15 2 (’The sum of integers from 1 through’,
16 2 HIGHEST,’ is’,TOTAL)
17 2 (A,F(10),A,F(10));
18 2 PUT SKIP;
19 2 END; /* DO WHILE */
20 1 END SUM;

This program prompts for a number and prints the sum of the integers from 1
through the number entered. The problem in the program occurs because the
variable TOTAL is not reinitialized when a new number is entered; the statement
assigning the value 0 to TOTAL occurs before the loop instead of within it.

Initially, you might compile, link, and run the program as follows:

$ PLI SUM
$ LINK SUM
$ RUN SUM
Type a number greater than 0, or 0 to quit: 5

The sum of integers from 1 through 5 is 15
Enter a number: 4
The sum of integers from 1 through 4 is 25
Type a number greater than 0, or 0 to quit: 0
$

The program returns a correct sum for the first number you enter, but the sum
for the second number is obviously too high.

To debug the program, you must compile and link with the debugger. (If you
want a listing with line numbers to refer to during the debugging session, include
the /LIST qualifier with the PLI command, and then print the listing file that
results; you need not specify the file type because the PRINT command searches
for the LIS file type by default.) For example:

$ PLI/DEBUG/LIST/NOOPTIMIZE SUM
$ LINK/DEBUG SUM
$ PRINT SUM

You are now ready to begin a debugging session. The terminal session is keyed to
the numbered notes that follow.

$ RUN SUM

VAX DEBUG Version <VMS_VERSION>

3–20 Using the VMS Debugger

%DEBUG-I-INITIAL, language is PLI, module set to ’SUM’ 1
DBG> SET BREAK %LINE 7 2
DBG> GO 3
break at SUM\%LINE 7 4

7: (’Type a number greater than 0, or 0 to quit: ’));
DBG> EXAMINE TOTAL
SUM\TOTAL: 0 5
DBG> GO
Type a number greater than 0, or 0 to quit: 5

The sum of integers from 1 through 5 is 15 6

break at SUM\%LINE 7
7: (’Type a number greater than 0, or 0 to quit: ’)); 7

DBG> EXAMINE TOTAL
SUM\TOTAL: 15 8
DBG> DEPOSIT TOTAL=0 9
DBG> GO
Type a number greater than 0, or 0 to quit: 4
The sum of integers from 1 through 4 is 10 1 0

break at SUM\%LINE 7
7: (’Type a number greater than 0, or 0 to quit: ’));

DBG> GO
Type a number greater than 0, or 0 to quit: 0 1 1
%DEBUG-I-EXITSTATUS, is ’%SYSTEM-S-NORMAL, normal successful completion’
DBG> EXIT 1 2
$

1 When you issue the RUN command, the debugger displays an informational
message and the DBG> prompt. You are now in the default noscreen mode.
The lines of source code are displayed as they are executed, by default.

2 You decide that the problem may lie with the initialization of the variable
TOTAL. You can test this hypothesis by examining the value of TOTAL each
time you enter a new number. To stop the program at the point at which you
can do this, you set a breakpoint at line 7.

3 The GO command starts program execution.

4 When line 7 is reached, the debugger interrupts program execution and
displays the source line at which the breakpoint was set.

5 You use the EXAMINE command to determine the current value of the
variable TOTAL. Its value is 0, as expected at this point.

6 The GO command resumes program execution. The program now prompts
you for a number. You type 5. The program’s response is correct.

7 The debugger again reaches the breakpoint at line 7 and displays the source
line.

8 You examine the variable TOTAL with the EXAMINE command. Its value is
15, not 0 as it should be. This indicates that the assignment statement that
initializes TOTAL is misplaced.

9 The DEPOSIT command replaces the contents of TOTAL with 0, thus
allowing the program to return a correct result the next time through the
loop.

1 0 The GO command resumes program execution. The result is correct.

1 1 When you enter a 0 in response to the prompt, the program exits, causing the
debugger to display a message that indicates the termination status.

Using the VMS Debugger 3–21

1 2 The EXIT command terminates the debugging session.

You can now correct the program so that it reinitializes the variable TOTAL
correctly.

3.5 Debugger Command Summary
This section lists all of the debugger commands and any related DCL commands
in functional groupings, along with brief descriptions.

During a debugging session, you can get online HELP on any command and its
qualifiers by typing the HELP command followed by the name of the command in
question. The HELP command has the following form:

HELP debugger command

3.5.1 Starting and Terminating a Debugging Session

($) RUN1 Invokes the debugger if LINK/DEBUG was used

($) RUN/[NO]DEBUG1 Controls whether the debugger is invoked when the program is
executed

Ctrl/z or EXIT Ends a debugging session, executing all exit handlers

QUIT Ends a debugging session without executing any exit handlers
declared in the program

Ctrl/y Interrupts a debugging session and returns you to the DCL
level

Ctrl/c Has the same effect as Ctrl/y, unless the program has a Ctrl/c
service routine

($) CONTINUE1 Resumes a debugging session after a Ctrl/y interruption

($) DEBUG1 Resumes a debugging session after a Ctrl/y interruption but
returns you to the debugger prompt

ATTACH Passes control of your terminal from the current process to
another process (similar to the DCL command ATTACH)

SPAWN Creates a subprocess; lets you issue DCL commands without
interrupting your debugging context (similar to the DCL
command SPAWN)

1This is a DCL command, not a debugger command.

3.5.2 Controlling and Monitoring Program Execution

GO Starts or resumes program execution

STEP Executes the program up to the next line, instruction, or
specified instructionn

SET
SHOW

o
STEP

Establishes or displays the default qualifiers for the STEP
command

(
SET
SHOW
CANCEL

)
BREAK

Sets, displays, or cancels breakpoints

(
SET
SHOW
CANCEL

)
TRACE

Sets, displays, or cancels tracepoints

3–22 Using the VMS Debugger

(
SET
SHOW
CANCEL

)
WATCH

Sets, displays, or cancels watchpoints

n
SET
CANCEL

o
EXCEPTION
BREAK

Sets or cancels exception breakpoints

SHOW CALLS Identifies the currently active routine calls

SHOW STACK Gives additional information about the currently active
routine calls

CALL Calls a routine

3.5.3 Examining and Manipulating Data

EXAMINE Displays the value of a variable or the contents of a program location

DEPOSIT Changes the value of a variable or the contents of a program location

EVALUATE Evaluates a language or address expression

3.5.4 Controlling Type Selection and Symbolization
(

SET
SHOW
CANCEL

)
RADIX

Establishes the radix for data entry and display, displays
the radix, or restores the radix

(
SET
SHOW
CANCEL

)
TYPE

Establishes the type to be associated with untyped
program locations, displays the type, or restores the
type

SET MODE [NO]G_FLOAT Controls whether double-precision floating-point constants
are interpreted as G_FLOAT or D_FLOAT

SET MODE [NO]LINE Controls whether code locations are displayed in terms of
line numbers or routine-name + byte offset

SET MODE [NO]SYMBOLIC Controls whether code locations are displayed
symbolically or in terms of numeric addresses

SYMBOLIZE Converts a virtual address to a symbolic address

3.5.5 Controlling Symbol Lookup

SHOW SYMBOL Displays symbols in your program(
SET
SHOW
CANCEL

)
MODULE

Sets a module by loading its symbol records into the
debugger’s symbol table, identifies a set module, or
cancels a set module

(
SET
SHOW
CANCEL

)
IMAGE

Sets a shareable image by loading data structures into the
debugger’s symbol table, identifies a set image, or cancels
a set image

Using the VMS Debugger 3–23

SET MODE [NO]DYNAMIC Controls whether modules and shareable images are set
automatically when the debugger interrupts execution(

SET
SHOW
CANCEL

)
SCOPE

Establishes, displays, or restores the scope for symbol
lookup

3.5.6 Displaying Source Code

TYPE Displays lines of source code

EXAMINE/SOURCE Displays the source code at the location specified by the
address expression(

SET
SHOW
CANCEL

)
SOURCE

Creates, displays, or cancels a source directory search list

SEARCH Searches the source code for the specified stringn
SET
SHOW

o
SEARCH

Establishes or displays the default qualifiers for the
SEARCH command

n
SET
SHOW

o
MAX_SOURCE_
FILES

Establishes or displays the maximum number of source
files that may be kept open at one time

n
SET
SHOW

o
MARGINS

Establishes or displays the left and right margin settings
for displaying source code

3.5.7 Using Screen Mode

SET MODE [NO]SCREEN Enables or disables screen mode

SET MODE [NO]SCROLL Controls whether an output display is updated line by line
or once per command

DISPLAY Modifies an existing display(
SET
SHOW
CANCEL

)
DISPLAY

Creates, identifies, or deletes a display

(
SET
SHOW
CANCEL

)
WINDOW

Creates, identifies, or deletes a window definition

SELECT Selects a display for a display attribute

SHOW SELECT Identifies the displays selected for each of the display
attributes

SCROLL Scrolls a display

SAVE Saves the current contents of a display and writes it to
another display

EXTRACT Saves a display or the current screen state and writes it
to a file

EXPAND Expands or contracts a display

3–24 Using the VMS Debugger

MOVE Moves a display across the screenn
SET
SHOW

o
TERMINAL

Establishes or displays the height and width of the screen

Ctrl/w or
DISPLAY/REFRESH

Refreshes the screen

3.5.8 Editing Source Code

EDIT Invokes an editor during a debugging sessionn
SET
SHOW

o
EDITOR

Establishes or identifies the editor invoked by the EDIT
command

3.5.9 Defining Symbols

DEFINE Defines a symbol as an address, command, or value

DELETE or UNDEFINE Deletes symbol definitionsn
SET
SHOW

o
DEFINE

Establishes or displays the default qualifier for the DEFINE
command

SHOW SYMBOL/DEFINED Identifies symbols that have been defined

3.5.10 Using Keypad Mode

SET MODE [NO]KEYPAD Enables or disables keypad mode

DEFINE/KEY Creates key definitions

DELETE/KEY or
UNDEFINE/KEY

Deletes key definitions

SET KEY Establishes the key definition state

SHOW KEY Displays key definitions

3.5.11 Using Command Procedures and Log Files

DECLARE Defines parameters to be passed to command
proceduresn

SET
SHOW

o
LOG

Specifies or identifies the debugger log file

SET OUTPUT [NO]LOG Controls whether a debugging session is logged

SET OUTPUT [NO]SCREEN_LOG Controls whether, in screen mode, the screen
contents are logged as the screen is updated

SET OUTPUT [NO]VERIFY Controls whether debugger commands are
displayed as a command procedure is executed

SHOW OUTPUT Displays the current output options established by
the SET OUTPUT commandn

SET
SHOW

o
ATSIGN

Establishes or displays the default file specification
that the debugger uses to search for command
procedures

@file-spec Executes a command procedure

Using the VMS Debugger 3–25

3.5.12 Using Control Structures

IF Executes a list of commands conditionally

FOR Executes a list of commands repetitively

REPEAT Executes a list of commands repetitively

WHILE Executes a list of commands conditionally

EXITLOOP Exits an enclosing WHILE, REPEAT, or FOR loop

3.5.13 Additional Commands

SET PROMPT Specifies the debugger prompt

SET OUTPUT [NO]TERMINAL Controls whether debugger output is displayed or
suppressed, except for diagnostic messagesn

SET
SHOW

o
LANGUAGE

Establishes or displays the current language

n
SET
SHOW

o
EVENT_FACILITY

Establishes or identifies the current run-time facility
for language-specific events

SHOW EXIT_HANDLERS Identifies the exit handlers declared in the programn
SET
SHOW

o
TASK

Modifies the tasking environment or displays task
information

(
DISABLE
ENABLE
SHOW

)
AST

Disables the delivery of ASTs in the program, enables
the delivery of ASTs, or identifies whether delivery is
enabled or disabled

3–26 Using the VMS Debugger

4
The File System

This chapter discusses the use of files for input and output (I/O) in PL/I for
OpenVMS VAX and PL/I for OpenVMS AXP and describes the aspects of the
OpenVMS operating system that relate to PL/I I/O. The chapter includes the
following topics:

• Declaring, opening, and closing files

• The relationship between PL/I I/O statements and OpenVMS I/O procedures

• OpenVMS file-naming and file-defining conventions, including a description of
logical names and process permanent files

• File system error handling at run time

Chapters 5, 6, 7, 8, 9 give additional information on the file system, covering
stream and record I/O, options (ENVIRONMENT and I/O statement options), and
built-in subroutines for file handling.

4.1 File Control
File constants and variables provide your program with access to files. Your
program first declares a file constant or variable, and then associates the constant
or variable with a file when it opens the file.

A file declaration specifies an identifier and the FILE attribute, and optionally
specifies one or more file description attributes describing the type of I/O
operation that will be used to process the file. Subsequent I/O statements denote
the file by a FILE option.

The OPEN statement explicitly opens a PL/I file with a specified set of attributes
that describe the file and the method for accessing it. A file can also be opened
implicitly by a READ, WRITE, REWRITE, DELETE, PUT, or GET statement
issued for a file that is not open, or by a built-in subroutine referring to a file that
is not open.

When PL/I opens a file, the initial positioning depends on the type of file
(record or stream), the access mode, and certain ENVIRONMENT options. File
positioning for stream files and record files is described in Chapters 5 and 6,
respectively.

The CLOSE statement dissociates a PL/I file from the physical file with which it
was associated when it was opened. Some ENVIRONMENT options are valid in
the CLOSE statement. ENVIRONMENT options are summarized in Chapter 7.

Declaring, opening, and closing files are described in more detail in the PL/I for
OpenVMS Systems Reference Manual.

The File System 4–1

4.2 Using the OpenVMS File System for I/O
When a PL/I program contains an I/O statement, for example, OPEN or READ,
the compiler translates the request into a call to the appropriate OpenVMS
operating system procedure.

In the OpenVMS system, I/O is performed by the following services:

• VAX Record Management Services (RMS). RMS provides complete file and
record-handling capabilities.

• I/O system services. System services provide direct control over data transfer
between the process executing an image and a peripheral device.

Note that, although you can call RMS procedures and OpenVMS system services
directly from a PL/I program, it is not normally necessary to do so. A PL/I
program executed on the OpenVMS operating system has full access to RMS
capabilities through the following language elements:

• Options of the ENVIRONMENT attribute

• Keyword options on PL/I I/O statements

• Built-in subroutines that invoke RMS file-handling services

RMS, in turn, manages the details of communicating with the OpenVMS I/O
system to transfer data and to organize and arrange data on physical devices.

4.2.1 PL/I Files and OpenVMS File Specifications
In a PL/I program, all I/O operations are performed on a file, using the name of a
file constant or file variable. When the file is opened, PL/I associates the name of
the file constant with a specific device or file on the computer system.

When a file variable is specified in an OPEN statement or in an I/O statement,
the name used is that of the file constant with which the variable is currently
associated. For example:

DECLARE F FILE,
G FILE VARIABLE;

G = F;
OPEN FILE(G);

In this example, F is a file constant and G is a file variable assigned the value of
F. In the OPEN statement, PL/I uses the name F to associate the PL/I file with
an OpenVMS file. The default file would be F.DAT.

The following sections describe in more detail how PL/I for OpenVMS VAX and
PL/I for OpenVMS AXP associate a file constant with a device or file.

4.2.2 Using the TITLE Option
When you specify the TITLE option on an OPEN statement, you can include
all or part of an OpenVMS file specification to indicate the file or device to be
associated with the PL/I file. The following examples illustrate the use of the
TITLE option.

OPEN FILE (OUTFILE)
TITLE(’DB1:[PAYROLL.DAT]JANUARY.LOG;2’);

This file specification completely defines a file on the local OpenVMS system.

OPEN FILE (PRINTFILE) PRINT TITLE(’LPC0:SAMPLE.DAT’);

4–2 The File System

This output file will be directed to LPC0:, the system printer device. The listing
file will have the title SAMPLE.DAT on its burst page. OpenVMS spools low-
speed I/O devices such as printers by accumulating data for the device in a file,
and then queuing the file for processing when it is closed.

NAME = ’TEST’||COUNT;
.
.
.

OPEN FILE(NEWFILE) OUTPUT TITLE(NAME);

The specification of this file is determined by the value of COUNT. For example, if
COUNT is 5 when this OPEN statement executes, the file created is TEST5.DAT.

When no TITLE option is specified, PL/I supplies a default value for the file’s
title. The default title is the name of the file constant associated with the PL/I
file. Whenever a title does not completely specify a file, PL/I for OpenVMS VAX
or PL/I for OpenVMS AXP takes the following steps, in order:

1. It performs logical name translation. If there is a colon (:) present in the
TITLE option, the file system attempts to find an equivalence name for
the portion of the file specification on the left of the colon. If there are no
punctuation marks in the TITLE option, the file system attempts to find an
equivalence name for the entire specification.

2. It supplies missing fields from the value specified in the
DEFAULT_FILE_NAME option of the ENVIRONMENT attribute, if that
option is specified.

3. It applies system defaults to complete the file specification.

If the file specification that is finally achieved is invalid or represents an illegal
device or file (for example, an input file cannot be found), the UNDEFINEDFILE
condition is signaled.

4.2.3 Using Logical Names
At DCL command level before executing a program, you can create a logical name
to assign an OpenVMS file specification to the identifier of a PL/I file constant or
to a value specified in a TITLE option. For example, suppose your PL/I program
declares and opens a file as follows:

DECLARE INFILE FILE;
.
.
.

OPEN FILE (INFILE) RECORD INPUT;

Before running the program, you might associate an OpenVMS file with the
identifier INFILE:

$ DEFINE INFILE DB1:[TEMP]A.DAT

The DEFINE command assigns the PL/I file INFILE the OpenVMS file
specification DB1:[TEMP]A.DAT. In OpenVMS terms, the name INFILE is a
logical name, and the name DB1:[TEMP]A.DAT is an equivalence name for the
logical name.

You can also use the DEFINE command to specify alternate device or file
equivalents for the PL/I default file constants SYSIN and SYSPRINT. For
example, to redirect output for the default file SYSPRINT, you could issue the
following command:

The File System 4–3

$ DEFINE SYSPRINT TEST.OUT

While this assignment is in effect, any PL/I procedure that outputs data to
SYSPRINT (without opening SYSPRINT with an explicit title) will create a file
named TEST.OUT on the current default device.

Logical names can also be established by other commands. For example, you can
specify a logical name for a device when you enter an ALLOCATE or MOUNT
command while placing the device on line. For example:

$ ALLOCATE
$_Device: MT:
$_Log_Name: INFILE
_MTA1: ALLOCATED

This ALLOCATE command allocates a tape drive and establishes the logical
name INFILE for it. When a PL/I program reads from the file INFILE, the
system translates the name INFILE and uses the tape MTA1: as the input
device.

Logical Names in TITLE Values
The value specified in a TITLE option can represent a logical name. For example:

OPEN FILE(INFILE) TITLE (’NEWFILE’);

This file might be defined as follows:

$ DEFINE NEWFILE LARGO.TXT

When the OPEN statement opens the file INFILE, the file’s title (NEWFILE) is
translated to LARGO.TXT. If NEWFILE is not defined when the OPEN statement
is executed, the OPEN statement opens the file NEWFILE.DAT.

If instead of containing a colon a file specification in the TITLE option contains
any of the punctuation marks that are used in OpenVMS file specifications, the
file system does not translate that portion of the specification. For example:

TITLE (’STATES.’)

In this example, the file system assumes that ’STATES.’ is the specification of a
file name and a file type (the presence of the period indicates a null file type). It
does not perform any translation.

When you enter a complete file specification for the TITLE option and you do not
want the file system to attempt logical name translation, you can precede the file
specification with an underscore (_). For example:

TITLE (’_DBB1:[APPLIC.FILES]MASTER.SRC’)

The system does not perform translation if an underscore precedes either a device
name or a file name that is specified with no punctuation.

Process Permanent Logical Names
The system provides every user and every batch job with a default set of process
logical name assignments, which are listed in Table 4–1. Because the files
associated with these assignments exist for the life of the process or job, and
because they are permanently open, they are called process permanent files.

4–4 The File System

Table 4–1 Default Process Logical Names

Logical Name Default Equivalence Name

SYS$INPUT Input stream. For an interactive user, this is the terminal or a
command procedure file; for a batch job, the input command file.

SYS$OUTPUT Output stream. For an interactive user, this is the terminal; for a
batch job, the batch job log file.

SYS$ERROR Error stream. Unless overridden by the user, it is the same as
SYS$OUTPUT.

SYS$DISK Default device.

SYS$COMMAND Default command stream. For an interactive user, this is the
terminal; for a batch job, the batch job input command file.

The default files associated with the GET and PUT statements, SYSIN and
SYSPRINT, are defined by PL/I as follows:

Statement PL/I File Default Title

GET SYSIN SYS$INPUT

PUT SYSPRINT SYS$OUTPUT

Thus, when your program executes a GET statement that does not specify the
FILE option, and if SYSIN was not explicitly opened with a title, the run-time
system and the file system perform the following translations:

1. PL/I attempts to translate the logical name SYSIN. If no logical name
assignment exists for it, PL/I replaces the name SYSIN with the name
SYS$INPUT.

2. The system translates the logical name SYS$INPUT. The resulting file
specification is your current input device.

A similar set of associations occurs when a program executes a PUT statement
without the FILE option: the resulting output is written to the current output
file, SYS$OUTPUT.

4.2.4 Using the DEFAULT_FILE_NAME Option
Use the DEFAULT_FILE_NAME option of the ENVIRONMENT attribute to
specify default values for a file specification when a file is opened.

For example:

OPEN FILE (REPORT) RECORD OUTPUT
ENVIRONMENT (

DEFAULT_FILE_NAME(’.LIS’));

The default file type LIS will be applied in the following cases:

• No logical name assignment exists for the name REPORT when the program
containing this statement is executed. In this case, the file will be named
REPORT.LIS, and it will be cataloged in the current default directory.

• The equivalence name for the logical name REPORT does not contain a
file type. In this case, the file type LIS will be supplied by default to the
translated equivalence of the logical name REPORT.

The File System 4–5

PL/I for OpenVMS VAX and PL/I for OpenVMS AXP use the punctuation
in the DEFAULT_FILE_NAME option to determine which portion of the file
specification is specified. Thus, the period (.) in the preceding example indicates
that the value is a file type. An unpunctuated name is treated as a file name; a
name terminated by a colon (:) is treated as a device name (and can therefore be
a logical name).

When the DEFAULT_FILE_NAME option is not specified for a file, and no file
type is specified, PL/I supplies the default file type DAT.

PL/I applies the value of the DEFAULT_FILE_NAME option after it establishes
the file’s title. Thus, in the preceding example, the title, REPORT, is established
before the value ’.LIS’ is applied. Note that the only time a file name in a
DEFAULT_FILE_NAME option is used is when the TITLE option specifies a null
string; that is, the TITLE option is specified as follows:

TITLE(’’)

A DEFAULT_FILE_NAME option can specify any portion of a file specification.
For example:

DECLARE REMOTE_FILE FILE RECORD INPUT
ENV(DEFAULT_FILE_NAME(
’RONDO::DBB2:[MALCOLM].TXT’));

This option specifies a node name, device, directory, and file type. The file name
must be supplied when the file is opened. For example:

OPEN FILE(REMOTE_FILE) TITLE(’ALLEGRO’);

This statement opens the file RONDO::DBB2:[MALCOLM]ALLEGRO.TXT.
Another OPEN statement for the file can specify a different TITLE option, for
example, TITLE(’ANDANTE’), to open a different file.

4.2.5 Expanding File Specifications
After logical name translation and after values supplied by the
DEFAULT_FILE_NAME option, if any, are applied, the defaults that the file
system applies are as follows:

Field System Default Provided

Node Local system

Device Current default device

Directory Current default directory

File name None

File type DAT

Version number For an input file, the most recent version; for an output file, the
highest existing version number, plus 1

The following examples enumerate the steps in completing a file specification. All
examples assume that the following logical name assignments are in effect:

TAPEFILE = MTA0:

STATE_NAME = NEBRASKA

STATES = DMA2:[BACKUP]

They also assume the following current default device and directory:

4–6 The File System

DBB1:[MALCOLM]

In the following example, the value in the TITLE option represents the complete
file specification:

DECLARE STATES FILE RECORD OUTPUT;
OPEN FILE(STATES) TITLE (’_DMA2:[STATE.DATA]NEVADA.DAT;2’);

Thus, the final specification is: _DMA2:[STATE.DATA]NEVADA.DAT;2

The following example uses several steps to obtain the file specification:

DCL STATES FILE INPUT ENVIRONMENT(
DEFAULT_FILE_NAME (’[STATE.FILES].DAT’));

OPEN FILE(STATES) TITLE (’MISSOURI’);

The steps are:

1. Obtain the value specified in the TITLE option, MISSOURI.

2. Since there is no logical name assignment for MISSOURI, use MISSOURI as
the file name.

3. Apply the value in the DEFAULT_FILE_NAME option, which includes a
default directory, [STATE.FILES], and a default file type, DAT.

4. Apply system defaults for device and version number (for an input file).

5. The final specification is: DBB1:[STATE.FILES]MISSOURI.DAT;n where n is
the highest existing version of the file.

The following example includes the translation of a logical name:

DECLARE STATES FILE RECORD OUTPUT;
OPEN FILE(STATES) TITLE (’STATE_NAME’);

The steps are:

1. Obtain the value from the TITLE option, STATE_NAME.

2. Translate the logical name STATE_NAME to obtain the equivalence,
NEBRASKA.

3. Apply default device, directory, file type, and version number (for an output
file).

4. The final specification is: DBB1:[MALCOLM]NEBRASKA.DAT;n where n is 1
higher than the number of any existing version of the file.

In the following example, no title is specified and the default title is applied:

DCL STATES FILE RECORD OUTPUT;
OPEN FILE (STATES);

The steps are:

1. Apply the default title, STATES.

2. Translate the logical name STATES to obtain the equivalence name,
DMA2:[BACKUP].

3. Apply default file type DAT and the default version number (for an output
file). Note that no default is supplied for the file name.

4. The final specification is: DMA2:[BACKUP].DAT;n where n is 1 higher than
the number of any existing version of the file.

The File System 4–7

The following example specifies a tape file:

DCL TAPEFILE FILE RECORD ENVIRONMENT(
DEFAULT_FILE_NAME(’TAPEFILE:’));

OPEN FILE(TAPEFILE) OUTPUT TITLE(’TAPE1.FIL’);

The steps are:

1. Apply the title TAPE1.FIL.

2. Translate the logical name TAPEFILE in the DEFAULT_FILE_NAME option
to MTA0:, its equivalent.

3. Use the system default version number for tape files, 0. Tape files do not have
directories.

4. The final specification is: MTA0:TAPE1.FIL;0

4.3 Error Handling
PL/I for OpenVMS VAX and PL/I for OpenVMS AXP use the standard PL/I ON
condition names to signal run-time errors that occur for file operations. The ON
conditions and the circumstances under which they are signaled are as follows:

• The UNDEFINEDFILE condition is signaled whenever a file cannot be
opened.

• The ENDFILE condition is signaled when the end-of-file is reached during an
input operation.

• The ENDPAGE condition is signaled for a file with the PRINT attribute when
the current line number exceeds the page size specified for the file.

• The KEY condition is signaled for a file with the KEYED attribute when any
error involving the interpretation, writing, or specification of a key occurs.

• The ERROR condition is signaled for all other file-related errors.

To handle any of these conditions in a PL/I procedure, you can establish an
ON-unit to receive control if the specified condition is signaled. For example:

ON UNDEFINEDFILE (INFILE) OPEN FILE (INFILE)
TITLE (’SYS$INPUT’);

The ON statement provides a default title for the file INFILE.

4.3.1 Values Returned by PL/I Built-In Functions for Error Handling
An ON-unit can be a generalized error-handling routine, written so that it
responds to specific errors or prints an error message. Following are the PL/I
built-in functions that provide meaningful information in an ON-unit to handle a
file system error:

• ONCODE

• ONFILE

• ONKEY

Whenever an error is signaled, the built-in function ONCODE makes available
the condition value associated with the specific error. When a PL/I program is
executing under control of the OpenVMS operating system, the value returned by
the ONCODE built-in function is a unique 32-bit condition value that indicates
the reason for the error. This value is from the system, from RMS, or from the
PL/I run-time system.

4–8 The File System

The built-in function ONFILE returns a character string giving the name of the
file constant on which the error occurred.

If the file was being accessed by key, the ONKEY built-in function returns the
key value that caused the error to be signaled.

4.3.2 Writing an Error Handler
You can write an ON-unit to detect and correct errors that occur during file
operations. The following example shows an ON-unit that detects whether a
record with a given key value was not found or whether an attempt was made to
write a record whose key duplicates the value of an existing key.

ON KEY(STATE_FILE) BEGIN;
%INCLUDE $RMSDEF;

/* Check for a record not found */
IF ONCODE() = RMS$_RNF /* if record not found */
THEN DO;

PUT SKIP EDIT(STATENAME,’Not found.’)
(A,X,A);

STOP;
END;

/* Check for duplicate key */
ELSE

IF ONCODE = RMS$_DUP
THEN DO;

PUT SKIP EDIT(’Record already exists for’,
STATENAME)

(A,X,A);
STOP;
END;

END;

In this example, the ON-unit declares symbolic names for two specific status
values returned by ONCODE:

• The value RMS$_RNF indicates that no record exists with the specified key
value.

• The value RMS$_DUP indicates that a record already exists with the specified
key in an index for which duplicate keys are not allowed.

In an ON-unit for the KEY condition, ONCODE may also return the value
associated with the status code RMS$_KEY. This code indicates that a key value
is invalid; for example, it is an incorrect data type.

The symbolic names for RMS status codes are declared as %REPLACE constants
in module $RMSDEF of PLI$STARLET.

4.3.3 Default Error Handling for the File System
If a file system error occurs during the execution of a PL/I statement, the PL/I
run-time system signals either the specific PL/I condition name or the ERROR
condition. If no user-specified ON-units exist to handle either the specific PL/I
condition or the ERROR condition, PL/I performs its default condition handling.

If any active procedure specified OPTIONS (MAIN), a default PL/I condition
handler is present and executed. It prints a PL/I run-time error message.
If there is no default PL/I handler, the error signal is passed to the default
condition handler established by the OpenVMS system, which prints the message
associated with the RMS error. If the error was a fatal error, the handler
terminates the program; otherwise, the program continues.

The File System 4–9

The following example illustrates the type of message that the PL/I run-time
system displays when an error occurs during an I/O operation:

%PLI-F-ERROR, PL/I ERROR condition.
-PLI-I-IOERROR, I/O error on file ’STATE_FILE’
-PLI-I-FILENAME, File name:

’_DB7:[PROJECT]STDATA.DAT;’
-PLI-I-NOTKEYD, Not a KEYED file.
%TRACE-F-TRACEBACK, symbolic stack dump follows

module name routine line relative PC absolute PC
FLOWERS BEGIN%35 35 00000085 00000C88
FLOWERS BEGIN%29 29 000000BD 00000C02
FLOWERS FLOWERS 25 000000D3 00000B42

In this example, the error occurred because a keyed I/O statement was specified
for a file lacking the KEYED attribute.

4–10 The File System

5
Stream Input/Output

Stream I/O is one of the two general kinds of I/O performed by PL/I (the other is
record I/O, described in Chapter 6). In stream I/O, more than one record or line
can be processed by a single statement, and, conversely, multiple statements can
process a single line or record. In record I/O, only one record of a file is processed
by each READ or WRITE statement.

Stream input and output are performed by the statements GET and PUT,
respectively. Both statements can perform either list-directed or edit-directed
operations.

This chapter discusses the physical organization of stream files. See the PL/I for
OpenVMS Systems Reference Manual for detailed information on the following
topics:

• The physical organization of stream files

• The options and attributes applicable to stream I/O—the LINESIZE and
PAGESIZE options and the PRINT and STREAM attributes

• The statements used for stream I/O—GET, PUT, and FORMAT

• The processing and positioning that take place during stream I/O operations

• The format items and methods of combining them into format specifications
for edit-directed stream I/O operations

A file has the STREAM attribute if one of the following conditions is met:

• The file was declared explicitly with a DECLARE statement and the
STREAM attribute.

• The file was declared explicitly with a DECLARE statement and with neither
the STREAM nor the RECORD attribute (as the default is STREAM).

• The file was specified in and opened implicitly by a GET or PUT statement.

Files that are declared with the STREAM attribute have the following
characteristics:

• Sequential organization of records

• Variable-length records, with the maximum length of either 132 (default) or
the length defined by the LINESIZE option

• When the attributes STREAM, OUTPUT, and PRINT appear in the same
declaration, a fixed control area that contains formatting information for the
output file (see the PL/I for OpenVMS Systems Reference Manual.

Stream files contain only ASCII data. The ASCII format used to represent
program data in a stream output file differs depending on the attributes given to
the file. For example, the representation of character strings differs depending on
the presence or absence of the PRINT attribute in the file declaration.

Stream Input/Output 5–1

An existing stream file can be reopened and accessed by the READ and WRITE
statements. If READ and WRITE open a file implicitly, the attributes RECORD
INPUT SEQUENTIAL and RECORD OUTPUT SEQUENTIAL are implied,
respectively. These attributes are compatible with, for example, an existing disk
file created with the STREAM and OUTPUT attributes.

The most straightforward way to retrieve an entire line (record) from an existing
stream file is with a simple READ statement. The following sample program
uses the READ statement to retrieve entire lines from a stream file (TEST.STR)
that was created by a previous program; each record is then output to a record
file (TEST.REC). Note that both files are declared with the RECORD attribute to
be compatible with the READ and WRITE statements. TEST.STR is assumed to
have 80-character lines, and these input records are assigned to a varying-length
character variable.

FILES: PROCEDURE OPTIONS(MAIN);

%REPLACE LENGTH BY 80;

DCL INFILE RECORD INPUT;
DCL OUTFILE RECORD OUTPUT;
DCL INSTRING CHAR(LENGTH) VARYING;
DCL EOF BIT(1) INITIAL(’0’B);

ON ENDFILE(INFILE) EOF=’1’B;

OPEN FILE(INFILE) TITLE(’TEST.STR’);
OPEN FILE(OUTFILE) TITLE(’TEST.REC’);

READ FILE(INFILE) INTO(INSTRING);
DO WHILE(^EOF);

WRITE FILE(OUTFILE) FROM(INSTRING);
READ FILE(INFILE) INTO(INSTRING);
END;

END FILES;

You can perform comparable operations with GET and PUT, working on existing
files that were created with the RECORD attribute. Note, however, that the
GET and PUT statements always access a file sequentially, regardless of the
file’s physical organization, and that all their input or output data is in ASCII
characters. Some types of record files may also contain, in a single record, both
ASCII program data and other ASCII data used to manipulate record files. If the
file’s records contain information other than program data, that information must
be interpreted and processed by your program.

5–2 Stream Input/Output

6
Record Input/Output

Record I/O is performed by the READ, WRITE, DELETE, and REWRITE
statements; each statement processes an entire record. (In stream I/O, more than
one line or record can be processed by a single statement.) In addition, some
forms of record I/O allow you to access records in the file by record number or by
a key field contained in the record.

This chapter includes the following topics:

• File organizations for record files—sequential, relative, and indexed
sequential

• Access modes—sequential, random, and random/sequential, as well as access
through block I/O and record identification

• Record formats—variable-length, fixed-length, and variable with fixed-length
control

• Carriage control

• Sequential files

• Relative files

• Indexed sequential files

For detailed description of record positional information and the READ, WRITE,
DELETE, and REWRITE statements, see the PL/I for OpenVMS Systems
Reference Manual.

6.1 File Organizations
VAX Record Management Services (RMS) supports the following three file
organizations for record files:

• Sequential

• Relative

• Indexed sequential

The relative and indexed sequential file organizations are valid only for disk
devices. To read or write files on tape or unit record devices, you must use
sequential organization.

The type of organization you select for a file and the attributes of the file, that
is, the record format and size, the file size, and so on, are set when you create a
file and need not be specified again. When a program subsequently accesses an
existing file, the file’s organization and attributes are known to the file system.
Table 6–1 shows the attributes and access modes for record files.

Record Input/Output 6–1

Sequential Files
In a sequential file, records are ordered one after the other, in the order in which
they are written. New records can be added only at the end of an existing file.
Existing records can be updated or replaced only if the replacement record is
exactly the same length as the original record. Sequential files are discussed in
more detail in Section 6.5.

Relative Files
A relative file contains a specified number of fixed-length cells, numbered from
1 to n, where n is a user-specified maximum. Any record written to the file is
written to a specific numbered cell; the cell number is also the relative record
number of the record in the file.

Normally, the records in a relative file have an implied numeric data field, for
example, an account number or employee number, which corresponds to the cell
in which the record will be placed. When you read or write a record in a relatively
organized file, you specify the record by its relative record number. Relative files
are discussed in more detail in Section 6.6.

Indexed Sequential Files
In an indexed sequential file, each record has one or more data keys that define
a sort order for the file. The file system maintains an index for each key in the
file and uses these indexes to locate a record when a program specifies the key of
interest.

The records can be accessed either in the sort order defined by a key, or
individually by key specification. Indexed sequential files are discussed in more
detail in Section 6.7.

Table 6–1 shows the attributes and access modes for record files.

Table 6–1 Attributes and Access Modes for Record Files

Attributes
Specified

Attributes
Implied

Valid Devices
and File
Organizations Usage

SEQUENTIAL
OUTPUT

RECORD Any output
device or file
except indexed

Records can be added to the end of the file with
WRITE statements. Each WRITE statement adds a
single record to the file.

SEQUENTIAL
INPUT

RECORD Any input
device or file

Records in the file are read with READ statements.
Each statement reads a single record.

SEQUENTIAL
UPDATE

RECORD Relative,
indexed,
sequential disk

READ statements read a file’s records in order.
PL/I maintains the current record, which is the
record just read. This record can be replaced in
a REWRITE statement.1 In a relative or indexed
sequential file, the current record can also be
deleted with a DELETE statement. Each statement
processes a single record.

DIRECT
OUTPUT

KEYED
RECORD

Relative,
indexed,
sequential disk2

WRITE statements insert records into the file at
positions specified by keys. Each statement inserts a
single record.

1For a file with sequential organization, the record being written must have the same length as the one that was read.
2The file must have fixed-length records.

(continued on next page)

6–2 Record Input/Output

Table 6–1 (Cont.) Attributes and Access Modes for Record Files

Attributes
Specified

Attributes
Implied

Valid Devices
and File
Organizations Usage

DIRECT
INPUT

KEYED
RECORD

Relative,
indexed,
sequential disk2

READ statements specify records to be read
randomly by key. Each statement reads a single
record.

DIRECT
UPDATE

KEYED
RECORD

Relative,
indexed,
sequential disk2

READ, WRITE and REWRITE statements specify
records randomly by key. In a relative or indexed
file, records can also be deleted by key.

KEYED
SEQUENTIAL
OUTPUT

RECORD Relative,
indexed,
sequential disk2

WRITE statements insert records into the file at
positions specified by keys. Each statement inserts
a single record. This mode is identical to DIRECT
OUTPUT.

KEYED
SEQUENTIAL
INPUT

RECORD Relative,
indexed,
sequential disk2

READ statements access records in the file randomly
by key or sequentially.

KEYED
SEQUENTIAL
UPDATE

RECORD Relative,
indexed,
sequential disk1

Any record I/O operation is allowed except a WRITE
statement that does not specify a key or a DELETE
statement for a sequential disk file with fixed-length
records.

1For a file with sequential organization, the record being written must have the same length as the one that was read.
2The file must have fixed-length records.

6.2 Access Modes
In standard PL/I, you can specify one of the following sets of attributes to define
the way a program is going to access the records in a file:

• SEQUENTIAL indicates sequential access to a sequential or keyed file.

• DIRECT indicates random access to a keyed file.

• KEYED SEQUENTIAL indicates sequential and random access to a keyed
file.

In PL/I for OpenVMS VAX and PL/I for OpenVMS AXP, there are two additional
ways to access a file. You specify an ENVIRONMENT option to indicate that you
are going to process a file in either of these ways:

• BLOCK_IO indicates that the file will be accessed in terms of blocks, rather
than records.

• RECORD_ID_ACCESS indicates that records can be read or written randomly
with the file address of the record.

Although you cannot change the organization of the records in a file after you
have created the file, you can select a different type of access mode for reading or
processing the file. You can also access a file using more than one access mode;
for example, you can read a record in an indexed file by specifying a key, and then
read records sequentially beginning at that position in the file.

Record Input/Output 6–3

6.2.1 Sequential Access
You can use sequential access with any type of file organization. When you access
a file sequentially, each read or write operation reads or writes the next record in
the file. As you process a file sequentially, PL/I keeps track of the current record
(that is, the record just read or written) and the next record (the record that
follows the record just read or written).

When you access a relative file sequentially, the records are read or written in
order by relative record number. In a file in which not all cells contain records,
sequential input operations involve only cells that contain data records.

When you access an indexed sequential file sequentially, you can specify the
number of the index on which to base the sequence. The next record in the input
operation is the next ordered record in the specified index.

6.2.2 Random Access
When you access a file randomly by key, each I/O request must contain the KEY
or KEYFROM option. The contents of the specified key depend on the file’s
organization, as follows:

• For a relative file, the key is the relative record number of the record to be
accessed.

• For an indexed sequential file, the key is the portion of the record defined as
a key field.

• In a disk file with fixed-length records, the key value is the record number
relative to the beginning of the file. The first record in the file is relative
record number 1, the second record is relative record number 2, and so on.

By default, a READ statement accesses a record based on an exact match of the
key specified. In PL/I for OpenVMS VAX and PL/I for OpenVMS AXP, you have
the option of requesting that the READ statement match any record with an
equal or greater key value, or any record with a greater key value.

6.2.3 Random and Sequential Access
When you access a file for random and sequential access, you can read records
sequentially or randomly. For example, you can use a keyed READ statement to
position the file at a specified record and then read or process records sequentially
from that position.

6.2.4 Block Input/Output
A block is a physical extent on a disk volume. You can elect to perform all of
your I/O operations in terms of disk blocks: the file system transfers blocks of
data at a time to your program. Your program is responsible for interpreting and
deblocking the data in the blocks.

To perform block I/O, specify the BLOCK_IO option of the ENVIRONMENT
attribute. This option is valid for disk files and for magnetic tape files. You
can access a disk file for block I/O using either sequential or random access. If
you are performing sequential block I/O, blocks are transferred to your program
in sequential order. If you use keyed access, you must specify a virtual block
number in the KEY or KEYFROM option. The first block in the file is number 1,
the second block is number 2, and so on.

Block I/O to magnetic tape files can only be performed sequentially.

6–4 Record Input/Output

When a file is opened for block I/O, the SPACEBLOCK built-in subroutine can be
used to move the file forward or backward a given number of blocks.

6.2.5 Access by Record Identification
You can access records in any type of disk file that is opened for any type of access
using a record identification. You must do the following:

1. Specify the RECORD_ID_ACCESS option in the ENVIRONMENT attribute
for the file.

2. Supply a 2-element array variable to save the record identification of records
you want to access by record identification.

3. Specify the array variable in the RECORD_ID_TO option on a READ,
REWRITE, or WRITE statement that accesses a record in the file, and save
the value that is returned.

4. Specify the array variable that contains a valid record identification in a
RECORD_ID option on a READ, REWRITE, or DELETE statement.

For example:

DECLARE LIBFILE FILE ENVIRONMENT(RECORD_ID_ACCESS),
SAVED_ID(2) FIXED BINARY(31);

OPEN FILE (LIBFILE) DIRECT;
READ FILE (LIBFILE) KEY(MODULE_NAME) INTO (INREC)

OPTIONS (RECORD_ID_TO(SAVED_ID));

The READ statement in this example returns the value of the record
identification associated with the record whose key is indicated by the variable
MODULE_NAME. The value of SAVED_ID may subsequently be used in a
REWRITE or DELETE statement to modify the record.

6.3 Record Formats
VAX Record Management Services (RMS) allows the following types of record
formats:

• Fixed length

• Variable length

• Variable with fixed-length control

Fixed-length records and variable-length records are allowed for all file
organizations. Variable with fixed-length control records are allowed in sequential
and relative files only.

You need specify the format only when you create a file. Thereafter, each time
you open the file PL/I determines the format of the records in the file.

6.3.1 Fixed-Length Records
In a file containing fixed-length records, all records have the same length. Thus,
when you create a file with fixed-length records, you must specify the length of
each record in the file; this size cannot be changed thereafter.

To create a file with fixed-length records in a PL/I program, use the FIXED_
LENGTH_RECORDS option of the ENVIRONMENT attribute. The MAXIMUM_
RECORD_SIZE option specifies the size of each record. For example:

Record Input/Output 6–5

DECLARE FIXED_FILE FILE RECORD KEYED OUTPUT
ENVIRONMENT (

FIXED_LENGTH_RECORDS,
MAXIMUM_RECORD_SIZE(80));

When the file FIXED_FILE is opened, its record format is established as having
fixed-length 80-character records.

When a file that has fixed-length records is processed by READ and WRITE
statements, the file system checks the length of the variable specified in the
INTO or FROM option to see if it is the same as the length of the records in the
file. If not, the ERROR condition is signaled.

When you process a file with fixed-length records, you can specify the
SCALARVARYING option of the ENVIRONMENT attribute (see Chapter 7)
to process records in the standard PL/I manner.

6.3.2 Variable-Length Records
In a file consisting of variable-length records, each record can have a different
size. RMS places a count field at the beginning of each record to indicate its size;
however, this count field is not considered a part of the data record, nor is the
length of the count field included in the size of the record.

Variable length is the default record format for PL/I for OpenVMS VAX and PL/I
for OpenVMS AXP files. You can specify the MAXIMUM_RECORD_SIZE option
to specify the maximum length that any record can have. For example:

DECLARE VAR_FILE FILE RECORD OUTPUT
ENVIRONMENT (

MAXIMUM_RECORD_SIZE(80));

This declaration indicates that the file VAR_FILE has variable-length records,
each with a maximum length of 80 characters.

When a file that has variable-length records is processed by READ statements,
the file system checks the length of the variable specified in the INTO option
to see if it is large enough to hold the record being read. If not, the ERROR
condition is signaled.

6.3.3 Variable-Length Records with a Fixed-Length Control Area
Variable-length records with a fixed-length control area are similar to variable-
length records. However, they also contain a fixed-length control field. The
control field size is the same for every record in the file.

The fixed control area in a record can contain data that is not related to the other
data in the file. For example, a line-oriented editing program could use the fixed
control area for sequence numbers.

To create a file of variable-length records with a fixed-length control area, specify
the FIXED_CONTROL_SIZE option of the ENVIRONMENT attribute. The
length of the control area you specify is a permanent attribute of the file; it
cannot be changed later.

When you specify the maximum record length for a file containing variable-length
with fixed-length control records, the length you specify does not include the
length of the fixed control area. For example:

6–6 Record Input/Output

DECLARE VFC_FILE FILE RECORD
ENVIRONMENT (

MAXIMUM_RECORD_SIZE(250),
FIXED_CONTROL_SIZE(2));

When the file VFC_FILE is opened for writing, the size of the fixed-length control
area is set at 2 bytes; the maximum size of the data portion of any record is set
at 250 bytes.

I/O operations on the file can process the fixed control area. The READ statement
returns the contents of the fixed control area to a variable specified in the FIXED_
CONTROL_TO option. The REWRITE and WRITE statements modify the fixed
control area using the variable specified in the FIXED_CONTROL_FROM option,
if any.

If this file is printed by the OpenVMS system, the contents of the fixed control
area are printed to the left of each record.

6.4 Carriage Control
PL/I for OpenVMS VAX and PL/I for OpenVMS AXP provide a default carriage
control for files that will be printed. This format, called carriage return format,
can be specified in the ENVIRONMENT option list (see Chapter 7) with the
CARRIAGE_RETURN_FORMAT option; this option is never required.

When a file has carriage return format, the file can be output to a printer or
terminal on a record-by-record basis. On output, each record is automatically
preceded by a line feed (<LF>) character and followed by a carriage return (<CR>)
character; these characters are not stored in the record. Thus, each record in the
file occupies one line of output. This type of carriage control is valid for any file
or record organization.

An alternative form of carriage control is the PRINTER_FORMAT option of
the ENVIRONMENT attribute, which provides more explicit control of the
output format and printing. Using printer format, you can specify such things
as overprinting, skipping multiple lines, and so on. In a PL/I program, you will
almost never need to use printer format; the PUT statement provides the same
functions when it outputs data to a file with the PRINT attribute.

6.5 Sequential Files
This section shows examples of some typical sequential file I/O operations on
sequential disk files and on sequential devices, including magnetic tapes.

6.5.1 Creating a Sequential File
Whenever a PL/I program opens a file with the SEQUENTIAL OUTPUT
attributes, PL/I for OpenVMS VAX and PL/I for OpenVMS AXP normally create
a new sequential file. By default, records are 510-byte, variable-length records.
Each WRITE statement adds a new record to the file.

Appending Records to an Existing File
You can open a file with the APPEND option of the ENVIRONMENT attribute
to add new records to the end of an existing sequential file. This overrides the
default action of PL/I, which is to create a new version of an existing file when
the existing file is opened for output. For example:

Record Input/Output 6–7

OPEN
FILE(BIRD_FILE) OUTPUT SEQUENTIAL

TITLE(’BIRDS.DAT’) ENV(APPEND);
WRITE FILE(BIRD_FILE) FROM (NEWDATA);

This OPEN statement opens the file BIRD_FILE and positions it at its current
end-of-file. The WRITE statement adds a new record at the end of the file.

Superseding an Existing File
The ENVIRONMENT option SUPERSEDE lets you create a new version of a file
each time you write it, simultaneously deleting an existing version. By default,
each time a specific file is written, PL/I for OpenVMS VAX or PL/I for OpenVMS
AXP gives it a new version number and does not replace the existing version. For
example:

OPEN FILE(CONTROL) OUTPUT RECORD TITLE(’CONTROL.DAT;1’)
ENVIRONMENT(SUPERSEDE);

This OPEN statement opens the file CONTROL.DAT;1. If this file already exists,
it is deleted.

6.5.2 Using Magnetic Tape Files
Before you execute a PL/I program that reads or writes a sequential file on a
magnetic tape volume, you must use the following sequence of DCL commands:

1. Use the ALLOCATE command to allocate a device on which to mount the
tape volume. For example:

$ ALLOCATE MT:
_MTA0: ALLOCATED

The ALLOCATE command responds with the name of the physical device.
You can now place the physical tape reel on the device.

2. If the tape is a new tape that you are going to write or overwrite, use
the INITIALIZE command to format the tape and write a label on it. For
example:

$ INITIALIZE MTA0: MYTAPE

This command writes the label MYTAPE on the tape volume mounted on
MTA0: (the system printer device).

3. Use the MOUNT command to ready the volume for use and, at your option,
to define a logical name for the device and file. For example:

$ MOUNT MTA0: MYTAPE TAPEFILE

After this sequence of commands, a PL/I program that writes records using the
logical name TAPEFILE will be writing to the MTA0: tape volume. For example:

DECLARE OUTFILE FILE RECORD OUTPUT;
OPEN FILE(OUTFILE) TITLE(’TAPEFILE:TAPE1.FIL’);

When this OPEN statement is executed, the logical name TAPEFILE is
translated to its equivalence MTA0:, and the file MTA0:TAPE1.FIL;0 is created.
Magnetic tape files always have a version number of 0.

6–8 Record Input/Output

Format of Magnetic Tapes
RMS supports the magnetic tape structure defined by ANSI X3.27-1977, the
Magnetic Tape Labels and File Structure for Information Interchange. The tapes
are encoded in ASCII format and can be processed on 9-track tape drives only.

The INITIALIZE command writes a label on the tape in the required format. A
tape created on an OpenVMS system can be read on another system that supports
the same tape label format.

Tape Positioning
When an existing magnetic tape file is opened, it is by default rewound, if
necessary, and positioned at its beginning. This positioning can be overridden
in the following ways:

• If the APPEND option of ENVIRONMENT is specified and if the file is opened
with the OUTPUT attribute, the tape is wound and positioned at the end of
the specified file. The next WRITE statement adds a new record at the end of
the existing file.

• The CURRENT_POSITION option of ENVIRONMENT causes the tape to
remain at its current position when the next file is opened. Thus, if the file is
in the middle of the tape, it is not rewound when the next OPEN statement is
specified for the tape.

By default, when a file is closed, the tape remains positioned after the last record
that was read or written. The ENVIRONMENT option REWIND_ON_CLOSE
can override this action and position the tape at its beginning.

While the file is open, the program can call the REWIND built-in subroutine to
rewind the tape to its beginning.

For example:

DECLARE TAPEFILE FILE;

OPEN FILE (TAPEFILE) OUTPUT RECORD ENVIRONMENT(APPEND);
WRITE FILE (TAPEFILE) FROM (NEWREC);

.

.

.
CLOSE FILE(TAPEFILE) ENVIRONMENT (REWIND_ON_CLOSE);
OPEN FILE(TAPEFILE) INPUT RECORD;

In this example, the file TAPEFILE is opened for output with the APPEND
option. WRITE statements add new records at the end of the tape file. Then, the
CLOSE statement specifies that the tape is to be rewound, and the next OPEN
statement opens the file for input. The first READ statement reads the first
record in the file.

Blocking a Magnetic Tape File
On a magnetic tape, a block is a unit consisting of an integral number of
records. Because of the control information needed to separate records on a
tape, operations on a tape can be improved by blocking.

To create a blocked tape file, you must open it with the ENVIRONMENT option
BLOCK_SIZE. This option specifies the size of the blocks. RMS automatically
performs the blocking necessary. For example:

Record Input/Output 6–9

OPEN FILE(TAPEFILE) ENVIRONMENT(
BLOCK_SIZE (2048),
MAXIMUM_RECORD_SIZE (512),
FIXED_LENGTH_RECORDS);

WRITE FILE(TAPEFILE) FROM (BIG_RECORD);

Following this opening, each WRITE statement writes a single record; the file
system buffers the records until it accumulates four records and then transfers
them, blocked, to the tape volume.

The BLOCK_SIZE option, if specified, is ignored when the output file is not a
magnetic tape device. Thus, if you create and test a program that writes to a
magnetic tape, you can test the program’s output on a disk device; PL/I ignores
the block size.

When a blocked magnetic tape file is read, RMS determines the block size from
the tape itself, and deblocks the file as individual records are read.

Performing Block Input/Output
If a tape file is opened with the ENVIRONMENT option BLOCK_IO, the file
can be read or written in terms of blocks. The size of a block is determined by
the value of the BLOCK_SIZE option. Each I/O operation transfers the specified
number of bytes. For example:

OPEN FILE (TAPEFILE) ENV (BLOCK_IO,BLOCK_SIZE(2048));
READ FILE (TAPEFILE) INTO (READBUF);

These statements open the file TAPEFILE and read a 2048-byte block of data
into the program variable READBUF. When a file is opened with the BLOCK_IO
option, RMS does not block or deblock records. Your program must perform all
necessary blocking and deblocking.

When a file is opened for block I/O, the program can advance the tape or move
it backward a specified number of blocks by calling the SPACEBLOCK built-in
subroutine. For example:

CALL SPACEBLOCK(TAPEFILE,3);

This call advances the file TAPEFILE forward three blocks. The SPACEBLOCK
built-in subroutine is described in Chapter 9.

Multivolume Tape Files
The ANSI standard X3.27-1977 for magnetic tapes allows any of the following
combinations of tape files:

• A single file on a single volume (that is, a reel)

• A single file on more than one volume

• Multiple files on a single volume

• Multiple files on more than one volume

When more than one tape volume is required to contain a file or files, the tapes
constitute a volume set. The OpenVMS system processes volume sets as follows:

• When a file is being created on a tape volume and the tape reaches its end-
of-volume, the magnetic tape control program (ACP) sends a message to a
designated system operator requesting the operator to mount another tape
volume. The program that is attempting to write to the tape must wait until
the operator (or user who is performing operator functions) responds to the
request. The response generally includes the initialization of another tape,

6–10 Record Input/Output

with a volume number one greater than the volume number of the current
volume.

• When a file that spans two or more volumes is being read and the tape
reaches end-of-tape, the magnetic tape ACP sends a message to the system
operator requesting the operator to mount the next tape in the volume set.

Normally, RMS requests new volumes automatically. However, a PL/I program
can request that the next volume in a volume set be mounted, for either an input
or an output operation, by calling the NEXT_VOLUME built-in subroutine. The
NEXT_VOLUME subroutine is described in Chapter 9.

The physical process of volume switching, whether the switching is performed
automatically by RMS or as a result of a call to the NEXT_VOLUME built-in
subroutine, is transparent to the PL/I program. As a user, you may wish to
function as an operator to receive the volume switching requests and to mount
the volumes yourself. For a description of the procedure for handling volume
switching, see the OpenVMS DCL Dictionary.

6.5.3 Allocated and Spooled Devices
The OpenVMS system spools low-speed I/O devices such as printers by
accumulating data for the device in a file, and then queuing the file for processing
when it is closed.

In a PL/I program, when you specify a device name such as LPA0: in a TITLE
option, the specified device may be currently allocated for use by another user or
be spooled. Depending on the status of the device, the following can occur:

• If the device is spooled, all output to the device is written to a temporary file.
When the file is closed, it is submitted to the queue for the spooled device.

• If the device is allocated to another user, the UNDEFINEDFILE condition is
signaled. If referenced in an ON-unit for this condition, the ONCODE built-in
function returns the value associated with the SS$_DEVALLOC status code.

• If the device is allocated to the current process, PL/I assigns a channel to the
device, and each WRITE statement writes a physical line to the device.

• If the device is not allocated and is not spooled, PL/I assigns a channel to the
device. This assignment performs an explicit allocation of the device to the
current process.

You can allocate a device before running a program by issuing the DCL
command ALLOCATE. Within a PL/I program, you can invoke the system
service SYS$ALLOC to allocate a device. For information on commands for
device allocation and control, see the OpenVMS DCL Dictionary. For information
on allocating devices using the SYS$ALLOC system service, see the OpenVMS
System Services Reference Manual.

6.6 Relative Files
This section describes the organization of a relative file, suggests considerations
for creating and using relative files, and shows examples of some typical relative
file I/O operations.

Record Input/Output 6–11

6.6.1 Relative File Organization
The relative file organization is suitable for files with data that can be arranged
serially and be uniquely identified by an integer value, for example, a part
number or an employee identification number. Within the file, records are written
into cells that are numbered; there is a one-to-one correspondence between the
cell number and the integer value associated with the data in the record. This
number, called the relative record number, is the key by which records are written
and accessed.

Figure 6–1 illustrates a relative file in which not all cells contain records. The
first record written to the file was relative record number 1 (which may have been
data for a part numbered 1 or an employee whose number is 1, for example). The
second record written was relative record number 2. The third record written was
relative record number 4; thus cell number 3 does not contain a record.

Figure 6–1 A Relative File

2 3 4 5 n−1

Cell Numbers

Empty Empty Empty

1 n

NU−2461A−RA

... Record
999

Record
1

Record
2

Record
4

First
record
written written

Second
record

Third
record
written

Although the cells in a relative file have the same length, the records need not be
fixed-length records. However, when a record is smaller than the length of a cell,
the unused space is wasted.

6.6.2 Creating a Relative File
In PL/I for OpenVMS VAX and PL/I for OpenVMS AXP, relative file organization
is the default organization for files that are opened with the KEYED attribute.
Thus, when a WRITE statement is directed to a file with the KEYED and
OUTPUT attributes, PL/I for OpenVMS VAX or PL/I for OpenVMS AXP creates a
relative file.

When you initially create a relative file in a PL/I program, you should give
consideration to using the following ENVIRONMENT options to maximize the
efficiency of I/O operations on the file:

• MAXIMUM_RECORD_NUMBER

• MAXIMUM_RECORD_SIZE

• BUCKET_SIZE

• FILE_SIZE

• EXTENSION_SIZE

6–12 Record Input/Output

Considerations for specifying values for each of these follow. For more detailed
information on file design, see the Open VMS Record Management Services
Manual.

Maximum Record Number
The MAXIMUM_RECORD_NUMBER option specifies the largest relative record
number that will be used in the file, and thus specifies the maximum number of
cells that the file can have. If you do not specify a maximum record number, PL/I
for OpenVMS VAX and PL/I for OpenVMS AXP sets the maximum record number
to zero. This permits the file to expand to any size.

For example, if a relative file will contain inventory data on 600 parts, and the
part number is to be used as the file key, the MAXIMUM_RECORD_NUMBER
option can be specified as follows:

DECLARE PARTS FILE ENVIRONMENT (
MAXIMUM_RECORD_NUMBER (600));

You should realistically allow for future expansion of the file when you specify a
maximum record number; the number is a permanent attribute of the file and
cannot be changed. PL/I signals the KEY condition when a key value is too large.

Maximum Record Size
When you specify the length of the records in a file, RMS uses the value you
specify in the MAXIMUM_RECORD_SIZE option to calculate a cell size. It uses
the following formulas to calculate the size:

• For fixed-length records:

cell-size = 1 + record-size

One byte is required for overhead; this byte contains a deletion indicator.

• For variable-length records:

cell-size = 3 + maximum-record-size

Three bytes are required for overhead: two bytes for the individual record
size, and one byte for a deletion indicator.

• For variable-length records with fixed control:

cell-size = 3 + maximum-record-size + size-of-fixed-control-area

Three bytes are required for overhead: two bytes for the individual record
size, and one byte for a deletion indicator.

When you select a record size for a relative file, you should try to specify a size
that is no greater than the largest record that will be written. Otherwise, any
unused space in each cell will be wasted. If you do not specify a maximum record
size for either fixed- or variable-length records, PL/I for OpenVMS VAX or PL/I
for OpenVMS AXP uses the default length of 480 bytes.

Bucket Size
A bucket is the storage unit for data in the file. Records are arranged in buckets,
which consist of an integral number of physically contiguous 512-byte disk blocks.
Within the bucket, records can cross block boundaries; however, records cannot
cross bucket boundaries.

Record Input/Output 6–13

When RMS transfers data from a file, it transfers data a bucket at a time; thus,
a large bucket size reduces the number of actual data transfers that are required.
When you do not specify a bucket size, RMS uses the cell size rounded to a
multiple of 512 bytes. When records are written to the file, RMS places as many
records as will fit in each bucket. Excess space is wasted.

You can improve I/O performance by specifying a bucket size that is a multiple of
the cell size, and by calculating whether space is being wasted. For example:

DECLARE EMP_FILE OUTPUT RECORD ENVIRONMENT (
FIXED_LENGTH_RECORDS,
MAXIMUM_RECORD_SIZE (80)
BUCKET_SIZE (4));

The file EMP_FILE will be created with 81-byte cells and buckets that have 2048
bytes (that is, four 512-byte blocks). Each bucket can contain twenty-five 81-byte
cells; 23 bytes in each bucket are unused.

When you specify a maximum record size and a bucket size for a relative file, you
should consult the description of the BUCKET_SIZE option in Chapter 7. That
description contains formulas for calculating the bucket size within the limits
required by RMS.

File Size
To avoid the processing overhead that occurs when a file is extended beyond an
initial default allocation, you can specify the FILE_SIZE option when you create a
relative file. If you specify this option, you can preallocate all the space that will
ever be required for the cells in the file.

To determine the space requirements of a file, you can use the following formulas.
To compute the size of the file in 512-byte blocks:

file size =
511 + (number of buckets � bytes per bucket)

512

To compute the number of buckets:

number of buckets =
number of records

number of cells per bucket

You can also specify the CONTIGUOUS or CONTIGUOUS_BEST_TRY options in
conjunction with the FILE_SIZE option to attempt to allocate all of the space for
the file in contiguous disk blocks.

Extension Size
If you plan to add data to the file, you should specify a reasonable default
extension size to reduce the number of times the file is extended. The FDL
attribute FILE EXTENSION sets the extension size. The value to be assigned
depends on the size of the records in the file and on the number of records that
will be added to the file. The EDIT/FDL Utility calculates and assigns the correct
extension size. For more information on the EDIT/FDL Utility, see Section 6.7.2.

You can also specify the extension size by using the DCL command SET
FILE/EXTENSION=n. To determine the value to be assigned to the EXTENSION
attribute, multiply the record size by the number of records to be added.

If you do not specify an extension size, RMS allocates the number of blocks
needed for each extension.

6–14 Record Input/Output

6.6.3 Using Relative Files
You can create a relative file from any existing file that is suitable for relative file
organization. Example 6–1 illustrates copying a sequential file with fixed-length
records into a relative file.

Example 6–1 Creating a Relative File

COPY_TO_RELATIVE: PROCEDURE OPTIONS(MAIN);

%INCLUDE PARTLIST; /* Declaration of PARTLIST */ /* 1 */

DECLARE OLDFILE FILE INPUT RECORD SEQUENTIAL;
DECLARE RECORD_NUMBER FIXED BINARY;

DECLARE
PARTS FILE OUTPUT KEYED RECORD ENVIRONMENT(

MAXIMUM_RECORD_NUMBER(600), /* 2 */
FIXED_LENGTH_RECORDS,
MAXIMUM_RECORD_SIZE(36));

ON ENDFILE(OLDFILE) BEGIN; /* 3 */
CLOSE FILE(OLDFILE), FILE(PARTS);
STOP;
END;

OPEN FILE(OLDFILE), FILE(PARTS);

DO WHILE(’1’B);
READ FILE(OLDFILE) INTO(PARTLIST); /* 4 */
RECORD_NUMBER = PARTLIST.NUMBER;
WRITE FILE(PARTS) FROM(PARTLIST) KEYFROM(RECORD_NUMBER); /* 5 */
END;

END COPY_TO_RELATIVE;

The following notes are keyed to Example 6–1:

1 The structure PARTLIST describes the layout of the records in the file.
The records will be ordered in the relative file according to the field
PARTLIST.NUMBER.

2 The relative file PARTS is declared with a maximum record number of 600.
It has fixed-length, 36-byte records.

3 The file OLDFILE is the sequential file containing the records to be copied to
a relative file. When the end-of-file is reached, the file is closed and the STOP
statement terminates the program.

4 As each record is read into the structure PARTLIST, the value of NUMBER
is copied to the fixed binary integer RECORD_NUMBER. The part number is
maintained in each record in its character-string form.

5 Each WRITE statement copies the record to the output file, specifying the
value of the part number as a relative record number.

Records in this file can subsequently be accessed either sequentially or by part
number. To access a record by part number, you specify the number as a key. For
example:

GET LIST(INPUT_NUMBER) OPTIONS(PROMPT(’Part? ’));
READ FILE(PARTS) INTO(PARTLIST) KEY(INPUT_NUMBER);

Record Input/Output 6–15

Here, the value entered in response to the GET statement is used as a key value
to access a record in the file.

Populating a Relative File
In Example 6–1, the file PARTS is opened with the KEYED and OUTPUT
attributes. When this program is executed, the amount of space allocated for the
file PARTS depends on the relative record numbers of the records that are written
to the file. For example, if the largest record number allowed for any record in
the file is 600, but the largest record number specified for a record is 200, then
RMS allocates only enough space for 200 records.

When you initially populate a file and you plan to fill the entire file through
the maximum record number, you can cause RMS to use either of the following
techniques to allocate space for the entire file:

• Specify the FILE_SIZE option to allocate space for the file when it is created.

• Write the record with the largest relative record number first. This will force
RMS to allocate space for the entire file.

These techniques can optimize the throughput for the subsequent file additions,
because RMS will not need to perform repeated extensions to the file as records
are added.

Updating a Relative File
To add or modify records in a relative file, open the file with the DIRECT and
UPDATE attributes. For example, a procedure that updates the file PARTS when
new stock is ordered might contain the following:

ORDER_PARTS: PROCEDURE (ORDERED_AMOUNT,PART_NUMBER);
%INCLUDE PARTLIST; /* Declaration of PARTLIST */
DECLARE (ORDERED_AMOUNT,PART_NUMBER) FIXED BIN(15);
DECLARE PARTS FILE RECORD DIRECT UPDATE;

OPEN FILE(PARTS);
READ FILE(PARTS) INTO(PARTLIST)

KEY(PART_NUMBER);
PARTLIST.ON_ORDER = PARTLIST.ON_ORDER +

ORDERED_AMOUNT;
REWRITE FILE(PARTS) FROM(PARTLIST);
CLOSE FILE(PARTS);

END;

In this example, the procedure ORDER_PARTS receives as its parameters the
order quantity and the part number. It reads the record associated with the
part number from the file, adds the order quantity to the existing quantity, and
rewrites the record.

Reading a Relative File Sequentially
You can access a relative file sequentially as well as by key. When you access the
file sequentially, each READ statement returns the record in the next cell that
contains a record, skipping empty cells. The following example illustrates reading
a relative file sequentially:

PRINT_PART: PROCEDURE OPTIONS(MAIN);
%INCLUDE PARTLIST; /* Declaration of PARTLIST */

DECLARE PARTS FILE,
CHECK_NUM FIXED;

DECLARE EOF BIT(1) ALIGNED INIT(’0’B);

OPEN FILE(PARTS) INPUT SEQUENTIAL RECORD KEYED;
ON ENDFILE(PARTS) EOF = ’1’B;

6–16 Record Input/Output

READ FILE(PARTS) INTO(PARTLIST) KEYTO(CHECK_NUM);
DO WHILE (^EOF);

PUT SKIP EDIT(PARTLIST.NAME, /* Output data */
UNIT_PRICE,
IN_STOCK,
ON_ORDER)

(A,X,A,X,A,X,A);
PUT SKIP EDIT(’Relative record number’,CHECK_NUM,

’Part number:’,PARTLIST.NUMBER)
(X(10),A,X,F(5),A,X,A); /* Output

verification */
READ FILE(PARTS) INTO(PARTLIST) KEYTO(CHECK_NUM);

END;

This procedure outputs the contents of the file PARTS, listing each field in the
data records described by PARTLIST. The READ statement specifies the KEYTO
option; the procedure outputs the value returned to the variable CHECK_NUM.

6.6.4 Error Handling
PL/I signals the KEY condition when errors occur during the processing of record
numbers for relative files. For example, it signals the KEY condition when a
relative record number exceeds the maximum record number specified for the file,
or when the number of a record that already exists is specified in a KEYFROM
option in a WRITE statement.

The following sample ON-unit shows how to detect whether a record already
exists in a relative file or whether a record number specified exceeds the file’s
maximum record number.

ON KEY(PARTS) BEGIN;
%INCLUDE $RMSDEF;
/* Check for duplicate records */
IF ONCODE() = RMS$_REX /* If duplicate */
THEN DO;

PUT SKIP EDIT(’Part number’,
PARTLIST.NUMBER,’exists. Reenter’)
(A,X,A,X,A);

GET LIST(PARTLIST.NUMBER); /* Get new value */
GOTO GET_DATA; /* Go get other data */
END;

/* Check for maximum record number exceeded */
ELSE

IF ONCODE = RMS$_MRN
THEN DO;
PUT SKIP EDIT(’Part number’,PARTLIST.NUMBER,

’invalid. Reenter’)
(A,X,A,X,A);

GET LIST(PARTLIST.NUMBER); /* Get new value */
GOTO GET_DATA; /* Go get other info */
END;

END;
.
.
.

GET_DATA:

In this example, the ON-unit sets symbolic names for two specific status values
returned by ONCODE, from PLI$STARLET:

• The value RMS$_REX indicates that a record already exists.

• The value RMS$_MRN indicates that a relative record number specified
exceeds the maximum record number.

Record Input/Output 6–17

In an ON-unit for the KEY condition for a relative file, ONCODE can also return
the values associated with the following status codes:

• RMS$_RNF indicates that there is no record in the file with the relative
record number specified by a KEY option.

• RMS$_KEY indicates that a key value is invalid, for example, if it is not an
integer.

The symbolic names for these status codes are included from module $RMSDEF,
from PLI$STARLET.TLB.

6.7 Indexed Sequential Files
This section describes the organization of indexed sequential files, suggests
considerations for creating and using them, and shows examples of some typical
operations.

6.7.1 Indexed File Organization
In an indexed sequential file, the file contains data records and pointers to the
records. Data records and record pointers are arranged in buckets, which consist
of an integral number of physically contiguous 512-byte disk blocks. Individual
records within the file are located by the specification of the keys (indexes)
associated with the records. Each file must have a primary key—that is, a field
within the record that has a unique value to distinguish it from all other records
in the file. An indexed sequential file can also have up to 254 alternate keys,
which need not have unique values.

RMS writes records to an indexed file in collating sequence according to the
primary key, putting them in buckets that are chained together. Thus, an
individual file can be accessed sequentially with any key.

Figure 6–2 illustrates an indexed sequential file with a single key.

The records in the file illustrated in Figure 6–2 consist of address data that might
have been defined in a PL/I structure as follows:

DECLARE 1
ADDRESS_FILE,

2 EMPLOYEE_NAME CHARACTER(30),
2 ADDRESS,
3 STREET CHARACTER(20),
3 ZIP_CODE CHARACTER(5);

In this file, the key is the employee name.

When RMS writes records to an indexed sequential file, it builds and maintains
a tree-like structure of key values and location pointers. When records are
accessed by key, RMS uses the tree to locate individual records. Thus, when a
PL/I program accesses the record whose key value is JONES, RMS traverses the
indexes to locate the record.

When new records are added to an indexed sequential file, a data bucket may
not have enough room to accommodate a new record. In this case, RMS performs
what is called bucket splitting: it inserts a new bucket in the chain of data
buckets and moves enough records from the previous bucket to preserve the
primary key sequence. Bucket splitting is transparent to the PL/I program; the
program knows only that it has added a record to the file.

6–18 Record Input/Output

Figure 6–2 An Indexed Sequential File

K
ey

 D
ef

in
iti

on

N
U

−
2

4
7

9
A

−
R

A

N
ot

e:
 A

ss
um

es
 o

ne
 re

co
rd

 p
er

 b
uc

ke
t.

B
ak

er
S

m
ith

W
ym

an

P
rim

ar
y

In
de

x
(E

m
pl

oy
ee

 N
am

e)

D
at

a
R

ec
or

ds

03
30

1
M

ai
n

S
t

W
ym

an
19

72
4

H
ol

t R
d

11
73

3
E

lm
 A

ve
24

37
9

A
pe

al
 L

a
Jo

ne
s

S
m

ith
C

la
rk

.
.

.
.

.
.

.
.

.
.

.
.

35
11

2
P

in
e

S
t

A
da

m
s

B
ak

er
Ta

yl
or

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

A
da

m
s

C
la

rk
Jo

ne
s

S
m

ith
W

ym
an

6.7.2 Defining and Creating an Indexed Sequential File
As shown in Figure 6–3, an indexed sequential file must first be defined, then
created. You define the characteristics of your indexed sequential file using the
VMS File Definition Language (FDL), and then use that definition (the resulting
FDL file) to create the indexed sequential file for use by your program.

Record Input/Output 6–19

Figure 6–3 Creating a Data File

NU−2462A−RA

CREATE/FDL PROGRAM.EXE

EDIT/FDL

User

FDL$CREATE

1

2

3

4

5

FILE.FDL

VAX VMS
Editor

FILE.DAT

An FDL definition file can be set up by several alternative methods. You can use
any of the OpenVMS editors to create the file, or create it with a PL/I program, or
use the FDL Facility itself. The following general steps are keyed to the callout
numbers in Figure 6–3.

1 Use an editor to describe the data file.

2 An FDL language source file defines the data file.

3 You can use a program to create an FDL language source file and call
FDL$CREATE to create a data file.

4 You can use FDL to create a data file.

5 The data file is created.

The following sections explain in detail how to create a definition file by using the
FDL Facility and how to create one through a PL/I program.

6–20 Record Input/Output

6.7.2.1 Using EDIT/FDL
You can use the command EDIT/FDL to define an indexed sequential file for
PL/I for OpenVMS VAX and PL/I for OpenVMS AXP. Note that while you can
construct FDL file specifications using any of the OpenVMS text editors, the
FDL Facility gives you the added convenience of systematic prompting for and
automatic formatting of the specifications. The specifications are written in the
File Definition Language (FDL) and the files are referred to as FDL files.

The FDL Facility is interactive: it prompts you to enter data and responds with
error messages when you enter data incorrectly. It supplies many default values.
The only data that you must specify is as follows:

• The file name of the file you are creating

• The word INDEXED, to indicate that the file is an indexed sequential file

• The number of records that will initially be loaded into the file

• The mean record size

• The size of the key

You can obtain help by pressing RETURN in response to the first menu. Each
item on the menu leads to another menu in the specification of the data file. You
can return to the original menu by pressing Ctrl/z.

$ EDIT/FDL Return

_File: STATE50 Return

Parsing Definition File

DBA0:[SMITH]STATE50.FDL; will be created.

Press return to continue (^Z for Main Menu) Return

VAX-11 FDL Editor

Add to insert one or more lines into the FDL definition
Delete to remove one or more lines from the FDL definition
Exit to leave the FDL Editor after creating the FDL file
Help to obtain information about the FDL Editor
Invoke to initiate a script of related questions
Modify to change existing line(s) in the FDL definition
Quit to abort the FDL Editor with no FDL file creation
Set to specify FDL Editor characteristics
View to display the current FDL definition

Main Editor Function (Keyword)[Help]:INVOKE Return

FDL displays further menus to guide you through the creation of the file.

After you define your data file, FDL displays a message like the following, giving
the file specification of the definition file:

DBA0:[SMITH]STATE50.FDL;1 40 lines

FDL formats the information that you supply so that it can be used to create an
indexed sequential file. However, you can also use EDT or any other OpenVMS
text editor to design an FDL text.

FDL allows you to specify many characteristics for your file, but requires you to
specify only a limited number. The following example, written in FDL, illustrates
some of the possible file characteristics. The explanatory comments to the right
would not appear in an FDL file; they have been added for your information.

Record Input/Output 6–21

SYSTEM
SOURCE VAX/VMS

FILE
NAME state50.dat /* file name */
ORGANIZATION indexed

RECORD
CARRIAGE_CONTROL carriage_return
FORMAT fixed /* record attributes */
SIZE 60

AREA 0
ALLOCATION 25 /* number of blocks */
BEST_TRY_CONTIGUOUS yes /* as close as possible */
BUCKET_SIZE 2 /* number of blocks in record */
EXTENSION 2 /* blocks for extension */

AREA 1
ALLOCATION 3
BEST_TRY_CONTIGUOUS yes
BUCKET_SIZE 2
EXTENSION 0

AREA 2
.
.
.

AREA 7
ALLOCATION 2
BEST_TRY_CONTIGUOUS yes
BUCKET_SIZE 1
EXTENSION 0

KEY 0 /* primary key */
CHANGES no /* cannot be changed */
DATA_AREA 0 /* data in AREA 0 */
DATA_FILL 100 /* %fill for data */
DUPLICATES no /* not allowed */
INDEX_AREA 1 /* index in AREA 1 */
INDEX_FILL 100 /* %fill for index */
LEVEL1_INDEX_AREA 1 /* level-1 index in AREA 1 */
PROLOGUE 2 /* type for index */
SEG0_LENGTH 20 /* key length */
SEG0_POSITION 0 /* key position */
TYPE string /* character string */

.

.

.
KEY 3 /* third alternate key */

CHANGES yes
DATA_AREA 6
DATA_FILL 100
DUPLICATES yes
INDEX_AREA 7
INDEX_FILL 100
LEVEL1_INDEX_AREA 7
SEG0_LENGTH 3
SEG1_LENGTH 3
SEG2_LENGTH 3
SEG0_POSITION 0
SEG1_POSITION 20
SEG2_POSITION 40
TYPE string

After creating an FDL file with EDIT/FDL or a text editor, you can then use the
command CREATE/FDL, which uses the specifications in the FDL file to create
a new, empty data file. Thus, you can use EDIT/FDL to define the data file,
and then create the data file when it is required later. See the OpenVMS File
Definition Language Facility Reference Manual for further details.

6–22 Record Input/Output

6.7.2.2 Using a PL/I Program
You can write a PL/I program to define an indexed sequential file or to create an
indexed sequential file from an existing definition, or both. The following lines in
the program enable the optional generation of a file definition and the use of that
definition to create a file:

%INCLUDE FDL$CREATE;
.
.
.

CALL FDL$CREATE (’STATE50.FDL’);

The following program, CREATE50, defines a file similar to the file defined with
the FDL Facility in Section 6.7.2.1.

CREATE50: PROCEDURE OPTIONS(MAIN);
DECLARE ANSWER CHAR(1); /* answer variable */
DECLARE (I,J) FIXED BIN(31); /*index control variables */

%INCLUDE FDL$CREATE;

/* default allocation, bucket size, and extent for each area */
DECLARE AREA_ATTRIBUTES(0:7,0:2) FIXED BIN(7) STATIC INITIAL (

25, 2, 2,
2, 2, 0,
15, 2, 1,
3, 2, 0,
20, 2, 2,
3, 2, 0,
9, 1, 0,
7, 1, 0);

/* default areas, fills, segment lengths, and positions for each key */
DECLARE KEY_ATTRIBUTES(0:3,0:10) FIXED BIN(7) STATIC INITIAL (

0, 100, 1, 100, 1, 20, 0, 0, 0, 0, 0,
2, 100, 3, 100, 3, 20, 0, 0, 20, 0, 0,
4, 100, 5, 100, 5, 20, 0, 0, 40, 0, 0,
6, 100, 7, 100, 7, 3, 3, 3, 0, 20, 40);

/* FDL file that will be created if necessary */
DECLARE FDL FILE PRINT OUTPUT;

/* find out if FDL file already exists */

GET LIST (ANSWER)
OPTIONS(PROMPT(’Have you already created STATE50.FDL

with EDIT/FDL or EDT? ’));

/* file definition (.FDL) file creation */
IF ANSWER = ’N’ | ANSWER = ’n’
THEN

DO;

PUT SKIP LIST (’ Creating STATE50.FDL.....’);

OPEN FILE (FDL) TITLE (’state50.fdl’) PAGESIZE(32767);

/* define system */

PUT SKIP FILE (FDL) LIST (’SYSTEM’);
PUT SKIP FILE (FDL) LIST (’ SOURCE VAX/VMS’);

/* define file */
PUT SKIP FILE (FDL) LIST (’FILE’);
PUT SKIP FILE (FDL) LIST (’ NAME state50.dat’);
PUT SKIP FILE (FDL) LIST (’ ORGANIZATION indexed’);

/* define record */

PUT SKIP FILE (FDL) LIST (’RECORD’);
PUT SKIP FILE (FDL) LIST (’ CARRIAGE_CONTROL carriage_return’);
PUT SKIP FILE (FDL) LIST (’ FORMAT fixed’);
PUT SKIP FILE (FDL) LIST (’ SIZE 60’);

/* define areas */

Record Input/Output 6–23

DO I = 0 TO HBOUND (AREA_ATTRIBUTES,1);

PUT SKIP FILE (FDL) LIST (’AREA ’||trim(character(i)));
PUT SKIP FILE (FDL) LIST (’ ALLOCATION ’||

character(area_attributes(i,0)));
PUT SKIP FILE (FDL) LIST (’ BEST_TRY_CONTIGUOUS yes’);
PUT SKIP FILE (FDL) LIST (’ BUCKET_SIZE ’||

character(area_attributes(i,1)));
PUT SKIP FILE (FDL) LIST (’ EXTENSION ’||

character(area_attributes(i,2)));

END;

/* define keys */
DO I = 0 TO HBOUND (KEY_ATTRIBUTES,1);

PUT SKIP FILE (FDL) LIST (’KEY ’||TRIM(CHARACTER(I)));

IF I = 0 THEN PUT SKIP FILE (FDL) LIST (’ CHANGES no’);
ELSE PUT SKIP FILE (FDL) LIST (’ CHANGES yes’);

PUT SKIP FILE (FDL) LIST (’ DATA_AREA ’||
CHARACTER(KEY_ATTRIBUTES(I,0)));

PUT SKIP FILE (FDL) LIST (’ DATA_FILL ’||
CHARACTER(KEY_ATTRIBUTES(I,1)));

IF I = 0 THEN PUT SKIP FILE (FDL) LIST (’ DUPLICATES no’);
ELSE PUT SKIP FILE (FDL) LIST (’ DUPLICATES yes’);

PUT SKIP FILE (FDL) LIST (’ INDEX_AREA ’||
CHARACTER(KEY_ATTRIBUTES(I,2)));

PUT SKIP FILE (FDL) LIST (’ INDEX_FILL ’||
CHARACTER(KEY_ATTRIBUTES(I,3)));

PUT SKIP FILE (FDL) LIST (’ LEVEL1_INDEX_AREA ’||
CHARACTER(KEY_ATTRIBUTES(I,4)));

DO J = 0 TO 2;
IF KEY_ATTRIBUTES(I,5+J*2) ^= 0
THEN DO;

PUT SKIP FILE (FDL) LIST (’ SEG’||TRIM(CHARACTER(J))||’_LENGTH ’||
CHARACTER(KEY_ATTRIBUTES(I,5+J*2)));

PUT SKIP FILE (FDL) LIST (’ SEG’||trim(character(j))||’_POSITION ’||
CHARACTER(KEY_ATTRIBUTES(I,5+J*2)));

END;
END;

PUT SKIP FILE (FDL) LIST (’ TYPE string’);

END;

CLOSE FILE (FDL);
END;

/* create STATE50.DAT using STATE50.FDL as the definition file */

PUT SKIP LIST (’ Creating file using STATE50.FDL.....’);

CALL FDL$CREATE (’STATE50.FDL’);

END CREATE50;

This program uses the same FDL statements that would be used if you had
issued the EDIT/FDL command. Notice that the program asks you whether you
have already created the file and, if so, calls FDL$CREATE, which permits you to
use a preexisting file definition.

Note that the following command:

$ CREATE/FDL=STATE50

is equivalent to the following command and response:

$ RUN CREATE50
Have you already created STATE50.FDL with EDIT/FDL or EDT? Y

6–24 Record Input/Output

6.7.3 Defining Keys
An indexed sequential file must have at least one key. The first (primary) key is
always numbered 0. An indexed sequential file can have up to 255 keys; however,
for file-processing efficiency it is recommended that you define no more than 7 or
8 keys. (The time required to insert a new record or update an existing record is
directly related to the number of keys defined; the retrieval time for an existing
record, however, is unaffected by the number of keys.)

When you design an indexed sequential file, you must define each key in the
following terms:

• Position and size

• Data type

• Index number

• Options selected

When you want to define more than one key, or to define keys of different
data types, you must be careful when you specify the key fields. The next few
subsections describe some considerations for specifying keys.

Specifying Key Position and Size
When you specify a key, you must specify both its position in the record and its
length. The position is specified with respect to the beginning of the record; thus,
a key that is positioned beginning in the first byte of the record has a starting
position of 0, a key positioned beginning in the 21st byte has a key position of 20,
and so on.

If the ENVIRONMENT option SCALARVARYING is in effect, the key size for a
CHARACTER VARYING key should be 2 more than your declared maximum size;
you specify a key position offset 2 from the variable base offset.

To determine the key positions for fields within a structure, you can examine
the storage map in the program listing that defines the structure. The following
structure definition illustrates the relationships between key field definitions and
the storage map offsets:

1 FOO: PROCEDURE;
2 1 DECLARE 1 STATE BASED (STATE_PTR),
3 1 2 NAME CHARACTER (20), /*Primary key */ 1
4 1 2 POPULATION FIXED BINARY(31), /*3rd alternate key */4
5 1 2 CAPITAL,
6 1 3 NAME CHARACTER(20),
7 1 3 POPULATION FIXED BINARY(31),
8 1 2 LARGEST_CITIES(2),
9 1 3 NAME CHARACTER(30),
10 1 3 POPULATION FIXED BINARY(31),
11 1 2 SYMBOLS,
12 1 3 FLOWER CHARACTER(30), /*1st alternate key*/ 2
13 1 3 BIRD CHARACTER(30); /*2nd alternate key*/ 3
14 1
15 1 END FOO;

The resultant storage map shows the following:

1 The primary key is 20 bytes, offset 0 bytes from the base of the structure or
record.

2 The first alternate key is 30 bytes, offset 116 bytes from the base of the
structure or record.

Record Input/Output 6–25

3 The second alternate key is 30 bytes, offset 146 bytes from the base of the
structure or record.

4 The third alternate key is four bytes, offset 20 bytes from the base of the
structure or record.

The storage map is:

+-------------+
| Storage Map |
+-------------+

External Entry Points and Variables Declared Outside Procedures

Identifier Name Storage Size Line Attributes
---------- ---- ------- ---- ---- ----------

FOO 1 ENTRY, EXTERNAL

6–26 Record Input/Output

Procedure FOO on line 1

Identifier Name Storage Size Line Attributes
---------- ---- ------- ---- ---- ----------

BIRD 30 BY 13 OFFSET FROM BASE IS 146 BY,
MEMBER OF STRUCTURE SYMBOLS,
CHARACTER(30) UNALIGNED, NONVARYING 3

CAPITAL 24 BY 5 OFFSET FROM BASE IS 24 BY,
MEMBER OF STRUCTURE STATE, STRUCTURE

FLOWER 30 BY 12 OFFSET FROM BASE IS 116 BY,
MEMBER OF STRUCTURE SYMBOLS,
CHARACTER(30) UNALIGNED, NONVARYING 2

LARGEST_CITIES 68 BY 8 OFFSET FROM BASE IS 48 BY,
MEMBER OF STRUCTURE STATE, STRUCTURE
DIMENSION

NAME 30 BY 9 OFFSET FROM BASE IS 48 BY, MEMBER OF
STRUCTURE LARGEST_CITIES
CHARACTER(30), UNALIGNED, NONVARYING

NAME 20 BY 6 OFFSET FROM BASE IS 24 BY, MEMBER OF
STRUCTURE CAPITAL, CHARACTER(20)
UNALIGNED, NONVARYING

NAME 20 BY 3 OFFSET FROM BASE IS 0 BY, MEMBER OF
STRUCTURE STATE, CHARACTER(20)
UNALIGNED, NONVARYING 1

POPULATION 4 BY 10 OFFSET FROM BASE IS 78 BY, MEMBER OF
STRUCTURE LARGEST_CITIES
FIXED BIN(31,0), ALIGNED, PRECISION

POPULATION 4 BY 7 OFFSET FROM BASE IS 44 BY, MEMBER OF
STRUCTURE CAPITAL, FIXED BIN(31,0)
ALIGNED, PRECISION

POPULATION 4 BY 4 OFFSET FROM BASE IS 20 BY, MEMBER OF
STRUCTURE STATE, FIXED BIN(31,0)
ALIGNED, PRECISION

4

STATE based 176 BY 2 STRUCTURE

SYMBOLS 60 BY 11 OFFSET FROM BASE IS 116 BY, MEMBER OF
STRUCTURE STATE, STRUCTURE

.

.

.

After you enter the EDIT/FDL command, you can specify the keys to FDL as
follows:

Enter Desired Primary (Keyword)[-] : KEY 0

- Legal KEY 0 Secondary Attributes -

CHANGES yes/no LEVEL1_INDEX_AREA number
DATA_AREA number NAME string
DATA_FILL number NULL_KEY yes/no
DATA_KEY_COMPRESSION yes/no NULL_VALUE char/num
DATA_RECORD_COMPRESSION yes/no POSITION number
DUPLICATES yes/no PROLOGUE number
INDEX_AREA number TYPE keyword
INDEX_COMPRESSION yes/no SEGn_LENGTH number
INDEX_FILL number SEGn_POSITION number
LENGTH number

Enter KEY 0 Attribute (Keyword)[-] :POSITION Return

Record Input/Output 6–27

KEY 0
SEG0_POSITION

Enter value for this Secondary (0-16299)[-] :0 Return

- Resulting Primary Section -

KEY 0
SEG0_POSITION 0

Continue with this Same Primary (Yes/No)[No] :YES Return

At this point, the menu Secondary Attributes reappears on your screen:

Enter KEY 0 Attribute (Keyword)[-] :LENGTH Return

KEY 0
SEG0_LENGTH

Enter value for this Secondary (0-255)[-] :20 Return

- Resulting Primary Section -

KEY 0
SEG0_LENGTH 20
SEG0_POSITION 0

Continue with this Same Primary (Yes/No)[No] : Return

At this point, you return to the first menu. To establish the keys necessary for
ADDRESS.DAT, you need to step through the entire process again. In response
to the prompt after the first menu, type ADD; in response to the prompt after
the second menu, type KEY 1. Give KEY 1 (for example) a position of 116 and a
length of 30.

Establish the third and last key the same way. Give KEY 2 a position of 146 and
a length of 30. Then go back to the first menu and type VIEW in response to the
prompt. A summary appears as follows:

KEY 0
SEG0_LENGTH 20
SEG0_POSITION 0

KEY 1
SEG0_LENGTH 30
SEG0_POSITION 116

KEY 2
SEG0_LENGTH 30
SEG0_POSITION 146

Use FDL to change information if necessary.

Key Data Types
Table 6–2 summarizes the valid data types for keys in RMS indexed sequential
files, lists the corresponding PL/I data type declaration, and shows how to specify
the key data type and length to the FDL Facility.

6–28 Record Input/Output

Table 6–2 Key Data Types

Data Type PL/I Declaration
FDL
Specification

String1 CHAR(n), where
1 < n < 255

STR
n

15-bit signed
integer

FIXED BINARY(15) INT
2

31-bit signed
integer

FIXED BINARY(31) INT
4

63-bit signed
integer

FIXED BINARY(63) INT
8

16-bit unsigned
binary2

FIXED BINARY(15) BIN
2

32-bit unsigned
binary2

FIXED BINARY(31) BIN
4

64-bit unsigned
binary2

FIXED BINARY(64) BIN
8

Packed decimal FIXED DECIMAL(n)
where 1< n < 16

DECIMAL
n

1PL/I for OpenVMS VAX and PL/I for OpenVMS AXP support segmented character-string keys.
2PL/I does not distinguish between signed and unsigned integers. Thus, the difference between signed
integer keys and unsigned binary keys is in the key collating sequence. For signed integer keys, the
collating sequence is from the lowest negative number to the highest positive number (for example
–32768, –32767, ... 0, 1, 2, ... 32767). For unsigned binary keys, the collating sequence is from zero
to the highest positive number, then from the lowest negative number to –1 (for example 0, 1, 2, ...
32766, 32767, –32768, –32767, ... –1).

Index Numbers
When you define the keys in an indexed sequential file, you must assign an index
number to each alternate key. The index number of the primary key is always 0;
subsequent alternate key indexes are numbered 1, 2, and so on. When you create
a file with the FDL Facility, you must define the keys in index number order.

When you want to access a record in an indexed sequential file by an alternate
key, you specify the index number. You can specify the index number either in the
INDEX_NUMBER option of ENVIRONMENT or in the INDEX_NUMBER option
of a record I/O statement.

For example, to access the record for a state whose flower is MAGNOLIA in the
indexed file STATE_FILE, when the current index is not 1, you must specify the
index number 1, as in the following example:

READ FILE(STATE_FILE)
INTO(STATE) KEY(’MAGNOLIA’)

OPTIONS(INDEX_NUMBER(1));

This READ statement reads the first record whose key in the first alternate index
is MAGNOLIA and sets the current index number to 1.

Record Input/Output 6–29

Key Options
When you define alternate indexes for an indexed sequential file, you can specify
the following information:

• Whether duplicate keys are allowed. If you select the duplicate key option,
multiple records in the file can have the same key value in the alternate
index. If you do not allow duplicate keys, PL/I signals the KEY condition if
you attempt to write a record with a duplicate key.

• Whether the key of a record can be changed. If you select the change option,
a rewrite request can modify one or more key fields in the record. By default,
PL/I signals the KEY condition if you attempt to rewrite a record in which a
key field has been modified.

• Whether keys are to be initialized with null values. When a null value has
been specified for a key and a record is inserted with the given key field equal
to the null value, no index entry will be made in the alternate index.

These options are described in the OpenVMS File Definition Language Facility
Reference Manual.

6.7.4 Using Indexed Sequential Files
After you have defined and created an indexed sequential file, you can write
records to it by opening it with the UPDATE attribute and using PL/I WRITE
statements. For example:

OPEN FILE(STATE_FILE) RECORD DIRECT UPDATE;
.
.
.

WRITE FILE(STATE_FILE) FROM(STATE) KEYFROM(STATE.NAME);

This WRITE statement writes the record whose key value is specified by the field
STATE.NAME in the structure STATE.

When a WRITE statement adds a record to an indexed sequential file, the value
of the KEYFROM option must always be the primary key. In fact, the WRITE
statement causes the index number to be reset to zero if any other index number
is in effect.

Note

When PL/I copies the KEYFROM value into the record, it overwrites
anything already in those positions, while distributing segmented values
as specified by the RMS key description. Therefore, it is important that
the key value come from some variable other than the record variable
itself.

Populating an Indexed Sequential File
There are two techniques for optimizing the initial population (loading) of an
indexed sequential file:

• Use the RMS CONVERT utility to load the file. This utility copies records
from an existing file to load the indexed file. This utility also optimizes the
index structure.

6–30 Record Input/Output

• Use the INITIAL_FILL option of the ENVIRONMENT attribute. This option
causes RMS to apply the fill number specified for index buckets in the file
when the file was created. This option is effective only if a fill number was
specified to the FDL Facility. It leaves unused space in the file for the key
values that are inserted. Subsequent insertion of records with similar key
values (without the INITIAL_FILL option) will tend to use the free space
provided within the file, without causing further growth of the file.

For details on specifying fill numbers for the FDL Facility, see the OpenVMS File
Definition Language Facility Reference Manual.

Reading an Indexed Sequential File Sequentially
To read records in an indexed sequential file in collating order by key value, open
the file with the INPUT and SEQUENTIAL attributes. The following example
illustrates reading the file STATE_FILE in sequential order using the primary
key, that is, using the STATE.NAME field. This procedure uses the SET option of
the READ statement; thus, no space is required in the records.

DECLARE STATE_PTR POINTER,
STATE_FILE FILE,
EOF BIT(1) INITIAL (’0’B);

DECLARE 1 STATE BASED (STATE_PTR),
2 NAME CHARACTER(20),
.
.
.

ON ENDFILE(STATE_FILE) EOF = ’1’B;
OPEN FILE(STATE_FILE) INPUT SEQUENTIAL;
READ FILE(STATE_FILE) SET(STATE_PTR);
DO WHILE (^EOF);

PUT SKIP(2) LIST(’State:’,STATE.NAME);
PUT SKIP(2) EDIT(’Population:’,STATE.POPULATION)

(A,P’ZZ,ZZZ,ZZZ’);
.
.
.

READ FILE(STATE_FILE) SET(STATE_PTR);
END;

In this example, the procedure reads the records in the file STATE_FILE
beginning with the first record in its primary index, the NAME field.

Accessing Records by Alternate Key
To use an alternate key to read a record in an indexed sequential file, specify the
INDEX_NUMBER option on the READ statement.

For example, if a file containing data about states has as its primary key the state
name, it might have alternate keys for state flowers, birds, and so on. Assuming
that a field called FLOWER is the first alternate key, you could access the record
for a state whose flower is MAGNOLIA by writing the following statements:

OPEN FILE(STATE_FILE) KEYED INPUT;
READ FILE(STATE_FILE) SET(STATE_PTR) KEY(’MAGNOLIA’)

OPTIONS(INDEX_NUMBER(1));

The INDEX_NUMBER option followed by 1 specifies the first alternate index, the
FLOWER field. The INDEX_NUMBER option is also valid on the REWRITE and
DELETE statements.

Record Input/Output 6–31

You can access a file starting with an alternate index by opening the file with the
INDEX_NUMBER option of the ENVIRONMENT attribute as in the following
example:

OPEN FILE(STATE_FILE) SEQUENTIAL INPUT ENV(
INDEX_NUMBER(2));

READ FILE(STATE_FILE) SET(STATE_PTR);
DO WHILE (^EOF);

PUT SKIP EDIT(STATE.BIRD,’is the bird of’,STATE.NAME)
(A,X,A,X,A);

READ FILE(STATE_FILE) SET(STATE_PTR);
END;

These statements, executed until the end-of-file is reached, access the records in
the file STATE_FILE on the basis of its second alternate index, the BIRD field.

Updating Records in an Indexed Sequential File
You can modify records in an indexed sequential file by opening the file with the
UPDATE attribute, and using the REWRITE and DELETE statements to modify
or delete records from the file.

The following example shows the correction of an invalid field in a record in the
file STATE_FILE:

DECLARE (STATENAME,NEWFLOWER) CHARACTER(30) VARYING;
.
.
.

OPEN FILE(STATE_FILE) KEYED SEQUENTIAL UPDATE;
GET SKIP LIST(STATENAME)

OPTIONS (PROMPT(’State: ’));
READ FILE(STATE_FILE) SET(STATE_PTR)

KEY(STATENAME);
GET SKIP LIST(NEWFLOWER) OPTIONS(

PROMPT(’New state flower name: ’));
STATE.FLOWER = NEWFLOWER;
REWRITE FILE(STATE_FILE);

The REWRITE statement rewrites the current record in the file, that is, the
record that was just read with the READ SET statement.

Specifying the Type of Key Match
RMS allows generic key matching; that is, it can locate a record in an indexed
sequential file whose key is greater than a specified key value, or whose key is
greater than or equal to a specified key value. In PL/I for OpenVMS VAX and
PL/I for OpenVMS AXP, you can access records by generic key using the MATCH_
NEXT and MATCH_NEXT_EQUAL options on a record I/O statement.

For example, the file STATE_FILE’s third alternate key is the state’s population.
To list all states whose populations are greater than a specified size, you could
open and read the file as follows:

DECLARE EOF BIT(1) STATIC INIT(’0’B),
SIZE FIXED BIN(31);

6–32 Record Input/Output

OPEN FILE(STATE_FILE) KEYED SEQUENTIAL ENV(
INDEX_NUMBER(3));

GET LIST(SIZE) OPTIONS(PROMPT(’Starting population: ’));
READ FILE(STATE_FILE) SET (STATE_PTR) KEY(SIZE)

OPTIONS(MATCH_NEXT_EQUAL);
DO WHILE (^EOF);

PUT SKIP EDIT(STATE.NAME,’Population is ’,
STATE.POPULATION)

(A,A,P’ZZ,ZZZ,ZZZ’);
READ FILE(STATE_FILE) SET (STATE_PTR);
END;

In this example, the size is obtained by a GET statement. The procedure opens
the file, specifying the third alternate index, the POPULATION field, in the
INDEX_NUMBER option. After accessing a record by matching the first key in
this index that equals or exceeds the size entered, the procedure reads the file
sequentially to the end-of-file, using that index.

Segmented Keys
PL/I supports the RMS segmented key concept. Segmented keys are used when
a single key cannot be made in contiguous fields of the record. The key’s parts
are split up over the record, or reordered within a contiguous part of the record.
Segmenting the key has the advantage of using only one key to represent several
fields that are always defined and sorted as a conceptual unit.

When there is a KEYFROM clause with a segmented key, PL/I takes its usual
action of copying the key value into the record variable and then writing the
variable directly to disk through RMS.

PL/I copies the one contiguous value to the position or positions specified by the
RMS definition for the segmented key. This means it must break up the value
into subfields or segments. Those fields are determined by the RMS segment
sizes for the key. Thus, for a 4-segment key of 8 bytes and individual sizes of 1,
1, 4, and 2, respectively, it would break up the one contiguous key value ABCDEFGH
as follows:

Segment 0 = "A"
Segment 1 = "B"
Segment 2 = "CDEF"
Segment 3 = "GH"

Then it copies each segment into its correct position in the record—the positions
as specified by RMS, not your record variable structure declaration.

When RMS orders the records by the key, it reconstructs the original key value as
one piece and sorts it that way. Thus the relative ordering of the segments within
the record has no bearing on how the original value is sorted.

These actions are the same for nonsegmented keys in PL/I. They are treated as
keys of one segment only, of the appropriate RMS-determined data type.

If you need to use segmented keys, be aware of the following considerations and
constraints:

• PL/I for OpenVMS VAX and PL/I for OpenVMS AXP support segmented keys
for character-string data only. Do not use segmented keys for other data
types.

• RMS requires the key values to be embedded in the record, rather than
separate from it.

Record Input/Output 6–33

• There is a difference in the actions of the KEY option and the KEYFROM
option that becomes important if you are using segmented keys, as follows:

KEY(v)
Indicates that an existing record is to be accessed at the indicated key value
(v). There is no movement of the key value. (The KEY option is valid on the
READ and REWRITE statements.)

KEYFROM(v)
Indicates that a new record is to be created at the position specified by the
key value (v). Because RMS requires the key value to be embedded in the
record, PL/I for OpenVMS VAX and PL/I for OpenVMS AXP move the value
into the correct place in the record buffer that is specified by the FROM
option of the WRITE statement.

Note that the key specified by the KEYFROM value is always the primary
key, and that PL/I sets the key number to the primary index number (0). For
segmented keys, PL/I copies the value into the correct key field positions.

Note also that the KEYFROM option is used on the WRITE statement only,
not the REWRITE statement. When you use a REWRITE statement, you
need to ensure that the key value is in the record by first using a READ
statement.

• RMS directly supports multikeyed files, but PL/I does not. Whereas in PL/I
you would expect that only the INDEX_NUMBER key of reference would
have its value filled in by the KEYFROM option, RMS actually writes all the
keys in the record when it does a write or update operation. Thus, you must
yourself fill in the unreferenced keys in the record before you use a WRITE or
REWRITE statement.

Error Handling
PL/I signals the KEY condition when errors occur while keys for indexed
sequential files are being processed. For example, if a key value specified on
a READ statement specifies a key that does not exist, or if a WRITE statement
attempts to write a record using a primary key value that already exists, the
KEY condition is signaled.

You can write an ON-unit to detect and correct some of the more common key
errors. For an example of an ON-unit that detects whether a record with a given
key value was not found or whether an attempt was made to write a record whose
key duplicates the value of an existing key, see Chapter 4.

6–34 Record Input/Output

7
Options of the ENVIRONMENT Attribute

The options of the ENVIRONMENT attribute provided by PL/I for OpenVMS
VAX and PL/I for OpenVMS AXP let you do the following:

• Describe the attributes of a file when it is created.

• Request special processing and optimization options when the file is being
read or written.

• Specify the disposition of a file when it is closed.

Most of the options of the ENVIRONMENT attribute correspond directly to VAX
Record Management Services (RMS) options and control values. PL/I, in some
cases, provides different defaults than does RMS.

This chapter presents an overview of the ENVIRONMENT options and
information on how to specify them, and gives a description of each option. The
descriptions of the ENVIRONMENT options are arranged in alphabetical order.
The chapter concludes with a discussion of the ENVIRONMENT options designed
for file protection, file sharing, and I/O optimization.

7.1 Specifying and Using ENVIRONMENT Options
All ENVIRONMENT options can be specified in the declaration of a file constant
or in an OPEN statement. Certain options can also be specified in a CLOSE
statement.

7.1.1 Arguments for ENVIRONMENT Options
ENVIRONMENT options fall into the following categories, based on whether they
require an argument and, if so, what type of argument is required:

• Options that require you to specify an expression representing a value to
override a default value provided by PL/I for OpenVMS VAX and PL/I for
OpenVMS AXP

• Options that require you to provide a reference to a variable that either
contains information pertinent to opening the related file or that will receive
information when the related file is opened

• Options that can be specified with a Boolean expression that enables or
disables the option (if no value is specified with an option, the option is
enabled)

All arguments must be specified in parentheses following the name of the
ENVIRONMENT option. For example:

ENVIRONMENT (
MAXIMUM_RECORD_SIZE(1024),
FILE_ID_TO(WORKFILE_ID),
FIXED_LENGTH_RECORDS(’1’B))

Options of the ENVIRONMENT Attribute 7–1

Considerations for specifying each type of argument are given in the following
sections.

7.1.1.1 Expressions
You can use integer expressions and character expressions in expression
arguments for ENVIRONMENT options. The ways you can specify these
arguments differ for DECLARE statements and for OPEN and CLOSE
statements.

In a DECLARE statement, you must specify a constant expression. Integer
expressions can consist of integer constants, constant identifiers defined by
%REPLACE statements, and the operators +, –, *, and /. You must specify
character expressions using character-string constants.

In an OPEN or a CLOSE statement, you can specify the argument using constant
expressions or variable references, or expressions or variable references of the
required type.

If a single variable is specified for an expression, its data type must be convertible
to the data type of the option. All integer constants and expressions are converted
to FIXED BINARY.

You can specify all character-string expressions using varying or nonvarying
strings. The description of the option specifies the maximum length of a string
argument.

For any of these options, PL/I applies a default value if no option is specified for
the file when it is opened.

7.1.1.2 Variable References
Options that are specified by variable references cannot be specified in a
DECLARE statement. The data type of the variable must match the data type
described in the option description.

7.1.1.3 Boolean Values
For an option that can be enabled or disabled, you can specify a Boolean constant,
that is, ’1’B (to enable) or ’0’B (to disable) the option in a DECLARE statement.
In an OPEN or CLOSE statement, you can specify a Boolean constant, variable,
or expression.

An option that is specified without a value is interpreted as enabled. For
example, the following are equivalent:

ENVIRONMENT(FIXED_LENGTH_RECORDS)
ENVIRONMENT(FIXED_LENGTH_RECORDS(’1’B))

For arguments of this type, PL/I converts any non-Boolean value to BIT(1)
ALIGNED.

7.1.2 Interpretation of ENVIRONMENT Options for Existing Files
Many ENVIRONMENT options specify values that can be set only when a file is
created. For example, the length of records in a file with fixed-length records is
set when the file is created and cannot be changed thereafter. When these options
are specified for a file, they apply to the file only if the opening of the file actually
results in the creation of a new file. If the file opening causes an existing file to
be opened, the option is ignored.

7–2 Options of the ENVIRONMENT Attribute

7.1.3 Determining ENVIRONMENT Options
A PL/I program can determine the value or setting of an ENVIRONMENT option
at run time for an indicated file by calling the DISPLAY built-in subroutine.
This built-in subroutine returns information about a specified PL/I file to a
user-specified structure. The member names in the structure correspond to the
keywords of the ENVIRONMENT attribute.

For a description of the values returned by this subroutine and for an example of
calling it, see Chapter 9.

Certain ENVIRONMENT options themselves return information to the program
when an existing file is opened. For example, you can specify the FIXED_
CONTROL_SIZE_TO option when an existing file with a fixed control area is
opened. PL/I returns the size of the fixed control area to the program.

7.1.4 Device Independence of ENVIRONMENT Options
Many ENVIRONMENT options apply only to a particular type of device or to a
specific file organization. For example, the REWIND_ON_CLOSE and REWIND_
ON_OPEN options apply only to magnetic tape files, and the FILE_SIZE option
applies only to disk files.

When any ENVIRONMENT option is specified for a device to which the option
does not apply, the option is ignored.

7.1.5 Confl icting and Invalid ENVIRONMENT Options
Conflicting or invalid options or values for options can be detected during
compilation or at run time. At compile time, the compiler issues a diagnostic
message to indicate the error.

At run time, the UNDEFINEDFILE condition is signaled if conflicting options are
in effect or if conflicting values are specified for the same option. For example,
if the FILE_SIZE option is specified in the DECLARE and OPEN statements
for a given file and if the options specify different values, UNDEFINEDFILE is
signaled.

For run-time errors, an ON-unit can reference the ONCODE built-in function
to determine the specific error, if desired. If no ON-unit exists for the
UNDEFINEDFILE condition, the PL/I run-time system displays an error message
describing the error that occurred.

7.2 Summary of ENVIRONMENT Options
The options to the PL/I ENVIRONMENT attribute are summarized in
alphabetical order in Table 7–1. Columns in Table 7–1 provide the following
information:

Option and Usage Gives the name of the ENVIRONMENT option, its argument
(if any), and a brief description of its usage. An option that
does not show an argument can be specified with a Boolean
argument.

Options of the ENVIRONMENT Attribute 7–3

Specify At Indicates when the option is meaningful. The possible items in
this column are as follows:

Create—the option can be specified on a DECLARE or OPEN.
It is meaningful only when a file is created.

Open—the option can be specified on a DECLARE or OPEN. It
is meaningful when an existing file is opened.

Close—the option can be specified on a DECLARE, OPEN, or
CLOSE. It takes effect when the file is closed.

Update—the option is meaningful when an existing
file is opened with the UPDATE attribute or with the
ENVIRONMENT option APPEND.

Valid I/O Types Indicates whether the option is valid for stream or record files.

Default Value Indicates the default value, if any, when the option is not
specified for a file.

Data Type Specifies the required data type of the argument.

Appendix B lists the options and their corresponding RMS equivalents.

Table 7–1 Summary of ENVIRONMENT Options

Option and Usage
Specify
At

Valid I/O
Types

Default
Value Data Type

APPEND
Places output for a file at the end of a file.

Create
Open

Record
Stream

Disabled BIT(1)

BACKUP_DATE (variable)
Overrides the default backup date of the
file.

Create
Open

Record
Stream

Date and
time file
was last
backed up

BIT(64) ALIGNED

BATCH
Submits a copy of the file to the system
batch job queue on close.

Create
Open
Close

Record
Stream

Disabled BIT(1)

BLOCK_BOUNDARY_FORMAT
Indicates that records must not cross block
boundaries.

Create Record
Stream

Disabled BIT(1)

BLOCK_IO
Specifies a file will be read or written by
block instead of records.

Create
Open

Record Disabled BIT(1)

BLOCK_SIZE (expression)
Specifies the size of a block for the creation
of a magnetic tape file.

Create Record
Stream

Mount
BLOCKSIZE
Value

FIXED BINARY

BUCKET_SIZE (expression)
Defines the number of 512-byte blocks in
a bucket for an indexed sequential or a
relative file.

Create Record Maximum
record size

FIXED BINARY

CARRIAGE_RETURN_FORMAT
Indicates that records in the file will be
printed with default carriage control.

Create Record Enabled BIT(1)

CONTIGUOUS
Specifies that an output file must be placed
in a physically contiguous extent on disk.

Create Record
Stream

Disabled BIT(1)

(continued on next page)

7–4 Options of the ENVIRONMENT Attribute

Table 7–1 (Cont.) Summary of ENVIRONMENT Options

Option and Usage
Specify
At

Valid I/O
Types

Default
Value Data Type

CONTIGUOUS_BEST_TRY
Requests that if possible an output file be
placed in a physically contiguous extent on
disk.

Create Record
Stream

Disabled BIT(1)

CREATION_DATE (variable)
Overrides default creation date of the file.

Create Record
Stream

Current
date and
time

BIT(64) ALIGNED

CURRENT_POSITION
Leaves magnetic tape positioned at last
close.

Create
Open

Record
Stream

Disabled BIT(1)

DEFAULT_FILE_NAME (expression)
Defines a default file specification for a file.

Create
Open

Record
Stream

’.DAT’ CHAR(128)

DEFERRED_WRITE
Requests file system optimization of
output.

Create
Open

Record Disabled BIT(1)

DELETE
Specifies that the file be deleted when it is
closed.

Create
Open
Close

Record
Stream

Disabled BIT(1)

EXPIRATION_DATE (variable)
Defines the expiration date for a magnetic
tape file.

Create Record
Stream

Creation
date

BIT(64) ALIGNED

EXTENSION_SIZE (expression)
Specifies a default extension size for a disk
file.

Create
Open

Record
Stream

System
default

FIXED BINARY

FILE_ID (variable)
Identifies a file by its internal file
identification.

Open Record
Stream

Not
applicable

(6)FIXED BINARY

FILE_ID_TO (variable)
Identifies a file by its internal file
identification.

Create
Open

Record
Stream

Not
applicable

(6)FIXED BINARY

FILE_SIZE (expression)
Defines the initial number of blocks to be
allocated for a file.

Create Record
Stream

Not
applicable

FIXED BINARY

FIXED_CONTROL_SIZE (expression)
Defines records as variable length with
fixed-length control, and specifies the size
of the fixed control area. On open, returns
the length of the fixed control area.

Create Record Disabled FIXED BINARY

FIXED_CONTROL_SIZE_TO (variable)
Defines records as variable length with
fixed-length control and specifies the size
of the fixed control area. On open, returns
the length of the fixed control area.

Create
Open

Record Disabled FIXED BINARY

FIXED_LENGTH_RECORDS
Specifies a file with fixed-length records of
a maximum record size.

Create Record Disabled BIT(1)

(continued on next page)

Options of the ENVIRONMENT Attribute 7–5

Table 7–1 (Cont.) Summary of ENVIRONMENT Options

Option and Usage
Specify
At

Valid I/O
Types

Default
Value Data Type

GROUP_PROTECTION (expression)
Defines the type of file access allowed to
members of the owner’s group.

Create Record
Stream

Current
process
default

CHAR(4)

IGNORE_LINE_MARKS
Specifies that end-of-line characters are
not to be treated as field delimiters in GET
LIST statements.

Create
Open

Stream Disabled BIT(1)

INDEX_NUMBER (expression)
Specifies the initial index to use in
accessing records in an indexed sequential
file.

Create
Open

Record 0 FIXED BINARY

INDEXED
Defines an indexed sequential file.

Create
Open

Record Disabled BIT(1)

INITIAL_FILL
Requests the file system to leave unused
space in file index overflow buckets.

Open Record Disabled BIT(1)

MAXIMUM_RECORD_NUMBER
(expression)
Specifies the largest record number that
will be valid for records in a relative file.

Create Record 0 FIXED BINARY

MAXIMUM_RECORD_SIZE (expression)
Specifies the maximum size that is valid
for any record in the file.

Create Record 512 bytes1 FIXED BINARY

MULTIBLOCK_COUNT (expression)
Specifies the number of blocks to be
allocated for file system buffering.

Create
Open

Record Current
process
default

FIXED BINARY

MULTIBUFFER_COUNT (expression)
Specifies the number of buffers to be
allocated for file system buffering.

Create
Open

Record Current
process
default

FIXED BINARY

NO_SHARE
Prohibits all types of shared access to the
file.

Create
Open

Record Enabled2 BIT(1)

OWNER_GROUP (expression)
Specifies the group number in the user
identification code (UIC) of the owner of
the file.

Create Record
Stream

Current
process
group
number

FIXED BINARY

OWNER_ID (expression)
Specifies the entire 32-bit identifier of the
owner of the file; can be used instead of
OWNER_GROUP and OWNER_MEMBER.

Create Record
Stream

Current
process
identifier
(UIC)

FIXED BINARY

OWNER_MEMBER (expression)
Specifies the member number in the user
identification code (UIC) of the owner of
the file.

Create Record
Stream

Current
process
member
number

FIXED BINARY

1For sequential files with fixed-length records. For sequential files with variable-length records, the default is 510 bytes.
For relative files, the default is 48 bytes.
2Disabled if the file is opened for input, enabled if opened for output or update.

(continued on next page)

7–6 Options of the ENVIRONMENT Attribute

Table 7–1 (Cont.) Summary of ENVIRONMENT Options

Option and Usage
Specify
At

Valid I/O
Types

Default
Value Data Type

OWNER_PROTECTION (expression)
Specifies the type of file access allowed the
owner of the file.

Create Record
Stream

Current
process
default

CHAR(4)

PRINTER_FORMAT
Specifies that records in the file will
be printed with printer format carriage
control embedded in the fixed control area
of the records.

Create Record Disabled BIT(1)

READ_AHEAD
Requests file system optimization on read
operations.

Open Record
Stream

Disabled BIT(1)

READ_CHECK
Requests verification of read operations.

Create
Open

Record
Stream

Disabled BIT(1)

RECORD_ID_ACCESS
Indicates that records will be accessed by
internal file system identification.

Create
Open

Record Disabled BIT(1)

RETRIEVAL_POINTERS (expression)
Specifies the number of file system extent
pointers to be maintained for file access.

Create
Open

Record
Stream

Current
system
default

FIXED BINARY

REVISION_DATE (variable)
Overrides the default revision date of the
file.

Close Record
Stream

Date and
time file is
closed

BIT(64) ALIGNED

REWIND_ON_CLOSE
Requests that a magnetic tape volume be
rewound when the file is closed.

Create
Open
Close

Record
Stream

Disabled BIT(1)

REWIND_ON_OPEN
Requests that a magnetic tape volume be
rewound when the file is opened.

Create
Open

Record
Stream

Enabled BIT(1)

SCALARVARYING
Specifies that varying character strings
will be read/written using the entire
storage of the variable.

Create
Open

Record Disabled BIT(1)

SHARED_READ
Allows other users to read records in the
file.

Create
Open

Record Enabled3 BIT(1)

SHARED_WRITE
Allows other users to read and write
records in the file.

Create
Open

Record Disabled BIT(1)

SPOOL
Queues a copy of the file to the system
printer when the file is closed.

Create
Open
Close

Record
Stream

Disabled BIT(1)

SUPERSEDE
Replaces an existing file with the same file
name, file type, and version number.

Create Record
Stream

Disabled BIT(1)

SYSTEM_PROTECTION (expression)
Defines the type of file access allowed to
users with system user identification codes
(UICs).

Create Record
Stream

Current
process
default

CHAR(4)

3Enabled if the file is opened for input, otherwise disabled.

(continued on next page)

Options of the ENVIRONMENT Attribute 7–7

Table 7–1 (Cont.) Summary of ENVIRONMENT Options

Option and Usage
Specify
At

Valid I/O
Types

Default
Value Data Type

TEMPORARY
Specifies a temporary file for which no
directory entry is made.

Create Record
Stream

Disabled BIT(1)

TRUNCATE
Truncates a sequential file at its logical
end-of-file when the file is closed.

Create
Update
Close

Record
Stream

Disabled BIT(1)

USER_OPEN (entry-name)
Specifies a user-written function to open
the file.

Create
Open

Record
Stream

RMS Open ENTRY

WORLD_PROTECTION (expression)
Specifies the type of file access allowed to
general system users.

Create Record
Stream

Current
process
default

CHAR(4)

WRITE_BEHIND
Requests file system optimization on
output operations.

Create
Update

Record
Stream

Disabled BIT(1)

WRITE_CHECK
Requests verification of output operations.

Create
Update

Record
Stream

Disabled BIT(1)

The following sections describe each option in detail.

7.2.1 APPEND Option
The APPEND option opens an existing file for output so that new records are
added following the current end-of-file. The format of this option is as follows:

APPEND [(boolean-expression)]

Rules

• The APPEND option is meaningful only when an existing file is opened with
the OUTPUT attribute. It overrides the default action for opening an output
file, which is to create a new file with a higher version number.

• If the APPEND option is specified when a file is created, the option is ignored;
that is, if the file does not exist, a new file is created.

• APPEND conflicts with the SUPERSEDE option; it is invalid for a file opened
with the INPUT or UPDATE attribute.

Usage
Use the APPEND option to open a file and position it at the end-of-file. For
example, to add records at the end of a file on a magnetic tape, you can open the
file as follows:

DECLARE TAPEFILE FILE SEQUENTIAL OUTPUT;
.
.
.

OPEN FILE(TAPEFILE) ENVIRONMENT(APPEND);

This OPEN statement opens the file TAPEFILE. The file constant TAPEFILE is
assumed to be a logical name. The system translates the logical name to locate
the tape device with which it is associated. The tape is positioned at its current
end-of-file.

APPEND can also be used for sequential disk files and for mailboxes.

7–8 Options of the ENVIRONMENT Attribute

7.2.2 BACKUP_DATE Option
The BACKUP_DATE option lets you specify a date and time field for the file’s
backup date, allowing you to override the existing backup date and time. The
format of this option is as follows:

BACKUP_DATE (variable-reference)

variable-reference
Specifies the name of a BIT(64) ALIGNED variable containing an absolute time
value in system format. The value specifies the date and time to be used as the
file’s backup date and time.

Rules
The BACKUP_DATE option is meaningful only when the file is opened or created.

Usage
You can obtain the time value required by using the Convert ASCII String to
Binary Time system service (SYS$BINTIM). For an example of a call to this
procedure to obtain a system time value, see Chapter 11.

7.2.3 BATCH Option
The BATCH option requests that the file be submitted to the system batch job
queue when it is closed. The format of this option is as follows:

BATCH [(boolean-expression)]

Rules

• The BATCH option can be specified when a file is created, opened, or closed.

• This option applies only to stream files or to sequential record files.

• Once the BATCH option has been specified for a file on a particular file
opening, it cannot be disabled.

• BATCH conflicts with the INDEXED option and with the KEYED and
DIRECT file description attributes.

Usage
When you specify both the TEMPORARY and DELETE options in conjunction
with the BATCH option, the file is submitted to the batch job queue and is
marked for deletion after the batch job is completed.

7.2.4 BLOCK_BOUNDARY_FORMAT Option
The BLOCK_BOUNDARY_FORMAT option indicates that records in the file must
not cross block boundaries. The format of this option is as follows:

BLOCK_BOUNDARY_FORMAT [(boolean-expression)]

Rules

• The BLOCK_BOUNDARY_FORMAT option is meaningful only when a file is
created.

• This option applies only to sequential files; it is ignored if specified for relative
or indexed sequential files.

• If the BLOCK_BOUNDARY_FORMAT option is specified for a file, the
maximum record size must be less than 512 bytes.

Options of the ENVIRONMENT Attribute 7–9

• BLOCK_BOUNDARY_FORMAT conflicts with the BLOCK_IO option.
However, a file that is created with the BLOCK_BOUNDARY_FORMAT
option can later be read with the BLOCK_IO option.

Usage
The BLOCK_BOUNDARY_FORMAT option can be paired with the CARRIAGE_
RETURN_FORMAT or PRINTER_FORMAT option to define the attributes of a
file’s records.

This option can be useful for the creation of files that will be read in terms of
blocks. Note, however, that this option can result in unused disk space when
records do not fill blocks.

7.2.5 BLOCK_IO Option
The BLOCK_IO option indicates that all I/O operations on the file will be in
terms of physical blocks rather than records. In an I/O statement, a block is
treated as if it were a single logical record. The format of this option is as follows:

BLOCK_IO [(boolean-expression)]

Rules

• The BLOCK_IO option is meaningful when a file is created or opened. The
file can be opened with any of the attributes INPUT, OUTPUT, or UPDATE.
If the file is opened for output, the created file is always sequential.

• This option applies only to disk files and to magnetic tape files.

• The BLOCK_IO option conflicts with the STREAM file description attribute
and with the following ENVIRONMENT options:

BLOCK_BOUNDARY_FORMAT
CARRIAGE_RETURN_FORMAT
FIXED_CONTROL_SIZE
FIXED_LENGTH_RECORDS
PRINTER_FORMAT
RECORD_ID_ACCESS

Usage
Disk Files: When a disk file is opened for block I/O, each READ or WRITE
statement always transfers data beginning on a block boundary; multiple
physical blocks can be read or written. The number of bytes transferred in
an I/O operation depends on the size of the input or output variable specified
in the READ or WRITE statement. When a READ statement reads fewer bytes
than specified by the size of the input variable, the ERROR condition is signaled;
this condition is equivalent to an end-of-file indication.

When a disk file is opened with the BLOCK_IO option and with the KEYED and
UPDATE attributes, the file can be accessed with keyed READ, REWRITE, and
WRITE statements. In this case, the key value is the virtual block number of
a block. The first block is always numbered 1. There is no distinction between
the statements REWRITE KEY(n) and WRITE KEYFROM(n); both statements
store data in the block numbered n of the file. If the file is a sequential file, it is
extended if necessary.

Magnetic Tape Files: In a magnetic tape file, the size of the block is the size
specified when the tape was created; if the tape was not previously written,
the block size is set when the tape is mounted. Sequential READ and WRITE
statements transfer a block at a time.

7–10 Options of the ENVIRONMENT Attribute

7.2.6 BLOCK_SIZE Option
The BLOCK_SIZE option specifies the size, in bytes, of the blocks when a
magnetic tape file is created. Its format is as follows:

BLOCK_SIZE(integer-expression)

integer-expression
Specifies a numeric value in the range 20 through 65,532, giving the number of
bytes in a block for the tape file. If the BLOCK_SIZE option is not specified, or if
the expression is specified as 0, the block size specified when the tape volume was
mounted is used by default.

Rules

• The BLOCK_SIZE option is meaningful only when a file is created.

• This option applies only to magnetic tape files.

Usage
When a tape file is opened with the BLOCK_IO option of ENVIRONMENT, the
block size of the file is used to determine the number of bytes to be transferred in
a single I/O operation.

7.2.7 BUCKET_SIZE Option
The BUCKET_SIZE option lets you specify the number of blocks to be used for
each bucket when you create a relative file. The BUCKET_SIZE option has the
following format:

BUCKET_SIZE(integer-expression)

integer-expression
Is a fixed binary value in the range 0 through 32, representing the number of
blocks in each bucket. If the bucket size is specified as 0, or if it is not specified,
PL/I applies the current RMS default. This default can be set with the DCL
command SET RMS_DEFAULT; its current value can be determined with the
command SHOW RMS_DEFAULT.

Rules

• The BUCKET_SIZE option is meaningful only when a file is created.

• This option applies only to relative files.

Usage
Selection of a bucket size for a relative file depends on the size of the records in
the file. Although records within a bucket can cross block boundaries, records
cannot cross bucket boundaries. Therefore, the number of blocks per bucket that
you specify with this option must conform to one of the following formulas.

Relative Files with Fixed-Length Records

bsiz = ((rlen+ 1) � rnum)=512

bsiz
Is the number of blocks per bucket, rounded up to the next higher integer. The
result must be in the range 1 through 32.

rlen
Is the size of the fixed-length records (specified by the
MAXIMUM_RECORD_SIZE option).

Options of the ENVIRONMENT Attribute 7–11

rnum
Is the number of records that you want in each bucket.

The overhead required for these files consists of one byte for each record.

Relative Files with Variable-Length Records

bsiz = ((rmax+ 3) � rnum)=512

bsiz
Is the number of blocks per bucket, rounded up to the next higher integer. The
result must be in the range 1 through 32.

rmax
Is the maximum size of any record in the file (specified by the
MAXIMUM_RECORD_SIZE option).

rnum
Is the number of records that you want in each bucket.

The overhead required for these files is three bytes for each record.

Relative Files with Variable Fixed-Length Control Records

bsiz = ((rmax+ fsiz + 3) � rnum)=512

bsiz
Is the number of blocks per bucket, rounded up to the next higher integer. The
result must be in the range 1 through 32.

rmax
Is the maximum size of the data portion of any record in the file (specified by the
MAXIMUM_RECORD_SIZE option).

fsiz
Is the size of the fixed-length control area of records (specified by the
FIXED_CONTROL_SIZE option).

rnum
Is the number of records you want in each bucket.

The overhead required for these files consists of three bytes, plus the fixed control
size, for each record.

By careful calculation of a bucket size, you can improve I/O operations on the
file. In general, a bucket size of between four and eight blocks results in good
performance for most files. For detailed information on file design and space
considerations, see the Open VMS Record Management Services Manual.

7.2.8 CARRIAGE_RETURN_FORMAT Option
The CARRIAGE_RETURN_FORMAT option indicates that each record in the file
is to be preceded by a line feed and followed by a carriage return when the line is
written to a carriage-control device such as a terminal or line printer. The format
of this option is as follows:

CARRIAGE_RETURN_FORMAT [(boolean-expression)]

7–12 Options of the ENVIRONMENT Attribute

Rules

• The CARRIAGE_RETURN_FORMAT option is meaningful only when a file is
created.

• CARRIAGE_RETURN conflicts with the PRINTER_FORMAT and BLOCK_IO
options and with the PRINT file description attribute.

Usage
CARRIAGE_RETURN_FORMAT is the default format for record files.

This type of carriage control is an attribute of the file that is known to the file
system; it does not require space within the file’s records.

7.2.9 CONTIGUOUS Option
The CONTIGUOUS option specifies that disk space for the associated file be
allocated using contiguous blocks on the disk. The format of this option is as
follows:

CONTIGUOUS [(boolean-expression)]

Rules

• The CONTIGUOUS option is meaningful only when a file is created.

• This option applies only to disk files.

• If specified with the CONTIGUOUS_BEST_TRY option, the
CONTIGUOUS_BEST_TRY option takes precedence.

Usage
By default, a disk file consists of noncontiguous areas, or extents, on a disk
volume. When a file is accessed, the file system must maintain a pointer
to each extent. However, there is a maximum number of extents that can
be maintained. For very large files that must be accessed quickly, an initial
allocation of contiguous space can result in more efficient I/O operations.

The CONTIGUOUS option is generally used with the FILE_SIZE option to
specify exactly how much contiguous space is to be allocated for the file when it
is first created. When the FILE_SIZE option is not specified, the size of the first
allocation is determined by the default cluster size of the disk (usually three to
five blocks).

If there is not enough contiguous space on the given volume for the specified size,
the UNDEFINEDFILE condition is signaled. If referenced in an ON-unit for this
condition, the ONCODE built-in function returns the value associated with the
RMS status code RMS$_FULL.

If the file need not be entirely contiguous, use the CONTIGUOUS_BEST_TRY
option instead of the CONTIGUOUS option.

Note that both the CONTIGUOUS and CONTIGUOUS_BEST_TRY options apply
only to the first allocation of space for the file. If the file is later extended in
any way, the new space allocations may or may not be contiguous with the first
allocation.

Options of the ENVIRONMENT Attribute 7–13

7.2.10 CONTIGUOUS_BEST_TRY Option
This option requests that, if possible, disk space for a new file be allocated in
contiguous space on the disk. When the file system allocates space, it tries to
place the file in contiguous blocks. The format of this option is as follows:

CONTIGUOUS_BEST_TRY [(boolean-expression)]

Rules

• The CONTIGUOUS_BEST_TRY option is meaningful only when a file is
created.

• This option applies only to disk files.

• CONTIGUOUS_BEST_TRY overrides the CONTIGUOUS option.

7.2.11 CREATION_DATE Option
The CREATION_DATE option lets you specify a date and time field for the file’s
creation, allowing you to override the default creation date and time. The format
of the CREATION_DATE option is as follows:

CREATION_DATE (variable-reference)

variable-reference
Specifies the name of a BIT(64) ALIGNED variable containing an absolute time
value in system format. The value specifies the date and time to be used as the
file’s creation date and time.

Rules
The CREATION_DATE option is meaningful only when a file is created.

Usage
You can obtain the time value required by using the Convert ASCII String to
Binary Time system service (SYS$BINTIM).

7.2.12 CURRENT_POSITION Option
The CURRENT_POSITION option specifies that a magnetic tape volume be
positioned immediately after the most recently closed file when the next file is
created. The format of this option is as follows:

CURRENT_POSITION [(boolean-expression)]

Rules

• The CURRENT_POSITION option is meaningful only when a file is created.

• This option applies only to magnetic tape files.

• If the REWIND_ON_OPEN option is also selected, it takes precedence over
the CURRENT_POSITION option.

Usage
This option lets you close an output file on magnetic tape and proceed to write
another file on the same tape immediately after the current file. For example:

DECLARE TAPEFILE FILE RECORD OUTPUT ENV(
DEFAULT_FILE_NAME(’TAPEFILE:’));

OPEN FILE(TAPEFILE) ENV(CURRENT_POSITION)
TITLE(’TAPE1.FIL’);

CLOSE FILE(TAPEFILE);
OPEN FILE(TAPEFILE) TITLE(’TAPE2.FIL’)’

7–14 Options of the ENVIRONMENT Attribute

When the second OPEN statement is executed, the tape identified by the logical
name TAPEFILE retains the position it had following the CLOSE statement.

7.2.13 DEFAULT_FILE_NAME Option
The DEFAULT_FILE_NAME option specifies default fields for the file
specification associated with the PL/I file reference. Its format is as follows:

DEFAULT_FILE_NAME [(character-expression)]

character-expression
Is a character-string expression specifying one or more components of an
OpenVMS file specification. If no value or a null string is specified, PL/I applies
no default values for file specifications.

The string can have a maximum length of 128 characters.

Rules

• The DEFAULT_FILE_NAME option is meaningful when a file is created or
opened.

• When the DEFAULT_FILE_NAME option is not specified, PL/I applies the
default file type DAT to file specifications that do not contain a file type.

Usage
For an explanation of the steps that PL/I takes to complete a file specification,
including its use of the value of the DEFAULT_FILE_NAME option, see
Chapter 4.

7.2.14 DEFERRED_WRITE Option
The DEFERRED_WRITE option requests that modified I/O buffers not be written
back to the disk file until the buffers are needed for other purposes. The format
of this option is as follows:

DEFERRED_WRITE [(boolean-expression)]

Rules

• The DEFERRED_WRITE option is meaningful when a file is created or
opened. An existing file can be opened for update or opened with the
APPEND option.

• This option applies only to relative and indexed sequential files.

• If a file is opened with the SHARED_READ or SHARED_WRITE option
and the DEFERRED_WRITE option, the DEFERRED_WRITE option will be
ignored.

Usage
The DEFERRED_WRITE option can provide better I/O performance for output
operations, especially when a relative or indexed sequential file is being initially
loaded with records, and the records are being added sequentially.

If a system problem occurs when I/O is being performed with the
DEFERRED_WRITE option enabled, data may be lost. To ensure the integrity of
the file during processing with this option, a PL/I program can call the FLUSH
built-in subroutine at critical times to rewrite all buffers. The FLUSH built-in
subroutine is described in Chapter 9.

Options of the ENVIRONMENT Attribute 7–15

7.2.15 DELETE Option
The DELETE option specifies that the file is to be deleted when it is closed. The
format of this option is as follows:

DELETE [(boolean-expression)]

Rules

• The DELETE option can be specified when a file is created, opened, or closed.

• Once the DELETE option has been enabled for a file on a particular open, it
cannot be disabled.

Usage
When this option is used in conjunction with the SPOOL or BATCH options, the
file is marked to be deleted after it is either printed or processed as a batch job.

You can also use this option to delete an existing file. For example:

DECLARE INFILE FILE;
OPEN FILE (INFILE) ENVIRONMENT (DELETE);
CLOSE FILE(INFILE);

When this CLOSE statement is executed, the OpenVMS file associated with the
PL/I file constant INFILE is deleted.

7.2.16 EXPIRATION_DATE Option
The EXPIRATION_DATE option specifies the time at which a magnetic tape or
disk file expires. The file cannot be deleted or overwritten until the date specified.
The format of the EXPIRATION_DATE option is as follows:

EXPIRATION_DATE (variable-reference)

variable-reference
Specifies the name of a BIT(64) ALIGNED variable that contains an absolute
time value or a delta time value in system format. The value specifies the date
and time at which a file expires.

Rule
The EXPIRATION_DATE option is meaningful only when a file is created.

Usage
You can obtain the time value required by using the Convert ASCII String to
Binary Time system service (SYS$BINTIM).

7.2.17 EXTENSION_SIZE Option
The EXTENSION_SIZE option sets the default extension quantity for a file,
that is, the number of blocks to be added to a disk file when a PUT or WRITE
operation increases the size of the file beyond its original allocation. The format
of the EXTENSION-SIZE option is as follows:

EXTENSION_SIZE(integer-expression)

integer-expression
Is a fixed binary integer in the range 0 through 65,535, indicating the extension
quantity in 512-byte blocks.

7–16 Options of the ENVIRONMENT Attribute

Rules

• The EXTENSION_SIZE option is meaningful when a file is created or opened.
An existing file can be opened for update or for output with the APPEND
option.

• This option applies only to disk files.

• When an extension size is specified in the opening of an existing file, the
extension value is set for the duration of this file opening. When the file is
closed, the default set when the file was created is reestablished.

Usage
Using the EXTENSION_SIZE option can improve the efficiency of I/O operations
to files that are frequently enlarged.

Each time the addition of a record to a file requires the file system to allocate
additional disk extents for the file, RMS allocates the amount of space specified
by the EXTENSION_SIZE value. Thus, if you specify a value that is larger than
the default that RMS uses, the number of times that the file must be extended
will be decreased.

However, if a large extension quantity is specified for a file, and the file does not
require the allocated space, the disk space is wasted.

7.2.18 FILE_ID Option
When the FILE_ID option is specified in the opening of an existing file, PL/I uses
the value specified in the FILE_ID option to locate the file. The format of the
option is as follows:

FILE_ID(variable-reference)

variable-reference
Specifies the name of a 6-element array variable that gives the file identification
obtained when the file was created.

The variable must be declared as (6) FIXED BINARY and must be connected.

Rules

• The FILE_ID option is valid only when an existing file is opened.

• This option conflicts with the TITLE, DEFAULT_FILE_NAME, and
FILE_ID_TO options.

• If there is no file with the indicated file identification, the
UNDEFINEDFILE condition is signaled.

• The FILE_ID option cannot be used with DECnet.

• This option is provided only for use with the TEMPORARY option.

• You must specify the FILE_ID option to reopen a file that was created with
the TEMPORARY option.

7.2.19 FILE_ID_TO Option
When a file is created, the FILE_ID_TO option requests PL/I to return the file
identification to a user-specified variable. Its format is as follows:

FILE_ID_TO(variable-reference)

Options of the ENVIRONMENT Attribute 7–17

variable-reference
Specifies the name of a 6-element array variable to receive the file identification
of the created file.

The variable must be declared as (6) FIXED BINARY and must be connected.

Rules

• The FILE_ID_TO option is meaningful when a file is created or opened.

• This option applies only to disk files.

• FILE_ID_TO conflicts with the FILE_ID option.

• The FILE_ID_TO option cannot be used with DECnet.

• This option is provided only for use with temporary files.

Usage
This option allows you to save the internal file identification of a file created
with the TEMPORARY option so that you can access the file later and eventually
delete it.

For an example of the FILE_ID_TO and FILE_ID options used for temporary
files, see the following description of the TEMPORARY option.

7.2.20 FILE_SIZE Option
The FILE_SIZE option lets you specify the number of blocks to be initially
allocated for a file. The format of the FILE_SIZE option is as follows:

FILE_SIZE(integer-expression)

integer-expression
Is a value in the range 0 through 4,294,967,295, giving the number of 512-byte
blocks. A value of 0 indicates no allocation.

On OpenVMS VAX. to specify a value larger than 2,147,483,647 (the largest value
that can be contained in a fixed binary integer in PL/I for OpenVMS VAX), you
must express the number as a negative value; RMS interprets the number as an
unsigned integer.

Rules

• The FILE_SIZE option is meaningful only when a file is created.

• This option applies only to disk files.

Usage
The FILE_SIZE option can optimize I/O operations on large files. When you
initially create a file that will require a large amount of space and to which new
records will be added frequently, you can reduce the file system overhead required
to allocate space each time the file is extended by requesting an initial allocation
amount. For example:

DECLARE MONTHLY_TRANSACT FILE RECORD OUTPUT
ENVIRONMENT (FILE_SIZE (128));

If you do not specify the FILE_SIZE option, or if you specify a file size of 0,
PL/I uses the default extension quantity for the file when the first write or put
operation occurs on the file. The default extension quantity is defined in the
EXTENSION_SIZE option or supplied by default.

7–18 Options of the ENVIRONMENT Attribute

If the specified file size is not a multiple of the cluster size of the disk, the
allocation is rounded up to a multiple of the cluster size.

If you allocate more space for a file than it requires, the unused space is wasted.

7.2.21 FIXED_CONTROL_SIZE Option
The FIXED_CONTROL_SIZE option specifies that a file will have a fixed-length
control area associated with each variable-length record and specifies the size of
the fixed control area. The format of this option is as follows:

FIXED_CONTROL_SIZE(integer-expression)

integer-expression
Is an integer expression in the range 0 through 255, indicating the number of
bytes in the fixed control field of the record. If you specify a value of 0, PL/I uses
the default size of two bytes.

Rules

• The FIXED_CONTROL_SIZE option is meaningful only when a file is created.

• This option applies only to relative and sequential files with variable-length
records.

• The FIXED_CONTROL_SIZE option conflicts with the BLOCK_IO and
INDEXED options and with the STREAM and UPDATE file description
attributes.

• You must specify the FIXED_CONTROL_SIZE option to create a file
containing records with a fixed-length control area.

Usage
When a file is created with the FIXED_CONTROL_SIZE option, WRITE and
REWRITE statements for the file can specify the FIXED_CONTROL_FROM
option to write a value into the fixed control area. For example:

DECLARE OUTFILE FILE RECORD OUTPUT ENVIRONMENT (
FIXED_CONTROL_SIZE (2));

OPEN FILE(OUTFILE);
WRITE FILE (OUTFILE) FROM (NEWLINE) OPTIONS (

FIXED_CONTROL_FROM(LINE_NUMBER));

If the FIXED_CONTROL_FROM option is not specified when a record is written
to a file with fixed control records, PL/I for OpenVMS VAX and PL/I for OpenVMS
AXP write zeros in the fixed control area of the record.

7.2.22 FIXED_CONTROL_SIZE_TO Option
When the FIXED_CONTROL_SIZE_TO option is used to open an existing file
with fixed control records, PL/I returns the length of the fixed control area to a
user-specified variable. The format of this option is as follows:

FIXED_CONTROL_SIZE_TO(variable-reference)

variable-reference
Specifies the name of a fixed binary variable to receive the length of the fixed
control area.

The variable must be declared as FIXED BINARY.

Options of the ENVIRONMENT Attribute 7–19

Rules

• The FIXED_CONTROL_SIZE_TO option is valid only when an existing file is
opened.

• This option applies only to relative and sequential files with variable-length
records.

• If this option is specified for a file that does not have fixed control records,
PL/I for OpenVMS VAX and PL/I for OpenVMS AXP return a zero to the
specified variable.

7.2.23 FIXED_LENGTH_RECORDS Option
The FIXED_LENGTH_RECORDS option specifies that all records in the file are
to be of the same length. If you do not specify this option when you create a file,
the records in the file will be variable length by default. The format of this option
is as follows:

FIXED_LENGTH_RECORDS [(boolean-expression)]

Rules

• The FIXED_LENGTH_RECORDS option is meaningful only when a file is
created.

• The FIXED_LENGTH_RECORDS option conflicts with the
FIXED_CONTROL_SIZE and BLOCK_IO options and with the combination
of the STREAM and OUTPUT file description attributes.

Usage
When the FIXED_LENGTH_RECORDS option is specified for the creation of a
file, the size of each record can be specified with the MAXIMUM_RECORD_SIZE
option. If MAXIMUM_RECORD_SIZE is not specified, PL/I for OpenVMS VAX
and PL/I for OpenVMS AXP provide a default length of 512 bytes for sequential
files and a default length of 480 bytes for relative files.

7.2.24 GROUP_PROTECTION Option
The GROUP_PROTECTION option defines the type of access to be permitted
to the file by other users in the owner’s group. The format of this option is as
follows:

GROUP_PROTECTION (character-expression)

character-expression
Is a 1- to 4-character string expression indicating the access privileges to be
granted to users in the owner’s group. The expression can contain any of the
following letters to indicate the access allowed:

Letter Meaning

R Read access is allowed.

W Write access is allowed.

E Execute access is allowed.

D Delete access is allowed.

The lowercase forms of these letters are also permitted. Letters can be repeated,
but the maximum length of the string is 4 characters. All other characters are

7–20 Options of the ENVIRONMENT Attribute

invalid. If any other character is present in the string, the UNDEFINEDFILE
condition is signaled.

Rules

• The GROUP_PROTECTION option is meaningful only when a file is created.

• If no protection options are specified, PL/I uses the current system and
process defaults. If any protection options are specified, the protection for
unspecified user categories defaults to no access.

7.2.25 IGNORE_LINE_MARKS Option
The IGNORE_LINE_MARKS option overrides the default manner in which VAX
PL/I interprets end-of-line indicators on stream input operations, which is to treat
an end-of-line on a stream input operation as a field delimiter in a GET LIST or
GET EDIT statement. The format of this option is as follows:

IGNORE_LINE_MARKS [(boolean-expression)]

Rules

• The IGNORE_LINE_MARKS option can be specified when a file is opened.

• This option applies only to stream input files; that is, it conflicts with the
RECORD, OUTPUT, and UPDATE attributes and with any attributes that
imply these attributes.

Usage
When IGNORE_LINE_MARKS is specified for a stream file, an end-of-line
terminator such as a carriage return or escape character is ignored, and a GET
statement continues to read characters in the input stream until a space, tab, or
comma is encountered. For example:

123 Return

456,

If these lines are entered in response to a GET statement, the resulting input
variable is given the value 123456; the carriage return is ignored, and the GET
statement reads input data until the comma is encountered.

7.2.26 INDEX_NUMBER Option
The INDEX_NUMBER option specifies which index is to be used initially to
process an indexed sequential file. Its format is as follows:

INDEX_NUMBER(integer-expression)

integer-expression
Specifies the initial index to be used. The value of the expression must be the
number of an index for records in the file, where the primary index is 0, the
secondary index is 1, and so on.

Rules

• The INDEX_NUMBER option can be specified when a file is opened for input
or update.

• This option is meaningful only for indexed sequential files.

Options of the ENVIRONMENT Attribute 7–21

Usage
If the INDEX_NUMBER option is specified for opening an indexed sequential file
for sequential access, the records will be accessed in the order of their occurrence
in the index specified by the INDEX_NUMBER option.

If the file is opened for keyed access, the INDEX_NUMBER option specifies the
initial index to be used. This value can be changed in the following statements:

• Any subsequent record I/O statement that specifies the INDEX_NUMBER
option

• A WRITE statement that specifies the KEYFROM option

• Any statement that specifies the RECORD_ID option

In the latter two cases, the index number is set to 0, the primary index.

7.2.27 INDEXED Option
The INDEXED option specifies that a file is an indexed sequential file. The
format of this option is as follows:

INDEXED [(boolean-expression)]

Rules

• The INDEXED option is meaningful when an existing file is opened.

• This option applies only to indexed sequential files.

• INDEXED conflicts with the APPEND, BATCH, BLOCK_IO,
FIXED_CONTROL_SIZE, MAXIMUM_RECORD_NUMBER, and
PRINTER_FORMAT options and with the PRINT file description attribute.

Usage
The INDEXED option is never required; however, you can use it as a check when
you open an existing indexed sequential file so that PL/I will verify the file’s
organization before opening it.

7.2.28 INITIAL_FILL Option
The INITIAL_FILL option specifies, when an indexed sequential file is opened,
that the initial fill value specified when the file was created is to be used.

As an indexed sequential file is initially loaded with records, the fill size specified
causes buckets to appear full when they are actually less than full. Thus, room
remains in each bucket for subsequent additions to the file.

The format of this option is as follows:.

INITIAL_FILL [(boolean-expression)]

Rules
The INITIAL_FILL option is meaningful only when an indexed sequential file is
initially opened for output.

7.2.29 MAXIMUM_RECORD_NUMBER Option
The MAXIMUM_RECORD_NUMBER option sets, for a relative file, the largest
record number that can be written to the file. The format of this option is as
follows:

MAXIMUM_RECORD_NUMBER(integer-expression)

7–22 Options of the ENVIRONMENT Attribute

integer-expression
For OpenVMS VAX, a numeric expression that must yield an integer result in the
range 0 through 2,147,483,647. For OpenVMS AXP, ??.

If you specify 0, or if this option is not specified, there is no maximum number
and no run-time checking of record numbers is performed.

Rules

• The MAXIMUM_RECORD_NUMBER option is meaningful only when a file is
created.

• This option applies only to relative files.

• MAXIMUM_RECORD_NUMBER conflicts with the INDEXED option and
with the STREAM file description attribute.

Usage
The MAXIMUM_RECORD_NUMBER option lets you specify an upper limit to
the values that can be specified for relative record numbers in the file. When a
maximum number has been set, then the file system checks the relative number
of each record that is written to the file. If a relative record number is not in the
correct range, the KEY condition is signaled. If referenced in an ON-unit for this
condition, the ONCODE built-in function returns the value associated with the
RMS status code RMS$_MRN.

7.2.30 MAXIMUM_RECORD_SIZE Option
The MAXIMUM_RECORD_SIZE option specifies the largest size that records in
a file can have. The actual meaning of this option varies according to the type of
file:

• For a file with fixed-length records, the maximum record size indicates the
size of each record in bytes.

• For a file with variable-length records, the maximum record size is the size in
bytes of the largest record that can be written to the file.

• For variable-length records with fixed-length control, the maximum record
size does not include the fixed control area size.

• For relative files, the maximum record size is used in conjunction with the
bucket size to determine the cell size in bytes.

The format of this option is as follows:

MAXIMUM_RECORD_SIZE(integer-expression)

integer-expression
Is a numeric expression with values in the range 1 to a maximum determined by
record format and file organization, as in the following table.

File Organization Record Format Maximum

Sequential Fixed or variable length 32,767

Relative Fixed length 31,998

Relative Variable length 31,998

Indexed sequential Fixed length 16,362

Options of the ENVIRONMENT Attribute 7–23

File Organization Record Format Maximum

Indexed sequential Variable length 16,360

For variable-length records with a fixed-length control area, the size of the fixed
control area must be subtracted from the maximum value allowed.

A value of 0 indicates that there is no user-defined limit to the size of records.

If the value is out of range, the UNDEFINEDFILE condition is signaled.

Rules
The MAXIMUM_RECORD_SIZE option is meaningful only when a file is created.
If not specified, PL/I provides a default length based on the file organization and
record format as follows:

File Organization Record Format Default

Sequential Fixed length 512

Sequential Variable length 510

Relative Fixed or variable length 480

If the file has variable with fixed-length control records, the size of the fixed
control area is subtracted from the default value listed.

7.2.31 MULTIBLOCK_COUNT Option
The MULTIBLOCK_COUNT option specifies the number of blocks to be allocated
in each internal buffer for operations on a sequential disk file. Its format is as
follows:

MULTIBLOCK_COUNT(integer-expression)

integer-expression
Is a fixed binary expression in the range 0 through 127, indicating the number
of blocks to be allocated to each buffer. If 0 is specified, PL/I uses the system
default. You can determine the current system default by entering the DCL
command SHOW RMS_DEFAULT. Use the SET RMS_DEFAULT command to
establish a new default value, if desired.

If the value is not within the required range, the UNDEFINEDFILE condition is
signaled.

Rules

• The MULTIBLOCK_COUNT option is meaningful when a file is created or
opened.

• This option applies only to sequential disk files. It is ignored if the BLOCK_
IO option is specified or if the file is not a sequential disk file.

Usage
The MULTIBLOCK_COUNT option can optimize I/O operations on sequential
disk files. By default, RMS transfers data in 512-byte disk blocks. To improve
I/O access time, you can specify a multiple of 512-byte blocks to specify that a
larger number of blocks be transferred with each input or output operation. In
general, a multiblock count of between 12 and 16 results in good performance for
sequential I/O.

7–24 Options of the ENVIRONMENT Attribute

The MULTIBLOCK_COUNT option can also be used with the
MULTIBUFFER_COUNT option to request a specified number of I/O buffers,
each of which can contain the given number of blocks.

7.2.32 MULTIBUFFER_COUNT Option
The MULTIBUFFER_COUNT option specifies the number of buffers to be
allocated for file operations; it has the following effects, depending on the
organization of the file:

• For relative and indexed sequential files, it results in a cache of buckets that
can improve random access.

• For sequential files, multiple buffers allow throughput to be increased on file
transfers when either the READ_AHEAD or the WRITE_BEHIND option is
also selected. If neither of these options is specified, the MULTIBUFFER_
COUNT option is meaningless for sequential files.

Its format is as follows:

MULTIBUFFER_COUNT(integer-expression)

integer-expression
Specifies a value in the range –128 through 127, indicating the number of buffers
to be allocated; RMS uses the absolute value of the field. If 0 is specified, PL/I
applies the current RMS default. This default can be set with the DCL command
SET RMS_DEFAULT; its current value can be determined with the command
SHOW RMS_DEFAULT.

If either the READ_AHEAD or the WRITE_BEHIND option is specified and the
MULTIBUFFER_COUNT option is not specified, PL/I uses the RMS default value
of two buffers.

Rules

• The MULTIBUFFER_COUNT option is meaningful when a file is created or
opened.

• This option applies only to disk files.

• This option has no effect if BLOCK_IO is specified.

Usage
When you use the MULTIBUFFER_COUNT option, it decreases the number
of actual data transfers and thus increases a program’s execution speed. For
example:

OPEN FILE(REL_FILE)
ENVIRONMENT(

READ_AHEAD,
MULTIBLOCK_COUNT(4) ,
MULTIBUFFER_COUNT(4));

This option can be specified for sequential, relative, or indexed sequential files.
For inserting records in an indexed sequential file, a good rule of thumb is to
specify one buffer for each index in use, plus two or more buffers for data. Thus,
an indexed sequential file with a primary key and two alternate keys could be
opened with the following ENVIRONMENT specification:

ENVIRONMENT (MULTIBUFFER_COUNT(5))

This option specifies five buffers.

Options of the ENVIRONMENT Attribute 7–25

Multibuffering is also effective for sequential files when combined with the
ENVIRONMENT options READ_AHEAD or WRITE_BEHIND. These options are
described individually in this chapter.

7.2.33 NO_SHARE Option
The NO_SHARE option prohibits sharing of the data in a file. The format of the
NO_SHARE option is as follows:

NO_SHARE [(boolean-expression)]

Rules

• The NO_SHARE option is meaningful when a file is created or opened.

• This option applies only to disk files.

• NO_SHARE conflicts with the SHARED_READ and SHARED_WRITE
options.

• If the specified file is already opened for sharing, the UNDEFINEDFILE
condition is signaled.

Usage
By default, the NO_SHARE option is enabled when a file is opened for output or
update. This option is disabled when a file is opened for input.

7.2.34 OWNER_GROUP Option
The OWNER_GROUP option overrides the default group number in the user
identification code (UIC) associated with the file’s owner. The group number,
together with the member number, defines the ownership of the file and provides
the values against which protection is applied. Its format is as follows:

OWNER_GROUP(integer-expression)

integer-expression
Is an integer value in the range 0 through 16383 (decimal).

Rules

• The OWNER_GROUP option is meaningful only when a file is created.

• If the OWNER_GROUP option is not specified, PL/I uses the group number in
the current UIC.

• The OWNER_GROUP option conflicts with the OWNER_ID option.

• To specify an owner UIC for a file that is different from the UIC under which
the current program is executing, the process must have the SYSPRV user
privilege or a system UIC.

Usage
Note that although the value can be specified to PL/I in decimal, the OpenVMS
system always displays UICs in octal format.

Following is an example of a program using the OWNER_GROUP and the
OWNER_MEMBER options to define the ownership of a file. Note the use of the
DECODE built-in function to obtain octal numbers for the UIC.

7–26 Options of the ENVIRONMENT Attribute

OWNER: PROCEDURE OPTIONS(MAIN);

DCL TEST_FILE STREAM OUTPUT FILE;

OPEN FILE(TEST_FILE)
ENVIRONMENT(OWNER_GROUP(DECODE(’214’,8)),

OWNER_MEMBER(DECODE(’10223’,8)));

PUT FILE(TEST_FILE) LIST(’This file is owned by UIC [214,10223].’);

CLOSE FILE(TEST_FILE);

END OWNER;

7.2.35 OWNER_ID Option
The OWNER_ID option overrides the default owner of a file. This option
combines the capabilities of the OWNER_GROUP and OWNER_MEMBER
options. In addition, this option allows the specification of identifiers that are
not true UICs, which is not possible with the other two options. Its format is as
follows:

OWNER_ID(integer-expression)

integer-expression
Is any FIXED BINARY value.

Rules

• The OWNER_ID option is meaningful only when a file is created.

• If the OWNER_ID option is not specified, PL/I uses the current process UIC.

• This option conflicts with both the OWNER_GROUP and the
OWNER_MEMBER options.

Usage
Following is an example of a program using the OWNER_ID option:

/*
* This program example creates a file owned by the identifier TEST. (Note
* that the process running this program must hold the identifier with the
* RESOURCE attribute or the file creation will fail.)
*/
%REPLACE IDENTIFIER BY ’TEST’;

OWNER_ID: PROCEDURE OPTIONS(MAIN);

%INCLUDE $KGBDEF;
%INCLUDE $STSDEF;
%INCLUDE SYS$ASCTOID;

DCL TEST_FILE STREAM OUTPUT FILE;
DCL IDENTIFIER_VALUE FIXED BINARY;
DCL KGB_BITS BIT(32) ALIGNED;

/*
* Get the value of the identifier. (Note: The fact that the value
* translates successfully does not mean that the current process
* holds the identifier.
*/
STS$VALUE = SYS$ASCTOID(IDENTIFIER, IDENTIFIER_VALUE, KGB_BITS);
IF ~STS$SUCCESS THEN SIGNAL VAXCONDITION(STS$VALUE);

Options of the ENVIRONMENT Attribute 7–27

/*
* Does the identifier have the resource attribute? (Note: If you
* want to determine whether this process holds the identifier with the
* resource attribute, you must use the SYS$FIND_HOLDER or SYS$CHKPRO
* system services.)
*/
IF (KGB_BITS & KGB$M_RESOURCE) = ’0’b
THEN

PUT LIST(’The identifier ’ ||
IDENTIFIER || ’ does not have the RESOURCE attribute.’);

OPEN FILE(TEST_FILE) ENVIRONMENT(OWNER_ID(IDENTIFIER_VALUE));

PUT FILE(TEST_FILE)
LIST(’This file is owned by the identifier ’ || IDENTIFIER || ’.’);

CLOSE FILE(TEST_FILE);

END OWNER_ID;

7.2.36 OWNER_MEMBER Option
The OWNER_MEMBER option overrides the default member number in the user
identification code (UIC) associated with the file’s owner. The member number of
a file’s owner, together with the group number, provides protection for the file. Its
format is as follows:

OWNER_MEMBER(integer-expression)

integer-expression
Is a numeric value in the range 0 through 65535 (decimal).

Rules

• The OWNER_MEMBER option is meaningful only when a file is created.

• If the OWNER_MEMBER option is not specified, PL/I uses the member
number in the current UIC.

• The OWNER_MEMBER option conflicts with the OWNER_ID option.

• To specify an owner UIC for a file that is different from the UIC under which
the current program is executing, the process must have the SYSPRV user
privilege or a system UIC.

Usage
Note that although the value can be specified to PL/I in decimal, the OpenVMS
system always displays UICs in octal format.

See the section on the OWNER_GROUP option for an example of a program using
the OWNER_MEMBER option.

7.2.37 OWNER_PROTECTION Option
The OWNER_PROTECTION option defines the type of access to be permitted to
the file by the file’s owner and by other users with the same user identification
code (UIC). The format of this option is as follows:

OWNER_PROTECTION(character-expression)

7–28 Options of the ENVIRONMENT Attribute

character-expression
Is a 1- to 4-character string expression indicating the access privileges to be
granted to the file’s owner (and any other users who have the same UIC). The
character-string expression can contain any of the following letters to indicate the
access allowed:

Letter Meaning

R Read access is allowed.

W Write access is allowed.

E Execute access is allowed.

D Delete access is allowed.

The lowercase forms of these letters are also permitted. Letters can be repeated,
but the maximum length of the string is 4 characters. All other characters are
invalid. If any other character is present in the string, the UNDEFINEDFILE
condition is signaled.

Rules

• The OWNER_PROTECTION option is meaningful only when a file is created.

• If no protection options are specified, PL/I applies the current system or
process default protection. If any protection options are specified, the
protection for unspecified user categories defaults to no access.

7.2.38 PRINTER_FORMAT Option
The PRINTER_FORMAT option specifies that the records in the file contain
printing and carriage-control information in the fixed control area. The format of
this option is as follows:

PRINTER_FORMAT [(boolean-expression)]

Rules

• The PRINTER_FORMAT option is meaningful only when a file is created.

• The FIXED_CONTROL_SIZE option should be specified with the PRINTER_
FORMAT option. The size of the fixed control area must be two to six bytes.
If FIXED_CONTROL_SIZE is not specified, the size of the fixed control area
defaults to two bytes.

• This option applies only to relative or sequential files.

• PRINTER_FORMAT conflicts with the STREAM file description attribute and
with the following ENVIRONMENT options:

CARRIAGE_RETURN_FORMAT
FIXED_LENGTH_RECORDS
BLOCK_IO

Usage
This option indicates that a file is in printer format, that is, the fixed control
area of each record contains carriage-control information. Printer file format
provides more explicit carriage control than the default type of carriage control,
called carriage return format. Printer format is particularly useful in formatting
a printed listing.

Options of the ENVIRONMENT Attribute 7–29

Note that format items are implemented in the following way:

• Pages are started with a form feed.

• Blank lines (created with the SKIP option) are totally blank.

• Tabs are counted as spaces.

Table 7–2 summarizes coding specifications for the fixed-length control area for
files with printer format. The first byte in the fixed control area is called the
prefix byte: it determines the carriage control to be performed before writing the
record. The second byte is the postfix byte: it determines the carriage control to
be performed after writing the record. The values shown in Table 7–2 have the
same meanings in either byte; the bytes are interpreted separately.

Table 7–2 Printer File Format Carriage Control

Bit 7 Bits 0–6 Meaning

0 0 No carriage control is specified, that is, NULL.

0 1–7F Bits 0 through 6 are a count of new lines (line feeds followed by
carriage return).

Bit 7 Bit 6 Bit 5 Bits 0–4 Meaning

1 0 0 0–1F Output the ASCII control character
specified by the configuration of bits 0
through 4 (7-bit character set).

1 1 0 0–1F Output the ASCII control character
specified by the configuration of bits
0 through 4, which are translated as
ASCII characters 128 through 159 (8-bit
character set).

1 1 1 0–1F Reserved.

Example 7–1 illustrates a procedure that uses explicit carriage control. The
following notes are keyed to this program:

1 The structures LINE_FEEDS and CARRIAGE_CONTROL define bit fields
corresponding to the fields shown in Table 7–2. The fields that must be set
are initialized.

2 The procedure declares and defines values for NEW_LINE and NEW_PAGE.
These 8-bit strings correspond to the fields within the structure
CARRIAGE_CONTROL.

Note the use of the POSINT built-in function to define these fields. The
POSINT built-in function must be used so that the bit string value is treated
as a positive integer.

3 The output file PRINTFILE is declared with the RECORD and OUTPUT
attributes and with ENVIRONMENT options FIXED_CONTROL_SIZE and
PRINTER_FORMAT.

4 The first line is output with no carriage control. Note that any subsequent
lines printed without carriage control would result in overprinting.

7–30 Options of the ENVIRONMENT Attribute

5 The procedure uses the POSINT built-in function to specify an integer value
for the 7-bit field LINE_FEEDS.COUNT. Then, the variable CONTROL_
FIELD is assigned two 1-byte values:

• The prefix byte specifies the number of line feeds to precede the line when
it is output. This value is specified by using the STRING
built-in function to concatenate the bit fields in LINE_FEEDS.

• The postfix byte specifies a carriage return following the output record.
This value is specified using the variable NEW_LINE.

6 The variable CONTROL_FIELD is assigned new values for the prefix and
postfix bytes to output another record. This prefix byte specifies a new page;
the postfix byte specifies a new line.

7 The line is output.

8 The file is spooled to the system printer when it is closed.

Options of the ENVIRONMENT Attribute 7–31

Example 7–1 Explicit Carriage Control

PRINTER_FORMAT_EXAMPLE: PROCEDURE OPTIONS(MAIN);

/*
* Declare structure definitions for carriage-control bit fields
* and a FIXED BIN(15) variable for the fixed control area
/ / 1 */
DECLARE

1 LINE_FEEDS STATIC,
2 COUNT BIT (7), /* Contains count of line feeds */
2 INDICATOR BIT(1) INIT(’0’B), /* Must be zero */

1 CARRIAGE_CONTROL STATIC,
2 CODE BIT(5), /* Bits 0-4 ASCII code for action */
2 FILLER BIT(2) INIT(’00’b), /* Bits 5 and 6 */
2 EXPLICIT BIT(1) INIT(’1’B), /* Bit 7 must be set */

CONTROL_FIELD BIT(16) ALIGNED;

/*
* Set up variables for form feeds and carriage returns
*/
DECLARE

(NEW_LINE,NEW_PAGE) BIT(8); /* 2 */

/*
* Declare PRINTFILE with character-string variable for I/O
*/
DECLARE

PRINTFILE RECORD OUTPUT FILE ENV(
FIXED_CONTROL_SIZE(2), /* 3 */
PRINTER_FORMAT),

PRINTREC CHARACTER(80) VARYING;

/*
* Set up the NEW_PAGE and NEW_LINE variables using the
* CARRIAGE_CONTROL structure as a template.
*/
POSINT(CODE) = 12; /* Assign ASCII code for form feed */
NEW_PAGE = STRING(CARRIAGE_CONTROL);

POSINT(CODE) = 13; /* Assign ASCII code for CR */
NEW_LINE = STRING(CARRIAGE_CONTROL);

OPEN FILE(PRINTFILE);

/*
* Output first line with no carriage control
*/
PRINTREC = ’Output first line with no carriage control’; /* 4 */
WRITE FILE(PRINTFILE) FROM(PRINTREC);

/*
* Prepare to output five line feeds followed by a new line
*/
POSINT(LINE_FEEDS.COUNT) = 5; /* assign 5 to LINE_FEEDS.COUNT */ /* 5 */
CONTROL_FIELD = STRING(LINE_FEEDS) || NEW_LINE;
PRINTREC = ’Record preceded by 5 line feeds ’;

WRITE FILE(PRINTFILE) FROM (PRINTREC) OPTIONS(
FIXED_CONTROL_FROM(CONTROL_FIELD));

/*
* Prepare to output a page eject followed by a new line
*/
CONTROL_FIELD = NEW_PAGE || NEW_LINE; /* 6 */
PRINTREC = ’New page’;

(continued on next page)

7–32 Options of the ENVIRONMENT Attribute

Example 7–1 (Cont.) Explicit Carriage Control

WRITE FILE(PRINTFILE) FROM(PRINTREC) OPTIONS(/* 7 */
FIXED_CONTROL_FROM(CONTROL_FIELD));

CLOSE FILE(PRINTFILE) ENV(SPOOL); /* 8 */

END PRINTER_FORMAT_EXAMPLE;

7.2.39 READ_AHEAD Option
The READ_AHEAD option requests the overlapping of reading records into
buffers with computing operations. This option, used in conjunction with the
MULTIBUFFER_COUNT option, can increase the efficiency of I/O operations to
disk files. PL/I for OpenVMS VAX and PL/I for OpenVMS AXP enable this option
by default. The format of this option is as follows:

READ_AHEAD [(boolean-expression)]

Rules

• The READ_AHEAD option is meaningful when an existing file is opened for
input or for update.

• This option applies only to sequential disk files.

Usage
When you use the READ_AHEAD option, you can specify the number of buffers
to be used in the MULTIBUFFER_COUNT option. When READ_AHEAD is in
effect and no multibuffer count is specified, RMS uses two buffers by default.

When READ_AHEAD is enabled, the data transfer and the reading ahead are
transparent to the PL/I program.

7.2.40 READ_CHECK Option
The READ_CHECK option specifies that all input transfers of data between a
program and a disk device be followed by a comparison operation to ensure that
the data was transferred intact. The format of this option is as follows:

READ_CHECK [(boolean-expression)]

Rules
The READ_CHECK option is meaningful when a file is created or opened. An
existing file can be opened for input or for update.

Usage
This option is useful for applications that must verify all I/O operations to ensure
that data was successfully transferred. However, use of this option decreases the
speed and efficiency of I/O operations.

If READ_CHECK is specified when a file is created, READ_CHECK is the default
for all subsequent openings of the file, unless explicitly disabled.

7.2.41 RECORD_ID_ACCESS Option
The RECORD_ID_ACCESS option indicates that the records in a file will be
accessed randomly, using the internal identification of the records. The format of
this option is as follows:

RECORD_ID_ACCESS [(boolean-expression)]

Options of the ENVIRONMENT Attribute 7–33

Rules

• The RECORD_ID_ACCESS option is meaningful when a file is created or
opened.

• This option applies only to disk files.

• The RECORD_ID_ACCESS option conflicts with the BLOCK_IO option.

Usage
You must open a file with this option to use the RECORD_ID_TO and RECORD_
ID options of the record I/O statements. These options are described in Chapter 8.

When a file is opened with the RECORD_ID_ACCESS option, access by record
identification can be mixed with sequential access or access by key during this
opening. However, a statement cannot specify a record both by key and by record
identification.

7.2.42 RETRIEVAL_POINTERS Option
The RETRIEVAL_POINTERS option specifies the number of extent pointers to
be maintained in main memory for file access. Each pointer provides access to a
separate extent in the file; increasing the number of pointers for a noncontiguous
file can increase the speed with which records are accessed during I/O operations.
Its format is as follows:

RETRIEVAL_POINTERS(integer-expression)

integer-expression
Is a fixed binary expression in the range –1 through 127. A value in the range
of 1 through 127 indicates the number of pointers. If you specify –1, the file
system maps as much of the file as possible. If the option is not specified, or if the
expression has a value of 0, the file system uses the default number established
when the volume was initialized or mounted.

Rules
The RETRIEVAL_POINTERS option is meaningful when a file is created or
opened.

Usage
When a disk is initialized, the default window size is set by the /WINDOW
qualifier of the DCL command INITIALIZE. You can override this value for the
opening of a specific file by specifying the RETRIEVAL_POINTERS option to
increase the speed with which records can be accessed.

However, you should avoid specifying a value that is too large. Space for the
pointers is allocated from system space, and a large number of pointers could
have an adverse effect on system performance.

7.2.43 REVISION_DATE Option
The REVISION_DATE option lets you specify a date and time field for the file’s
revision, allowing you to override the default revision date and time. The format
of this option is as follows:

REVISION_DATE (variable-reference)

7–34 Options of the ENVIRONMENT Attribute

variable-reference
Specifies the name of a BIT(64) ALIGNED variable containing an absolute time
value in system format. The value specifies the date and time to be used as the
file’s revision date and time.

Rules
The REVISION_DATE option is meaningful only when the file is closed.

Usage
You can obtain the time value required by using the Convert ASCII String to
Binary Time system service (SYS$BINTIM).

7.2.44 REWIND_ON_CLOSE Option
The REWIND_ON_CLOSE option specifies, for a file on a magnetic tape volume,
that the volume is to be rewound when the file is closed. The format of this
option is as follows:

REWIND_ON_CLOSE [(boolean-expression)]

Rules

• The REWIND_ON_CLOSE option can be specified when a file is created,
opened, or closed.

• This option applies only to magnetic tape files.

• REWIND_ON_CLOSE takes precedence over the CURRENT_POSITION
option.

7.2.45 REWIND_ON_OPEN Option
The REWIND_ON_OPEN option specifies, for a file on a magnetic tape volume,
that the volume is to be rewound when the file is created or opened. The format
of this option is as follows:

REWIND_ON_OPEN [(boolean-expression)]

Rules

• The REWIND_ON_OPEN option is meaningful when a file is created or
opened.

• This option applies only to magnetic tape files.

• REWIND_ON_OPEN takes precedence over the CURRENT_POSITION
option.

Usage
Magnetic tape file positioning is described in Chapter 6.

7.2.46 SCALARVARYING Option
The SCALARVARYING option specifies that character strings with the VARYING
attribute be read and written in strict accordance with the PL/I ANSI standard.
Its format is as follows:

SCALARVARYING [(boolean-expression)]

Rules

• The SCALARVARYING option is meaningful when a file is created or opened.

• SCALARVARYING conflicts with the STREAM file description attribute.

Options of the ENVIRONMENT Attribute 7–35

Usage
The SCALARVARYING option has the following effect on I/O operations involving
VARYING character-string variables:

• When a record is written from a varying-length character string, the entire
storage of the string is written, including the word containing the string’s
current length.

• When a record is read into a varying-length character-string variable, the
first word of the record is read into the variable’s current length field.

Thus, records to be read into or from variables with the VARYING attribute
should be images of a varying character string—including the 2-byte count field
at the beginning of the string.

When SCALARVARYING is not specified, character-string variables with the
VARYING attribute are handled so as to facilitate reading and writing files with
variable-length records. The rules are as follows:

• On an input operation, the entire record read into the variable is treated as
a character string and assigned to the variable. Thus, the current length
of the variable is always set to the record length of the record read, unless
truncation occurs.

• On an output operation, only the characters of the string’s current value are
written.

For strings with the VARYING attribute that are embedded in arrays or
structures, the entire storage is always read or written.

When a file is to be read with SCALARVARYING in effect, the target variable
must be declared CHARACTER VARYING, and the length of the target variable
must match the record length of each record in the file, minus two bytes. If the
length does not match, the ERROR condition is signaled.

The following example illustrates reading a file with the SCALARVARYING
option (presumably the file was created with the SCALARVARYING option in
effect):

DECLARE EOF BIT(1) ALIGNED INITIAL(’0’B);
DECLARE STRING CHARACTER(80) VARYING,

INFILE FILE RECORD INPUT;

OPEN FILE(INFILE) ENVIRONMENT(SCALARVARYING);
ON ENDFILE(INFILE) EOF = ’1’B;
READ FILE(INFILE) INTO(STRING);
DO WHILE (^EOF);

PUT SKIP LIST(LENGTH(STRING),STRING);
READ FILE(INFILE) INTO(STRING);
END;

The file defined as INFILE must have 82-byte records: the first two bytes of
each record must contain the length of the data within the record. This READ
statement reads 82 bytes, and uses the first two as the length and contents of
each string.

7.2.47 SHARED_READ Option
The SHARED_READ option specifies that other users who have concurrent access
to the file can read records in it. The format of this option is as follows:

SHARED_READ [(boolean-expression)]

7–36 Options of the ENVIRONMENT Attribute

Rules

• The SHARED_READ option is meaningful when a file is created or opened.

• This option applies to relative and indexed sequential files.

• SHARED_READ conflicts with the NO_SHARE option.

Usage
By default, the SHARED_READ option is disabled when a file is opened for
output or update; that is, sharing is not allowed by default if anyone is writing
to the file. SHARED_READ is enabled when a file is opened for input, that is,
sharing is allowed if no one is writing to the file.

7.2.48 SHARED_WRITE Option
The SHARED_WRITE option specifies that other users who have concurrent
access to the file can write, update, and delete records in the file. The format of
this option is as follows:

SHARED_WRITE [(boolean-expression)]

Rules

• The SHARED_WRITE option is meaningful when a file is created or opened.

• This option applies to sequential, relative, and indexed sequential files.

• SHARED_WRITE conflicts with the NO_SHARE option.

• If SHARED_READ and SHARED_WRITE are both specified, the effect is the
same as if only SHARED_WRITE were specified.

Usage
By default, the SHARED_WRITE option is disabled.

7.2.49 SPOOL Option
The SPOOL option requests that the file be submitted to the system printer job
queue when it is closed. The format of this option is as follows:

SPOOL [(boolean-expression)]

Rules

• The SPOOL option can be specified when a file is created, opened, or closed.

• This option applies to stream files as well as to record files of any file
organization.

• Once the SPOOL option has been specified for a particular file and opening, it
cannot be disabled.

Usage
If you specify the DELETE option in conjunction with the SPOOL option, the file
is submitted to the queue SYS$PRINT when it is closed and marked to be deleted
after printing.

You can control the queue to which the file is submitted by using the DEFINE
command to equate the logical name SYS$PRINT with the name of a specific
queue before running the program. For example:

$ DEFINE SYS$PRINT LPC0:
$ RUN PRINTER

Options of the ENVIRONMENT Attribute 7–37

If the PL/I program PRINTER closes a file with the SPOOL option, the file is
queued to LPC0: (the printer device).

7.2.50 SUPERSEDE Option
The SUPERSEDE option specifies that if a file already exists with the same
name, type, and version number as the file specified, the existing file should be
replaced. The format of this option is as follows:

SUPERSEDE [(boolean-expression)]

Rules

• The SUPERSEDE option is meaningful only when a file is created.

• SUPERSEDE conflicts with the APPEND option.

Usage
By default, the file system creates a new file and assigns it a new version number
whenever a file is opened for output. Consequently, if a file specification does not
include a version number, many versions of a file may be created. If the file’s
TITLE option or DEFAULT_FILE_NAME option specifies an explicit version
number, the ERROR condition is signaled if a file with that version number
already exists.

In some cases, you may want to specify an explicit version number to
ensure that a single version of a specific file be maintained. In these cases,
specify the SUPERSEDE option in conjunction with a TITLE value or
DEFAULT_FILE_NAME value to ensure that multiple versions of the file are
not created.

7.2.51 SYSTEM_PROTECTION Option
The SYSTEM_PROTECTION option defines the type of access to be permitted to
the file by users with system user identification codes (UICs). The format of this
option is as follows:

SYSTEM_PROTECTION(character-expression)

character-expression
Is a 1- to 4-character string expression indicating the access privileges to be
granted to users with system UICs or with the SYSPRV user privilege. The
character-string expression can contain any of the following letters to indicate the
access allowed:

Letter Meaning

R Read access is allowed.

W Write access is allowed.

E Execute access is allowed.

D Delete access is allowed.

The lowercase forms of these letters are also permitted. Letters can be repeated,
but the maximum length of the string is 4 characters. All other characters are
invalid. If any other character is present in the string, the UNDEFINEDFILE
condition is signaled.

7–38 Options of the ENVIRONMENT Attribute

Rules

• The SYSTEM_PROTECTION option is meaningful only when a file is created.

• If no protection options are specified, PL/I applies the current system and
process defaults. If any protection options are specified, the protection for
unspecified user categories defaults to no access.

7.2.52 TEMPORARY Option
The TEMPORARY option creates a temporary file with no directory entry. The
format of this option is as follows:

TEMPORARY [(boolean-expression)]

Rules

• The TEMPORARY option is meaningful only when a file is created.

• TEMPORARY conflicts with the TITLE and the DEFAULT_FILE_NAME
options.

Usage
When you create a file with the TEMPORARY option, the file system does not
create a directory entry for the file. A file thus created can be used during
the execution of the program and deleted on completion, without the overhead
required to create and remove the directory entry.

The file can be deleted when it is closed or, if needed later, can be deleted after
it has been reused. You specify deletion by using the DELETE option when you
open, reopen, or close the file.

However, because no directory entry is created for a temporary file, the file can be
reaccessed only by its internal file identification. You can obtain this identification
by specifying the FILE_ID_TO option when the file is created. For example:

DECLARE WORKFILE FILE OUTPUT SEQUENTIAL,
WORKFILE_ID (6) FIXED BINARY;

OPEN FILE(WORKFILE) ENVIRONMENT (
TEMPORARY,
FILE_ID_TO(WORKFILE_ID));

.

.

.
CLOSE FILE(WORKFILE);

.

.

.
OPEN FILE (WORKFILE) ENVIRONMENT (

FILE_ID(WORKFILE_ID),
DELETE);

These statements declare the file WORKFILE, open it with the FILE_ID_TO
option, close it, and later reopen it, using the FILE_ID option and specifying
the file identification obtained when the file was first opened. The second OPEN
statement also specifies the DELETE option of ENVIRONMENT, so that the file
is deleted when it is subsequently closed.

Note that the FILE_ID and the FILE_ID_TO options, which are necessary for
reaccessing a temporary file, cannot be used across the DECnet.

Options of the ENVIRONMENT Attribute 7–39

The TEMPORARY option is also useful in conjunction with the BATCH or SPOOL
options. For example, if you create a file that is to be printed but that can be
deleted after printing, you can specify it as follows:

DECLARE PRINTFILE FILE PRINT ENVIRONMENT (
SPOOL, TEMPORARY, DELETE);

When this file is closed, it is automatically queued for printing. Once it is printed,
it is deleted.

7.2.53 TRUNCATE Option
The TRUNCATE option specifies that any unused space allocated for a file be
deallocated when the file is closed. The file is truncated to its logical end-of-file.
The format of this option is as follows:

TRUNCATE [(boolean-expression)]

Rules

• The TRUNCATE option can be specified when a file is created, opened, or
closed. An existing file can be opened for update or opened with the APPEND
option.

• This option applies only to sequential files.

• Once the TRUNCATE option has been specified for a file on a particular open,
it cannot be disabled.

Usage
You can specify this option to conserve disk space. If a file’s allocation is greater
than its contents require, and if the file is not expected to increase in size, you
may want to use this option to reclaim the allocated, but unused, space.

7.2.54 USER_OPEN Option
The USER_OPEN option allows you to access RMS facilities not explicitly
available in PL/I for OpenVMS VAX and PL/I for OpenVMS AXP by writing a
function that controls the opening of the file. Specifying the USER_OPEN option
causes the run-time library to call your function to open the file instead of calling
RMS to open it according to its normal defaults. The format of this option is as
follows:

USER_OPEN (entry-name)

entry-name
An entry variable or entry constant.

When the OPEN statement is executed, the run-time library sets up the RMS
file access block (FAB) and the record access block (RAB), as well as its own
internal data structures. These blocks transmit requests for file and record
operations to RMS; they also return the data contents of files, information about
file characteristics, and status codes. For more information on the RAB and the
FAB, see the OpenVMS Record Management Services Reference Manual.

In order, the three parameters passed to the user-open function by the run-time
library are as follows:

• FAB address

• RAB address

7–40 Options of the ENVIRONMENT Attribute

• Open-flag, which is passed as a longword 1 if the file exists (in which case
SYS$OPEN should be called); if the file does not exist, a longword zero is
passed (in which case SYS$CREATE should be called)

Rules

• The function must call SYS$OPEN or SYS$CREATE.

• The status of the call must be returned.

• The function can modify the FAB or the RAB, or both.

• The function can store FAB and RAB values in program variables.

• The structures for the FAB and the RAB that are found in PLI$STARLET
(modules $FABDEF and $RABDEF) should be used when you manipulate the
FAB and the RAB.

• The USER_OPEN option should be used only when there is no way to do
what you want within PL/I.

Note

Your user-open function may have to be changed when new run-time
libraries are released.

Usage
The following example shows a PL/I for OpenVMS VAX program that creates a
file 1000 blocks long.

/*
* This program allocates 1000 blocks to the file new.tmp.
*/
OPEN_TEST: PROC OPTIONS(MAIN);

DCL F FILE OUTPUT;

OPEN FILE(F) ENVIRONMENT(USER_OPEN(MY_OPEN)) TITLE(’NEW.TMP’);

RETURN;

/*
* This function sets the appropriate bit in the FAB to allocate
* 1000 blocks for the file.
*/
MY_OPEN:PROC(FAB,RAB,OPEN_FLAG) RETURNS(FIXED BIN);

%INCLUDE $FABDEF;
%INCLUDE $RABDEF;

DCL 1 FAB LIKE FABDEF;
DCL 1 RAB LIKE RABDEF;
DCL OPEN_FLAG FIXED BIN;
DCL STATUS FIXED BIN;
%INCLUDE SYS$OPEN;
%INCLUDE SYS$CREATE;

Options of the ENVIRONMENT Attribute 7–41

/*
* Store the allocation quantity.
*/
FAB.FAB$L_ALQ = 1000;
/*
* Call sys$open or sys$create and return its status to the Run-Time
* Library.
*/
IF OPEN_FLAG = 1 THEN

STATUS = SYS$OPEN(FAB,,);
ELSE

STATUS = SYS$CREATE(FAB,,,);
RETURN(STATUS);

END MY_OPEN;

END OPEN_TEST;

7.2.55 WORLD_PROTECTION Option
The WORLD_PROTECTION option defines the type of access to be permitted to
the file by users who are not in the owner’s group and who do not have system
user identification codes. The format of this option is as follows:

WORLD_PROTECTION(character-expression)

character-expression
Is a 1- to 4-character string expression indicating the access privileges to be
granted to users in the world category. The character-string expression can
contain any of the following letters to indicate the access allowed:

Letter Meaning

R Read access is allowed.

W Write access is allowed.

E Execute access is allowed.

D Delete access is allowed.

The lowercase forms of these letters are also permitted. Letters can be repeated,
but the maximum length of the string is four characters. All other characters are
invalid. If any other character is present in the string, the UNDEFINEDFILE
condition is signaled.

Rules

• The WORLD_PROTECTION option is meaningful only when a file is created.

• If no protection options are specified, PL/I uses the current system and
process defaults. If any protection options are specified, the default protection
for unspecified user categories is no access.

7.2.56 WRITE_BEHIND Option
The WRITE_BEHIND option requests the file system to overlap the writing of
buffers with computing operations. The format of this option is as follows:

WRITE_BEHIND [(boolean-expression)]

7–42 Options of the ENVIRONMENT Attribute

Rules

• The WRITE_BEHIND option is meaningful when a file is created or opened.
An existing file can be opened either for update or for output with the
APPEND option.

• This option applies only to sequential files; it is ignored for unit record
devices.

Usage
When you use the WRITE_BEHIND option, you can specify the number of
buffers to be used in the MULTIBUFFER_COUNT option. If you specify WRITE_
BEHIND and do not specify a multibuffer count, RMS uses two buffers by default.

When the WRITE_BEHIND option is in effect, there is no way for the program
to determine when a buffer has been written to disk. To ensure the integrity of
a file that is being processed with the WRITE_BEHIND option, you can use the
FLUSH built-in subroutine to periodically write all buffers back to disk. The
FLUSH built-in subroutine is described in Chapter 9.

7.2.57 WRITE_CHECK Option
The WRITE_CHECK option specifies that all write transfers of data between a
program and a disk device be followed by a compare operation to ensure that the
data was transferred intact. The format of this option is as follows:

WRITE_CHECK [(boolean-expression)]

Rules
The WRITE_CHECK option is meaningful when a file is created or opened. An
existing file can be opened either for update or for output with the APPEND
option.

Usage
This option is useful for applications that must verify all I/O operations, to ensure
that data was successfully transferred. However, use of this option decreases the
speed and efficiency of I/O operations.

If WRITE_CHECK is specified when a file is created, WRITE_CHECK is the
default for all subsequent openings of the file, unless explicitly disabled.

7.3 ENVIRONMENT Options for File Protection and File Sharing
This section discusses the ENVIRONMENT options that take advantage of
special RMS processing options for file protection and file sharing.

7.3.1 File Protection
Each user who is authorized to use the system is assigned a user identification
code (UIC) by the system manager. When a PL/I program creates a file, the
current UIC associated with the process executing the program defines the file’s
ownership.

Based on this UIC, called the owner UIC, the file system defines the protection of
the file in terms of which other users on the system can access the file and what
operations they can perform on the file. The other users in the system are defined
as follows:

• Owner—Any other process that has the same UIC as that established as the
file’s owner is also the owner of a file.

Options of the ENVIRONMENT Attribute 7–43

• Group—A process that has the same group number in its UIC is a member of
the owner’s group.

• System—A process that has a group number in the system-defined range or
that has the SYSPRV user privilege is in the system user category.

• World—All jobs and processes that do not fall into the other three categories
belong to the world category.

The types of access privileges defined for a file are as follows:

• Read access—the right or permission to perform an input operation

• Write access—the right or permission to perform an output or update
operation

• Execute access—the right or permission to execute an image file

• Delete access—the right or permission to delete the file

You can explicitly control the protection applied to a file in two ways:

• Specify the file’s ownership.

• Specify the type of access allowed each category of user.

In a PL/I program, you can specify a file’s ownership and protection when you
create the file.

7.3.1.1 Defining a File’s Ownership
When you specify the ENVIRONMENT attribute for a file you are creating in a
PL/I program, you can specify the following options to define the owner of the file,
overriding the default:

OWNER_MEMBER
OWNER_GROUP

These options specify the member number and group number of the owner of the
file. Specify values for these options using fixed binary expressions. For example:

ENVIRONMENT (
OWNER_GROUP (240),
OWNER_MEMBER (5))

This example defines the owner of the file as any process that has the UIC
[360,5]. Note that although the value can be specified to PL/I in decimal radix,
the OpenVMS system always displays and interprets UICs in octal radix.

To specify an owner UIC for a file that is different from the UIC under which the
current program is executing, the process must have the SYSPRV user privilege
or a system UIC.

7.3.1.2 Defining a File’s Protection
When you specify ENVIRONMENT options for a file you are creating in a PL/I
program, you can specify the following options to define the access permitted to
various users:

OWNER_PROTECTION
GROUP_PROTECTION
SYSTEM_PROTECTION
WORLD_PROTECTION

7–44 Options of the ENVIRONMENT Attribute

These options specify the types of access permitted by the specification of the
following codes:

• R—gives the right to read the file.

• W—gives the right to modify the file.

• E—for files containing executable program images, gives the right to execute
the program.

• D—gives the right to delete the file.

These codes can be specified in any order for an option; if you specify an option
and omit a code, that category of user is denied that type of access. If you specify
one or more protection options, the protection for unspecified categories defaults
to no access. If you do not specify any protection options, then PL/I uses the
current default protection for all the categories.

For example:

ENVIRONMENT (
OWNER_PROTECTION (’RWE’)
SYSTEM_PROTECTION (’R’)
GROUP_PROTECTION(’R’))

This specification defines protection to a file as follows:

• The OWNER_PROTECTION option specifies RWE, that is, read, write, and
execute access. Because D is not specified, the owner is not allowed delete
access and thus cannot inadvertently delete the file.

• The SYSTEM_PROTECTION and GROUP_PROTECTION options specify
only read access for system and group users.

• The WORLD_PROTECTION option is not specified; this denies all access to
all users who are in the world category.

Note that the DCL command SET PROTECTION allows the owner of a file to
change the file’s protection at any time. Additional commands and user privileges
allow the protection of a file to be overridden or changed. For details on these
commands and privileges, see the OpenVMS DCL Dictionary.

The file system applies the protection you specify for a file when the file is
accessed from a program or from the DCL command level. It also applies the
protection when the file is to be shared.

7.3.2 File Sharing
RMS allows multiple programs to access records in the same file concurrently.
The type of access is controlled by ENVIRONMENT specifications and by the
current status of the file, that is, whether the file is open and, if it is open,
whether it is open for input, output, or update.

The rules for sharing are as follows:

• Sharing is valid only for disk files.

• Sequential, relative, and indexed files can be read-shared; that is, any number
of programs can read records in these files at the same time.

• Relative and indexed sequential files can be write-shared; that is, any number
of programs can read and write records in these files at the same time.

Options of the ENVIRONMENT Attribute 7–45

• Sequential disk files can be write-shared only if there is a single program
writing them at a time. Only one program can be writing a sequential file
while other programs are reading it.

When you write a PL/I program or programs that will be sharing a file, you can
specify the type of sharing. During execution of programs that share a file, RMS
ensures the following:

• If a file is already opened when another program attempts to open it, the file
is available for sharing.

• Only one program is writing a record at one time.

7.3.2.1 Specifying File Sharing
In a PL/I program, you can specify one of the following file-sharing options in the
ENVIRONMENT attribute:

NO_SHARE
SHARED_READ
SHARED_WRITE

These options indicate the type of shared operations that can be performed on the
file. The defaults for these options depend on the OPEN attributes, as follows:

OPEN Attribute Default Sharing

INPUT SHARED_READ

OUTPUT NO_SHARE

UPDATE NO_SHARE

You override these defaults by specifying options for ENVIRONMENT. For
example, if SHARED_READ is specified on an OPEN statement for a file opened
for UPDATE, the process that opened the file is the only legal writer of the file.
Other processes can access the file only for reading; they must specify SHARED_
WRITE to indicate that they allow writing of the file while they are reading it.

If SHARED_WRITE is specified, processes that subsequently access the file with
the SHARED_WRITE option can write the file. Both the SHARED_READ and
SHARED_WRITE options can be specified for a file.

Table 7–3 summarizes the effects of opening a file with file-sharing options.

Table 7–3 Effects of File-Sharing Options

Open Option and
Access Specified by
First Opener

Open Option Specified
by a Subsequent
Opener Access Allowed Subsequent Opener

ENV(NO_SHARE)1

INPUT, OUTPUT,
or UPDATE

ENV(NO_SHARE)
ENV(SHARED_READ)
ENV(SHARED_
WRITE)

None. The UNDEFINEDFILE
condition is signaled.2

1You must have write access privileges to open the file with the NO_SHARE option.
2ONCODE returns the value for RMS$_FLK.

(continued on next page)

7–46 Options of the ENVIRONMENT Attribute

Table 7–3 (Cont.) Effects of File-Sharing Options

Open Option and
Access Specified by
First Opener

Open Option Specified
by a Subsequent
Opener Access Allowed Subsequent Opener

ENV(SHARED_READ)
INPUT

ENV(NO_SHARE) None. The UNDEFINEDFILE
condition is signaled.2

ENV(SHARED_READ) The file is accessed for input.

ENV(SHARED_
WRITE)

The UNDEFINEDFILE condition is
signaled.2

ENV(SHARED_READ)
OUTPUT or UPDATE

ENV(NO_SHARE) None. The UNDEFINEDFILE
condition is signaled.2

ENV(SHARED_READ) None. The UNDEFINEDFILE
condition is signaled.2

ENV(SHARED_
WRITE)

The file can be accessed for input only.

ENV(SHARED_
WRITE)
INPUT

ENV(NO_SHARE) The UNDEFINEDFILE condition is
signaled.2

ENV(SHARED_READ) The file can be accessed for input,
output, or update.

ENV(SHARED_
WRITE)

The file can be accessed for input,
output, or update.

ENV(SHARED_
WRITE)
OUTPUT or UPDATE

ENV(NO_SHARE) None. The UNDEFINEDFILE
condition is signaled.2

ENV(SHARED_READ) None. The UNDEFINEDFILE
condition is signaled.2

ENV(SHARED_
WRITE)

The file can be accessed for input,
output, or update.

2ONCODE returns the value for RMS$_FLK.

7.3.2.2 File Locking
If a file is first opened by a process in a manner that restricts sharing by other
processes, RMS locks the file to prohibit access by other processes. If a PL/I
procedure attempts to open a file already opened by another process for a type of
access not allowed, the UNDEFINEDFILE condition is signaled. In an ON-unit
that is executed for this condition, the ONCODE built-in function returns the
value associated with the RMS status code RMS$_FLK (meaning that the file is
locked).

In an application where files must be shared and the synchronization of sharing
is important, a procedure can test whether a file is currently being accessed
by another process and act accordingly. The following example illustrates an
ON-unit that tests whether a file is locked:

ON UNDEFINEDFILE(STATE_FILE) BEGIN;
%INCLUDE $RMSDEF;
IF ONCODE() = RMS$_FLK
THEN

CALL WAITSYNC;
ELSE

CALL RESIGNAL();
END;

Options of the ENVIRONMENT Attribute 7–47

This ON-unit declares the symbolic name RMS$_FLK from PLI$STARLET.TLB
and uses an IF statement to verify whether the error occurred because the file
is currently locked. If so, the ON-unit calls the procedure WAITSYNC, which
presumably synchronizes the procedure’s execution. Otherwise, it calls the
RESIGNAL built-in subroutine, to request that the default PL/I ON-unit handle
the UNDEFINEDFILE condition.

7.3.2.3 Record Locking
When more than one process is accessing a file at the same time, it is necessary
to ensure that no process can access a record while another process is writing,
rewriting, or deleting the record. To protect access to records in a shared file,
PL/I for OpenVMS VAX and PL/I for OpenVMS AXP use the automatic record-
locking capability of RMS. Manual record locking is also available, through the
record-locking options of the READ statement (LOCK_ON_READ, LOCK_ON_
WRITE, MANUAL_UNLOCKING, NOLOCK, NONEXISTENT_RECORD, READ_
REGARDLESS, TIMEOUT_PERIOD, and WAIT_FOR_RECORD). These manual
record-locking options are valid for all file organizations.

RMS-controlled record locking in PL/I occurs, for example, when one PL/I
procedure executes a READ statement (without any record-locking options
specified) for a record in a file opened with the UPDATE attribute. During the
execution of the READ statement, RMS automatically keeps the record locked,
and no other processes can access the record until it is freed.

A record is locked when both of the following are true:

• A READ statement is issued for the record (without any record-locking
options specified).

• The file containing the record was opened with the OUTPUT or UPDATE
attribute.

A record can also be locked by any of the following options on the READ
statement:

LOCK_ON_READ
LOCK_ON_WRITE
MANUAL_UNLOCKING
NONEXISTENT_RECORD
READ_REGARDLESS (on a record that is not already locked)

A record remains locked until one of the following occurs:

• The locked record is rewritten or deleted.

• A READ, WRITE, REWRITE, or DELETE statement is executed to access
another record in the same file.

• The REWIND built-in subroutine is called to rewind the file to its beginning.

• The FREE built-in subroutine is called to free all locked records in the file.

• The RELEASE built-in subroutine is called to unlock the record.

• The file is closed.

Records are also locked for the duration of a WRITE, REWRITE, or DELETE
statement to ensure that the I/O is completed. The records are unlocked when
these statements are completed.

7–48 Options of the ENVIRONMENT Attribute

If a procedure in another process attempts to access a record that is locked, the
ERROR condition is signaled. In an ON-unit that is executed once this condition
exists, a reference to the ONCODE built-in function returns the value associated
with the RMS status code RMS$_RLK (meaning that the record is locked).

Thus, a file-sharing application can test whether a record in a file is currently
locked in an ON-unit, as in the following example:

ON ERROR BEGIN;
%INCLUDE $RMSDEF;
IF ONCODE() = RMS$_RLK
THEN

CALL RECORDSYNC();
ELSE

CALL RESIGNAL();
END;

The ON-unit in this example tests whether any ERROR condition is signaled as a
result of an attempt to access a locked record. If so, the ON-unit calls a procedure
that will synchronize with the other process reading the record. Otherwise, it
calls the RESIGNAL built-in subroutine to perform default condition handling.

7.3.2.4 Examples of File Sharing
The following examples illustrate some of the principles of file sharing in VAX
PL/I. The procedure UPDATE_FILE obtains, modifies, and rewrites a record
in a keyed file. It opens the file with the UPDATE attribute and with the
ENVIRONMENT option SHARED_READ. It contains these statements:

UPDATE_FILE: PROCEDURE OPTIONS(MAIN);

OPEN FILE(PARTS) RECORD UPDATE KEYED ENV(
SHARED_READ);

.

.

.
READ FILE(PARTS) INTO(PARTLIST) KEY(INPUT_NUM);

.

.

.
REWRITE FILE(PARTS) FROM(PARTLIST);

The procedure PRINT_DATA reads the records in a keyed file sequentially, and
displays certain fields in each record. It contains these statements:

PRINT_DATA: PROCEDURE OPTIONS(MAIN);
OPEN FILE(PARTS) RECORD INPUT SEQUENTIAL ENV(

SHARED_WRITE);
.
.
.

READ FILE(PARTS) INTO(PARTLIST);
DO WHILE (^EOF);

PUT SKIP LIST(PARTLIST.NAME,QUANTITY.IN_STOCK);
READ FILE(PARTS) INTO(PARTLIST);

END;

The procedure VIEW_DATA reads the records in a keyed file sequentially, and
displays certain fields in each record. It does not modify any of the records; it only
needs to read them, so it uses the READ statement options READ_REGARDLESS
and NOLOCK. It contains these statements:

Options of the ENVIRONMENT Attribute 7–49

VIEW_DATA: PROCEDURE OPTIONS(MAIN);
OPEN FILE(PARTS) RECORD INPUT SEQUENTIAL ENV(

SHARED_WRITE);
.
.
.

READ FILE(PARTS) INTO(PARTLIST) OPTIONS(READ_REGARDLESS,NOLOCK);
DO WHILE (^EOF);

PUT SKIP LIST(PARTLIST.NAME,QUANTITY.IN_STOCK);
READ FILE(PARTS) INTO(PARTLIST) OPTIONS(READ_REGARDLESS,NOLOCK);

END;

For the purposes of these three examples, assume that the file PARTS is equated
to the same OpenVMS file by logical name assignments so that each procedure is
attempting access to the same file.

If the process running the program UPDATE_FILE is the first process to open
the file, the file is opened for read sharing. When PRINT_DATA or VIEW_DATA
opens the file with the SHARED_WRITE option, the file’s attribute list indicates
that other processes may be writing the file.

If these procedures are executing concurrently, and if, for example,
UPDATE_FILE is processing a record in the file PARTS while PRINT_DATA
is reading the file, it may happen that PRINT_DATA attempts access to the
record being processed by UPDATE_FILE. In this case, the ERROR condition is
signaled with the status code RMS$_RLK. But if VIEW_DATA attempts to read
a record that is locked by UPDATE_FILE or PRINT_DATA, it can still access the
record, because the READ_REGARDLESS option was specified. If VIEW_DATA
is reading a record, the other two processes can still access the record, because
NOLOCK was also specified as an option to the READ statement.

7.4 ENVIRONMENT Options for I/O Optimization
Many of the PL/I for OpenVMS VAX and PL/I for OpenVMS AXP options for
the ENVIRONMENT attribute provide optimization features for I/O operations.
Table 7–4 summarizes the options that control disk file allocation. These options
let you specify the space requirements of a file when you create it. Table 7–5
summarizes the options for run-time optimization of I/O processing.

Table 7–4 ENVIRONMENT Options for Optimized Disk File Creation

Option Meaning

BUCKET_SIZE Specifies the number of disk blocks per bucket, where
a bucket is a unit of data storage and transfer.

CONTIGUOUS Requests that a file’s extents be contiguous.

CONTIGUOUS_BEST_TRY Requests contiguous extents, if possible.

EXTENSION_SIZE Defines a default extension quantity for the file; to be
used whenever the file is enlarged.

FILE_SIZE Specifies the initial number of disk blocks to be
allocated for the file.

7–50 Options of the ENVIRONMENT Attribute

Table 7–5 ENVIRONMENT Options for Run-Time Optimization of Input/Output

Option Meaning

DEFERRED_WRITE Requests that buffers not be written out until they are
full.

MULTIBLOCK_COUNT Requests multiple blocks for sequential I/O.

MULTIBUFFER_COUNT Requests multiple buffers for I/O operations.

READ_AHEAD Requests input and computation overlap for sequential
input.

RETRIEVAL_POINTERS Overrides the default number of file pointers used for
file access.

WRITE_BEHIND Requests output and computation overlap for
sequential output.

Options of the ENVIRONMENT Attribute 7–51

8
Input/Output Statement Options

PL/I for OpenVMS VAX and PL/I for OpenVMS AXP permit the specification of
the OPTIONS keyword on I/O statements and supports certain options for each
statement. This chapter explains how to code options for I/O statements, lists the
valid options for each I/O statement, and describes each option individually.

An I/O statement option remains in effect only for the duration of the statement
on which it is specified. The only exception to this rule is the INDEX_NUMBER
option.

8.1 Option Format
I/O statement options are specified in a statement by the OPTIONS keyword
and an options list. You enclose the options list in parentheses, and separate
individual options by commas, as follows:

OPTIONS (option, . . . ;

Following is an example of the I/O statement GET with three options, PROMPT,
NO_ECHO, and PURGE_TYPE_AHEAD:

GET LIST (PASSWORD) OPTIONS (
PROMPT(’Enter password: ’),
NO_ECHO,
PURGE_TYPE_AHEAD);

Any option that does not require an argument can be followed by a Boolean
expression in the following format:

option(Boolean-expression)

where Boolean-expression is a bit string of length 1,’1’B for true or ’0’B for
false. If no Boolean expression is specified and the option is present in the option
list, the default value of true is supplied.

8.2 Summary of Input/Output Statement Options
Table 8–1 lists the I/O options, briefly describes their uses, indicates which
statements they are valid for, and gives their data types.

Table 8–1 Summary of Input/Output Statement Options

Option Usage
Valid
Statements Data Type

CANCEL_CONTROL_O Disables effect of Ctrl/o
prior to terminal output.

PUT BIT(1)

(continued on next page)

Input/Output Statement Options 8–1

Table 8–1 (Cont.) Summary of Input/Output Statement Options

Option Usage
Valid
Statements Data Type

FAST_DELETE Deletes a record without
updating alternate indexes.

DELETE BIT(1)

FIXED_CONTROL_FROM
(variable)

Modifies the fixed control
area of a record.

REWRITE
WRITE

Data type of fixed
control area

FIXED_CONTROL_TO (variable) Returns the contents of the
fixed control area

READ Data type of fixed
control area

INDEX_NUMBER (expression) Specifies the index to which
an I/O operation applies.

DELETE
READ
REWRITE

FIXED BINARY(31)

LOCK_ON_READ Locks a record for reading
and allows other readers
but no writers.

READ BIT(1)

LOCK_ON_WRITE Locks a record for writing
and allows other readers
but no writers.

READ BIT(1)

MANUAL_UNLOCKING Specifies that the user, not
RMS, is to control record
locking and unlocking.

READ BIT(1)

MATCH_GREATER Matches any key with a
value greater than the
value of the KEY option.

DELETE
READ
REWRITE

BIT(1)

MATCH_GREATER_EQUAL Matches any key with a
value greater than or equal
to the value of the KEY
option.

DELETE
READ
REWRITE

BIT(1)

MATCH_NEXT Matches any key with a
value greater than the
value of the KEY option.

DELETE
READ
REWRITE

BIT(1)

MATCH_NEXT_EQUAL Matches any key with a
value greater than or equal
to the value of the KEY
option.

DELETE
READ
REWRITE

BIT(1)

NO_ECHO Suppresses display of input
data on a terminal.

GET BIT(1)

NO_FILTER Suppresses recognition of
Ctrl/u, Ctrl/r, and the DEL
key on input operations.

GET BIT(1)

NOLOCK Disables record locking for
the current operation.

READ BIT(1)

NONEXISTENT_RECORD Locks a nonexistent record. READ BIT(1)

PROMPT (expression) Writes a prompting
message prior to an input
operation.

GET CHAR(*)

PURGE_TYPE_AHEAD Clears a terminal’s type-
ahead buffer before reading
input data.

GET BIT(1)

(continued on next page)

8–2 Input/Output Statement Options

Table 8–1 (Cont.) Summary of Input/Output Statement Options

Option Usage
Valid
Statements Data Type

READ_REGARDLESS Enables a record to be read
regardless of any lock.

READ BIT(1)

RECORD_ID (variable) Accesses a record based on
its internal identification.

DELETE
READ
REWRITE

(2) FIXED BINARY(31)

RECORD_ID_TO (variable) Returns the value of
a record’s internal
identification.

READ
REWRITE
WRITE

(2) FIXED BINARY(31)

TIMEOUT_PERIOD (expression) Avoids a potential deadlock
by indicating the number
of seconds to wait before
returning an error; used
only with WAIT_FOR_
RECORD.

READ FIXED BINARY(31)

WAIT_FOR_RECORD If a record is locked, causes
the process to wait until it
is available.

READ BIT(1)

8.2.1 CANCEL_CONTROL_O Option
The CANCEL_CONTROL_O option specifies, when the output device is a
terminal, that the effect of Ctrl/o is disabled before data is output. This ensures
that the beginning of the output list is displayed.

Rules

• The CANCEL_CONTROL_O option is valid only on a PUT statement.

• This option is ignored when the output device is any device other than an
interactive terminal.

Usage
Use this option on a PUT statement that you want displayed regardless of
whether previous output has been interrupted by Ctrl/o. By default, the Ctrl/o
function remains in effect until another Ctrl/o. For example:

PUT SKIP LIST(’Phase 1 complete... beginning phase 2...’)
OPTIONS (CANCEL_CONTROL_O);

If program output has been suspended by Ctrl/o prior to execution of the PUT
statement, the CANCEL_CONTROL_O option on the PUT statement cancels the
effect of the Ctrl/o and outputs the data list.

8.2.2 FAST_DELETE Option
The FAST_DELETE option specifies, for a record in an indexed sequential file
with alternate indexes, that only the current index for the file is to be updated.

The alternate index or indexes for the deleted record are not updated until the
next time access is attempted to the record through an alternate index.

Rules

• The FAST_DELETE option is valid only on a DELETE statement.

• This option applies only to indexed sequential files.

Input/Output Statement Options 8–3

Usage
This option can improve the speed of deletions when an indexed sequential file is
updated.

8.2.3 FIXED_CONTROL_FROM Option
The FIXED_CONTROL_FROM option specifies a value to be written in the fixed
control portion of a record in a file with variable-length records and a fixed control
area. The format of the option is as follows:

FIXED_CONTROL_FROM (variable-reference)

variable-reference
Specifies the variable associated with the fixed control area. The variable can be
a scalar or a connected aggregate variable. It must not be an unaligned bit string
or an aggregate consisting entirely of unaligned bit-string variables.

Rules

• The FIXED_CONTROL_FROM option is valid on the WRITE and REWRITE
statements.

• The file must have variable-length records with a fixed-length control
area and must be opened with the OUTPUT or UPDATE attribute. If the
file is opened with the OUTPUT attribute, the ENVIRONMENT option
FIXED_CONTROL_SIZE must also be specified.

• The length of the variable must match the length of the fixed control area, as
specified in the FIXED_CONTROL_SIZE option of ENVIRONMENT. If the
variable is not of the correct length, the ERROR condition is signaled.

Usage
The following example illustrates writing a file with sequence numbers in a fixed
control area:

DECLARE (OUTFILE,INFILE) FILE,
LINE_NUM FIXED BINARY(15), /* sequence numbers */
COPY_REC CHARACTER(132) VARYING,
EOF BIT(1) STATIC INIT(’0’B);

OPEN FILE(INFILE) INPUT SEQUENTIAL;
ON ENDFILE(INFILE) EOF = ’1’B;
OPEN FILE (OUTFILE) OUTPUT RECORD SEQUENTIAL

ENVIRONMENT (FIXED_CONTROL_SIZE(2));
READ FILE(INFILE) INTO(COPY_REC);
/* Increment sequence number; copy record to output file */
DO LINE_NUM = 100 BY 100 WHILE (^EOF);

WRITE FILE(OUTFILE) FROM (COPY_REC)
OPTIONS(FIXED_CONTROL_FROM (LINE_NUM));

READ FILE(INFILE) INTO(COPY_REC);
END;

CLOSE FILE (INFILE);
CLOSE FILE(OUTFILE) ENVIRONMENT (SPOOL);

In this example, the OpenVMS file associated with the PL/I file OUTFILE
will have a 2-byte fixed control area. Line numbers are assigned in
increments of 100. Note that a file in this format, that is, a file that has
CARRIAGE_RETURN_FORMAT carriage control (the default) and a 2-byte
fixed control area, is handled in a special way by the OpenVMS system. When
this file is printed with the DCL command PRINT or queued by the SPOOL
option (as in this example), the contents of the fixed control area are printed to
the left of each record on the output listing.

8–4 Input/Output Statement Options

8.2.4 FIXED_CONTROL_TO Option
The FIXED_CONTROL_TO option specifies that the contents of the fixed control
area of a record in a file with a fixed control area are to be assigned to a specified
variable. The format of the option is as follows:

FIXED_CONTROL_TO (variable-reference)

variable-reference
Specifies the variable associated with the fixed control area. The variable can be
a scalar or a connected aggregate variable. It must not be an unaligned bit string
or an aggregate consisting entirely of unaligned bit-string variables.

Rules

• The FIXED_CONTROL_TO option is valid only on a READ statement.

• The file must have variable-length records with a fixed-length control area
and must be opened with the INPUT attribute and with the ENVIRONMENT
option FIXED_CONTROL_SIZE_TO.

• If the file is an existing file, the length of the variable must match the length
of the fixed control area. If the length is not correct, the ERROR condition is
signaled.

8.2.5 INDEX_NUMBER Option
The INDEX_NUMBER option specifies the particular index in an indexed
sequential file to which a KEY option applies (primary index, secondary index,
and so on). The format of this option is as follows:

INDEX_NUMBER (integer-expression)

integer-expression
Specifies the index to be used. The value of the integer expression must be the
number of an index for records in an indexed sequential file. The primary index
is 0, the secondary index is 1, and so on.

Rules

• The INDEX_NUMBER option is valid on a READ, REWRITE, or DELETE
statement.

• The file must be an indexed sequential file, and the KEY option must also be
specified on the statement.

Usage
The INDEX_NUMBER option on an I/O statement overrides the current
index number, which can be set explicitly by the INDEX_NUMBER option of
ENVIRONMENT or implicitly by a WRITE statement that specifies the KEY
option or the RECORD_ID option.

When the INDEX_NUMBER option is used, the specified index becomes the
current index for the file and is used in this and in all subsequent I/O operations
until the INDEX_NUMBER option is again specified. For example:

GET LIST(BIRD) OPTIONS (PROMPT(’Enter bird’));

READ FILE(STATEFILE) INTO(STATE) KEY(BIRD)
OPTIONS (INDEX_NUMBER(2));

In this example, the READ statement accesses the record in the file STATEFILE
using the index numbered 2.

Input/Output Statement Options 8–5

8.2.6 LOCK_ON_READ Option
The LOCK_ON_READ option specifies a lock for reading that allows other
readers but no writers. If you specify this option, then a record stream with
a shared file that is open for reading only, is permitted to lock a record from
modification by other programs or streams. Other streams are permitted to read
the record but not to lock it.

Rules

• The LOCK_ON_READ option is valid only on a READ statement.

• This option conflicts with the NOLOCK option.

• This option remains in effect only for the current statement; then it is reset
to false.

8.2.7 LOCK_ON_WRITE Option
The LOCK_ON_WRITE option specifies that a record will be locked for possible
modifications. However, readers will be able to access the record. Streams that
are locking records for modification can therefore allow nonlocking streams to
read locked records.

Rules

• The LOCK_ON_WRITE option is valid only on a READ statement.

• This option conflicts with the NOLOCK option.

• This option remains in effect only for the current statement; then it is reset
to false.

8.2.8 MANUAL_UNLOCKING Option
The MANUAL_UNLOCKING option specifies that a record will be locked until
it is explicitly unlocked by the process, thus giving you (instead of RMS) control
over locking and unlocking.

Rules

• The MANUAL_UNLOCKING option is valid only on a READ statement.

• This option conflicts with the NOLOCK option.

• This option remains in effect only for the current statement; then it is reset
to false.

8.2.9 MATCH_NEXT Option
The MATCH_NEXT option specifies that the record of interest is the first record
whose key is greater than the key specified in the KEY option. MATCH_NEXT
overrides the default rule for key matching, which is to look for an exact key
match.

MATCH_GREATER is an obsolete synonym for MATCH_NEXT.

Rules

• The MATCH_NEXT option is valid on the READ, REWRITE, and DELETE
statements.

• The KEY option must also be specified.

• The file must be an indexed sequential file or a relative file.

8–6 Input/Output Statement Options

• The MATCH_NEXT option conflicts with the MATCH_NEXT_EQUAL option.

• The MATCH_NEXT option remains in effect only for the current statement;
then it is reset to false.

Usage
In the following example, STATE_FILE’s third alternate key (that is, index
number 3) is a fixed binary population value:

DECLARE 1 STATE,
2 NAME CHARACTER(20), /* Primary key */
2 POPULATION FIXED BINARY(31),/* index #3 */
2 CAPITAL,
.
.
.

SIZE FIXED BINARY(31),
STATE_FILE FILE RECORD INPUT KEYED SEQUENTIAL;

.

.

.
GET LIST(SIZE) OPTIONS(PROMPT(

’Population value: ’));
READ FILE(STATE_FILE) INTO(STATE) KEY(SIZE)

OPTIONS(MATCH_NEXT,INDEX_NUMBER(3));

This READ statement obtains the record for the state whose population is greater
than the value entered for the GET statement. For example, a value can be
entered in response to this prompt as follows:

Population value: 8000000

In this case, the READ statement would read the first record in the index
numbered 3 whose key value is greater than 8000000.

8.2.10 MATCH_NEXT_EQUAL Option
The MATCH_NEXT_EQUAL option specifies that the record of interest is the
record whose key matches the key specified in the KEY option or, if no match is
found, the first record whose key is greater than the key specified.

MATCH_GREATER_EQUAL is an obsolete synonym for
MATCH_NEXT_EQUAL.

Rules

• The MATCH_NEXT_EQUAL option is valid on the READ, REWRITE, and
DELETE statements.

• The KEY option must also be specified.

• The file must be an indexed sequential file or a relative file.

• The MATCH_NEXT_EQUAL option conflicts with the MATCH_NEXT option.

• The MATCH_NEXT_EQUAL option remains in effect only for the current
statement; then it is reset to false.

8.2.11 NO_ECHO Option
The NO_ECHO option specifies, when the input device is a terminal, that the
data entered at the terminal will not be displayed as it is entered.

Input/Output Statement Options 8–7

Rules

• The NO_ECHO option is valid only on a GET statement.

• This option is ignored if the input device is not a terminal.

• This option remains in effect only for the current statement; then it is reset
to false.

Usage
This option is useful when data entered at a terminal is to be protected from
being seen by users other than the one who entered the data. For example, if
a password is to be entered, the NO_ECHO option protects the password, as
follows:

GET LIST (PASSWORD) OPTIONS (NO_ECHO,
PROMPT(’Enter Password: ’));

Data entered in response to this GET statement is not displayed on the terminal.

8.2.12 NO_FILTER Option
The NO_FILTER option specifies, when the input device is a terminal, that
the recognition of Ctrl/u, Ctrl/r, and the DEL key is to be suppressed. These
characters are interpreted as terminators.

Rules

• The NO_FILTER option is valid only on a GET statement.

• This option is ignored if the input device is not a terminal.

• This option remains in effect only for the current statement; then it is reset
to false.

Usage
When NO_FILTER is in effect, the terminal keys that normally permit a user to
edit data as it is entered do not perform their normal functions. For example:

123 DEL

If this data is entered in response to a GET statement that specifies the
NO_FILTER option, the DEL key does not delete the last character typed (3);
instead, it acts as the terminator of the input, just as the RETURN key usually
does, and the value 123 is assigned to the input variable.

8.2.13 NOLOCK Option
The NOLOCK option specifies that a record accessed with a READ statement is
not to be locked during the current operation.

Rules

• The NOLOCK option is valid only on a READ statement.

• This option should not be used if the record is to be updated or deleted,
because an attempt to perform either one of these operations on an unlocked
record will fail.

• The NOLOCK option conflicts with the LOCK_ON_READ,
LOCK_ON_WRITE, and MANUAL_UNLOCKING options.

• The NOLOCK option remains in effect only for the current statement; then it
is reset to false.

8–8 Input/Output Statement Options

Usage
The NOLOCK option can improve the speed of reading if it is used on a file
that is opened with the ENVIRONMENT option SHARED_READ or with both
SHARED_READ and SHARED_WRITE.

8.2.14 NONEXISTENT_RECORD Option
The NONEXISTENT_RECORD option locks a randomly accessed record that does
not exist in the file at the time of access. It prevents other streams from putting
a new record into that cell until the stream that locked it either puts a record
there itself or releases the record lock.

Rules

• The NONEXISTENT_RECORD option is valid only on a READ statement.

• This option applies only to relative files.

• This option remains in effect only for the current statement; then it is reset
to false.

8.2.15 PROMPT Option
When the input device is a terminal, the PROMPT option specifies a character-
string prompt to be displayed prior to actual input. The format of this option is
as follows:

PROMPT (string-expression)

string-expression
Specifies a 1- to 254-character string expression.

Rules

• The PROMPT option is valid only on a GET statement.

• This option is meaningful only when the input device is a terminal.

Usage
Unlike a PUT statement followed by a GET statement, a GET statement with the
PROMPT option is actually executed as a single statement. For example:

GET LIST (NUM) OPTIONS (PROMPT(’Enter number: ’));

When this statement is executed, the terminal display would be as follows:

Enter number: 44 Return

The prompting string and the input data occur in the same statement.

On a terminal, using the PROMPT option provides the following benefits:

• If the display of the prompting string is interrupted, for example, by a
broadcast message, the entire string is redisplayed following the message that
interrupted it.

• If Ctrl/u or Ctrl/r is entered in response to the prompt, the prompt message is
repeated until data is entered.

The PROMPT option causes any data that was not processed by the last GET
operation to be ignored. If the SKIP option is not specified, the prompt is output
at the current cursor position. If you specify the SKIP option in conjunction
with the PROMPT option, the SKIP operation is performed before the prompting
message is displayed.

Input/Output Statement Options 8–9

8.2.16 PURGE_TYPE_AHEAD Option
When the input device is a terminal, the PURGE_TYPE_AHEAD option specifies
that all data in the terminal’s type-ahead buffer be deleted before the input
operation is performed.

Rules

• The PURGE_TYPE_AHEAD option is valid only on a GET statement.

• This option is ignored if the input device is not a terminal.

Usage
When a command or program is being executed, the terminal keyboard accepts
input data and stores it in a buffer called the type-ahead buffer. When the
command or program is completed, the command interpreter reads its next
command from the type-ahead buffer. When a GET statement is executed with
this option in effect, any data in the type-ahead buffer is deleted, ensuring that
the GET statement will not read any extraneous data.

8.2.17 READ_REGARDLESS Option
The READ_REGARDLESS option allows a record to be read regardless of
whether it is locked.

Rules

• The READ_REGARDLESS option is valid only on a READ statement.

• The READ_REGARDLESS option conflicts with the WAIT_FOR_RECORD
option.

• If the record is not already locked, the READ_REGARDLESS option locks it.

• The READ_REGARDLESS option remains in effect only for the current
statement; then it is reset to false.

8.2.18 RECORD_ID Option
The RECORD_ID option indicates that the record of interest is specified by its
record identification. The format of this option is as follows:

RECORD_ID (variable-reference)

variable-reference
Specifies the name of a 2-element array variable containing the record
identification.

The variable must be declared as (2) FIXED BINARY(31), and it must be a
connected array.

Rules

• The RECORD_ID option is valid on a READ, REWRITE, or DELETE
statement.

• RECORD_ID conflicts with the KEY option on the READ, REWRITE, or
DELETE statement.

• The file on which the operation is being performed must have been opened
with the ENVIRONMENT option RECORD_ID_ACCESS.

• If the file is an indexed sequential file, the RECORD_ID option resets the
value of the current index number to 0.

8–10 Input/Output Statement Options

Usage
The following example illustrates a record whose record identification is saved for
later file access.

DECLARE
BOOKFILE FILE RECORD KEYED,

INBUF CHARACTER(180) VARYING,
SAVE_RECORD_ID(2) FIXED BINARY(31),
KEYVALUE CHARACTER(10);

.

.

.
OPEN FILE(BOOKFILE) ENV(RECORD_ID_ACCESS);
READ FILE(BOOKFILE) INTO(INBUF) KEY(KEYVALUE)

OPTIONS(RECORD_ID_TO(SAVE_RECORD_ID));
.
.
.

CLOSE FILE(BOOKFILE);
.
.
.

OPEN FILE(BOOKFILE) INPUT ENV(RECORD_ID_ACCESS);
READ FILE(BOOKFILE) INTO(INBUF) OPTIONS(

RECORD_ID(SAVE_RECORD_ID));

During the first opening of the file, the record identification of a specified record
is obtained and saved. When the file is subsequently reopened, this value is used
to access a record and to effectively position the file at that record.

8.2.19 RECORD_ID_TO Option
The RECORD_ID_TO option specifies the name of a variable to be assigned the
value of the record identification of the record on which the current operation is
being performed. The format of this option is as follows:

RECORD_ID_TO (variable-reference)

variable-reference
Is a reference to a 2-element array variable that will receive the value of the
record’s identification.

The variable must be declared as (2) FIXED BINARY(31), and it must be
connected.

Rules

• The RECORD_ID_TO option is valid on the READ, WRITE, and REWRITE
statements.

• The file on which the operation is being performed must have been opened
with the RECORD_ID_ACCESS option of the ENVIRONMENT attribute.

8.2.20 TIMEOUT_PERIOD Option
The TIMEOUT_PERIOD option, used only with the WAIT_FOR_RECORD option,
causes the waiting condition to continue only for the specified timeout period,
in seconds. If the timeout period expires before the lock is granted, an error is
signaled.

Input/Output Statement Options 8–11

Rules

• The TIMEOUT_PERIOD option is valid only on a READ statement.

• If the TIMEOUT_PERIOD option is specified without the
WAIT_FOR_RECORD option, it is ignored.

• The timeout period must be between 0 and 255 seconds.

• The TIMEOUT_PERIOD option remains in effect while the
WAIT_FOR_RECORD option remains in effect, that is, for the current
statement only.

Usage
The TIMEOUT_PERIOD option prevents the WAIT_FOR_RECORD option from
potentially causing an indefinite deadlock in the process.

In the following example, a 10-second waiting period is specified for a locked
record. If the record is still locked after that period expires, an error is signaled.

READ FILE(DATAFILE) INTO (BUFFER)
OPTIONS(WAIT_FOR_RECORD,TIMEOUT_PERIOD(10));

8.2.21 WAIT_FOR_RECORD Option
The WAIT_FOR_RECORD option specifies that if a record is already locked, the
process will wait until the record is available.

Rules

• The WAIT_FOR_RECORD option is valid only on a READ statement.

• The WAIT_FOR_RECORD option conflicts with the READ_REGARDLESS
option.

• The WAIT_FOR_RECORD option remains in effect only for the current
statement; then it is reset to false.

Usage
The WAIT_FOR_RECORD option can be used with the TIMEOUT_PERIOD
option to avoid an indefinite wait.

8–12 Input/Output Statement Options

9
File-Handling Built-In Subroutines

In addition to the PL/I input and output statements and the functions and
features available through the options of the ENVIRONMENT attribute, there
are also several built-in file-handling subroutines. These subroutines invoke
VAX Record Management Services (RMS) procedures. They are called built-in
subroutines because you do not need to declare them before using them in a PL/I
program. These subroutines are summarized in Table 9–1 and are described
individually in the following sections.

Table 9–1 Summary of File-Handling Built-In Subroutines

Subroutine Function

DISPLAY Returns information about a file.

EXTEND Allocates additional disk blocks for a file.

FLUSH Requests the file system to write all buffers onto disk to preserve
the current status of a file.

FREE Unlocks all the locked records in a file.

NEXT_VOLUME Begins processing the next volume in a multivolume tape set.

RELEASE Unlocks a specified record in a file.

REWIND Positions a file at its beginning or at a specific record.

SPACEBLOCK Positions a file forward or backward a specified number of blocks.

9.1 DISPLAY Built-In Subroutine
The DISPLAY built-in subroutine returns information about a specified file. Its
calling sequence is as follows:

CALL DISPLAY (file-reference,variable-reference);

fi le-reference
Specifies the file variable or constant for which information is to be obtained. If
the file is not currently open, the DISPLAY subroutine implicitly opens the file
with the attributes specified in the declaration of the file.

variable-reference
Specifies the name of a structure variable into which information about the file is
to be placed.

The format of the data returned by DISPLAY is defined in the data
structure PLI_FILE_DISPLAY. This structure is declared in the text module
PLI_FILE_DISPLAY in the default INCLUDE library PLI$STARLET (the PL/I
compiler searches this library by default when it compiles a PL/I program). Each
member of PLI_FILE_DISPLAY contains, on return from a call to DISPLAY, a
value associated with the file for which information is requested. To refer to a

File-Handling Built-In Subroutines 9–1

value, you refer to the corresponding member name in the structure. Tables 9–2
through 9–4 summarize the members of the structure as follows:

• Members containing information about the settings of ENVIRONMENT
options

• Members containing information on file attributes

• Members containing information on device attributes

You declare the structure PLI_FILE_DISPLAY with the BASED attribute; thus,
to use this variable you must also declare a pointer variable to reference the
structure and use an ALLOCATE statement to allocate storage for it before
calling DISPLAY. For example:

%INCLUDE PLI_FILE_DISPLAY;
DECLARE STATE_FILE FILE RECORD KEYED,

FILEPTR POINTER;
OPEN FILE(STATE_FILE);
ALLOCATE PLI_FILE_DISPLAY SET (FILEPTR);
CALL DISPLAY (STATE_FILE,FILEPTR->PLI_FILE_DISPLAY);

Following this call to DISPLAY, you can reference any of the members of
FILEPTR–>PLI_FILE_DISPLAY to determine information about the file STATE_
FILE. The following statements use the EXPANDED_TITLE field to display the
expanded file specification of STATE_FILE and the INDEXED and NUMBER_
OF_KEYS fields to display the number of keys in the file:

PUT SKIP EDIT(’File’,FILEPTR->EXPANDED_TITLE,
’opened for input’)

(A,X,A,X,A);
IF FILEPTR->INDEXED THEN PUT SKIP EDIT

(’It is indexed with’,FILEPTR->NUMBER_OF_KEYS,’keys’)
(A,X,A,X,A);

If you do not use the structure PLI_FILE_DISPLAY, as shown in this
example, you must provide a structure that has the same declaration as
PLI_FILE_DISPLAY. To obtain a copy of PLI_FILE_DISPLAY, use the LIBRARY
command. For example:

$ LIBRARY/TEXT/EXTRACT=PLI_FILE_DISPLAY/OUTPUT=FILESTRUC.PLI -
$_SYS$LIBRARY:PLI$STARLET

Here, FILESTRUC.PLI is the name of the output file into which the LIBRARY
command will copy PLI_FILE_DISPLAY.

Table 9–2 summarizes the values returned by DISPLAY that correspond to
ENVIRONMENT options and the data type of each structure member. For
information on ENVIRONMENT options, see Chapter 7.

Table 9–2 ENVIRONMENT Option Values Returned by DISPLAY

Member Name
Data Type of
Value Returned Meaning

APPEND BIT(1) APPEND option is enabled or disabled.

BACKUP_DATE BIT(64) ALIGNED Backup date of file (disk files only).

BATCH BIT(1) BATCH option is enabled or disabled.

(continued on next page)

9–2 File-Handling Built-In Subroutines

Table 9–2 (Cont.) ENVIRONMENT Option Values Returned by DISPLAY

Member Name
Data Type of
Value Returned Meaning

BLOCK_BOUNDARY_FORMAT BIT(1) Records cannot cross block boundaries.

BLOCK_IO BIT(1) File is opened for block I/O.

BLOCK_SIZE FIXED BIN Block size of file (magnetic tape files only).

BUCKET_SIZE FIXED BIN Bucket size of file (disk files only).

CARRIAGE_RETURN_FORMAT BIT(1) Records have carriage return carriage control.

CONTIGUOUS BIT(1) CONTIGUOUS option is enabled or disabled.

CONTIGUOUS_BEST_TRY BIT(1) CONTIGUOUS_BEST_TRY option is enabled
or disabled.

CREATION_DATE BIT(64) ALIGNED Creation date of file.

CURRENT_POSITION BIT(1) CURRENT_POSITION option is enabled or
disabled.

DEFERRED_WRITE BIT(1) DEFERRED_WRITE option is enabled or
disabled.

DELETE BIT(1) DELETE option is enabled or disabled.

EXPIRATION_DATE BIT(64) ALIGNED Expiration date of file.

EXTENSION_SIZE FIXED BIN Current extension size (disk files only).

FILE_ID (6) FIXED BIN File identification (disk files only).

FILE_SIZE FIXED BIN File allocation (disk files only).

FIXED_CONTROL_SIZE FIXED BIN Size of fixed-control area.

FIXED_LENGTH_RECORDS BIT(1) File has fixed-length records.

GROUP_PROTECTION CHAR(4) VARYING Protection for group members.

IGNORE_LINE_MARKS BIT(1) IGNORE_LINE_MARKS option is enabled or
disabled.

INDEX_NUMBER FIXED BIN Current index number.

INDEXED BIT(1) File is or is not an indexed sequential file.

INITIAL_FILL BIT(1) INITIAL_FILL option is enabled or disabled.

MAXIMUM_RECORD_NUMBER FIXED BIN Relative file maximum relative record.

MAXIMUM_RECORD_SIZE FIXED BIN Largest record size.

MULTIBLOCK_COUNT FIXED BIN Multiblock count (disk files only).

MULTIBUFFER_COUNT FIXED BIN Multibuffer count.

NO_SHARE BIT(1) NO_SHARE option is enabled or disabled.

OWNER_GROUP FIXED BIN Group number of file’s owner.

OWNER_MEMBER FIXED BIN Member number of file’s owner.

OWNER_PROTECTION CHAR(4) VARYING Protection for file’s owner.

RETRIEVAL_POINTERS FIXED BIN Number of mapping pointers.

PRINTER_FORMAT BIT(1) Records have printer carriage control.

READ_AHEAD BIT(1) READ_AHEAD option is enabled or disabled.

READ_CHECK BIT(1) READ_CHECK option is enabled or disabled.

(continued on next page)

File-Handling Built-In Subroutines 9–3

Table 9–2 (Cont.) ENVIRONMENT Option Values Returned by DISPLAY

Member Name
Data Type of
Value Returned Meaning

RECORD_ID_ACCESS BIT(1) File is opened for access by record
identification.

REVISION_DATE BIT(64) ALIGNED Revision date of file (disk files only).

REWIND_ON_CLOSE BIT(1) REWIND_ON_CLOSE option is enabled or
disabled.

REWIND_ON_OPEN BIT(1) REWIND_ON_OPEN option is enabled or
disabled.

SCALARVARYING BIT(1) SCALARVARYING option is enabled or
disabled.

SHARED_READ BIT(1) SHARED_READ option is enabled or
disabled.

SHARED_WRITE BIT(1) SHARED_WRITE option is enabled or
disabled.

SPOOL BIT(1) SPOOL option is enabled or disabled.

SUPERSEDE BIT(1) SUPERSEDE option is enabled or disabled.

SYSTEM_PROTECTION CHAR(4) VARYING Protection for system users.

TEMPORARY BIT(1) TEMPORARY option is enabled or disabled.

TRUNCATE BIT(1) TRUNCATE option is enabled or disabled.

WORLD_PROTECTION CHAR(4) VARYING Protection for world users.

WRITE_BEHIND BIT(1) WRITE_BEHIND option is enabled or
disabled.

WRITE_CHECK BIT(1) WRITE_CHECK option is enabled or
disabled.

Table 9–3 summarizes the file attribute information returned by DISPLAY. All
names in the table are level-2 members of the structure PLI_FILE_DISPLAY.

Table 9–3 File Attribute Information Returned by DISPLAY

Member Name
Type of
Value Returned

Data Type
of Meaning

COLUMN_NUMBER FIXED BIN Current column (stream output files only).

DIRECT BIT(1) File has or does not have DIRECT attribute.

EXPANDED_TITLE CHAR(128)
VARYING

Expanded file specification.

FILE_ORGANIZATION CHAR(3) SEQ, REL, or IDX.

FORTRAN_FORMAT BIT(1) File has or does not have FTN (ASA) carriage control.

INPUT BIT(1) File has or does not have INPUT attribute.

KEYED BIT(1) File has or does not have KEYED attribute.

LINE_NUMBER FIXED BIN Current line number (stream output files only).

LINESIZE FIXED BIN File’s line size (stream output files only).

(continued on next page)

9–4 File-Handling Built-In Subroutines

Table 9–3 (Cont.) File Attribute Information Returned by DISPLAY

Member Name
Type of
Value Returned

Data Type
of Meaning

NUMBER_OF_KEYS FIXED BIN Number of keys (indexed sequential files only).

OUTPUT BIT(1) File has or does not have OUTPUT attribute.

PAGE_NUMBER FIXED BIN Current page number (PRINT files only).

PAGESIZE FIXED BIN Page size (PRINT files only).

PRINT BIT(1) File has or does not have PRINT attribute.

RECORD BIT(1) File has or does not have RECORD attribute.

SEQUENTIAL BIT(1) File has or does not have SEQUENTIAL attribute.

STREAM BIT(1) File has or does not have STREAM attribute.

UPDATE BIT(1) File has or does not have UPDATE attribute.

Table 9–4 lists the names of the structure members that contain information
about the device to which a file is written or from which the file is to be
read. All of the names in Table 9–4 are level-3 members of the structure
PLI_FILE_DISPLAY; they each appear within the following minor structures,
which have identical declarations:

• DEVICE

• SPOOLING_DEVICE

If the field PLI_FILE_DISPLAY.DEVICE.SPL is true, then the members of the
minor structure DEVICE contain information about the device that is spooled.
Members of minor structure PLI_FILE_DISPLAY.SPOOLING_DEVICE contain
information about the intermediate, or spooling, device.

All fields within these structures are BIT(1) values.

Table 9–4 Device Information Returned by DISPLAY

Member Name Meaning

ALL Device is or is not allocated.

AVL Device is or is not online and available.

CCL Device has or does not have carriage control.

DIR Device is or is not directory structured.

DMT Device is or is not marked for dismounting.

ELG Device is or is not enabled for error logging.

FOD Device is or is not file-oriented.

FOR Device is or is not a foreign device.

GEN Device is or is not a generic device.

IDV Device is or is not capable of input.

MBX Device is or is not a mailbox.

MNT Device is or is not mounted.

NET Device is or is not a network device.

(continued on next page)

File-Handling Built-In Subroutines 9–5

Table 9–4 (Cont.) Device Information Returned by DISPLAY

Member Name Meaning

ODV Device is or is not capable of output.

RCK Device performs read checking.

REC Device is or is not a record-oriented device (terminal or line printer,
for example).

RND Device is or is not random access in nature.

RTM Device is or is not a real-time device.

SDI Device has a master directory only.

SHR Device is or is not shareable.

SPL Device is or is not spooled.

SQD Device is or is not sequential block-oriented (magnetic tape).

SWL Device is or is not currently software write-locked.

TRM Device is or is not a terminal.

WCK Device performs write checking.

9.2 EXTEND Built-In Subroutine
The EXTEND built-in subroutine increases the amount of space allocated to a
disk file. Its calling sequence is as follows:

CALL EXTEND (file-reference,integer-expression);

fi le-reference
Specifies the name of a file variable or constant associated with the file that is to
be extended. If the file is not currently opened, the EXTEND subroutine opens
the file with the OUTPUT attribute in order to extend it.

integer-expression
Is a fixed binary expression in the range 0 to 4,294,967,295, specifying the
number of 512-byte disk blocks to be added to the file. If 0 is specified, PL/I uses
the default extension quantity for the file.

To specify a value larger than 2,147,483,647 (the largest value that can be
contained in a fixed binary integer in PL/I), you must express the number as a
negative value; RMS interprets the number as an unsigned integer.

Use the EXTEND built-in subroutine to explicitly extend a file during processing.
Normally, RMS extends a file automatically, using a current extension size value,
whenever an output operation causes a file to exceed its allocated space. The
default value that RMS uses to extend a file is set by the ENVIRONMENT option
EXTENSION_SIZE.

You can improve the performance of a program that is going to add a large
number of records to a file by making an explicit call to EXTEND before adding
records to the file. If the call to EXTEND occurs before records are added, then
RMS does not need to extend the file during the actual I/O operations.

9–6 File-Handling Built-In Subroutines

9.3 FLUSH Built-In Subroutine
The FLUSH built-in subroutine writes all RMS buffers that have been modified
and preserves all of the file attributes of the file. This subroutine provides the
ability to checkpoint a file during its processing and ensure its integrity. Its
calling sequence is as follows:

CALL FLUSH (file-reference);

fi le-reference
Specifies the name of the file variable or file constant associated with the file
whose buffers are to be flushed. If the file is not currently opened, the FLUSH
subroutine performs no operation.

Use the FLUSH subroutine to explicitly request RMS to write all internal file
buffers back to the file. This subroutine is called implicitly by the REWIND and
NEXT_VOLUME built-in subroutines.

9.4 FREE Built-In Subroutine
The FREE built-in subroutine unlocks all the locked records in a specified file. Its
calling sequence is as follows:

CALL FREE (file-reference);

fi le-reference
Specifies the name of the file variable or file constant associated with the file
whose records are to be unlocked.

9.5 NEXT_VOLUME Built-In Subroutine
The NEXT_VOLUME built-in subroutine performs the positioning and labeling
functions necessary when the next volume is required during I/O to a magnetic
tape file that spans more than one physical tape volume. Its calling sequence is
as follows:

CALL NEXT_VOLUME (file-reference);

fi le-reference
Specifies the name of the file constant or file variable associated with the tape
volume set that is being processed. If the file is not currently open, the NEXT_
VOLUME subroutine implicitly opens the file with the attributes specified in the
declaration of the file.

When a multivolume tape file is being read or written, volume switching is
normally transparent to the PL/I program. RMS and the magnetic tape Ancillary
Control Program (ACP) perform all the steps necessary to ensure that the next
required volume is physically mounted, initialized, and verified.

However, when a program must advance to the next volume before reaching the
end of the current volume on input, or before the end of the tape is reached on
output, it can call the NEXT_VOLUME built-in subroutine. This subroutine
performs all the necessary volume checking when a multivolume tape file is
being read. When a file is being written, the subroutine writes the appropriate
information on the output tapes.

For more detailed explanations of volume switching, see the OpenVMS Record
Management Services Reference Manual and the OpenVMS DCL Dictionary.

File-Handling Built-In Subroutines 9–7

9.6 RELEASE Built-In Subroutine
The RELEASE built-in subroutine unlocks a specified record in a file. Its calling
sequence is as follows:

CALL RELEASE (file-reference,variable-reference);

fi le-reference
Specifies the name of the file variable or file constant associated with the file on
which the operation is to be performed. This file must have been opened with the
RECORD_ID_ACCESS option of the ENVIRONMENT attribute.

variable-reference
Specifies the record identification of the record to be unlocked. It must be
declared (2) FIXED BINARY, and it must be connected.

9.7 REWIND Built-In Subroutine
The REWIND built-in subroutine positions a file so that the next record to be
read will be the first record in the file or index. Its calling sequence is as follows:

CALL REWIND (file-reference);

fi le-reference
Specifies the name of the file constant or file variable associated with the file to
be rewound. If the file is not currently open, the REWIND subroutine implicitly
opens the file with the attributes specified in the declaration of the file.

Use this subroutine to begin processing a file at its logical beginning. This
subroutine is valid for disk files of all organizations and for sequential files
on tape volumes. The position of the file following the call to the REWIND
subroutine is as follows:

• A sequential file is positioned at its first record.

• A relative record is positioned at the first occupied cell.

• An indexed sequential file is positioned at the lowest key value in the current
index.

• A tape file on a single volume is rewound; a tape file on a multivolume tape
set is rewound to the beginning of the volume set.

You can also use the REWIND built-in subroutine to reposition a stream file after
an end-of-file condition. Normally, if end-of-file (Ctrl/z on a terminal) is entered
during an input operation on a stream input file, the PL/I program must close the
input file and reopen it before any more data can be read. However, an ENDFILE
ON-unit can be written as follows:

ON ENDFILE(STREAMFIL) CALL REWIND(STREAMFIL);

This ON-unit calls the REWIND built-in subroutine each time an end-of-file
condition is encountered for the file constant STREAMFIL. The REWIND built-in
subroutine repositions the stream file at its beginning so that the program can
continue reading input.

9–8 File-Handling Built-In Subroutines

9.8 SPACEBLOCK Built-In Subroutine
The SPACEBLOCK built-in subroutine positions a file forward or backward a
specified number of blocks. This subroutine can be used to process unlabeled
magnetic tapes, as well as sequential disk files that are being processed with
block I/O. Its calling sequence is as follows:

CALL SPACEBLOCK (file-reference,integer-expression);

fi le-reference
Specifies the name of the file constant or file variable that is to be spaced. If the
file is open, it must have been opened with the BLOCK_IO option. If the file
is not open, the SPACEBLOCK subroutine opens the file with the BLOCK_IO
option.

integer-expression
Is a fixed binary expression specifying the number of blocks to be spaced forward
or backward. If the expression is negative, the file is spaced backward the
specified number of blocks. If the expression is positive, the tape is spaced
forward the specified number of blocks.

File-Handling Built-In Subroutines 9–9

10
Error Handling

In PL/I for OpenVMS VAX and PL/I for OpenVMS AXP, errors are signaled
through ON conditions and handled by groups of statements called ON-units.
An ON condition is any one of several named conditions that interrupt program
execution. When an ON condition occurs, or is signaled, the corresponding
ON-unit is executed.

This chapter discusses the following topics:

• The RESIGNAL built-in subroutine

• The actions that ON-units can take

• The relationship of OpenVMS condition handling to PL/I for OpenVMS VAX
and PL/I for OpenVMS AXP condition handling

• The search for ON-units when a condition is signaled, and the default
handling performed when no ON-unit exists

• The scope of ON-units

• Some examples of ON-units

• The condition-handling built-in functions (ONARGSLIST, ONCODE,
ONFILE, and ONKEY)

Refer to the PL/I for OpenVMS Systems Reference Manual for descriptions of the
ON, REVERT, and SIGNAL statements and ON conditions.

10.1 RESIGNAL Built-In Subroutine
The RESIGNAL built-in subroutine is used in an ON-unit to pass a signaled
condition, so that the run-time system will attempt to locate another ON-unit to
handle the condition.

RESIGNAL works by setting up the internal mechanism for passing the signal. It
does not by itself cause an exit from the ON-unit that calls it. Instead, it returns
to the next statement in the ON-unit. Resignaling does not occur until execution
of the ON-unit is completed.

The format of a statement calling the RESIGNAL built-in subroutine is as
follows:

CALL RESIGNAL();

When an ON-unit has determined that it cannot or should not respond to a
condition, RESIGNAL permits the ON-unit to pass the signal along.

This subroutine is not part of the standard PL/I language. It is provided
specifically for use in the OpenVMS operating system environment.

Error Handling 10–1

10.2 ON-Unit Actions
During its execution, an ON-unit can take any of the following courses of action:

• Handle the condition and return control to the point at which the condition
was signaled

• Resignal the condition and request PL/I to locate another ON-unit to handle
it

• Execute a nonlocal GOTO statement and cause PL/I to unwind the call stack

• Stop the program

These courses of action are described individually in the following subsections.

10.2.1 Handling the Condition
A condition is assumed to be handled in PL/I when the ON-unit established for
the condition completes execution without performing one of the following actions:

• Executing a nonlocal GOTO

• Calling the RESIGNAL built-in subroutine

• Signaling another condition

• Executing a STOP statement

When the condition is handled, PL/I continues execution of the program at the
point of interruption. Normal completion of any ON-unit (except ERROR signaled
as the default action) results in return of control either to the statement that
caused the condition or to the statement immediately following the statement
that caused the condition. However, the effects of normal return from ERROR,
FIXEDOVERFLOW, OVERFLOW, UNDERFLOW, and ZERODIVIDE are
generally unpredictable. Exceptions are cases of ERROR that are specifically
documented to allow normal return, and ON-units that execute as a result of a
SIGNAL statement. In the case of UNDERFLOW, return from the default PL/I
condition handler continues execution unpredictably, with an undefined value as
the result of the operation that caused the condition (the value is set to zero only
if the UNDERFLOW option is not enabled).

10.2.2 Resignaling the Condition
In PL/I for OpenVMS VAX and PL/I for OpenVMS AXP, an ON-unit can choose
not to handle a condition and can request that, rather than returning control to
the point of interruption, PL/I continue to search for another ON-unit to handle
the condition. It does this by calling the RESIGNAL built-in subroutine as
follows:

CALL RESIGNAL();

The RESIGNAL built-in subroutine has no arguments.

When an ON-unit calls RESIGNAL, PL/I resumes its search of the call stack
starting at the call frame beneath the frame in which it located the current
ON-unit. Example 10–1 and Figure 10–1 illustrate the effect of the RESIGNAL
built-in subroutine. The callout numbers in the example indicate the order of
execution.

10–2 Error Handling

Procedure B establishes an ANYCONDITION ON-unit that handles specific
VAXCONDITION values. When the ON-unit is executed as a result of a signal in
either procedure B or C, it tests the current value of ONCODE to see whether it
is a value of interest. If not, procedure B calls RESIGNAL.

Example 10–1 Resignaling the Condition

A: PROCEDURE OPTIONS (MAIN);1
ON FIXEDOVERFLOW BEGIN;

6

END;
.
.
.

CALL B;

B: PROCEDURE (X,Y);2
ON ANYCONDDITION BEGIN;
IF (ONCODE()=VAXCONDITION(SIGNAL_FOUND))!5

(ONCODE()=VAXCONDITION(SIGNAL_DONE)) THEN
BEGIN;

END;/"begin block for IF statement"/
ELSE CALL RESIGNAL();

END;/"ON-unit"/
CALL C;

C: PROCEDURE;3

4

RETURN;
END;

Figure 10–1 Resignaling a Condition

NU−2481A−RA

A

B

C

When the FIXEDOVERFLOW condition is signaled in procedure C, B calls
RESIGNAL and PL/I continues its search of the call stack. It locates the ON-unit
for handling the FIXEDOVERFLOW condition in procedure A and executes it.

Note that the default condition handling performed by PL/I uses the resignaling
capability to continue signals that are not handled within the program. PL/I
default condition handling is described in Section 10.4.

Error Handling 10–3

10.2.3 Unwinding the Call Stack
An ON-unit in a PL/I procedure can execute a nonlocal GOTO statement that
transfers control to a previous block. In this case, PL/I releases call frames,
beginning with the call frame created for the ON-unit, until it reaches the block
containing the label specified in the GOTO statement.

The removal of call frames from the call stack is called an unwind. Example 10–2
and Figure 10–2 illustrate a situation in which an unwind occurs. The callout
numbers in the example indicate the order of execution.

Procedure A establishes an ERROR ON-unit represented by the box drawn with
broken lines in Figure 10–2. The ERROR ON-unit established in procedure A
receives control when the ERROR condition is signaled in procedure C. This ON-
unit executes the GOTO PRINT_MSG statement. The label PRINT_MSG is in
procedure A. Thus, the call stack is unwound and the call frames for the ON-unit,
procedure C, and procedure B, in that order, are removed from the stack, and
execution continues at the label PRINT_MSG.

Example 10–2 Unwinding the Call Stack

A: PROCEDURE OPTIONS (MAIN);1
ON ERROR GOTO PRINT_MSG;

4

CALL B;
PRINT_MSG;

5

END;

B: PROCEDURE;2

CALL C;

RETURN;
END;

C: PROCEDURE;3

RETURN;
END;

10–4 Error Handling

Figure 10–2 Unwinding the Call Stack

NU−2482A−RA

A

B

C

When an unwind occurs in the OpenVMS environment, each call frame in the
calling sequence is examined to determine if a condition ON-unit exists for that
frame. If so, the ON-unit is called with the condition value SS$_UNWIND,
and the ON-unit has the chance to perform block- or procedure-specific cleanup
operations.

10.2.4 Stopping the Program
An ON-unit can specify that the program is to be terminated by executing a
STOP statement. For example:

ON UNDEFINEDFILE(INFILE) BEGIN;

PUT EDIT(’File’,ONFILE(),’undefined. Error’,ONCODE())
(A,X,A,X,A,X,F(10));

STOP;
END;

The STOP statement performs the following actions:

• It signals the FINISH condition.

• It calls the SYS$EXIT system service to perform an image exit.

Thus, when a FINISH ON-unit that has been executed as a result of a STOP
statement handles the condition, control returns to the STOP statement, which
then terminates the image.

If no FINISH or ANYCONDITION ON-unit exists, the program is terminated.

Note that when a FINISH or ANYCONDITION ON-unit executes a STOP
statement, the program enters an infinite loop.

10.3 Relationship of OpenVMS Condition Handlers to PL/I ON-Units
In the OpenVMS environment, an exception condition is a hardware- or software-
detected condition that synchronously interrupts the execution of an image. A
condition handler is a procedure that exists specifically to respond to one or more
such conditions; each procedure in the program can establish a condition handler.
It is usually the responsibility of each handler to determine the specific condition
that was signaled, and to decide whether or not to handle it.

Most high-level languages establish condition handlers by calling the VAX Run-
Time Library procedure LIB$ESTABLISH. The PL/I language, however, has in
the ON-unit a condition handler defined to handle a specific condition. By using
the keyword condition names defined by PL/I and the extensions provided by PL/I

Error Handling 10–5

for OpenVMS VAX and PL/I for OpenVMS AXP, you can write ON-units to handle
any possible OpenVMS-specific condition. Each procedure can establish separate
ON-units for each of several possible conditions that the procedure wishes to
handle.

You should never use LIB$ESTABLISH to establish a condition handler in a PL/I
call frame.

10.4 Search Path for ON-Units
When a condition is signaled in the OpenVMS environment, the OpenVMS
condition-handling facility searches the call stack, beginning with the call frame
within which the condition was signaled, for a condition handler. If there is
no handler, or if no handler handles the condition, a system default handler is
executed.

In PL/I for OpenVMS VAX and PL/I for OpenVMS AXP, the search rules are
different. PL/I searches each call frame in the calling sequence for ON-units in a
specific sequence. If it reaches the call frame at which the program was entered
without locating an ON-unit, it performs default condition handling. The default
handling depends on whether or not the call frame at which the procedure was
entered specified the MAIN option.

Example 10–3 and Figure 10–3 illustrate the call frames established for the
execution of a series of procedures. The callout numbers in the example indicate
the order of execution.

The box drawn with broken lines in Figure 10–3 represents the ON-unit
established in procedure A for a FIXEDOVERFLOW condition. Procedure A
establishes an ON-unit for the FIXEDOVERFLOW condition, and procedure
B establishes an ON-unit for an UNDEFINEDFILE condition for the file
PRINTFILE. When a FIXEDOVERFLOW condition is signaled in procedure
C, PL/I locates the ON-unit established in procedure A and activates the
corresponding ON-unit. When PL/I activates an ON-unit, it creates an activation
record for the ON-unit and places the ON-unit on the call stack for execution, as
if it were a unique block activation.

Example 10–3 Execution of an ON-Unit

A: PROCEDURE OPTIONS (MAIN);
ON FIXEDOVERFLOW BEGIN;

END;
CALL B;

B: PROCEDURE;
ON UNDEFINEDFILE (PRINTFILE) OPEN

FILE(PRINTFILE) TITLE("SYS$OUTPUT");

CALL C:

C: PROCEDURE;

RETURN;
END;

10–6 Error Handling

Figure 10–3 Execution of an ON-Unit

NU−2482A−RA

A

B

C

10.4.1 Default Handling for Main Procedures
If the program was entered at a procedure with the MAIN option, PL/I searches
for ON-units and performs default condition handling as follows:

1. PL/I searches for specific ON-units in the following order:

a. A VAXCONDITION ON-unit established for the specific condition value
that is being signaled

b. A PL/I ON-unit established for a PL/I condition name, if PL/I defines a
name for the condition

c. An ANYCONDITION ON-unit

If one of these ON-units exists, it is executed and the search is ended. If
the ON-unit completes execution by handling the condition, the program
continues at the point at which the condition was signaled.

2. If none of the above are found in any call frame, the default PL/I condition
handler performs one of the following:

• If the signal is the ENDPAGE condition, the default PL/I handler executes
a PUT PAGE for the file, and then continues the program at the point at
which ENDPAGE was signaled.

• If the signal is the ERROR condition and the severity is fatal, the default
handler signals the FINISH condition. Then, one of the following occurs:

Error Handling 10–7

If a FINISH ON-unit is found, its execution is attempted. If it
executes a nonlocal GOTO or signals another condition, program
execution continues.

If no FINISH ON-unit is found, or if a FINISH ON-unit completes
execution by handling the condition, then PL/I resignals the condition
to the default OpenVMS condition handler. This handler prints a
message, displays a traceback, and terminates the program.

• If the signal is UNDERFLOW, a message is printed; continued execution
is unpredictable, and the value that caused the condition is replaced by
an undefined value. (The value would be set to zero only if OPTIONS
(UNDERFLOW) were not specified on the PROCEDURE statement; and
it must be specified for UNDERFLOW to be signaled.)

• If the signal is any condition other than ENDPAGE, ERROR with a fatal
severity, or UNDERFLOW, the default PL/I handler signals the ERROR
condition with the severity of the original condition. Then, one of the
following occurs:

If an ERROR ON-unit is found, it is executed. If it completes
execution by handling the condition, the program continues.

If an ERROR ON-unit is not found, the default PL/I handler resignals
the condition. If this resignaling results in control returning to the
system, the default OpenVMS condition handler prints a message
and a traceback. If the error is a fatal error, the default handler
terminates the program; if the error is nonfatal, the program
continues.

10.4.2 Default Handling for Non-Main Procedures
If the call frame at which the program was entered did not specify the MAIN
option, the default condition handling is as follows:

1. PL/I searches for specific ON-units in the following order:

a. A VAXCONDITION ON-unit established for the specific condition value
that is being signaled

b. A PL/I ON-unit established for a PL/I condition name, if PL/I defines a
name for the condition

c. An ANYCONDITION ON-unit

If one of these ON-units exists, it is executed and the search is ended. If
the ON-unit completes execution by handling the condition, the program
continues at the point at which the condition was signaled.

2. If no ON-units are found in any call frame, the condition is signaled to the
caller. If the resignal results in return of control to the system, the default
OpenVMS condition handler issues a message and prints a traceback. If
the error was a fatal error, the default OpenVMS handler terminates the
program. Otherwise, the program continues.

Example 10–4 and Figure 10–4 illustrate a search for an ON-unit that will handle
a decimal overflow condition. The keyed callout numbers in the example indicate
the sequence in which the search takes place.

10–8 Error Handling

PL/I takes the following actions:

1 Searches the call frame in which the condition was signaled for three specific
ON-units: VAXCONDITION(SS$_DECOV_F), FIXEDOVERFLOW, and
ANYCONDITION

2 Searches the previous call frame for the same three ON-units

3 Reaches the main procedure and searches it for the three ON-units

4 Signals the ERROR condition

5 Searches the call frame in which the condition was signaled for an ERROR
ON-unit

6 Searches the previous call frame for an ERROR ON-unit

7 Locates the ERROR ON-unit in the main procedure and executes it

Example 10–4 Search for an ON-Unit

A: PROCEDURE OPTIONS (MAIN);
ON ERROR BEGIN; 7

4

END;
CALL B;3

B: PROCEDURE; 6
CALL C;
RETURN; 2
END;

C: PROCEDURE;5
RETURN; 1
END;

Figure 10–4 Search for an ON-Unit

NU−2481A−RA

A

B

C

Error Handling 10–9

10.4.3 Multiple Conditions
If a second condition is signaled during the execution of an ON-unit, PL/I searches
for an ON-unit that will handle the second condition, beginning in the call frame
in which the second condition was signaled. This handling of multiple conditions
in PL/I differs from the standard behavior of the OpenVMS condition-handling
facility (which skips the call frames that were searched for the current ON-unit).
For information on OpenVMS condition handling, see the Introduction to the VMS
Run-Time Library.

Example 10–5 and Figure 10–5 illustrate the search sequence followed when a
second condition occurs during the execution of an ON-unit. The keyed callout
numbers in the example indicate the order of execution. The ERROR condition
in procedure C is handled by the ON-unit established in procedure B. During
the execution of this ON-unit, a FIXEDOVERFLOW condition is signaled. PL/I
locates the ON-unit established for FIXEDOVERFLOW conditions in procedure
C and gives it control. The box drawn with broken lines represents the ERROR
ON-unit established by procedure B.

Example 10–5 Multiple Conditions

A: PROCEDURE OPTIONS (MAIN);

1

CALL B;

B: PROCEDURE; 2
ON ERROR BEGIN; 4

5

END;
CALL C;

C: PROCEDURE; 3
ON FIXEDOVERFLOW BEGIN;

7

Figure 10–5 Effect of Multiple Conditions

NU−2482A−RA

A

B

C

10–10 Error Handling

Note that if the second condition is the same condition as the first, and the
ON-unit does not establish another ON-unit, the same ON-unit will be executed
repeatedly as the condition is signaled. A similar situation results when a STOP
statement is executed within a FINISH or ANYCONDITION ON-unit—that is,
the program will enter an infinite loop when the STOP statement executes. The
STOP statement signals FINISH, the current ON-unit is reexecuted, the STOP
statement is executed again, and so on.

In a PL/I program, an ANYCONDITION ON-unit or a VAXCONDITION ON-unit
established specifically to handle the SS$_UNWIND condition is invoked during
the unwind. The following example illustrates a VAXCONDITION ON-unit:

DECLARE SS$_UNWIND GLOBALREF VALUE FIXED BINARY(31);
ON VAXCONDITION(SS$_UNWIND) BEGIN;

CLOSE FILE(DATA_REC_TEMP) ENVIRONMENT(
DELETE(NO));

END;

When an ON-unit that is handling the unwind condition completes execution, the
unwind continues.

Note that when an ANYCONDITION ON-unit executes a nonlocal GOTO
statement, the nonlocal GOTO causes an unwind, and the first ON-unit that
is given control is the ANYCONDITION ON-unit itself. Thus, an infinite loop
occurs. To avoid this situation, an ANYCONDITION ON-unit can contain the
following lines:

ON ANYCONDITION BEGIN;
DECLARE SS$_UNWIND GLOBALREF VALUE FIXED;
IF ONCODE() = SS$_UNWIND THEN GOTO OKAY;

.

.

.
OKAY: END;

This check for the condition SS$_UNWIND ensures that if a nonlocal GOTO is
executed in this ON-unit, it will not cause the ON-unit to be reexecuted.

10.5 Scope of ON-Units
After an ON-unit is established, it remains in effect for the activation of the
current block and all its dynamically descendent blocks, unless one of the
following situations occurs:

• Another ON statement is specified for the same condition in a descendent
block. The ON-unit established within the descendent block remains in effect
as long as the descendent block is active.

• A REVERT statement is executed for the specified condition. A REVERT
statement nullifies the most recent ON-unit for the specified condition.

• Another ON statement is specified for the same condition within the current
block. Within the same block, an ON statement for a specific condition
cancels the previous ON-unit.

• The block or procedure within which the ON-unit is established terminates.
When a block exits, any ON-units it has established are canceled.

Error Handling 10–11

10.6 ON-Unit Examples
The following examples illustrate some typical ON-units. The first example
establishes an ON-unit for the FINISH condition. The ON-unit ensures that
two files are closed properly, and calls a routine that stops a timer in an orderly
fashion.

ON FINISH BEGIN;
CLOSE FILE(INFILE);
CLOSE FILE(OUTFILE);
CALL TIMER_END;
END;

Normally, the FINISH ON-unit should be declared in the main procedure;
however, it will be executed on image exit if it is established in any block that is
active when that occurs.

The next example contains an ERROR ON-unit that will terminate a program
in an orderly fashion, should some error occur that is not handled by a specific
ON-unit.

DECLARE STATUS FIXED BINARY(31);
.
.
.

ON ERROR BEGIN;
CLOSE FILE (INFILE);
CLOSE FILE (OUTFILE);
STATUS = ONCODE();
GOTO FINIS;
END;
.
.
.

FINIS: RETURN (STATUS);

The ERROR ON-unit provides a cleanup procedure to ensure that the files
identified as INFILE and OUTFILE are properly closed before the image exits.
The ON-unit saves the value returned by ONCODE in the variable STATUS, and
transfers control to a RETURN statement that returns the numeric value to the
caller. If the procedure was invoked by a RUN command, this value is returned
to the command interpreter, which in turn displays on the terminal the mnemonic
code for the error and the error message.

The next example contains an ON-unit that changes the value of a bit variable
when end-of-file is encountered.

DECLARE STATE_PTR POINTER,
STATE_FILE FILE,
EOF BIT(1) STATIC INIT(’0’B);

ON ENDFILE(STATE_FILE) EOF = ’1’B;

OPEN FILE(STATE_FILE) INPUT SEQUENTIAL;
READ FILE(STATE_FILE) SET(STATE_PTR);
DO WHILE (^EOF);

.

.

.
READ FILE(STATE_FILE) SET(STATE_PTR);
END;

10–12 Error Handling

The procedure reads the records in the file STATE_FILE until it encounters
end-of-file. At that point, the ON-unit executes and changes the value of EOF
from 0 to 1. This action causes the test in the DO WHILE statement to fail,
terminating the loop that reads the records.

Following is an example of an ON-unit that consists of a sequence of statements
in a begin block.

ON ENDFILE (SYSIN) BEGIN;
CLOSE FILE (TEMP);
CALL PRINT_STATISTICS(TEMP);
END;

This ON-unit consists of CLOSE and CALL statements that request special
processing when the end-of-file condition occurs during reading of the default
system input file, SYSIN.

Following is an example of a null statement specified for an ON-unit.

ON ENDPAGE(SYSPRINT);

This ON-unit causes PL/I to continue output on a terminal regardless of the
number of lines already output. The null statement indicates that no processing
is to occur when the condition occurs. Program execution continues as if the
condition had been handled.

Chapter 6 demonstrates an ON-unit that handles errors encountered during
record I/O operations.

10.7 Condition-Handling Built-In Functions
The following sections discuss the four PL/I for OpenVMS VAX and PL/I
for OpenVMS AXP built-in functions that are useful for condition handling:
ONARGSLIST, ONCODE, ONFILE, and ONKEY.

10.7.1 ONARGSLIST Built-In Function
Within the context of the PL/I language, an ON-unit is like a procedure that has
no parameters. However, in the OpenVMS environment, a condition handler or
ON-unit is actually called with an argument list. The argument list consists of
two pointer values, each of which points to a structure containing values that
provide information about the condition.

In PL/I for OpenVMS VAX and PL/I for OpenVMS AXP, you can access these
arguments with the ONARGSLIST built-in function; this built-in function returns
a pointer to the argument list passed to the most recent ON-unit. Figure 10–6
illustrates the argument list and the arguments that can be accessed through this
list.

The text module $CHFDEF contains PL/I declarations of these structures:

Error Handling 10–13

Figure 10–6 The Argument List Passed to an ON-Unit

Signal Array

Mechanism Array

n

4

condition name

PC

PSL

depth

R0

R1

establisher frame

2

pointer to signal array

number of arguments

usually contains same value
as ONCODE return

depend on condition

program counter at
condition occurrence

processor status longword
condition occurrence

number of arguments

copy of frame pointer of block
that established the ON−unit

block activation depth of block
in which condition occurred;

contents of Register 0 when
condition was signaled

contents of Register 1 when
condition was signaled

NU−2483A−RA

Argument list location
returned by ONARGSLIST

additional arguments,
if any

first signal argument,
if any

pointer to mechanism
array

relative to establisher frame

/* Definitions for Signal Array and Mechanism Array arguments */
DECLARE CHF$ARGPTR POINTER;
DECLARE 1 CHF$ARGLIST BASED (CHF$ARGPTR),

2 CHF$COUNT FIXED BINARY(31), /* always 2 */
2 CHF$SIGARGLST POINTER,
2 CHF$MCHARGLST POINTER;

DECLARE 1 CHF$SIGNAL_ARRAY BASED (CHF$SIGARGLST),
2 CHF$SIG_ARGS FIXED BINARY(31), /* argument count */
2 CHF$SIG_NAME FIXED BINARY(31), /* condition name */
2 CHF$SIG_ARG (CHF$SIG_ARGS-3) FIXED BINARY(31),
2 CHF$PC FIXED BINARY(31),
2 CHF$PSL FIXED BINARY(31),

1 CHF$MECH_ARRAY BASED (CHF$MCHARGLST),
2 CHF$MCH_ARGS FIXED BINARY(31), /* always 4 */
2 CHF$MCH_FRAME FIXED BINARY(31),
2 CHF$MCH_DEPTH FIXED BINARY(31),
2 CHF$MCH_SAVR0 FIXED BINARY(31),
2 CHF$MCH_SAVR1 FIXED BINARY(31);

This module is in the default PL/I text library PLI$STARLET.TLB. You can
include this module in a PL/I program by specifying the following %INCLUDE
statement:

%INCLUDE $CHFDEF;

The PL/I compiler locates this module in PLI$STARLET.TLB when it compiles
the source program.

10–14 Error Handling

Example 10–6 illustrates a procedure that displays values obtained from the
signal array arguments and the mechanism array arguments. The following
notes are keyed to Example 10–6:

1 The procedure includes the module $CHFDEF from the default system
library.

2 The ONARGSLIST built-in function assigns a value to the pointer
CHF$ARGPTR, declared in $CHFDEF.

3 Using the CHF$SIG_ARGS field in the signal array, the procedure prints the
number of arguments in the signal array.

4 It displays the contents of the first argument, that is, the condition value.

5 Because the number of arguments is variable, the procedure uses the DIM
built-in function to determine the number of elements in the array CHF$SIG_
ARG (this array always contains three fewer members than arguments in
the array, because the condition name, PC, and PSL arguments are always
present).

6 After displaying the signal arguments, the procedure displays the contents of
R0 and R1 from the mechanism array.

Example 10–6 Displaying Arguments Passed to a Condition Handler

%INCLUDE $CHFDEF; 1
DECLARE X FIXED;

CHF$ARGPTR = ONARGSLIST(); 2
/* Output number of signal arguments */

PUT SKIP LIST(’Signal Arg Count’,CHF$SIG_ARGS); 3
/* Output condition name argument and rest of signal arguments */

PUT SKIP LIST(’Condition name’, CHF$SIG_NAME); 4
PUT SKIP LIST(DIM(CHF$SIG_ARG,1),

’additional arguments:’); 5
DO X = 1 TO DIM(CHF$SIG_ARG,1);

PUT SKIP LIST(CHF$SIG_ARG(X));
END;

/* Output RO and R1 */
PUT SKIP(2) LIST(’r0:’,CHF$MCH_SAVR0); 6
PUT SKIP(2) LIST(’r1:’,CHF$MCH_SAVR1);

END;

For more detailed information on the argument lists passed to a condition
handler and for descriptions of the values in the signal array and mechanism
array, see the OpenVMS System Services Reference Manual. Note that the PL/I
run-time system signals conditions using the VAX conventions for specifying
signal arguments. Specifically, it passes arguments following the requirements
described for the SYS$PUTMSG procedure. This procedure is described in the
Introduction to the VMS Run-Time Library.

Error Handling 10–15

10.7.2 ONCODE Built-In Function
You can use the built-in function ONCODE to obtain the specific 32-bit status
value that describes any condition that is signaled. The low-order three bits
of this value contain the severity of the condition (success, warning, error, or
fatal). The severity of a condition is important only when no ON-unit exists for
a condition, and default condition handling is performed by either PL/I or the
system (see Section 10.4).

All OpenVMS-defined conditions have symbolic names associated with them.
Table 10–1 lists the PL/I keyword condition names and the global symbol names
for the OpenVMS condition values associated with them. If the ONCODE built-in
function is invoked in an ON-unit for the related PL/I condition name, it returns
the value of the indicated global symbol.

Table 10–1 ONCODE Values for PL/I ON Conditions

PL/I Condition VMS Global Symbol Name1

AREA See the PL/I for OpenVMS Systems Reference Manual and
Chapter 15 of this manual for a discussion of allocation in areas.

CONDITION PLI$_CONDITION

CONVERSION PLI$_CONVERSION if a SIGNAL CONVERSION statement was
executed, otherwise PLI$_ONCNVPOS (PLI$_ONCNVPOS could
change in a future release of PL/I)

ENDFILE PLI$_ENDFILE

ENDPAGE PLI$_ENDPAGE

ERROR A specific status value associated with the error that caused the
condition to be signaled2

FINISH PLI$_FINISH

FIXEDOVERFLOW SS$_DECOVF or SS$_INTOVF

KEY RMS$_name, where name is one of the following specific
RMS condition names that describe a key error: RMS$_
RNF, RMS$_DUP, RMS$_KEY, RMS$_MRN, RMS$_REX; or,
PLI$_name, where name describes a PL/I run-time error, for
example PLI$_CNVERR2

OVERFLOW SS$_FLTOVF or SS$_FLTOVF_F

STORAGE The value returned by LIB$GET_VM

STRINGRANGE PLI$_STRRANGE, or PLI$_SUBSTRn (where n is 2 or 3,
indicating the 2nd or 3rd argument of the SUBSTR built-in
function), or PLI$_BIFSTAPOS (indicating an out-of-range
starting position for an INDEX, SEARCH, or VERIFY built-in
function)

SUBSCRIPTRANGE PLI$_SUBRANGE or PLI$_SUBRANGEn (where n is a number
in the range 1 through 8 indicating the subscript number)

1If a PL/I condition is explicitly specified in a SIGNAL statement, the ONCODE value corresponds to
the condition message associated with the condition, for example, PLI$_UNDFILE, PLI$_KEY, and so
on.
2These names correspond to the identification fields in the run-time messages. The RMS messages
are listed in the OpenVMS Record Management Services Reference Manual. PL/I messages are listed
in Appendix A.

(continued on next page)

10–16 Error Handling

Table 10–1 (Cont.) ONCODE Values for PL/I ON Conditions

PL/I Condition VMS Global Symbol Name1

UNDEFINEDFILE RMS$_name, where name indicates a specific status value
associated with an RMS error; or, PLI$_name, where name
describes a PL/I run-time error2

UNDERFLOW SS$_FLTUND or SS$_FLTUND_F

VAXCONDITION Any user-defined condition value that was signaled

ZERODIVIDE SS$_FLTDIV, SS$_INTDIV, or SS$_FLTDIV_F

1If a PL/I condition is explicitly specified in a SIGNAL statement, the ONCODE value corresponds to
the condition message associated with the condition, for example, PLI$_UNDFILE, PLI$_KEY, and so
on.
2These names correspond to the identification fields in the run-time messages. The RMS messages
are listed in the OpenVMS Record Management Services Reference Manual. PL/I messages are listed
in Appendix A.

When you write an ON-unit to handle one or more conditions, you can refer
specifically to the values returned by the ONCODE built-in function using system
global symbol names. Table 10–1 lists, where appropriate, the specific system
global symbol for a condition name.

All symbolic names associated with OpenVMS condition values are defined as
system global symbols. Thus, you can declare the names for these values in a
PL/I program using the GLOBALREF and VALUE attributes, and refer to them
symbolically. The linker will automatically locate the definitions of the symbols in
the default system libraries when the procedure is linked.

For example, the FIXEDOVERFLOW condition can be signaled for either of two
conditions. An ON-unit can determine which condition was actually signaled by
testing the value of ONCODE as follows:

DECLARE SS$_DECOVF GLOBALREF VALUE FIXED BINARY(31);
ON FIXEDOVERFLOW BEGIN;

IF ONCODE() = SS$_DECOVF THEN
PUT LIST (’Decimal overflow’);

ELSE
PUT LIST (’Integer overflow’);

END;

In this example, the global symbol SS$_DECOVF is declared with the
GLOBALREF and VALUE attributes. The ON-unit established for the
FIXEDOVERFLOW condition determines, from the value returned by ONCODE,
whether the condition was specifically a decimal overflow or an integer overflow.

10.7.3 ONFILE Built-In Function
The ONFILE built-in function returns the name of the file constant for which the
current file-related condition was signaled. Its format is given in the PL/I for
OpenVMS Systems Reference Manual.

This built-in function can be used in any of the following ON-units:

• An ON-unit established for the KEY, ENDFILE, ENDPAGE, and
UNDEFINEDFILE conditions

• A VAXCONDITION ON-unit established for I/O errors that can occur during
file processing

Error Handling 10–17

• An ERROR ON-unit that receives control as a result of the default PL/I action
for file-related errors, which is to signal the ERROR condition

The returned value is a varying-length character string. If referenced outside
an ON-unit or within an ON-unit that is executed as a result of a SIGNAL
statement, the ONFILE function returns a null string.

10.7.4 ONKEY Built-In Function
The ONKEY built-in function returns the key value that caused the KEY
condition to be signaled during an I/O operation to a file that is being accessed by
key. Its format is given in the PL/I for OpenVMS Systems Reference Manual.

This built-in function can be used in an ON-unit established for these conditions:

• The KEY, ENDFILE, or UNDEFINEDFILE conditions

• An ERROR ON-unit that receives control as a result of the default PL/I action
for the KEY condition, which is to signal the ERROR condition

The returned key value is a varying-length character string. If referenced outside
an ON-unit, or within an ON-unit executed as a result of the SIGNAL statement,
the ONKEY built-in function returns a null string.

10–18 Error Handling

11
Using PL/I in the Common Language

Environment

The PL/I for OpenVMS VAX and PL/I for OpenVMS AXP compilers are part of
the OpenVMS common language environment. This environment defines certain
calling procedures and guidelines that allow you to call routines written in
different languages or prewritten system routines from PL/I for OpenVMS VAX
and PL/I for OpenVMS AXP. You can call any of the following routine types from
PL/I for OpenVMS VAX and PL/I for OpenVMS AXP:

• Routines written in other OpenVMS VAX and OpenVMS AXP languages

• OpenVMS Run-Time Library routines

• OpenVMS system services

• OpenVMS utility routines

The terms routine, procedure, and function are used throughout this chapter.

Note

The definitions of routine, procedure, and function used throughout this
chapter are somewhat different from standard PL/I for OpenVMS VAX
and PL/I for OpenVMS AXP terminology. These definitions are used for
consistency with the OpenVMS system routines documentation and apply
only throughout this chapter.

A routine is a closed, ordered set of instructions that performs one or more
specific tasks. Every routine has an entry point (the routine name), and
optionally an argument list. Procedures and functions are specific types of
routines: a procedure is a routine that does not return a value, whereas a
function is a routine that returns a value by assigning that value to the function’s
identifier.

System routines are prewritten OpenVMS routines that perform common tasks,
such as finding the square root of a number or allocating virtual memory. You
can call any system routine from your program, provided that PL/I supports the
data structures required to call the routine. The system routines used most often
are OpenVMS Run-Time Library routines, utility routines, and system services.
System routines, which are discussed later in this chapter, are documented in
detail in the VMS Run-Time Library Routines Volume, the OpenVMS Utility
Routines Manual, and the OpenVMS System Services Reference Manual.

Using PL/I in the Common Language Environment 11–1

11.1 OpenVMS Calling Standard
The OpenVMS Calling Standard describes the concepts used by OpenVMS VAX
and OpenVMS AXP languages for invoking routines and passing data between
them. It also describes the differences between the VAX and AXP parameter
passing mechanisms. The OpenVMS Calling Standard specifies the following
attributes:

• Register usage

• Stack usage

• Function value return

• Argument list

The following sections discuss these attributes in more detail for OpenVMS VAX
systems. For more detail on OpenVMS AXP systems, see the OpenVMS Calling
Standard.

The OpenVMS Calling Standard also defines such attributes as the calling
sequence, the argument data types and descriptor formats, condition handling,
and stack unwinding. These attributes are discussed in detail in the Introduction
to VMS System Routines.

11.1.1 Register and Stack Usage
The OpenVMS Calling Standard defines registers and their uses, as listed in
Table 11–1 and Table 11–2.

Table 11–1 VAX Register Usage

Register Use

PC Program counter

SP Stack pointer

FP Current stack frame pointer

AP Argument pointer (when necessary)

R1 Environment value (when necessary)

R0, R1 Function value return registers

Table 11–2 AXP Register Usage

Register Use

PC Program counter

SP Stack pointer

FP Frame pointer for current procedure

R25 Argument information register

R16 to R21,
F16 to F21

Argument list registers

R0 Function value return register

By definition, any called routine can use registers R2 through R11 for
computation, and the AP register as a temporary register.

11–2 Using PL/I in the Common Language Environment

Figure 11–1 The Call Stack

NU−2463A−RA

AP

0

FP

PC

R2

R11

A B C

Legend

AP − copy of argument pointer for procedure A
FP − pointer to A’s call frame
PC − memory location in A at which B was invoked
R2−R11 − contents of A’s general registers R2 through R11

In the OpenVMS Calling Standard, a stack is defined as a LIFO (last-in/first-out)
temporary storage area that the system allocates for every user process. The
system keeps information about each routine call in the current image on the
call stack. Then, each time you call a routine, the system creates a structure on
this call stack, known as the call frame. The call frame for each active procedure
contains the following:

• A pointer to the call frame of the previous routine call. This pointer
corresponds to the frame pointer (FP).

• The argument pointer (AP) of the previous routine call.

• The storage address of the point at which the routine should return; that is,
the address of the instruction following the call to the current routine. This
address is called the program counter (PC).

• The contents of other general registers. Based on a mask specified in the
control information, the system restores the saved contents of these registers
to the calling routine when control returns to it.

Figure 11–1 illustrates the call stack and several call frames. Procedure A calls
procedure B, which calls procedure C.

When a routine completes execution, the system uses the frame pointer in the
call frame of the current routine to locate the frame of the previous routine. The
system then removes the call frame of the current routine from the stack.

11.1.2 Return of the Function Value
A function is a routine that returns a single value to the calling routine. The
function value is the value returned to the caller. According to the calling
standard, a function value may be returned as either an actual value or a
condition value that indicates success or failure.

Using PL/I in the Common Language Environment 11–3

11.1.3 The Argument List
The OpenVMS Calling Standard also defines a data structure called the
argument list. You use an argument list to pass information to a routine and
receive results.

On AXP systems, an argument list is formed using registers R16 to R21 or F16 to
F21 and a collection of quadwords in memory (depending on the number and type
of the arguments.

On VAX systems, an argument list is a collection of longwords in memory that
represents a routine parameter list and possibly includes information for the
return of a function value, if a function returns a value that is not suitable for
return in R0 or R0/R1. Figure 11–2 shows the structure of a typical OpenVMS
VAX argument list.

Figure 11–2 Structure of an OpenVMS VAX Argument List

NU−2464A−RA

0 n

arg1

arg2

argn

...

The first longword must be present; this longword stores the number of
arguments (the argument count: n) as an unsigned integer value in the low
byte of the longword. The remaining 24 bits of the first longword are reserved for
use by Digital and should be zero. The longwords labeled arg1 through argn are
the actual parameters, which can be any of the following:

• An argument passed by reference. When an argument is passed by reference,
the address of the argument is present in the argument list.

• An argument passed by descriptor. When an argument is passed by
descriptor, the address of a data structure (called a descriptor) describing
the argument is present in the argument list.

• An argument passed by value. When an argument is passed by immediate
value, the actual value of the argument is present in the argument list.

The argument list contains the parameters that are passed to the routine.
Depending on the passing mechanisms for these parameters, the forms of
the arguments contained in the argument list vary. For example, if you pass
three arguments, the first by value, the second by reference, and the third by
descriptor, the argument list contains the value of the first argument, the address
of the second, and the address of the descriptor of the third. Figure 11–3 shows
this argument list.

11–4 Using PL/I in the Common Language Environment

Figure 11–3 Example of an OpenVMS VAX Argument List

NU−2465A−RA

0 3

value of the first parameter

address of the second parameter

address of descriptor of the third parameter

11.2 Parameter-Passing Mechanisms
To pass data between routines that are not written in the same VAX or AXP
language, you must specify how you want that data to be represented and
interpreted. You do this by specifying a parameter-passing mechanism. The three
general parameter-passing mechanisms and their keywords and abbreviations in
PL/I are as follows:

• By reference—REFERENCE (REF)

• By descriptor—DESCRIPTOR (DESC)

• By value—VALUE (VAL)

The parameter-passing mechanisms are intended for use only in calling non-PL/I
routines. External routines written in PL/I should be called with the default
mechanisms.

The following sections describe the arguments in terms of PL/I data types,
dummy arguments created (if any), parameter-passing mechanism conventions,
and attributes to define the manner in which parameters are to be passed.
Remember that when PL/I creates a dummy argument, modifications, if any, that
the called procedure makes to the dummy argument are not accessible to the
caller.

11.2.1 Passing Parameters by Reference
When you pass a parameter by reference, the PL/I for OpenVMS VAX or PL/I
for OpenVMS AXP compiler passes the address at which the actual parameter
value is stored. In other words, your routine has access to the parameter’s
storage address. Therefore, when you manipulate and change the value of this
parameter, the changed value overwrites the previous value of the parameter.
Thus, when you pass a parameter by reference, any changes that you make to the
value of the parameter in your routine are reflected in the calling routine as well,
provided a dummy argument is not created.

You can pass an argument of any data type by reference. This mechanism is
the default used by PL/I for OpenVMS VAX and PL/I for OpenVMS AXP for
all arguments except character strings or arrays with nonconstant extents, and
unaligned bit strings. Note that bit-string variables must have the ALIGNED
attribute to be passed by reference. In general, the parameter descriptor for
an argument to be passed by reference need specify only the data type of the
parameter.

Using PL/I in the Common Language Environment 11–5

For example, the Read Event Flags (SYS$READEF) system service requires its
first argument to be passed by value and its second argument to be passed by
reference. This PL/I for OpenVMS VAX procedure can be declared as follows:

DECLARE SYS$READEF ENTRY (FIXED BINARY(31) VALUE,
BIT(32) ALIGNED);

Note

Most OpenVMS routines have declarations in PLI$STARLET; it is
therefore not normally necessary to declare them yourself.

When this procedure is invoked, the second argument must be a variable declared
as BIT(32) ALIGNED for PL/I for OpenVMS VAX or BIT(64) ALIGNED for PL/I
for OpenVMS AXP. PL/I passes the argument by reference. The following PL/I for
OpenVMS VAX code example with Figure 11–4 illustrates argument passing by
reference.

DECLARE FLAGS BIT(32) ALIGNED;
DECLARE SYS$READEF ENTRY (

FIXED BINARY(31) VALUE,
BIT(32) ALIGNED;

.

.

.
CALL SYS$READEF(4, FLAGS);

Figure 11–4 Argument Passing by Reference

NU−2466A−RA

4

pointer to variable

2

Argument Pointer (AP)

FLAGS

Second argument

First argument

Number of arguments

The data types in the parameter descriptors of all output arguments must match
the data types of the written arguments.

11–6 Using PL/I in the Common Language Environment

11.2.1.1 Using the ANY Attribute
When you write a parameter descriptor for a non-PL/I procedure, you can specify
the ANY attribute without the VALUE attribute to describe an argument that
is to be passed by reference. The argument can be of any addressable data type
known to PL/I for OpenVMS VAX or PL/I for OpenVMS AXP. For example, PL/I
for OpenVMS VAX, the SYS$READEF service can be specified as follows:

DECLARE SYS$READEF ENTRY (FIXED BINARY(31) VALUE, ANY);

The second parameter descriptor in the ENTRY attribute indicates that the
second argument is to be passed by reference to the procedure SYS$READEF
and that it can have any data type. When you specify ANY for an argument
to be passed by reference, you cannot specify data type attributes. Note that if
you specify the VALUE attribute in conjunction with the ANY attribute, PL/I for
OpenVMS VAX and PL/I for OpenVMS AXP pass the argument by value.

The ANY attribute is especially useful when you must specify a data structure as
an argument. You need not declare the structure within the parameter descriptor,
only the ANY attribute.

11.2.1.2 Dummy Arguments for Arguments Passed by Reference
When PL/I for OpenVMS VAX or PL/I for OpenVMS AXP passes an argument
by reference, it places either the address of the actual argument or the address
of a dummy argument in the argument list of the called procedure. PL/I for
OpenVMS VAX and PL/I for OpenVMS AXP create a dummy argument in the
following cases:

• When the written argument is a constant or an expression

• When the written argument is enclosed in parentheses

• When the data type of the written argument does not match the data type or
precision specified in the parameter descriptor

In the last case listed above, PL/I for OpenVMS VAX and PL/I for OpenVMS AXP
issue an informational or warning message and, for scalar arguments, creates a
dummy argument of the data type of the parameter. It places the address of this
dummy argument in the argument list. If the argument is an aggregate, PL/I for
OpenVMS VAX and PL/I for OpenVMS AXP issue an error message; it does not
create a dummy argument for an array or for a structure.

In creating a dummy argument, PL/I for OpenVMS VAX and PL/I for OpenVMS
AXP perform the following conversions:

Data Type of
Written Argument

Data Type of
Dummy Argument

BIT (unaligned) BIT ALIGNED

FIXED BINARY (p,0) or
FIXED DECIMAL (p,0) (VAX)

FIXED BINARY (31)

FIXED BINARY (p,0) or
FIXED DECIMAL (p,0) (AXP)

FIXED BINARY (63)

CHARACTER VARYING CHARACTER NONVARYING

In all other cases, the data type of the dummy argument is the same as the data
type of the written argument.

Using PL/I in the Common Language Environment 11–7

11.2.1.3 Using Pointer Values for Arguments Passed by Reference
When an argument is passed by reference, PL/I for OpenVMS VAX and PL/I for
OpenVMS AXP place the address of the actual argument in the argument list.
This address can be interpreted as a pointer value. In fact, you can explicitly
specify a pointer value as an argument for data to be passed by reference. For
example:

DECLARE SYS$READEF (ANY VALUE, POINTER VALUE),
FLAGS BIT(32) ALIGNED;

CALL SYS$READEF (4, ADDR(FLAGS));

At this procedure invocation, PL/I for OpenVMS VAX and PL/I for OpenVMS AXP
place the the pointer value returned by the ADDR built-in function directly in the
argument list.

Figure 11–5 illustrates the argument list for the following example. Note that
the actual argument list in this example corresponds to the argument list shown
previously in Figure 11–4.

DECLARE FLAGS BIT(32) ALIGNED;
DECLARE SYS$READEF ENTRY (

ANY VALUE,
POINTER VALUE;

.

.

.
CALL SYS$READEF(4,ADDR(FLAGS));

Figure 11–5 Passing a Pointer Value as an Argument

NU−2466A−RA

4

pointer to variable

2

Argument Pointer (AP)

FLAGS

Second argument

First argument

Number of arguments

11.2.1.4 Passing Arrays to a FORTRAN Routine by Reference
In FORTRAN, arrays must always be passed by reference; the array’s extents are,
by custom, passed as separate arguments. The REFERENCE attribute provides
a convenient way to express an array parameter for FORTRAN. For example:

FTNARRAY: PROCEDURE(X);
DECLARE SUM ENTRY ((*) FLOAT REFERENCE, FIXED BINARY(31))

RETURNS (FLOAT);

DECLARE (S, X(*)) FLOAT;

S = SUM(X, DIM(X));

11–8 Using PL/I in the Common Language Environment

SUM is a FORTRAN routine that sums the elements of a one-dimensional array
of floating-point numbers. Its second parameter is the number of elements in the
array.

11.2.2 Passing Parameters by Descriptor
When you pass a parameter by descriptor, the PL/I for OpenVMS VAX and PL/I
for OpenVMS AXP compiler pass the address of a descriptor to the called routine.
A descriptor is a data structure that contains the address of a parameter, along
with other information such as the parameter’s data type and size.

For some structure parameters, PL/I for OpenVMS VAX and PL/I for OpenVMS
AXP pass an abbreviated form of descriptor that contains only essential position
and extent information. In these cases, the address of the abbreviated descriptor
is placed in the argument list for the called routine. The use of an abbreviated
descriptor is transparent to you.

PL/I for OpenVMS VAX and PL/I for OpenVMS AXP normally pass parameters
by descriptor in the following cases:

• When a parameter descriptor specifies a character string with an asterisk
length or an array with asterisk extents

• When a parameter descriptor specifies an unaligned bit string or an array or
structure consisting entirely of unaligned bit strings

• When a parameter descriptor specifies a structure containing any strings or
arrays with asterisk extents

For example, PL/I for OpenVMS VAX and PL/I for OpenVMS AXP pass the
arguments associated with the following parameter descriptors by descriptor:

DECLARE UNSTRING ENTRY (CHARACTER(*)),
TESTBITS ENTRY (BIT(3)),
MODEST ENTRY (1,

2 CHARACTER(*),
2,

3 BIT(3),
3 BIT(3));

Figure 11–6 illustrates a character-string descriptor and shows how a character-
string argument is passed by descriptor. This example illustrates the type of
character-string descriptor used by system services; this descriptor does not
contain additional information required by other classes of descriptors.

DECLARE NAME CHARACTER(5);
STATIC INITIAL (’ORION’);

DECLARE SYS$SETPRN ENTRY
(CHARACTER(*));

.

.

.
CALL SYS$SETPRN(NAME);

Using PL/I in the Common Language Environment 11–9

Figure 11–6 Argument Passing by Descriptor

NU−2467A−RA

Argument Pointer (AP)

First argument

Number of arguments

pointer to descriptor

pointer to variable

0 5

1

N O I R O

11.2.2.1 Passing Character Strings
When you declare a non-PL/I routine that requires a character-string descriptor
for an argument, specify the parameter descriptor as CHARACTER(*). For
example, the Set Process Name system service (SYS$SETPRN) requires the
address of a character-string descriptor as an argument. You can declare this
service as follows:

DECLARE SYS$SETPRN ENTRY (CHARACTER(*) OPTIONAL);

When a parameter is declared as CHARACTER(*), its written argument can
be one of the following:

• A character-string constant or expression

• A fixed-length character-string variable

• A varying character-string variable or a variable declared CHARACTER(*)
VARYING

For any of these arguments, PL/I for OpenVMS VAX and PL/I for OpenVMS AXP
construct a character-string descriptor and places its address in the procedure’s
argument list.

11.2.2.2 Passing Varying Character Strings
If you specify a varying character-string argument for a parameter declared
as (CHARACTER(*), the PL/I for OpenVMS VAX or PL/I for OpenVMS AXP
compiler issues a warning message, constructs a fixed-length character-string
dummy argument, and creates a character-string descriptor for the dummy
argument.

For an input argument, as in the example of the SYS$SETPRN service, the
dummy argument is acceptable. To suppress the warning message during
compilation, enclose the argument in parentheses. For example, if NAME is
a variable declared with the CHARACTER VARYING attributes, you can specify
it as an argument to the SYS$SETPRN system service like this:

CALL SYS$SETPRN ((NAME));

11–10 Using PL/I in the Common Language Environment

The parentheses around the argument NAME force PL/I for OpenVMS VAX and
PL/I for OpenVMS AXP to create a dummy argument. The compiler does not
issue a warning about a nonmatching parameter and argument.

For a non-PL/I routine that returns a character string to a variable, however, you
cannot use a varying character string for an argument. If the actual output
argument is declared as VARYING and the parameter descriptor specifies
CHARACTER(*), PL/I for OpenVMS VAX and PL/I for OpenVMS AXP create
a dummy argument and the actual argument is not modified. Thus, for output
character strings passed by character-string descriptor, you must choose one of
the following:

• Specify a fixed-length character-string variable to receive the string and a
fixed-point binary variable to receive the length of the string.

• Construct an actual character-string descriptor and pass the name of the
character-string descriptor as an argument. This technique is described in
Section 11.2.2.5.

In either case, you must include in your program the statements necessary to
determine the length of the string returned. For example, the SYS$ASCTIM
system service returns a character-string time value to a character-string
descriptor and returns the length of the string to a fixed-point binary variable.
These two arguments can be declared as follows:

DECLARE TIME CHARACTER(63),
TIME_LENGTH FIXED BINARY(15);

After the call to this procedure, the following statement might output the
equivalence name returned:

PUT LIST (’Time is ’,SUBSTR(TIME,1,TIME_LENGTH));

The PUT statement uses the SUBSTR built-in function to obtain the length of the
string returned in the variable TIME_LENGTH by SYS$ASCTIM.

11.2.2.3 Using ANY CHARACTER(*)
You can use the ANY CHARACTER(*) declaration to declare parameters for
routines that can handle both fixed- or varying-length strings for a single
parameter. The declaration allows either VARYING or NONVARYING strings to
be passed without the creation of a dummy argument. Essentially, all OpenVMS
system routines, with the exception of the system services and Librarian Utility
routines, can accept string parameters of this type.

Note that routines written in other languages do not allow strings to be passed
using this method by default. The routine being called must explicitly use
LIB$ANALYZE_SDESC (or an equivalent routine) for this declaration to work
correctly.

You can use the ANY CHARACTER(*) attribute as shown in the following
example:

%INCLUDE $STSDEF;
DECLARE FIXED_STRING CHAR(22),

VARYING_STRING CHAR(80) VARYING;

DECLARE LIB$DATE_TIME ENTRY(
ANY CHARACTER(*))
RETURNS (FIXED BINARY(31));

STS$VALUE = LIB$DATE_TIME(FIXED_STRING);
STS$VALUE = LIB$DATE_TIME(VARYING_STRING);

Using PL/I in the Common Language Environment 11–11

In both of these cases, the string contains the output value, since no dummy
argument is required.

11.2.2.4 Using ANY DESCRIPTOR
The ANY and DESCRIPTOR attributes can be used together for routines that can
process any valid data type descriptor. Routines of this type are few; however,
LIB$CVT_DX_DX and the routine DTR$COMMAND in the VAX DATATRIEVE
layered product callable interface allow any valid data type descriptor. For these
routines, declarations should be as follows:

DECLARE LIB$CVT_DX_DX ENTRY(
ANY DESCRIPTOR,
ANY DESCRIPTOR,
FIXED BINARY(15) OPTIONAL TRUNCATE)

RETURNS(FIXED BINARY(31));

DECLARE DTR$COMMAND ENTRY(
1 LIKE DTR_ACCESS_BLOCK,
ANY CHARACTER(*),
ANY DESCRIPTOR LIST TRUNCATE);

11.2.2.5 Passing an Actual Descriptor
To pass an actual descriptor as an argument, you must take the following steps;
the keyed numbers correspond to the callout numbers in Example 11–1.

1 In the parameter descriptor for the called procedure, declare a structure in
the format of a descriptor for the argument that is to be passed by descriptor,
specify ANY in the parameter descriptor, or use the REFERENCE built-in
function to override the parameter declaration at the point of the call.

2 Declare a structure variable in your program whose members and attributes
correspond to the structure declared in the parameter descriptor for the
argument.

3 Assign values to the members of the structure variable providing the required
information. For a character-string descriptor, you must provide the length of
the string and a pointer to the variable containing its value.

4 Pass the name of the structure variable as an argument in the procedure
invocation.

The Set Process Name system service (SYS$SETPRN) shown in Example 11–1
requires a text name string to be passed by descriptor. The structure variable
NAME_DESC is a character-string descriptor; its members describe the
length and location of the character-string variable NEWNAME. The value of
NEWNAME is the actual argument passed to the procedure. Note that the call
in this example is equivalent to the example shown in Figure 11–6 of passing an
argument by descriptor.

11–12 Using PL/I in the Common Language Environment

Example 11–1 Writing a Character-String Descriptor

DECLARE SYS$SETPRN ENTRY (CHARACTER(*));1

DECLARE 1 NAME_DESC,
2 NAME_LENGTH FIXED BINARY (31),2
2 NAME_ADDRESS POINTER;

DECLARE NEWNAME CHARACTER (5) STATIC INITIAL (’ORION’);
NAME_DESC.NAME_LENGTH = LENGTH(NEWNAME);3
NAME_DESC.NAME_ADDRESS = ADDR(NEWNAME);3

CALL SYS$SETPRN(REF(NAME_DESC));4

Note that this example can be simplified if SYS$SETPRN is declared as follows:

DECLARE SYS$SETPRN ENTRY (ANY);

All other variables would be the same as in Example 11–1, although the use of
the REFERENCE built-in function could be omitted.

In most cases, the first method is preferable because it allows the declarations in
PLI$STARLET to be used consistently; the only cases in which special handling
is required is for those calls that require it.

11.2.3 Passing Parameters by Value
When you pass a parameter by value, the PL/I for OpenVMS VAX and PL/I for
OpenVMS AXP compiler pass a copy of the parameter’s value to the routine
instead of passing its address. Because only a copy of the parameter’s value is
passed, the routine does not have access to the storage location of the parameter.
Therefore, when you pass a parameter by value, any changes that you make
to the parameter value in the called routine do not affect the value of that
parameter in the calling routine.

For an argument to be passed by value, you must use the VALUE attribute in
a parameter description. The following declaration of the external entry VHF
illustrates a declaration for an external routine that receives its parameter by
value.

DECLARE VHF ENTRY (FIXED BINARY(31) VALUE);

You can also define PL/I for OpenVMS VAX and PL/I for OpenVMS AXP
procedures that receive arguments by value. To do this, you must specify
the VALUE attribute in the declaration of the parameter. For example, the
corresponding definition of the routine VHF would be as follows:

VHF PROCEDURE (LENGTH);
.
.
.

DECLARE LENGTH FIXED BINARY(31) VALUE;

The following code example and Figure 11–7 illustrate argument passing by
value.

DECLARE VHF ENTRY(
FIXED BINARY(31) ANY VALUE);

.

.

.
CALL VHF(4);

Using PL/I in the Common Language Environment 11–13

Figure 11–7 Argument Passing by Immediate Value

NU−2468A−RA

4

1

Argument Pointer (AP)

First argument

Number of arguments

Arguments that can be passed by value are limited to the following data types,
which can be expressed in 32 bits for OpenVMS VAX and 64 bits for OpenVMS
AXP:

• OpenVMS VAX

FIXED BINARY(m), where m is less than or equal to 31

FLOAT BINARY(n), where n is less than or equal to 24

BIT(p) or BIT(p) ALIGNED, where p is less than or equal to 32

ENTRY

OFFSET

POINTER

• OpenVMS AXP

FIXED BINARY(m), where m is less than or equal to 63

FLOAT BINARY(n), where n is less than or equal to 53

BIT(p) or BIT(p) ALIGNED, where p is less than or equal to 64

ENTRY

OFFSET

POINTER

No other data types can be passed by value. Note that when ENTRY VALUE is
specified in a parameter descriptor, only the entry points of external routines may
be passed by value. A complete entry value for an internal routine requires two
longwords, one for the parent frame and one for the 32-bit entry-point address.

When you specify the VALUE attribute in a parameter descriptor, you can specify
the ANY attribute instead of declaring any data type attributes. For example, the
declaration of VHF can appear as follows:

DECLARE VHF ENTRY (ANY VALUE);

At the time of the procedure’s invocation, PL/I for OpenVMS VAX and PL/I for
OpenVMS AXP convert the written argument as needed to create a longword
dummy argument.

11–14 Using PL/I in the Common Language Environment

11.2.3.1 Dummy Arguments for Arguments Passed by Value
For arguments to be passed by value, PL/I for OpenVMS VAX and PL/I for
OpenVMS AXP always create a dummy argument directly in the argument list
for the called procedure. If the parameter descriptor is specified with the ANY
and VALUE attributes, dummy arguments are created with the following data
types:

Data Type of
Written Argument

Data Type of
Dummy Argument

FIXED BINARY, (p,0) or
FIXED DECIMAL (p,0)

FIXED BINARY (31)for OpenVMS VAX or
FIXED BINARY (63) for OpenVMS AXP

BIT or BIT ALIGNED BIT (32) ALIGNED for OpenVMS VAX or
BIT (64) ALIGNED for OpenVMS AXP

ENTRY ENTRY

OFFSET OFFSET

POINTER POINTER

If a parameter descriptor is specified as VALUE with a particular data type
(as opposed to being specified as ANY), a dummy argument of that data type
is always created, and the written argument is assigned to the dummy. The
written argument must be valid for conversion to the data type specified in the
corresponding parameter descriptor.

11.2.4 Special Parameter Attributes
PL/I for OpenVMS VAX and PL/I for OpenVMS AXP provide the LIST,
OPTIONAL, and TRUNCATE parameter attributes.

• The LIST attribute indicates that the specified list can be invoked with a list
of arguments for the last parameter.

• The OPTIONAL attribute indicates that optional arguments will not be
specified in the entry invocation.

• The TRUNCATE attribute indicates that the argument list may be truncated
at a specified position.

Each of these attributes is described in the following sections.

11.2.4.1 LIST Attribute
Although most system routines and procedures require a specific number of
arguments, some routines accept an unspecified number of optional arguments.
To declare these routines in a PL/I for OpenVMS VAX or PL/I for OpenVMS AXP
program so that you can invoke them with differing numbers of arguments, you
must declare the last parameter with the LIST attribute. The last parameter
descriptor given in the ENTRY attribute is used for extra arguments.

The Formatted ASCII Output system service (SYS$FAO) is an example of a
procedure that has a variable-length argument list. It can be declared as follows:

DECLARE SYS$FAO ENTRY (CHAR(*), FIXED BINARY(15) OPTIONAL,
CHAR(*), ANY VALUE LIST TRUNCATE);

This parameter descriptor specifies only four arguments. When SYS$FAO is
invoked with more than four arguments, PL/I for OpenVMS VAX and PL/I for
OpenVMS AXP use the parameter descriptor of the last parameter (ANY VALUE)
to pass all the additional arguments. If any argument that will be specified is not

Using PL/I in the Common Language Environment 11–15

to be passed by value, you must specify a parameter descriptor for the argument
in the declaration.

Note

The LIST attribute is valid only for parameter descriptors.

11.2.4.2 OPTIONAL Attribute
Some PL/I for OpenVMS VAX, PL/I for OpenVMS AXP, and non-PL/I routines
with fixed-length argument lists accept optional arguments and provide a default
action if no value is specified for the optional argument. When an optional
argument is not specified, its corresponding argument list longword is filled with
a value of zero passed by immediate value.

In PL/I for OpenVMS VAX and PL/I for OpenVMS AXP, you can omit the
specification of an optional argument in a written argument list as long as you
enter the correct number of commas to ensure that the argument list will have
the correct number of longwords. You can indicate that you are not specifying an
optional argument in either of the following ways:

• Omit the argument from the argument list.

• If the argument is to be passed by immediate value, specify a zero for the
written argument.

For example, an argument list that has three optional arguments can be written
as follows:

(,,)

The called procedure must detect and interpret the optional parameters in the
argument list. The following example illustrates optional arguments omitted from
an argument list:

DECLARE SYS$ASCTIM ENTRY (
FIXED BINARY(15) OPTIONAL,
CHARACTER(*),
ANY OPTIONAL,
BIT(1) ALIGNED VALUE OPTIONAL),

TIME_STRING CHARACTER(24);
.
.
.

CALL SYS$ASCTIM(,TIME_STRING,,);

This call to the service SYS$ASCTIM specifies only the second argument; the
argument list contains four arguments. When you specify a null argument, as
above, PL/I for OpenVMS VAX and PL/I for OpenVMS AXP always place a zero
in the argument list passed to the called procedure.

11.2.4.3 TRUNCATE Attribute
Some routines may allow an argument list to be truncated in a specified location.
For example:

DECLARE LIB$GET_INPUT ENTRY (ANY CHARACTER(*),
ANY CHARACTER(*) OPTIONAL TRUNCATE,
FIXED BINARY(15) OPTIONAL TRUNCATE);

11–16 Using PL/I in the Common Language Environment

This declaration of the Get Line from SYS$INPUT routine (LIB$GET_INPUT)
specifies that the argument list may vary in length. In fact, LIB$GET_INPUT
has three parameters, but the last two parameters are optional.

When you invoke such a routine omitting trailing arguments, you do not have
to account for all the arguments in the procedure invocation argument list. For
example, the LIB$GET_INPUT routine can be invoked with trailing arguments
omitted:

CALL LIB$GET_INPUT(GET_STRING);

The variable GET_STRING is specified for the first argument. The other two
arguments are not specified.

11.2.5 Summary of Rules for Passing Parameters
You can specify the passing mechanism—reference, value, or descriptor—for a
parameter in three ways:

• Use an attribute.

• Use a built-in function.

• Use a default.

The following rules and examples explain these three alternatives.

• Specify the REFERENCE, VALUE, or DESCRIPTOR attribute explicitly
when you declare the parameter. For example:

CHAR(*) REFERENCE
(*) FIXED BINARY REFERENCE
FIXED BIN(31) VALUE
BIT(32) ALIGNED VALUE
FLOAT BIN(23) VALUE
ENTRY (FIXED BIN) RETURNS(FIXED BIN) VALUE
FIXED BINARY DESCRIPTOR
FIXED DECIMAL(10,2) DESCRIPTOR
CHAR(10) DESCRIPTOR

• Use the REFERENCE, VALUE, or DESCRIPTOR built-in function at the
call, overriding whatever passing mechanism would otherwise be used. For
example:

CALL E (REF(10));
CALL FOO (REF(E));
CALL I (VALUE(10));
CALL FOO (VALUE(E));
CALL E (DESC(10));
CALL FOO (DESC(E));

The built-in function completely overrides the parameter declaration and
consequently no type conversion is performed. The built-in function evaluates
a numeric constant as FIXED BINARY(31,0) rather than FIXED DECIMAL.
For example, REF(10) passes a longword containing the binary value 10 by
reference.

• Use the default passing mechanism for the data type of the parameter.
By default, parameters are passed by reference except for unaligned bit
strings and parameters containing asterisk (*) extents, which are passed by
descriptor. (Value is never the default passing mechanism.) For example,
parameters of the following types are all passed by reference:

Using PL/I in the Common Language Environment 11–17

CHAR(10) VARYING
BIT(22) ALIGNED
(10) FIXED DEC
(20,-1:7) FLOAT
CHAR
1,2 (10) FIXED, 2 (8) FLOAT

Parameters of the following types are passed by descriptor, by default,
because they contain asterisk (*) extents or an unaligned bit string:

CHAR(*)
BIT(10) UNALIGNED
(*) FIXED BIN
1,2(*) FIXED DEC, 2(10) FLOAT

Restrictions

For passing by reference, a parameter must be addressable. Thus, entry
constants, file constants, and unaligned bit strings cannot be passed by reference.

For passing by value, a parameter cannot occupy more than 32 bits for OpenVMS
VAX or 64 bits for OpenVMS AXP. and must be one of the following types:

• OpenVMS VAX

FIXED BINARY(m), where m is less than or equal to 31

FLOAT BINARY(n), where n is less than or equal to 24

BIT(p) or BIT(p) ALIGNED, where p is less than or equal to 32

ENTRY

OFFSET

POINTER

• OpenVMS AXP

FIXED BINARY(m), where m is less than or equal to 63

FLOAT BINARY(n), where n is less than or equal to 53

BIT(p) or BIT(p) ALIGNED, where p is less than or equal to 64

ENTRY

OFFSET

POINTER

11.3 OpenVMS Run-Time Library Routines
The OpenVMS Run-Time Library is a library of prewritten, commonly used
routines that perform a wide variety of functions. These routines are grouped
according to the types of tasks they perform, and each group has a prefix that
identifies those routines as members of a particular OpenVMS Run-Time Library
facility. Table 11–3 lists all the language-independent run-time library facility
prefixes and the types of tasks each facility performs.

11–18 Using PL/I in the Common Language Environment

Table 11–3 Run-Time Library Facilities

Facility Prefix Types of Tasks Performed

DTK$ DECtalk routines that are used to control Digital’s DECtalk device

LIB$ Library routines that obtain records from devices, manipulate
strings, convert data types for I/O, allocate resources, obtain system
information, signal exceptions, establish condition handlers, enable
detection of hardware exceptions, and process cross-reference data

MTH$ Mathematics routines that perform arithmetic, algebraic, and
trigonometric calculations

OTS$ General purpose routines that perform tasks such as data type
conversions as part of a compiler’s generated code

SMG$ Screen management routines that are used in designing, composing,
and keeping track of complex images on a video screen

STR$ String manipulation routines that perform such tasks as searching for
substrings, concatenating strings, and prefixing and appending strings

The file SYS$LIBRARY:PLI$STARLET.TLB defines the entry points for these
routines.

11.4 OpenVMS System Service Routines
System services are prewritten system routines that perform a variety of tasks,
such as controlling processes, communicating among processes, and coordinating
I/O.

Unlike the OpenVMS Run-Time Library routines, which are divided into groups
by facility, all system services share the same facility prefix (SYS$). These system
services are logically divided into groups that perform similar tasks. Table 11–4
describes these groups.

Table 11–4 System Services

Group Types of Tasks Performed

AST Allows processes to control the handling of ASTs

Change Mode Changes the access mode of particular routines

Condition Handling Designates condition handlers for special purposes

Event Flag Clears, sets, reads, and waits for event flags, and associates with
event flag clusters

Information Returns information about the system, queues, jobs, processes,
locks, and devices

Input/Output Performs I/O directly, without going through VAX RMS

Lock Management Enables processes to coordinate access to shareable system
resources

Logical Names Provides methods of accessing and maintaining pairs of character
string logical names and equivalence names

(continued on next page)

Using PL/I in the Common Language Environment 11–19

Table 11–4 (Cont.) System Services

Group Types of Tasks Performed

Memory
Management

Increases or decreases available virtual memory, controls paging
and swapping, and creates and accesses shareable files of code or
data

Process Control Creates, deletes, and controls execution of processes

Security Enhances the security of OpenVMS systems

Time and Timing Schedules events, and obtains and formats binary time values

The file SYS$LIBRARY:PLI$STARLET.TLB defines the entry points for these
routines.

11.5 OpenVMS Utility Routines
Utility routines are prewritten system routines that you can use to perform a
variety of tasks such as sorting and library maintenance. Table 11–5 lists some of
the commonly used VMS utilities.

Table 11–5 VMS Utilities

Utility Prefix Types of Tasks Performed

ACLEDIT$ Callable interface to the Access Control List Editor

CLI$ Command line parsing

LBR$ Library manipulation

PSM$ Print Symbiont modification

SMB$ Job controller and symbiont process interface

SOR$ Sort/Merge procedures

TPU$ Callable interface to the VAX Text Processing Utility

The file SYS$LIBRARY:PLI$STARLET.TLB defines all of the entry points for
these routines.

11.5.1 OpenVMS SORT/MERGE Routines
The OpenVMS SORT Utility (SORT) provides a range of sorting capabilities and
options. You can use the SORT program in two ways:

• At the DCL command level, you can invoke the DCL command SORT. By
specifying input and output files and sorting options, you can perform sorting
functions interactively from the terminal.

• In a PL/I for OpenVMS VAX or PL/I for OpenVMS AXP program, you can call
SORT routines.

The SORT routines can be used in either of two sequences:

• You can sort all of the records in an entire file. This process is similar to
calling SORT from the DCL command level to sort a file.

• You can process the records in a file, pass them to SORT one at a time, and
request SORT to merge and sort the records and then to return them one at
a time. This process allows you to perform some intermediate operation on
each record before initiating the actual sorting of the records.

11–20 Using PL/I in the Common Language Environment

Examples of calling SORT routines are included in Section 11.8 of this chapter.

11.6 Calling Routines
The basic steps for calling routines are the same whether you are calling a
routine written in PL/I for OpenVMS VAX or PL/I for OpenVMS AXP, a routine
written in some other OpenVMS language, a system service, a utility routine,
or an OpenVMS Run-Time Library routine. The following sections outline the
procedures for calling non-PL/I routines.

11.6.1 Determining the Type of Call
Before you call an external routine, you must first determine whether the call
should be a procedure call or a function call. You should call a routine as a
procedure if it does not return a value. You should call a routine as a function if
it returns any type of value.

11.6.2 Declaring an External Routine and Its Arguments
To call a routine written in another OpenVMS language, or to call a system
routine, you need to declare the routine as an external procedure or function and
to declare the data types and passing mechanisms of its arguments. Note that
arguments can be either required or optional.

You should include the following information in an external routine declaration:

• The name of the routine

• The data types of all the routine parameters

• The passing mechanisms for all the routine parameters, provided that the
routine is not written in PL/I for OpenVMS VAX or PL/I for OpenVMS AXP

11.6.3 Calling the External Routine
Once you have declared a routine, you can call it. To call a procedure, you use
the CALL statement. To call a function, you can use a function invocation either
in an assignment statement or as an argument in another routine call. In either
case, you must specify the name of the routine being called and all parameters
required for that routine. Make sure the data types and passing mechanisms for
the actual parameters you are passing coincide with those you declared earlier,
and with those declared in the routine.

If you do not want to specify a value for a required parameter, you can pass a null
argument by inserting a comma (,) as a placeholder in the argument list. If you
use any passing mechanism other than the default, you must specify the passing
mechanism in the CALL statement or the function call.

At this point, the routine being called receives control, executes, and then returns
control to the calling routine at the next statement after the CALL statement or
function call.

11.6.4 Calling System Routines
The basic steps for calling system routines are the same as those for calling any
external routine. However, when calling system routines, you need to provide
some additional information that is discussed in the following sections.

Using PL/I in the Common Language Environment 11–21

11.6.4.1 Declaring System Routines
The default PL/I for OpenVMS VAX and PL/I for OpenVMS AXP text library
PLI$STARLET.TLB contains declarations for all the system routines as external
entries. The text module names are most often the same as the routine entry
points. Thus, to include the declaration of a system service you are going to use,
you specify a %INCLUDE statement as in this example:

%INCLUDE SYS$TRNLNM;

The PL/I for OpenVMS VAX and PL/I for OpenVMS AXP compilers, by default,
locate the module SYS$TRNLNM in PLI$STARLET.TLB during compilation.

In PLI$STARLET.TLB, any system service that has a wait for event flag version
is found in the same module as the version without the wait. Thus, to get the
definition of any wait (‘‘W’’) form, you need to use the base (nonwait) form of
the service in the %INCLUDE statement. For example, to get the definition for
SYS$GETJPIW, you should use the following:

%INCLUDE SYS$GETJPI;

Global symbol definitions for the entry vectors of all system services are located
in the default system object module library, STARLET.OLB, in SYS$LIBRARY.
When you link a PL/I for OpenVMS VAX or PL/I for OpenVMS AXP program, the
linker searches this library by default.

11.6.4.2 System Routine Arguments
All the system routine arguments are described in terms of the following
information:

• OpenVMS usage

• Data type

• Type of access allowed

• Passing mechanism

OpenVMS usages are data structures that are layered on the standard OpenVMS
data types. For example, the OpenVMS usage mask_longword signifies an
unsigned longword integer that is used as a bit mask, and the OpenVMS usage
floating_point represents any OpenVMS floating-point data type. Table 11–6 lists
all the OpenVMS usages and the PL/I for OpenVMS VAX or PL/I for OpenVMS
AXP statements you need to implement them. (The callout numbers in Table 11–6
are keyed to the list following the table.)

Table 11–6 PL/I Implementation of OpenVMS Usages

OpenVMS Data Type Declaration

access_bit_names 1 ACCESS_BIT_NAMES(32),
2 LENGTH FIXED BINARY(15),
2 DTYPE FIXED BINARY(7)

INITIAL((32)DSC$K_DTYPE_T),
2 CLASS FIXED BINARY(7)

INITIAL((32)DSC$K_CLASS_S),
2 CHAR_PTR POINTER; 6

(continued on next page)

11–22 Using PL/I in the Common Language Environment

Table 11–6 (Cont.) PL/I Implementation of OpenVMS Usages

OpenVMS Data Type Declaration

The length of the LENGTH field in each element of the array
should correspond to the length of a string of characters
pointed to by the CHAR_PTR field. You can use the constants
DST$K_CLASS_S and DST$K_DTYPE_T by including the
module $DSCDEF from PLI$STARLET or by declaring them
GLOBALREF FIXED BINARY(31) VALUE.

access_mode FIXED BINARY(7)
(The constants for this type— PSL$C_KERNEL,
PSLC_EXEC, PSLC_SUPER, PSL$C_USER—are declared
in module $PSLDEF in PLI$STARLET.) 1

address POINTER

address_range (2) POINTER 6

arg_list 1 ARG_LIST BASED,
2 ARGCOUNT FIXED BINARY(31),
2 ARGUMENT (X REFER (ARGCOUNT))

POINTER; 6

If the arguments are passed by value, it may be appropriate
to change the type of the ARGUMENT field of the structure.
Alternatively, you can use the POSINT, INT, or UNSPEC built-
in functions/ pseudovariables to access the data. X should be
an expression with a value in the range 0–255 at the time the
structure is allocated.

ast_procedure PROCEDURE or ENTRY 2

boolean BIT ALIGNED 1

byte_signed FIXED BINARY(7)

byte_unsigned FIXED BINARY(7) 3

channel FIXED BINARY(15)

char_string CHARACTER(n) 4

complex_number (2) FLOAT BINARY(n) or
1 CPLX,

2 REAL FLOAT BIN(n),
2 IMAG FLOAT BIN(n);

(See floating_point for values of n.)

cond_value See module STS$VALUE in PLI$STARLET 6

context FIXED BINARY(31)

date_time BIT(64) ALIGNED 5

device_name CHARACTER(n) 4

ef_cluster_name CHARACTER(n) 4

ef_number FIXED BINARY(31)

exit_handler_block 1 EXIT_HANDLER_BLOCK BASED,
2 FORWARD_LINK POINTER,
2 HANDLER POINTER,

2 ARGCOUNT FIXED BINARY(31),
2 ARGUMENT (n REFER

(ARGCOUNT)) POINTER; 6
Replace n with an expression that will yield a value between 0
and 255 at the time the structure is allocated.

(continued on next page)

Using PL/I in the Common Language Environment 11–23

Table 11–6 (Cont.) PL/I Implementation of OpenVMS Usages

OpenVMS Data Type Declaration

fab See module $FABDEF in PLI$STARLET 6

file_protection BIT(16) ALIGNED 1

floating_point FLOAT BINARY(n)
The values for n are as follows:
1 <= n <= 24 - F floating
25 <= n <= 53 - D floating
25 <= n <= 53 - G floating (with /G_FLOAT)
54 <= n <= 113 - H floating

function_code BIT(32) ALIGNED

identifier POINTER

io_status_block Because there are different formats for I/O status blocks
for various system services, different definitions will be
appropriate for different uses. Some of the common formats
are shown here. 6

1 IOSB_SYS$GETSYI,
2 STATUS FIXED BINARY(31),
2 RESERVED FIXED BINARY(31);

1 IOSB_TTDRIVER_A,
2 STATUS FIXED BINARY(15),
2 BYTE_COUNT FIXED BINARY(15),
2 MBZ FIXED BINARY(31) INITIAL(0);

1 IOSB_TTDRIVER_B,
2 STATUS FIXED BINARY(15),
2 TRANSMIT_SPEED FIXED

BINARY(7),
2 RECEIVE_SPEED FIXED BINARY(7),
2 CR_FILL FIXED BINARY(7),
2 LF_FILL FIXED BINARY(7),
2 PARITY_FLAGS FIXED BINARY(7),
2 MBZ FIXED BINARY(7) INITIAL(0);

item_list_2 1 ITEM_LIST_2,
2 ITEM(SIZE),

3 COMPONENT_LENGTH FIXED
BINARY(15),

3 ITEM_CODE FIXED BINARY(15),
3 COMPONENT_ADDRESS

POINTER,
2 TERMINATOR FIXED BINARY(31)

INITIAL(0); 6

Replace SIZE with the number of items you want.

(continued on next page)

11–24 Using PL/I in the Common Language Environment

Table 11–6 (Cont.) PL/I Implementation of OpenVMS Usages

OpenVMS Data Type Declaration

item_list_3 1 ITEM_LIST_3,
2 ITEM(SIZE),

3 BUFFER_LENGTH FIXED
BINARY(15),

3 ITEM_CODE FIXED BINARY(15),
3 BUFFER_ADDRESS POINTER,
3 RETURN_LENGTH POINTER,

2 TERMINATOR FIXED BINARY(31)
INITIAL(0); 6

Replace SIZE with the number of items you want.

item_list_pair 1 ITEM_LIST_PAIR,
2 ITEM(SIZE),

3 ITEM_CODE FIXED BINARY(31),
3 ITEM UNION,

4 INTEGER FIXED BINARY(31),
4 REAL FLOAT BINARY(24),

2 TERMINATOR FIXED BINARY(31)
INITIAL(0); 6

Replace SIZE with the number of items you want.

item_quota_list 1 ITEM_QUOTA_LIST,
2 QUOTA(SIZE),

3 NAME FIXED BINARY(7),
3 VALUE FIXED BINARY(31),

2 TERMINATOR FIXED BINARY(7)
INITIAL(PQL$_LISTEND); 6

Replace SIZE with the number of quota entries that you
want to use. The constant PQL$_LISTEND can be used by
including the module $PQLDEF from PLI$STARLET or by
declaring it GLOBALREF FIXED BINARY(31) VALUE.

lock_id FIXED BINARY(31)

lock_status_block 1 LOCK_STATUS_BLOCK,
2 STATUS_CODE FIXED BINARY(15),
2 RESERVED FIXED BINARY(15),
2 LOCK_ID FIXED BINARY(31); 6

lock_value_block The declaration of an item of this structure will depend on the
use of the structure, because the OpenVMS system does not
interpret the value. 6

logical_name CHARACTER(n) 4

longword_signed FIXED BINARY(31)

longword_unsigned FIXED BINARY(31) 3

mask_byte BIT(8) ALIGNED

mask_longword BIT(32) ALIGNED

mask_quadword BIT(64) ALIGNED

mask_word BIT(16) ALIGNED

null_arg Omit the corresponding parameter in the call. For example,
FOO(A,,B) would omit the second parameter.

(continued on next page)

Using PL/I in the Common Language Environment 11–25

Table 11–6 (Cont.) PL/I Implementation of OpenVMS Usages

OpenVMS Data Type Declaration

octaword_signed BIT(128) ALIGNED 5

octaword_unsigned BIT(128) ALIGNED 3 5

page_protection FIXED BINARY(31) (The constants for this type are declared
in module $PRTDEF in PLI$STARLET.)

procedure PROCEDURE or ENTRY 2

process_id FIXED BINARY(31)

process_name CHARACTER(n) 4

quadword_signed BIT(64) ALIGNED 5

quadword_unsigned BIT(64) ALIGNED 3 5

rights_holder 1 RIGHTS_HOLDER,
2 RIGHTS_ID FIXED BINARY(31),
2 ACCESS_RIGHTS BIT(32)

ALIGNED; 6

rights_id FIXED BINARY(31)

rab See module $RABDEF in PLI$STARLET 6

section_id BIT(64) ALIGNED

section_name CHARACTER(n) 4

system_access_id BIT(64) ALIGNED

time_name CHARACTER(n) 4

uic FIXED BINARY(31)

user_arg ANY

varying_arg ANY with OPTIONS(VARIABLE) on the routine declaration

vector_byte_signed (n) FIXED BINARY(7) 7

vector_byte_unsigned (n) FIXED BINARY(7) 3 7

vector_longword_signed (n) FIXED BINARY(31) 7

vector_longword_
unsigned

(n) FIXED BINARY(31) 3 7

vector_quadword_signed (n) BIT(64) ALIGNED 5 7

vector_quadword_
unsigned

(n) BIT(64) ALIGNED 3 5 7

vector_word_signed (n) FIXED BINARY(15) 7

vector_word_unsigned (n) FIXED BINARY(15) 3 7

word_signed FIXED BINARY(15)

word_unsigned FIXED BINARY(15) 3

1 System routines are often written so the parameter passed occupies more
storage than the object requires. For example, some system services have
parameters that return a single bit value in a longword. These variables must
be declared BIT(32) ALIGNED (not BIT(1) ALIGNED) so adjacent storage
is not overwritten by return values or used incorrectly as input. (Longword
Boolean parameters should always be declared BIT(32) ALIGNED.)

2 AST procedures and those passed as parameters of type ENTRY VALUE or
ANY VALUE must be external procedures. This applies to all system routines
which take procedure parameters, unless explicitly stated otherwise.

11–26 Using PL/I in the Common Language Environment

3 This is actually an unsigned integer. This declaration is interpreted as a
signed number; use the POSINT function to determine the actual value, if
necessary.

4 System services require CHARACTER string representation for parameters.
Most other system routines allow either CHARACTER or CHARACTER
VARYING. For parameter declarations, n should be an asterisk. Note
that all system services, RTL routines and utility routines are declared in
PLI$STARLET.

5 PL/I for OpenVMS VAX does not support FIXED BINARY numbers with
precisions greater than 32. To use larger values, declare variables to be BIT
variables of the appropriate size and use the POSINT and SUBSTR bits as
necessary to access the values, or declare the item as a structure. The RTL
routines LIB$ADDX and LIB$SUBX, which are declared in PLI$STARLET,
may be useful if you need to perform arithmetic on these types.

6 Routines declared in PLI$STARLET often use ANY so that you can declare
the data structure in the most convenient way for your application. ANY
may be necessary in some cases because PL/I does not allow parameter
declarations for some data types used by the OpenVMS system.

7 For parameter declarations, the bounds must be constant for arrays passed
by reference, or the REFERENCE attribute must be used. For arrays passed
by descriptor, asterisks should be used for the array extent instead. (VMS
system routines almost always take arrays by reference.)

Note

All system services and many system constants and data structures are
declared in PLI$STARLET.TLB.

Also note that while the current version of PL/I for OpenVMS VAX does
not support unsigned fixed binary numbers or fixed binary numbers with
a precision greater that 31, it is possible that future versions may support
these features. If PL/I for OpenVMS VAX is extended to support these
types, it is possible that declarations in PLI$STARLET will change to use
the new data types where appropriate.

If a system routine argument is optional, it will be indicated in the format section
of the routine description in one of two ways:

• [,optional-argument]

• ,[optional-argument]

If the comma appears outside the brackets, you must either pass a zero by value
or use a comma in the argument list as a placeholder to indicate the place of the
omitted argument. If this is the last argument in the list, you must still include
the comma as a placeholder. If the comma appears inside the brackets, you can
omit the argument if it is the last argument in the list. Otherwise, you can use
a comma in the argument list as a placeholder, and the PL/I for OpenVMS VAX
compiler will pass a zero by value for the argument.

To determine the PL/I for OpenVMS VAX parameter descriptors in the declaration
of a given system routine, you can display or print the text module for that
routine. For example:

Using PL/I in the Common Language Environment 11–27

$ LIBRARY/EXTRACT=SYS$TRNLNM/OUTPUT=LP:TRNLNM -
_$ SYS$LIBRARY:PLI$STARLET/TEXT

This LIBRARY command prints the contents of the text module SYS$TRNLNM
from the library SYS$LIBRARY:PLI$STARLET. The file is printed on the device
LP; the listing file is named TRNLNM.TXT.

11.6.4.3 Symbol Definitions
Many system routines depend on values that are defined in separate symbol
definition files. OpenVMS Run-Time Library routines require you to include
symbol definitions when you are calling a Screen Management facility routine
or a routine that is a jacket to a system service. A jacket routine provides a
simpler interface to the corresponding system service. For example, the routine
LIB$SYS_ASCTIM is a jacket routine for the $ASCTIM system service.

If you are calling a system service, you must include the module $SSDEF to
check status. Many system services require other symbol definitions as well. To
determine whether you need to include other symbol definitions for the system
service you want to use, refer to the documentation for that particular system
service. If the documentation states that values are defined in a macro, you must
include those symbol definitions in your program.

For example, the description for the flags parameter in the SYS$MGBLSC (Map
Global Section) system service states that ‘‘Symbolic names for the flag bits are
defined by the $SECDEF macro.’’ Therefore, when you call SYS$MGBLSC you
must include the definitions provided in the $SECDEF module.

In PL/I for OpenVMS VAX a definition module is included as follows:

%INCLUDE $SSDEF;

You can declare the names of global symbols using the GLOBALREF and VALUE
attributes. Then, you can use the names to represent values in an argument list
to invoke a system service. For symbolic names that are not defined as OpenVMS
global symbols, PL/I for OpenVMS VAX provides text modules in the default
INCLUDE library PLI$STARLET.

The names of the text modules, and the names and values of the symbols defined
in each, are the same as the MACRO definitions in the system macro library,
STARLET.MLB.

11.7 Condition Values
Many system routines return a condition value that indicates success or failure;
this value can be either returned or signaled. If a condition value is returned,
then you must check the returned value to determine whether the call to the
system routine was successful. If a condition value is signaled, then the condition
value is signaled to your program instead of being returned as a function value.

Thus, to obtain a condition value from any system routine, you can declare the
routine as a function. For example:

DECLARE SYS$SETEF ENTRY (FIXED BINARY(31) VALUE)
RETURNS (FIXED BINARY(31));

This declaration of the SYS$SETEF service allows you to invoke the routine
as a function and to obtain a condition value. To provide a unique means of
identifying every return condition in the system, fields within the longword value
are defined as shown in Figure 11–8.

11–28 Using PL/I in the Common Language Environment

Figure 11–8 Condition Value Fields

NU−2469A−RA

control bits

facility
number

message
number

condition identification

3

16 15 3

31 28 27 2 0

27

severity

control bits (31–28)
Define special actions to be taken. At present, only bit 28 is used; when set, it
inhibits the printing of the message associated with the return status value at
image exit. Bits 29 through 31 are reserved for future use by Digital.

facility number (27–16)
Is a unique value assigned to the system component or facility that is returning
the status value. Within this field, bit 27 has a special significance. If bit 27 is
clear, the facility is a Digital facility: the remaining value in the facility number
field is a number assigned by the operating system. If bit 27 is set, the number
can indicate a customer-defined facility.

message number (15–3)
Gives an identification number that specifically describes the return status or
condition. Within this field, bit 15 has a special significance. If bit 15 is set, then
this message number is unique to the facility that is issuing the message. If bit
15 is clear, then this message has been issued by more than one system facility.

severity (2–0)
Specifies a numeric value indicating the severity of the return status. The
possible values in these three bits, and their meanings, are as follows:

Value Meaning

0 Warning

1 Success

2 Error

3 Informational

4 Severe Error

5–7 Reserved

Note that odd values indicate success (an information condition is considered a
successful status) and that even values indicate failures (a warning is considered
an unsuccessful status).

Using PL/I in the Common Language Environment 11–29

For testing condition values in a PL/I for OpenVMS VAX program, you can
choose to test only whether a procedure completed successfully, or you can test
for specific return status values. For either case, you can use the variables
declared in the text module $STSDEF. This module is in the default PL/I for
OpenVMS VAX text library PLI$STARLET.TLB. The module $STSDEF contains
the following declarations:

DECLARE STS$VALUE FIXED BINARY(31), /* status value */
1 STS$FIELDS BASED (ADDR(STS$VALUE)),
2 STS$SEVERITY, /* low-order 3 bits */
3 STS$SUCCESS BIT(1), /* low-order bit */
3 STS$REST BIT(2), /* bits 1 through 2 */

2 STS$MSG, /* bits 2 through 15 */
3 STS$MSG_NO BIT(12), /* numeric value */
3 STS$FAC_SP BIT(1), /* if set, facility-specific */

2 STS$FAC, /* bits 16 through 27 */
3 STS$FAC_NO BIT(11), /* facility number */
3 STS$CUST_DEF BIT(1), /* 0 = DIGITAL */

2 STS$CONTROL,
3 STS$INHIB_MSG BIT(1), /* 1 = do not print */
3 STS$RESERVED BIT(3), /* 32 bits */

2 STS$FILLER CHARACTER(0); /* for byte alignment */

To obtain these declarations, specify a %INCLUDE statement in a PL/I for
OpenVMS VAX program as follows:

%INCLUDE $STSDEF;

The compiler will automatically locate this module in PLI$STARLET.

To test a condition value for success or failure, you need only test the structure
member STS$SUCCESS declared in the structure STS$FIELDS. If this bit is
true, then the condition value is a successful value. For example:

%INCLUDE SYS$SETPRN;

%INCLUDE $STSDEF;

STS$VALUE = SYS$SETPRN(’Student’);
IF ^STS$SUCCESS THEN GOTO BAD_NAME;

The statements at the label BAD_NAME can test the value of the variable
STS$VALUE and take some action based on its value.

11.7.1 Testing for Specific Condition Values
You can also test for specific condition values. Each numeric condition value
defined by the system has a symbolic name associated with it. The names of
these values are defined as system global symbols, and their values can be
accessed by referring to their symbolic names.

The global symbol names for OpenVMS condition values have the following
format:

facility$_code

facility
Is an abbreviation or acronym for the system facility that defined the global
symbol.

code
Is a mnemonic for the specific condition value.

11–30 Using PL/I in the Common Language Environment

Some examples of facility codes used in global symbol names follow.

Facility Code Used by

PLI PLI for VAX run-time procedures; these status codes are listed in
Appendix A.

SS System services; these status codes are listed in the OpenVMS System
Services Reference Manual.

DTK DTK$ Run-Time Library facility.

LIB LIB$ Run-Time Library facility.

MTH MTH$ Run-Time Library facility.

OTS OTS$ Run-Time Library facility.

SMG SMG$ Run-Time Library facility.

STR STR$ Run-Time Library facility.

RMS File system procedures; these status codes are listed in the OpenVMS
Record Management Services Reference Manual.

SOR SORT procedures; these status codes are listed in the VMS Sort/Merge
Utility Manual.

Definitions for the global symbol names for these facilities are located in the
default system object module libraries, and thus are automatically located when
you link a PL/I for OpenVMS VAX program that references them.

When you write a PL/I for OpenVMS VAX program that calls system procedures
and you want to test for specific return status values using the symbol names,
you must do the following:

1. Determine, from the documentation of the routine, the return status values
that can be returned, and choose the values for which you want to provide
specific tests.

2. Include the appropriate module containing the definition from PLI$STARLET
or declare the symbolic name for each value of interest as FIXED BINARY(31)
and give the variable the GLOBALREF and VALUE attributes. (Note that
the first method can be optimized more effectively by the compiler in some
cases because the actual values are available at compile time.)

For example, the documentation of the SYS$SETPRN service indicates that
it may return the status codes SS$_DUPLNAM (if the name specified as an
argument duplicates a name that already exists) and SS$_IVLOGNAM (if the
name is invalid; for example, if it contains more than 15 characters). These
symbol names can be defined and used as in the following example.

%INCLUDE SYS$SETPRN;

%INCLUDE $SSDEF; /* includes SS$_DUPLNAM and SS$_IVLOGNAM */

%INCLUDE $STSDEF;
.
.
.

STS$VALUE = SYS$SETPRN(NAME);
IF STS$VALUE - SS$_DUPLNAM THEN

GET LIST(NAME) OPTIONS
(PROMPT(’Name in use. Reenter: ’));

IF STS$VALUE = SS$_IVLOGNAM
THEN GET LIST(NAME) OPTIONS

(PROMPT(’Invalid string. Reenter: ’));

Using PL/I in the Common Language Environment 11–31

The next example illustrates the invocation of the Set Event Flag (SYS$SETEF)
system service, followed by tests for 1 success or failure and 2 the successful
status code SS$_WASSET.

%INCLUDE SYS$SETEF;

%INCLUDE $SSDEF;

%INCLUDE $STSDEF;

STS$VALUE = SYS$SETEF(4);

IF ^STS$SUCCESS THEN RETURN (STS$VALUE);1
IF STS$VALUE = SS$_WASSET THEN DO;2

In this example, the symbolic name SS$_WASSET is included from
PLI$STARLET. The value associated with this condition value is a successful
value; it indicates that the flag specified in the routine invocation was previously
set.

The routine invocation returns the condition value in the variable STS$VALUE.
The IF statement checks the variable STS$SUCCESS for success or failure. If
the service returned a failure condition, the routine returns with the value of
STS$VALUE in the RETURN statement. If the service returned with a successful
status, the routine continues with an IF statement that checks whether or not
the flag was previously set. If so, the DO statement specified in the THEN clause
activates the DO-group.

11.7.2 Setting and Displaying Fields Within a Status Value
You can use the structure STS$FIELDS to set or display fields within a status
value. For example, to define application-specific message numbers using the
format used by VMS, you can specify a facility-wide message number, set the
STS$CUST_DEF field to ’1’B, assign unique numbers to messages, and define
severities for the messages.

Because the fields within this structure are defined as bit strings, and because
it is usually more convenient to express facility or message numbers as integers,
you must use the UNSPEC built-in function to convert integer values to the
appropriate bit-string representation. The following example shows how to define
a value for STS$VALUE in which the customer-defined facility number is 55 and
the unique message number is 14:

DECLARE I FIXED BINARY(31);

I = 55;
STS$FAC_NO = UNSPEC(I);
STS$CUST_DEF = ’1’B;

I = 14;
STS$MSG_NO = UNSPEC(I);
STS$FAC_SP = ’1’B;

The intermediate variable I is used to perform the conversions, because the
UNSPEC built-in function does not accept constants for arguments.

To set a value for a severity, you must also use the STRING built-in function
so that you can set the field to a single value (note that there are two bit-string
variables defined within the field SEVERITY). For example:

I = 4;
STRING(STS$SEVERITY) = UNSPEC(I);

Here, the severity field of STS$VALUE is set to 4.

11–32 Using PL/I in the Common Language Environment

You can use a similar technique to display fields within a status value. For
example, to display the entire facility number (including STS$CUST_DEF), you
could write the following:

UNSPEC(I) = STRING(STS$FAC);
PUT SKIP LIST(’Facility’,I);

Here, the UNSPEC pseudovariable assigns an integer value to I that represents
the bit-string value of the STS$FAC field. You can use the same technique to
output the STS$SEVERITY and STS$MSG fields. To display or interpret the
STS$FAC_NO or STS$MSG_NO fields, you could use the following:

UNSPEC(I) = STS$FAC_NO;
PUT SKIP LIST(’Customer facility number’,I);

You do not need to use the UNSPEC built-in function or the UNSPEC
pseudovariable to set or interpret the 1-bit fields STS$SUCCESS,
STS$CUST_DEF, STS$FAC_SP, or STS$INHIB_MSG. See the OpenVMS
Messages Utility Reference Manual for more information on user-defined
messages.

11.8 Examples of Calling System Routines
This section provides complete examples of calling system routines, including
some SORT/MERGE examples, from PL/I for OpenVMS VAX. In addition to the
examples provided here, the VMS Run-Time Library Routines Volume and the
OpenVMS System Services Reference Manual also provide examples for selected
routines. Refer to these manuals for help on the use of a specific system routine.
For additional information on the OpenVMS SORT/MERGE utility, refer to the
VMS Sort/Merge Utility Manual.

The system service examples on the next few pages illustrate a number of system
service calls. These examples illustrate the following tasks:

• Translating a logical name

• Creating and deleting a mailbox

• Using timer and time conversion routines

• A Ctrl/c routine

• Obtaining status and performance information about the current job or
process

All the sample programs use the system service INCLUDE files in PLI$STARLET
to declare the system services. The text of each sample program shows the
INCLUDE file for the system service.

All the examples also include the module $STSDEF; however, the contents of this
text module are not shown in the examples. The contents of $STSDEF are listed
in Section 11.7.

11.8.1 Logical Name Translation
Example 11–2 illustrates a call to the Translate Logical Name (SYS$TRNLNM)
system service. This system service returns the result of a single logical name
translation. In this example, the routine ORION translates the logical name
CYGNUS and displays the result on the terminal. If the name is not defined, the
routine displays a message indicating that fact. The following notes are keyed to
Example 11–2:

Using PL/I in the Common Language Environment 11–33

1 The procedure declares the logical name to be translated, the logical name
table to be searched, a structure that describes to SYS$TRNLNM what
information is desired, and where this information should be stored.

2 The reference to SYS$TRNLNM specifies the logical name table, the logical
name CYGNUS, and the structure that contains pointers to the variables
that will receive the translated logical name length and the logical name.
The routine reference does not specify all the arguments. At run time, the
argument list for this routine will contain zeros for the omitted arguments.

Example 11–2 Translating a Logical Name

ORION: PROCEDURE OPTIONS(MAIN) RETURNS(FIXED BINARY(31));

%INCLUDE SYS$TRNLNM;
%INCLUDE $LNMDEF;
%INCLUDE $SSDEF;
%INCLUDE $STSDEF;

%REPLACE MAXLEN BY 256;

DECLARE
CYGDES CHARACTER(6) STATIC INITIAL (’CYGNUS’),
NAMETAB CHARACTER(17) STATIC INITIAL (’LNM$PROCESS_TABLE’),
1 RESULTS,
2 BUFFER_LENGTH FIXED BINARY(15) INITIAL(MAXLEN),
2 ITEM_CODE FIXED BINARY(15) INITIAL(LNM$_STRING),
2 BUFFER_ADDRESS POINTER,
2 RETURN_LENGTH_ADDRESS POINTER,
2 TERMINATOR FIXED BINARY(31) INITIAL(0),

BUFFER CHARACTER(MAXLEN),
RETURN_LENGTH FIXED BINARY(15); 1

RESULTS.BUFFER_ADDRESS = ADDR(BUFFER);
RESULTS.RETURN_LENGTH_ADDRESS = ADDR(RETURN_LENGTH);
STS$VALUE = SYS$TRNLNM(, NAMETAB, CYGDES, , RESULTS); 2
IF STS$VALUE = SS$_NOLOGNAM
THEN

PUT SKIP LIST(’CYGNUS not defined’);
ELSE

IF STS$SUCCESS
THEN

PUT SKIP LIST(’CYGNUS is’,SUBSTR(BUFFER,1,RETURN_LENGTH));

RETURN(STS$VALUE);

END ORION;

11.8.2 Mailbox Services
A mailbox is a virtual I/O device that is used for communication among processes
in the system. The routines CREATE_MAILBOX and DELETE_MAILBOX in the
following example illustrate the creation and deletion, respectively, of a mailbox.

11.8.2.1 Creating the Mailbox
Example 11–3 illustrates a call to the Create Mailbox and Assign Channel
(SYS$CREMBX) system service. This service returns the number of an I/O
channel to the calling program. In PL/I for OpenVMS VAX, this number is
not needed except for the deletion of the mailbox. You must, however, declare
a FIXED BINARY(15) variable to receive the number returned by the system
service. The following notes are keyed to Example 11–3:

11–34 Using PL/I in the Common Language Environment

1 The reference to SYS$CREMBX specifies the permanent flag, output field for
the channel number, maximum message size, protection mask, and mailbox
logical name. Commas indicate arguments that are not specified; PL/I for
OpenVMS VAX places zeros in the argument list in these places.

2 The user privilege to create a permanent mailbox (PRMMBX) is required to
call this service with the prmflg argument set to true. A permanent mailbox
is not deleted when its creator exits. If this were not a permanent mailbox,
the system would automatically delete the mailbox when this procedure is
completed.

SYSNAM privilege is required to place a logical name for a mailbox in the
system logical name table.

3 The MAXMSG argument to SYS$CREMBX specifies the maximum length of
any message sent to the mailbox.

4 The PROMSK argument specifies a 16-bit protection mask for the mailbox.
The protection code ’FF00’B4 restricts access to the owner and the system
and denies access to the group and the world. Note that the value specified
as ’FF00’ to PL/I for OpenVMS VAX actually sets the low 8 bits of the
parameter given the internal representation of bit-strings in PL/I for
OpenVMS VAX.

Using PL/I in the Common Language Environment 11–35

Example 11–3 Creating a Mailbox

CREATE_MAILBOX: PROCEDURE OPTIONS(MAIN) RETURNS(FIXED BINARY(31));

%INCLUDE SYS$CREMBX;
%INCLUDE $STSDEF;
%REPLACE MESSAGE_SIZE BY 132;
%REPLACE PERMANENT BY ’1’B;

DECLARE
CHANNEL FIXED BINARY(15),
MAILBOX_NAME CHARACTER(11)

STATIC INITIAL(’PLI_MAILBOX’);
/*
* Call SYS$CREMBX omitting optional arguments.
* (Note that trailing optional arguments cannot
* be omitted for system services unless specifically
* indicated in the service description.)
*/
STS$VALUE = SYS$CREMBX(1

PERMANENT, 2
CHANNEL,
MESSAGE_SIZE, 3
’FF00’B4,, 4
MAILBOX_NAME);

/*
* Return to command level with status. If SYS$CREMBX
* completed with an error, the appropriate message is
* displayed at the command level.
*/
RETURN(STS$VALUE);
END CREATE_MAILBOX;

11.8.2.2 Deleting the Mailbox
Example 11–4 illustrates a call to the Delete Mailbox (SYS$DELMBX) system
service. The procedure DELETE_MAILBOX deletes the mailbox PLI_MAILBOX.
A mailbox is deleted when a channel number is specified; this program assigns a
channel to the mailbox to obtain a number to be specified in deleting the mailbox.
The following notes are keyed to Example 11–4:

1 The procedure declares the system services Assign I/O Channel
(SYS$ASSIGN) and Delete Mailbox (SYS$DELMBX). The channel number
output by SYS$ASSIGN is used as input to SYS$DELMBX.

2 The call to SYS$ASSIGN specifies the logical name of the mailbox and the
variable CHANNEL to allow the system service to return a channel number.
The optional arguments that are not specified in this call are represented by
the required commas at the end of the argument list.

3 The channel number output by SYS$ASSIGN is passed to SYS$DELMBX by
value. The mailbox PLI_MAILBOX is deleted when all programs that have
opened the mailbox have closed it.

Example 11–4 Deleting a Mailbox

(continued on next page)

11–36 Using PL/I in the Common Language Environment

Example 11–4 (Cont.) Deleting a Mailbox

DELETE_MAILBOX: PROCEDURE OPTIONS(MAIN) RETURNS(FIXED BINARY(31));

%INCLUDE SYS$ASSIGN; 1
%INCLUDE SYS$DELMBX;
%INCLUDE $STSDEF;

DECLARE
MAILBOX_NAME CHARACTER(11)

STATIC READONLY INITIAL(’PLI_MAILBOX’)
CHANNEL FIXED BINARY(15);

/*
* Call SYS$ASSIGN and check return; if not successful exit
*/
STS$VALUE = SYS$ASSIGN(MAILBOX_NAME,CHANNEL,,,); 2
IF ^STS$SUCCESS
THEN

RETURN(STS$VALUE);
/*
* Call SYS$DELMBX and check return
*/
STS$VALUE = SYS$DELMBX(CHANNEL); 3
RETURN(STS$VALUE);

END DELETE_MAILBOX;

11.8.3 Timer and Time Conversion Routines
The system services that depend on time, either an absolute time or a delta
time, refer to a time value that is maintained in a 64-bit field. There are
system services that convert a character string that specifies a time to its binary
equivalent and vice versa.

11.8.3.1 Obtaining a Time Value in System Format
The PL/I for OpenVMS VAX procedure GETBINTIM, shown in Example 11–5,
accepts a character-string time value as a parameter and returns the binary time
value to the point of the procedure’s invocation. The following notes are keyed to
Example 11–5:

1 GETBINTIM declares the system service SYS$BINTIM, which converts an
ASCII string to a binary time value.

2 GETBINTIM invokes SYS$BINTIM as a function and tests the return status.
An error results if the ASCII time value is not specified correctly. When an
error is returned, GETBINTIM returns a zero to the point of the procedure’s
invocation.

This procedure may be invoked as follows to supply a date and time value for a
file in an ENVIRONMENT option:

DECLARE GETBINTIM ENTRY(CHAR(*)) RETURNS BIT(64) ALIGNED,
(CREATED_DATE,EXPIRE_DATE) BIT(64) ALIGNED;

CREATED_DATE = GETBINTIM(’17-JUN-1985 00:00:00.00’);
EXPIRE_DATE = GETBINTIM(’31-DEC-1991 00:00:00.00’);
OPEN FILE(TAPEFILE) ENVIRONMENT(

CREATION_DATE(CREATED_DATE),
EXPIRATION_DATE(EXPIRE_DATE));

Using PL/I in the Common Language Environment 11–37

Example 11–5 Obtaining a System Time Value

/*
* This procedure converts a time given in ASCII format to a
* 64-bit time value that is used internally by VAX VMS.
* Input strings must be of the form:
*
* dd-mmm-yyyy-hh:mm:ss.cc (for an absolute date or time)
* dddd hh:mm:ss.cc (for a delta time)
*/
GETBINTIM: PROCEDURE(ASCII_STRING) RETURNS(BIT(64) ALIGNED);

%INCLUDE SYS$BINTIM; 1
%INCLUDE $STSDEF;

DECLARE
ASCII_STRING CHARACTER(*),
BINARY_TIME BIT(64) ALIGNED;

/*
* If successful, return binary time to point of
* invocation. Otherwise, return 0 -- this results
* in absolute time 17-NOV-1858.
*/
STS$VALUE = SYS$BINTIM(ASCII_STRING,BINARY_TIME); 2
IF STS$SUCCESS
THEN

RETURN(BINARY_TIME);
ELSE

RETURN((64)’0’B);
END GETBINTIM;

11.8.3.2 Setting the Timer
The procedure in Example 11–6 uses the Set Timer (SYS$SETIMR) system
service. It issues a time request for some activity to occur in 10 seconds and
specifies the number of an event flag to be set when the 10 seconds have elapsed.
The following notes are keyed to Example 11–6:

1 This procedure uses the GETBINTIM function to convert an ASCII time value
to the system’s 64-bit format.

2 LIB$GET_EF allocates an event flag from a process-wide pool and returns the
event flag number.

3 The procedure invokes SYS$SETIMR, specifying by its first argument that
SYS$SETIMR should set the specified event flag when the time expires. The
argument list contains a reference to GETBINTIM, which returns the system
time value for 10 seconds.

4 The procedure uses the Wait for Event Flag (SYS$WAITFR) system service to
wait for the event flag specified in the call to SYS$SETIMR. When the flag is
set, the procedure displays a message and exits.

Example 11–6 Setting a Timer

(continued on next page)

11–38 Using PL/I in the Common Language Environment

Example 11–6 (Cont.) Setting a Timer

SET_TIMER: PROCEDURE OPTIONS(MAIN) RETURNS(FIXED BINARY(31));
%INCLUDE LIB$GET_EF;
%INCLUDE LIB$FREE_EF;
%INCLUDE SYS$SETIMR;
%INCLUDE SYS$WAITFR;
%INCLUDE $STSDEF;
DECLARE

GETBINTIM ENTRY(CHAR(*)) /* character string time */ 1
RETURNS(BIT(64) ALIGNED);

DECLARE EVENT_FLAG_NUM FIXED BIN(31);
/*
* Get an event flag to use.
*/
STS$VALUE = LIB$GET_EF(EVENT_FLAG_NUM); 2
IF ^STS$SUCCESS
THEN RETURN(STS$VALUE);
/*
* Set the timer for 10 seconds.
*/
STS$VALUE = SYS$SETIMR(EVENT_FLAG_NUM,

GETBINTIM(’0 00:00:10’),,); 3
IF ^STS$SUCCESS
THEN RETURN(STS$VALUE);
/*
* Wait for the event flag, and display a
* message when the timer completes.
*/
STS$VALUE = SYS$WAITFR(EVENT_FLAG_NUM); 4
IF ^STS$SUCCESS
THEN RETURN(STS$VALUE);
PUT SKIP LIST(’Timer up!’);
/*
* Release the event flag.
*/
STS$VALUE = LIB$GET_EF(EVENT_FLAG_NUM);
RETURN(STS$VALUE);
END SET_TIMER;

11.8.4 A Ctrl/c-Handling Routine
A Ctrl/c routine is a subroutine that is given control when the execution of
the program is interrupted externally by the Ctrl/c function. To enable a Ctrl
/c routine, you must code a call to the SYS$QIO (Queue I/O Request) system
service, which performs I/O. In this call to SYS$QIO, you specify the name of an
external procedure that will be executed when the interruption occurs. This type
of procedure is called an asynchronous system trap (AST) routine because it may
be executed at any time.

The sample programs in this section interact as follows:

• The procedure SET_CTRLC in Example 11–7 establishes the Ctrl/c routine.
It calls SYS$ASSIGN and SYS$QIO and specifies the name of the external
AST routine, C_AST.

• The procedure C_AST in Example 11–8 is the AST routine itself. C_AST sets
the CNTRL_C_INTER bit to signal that an interrupt has occurred.

Using PL/I in the Common Language Environment 11–39

• The test program TESTC in Example 11–9 calls SET_CTRLC to establish the
Ctrl/c handler. Because it is a test program, it does not do any more than
enable the Ctrl/c handler, place itself in an infinite loop, and signal when a
Ctrl/c interrupt occurs. The execution of this program must be interrupted by
Ctrl/y. If you create your own versions of this program, you should note the
different effects of Ctrl/c and Ctrl/y.

11.8.4.1 Establishing a Ctrl/c-Handling Routine
The following notes are keyed to Example 11–7:

1 SET_CTRLC includes the declarations for the SYS$ASSIGN, SYS$QIO,
and SYS$WAITFR system services. The SYS$QIO system service requires
as an argument a channel number, that is, an I/O path to a device. The
SYS$ASSIGN system service obtains a channel number.

2 The I/O function codes IO$_SETMODE and IO$M_CTRLCAST are declared
in $IODEF, which is obtained from PLI$STARLET.TLB. In a call to SYS$QIO,
the specific I/O request is indicated by a symbolic name. These names have
the following meanings:

IO$_SETMODE is a function code that specifies a type of I/O request; it
sets the terminal mode.

IO$M_CTRLCAST is a function modifier that indicates the mode setting
performed by this request, that is, to enable Ctrl/c interrupts.

These function codes and modifiers must be ORed together to obtain the
correct result, as shown in the invocation of SYS$QIO (Note 9).

3 The variable TTCHAN receives the channel number assigned to the current
terminal device.

4 An I/O status block is an 8-byte structure that is filled with status information
when an I/O request is completed. The first two bytes always contain the
status of the I/O request.

5 To define a Ctrl/c AST routine, the name of the entry is passed as an
argument to SYS$QIO. In PL/I for OpenVMS VAX, this must be the name of
an external entry, because it must be passed by immediate value.

When an AST routine is specified in a system service, you have the option
of specifying an argument to be passed as a parameter of the AST routine.
AST parameters are always passed by value in the argument list. For an
AST routine written in PL/I for OpenVMS VAX to correctly interpret the
parameter, the AST routine must receive the parameter by reference—this
means that the AST parameter must be passed by a pointer to its value.

6 The CNTRL_C_INTER bit is declared and set to zero. This flag is used to call
a procedure that signals that an interrupt has occurred.

7 The variable IO_SUCCESS is used to ensure that the I/O completed
successfully.

8 The procedure calls SYS$ASSIGN to assign a channel to the current terminal.
The simplest way to do this when the terminal may not always be the same
physical device is to specify the logical name TT. When the service completes
successfully, the variable TTCHAN contains the terminal channel number.

9 The call to SYS$QIO specifies an event flag, the channel number, the I/O
function to be performed for the device, the address of the I/O status block,
and the name of the AST entry.

11–40 Using PL/I in the Common Language Environment

SYS$QIO does not actually perform an I/O operation, but merely queues
it, as its name suggests. A successful return from SYS$QIO indicates that
the request is queued. Proper programming practice requires that the caller
of SYS$QIO either wait until the I/O completes, or request notification
of completion by the execution of an AST routine. In this example, the
procedure waits for the event flag specified in the call to SYS$QIO. When the
event flag is set, the I/O is completed. Note that it is generally advisable to
use the RTL routines LIB$GET_EF and LIB$FREE_EF to avoid the overlap
of event flags. Several other examples in this section show the use of these
routines.

1 0 Following the call to SYS$QIO, the procedure waits until the request is
actually performed and then tests the status value in the I/O status block.

Example 11–7 Establishing a Ctrl/c Routine

SET_CTRLC: PROCEDURE RETURNS(FIXED BINARY(31));
%INCLUDE SYS$ASSIGN; 1
%INCLUDE SYS$QIO;
%INCLUDE SYS$WAITFR;
%INCLUDE $IODEF; 2
%INCLUDE $STSDEF;

DECLARE TTCHAN FIXED BINARY(15); 3

DECLARE
1 IOSB, 4
2 VALUE FIXED (15), /* Return status */
2 NOT_USED(3) FIXED (15),

C_AST ENTRY(POINTER); /* CTRL/C AST routine */ 5

DECLARE
CNTRL_C_INTER STATIC BIT(1) ALIGNED GLOBALDEF, 6
IO_SUCCESS BIT(1) ALIGNED BASED(ADDR(IOSB.VALUE)); 7

DECLARE VALUE BUILTIN;

/*
* Call Assign I/O channel to get a terminal channel and then
* call Queue I/O Request to enable the terminal for CTRL/C.
*/
STS$VALUE = SYS$ASSIGN (’TT’,TTCHAN,,); 8
IF ^STS$SUCCESS
THEN RETURN(STS$VALUE);

STS$VALUE = SYS$QIO (1,TTCHAN,
IO$_SETMODE|IO$M_CTRLCAST, /* function */ 9
IOSB, /* I/O status block */
,, /* omit QIO AST argument */
VALUE(C_AST), /* AST routine for IO$_CTRLCAST */
,,,,); /* unspecified p2 through p6 */

IF ^STS$SUCCESS
THEN RETURN(STS$VALUE);

STS$VALUE = SYS$WAITFR(1);
IF ^IO_SUCCESS
THEN RETURN(IOSB.VALUE); 1 0

CNTRL_C_INTER = ’0’B;
RETURN(1);
END SET_CTRLC;

Using PL/I in the Common Language Environment 11–41

11.8.4.2 Ctrl/c Routine
The following description refers to Example 11–8.

Once a Ctrl/c handler has executed, it cannot be executed again unless the I/O
request that establishes a handler is reexecuted. To keep a Ctrl/c handler active,
it is common practice to reenable the Ctrl/c routine within the AST routine
itself. The C_AST interrupt routine sets the CNTRL_C_INTER bit. When control
is returned to the main routine, a Ctrl/c interrupt message is printed out. In
addition, the Ctrl/c handler is reenabled by calling
SET_CTRLC.

Example 11–8 Ctrl/c Handler

C_AST: PROCEDURE;
DECLARE CNTRL_C_INTER STATIC BIT(1) ALIGNED GLOBALREF;
CNTRL_C_INTER = ’1’B;
END C_AST;

11.8.4.3 Testing the Ctrl/c Routine
The procedure TESTC, in Example 11–9, tests the SET_CTRLC and C_AST
routines. The techniques used here can be applied to any procedure in which you
want to detect and respond to an external interrupt via Ctrl/c.

Example 11–9 Testing the Ctrl/c Routine

TESTC: PROCEDURE OPTIONS(MAIN) RETURNS(FIXED BIN(31));

/*
* Field declarations for Return Status Values.
*/
%INCLUDE $STSDEF;

DECLARE SET_CTRLC ENTRY RETURNS(FIXED BIN(31)); 1
DECLARE CNTRL_C_INTER BIT(1) GLOBALREF;
%REPLACE TRUE BY ’1’B;

SIGNAL_INTER: PROCEDURE; 2
PUT SKIP LIST(’Control/C interrupt’);
STS$VALUE = SET_CTRLC(); /* reenable CTRL/C handler */
END;

STS$VALUE = SET_CTRLC_(); 3
IF ^STS$SUCCESS
THEN

RETURN(STS$VALUE);
DO WHILE (TRUE); 4

IF CNTRL_C_INTER
THEN

CALL SIGNAL_INTER;
END;

END TESTC;

The following notes are keyed to Example 11–9:

1 The procedure declares the external routine SET_CTRLC and the
CNTRL_C_INTER variable.

2 If SIGNAL_INTER is called, a message is printed and SET_CTRLC is called
to reenable the Ctrl/c handler.

11–42 Using PL/I in the Common Language Environment

A Ctrl/c handler can be much more elaborate: you may want to use it to close
files, to advance processing to a labeled statement or block, and so on.

3 The procedure calls SET_CTRLC to establish the Ctrl/c handler.

4 The procedure places itself in an infinite loop. Each time Ctrl/c is entered, the
procedure displays its message for the Ctrl/c interrupt and continues.

Note that when this program is run, it can be interrupted at the terminal and
stopped only by the Ctrl/y function.

11.8.5 Obtaining Job/Process Information
The Get Job/Process Information (SYS$GETJPI) system service returns
information about a specific aspect or attribute of a job that is currently being
executed. A call to this service requires that you set up two buffers:

• A buffer called an item list, which specifies what items of information you
want

• An output buffer to receive each item of information

The procedure TIME, shown in Example 11–10, uses SYS$GETJPI to acquire
performance statistics about the execution of a program. It has two entry points:

• The entry TIMRB is invoked at the beginning of the time for which statistics
are to be accumulated.

• The entry TIMRE is invoked at the end of the time for which statistics are to
be accumulated.

The statistics that are displayed represent the differences between the values
acquired at the entry TIMRE and those acquired at the entry TIMRB.

The following notes are keyed to Example 11–10:

1 The module $JPIDEF contains the definitions of the constant identifiers
whose names and values correspond to the item codes required for
SYS$GETJPI.

2 The structure JPI_LIST contains a minor structure for each item requested.
Each minor structure has the same required format; it contains the following
information:

• The length, in bytes, of the buffer you have declared for receiving the
information

• A numeric code, specified symbolically, that indicates the information
requested

• A pointer to the buffer you have declared for receiving the information

• A variable which, if nonzero, must contain a pointer to a variable that
will receive the length of the information returned by SYS$GETJPI

The list is terminated by a longword containing zero.

3 The item codes for SYS$GETJPI are specified using the constant identifiers
in the INCLUDE file for $JPIDEF. Each constant identifier specifies a unique
numeric code that SYS$GETJPI uses to determine the information to be
returned.

4 Variables are declared for the return information for TIMRB and TIMRE.
The FORTRAN procedure FOR$SECNDS is in the system run-time procedure
library. It returns the current system time in seconds.

Using PL/I in the Common Language Environment 11–43

5 At TIMRE and TIMRB, the item list for each item is initialized with a pointer
to the appropriate return field.

6 SYS$GETJPI is invoked as a function whose value is compared to the status
code SS$_NORMAL. If they do not match, the procedure exits with a message.

7 When entered at TIMRE, the procedure obtains the current information,
calculates the differences in the statistics required by TIMRB and those
obtained in the most recent call to SYS$GETJPI, and displays the results on
the terminal. Then, it falls through to TIMRB to ensure that the fields are
reinitialized.

8 When entered at TIMRB, the start values for the statistics are initialized
with the current values obtained from SYS$GETJPI, and the procedure exits.

Example 11–10 TIMRE and TIMRB

TIME: PROCEDURE;

%INCLUDE SYS$GETJPI;

/*
* INCLUDE definitions required by SYS$GETJPI
*/
%INCLUDE $JPIDEF; /* item codes */ 1
%INCLUDE $SSDEF; /* System (SS$_*) status values */
%INCLUDE $STSDEF; /* status value variable */

DECLARE
1 JPI_LIST STATIC EXTERNAL, 2
2 JPI_BUFIO, /* Buffered I/O count */
3 LENGTH FIXED BIN(15) INITIAL(4),
3 ITMCOD FIXED BIN(15) INITIAL(JPI$_BUFIO), 3
3 BUFADR POINTER INITIAL(NULL()),
3 RETLEN POINTER INITIAL(NULL()),

2 JPI_CPUTIM, /* CPU time */
3 LENGTH FIXED BIN(15) INITIAL(4),
3 ITMCOD FIXED BIN(15) INITIAL(JPI$_CPUTIM), 3
3 BUFADR POINTER INITIAL(NULL()),
3 RETLEN POINTER INITIAL(NULL()),

2 JPI_DIRIO /* Direct I/O count */
3 LENGTH FIXED BIN(15) INITIAL(4),
3 ITMCOD FIXED BIN(15) INITIAL(JPI$_DIRIO), 3
3 BUFADR POINTER INITIAL(NULL()),
3 RETLEN POINTER INITIAL(NULL()),

2 JPI_PAGEFLTS /* Page faults */
3 LENGTH FIXED BIN(15) INITIAL(4),
3 ITMCOD FIXED BIN(15) INITIAL(JPI$_PAGEFLTS), 3
3 BUFADR POINTER INITIAL(NULL()),
3 RETLEN POINTER INITIAL(NULL()),

2 ENDLIST FIXED BIN(31) INITIAL(0);

DECLARE
(TO,CLOCK_TIME) FLOAT BIN(24) STATIC EXTERNAL, 4
(BUFIO,END_BUFIO,CPUTIM,END_CPUTIM,DIRIO,

END_DIRIO,PAGEFLTS,END_PAGEFLTS)
FIXED BIN(31) STATIC EXTERNAL,

CPUSECONDS FLOAT BIN(24);

DECLARE FOR$SECNDS ENTRY (FLOAT BIN(24)) RETURNS(FLOAT BIN(24));

(continued on next page)

11–44 Using PL/I in the Common Language Environment

Example 11–10 (Cont.) TIMRE and TIMRB

TIMRE: ENTRY;
JPI_BUFIO.BUFADR = ADDR(END_BUFIO); 5
JPI_CPUTIM.BUFADR = ADDR(END_CPUTIM);
JPI_DIRIO.BUFADR = ADDR(END_DIRIO);
JPI_PAGEFLTS.BUFADR = ADDR(END_PAGEFLTS);

IF SYS$GETJPIW(,,,JPI_LIST,,,)^=SS$_NORMAL 6
THEN

PUT SKIP LIST (’Error from SYS$GETJPI’);

CLOCK_TIME = FOR$SECNDS(TO);
CPUSECONDS = (END_CPUTIM-CPUTIM)/100E0;
BUFIO = END_BUFIO-BUFIO; 7
DIRIO = END_DIRIO-DIRIO;
PAGEFLTS = END_PAGEFLTS-PAGEFLTS;
PUT SKIP EDIT (’Times in seconds’,’Page’,’Direct’,’Buffered’)

(A(20),A(10),A(10),A(10));
PUT SKIP EDIT (’CPU’,’Elapsed’,’Faults’,’I/O’,’I/O’)

(A(10),A(10),A(10),A(10),A(10));
PUT SKIP EDIT (CPUSECONDS,CLOCK_TIME,PAGEFLTS,DIRIO,BUFIO)

(F(7,1),COLUMN(11),F(9,1),COLUMN(21),F(7,0),COLUMN(31),
F(7,0),COLUMN(41),F(7,0));

/*
* After calling TIMRE, fall through here to reinitialize.
*/

TIMRB: ENTRY; 8
TO = FOR$SECNDS(0E0);
JPI_BUFIO.BUFADR = ADDR(BUFIO); 5
JPI_CPUTIM.BUFADR = ADDR(CPUTIM);
JPI_DIRIO.BUFADR = ADDR(DIRIO);
JPI_PAGEFLTS.BUFADR = ADDR(PAGEFLTS);

IF SYS$GETJPIW(,,,JPI_LIST,,,)^=SS$_NORMAL
THEN

PUT SKIP LIST (’Error from SYS$GETJPI’);

RETURN;

END TIME;

11.8.6 Using SORT Routines
Example 11–11 shows a sample procedure that calls the SORT routines
to perform an alphabetic sort on a file. The following notes are keyed to
Example 11–11:

1 The definitions for the SORT routines and several groups of constants are
included from PLI$STARLET.

2 The input and output file specifications are character-string arguments,
initialized to the logical names INFILE and OUTFILE. INFILE must be
equated to a file whose records are no longer than 80 characters.

3 The key buffer specifies the information required for SOR$BEGIN_SORT.

4 The SORT routines that are required to sort a file must be invoked in this
order:

a. SOR$PASS_FILES specifies the input and output file specifications.
These can be logical names.

Using PL/I in the Common Language Environment 11–45

b. SOR$BEGIN_SORT specifies the sizes of the records, key data types, sort
sequences, and so forth.

c. SOR$SORT_MERGE initiates the sorting.

d. SOR$END_SORT calls SORT to clean up its work areas and close its
temporary files.

5 The procedures are invoked in the order listed in note 1. Each procedure
returns its return value to STS$VALUE. If there are errors, the procedure
returns with the value of STS$VALUE.

Example 11–11 Sorting Files

/*
* Sort a file
*/
SORTEM: PROCEDURE RETURNS(FIXED BINARY(31));

/*
* Include the declarations of the SORT procedures required
* for a sort using the file interface.
*/
%INCLUDE SOR$PASS_FILES; /* SORT File Spec Procedure */ 1
%INCLUDE SOR$BEGIN_SORT; /* SORT Init Procedure */
%INCLUDE SOR$SORT_MERGE; /* Procedure to Initiate Sort */
%INCLUDE SOR$END_SORT; /* Sort Termination Procedure */

/*
* Include constants and return status variable.
*/
%INCLUDE $DSCDEF; /* Include data type definitions */
%INCLUDE $FABDEF; /* FAB declarations */
%INCLUDE $STSDEF; /* Declarations for return status value */

/*
* Additional constants not currently available in PLI$STARLET.
* (SORT constants described in the SOR$BEGIN_SORT documentation.)
*/
%REPLACE ASCENDING_ORDER BY 0;
%REPLACE DESCENDING_ORDER BY 1;

/*
* Declare the input and output files; these are logical names
* which must be defined before the program is run.
*/
DECLARE

INPUT_FILE CHARACTER(6) STATIC INIT(’INFILE’), 2
OUTPUT_FILE CHARACTER(7) STATIC INIT(’OUTFILE’);

(continued on next page)

11–46 Using PL/I in the Common Language Environment

Example 11–11 (Cont.) Sorting Files

/*
* Declare the key buffer array required to sort the first 80
* characters of any record. (Note that while the SORT documentation
* describes this as an array, it is more obviously expressed in
* PL/I as a structure. An array of FIXED BIN(15) elements could
* be used instead.)
*/
DECLARE

1 KEY_BUFFER STATIC,
2 NUMBER_OF_KEYS FIXED BINARY(15) INIT(1), 3
2 KEY_TYPE FIXED BINARY(15) INIT(DSC$K_DTYPE_T), /* character */
2 KEY_ORDER FIXED BINARY(15) INIT(ASCENDING_ORDER),
2 START_POS FIXED BINARY(15) INIT(0),
2 KEY_LENGTH FIXED BINARY(15) INIT(80),

LONGEST_RECORD FIXED BINARY(15) STATIC INIT(80);

/*
* Call the SORT routines in the required order. 4
* After each call to SORT, check STS$SUCCESS.
*/
STS$VALUE = SOR$PASS_FILES(

INPUT_FILE, /* Input file name */
OUTPUT_FILE, /* Output file name */
FAB$C_REL, /* File organization */
FAB$C_VAR); /* Record type */

IF ^STS$SUCCESS
THEN

GOTO ERROR;

STS$VALUE = SOR$BEGIN_SORT(KEY_BUFFER,LONGEST_RECORD);
IF ^STS$SUCCESS
THEN

GOTO ERROR;

STS$VALUE = SOR$SORT_MERGE();
IF ^STS$SUCCESS
THEN

GOTO ERROR;

STS$VALUE = SOR$END_SORT();
IF ^STS$SUCCESS
THEN

GOTO ERROR;
RETURN(1);

ERROR: 5
PUT SKIP(2) EDIT (’SORT Failed. Error Code’,STS$VALUE) (A,X,F(8));
RETURN(STS$VALUE);

END SORTEM;

Example 11–12 shows a procedure that performs a record sort, processing each
record before passing it to the SORT program. The following notes are keyed to
Example 11–12:

1 A record sort requires that SORT routines be called in the following order:

a. SOR$BEGIN_SORT specifies the key data types, record sizes, collating
sequence, and so on, in a key buffer area.

b. SOR$RELEASE_REC passes each record to SORT.

c. SOR$SORT_MERGE requests SORT to perform the sort on the records it
receives.

Using PL/I in the Common Language Environment 11–47

d. SOR$RETURN_REC requests SORT to pass a single record back. SORT
returns the records in sorted order.

e. SOR$END_SORT finishes the SORT.

2 $SSDEF contains the symbol SS$_ENDOFFILE. SORT returns this value
when SOR$RETURN_REC requests a record after all records have been
returned.

3 Within the key buffer, the START_POS field indicates that the key field
within each record begins in position 25, that is, the capital field (note that
this is equivalent to an offset of 24 bytes).

4 The LONGEST_RECORD variable specifies the value
SIZE(STATE_RECORD). This is the length of each record in the file, plus the
length of the key on which the records are to be sorted.

5 The structure STATE_RECORD contains the key field on which the records
are to be sorted, as well as the structure declaration of the records in the file
STATE_FILE.

6 STATE_RECORD_CHAR is a character string that overlays the
STATE_RECORD structure. It is used to pass records to
SOR$RELEASE_REC and to obtain records from SOR$RETURN_REC.

7 The procedure declares input and output files, and calls SOR$BEGIN_SORT
to begin the sorting process.

8 The records are passed to SOR$RELEASE_REC.

9 SOR$SORT_MERGE is invoked to perform the merge.

1 0 SOR$RETURN_REC returns each record individually, without the
key field, to the structure STATE. When there are no more records,
SOR$RETURN_REC returns with the function value SS$_ENDOFFILE.

1 1 The sort is completed.

Example 11–12 A Record Sort

/*
* This progam sorts the file STATE_FILE based on the field CAPITAL.NAME
* in each record. Logical name equivalences are required for the input
* file STATE_FILE and an output file SORTED_FILE.
*/

STATESORT: PROCEDURE OPTIONS(MAIN) RETURNS(FIXED BINARY(31));
/*
* Declare SORT routine
*/
%INCLUDE $DSCDEF; /* Include data type definitions */
%INCLUDE SOR$BEGIN_SORT; /* SORT init procedure */ 1
%INCLUDE SOR$RELEASE_REC; /* SORT procedure to send records */
%INCLUDE SOR$SORT_MERGE; /* Procedure to initiate SORT */
%INCLUDE SOR$RETURN_REC; /* SORT procedure to retrieve records */
%INCLUDE SOR$END_SORT; /* SORT termination procedure */
%INCLUDE $STSDEF; /* Declare return status values */
%INCLUDE $SSDEF; /* Status codes */ 2

DECLARE EOF BIT(1) INIT(’0’B);

(continued on next page)

11–48 Using PL/I in the Common Language Environment

Example 11–12 (Cont.) A Record Sort

/*
* Key buffer and data for SORT routines
*/
DECLARE 1 KEY_BUFFER STATIC,

2 NUMBER_OF_KEYS FIXED BINARY(15) INIT(1),
2 KEY_TYPE FIXED BINARY(15) INIT(DSC$K_DTYPE_T), /* char keys */
2 KEY_ORDER FIXED BINARY(15) INIT(0), /* ascending order */
2 START_POS FIXED BINARY(15) INIT(24), 3
2 KEY_LENGTH FIXED BINARY(15) INIT(20),

LONGEST_RECORD FIXED BINARY(15) 4
INIT(SIZE(STATE_RECORD));

/*
* Declare a buffer to construct each record to be passed to SORT
*/
DECLARE 1 STATE_RECORD STATIC, /* complete record */ 5

3 NAME CHARACTER(20),
3 POPULATION FIXED BINARY(31),
3 CAPITAL,
4 NAME CHARACTER(20),
4 POPULATION FIXED BINARY(31),

3 LARGEST_CITIES(2),
4 NAME CHARACTER(30),
4 POPULATION FIXED BINARY(31),

3 SYMBOLS,
4 FLOWER CHARACTER(30),
4 BIRD CHARACTER(30),

STATE_RECORD_CHAR CHARACTER(SIZE(STATE_RECORD)) 6
BASED(ADDR(STATE_RECORD));

/*
* Input and output files
*/
DECLARE STATE_FILE FILE INPUT RECORD SEQUENTIAL,

SORTED_FILE FILE RECORD OUTPUT SEQUENTIAL; 7

/*
* Call SOR$BEGIN_SORT
*/
STS$VALUE = SOR$BEGIN_SORT(KEY_BUFFER,LONGEST_RECORD);
IF ^STS$SUCCESS
THEN RETURN(STS$VALUE);

/*
* Enter DO-loop to read the input file STATE_FILE.
* Then call SOR$RELEASE_REC.
*/
OPEN FILE(STATE_FILE);
ON ENDFILE(STATE_FILE) EOF = ’1’B;
READ FILE(STATE_FILE) INTO(STATE_RECORD);
DO WHILE (^EOF);

STS$VALUE = SOR$RELEASE_REC(8
STATE_RECORD_CHAR);

IF ^STS$SUCCESS
THEN RETURN(STS$VALUE);
READ FILE(STATE_FILE) INTO(STATE_RECORD);
END;

CLOSE FILE(STATE_FILE);
PUT SKIP LIST(’**** ALL RECORDS RELEASED’);

(continued on next page)

Using PL/I in the Common Language Environment 11–49

Example 11–12 (Cont.) A Record Sort

/*
* Call SOR$SORT_MERGE to sort the records that were released
*/
STS$VALUE = SOR$SORT_MERGE(); 9
IF ^STS$SUCCESS
THEN RETURN(STS$VALUE);

/*
* Loop through the DO-group to get back each record and
* write it to the sorted output file.
*/
STS$VALUE = 1;
OPEN FILE(SORTED_FILE) OUTPUT;
DO WHILE (STS$VALUE ^=SS$_ENDOFFILE);

STS$VALUE = SOR$RETURN_REC(STATE_RECORD_CHAR); 1 0
IF STS$SUCCESS
THEN WRITE FILE(SORTED_FILE) FROM(STATE_RECORD);
ELSE

IF ^STS$SUCCESS & (STS$VALUE ^= SS$_ENDOFFILE)
THEN RETURN(STS$VALUE);

END;
CLOSE FILE(SORTED_FILE);

/*
* Call SOR$END_SORT to finish up
*/
STS$VALUE = SOR$END_SORT(); 1 1
IF ^STS$SUCCESS
THEN RETURN(STS$VALUE);
RETURN(1); /* successful completion */
END;

11–50 Using PL/I in the Common Language Environment

12
Global Symbols

In standard PL/I, a variable that is to be shared by external procedures must
be declared with the EXTERNAL attribute in each procedure that references
it. PL/I for OpenVMS VAX and PL/I for OpenVMS AXP provide an alternative
method for defining external variables. Using the GLOBALDEF attribute, one
module can completely declare an external variable; all other modules that
reference the variable declare it with the GLOBALREF attribute. The VALUE
and READONLY attributes provide additional control over the storage of these
variables.

Even if a PL/I program does not itself define external variables in this way, the
GLOBALREF attribute permits a PL/I program to access variables defined in
modules written in other languages.

This chapter discusses the following topics:

• Using global symbols within PL/I procedures

• The READONLY and VALUE attributes

• Declaring and using system-defined global symbols

12.1 Using Global Symbols in PL/I Procedures
Within your PL/I programs, you can define variables as global external symbols
when you are coding calls to system procedures. You can also use global symbols
instead of external variables in PL/I procedures and functions.

Table 12–1 summarizes the differences between global symbols and external
variables. Note that a primary difference between these variables is the manner
in which the linker allocates storage for them. Linker storage allocation is
described in Chapter 15.

Table 12–1 Comparison of Global Symbols and External Variables

Global Symbols External Variables

Declared with the GLOBALDEF and
GLOBALREF attributes.

Declared with the EXTERNAL attribute.

Can be initialized only in the module
that defines it with the GLOBALDEF
attribute. All other modules must specify
GLOBALREF.

Must be declared with the EXTERNAL
attribute in all modules that declare it. If
initialized, must be initialized with the same
value in all modules that declare it.

(continued on next page)

Global Symbols 12–1

Table 12–1 (Cont.) Comparison of Global Symbols and External Variables

Global Symbols External Variables

Correspond to global symbols declared in
assembly language.

Correspond to FORTRAN common blocks.

Fixed-point binary or bit string (less
than 33 bits) global symbols can have the
VALUE attribute.

Cannot have the VALUE attribute.

No practical limit on the number of global
symbols that can be defined and referenced
in an object module.

Limited to 254 external variables in an
object module (minus the number of external
file constants).

Allocation of storage can be controlled by
explicit specification of a program section
name.

No control over storage allocation. Each
variable is placed in a separate program
section.

12.1.1 The GLOBALDEF Attribute
The GLOBALDEF attribute declares an external variable or an external file
constant. You can optionally control the program section in which the data is
allocated.

The format of the GLOBALDEF attribute is as follows:

GLOBALDEF [(psect-name)]

psect-name
Specifies the name of a program section. A program section name can contain up
to 31 alphanumeric characters, including dollar signs ($) and underscores (_).
The first character cannot be a numeric character (0 through 9).

If you do not specify a program section name, PL/I places the definition for
the name in the default program section associated with the variable. For
information on program sections created by PL/I, see Chapter 15.

The GLOBALDEF attribute implies the EXTERNAL and STATIC attributes.

The following restrictions apply to the use of the GLOBALDEF attribute:

• The GLOBALDEF attribute conflicts with the GLOBALREF and INTERNAL
attributes.

• It cannot be used with ENTRY constants.

• Only one procedure in a program can declare a particular external variable
with the GLOBALDEF attribute.

12.1.2 The GLOBALREF Attribute
The GLOBALREF attribute indicates that the declared name is a global symbol
defined in an external procedure.

The GLOBALREF attribute implies the EXTERNAL and STATIC attributes.
The corresponding name must be declared in another procedure with the
GLOBALDEF attribute or, if the external procedure is written in another
programming language, its equivalent in that language.

The following restrictions apply to the use of the GLOBALREF attribute:

• The GLOBALREF attribute conflicts with the INITIAL, GLOBALDEF, and
INTERNAL attributes.

12–2 Global Symbols

• If GLOBALREF is specified with the FILE attribute, no other file description
attributes can be specified.

12.1.3 Defining Global Symbols in PL/I
To create a global symbol definition in a PL/I program, you must declare it with
the GLOBALDEF attribute in one, and only one, PL/I external procedure. The
GLOBALDEF attribute implies the EXTERNAL attribute.

An external variable defined with the GLOBALDEF attribute can be accessed by
external procedures that declare the name with the GLOBALREF attribute. For
example, the procedure ABC contains the following lines:

ABC: PROCEDURE;
DECLARE UNIQUE_VALUE GLOBALDEF FIXED BINARY

INITIAL (60);
DECLARE XYZ EXTERNAL ENTRY (CHARACTER (*));
.
.
.
CALL XYZ (’STRING’);

The procedure XYZ contains the following lines:

XYZ: PROCEDURE (STRING_VAL);
DECLARE UNIQUE_VALUE GLOBALREF FIXED BINARY;
.
.
.

In these examples, the external variable UNIQUE_VALUE is declared with the
GLOBALDEF attribute and initialized in the procedure ABC. The called external
procedure XYZ declares this variable with the attribute GLOBALREF and the
appropriate data type attributes.

12.1.4 Using MACRO Global Symbols with Multiple Definitions
Using the VAX MACRO programming language, it is possible to give a global
external variable more than one name. However, in a PL/I procedure, you can use
only one global symbol name for a particular variable. PL/I assumes that distinct
global symbol names denote distinct storage locations; the storage associated with
different names must not overlap. This rule applies only to global symbols that
are declared without the VALUE attribute.

12.2 The READONLY and VALUE Attributes
PL/I for OpenVMS VAX and PL/I for OpenVMS AXP define two storage class
attributes that are not in the standard PL/I language: READONLY and
VALUE. The READONLY attribute can be specified for any static variable. The
VALUE attribute can be specified only for variables that are declared with the
GLOBALREF or GLOBALDEF attributes. You cannot declare a variable with
both the READONLY and VALUE attributes.

12.2.1 The READONLY Attribute
The READONLY attribute can be applied to any static variable whose value will
not change during the program execution. For example, you can initialize fixed
values with the PL/I attributes STATIC and INITIAL, and use the READONLY
attribute as in this example:

DECLARE MSG_TEXT CHARACTER(80) STATIC READONLY
INITIAL (’Good morning’);

Global Symbols 12–3

This use of the READONLY attribute provides storage optimization and protects
variables from inadvertent modification.

12.2.2 The VALUE Attribute
A variable declared with the VALUE attribute does not require an address
reference in storage; instead, the compiler can refer to it by value during
execution.

When you give a variable the VALUE attribute, you must specify either
GLOBALDEF or GLOBALREF. If you specify GLOBALDEF, you must use
the INITIAL attribute to define a value for the variable.

For example, the VALUE attribute can be specified in the declaration of an
external global symbol, as follows:

DECLARE REQUEST_CODE GLOBALDEF VALUE FIXED BINARY
STATIC INITIAL (10);

The variable REQUEST_CODE in this example can be accessed in any external
procedure that declares it with the attribute GLOBALREF.

When the VALUE attribute is used with the GLOBALDEF or GLOBALREF
attributes, the following rules apply:

• The variable can have only one of the following data types:

FIXED BINARY
BIT (n) ALIGNED where n is less than 33

• The variable must be scalar.

• The value of the variable cannot be modified. Thus, it cannot be used as the
target of an assignment statement or an input operation, nor can it be passed
by reference in a procedure call. PL/I always creates a dummy argument for
a variable with the VALUE attribute that is specified in an argument list.

• All declarations of the variable must specify the VALUE attribute.

• The variable is not addressable; thus, it cannot be used as the argument of
the ADDR built-in function.

A variable declared with the VALUE attribute can be specified as a value to
initialize another variable; it must have the same data type as the variable that
is being initialized. For example:

DECLARE TEMP GLOBALDEF FIXED VALUE INITIAL(10),
ABC FIXED STATIC INIT(TEMP);

The declaration of ABC in this example gives ABC the value 10.

12.3 Obtaining Definitions for System Global Symbols
Within the OpenVMS system, many global symbol definitions are used and
accessed by programs and procedures in many ways. The most common uses are
to define symbolic names for the following:

• Return status values from system procedures

• Function codes for system programs

• Symbolic names for system mailbox message senders

• Bit field definitions in system data structures

12–4 Global Symbols

From a PL/I program, you can declare the symbolic names for system global
symbols with the GLOBALREF and VALUE attributes. The format of these
declarations is as follows:

DECLARE symbol-name GLOBALREF FIXED BINARY(31) VALUE;

The GLOBALREF attribute indicates to PL/I that the variable is a reference to
a global symbol defined in another module. The VALUE attribute indicates that
the value of the variable is to be treated as if it were a constant.

The definitions for system global symbols are declared in the default system
object module libraries. These libraries are automatically searched when you
link a PL/I program. Of particular interest are the global symbols that define
symbolic names for system service and file system return status values. Their
use is described in Chapter 11.

Global Symbols 12–5

13
Mailboxes

A mailbox is a virtual I/O device that provides a means of communication
for images executing in different processes. Mailboxes are used by the
operating system to initiate and record system operations; they can also provide
communication facilities for user applications.

This chapter provides some general information on using mailboxes, and
examples of simple procedures that perform input and output to mailboxes.

Note that this chapter provides only information that is pertinent to mailbox I/O
and does not describe mailbox creation. There is a system procedure to create a
mailbox, the Create Mailbox and Assign Channel system service (SYS$CREMBX).
For an annotated example of a call to this system service, see Chapter 11.

13.1 Using Mailboxes
This section provides information on how the system controls the creation and
use of mailboxes, and shows a typical use of mailboxes in an application.

13.1.1 System Information
When a program creates a mailbox, the operating system allocates dynamic
memory to store control information about the device and to buffer input and
output data. The ability to create mailboxes is controlled by two separate
privileges:

• The privilege to create temporary mailboxes (TMPMBX) permits you to
create a mailbox that is automatically deleted when the image that created it
completes execution.

• The privilege to create permanent mailboxes (PRMMBX) permits you to
create a mailbox that continues to reside in system memory until it is
specifically deleted.

In either case, when the system creates a mailbox, it defines a unique device with
the name MBn (where n is a unit number) and equates this device name with the
logical name specified by the program that created the mailbox.

The logical name of a temporary mailbox is placed in the group logical name table
for the group of the creating process. The logical name of a permanent mailbox is
placed in the system logical name table.

The process that creates a mailbox can define its protection; that is, it can control
which users are allowed to write messages to the mailbox and which users are
allowed to read messages from the mailbox.

Mailboxes 13–1

13.1.2 Applications
A mailbox usually has only one reader and multiple writers. In a typical
application, two or more program images would be executed concurrently in
separate processes. One program, the controlling program, receives requests or
messages from the other cooperating programs by way of the mailbox.

The controlling program takes the following actions:

1. It creates a temporary mailbox and gives it a logical name.

2. It associates a PL/I file constant with the mailbox by specifying the mailbox
logical name in the TITLE option of an OPEN statement.

3. It executes a READ statement that initiates a read request.

4. When the READ statement is completed, it processes the data obtained from
the mailbox.

5. It repeats steps 3 and 4 until no more data is written to the mailbox.

6. It issues a CLOSE statement to dissociate the file constant and delete the
mailbox. The logical name for the mailbox is automatically deassigned when
the mailbox is deleted.

Each cooperating program takes the following actions:

1. It associates a PL/I file constant with the mailbox by specifying the logical
name of the mailbox in the TITLE option of an OPEN statement.

2. It executes WRITE or PUT statements that output data to the mailbox.

3. It continues to write to the mailbox until it no longer needs to send data or
requests.

4. It executes a CLOSE statement to dissociate the PL/I file from the mailbox.

The following describes a typical application of mailbox communication between
processes:

1. The controlling process creates the mailbox with the logical name
PLI_MAILBOX and assigns it device name MBA99.

2. The controlling process opens the mailbox file with the following statement:

OPEN FILE (MFILE) INPUT RECORD
TITLE(’PLI_MAILBOX’);

3. The controlling process reads and handles information from the mailbox
continuously:

LOOP: READ FILE (MFILE) INTO(M_REC);
.
.
.
GOTO LOOP;

The mailbox remains available to other processes until the controlling process
deletes the mailbox.

To write to the mailbox, a program does the following:

1. Opens the mailbox for output:

OPEN FILE (MAILB) OUTPUT RECORD
TITLE(’PLI_MAILBOX’);

13–2 Mailboxes

2. Writes messages to the mailbox:

WRITE FILE (MAILB) FROM (M_TEXT);

3. Closes the file when all messages have been sent:

CLOSE FILE (MAILB);

All processes writing to the mailbox must specify the TITLE defined by the
process that created the mailbox, but it can specify its own file and record names.

13.1.3 Effects of the OPEN Statement
When the TITLE option of an OPEN statement specifies the logical name of a
mailbox, the run-time system associates a PL/I file with the mailbox device. The
OPEN statement actually assigns an I/O channel to the mailbox; a channel is an
I/O path used by the operating system to perform data transfers.

Every OPEN statement executed for the same mailbox assigns another channel
to the device. The system counts all channels assigned to a mailbox; therefore, it
knows when to delete the mailbox.

13.1.4 Effects of the CLOSE Statement
A CLOSE statement for a mailbox dissociates the PL/I file from the device
and deassigns the channel to the device. When the count of channels assigned
to a temporary mailbox reaches zero, the system deletes the mailbox and its
logical name equivalence, if any. When the count of channels assigned to a
permanent mailbox that is marked for deletion reaches zero, the system deletes
the permanent mailbox and its logical name equivalence, if any. You must invoke
the Delete Mailbox system service (SYS$DELMBX) to mark a permanent mailbox
for deletion.

Each time a CLOSE statement is executed for a mailbox, the file system writes
an end-of-file to the mailbox. When this end-of-file is encountered during an input
operation, the ENDFILE condition is signaled.

Note that in the context of reading a mailbox, an end-of-file does not necessarily
mean that there is no more data; it only means that one channel has been
deassigned. Thus, a program that is reading a mailbox must take end-of-file
records into account and handle the ENDFILE condition accordingly. The manner
in which the ENDFILE condition is handled depends on the type of I/O being
performed, as described in Section 13.2.

13.2 Mailbox Input/Output
You can use either the stream I/O statements GET and PUT or the record I/O
statements READ and WRITE to read from and write to mailboxes. The type of
I/O you use depends on your application and the type of data that will be sent.

When you plan an application using mailboxes, you must also determine whether
to use synchronous or asynchronous I/O operations. These types of operations
are described in the following sections. Each involves special programming
considerations.

Mailboxes 13–3

13.2.1 Synchronous Input/Output
By default, all I/O operations to a mailbox are synchronous. This means that
when an image executing in one process performs an output operation to a
mailbox, the operation is not completed until an image being executed in another
process reads the data from the mailbox. Similarly, when a program requests
an input operation from a mailbox, control is not returned until an actual input
operation is performed: if there is no data in the mailbox, the process must wait
until another process writes data to the mailbox.

Example 13–1 shows a program that reads a mailbox synchronously. This
program reads all data sent to a particular mailbox and copies all messages into a
central log file. This procedure assumes that the mailbox PLI_MAILBOX already
exists. For an example of a procedure that creates this mailbox, see Chapter 11.

The following notes are keyed to Example 13–1:

1 The procedure LOGGER declares the identifiers MAILFILE and OUTFILE
with the FILE attribute.

2 The structure LOG_MESSAGE depicts the format of messages that are
written to the mailbox. By a convention established for the application in this
example, all programs in this application write messages with fields of these
data types and lengths.

The first longword in the message is a type code. This is a convention used by
OpenVMS system procedures that use mailboxes.

3 The OPEN statement for the mailbox specifies that it is an input file and that
its logical name is PLI_MAILBOX.

4 LOGGER opens an output log file named MAILTEST.OUT.

5 This procedure establishes an ENDFILE ON-unit for the mailbox. This
ON-unit transfers control to the label LOOP, which is the main input loop of
the procedure. This statement ensures that LOGGER will not be accidentally
terminated if an ENDFILE condition is signaled when a program executes a
CLOSE statement to close the mailbox file.

6 Each READ statement is followed by a test of the first field in the mailbox
record. By application convention, when the value associated with the global
symbol END_RUN is written to this field, it indicates that the program is
complete. If this field contains any other value, LOGGER writes the record
into the log file and loops to read another record.

7 When the termination value END_RUN is received, control transfers to the
label FINISH; LOGGER closes both files and returns.

13–4 Mailboxes

Example 13–1 Synchronous Mailbox Input/Output

LOGGER: PROCEDURE;
DECLARE (MAILFILE,OUTFILE) FILE; /* 1 */
DECLARE

1 LOG_MESSAGE, /* 2 */
2 TYPE FIXED BINARY(31),
2 SYSTEM_TIME CHARACTER(25),
2 REQUESTOR CHARACTER(15),
2 STATUS FIXED BINARY(31);

%REPLACE END_RUN BY -1;

OPEN FILE(MAILFILE) RECORD INPUT SEQUENTIAL /* 3 */
TITLE (’PLI_MAILBOX’);

OPEN FILE(OUTFILE) PRINT TITLE(’MAILTEST.OUT’); /* 4 */

ON ENDFILE(MAILFILE) GOTO LOOP; /* Ignore end-of-file */ /* 5 */
LOOP:

READ FILE(MAILFILE) INTO (LOG_MESSAGE);

IF LOG_MESSAGE.TYPE = END_RUN /* 6 */
THEN

GOTO FINISH;

PUT FILE(OUTFILE) SKIP LIST(TYPE,
SYSTEM_TIME,REQUESTOR,STATUS);

GOTO LOOP;
FINISH:

CLOSE FILE(MAILFILE), FILE(OUTFILE); /* 7 */

END LOGGER;

13.2.2 Asynchronous Input/Output
It is not always practical for a procedure that is reading a mailbox to wait until
the mailbox has been written. To perform an I/O operation that is completed
immediately, you must code a call to the Queue I/O Request system service
(SYS$QIO). This service permits you to specify I/O functions that are not possible
using PL/I statements.

Example 13–2 illustrates a procedure that uses the SYS$QIO system service to
perform asynchronous I/O to a mailbox. This procedure, EMPTY_BOX, reads all
of the messages in a mailbox. If the mailbox is empty, EMPTY_BOX displays a
message to that effect.

The following notes are keyed to Example 13–2:

1 The system services SYS$ASSIGN, SYS$QIO, and SYS$WAITFR are
declared.

2 The procedure includes $IODEF from PLI$STARLET.TLB, which defines
symbol names for the I/O function codes.

3 The variable MESSAGE is the buffer into which the mailbox messages will be
read.

4 The call to SYS$ASSIGN specifies the logical name of the mailbox,
PLI_MAILBOX, and the variable MBXCHAN. SYS$ASSIGN returns the
number of the channel.

5 In the call to SYS$QIO, the procedure specifies an event flag on which to wait
for I/O completion and the channel number.

Mailboxes 13–5

6 The next argument to SYS$QIO is the function code and its modifier, whose
values are added to obtain the correct I/O function. The values of these
names have the following meanings:

• The function code IO$_READVBLK is an instruction to read data.

• IO$M_NOW is a function modifier that specifies that control be returned
to the calling program immediately.

7 The I/O status block argument is specified so that the status of the I/O
operation can be determined and the length of the message read can be used.
The missing arguments in this call are an AST routine address and an AST
parameter.

8 The IO$_READVBLK function code requires the specification of the address
of a message buffer and the size of the buffer. These are the last arguments
specified in this call to SYS$QIO.

9 The procedure waits for the I/O to be completed.

1 0 EMPTY_BOX checks the status value in the I/O status block. If not
successful, and if the unsuccessful status is not SS$_ENDOFFILE, the
procedure exits. Otherwise, EMPTY_BOX displays the message and loops
back to the beginning of the DO-group. If the status in the I/O status block
was SS$_ENDOFFILE, the DO-group is not executed and the program is
completed.

13–6 Mailboxes

Example 13–2 Asynchronous Mailbox Input/Output

EMPTY_BOX: PROCEDURE OPTIONS(MAIN) RETURNS (FIXED BINARY(31));
%INCLUDE LIB$GET_EF;
%INCLUDE LIB$FREE_EF;
%INCLUDE SYS$ASSIGN; /* 1 */
%INCLUDE SYS$QIO;
%INCLUDE SYS$WAITFR;
%INCLUDE $IODEF; /* 2 */
%INCLUDE $SSDEF;
%INCLUDE $STSDEF;
DECLARE MBXCHAN FIXED BINARY(15);
DECLARE EFN FIXED BIN(31);
DECLARE

1 IO_STATUS,
2 VALUE FIXED (15),
2 BYTES_TRANSFERRED FIXED(15),
2 NOT_USED FIXED(31),

IO_SUCCESS BIT(1) ALIGNED BASED(ADDR(IO_STATUS.VALUE));

DECLARE MESSAGE CHARACTER(132); /* 3 */
STS$VALUE = SYS$ASSIGN(’PLI_MAILBOX’,MBXCHAN,,); /* 4 */
IF ^STS$SUCCESS
THEN

RETURN (STS$VALUE);
/*
* Get an event flag to use
*/
STS$VALUE = LIB$GET_EF(EFN);
IF ^STS$SUCCESS
THEN

RETURN (STS$VALUE);
/*
* Use a DO-loop to read the mailbox; each QIO is followed
* by a test of the return status from QIO, then a wait for
* the I/O completion. Then the status value in the I/O
* status block is checked. If it contains SS$_ENDOFFILE,
* return STS$SUCCESS. Otherwise, return error value.
*/
IO_STATUS.VALUE = 0;
DO WHILE(IO_STATUS.VALUE ^= SS$_ENDOFFILE);

STS$VALUE = SYS$QIO (
EFN, /* 5 */
MBXCHAN,
IO$_READVBLK | IO$M_NOW, /* 6 */
IO_STATUS,,, /* 7 */
MESSAGE, /* 8 */
LENGTH(MESSAGE),,,,);

IF ^STS$SUCCESS
THEN

RETURN(STS$VALUE);
STS$VALUE = SYS$WAITFR(EFN); /* 9 */
IF IO_STATUS.VALUE = SS$_ENDOFFILE
THEN DO;

PUT SKIP LIST(’Mailbox empty’); /* 1 0 */
RETURN(1);
END;

IF ^IO_SUCCESS
THEN

RETURN(IO_STATUS.VALUE);

(continued on next page)

Mailboxes 13–7

Example 13–2 (Cont.) Asynchronous Mailbox Input/Output

/*
* If successful read, fall through to here
*/
PUT SKIP LIST(SUBSTR(MESSAGE,1,IO_STATUS.BYTES_TRANSFERRED),

’status ’,IO_STATUS.VALUE);
END;

/*
* Release the event flag
*/
STS$VALUE = LIB$FREE_EF(EFN);
RETURN (STS$VALUE);

END EMPTY_BOX;

13–8 Mailboxes

14
Accessing Files on a Network

If your system supports DECnet facilities, and your computer is one of the nodes
in a DECnet network, you can communicate with other nodes in the network by
means of standard PL/I I/O statements. These statements provide two distinct
types of network operations:

• Remote file access lets you read and write files on a remote node as if the files
were on your local system.

• Task-to-task communication lets you exchange data directly with a job that is
being executed at a remote location.

Examples of both remote file access and task-to-task communication using PL/I
statements are given in this chapter. For details on using the DECnet facilities,
see the DECnet for OpenVMS Guide to Networking or the Guide to DECnet–VAX
Networking.

14.1 Remote File Access
To access a file on a remote system, you include the node name in the file
specification of the external file you identify for the execution of the program. For
example:

BOSTON::DBA0:[MALCOLM]TEMPS.TST

This file specification identifies the file TEMPS.TST in the directory [MALCOLM]
on the device DBA0: on the node BOSTON.

You can specify a node name in a file specification in either of the following
contexts:

• In the file specification in the TITLE option of an OPEN statement

• In the equivalence name you assign to a logical name before running a
program that refers to a file by logical name

For example:

OPEN FILE (NETFILE) SEQUENTIAL INPUT RECORD
TITLE

(’TULSA::DBB0:[MALCOLM]PLITEST.DAT’);

This OPEN statement specifies the name of a file to be read from the node named
TULSA.

If no file specification is present in the TITLE option, or if the TITLE option
specifies a logical name, you can define a remote file. For example:

OPEN FILE(INFILE) INPUT RECORD SEQUENTIAL;

Accessing Files on a Network 14–1

This OPEN statement refers to the logical name INFILE. The following DEFINE
command equates this logical name with a remote file:

$ DEFINE INFILE TULSA::DBB0:[MALCOLM]PL1TEST.DAT

When the OPEN statement is executed, the run-time system associates the
remote file with the PL/I file INFILE.

When you run a program that modifies a file on a remote node in a protected
account, the file specification must contain an access control string. Each Digital
operating system defines the format of an access control string. For an OpenVMS
system, you specify the user name and password of the account whose file you are
modifying. For example:

$ DEFINE INFILE -
$_TULSA""MALCOLM YES"""::DBB0:[ENERGY]PL1TEST.DAT"

The user name MALCOLM and the password for this account (YES) are enclosed
in quotation marks following the node name in the file specification. The extra
quotation marks are required because the DCL command interpreter removes
single pairs of quotation marks from lines. On the system at the node TULSA,
the user MALCOLM must have access privileges to the account ENERGY.

The following file system functions are not available for processing remote files:
keyed DELETE, WRITE, REWRITE FILE_ID_TO, FILE_ID_FROM, RECORD_
ID_TO, and RECORD_ID_FROM statements cannot be followed by a sequential
operation, that is, an operation that does not specify a key.

14.2 Task-to-Task Communication
Network task-to-task communication lets a program running on one network
node interact with a program running on another network node. The interaction
is accomplished with PL/I I/O statements, but network connections themselves
are transparent to the cooperating programs.

PL/I programs at remote locations can communicate over the network by the
following mechanism:

1. The program that initiates the communication is called the source task. It
requests a network connection to a target task by specifying a task name in a
file specification that contains a node name. This OPEN statement initiates
the request and associates a PL/I file with a network logical link created by
DECnet. For example:

OPEN FILE (TASKFILE) RECORD OUTPUT
TITLE (’HSTN"MALCOLM YES"::"TASK=LOGGER" ’);

This OPEN statement initiates task-to-task communication with the
target node by specifying the task name LOGGER. The network program
uses the default directory of user MALCOLM to locate the command file
LOGGER.COM on the remote target node.

2. DECnet locates the command file LOGGER.COM on the remote node specified
in the OPEN statement. The name of the command file is specified by the
task specification string, TASK=LOGGER. DECnet submits this command file
for execution by the remote system. When the OPEN statement completes,
communication between the two tasks can begin.

14–2 Accessing Files on a Network

3. The command file LOGGER.COM must contain the command necessary to
initiate the execution of the cooperating program, COPYTASK.

$ RUN COPYTASK

The network program submits the specified command file to the batch job
queue on the target system.

4. The cooperating target task must complete the connection to the source task
by executing an OPEN statement to open the file SYS$NET.

OPEN FILE (NETFILE) RECORD
SEQUENTIAL INPUT TITLE (’SYS$NET’);

SYS$NET is a logical name assigned by DECnet to the network job that
identifies the source task’s node and process.

5. After the logical link is established, the cooperating programs, or tasks, read
and write data using the PL/I files associated with the logical link.

6. When either program executes a CLOSE statement for the file, the logical
link is broken and an end-of-file record is written to the cooperating task.

Examples 14–1 and 14–2 illustrate PL/I programs that communicate across the
network using synchronous I/O. The following notes are keyed to Example 14–1:

1 The procedure SOURCE_TASK is the program that initiates the request.

2 The UNDEFINEDFILE condition will be signaled if any error occurs that is
associated with the logical link or connection. In the ON-unit, the procedure
uses the ONCODE built-in function to obtain the error code, display the
status value, and stop the program.

3 The OPEN statement associates the PL/I file TASKNAME with the task
named LOGGER on the node named BOSTON. The network program
uses the default directory for the account BEANS on the node and locates
the command file LOGGER.COM. The file LOGGER.COM contains this
command:

$ RUN TARGET

4 The procedure writes three messages from the structure TASK_MESSAGE.
The first field is a binary value, and the second field a character-string text.

5 When the three messages have been written, the CLOSE statement closes the
file to terminate the network connection.

Example 14–1 A PL/I Network Source Task

SOURCE_TASK: PROCEDURE; /* 1 */

DECLARE TASKNAME FILE;

DECLARE 1 TASK_MESSAGE,
2 NUMBER FIXED BINARY(31),
2 TEXT CHARACTER(40) VARYING;

(continued on next page)

Accessing Files on a Network 14–3

Example 14–1 (Cont.) A PL/I Network Source Task

ON UNDEFINEDFILE(TASKNAME) BEGIN; /* 2 */
PUT SKIP LIST(’File error’,ONCODE());
STOP;
END;

OPEN FILE(TASKNAME) SEQUENTIAL OUTPUT RECORD /* 3 */
TITLE(’BOSTON"BEANS BAKED"::"TASK=LOGGER"’);

NUMBER = 1; /* 4 */
TEXT = ’first message’;
WRITE FILE (TASKNAME) FROM (TASK_MESSAGE);
NUMBER = 2;
TEXT = ’second message’;
WRITE FILE (TASKNAME) FROM (TASK_MESSAGE);
NUMBER = 3;
TEXT = ’third and last message’;
WRITE FILE(TASKNAME) FROM (TASK_MESSAGE);

CLOSE FILE(TASKNAME); /* 5 */
RETURN;

END;

The following notes are keyed to Example 14–2:

1 The image file TARGET.EXE contains the compiled and linked code for the
procedure TARGET_TASK. The declarations in the procedure TARGET_TASK
include the files INFILE and OUTFILE, a structure into which messages will
be read across the logical link, and a message field from which data will be
written to the output file.

2 The procedure establishes an UNDEFINEDFILE ON-unit for any error
conditions that occur in creating the logical link; at the label FILE_ERROR,
the status code is reported and the procedure exits.

3 The ENDFILE condition provides for a normal termination of the logical link.
When the program SOURCE_TASK closes the file TASKNAME, an end-of-file
condition is returned on the next read attempted in TARGET_TASK.

4 The first OPEN statement opens the file SYS$NET; if the file is opened
successfully, the network connection is established. The second OPEN
statement opens the file TASK.DAT, the output file that will be created at the
target node, in the default directory for the user named BEANS.

5 The read loop in this procedure reads a message from the logical link,
edits the data, and places the record in the output file.

14–4 Accessing Files on a Network

Example 14–2 A PL/I Target Task

TARGET_TASK: PROCEDURE; /* 1 */

DECLARE (INFILE,OUTFILE) FILE; /* Files */
DECLARE 1 LOG_MESSAGE, /* Structure to read in messages */

2 STATUS FIXED BIN(31),
2 TEXT CHARACTER(40) VARYING;

DECLARE MESSAGE CHARACTER(80); /* Variable to convert message */

PUT STRING(MESSAGE) EDIT(’ ’) (A(80));

ON UNDEFINEDFILE(INFILE) GOTO FILE_ERROR; /* Network errors */ /* 2 */

ON ENDFILE(INFILE) GOTO FINISH; /* Normal completion */ /* 3 */

OPEN FILE (INFILE) RECORD SEQUENTIAL INPUT
TITLE (’SYS$NET’); /* Open SYS$NET */ /* 4 */

OPEN FILE(OUTFILE) RECORD SEQUENTIAL OUTPUT
TITLE(’TASK.DAT’); /* Open output log file */

LOOP: /* 5 */
READ FILE(INFILE) INTO (LOG_MESSAGE);
PUT STRING(MESSAGE) EDIT(STATUS,TEXT) (F(6),X,A);
WRITE FILE(OUTFILE) FROM (MESSAGE);
GOTO LOOP;

FINISH:
CLOSE FILE(INFILE);
CLOSE FILE(OUTFILE);
RETURN;

FILE_ERROR:
PUT SKIP LIST(’Input file error’,ONCODE());
RETURN;

END;

Accessing Files on a Network 14–5

15
Storage Allocation

This chapter describes the following topics:

• Program sections, which are groupings of data made by the compiler and
used by the linker

• The addressability of variables

Refer to the PL/I for OpenVMS Systems Reference Manual for information on
storage classes.

15.1 Program Sections
When the PL/I compiler creates an object module, it groups data in the object
module into contiguous areas called program sections. The data is grouped
according to its attributes—for example, whether it contains executable code or
read/write variables.

The compiler also writes, into each object module, information about the program
sections contained in it. The linker uses this information when it binds object
modules into an executable image. As the linker allocates virtual memory for the
image, it groups program sections that have similar attributes.

15.1.1 Attributes of Program Sections
Table 15–1 lists the attributes that can be applied to program sections.

Table 15–1 Program Section Attributes

Attribute1 Meaning

PIC or NOPIC The program section or data it refers to does not depend on any
specific virtual memory location (PIC), or the program section
depends on one or more virtual memory locations (NOPIC).

CON or OVR The program section will be concatenated with other program
sections with the same name (CON), or will be overlaid on the same
memory locations (OVR).

REL or ABS The data in the program section must be relocated to a virtual
memory address (REL), or does not occupy virtual memory (ABS).

GBL or LCL The program section contains definitions for symbols that are
shared with other program sections or modules (GBL), or are local
to the current program section (LCL).

1This column lists pairs of conflicting attributes.

(continued on next page)

Storage Allocation 15–1

Table 15–1 (Cont.) Program Section Attributes

Attribute1 Meaning

EXE or NOEXE The program section contains executable code (EXE), or does not
contain executable code (NOEXE).

WRT or NOWRT The program section contains data that can be modified (WRT), or
data that cannot be modified (NOWRT).

RD or NORD These attributes are not currently used.

SHR or NOSHR The program section can be shared in memory (SHR), or cannot be
shared in memory (NOSHR).

1This column lists pairs of conflicting attributes.

15.1.2 Program Sections Created by PL/I
PL/I creates the following program sections for every program:

• $CODE—contains all executable code and constant data.

• $DATA—contains all internal static variables.

PL/I also creates additional program sections for external variables and global
symbols. Table 15–2 summarizes the program sections that PL/I creates for
variables declared with different storage class attributes.

Table 15–2 Program Sections for PL/I Variables

Storage
Class
Attributes

Program
Section
Name1

Program
Section
Attributes

EXTERNAL
CONTROLLED

name PIC, OVR, REL, GBL,
NOSHR, NOEXE, RD, WRT

EXTERNAL STATIC2 name PIC, OVR, REL, GBL,
SHR, NOEXE, RD, WRT

EXTERNAL READONLY name PIC, OVR, REL, GBL,
SHR, NOEXE, RD, NOWRT

INTERNAL STATIC $DATA PIC, CON, REL, LCL,
NOSHR, NOEXE, RD, WRT

INTERNAL READONLY $CODE PIC, CON, REL, LCL,
SHR, EXE, RD, NOWRT

GLOBALDEF $DATA PIC, CON, REL, GBL,
SHR, NOEXE, RD, WRT

GLOBALDEF (psect-name) psect-name PIC, CON, REL, GBL,
SHR, NOEXE, RD, WRT

GLOBALDEF READONLY $CODE or
psect-name

PIC, CON, REL, GBL,
SHR, NOEXE, RD, NOWRT

Not user-specified $ADDRESS_DATA PIC, CON, REL, LCL,
NOSHR, NOEXE, RD, NOWRT

1Here, name is the identifier of the variable declared with the specified attribute, and psect-name is the name specified in
the definition of the global symbol.
2File constants have the same attributes as EXTERNAL STATIC variables, but with the NOSHR attribute instead of the
SHR attribute.

15–2 Storage Allocation

15.1.3 Sharing Program Sections with FORTRAN Procedures
In a FORTRAN program, separately compiled procedures share data by declaring
common sections and specifying the names of one or more variables to be placed
in those sections. Each named common section represents a separate program
section; each procedure that declares the common section with the same name
can access the same variable.

A PL/I external variable called XYZ therefore corresponds to a FORTRAN
common section called XYZ. The following examples illustrate PL/I procedures
and FORTRAN procedures that share data.

STRING.PLI
STRING: PROCEDURE OPTIONS(MAIN);
DECLARE XYZ EXTERNAL CHARACTER(20),

PRSTRING ENTRY;
XYZ = ’THIS IS A STRING’;
CALL PRSTRING;

END;

PRSTRING.FOR
SUBROUTINE PRSTRING

CHARACTER*20 STRING
COMMON /XYZ/ STRING
WRITE (6,20) STRING

20 FORMAT (’ ’,A20)
RETURN
END

In this example, the PL/I external variable XYZ corresponds to the FORTRAN
common section named XYZ. The FORTRAN procedure displays the data in the
common section.

To share more than one variable in a program section with a FORTRAN program,
the PL/I variables must be declared within a structure. For example:

NUMBERS.PLI
NUMBERS: PROCEDURE;

DECLARE 1 NUMBERS EXTERNAL,
2 FIRST FIXED(31),
2 SECOND FIXED(31),
2 THIRD FIXED(31),

FNUM ENTRY;

FIRST = 1;
SECOND = 2;
THIRD = 3;

CALL FNUM;
END;

FNUM.FOR
SUBROUTINE FNUM

INTEGER*4 INUM,JNUM,KNUM
COMMON /NUMBERS/ INUM,JNUM,KNUM
WRITE (6,10) (INUM,JNUM,KNUM)

10 FORMAT (3I8)
RETURN
END

Storage Allocation 15–3

In this example, the fixed binary variables declared in the PL/I external structure
NUMBERS correspond to the FORTRAN INTEGER*4 variables in the common
section of the same name. Note that in a FORTRAN common section, all
variables must be either integers or character strings. Variables of different
data types cannot be grouped into the same common section.

15.2 Addressability
Variables are either addressable or nonaddressable. In some contexts, such as in
argument lists of certain built-in functions, a variable must be addressable. A
variable is addressable if it has all of the following properties:

• It is not suitable for bit-string overlay defining; that is, it does not consist
entirely of unaligned bit data.

• It is not an unconnected array (typically a member of an array of structures).

• It is not declared with the VALUE attribute.

These rules ensure that the variable can occupy contiguous storage beginning on
a byte boundary. (Note that constants are never addressable in PL/I.)

15–4 Storage Allocation

A
PL/I Messages

This appendix describes the messages produced by the following:

• The PL/I for OpenVMS VAX and PL/I for OpenVMS AXP compilers

• The OpenVMS run-time system

• The CRX (%CRX messages issued during use of the Common Data Dictionary)

The description of each message gives the severity, followed by additional
explanatory text and suggested action. Compiler messages with severities of
Error or Fatal require that you recompile the program after correcting the source
text.

A.1 Compiler Messages
The diagnostic messages produced by the PL/I for OpenVMS VAX and PL/I for
OpenVMS AXP compilers are listed in this section, alphabetized by identification.

ADDRARG, The argument of ADDR must be a byte addressable reference.
Error: The argument of the ADDR built-in function is not on a byte
boundary. For example, this error occurs if the argument is an unaligned bit
string.
User Action: Verify that the correct argument is specified for the ADDR
built-in function. If a bit-string variable is correctly specified, check that the
declaration of the variable has the ALIGNED attribute.

ADDRNOTREF, The argument of ADDR must be a reference to a variable.
Error: The ADDR built-in function specifies an argument that is a constant
or a global symbol.
User Action: Verify that the correct argument is specified for the ADDR
built-in function and that the argument is not a constant.

AGGMISMAT, The source and target of an assignment are aggregates that do
not match as required by the language rules.
Error: An assignment statement assigning the value of one array to another
or one structure to another references arrays or structures that are not
identical. This form of assignment is valid only when arrays with the same
data type, number of dimensions, and extents are used, and when structures
with the same hierarchy and data types are used.
User Action: Verify that the references in the assignment statement refer to
the correct aggregates. Use separate assignment statements if the source and
target of an assignment are aggregates that do not match.

PL/I Messages A–1

ALIGNARRAY, The CDD description for array item entity contains the
ALIGNED attribute. ALIGNED is being ignored by PL/I.
Informational: PL/I for OpenVMS VAX does not support the ALIGNED
attribute on arrays, so if it is specified in the CDD it is ignored.
User Action: No action is necessary.

ALIGNED, Entity has been declared with the ALIGNED attribute. Only BIT or
CHARACTER string variables can be declared ALIGNED.
Error: The ALIGNED attribute is specified with a conflicting attribute.
User Action: Correct the declaration of the variable.

AMBIGREF, This statement contains an ambiguous reference to entity.
Error: This error is produced when more than one structure contains a
member with the same identifier name, and the name is referenced without a
structure qualifier.
User Action: Determine the member name that should be referenced
and correct the reference by including a structure qualifier of the form
name1.name2.name3 . . . in the statement.

ANYCNOTSTAR, The ANY and CHARACTER attributes can only be used
together if the CHARACTER attribute is CHARACTER(*).
Warning: The ANY and CHARACTER attributes can be used together
only in the parameter declaration ANY CHARACTER(*). Fixed-length ANY
CHARACTER declarations are not allowed.
User Action: Correct the declaration to specify the length as an asterisk.

ARGCVRT, Implicit conversion. A procedure argument, entity, has been
converted to the parameter type entity.
Warning: The data type of the indicated argument does not match the data
type of the corresponding parameter descriptor, and the PL/I compiler has
converted the argument to the data type of the parameter. This situation may
or may not constitute an error.
User Action: To avoid this message in circumstances in which you want the
compiler to convert the argument, use an explicit conversion built-in function
(for example, CHARACTER, BINARY, or FLOAT). You can also suppress the
message by compiling the program with the /NOWARNINGS qualifier.

ARGLEQ253, A procedure reference contains more than 253 arguments.
Error: A CALL statement or a function reference specifies an argument list
with more than 253 arguments.
User Action: Examine the argument list to see if there is a syntax error. If
the list is correct, simplify the program so that no procedure requires more
than 253 arguments.

ARGOMIT, An argument can be omitted with the ,, notation only when the
called procedure is declared as OPTIONS(VARIABLE) or when the formal
parameter is declared with the OPTIONAL attribute.
Error: An argument list in a procedure invocation contains null arguments,
for example (a,,b).
User Action: Verify that the argument list in the procedure invocation
specifies all arguments that are required. If the procedure accepts default
arguments, declare the formal parameters with the OPTIONAL attribute.

A–2 PL/I Messages

ARITHSYN, Invalid syntax in an arithmetic constant.
Error: The statement contains an arithmetic constant that is incorrectly
specified.
User Action: This message may be followed by additional messages that
provide syntactic reasons for the failure. Determine the type of constant
required in the statement and the correct way to specify the constant. Correct
the statement.

ARRAYOVFL, FIXEDOVERFLOW occurred in calculating the multipliers or
virtual origin of the array entity.
Error: In an array with constant bounds (for some or all of its dimensions),
the FIXEDOVERFLOW condition occurred when the compiler tried to
calculate the multipliers and virtual origins of the array.
User Action: Check that the values specified for the array bounds are
correct. Avoid using lower bound values that are very large numbers.

ASSIGNCVT, Implicit conversion in an assignment, entity has been converted to
an entity target.
Warning: The data type of the indicated expression does not match the
data type of the target variable in the assignment, and the PL/I compiler
has converted the expression to the data type of the target variable. This
situation may or may not constitute an error.
User Action: To avoid this message in circumstances in which you want
the compiler to convert the expression to the data type of the target, use an
explicit conversion built-in function (for example, CHARACTER, BINARY, or
FLOAT). You can also suppress the message by compiling the program with
the /NOWARNINGS qualifier.

ATTRNOTSPC, Incomplete attributes have been specified for entity.
Error: Something is missing in a declaration.
User Action: Correct the declaration.

BADAGGARG, Entity is an invalid array, structure, or area argument. Such an
argument must be a variable reference, must not be enclosed in parentheses,
and must exactly match the corresponding parameter.
Error: An array dimension or a structure declaration specified in a
parameter descriptor does not match the corresponding dimension or
structure of the variable specified in the procedure reference. For example,
this error occurs if a parameter descriptor specifies a two-dimensional array
and the procedure reference specifies the corresponding argument with a
reference to a three-dimensional array.
User Action: Determine whether the parameter descriptor correctly specifies
the data type, dimensions, and structure of the required parameter. If so,
correct the declaration of the corresponding argument or the corresponding
argument reference. If the argument is specified correctly, correct the
parameter descriptor. If the procedure is a non-PL/I procedure, use the ANY
attribute in the parameter descriptor.

PL/I Messages A–3

BADALLOCN, The argument of ALLOCATION must be a reference to a
CONTROLLED variable.
Error: The ALLOCATION built-in function returns the number of
generations of a variable and is used only with CONTROLLED variables. A
variable with a storage class other than CONTROLLED was given as the
argument of the ALLOCATION built-in function.
User Action: Supply a valid argument and recompile the program.

BADANYARG, The procedure argument, entity, is not valid for passing to the
corresponding parameter, which was declared as ANY or ANY VALUE.
Error: A parameter descriptor specifies ANY or ANY VALUE, but the
argument list specifies an expression that is not valid for these argument-
passing attributes. For example, this error occurs when an expression whose
value cannot be contained within 32 bits is specified for a parameter declared
with the VALUE attribute.
User Action: Determine how the argument is to be passed, and correct
either the parameter descriptor or the argument reference.

BADARG, The procedure argument, entity, is not valid for conversion to the
entity parameter type.
Error: The indicated reference or expression specified in an argument cannot
be converted to the data type of the corresponding parameter.
User Action: Determine whether the parameter descriptor was correctly
specified or if the argument is correct, and change either the parameter
descriptor or the argument list.

BADARITH, The noncomputational value, entity, has been used in a context
requiring an arithmetic value.
Error: The indicated expression or reference has a data type that cannot be
converted to an arithmetic expression, yet has been specified in a context that
requires an arithmetic expression.
User Action: Correct the expression so that it specifies an arithmetic data
type or a data type that can be converted to arithmetic.

BADASSIGN, The source operand, entity, of an assignment is invalid for
conversion to the entity target.
Error: The variable or expression on the right side of the assignment
statement has a data type that is incompatible with the data type of the
target.
User Action: Correct the expression so that it specifies a data type that can
be converted to the data type of the target. If the target is an array variable,
or a member of a dimensioned structure, be sure that the array reference
contains a valid subscript.

BADATATYPE, An expected entity value was not found. One of the values in
this statement has a data type that is inconsistent with the context in which
the value is used.
Error: A data item of one type has been specified in a context where an item
of another data type is required. For example, this error occurs if the target

A–4 PL/I Messages

label on the GOTO statement is not a label but a variable declared with other
data type attributes.
User Action: Verify the data type of the item, and correct the declaration of
the variable.

BADBASE, The CDD description for structure item entity specifies an
incompatible base.
Error: PL/I supports only decimal or binary numbers. The Common Data
Dictionary structure item entity is neither decimal nor binary.
User Action: Change the Common Data Dictionary description to an
appropriate data type.

BADBIT, The noncomputational value, entity, has been used in a context
requiring a bit-string value.
Error: The indicated name or expression has a data type that cannot be
converted to a bit string.
User Action: Correct the expression or the reference so that it has a data
type that can be converted to a bit string.

BADBITCON, A bit-string constant contains an invalid digit or the digit
following the B is not 1, 2, 3, or 4.
Error: A bit-string constant is incorrectly specified.
User Action: Determine the correct base for the bit-string constant, and
correct the specification.

BADCHAR, A noncomputational value, entity, has been used in a context
requiring a character-string value.
Error: The indicated variable or expression has a data type that cannot be
converted to a character string, but is used in a context that would require
such conversion.
User Action: Correct the expression so that it specifies a character-string
data type or a data type that can be converted to character.

BADCLATTR, Entity is declared with duplicate or conflicting attributes. Entity
conflicts with entity.
Error: This error occurs when conflicting attributes of any type are specified.
Two examples of errors that produce this message are as follows:

• File description attributes are specified with data type attributes, or are
specified for file variables or file parameters.

• The VALUE attribute is specified for any variable for which no data type
attributes are specified, or is specified with the READONLY attribute.

User Action: Determine which is the incorrect attribute of the name, and
remove it from the declaration.

PL/I Messages A–5

BADCLSLABL, The closure label in this statement does not match the label
prefix of the containing DO, SELECT, BEGIN, or PROCEDURE block.
Error: Multiple closure is not permitted in PL/I for OpenVMS VAX. Each
DO, BEGIN, PROCEDURE, and SELECT statement in the program must
have a corresponding END statement.
User Action: Verify the label on the END statement in error. The label must
match the label on the most recent DO, BEGIN, PROCEDURE, or SELECT
statement that does not already have a corresponding END statement.

BADCMPAREA, AREAs cannot be compared using relational operators.
Error: An AREA variable cannot be used in an expression with a relational
operator.
User Action: Change the program to avoid using AREA variables in
relational expressions.

BADCOMPARE, Invalid comparison. The operands of relational operators must
both be arithmetic values, string values, or compatible noncomputational
items. Noncomputational data other than AREAs can be compared only for
equality.
Error: A variable or value of a noncomputational data type is specified in a
relational operation using the < or> operators or forms of these operators. For
example, this error occurs if you use pointer or file variables in a comparison
that tests something other than equality or inequality.
User Action: Verify that the correct variable references are specified in the
expression and that the statement does not violate the rules for operands of
relational operators. Correct the statement.

BADCONARG, The first argument, entity, of a conversion built-in function is not
a computational value.
Error: The indicated argument reference or expression does not have
a computational data type and therefore cannot be converted to the
computational data type result of the function.
User Action: Correct the argument list for the function.

BADDEFBAS, The base reference specified for the DEFINED variable entity is
not a connected variable reference.
Error: A variable is declared with the DEFINED attribute, and the
variable specified in the DEFINED attribute is a variable whose storage is
unconnected.
User Action: Correct the variable declaration so that it refers to a variable
whose storage is connected.

BADELEREF, The refer element entity references storage in the containing
structure.
Error: The refer element cannot reference any storage in the structure
containing the refer element.
User Action: Change the refer element.

A–6 PL/I Messages

BADENVAL, Invalid argument in an ENVIRONMENT option. An entity was not
found where expected.
Error: An ENVIRONMENT option requires a restricted integer expression, a
Boolean expression, a character string, or a variable reference. The statement
in error contains an ENVIRONMENT option that specifies a value that is not
consistent with its type. For example, this error occurs if a character-string
argument is specified for the MAXIMUM_RECORD_SIZE argument.
User Action: Determine the data type required, and correct the
ENVIRONMENT option.

BADEXTRACT, The first argument of INT or POSINT is an array, structure, or
named constant.
Error: The first element of INT or POSINT must be a reference to a scalar
variable or expression. It cannot be an array, structure, or named constant.
It can, however, be an array member or an elementary structure member.
User Action: Make certain that the first element of INT or POSINT is a
legal argument.

BADFILATTR, This statement contains inconsistent file description attributes or
options that conflict with those attributes.
Error: The attributes specified for a file constant in a DECLARE or
OPEN statement are incompatible; for example, both the STREAM and the
UPDATE attributes are specified. This error also occurs when conflicting
ENVIRONMENT options are specified for a file.
User Action: Determine which attributes or options are in conflict, and
correct the statement.

BADFMTLABL, Entity is not the label of a FORMAT statement.
Error: An R format item in a format specification list for a GET or PUT
statement contains a reference to a name that is not the label of a FORMAT
statement.
User Action: Verify that the label matches the label on a valid FORMAT
statement, and correct the statement.

BADFREETAR, A FREE statement must free a nonmember BASED or
CONTROLLED variable.
Error: A FREE statement specifies a variable that is not a BASED variable,
a CONTROLLED variable, or a variable that is a member of a structure.
User Action: Correct the reference in the FREE statement.

BADINITVAL, Entity has been declared with an INITIAL attribute. An INITIAL
attribute cannot be specified for variables of this storage class.
Warning: The INITIAL attribute is specified for a defined variable or for a
parameter.
User Action: Ensure that the variable has the AUTOMATIC, STATIC,
BASED, CONTROLLED, or GLOBALDEF attribute. The INITIAL attribute
is invalid for all other storage classes.

PL/I Messages A–7

BADINT, The noncomputational value, entity, has been used in a context
requiring an integer value.
Error: The indicated expression or reference has a data type that cannot
be converted to an integer, yet has been used in a context that requires an
integer.
User Action: Correct the reference so that it specifies an integer.

BADKEYARG, The keyword argument entity does not match any formal
argument name for this preprocessor procedure.
Error: A keyword specified in a preprocessor procedure with the
STATEMENT option does not match any of the parameters.
User Action: Check the spelling of the keyword and recompile.

BADLABSUB, The label index in a LEAVE statement must be an integer
constant.
Error: The label can be a label constant or a subscripted label constant, but
the subscript must be specified with an integer constant.
User Action: If the label constant is a subscripted label constant, ensure
that the subscript is an integer constant.

BADLEAVE, The LEAVE statement must be contained by a DO group in this
block.
Error: A LEAVE statement must be contained in a DO-group, which can be
nested. However, all DO-groups containing the LEAVE statement must be in
the same block.
User Action: Ensure that the LEAVE statement is contained within a
DO-group and that they are both contained in the same block.

BADLEFTSID, One of the targets of this assignment is not a variable or
pseudovariable reference.
Error: The left side of an assignment statement contains a constant or an
invalid reference.
User Action: If the target of the assignment is a variable, ensure that it is
properly declared. If the target is a function reference, it must be one of the
PL/I built-in functions that are valid as pseudovariables.

BADLIKEDCL, A variable declared with the LIKE attribute references another
variable declared circularly LIKE itself.
Error: The LIKE attribute can reference major or minor structures known
to the current block. But the LIKE attribute cannot directly or indirectly
reference a structure containing itself.
User Action: If the LIKE attribute has already been used once, it may be
necessary to specifically declare the members of the structure. Frequently
used structure declarations can be entered in the PL/I for OpenVMS VAX
Common Data Dictionary and then used repeatedly in programs.

A–8 PL/I Messages

BADLIKEREF, A variable declared with the LIKE attribute must reference a
legal structure.
Error: The referenced structure contains errors that prohibit it from being
recognized as a legal structure. Other error messages probably indicate the
source of the error in the referenced structure.
User Action: Determine the errors in the referenced structure and correct
them.

BADLIKEVAR, Entity, which has been declared with the LIKE attribute, is not
a structure variable.
Error: The LIKE attribute can be applied only to major and minor structures
that are known to the current block.
User Action: Check if the referenced structure is contained in the current
block. If it is, determine whether it meets the syntax requirements of the
LIKE attribute.

BADMEMBER, Entity has been declared with the MEMBER attribute, but it is
not a structure member.
Error: The MEMBER keyword can be used only to denote that an item is
a member of a structure. It cannot be used to force an entity that is not a
structure member to have the MEMBER attribute.
User Action: Make the entity being declared into a structure member or
remove the MEMBER keyword.

BADOPTVAR, Entity is declared OPTIONS(VARIABLE). Its formal parameters
cannot be declared with the OPTIONAL, TRUNCATE, or LIST attributes.
Warning: OPTIONS(VARIABLE) procedures cannot have parameters
declared with the OPTIONAL, TRUNCATE, or LIST attributes, because
OPTIONS(VARIABLE) implies all of these.
User Action: Remove the OPTIONS(VARIABLE) attribute from the entry
declaration.

BADOUTER, Entity is declared outside of a procedure. It cannot be declared
with the AUTOMATIC storage class. STATIC has been assumed.
Warning: A variable can be declared outside of a procedure, but the variable
must have an explicit storage class, which must not be AUTOMATIC. Storage
class STATIC is assumed by default.
User Action: Declare the variable with an explicit storage class.

BADPARAM, Entity has been declared with the PARAMETER attribute, but it
does not appear in any parameter list of this routine.
Error: The PARAMETER attribute was used for a declaration of something
other than a parameter.
User Action: Use the entity being declared in a parameter list so that
it really is a parameter, or remove the PARAMETER attribute from the
declaration.

BADPAREN, This statement contains unbalanced parentheses.
Error: A statement contains different numbers of open parentheses and
closed parentheses.
User Action: Verify the syntax of the statement to determine where a
parenthesis is needed, and correct the statement.

PL/I Messages A–9

BADPERSTMT, Invalid syntax in a preprocessor statement.
Error: A preprocessor statement has not been correctly specified. The format
for a preprocessor statement is as follows:

%[label:] STATEMENT;

User Action: Verify the syntax and recompile the program.

BADPICTURE, Entity is an invalid picture.
Error: The string specified in a picture specification contains a character that
is not a valid picture character, specifies an iteration factor for a character
that must not be repeated, or contains an iteration factor that is not correctly
specified.
User Action: Verify and correct the picture.

BADREFMEM, The member entity contains a REFER option and precedes the
refer object.
Error: The REFER option has been specified in the program before the refer
object has been declared.
User Action: Move the refer object declaration so that it precedes all
references to it in the structure.

BADREFSTR, The non-based structure entity has a member that contains a
REFER option.
Error: The REFER option can be used only with structures declared with the
BASED attribute.
User Action: Declare the structure BASED, or remove the REFER option.

BADREPT, An incorrect repetition factor has been specified. A repetition factor
of 1 has been supplied.
Warning: The compiler was unable to replicate the specified string because
the replication factor was improperly specified.
User Action: Verify that the syntax is correct; the string should be enclosed
in apostrophes and the replication factor enclosed in parentheses.

BADRETVAL, The value, entity, in a return statement is not valid for conversion
to the entity function type.
Error: The indicated return value specified in the RETURN statement does
not have a data type that is valid for conversion to the data type specified in
the corresponding returns descriptor.
User Action: Determine the data type that is to be returned by the function,
and correct either the returns descriptor or the RETURN statement.

BADSTRDCL, Entity is an apparent structure member, but does not immediately
follow a variable with a level number.
Error: A structure is incorrectly declared, or a variable declaration is
preceded with an extraneous integer.
User Action: If the variable is a member of a structure, verify that the
structure declaration is properly numbered and properly punctuated. The
first level number in a structure declaration must be 1. If the variable is not
a member of a structure, check the syntax of the declaration and remove the
number preceding the variable name.

A–10 PL/I Messages

BADSTRUCT, Entity has been declared with the STRUCTURE attribute, but it
is not a structure.
Error: The STRUCTURE keyword can be used only to indicate that an item
is a structure. It cannot be used to force a non-structure entity to have the
structure attribute.
User Action: Make the entity being declared into a structure or remove the
STRUCTURE keyword.

BADTARGET, A reference in an assignment context is not valid for assignment.
Error: The target of an assignment is a reference to a named constant, or to
a variable with the READONLY or VALUE attribute.
User Action: Correct either the reference or the declaration of the name.

BADTEXTEND, Invalid end of text. Check for unbalanced apostrophes or
unbalanced comments. This line is the first incorrect line.
Error: The compiler reached the end of the input file while it was reading a
character-string constant or a comment.
User Action: Locate the unterminated comment or string constant, and
correct it.

BADTRUNCATE, Entity is a multi-positional parameter. It cannot be declared
with the TRUNCATE attribute.
Error: The TRUNCATE attribute is not supported for multi-positional
parameters.
User Action: Remove the TRUNCATE attribute from the declaration.

BADTYPEDCL, A variable declared with the TYPE attribute entity references
another variable declared circularly like itself.
Error: The TYPE attribute can reference variables known to the current
block. But the TYPE attribute cannot directly or indirectly reference a
variable whose type depends on the type of the current variable.
User Action: If the TYPE attribute has already been used once, it may be
necessary to specifically declare the variable.

BADTYPEREF, A variable declared with the TYPE attribute entity must
reference a legal structure.
Error: The referenced structure contains errors that prohibit it from being
recognized as a legal structure. Other error messages probably indicate the
source of the error in the referenced structure.
User Action: Determine the errors in the referenced structure and correct
them.

BADUNION, Entity has the attribute UNION but does not have a level number
or has no members.
Error: A variable declared with the UNION attribute must be a major or
minor structure with level numbers. A reference to one member of a union
refers to the storage occupied by all members of the union, that is, to all
members having the next higher-level number. Therefore, level numbers
locate storage for union members.
User Action: Include level numbers in the declaration of a union. Make
certain that the UNION attribute refers to existing higher-level numbers.

PL/I Messages A–11

BADUNSPREF, The argument of UNSPEC must be a reference to a scalar
variable or a reference to an element of an array or a structure.
Error: The UNSPEC built-in function is used incorrectly.
User Action: Correct the reference to UNSPEC. Its argument cannot be a
constant or a structure name.

BADVALUSE, An expected entity value was not found. One of the values in this
statement has a data type that cannot be converted to the type required by
the context in which the value is used.
Error: A noncomputational data type is specified when a computational
data type is required, or vice versa. For example, this error occurs if the
CHARACTER built-in function specifies a pointer or entry value for an
argument.
User Action: Verify that the variable in question is correctly declared. If it
is, correct the statement so that it refers to a variable of the correct data type.

BASENOTAREA, The reference specified as the base area for the offset variable
entity is not a reference to an area variable.
Error: The data type of the variable specified in the OFFSET (reference)
attribute is not AREA.
User Action: If the reference is correct, make sure that its declaration
contains the attribute AREA. Otherwise, specify a variable that is an area.

BASENOTLOC, The reference in the BASED attribute specified for the variable
entity is not a reference to a locator variable.
Error: The expression specified in the BASED attribute for a BASED
variable or in the SET option of an ALLOCATE statement is not a reference
to a POINTER or OFFSET variable. The use of the BASED variable in the
context of this message requires that the value be a locator variable that can
be written.
User Action: Change the BASED expression or the SET option to be a
reference to a locator variable.

BIFARGCNT, A built-in function has been referenced with the wrong number of
arguments.
Error: Too many or not enough arguments are specified in a reference to a
built-in function.
User Action: Verify the argument list required by the built-in function, and
correct the statement.

BIFLTSCAL, A built-in function that produces a floating-point result cannot
specify a scale factor.
Error: A built-in function that returns either a floating-point or fixed-point
result, depending on its arguments, specifies a scale factor for an argument
that is floating point.
User Action: Correct the argument list, omitting the scale factor.

A–12 PL/I Messages

BIGINT, The integer value entity is too big for the context in which it occurs.
Error: An integer constant or an integer value that can be
computed at compile time is too large in magnitude. For example, in
SUBSTR(S,I,1024*124), the size argument is too large.
User Action: Determine the valid range of values for the context, and correct
the source program.

BIGPICTURE, Entity results in a compiled picture that exceeds the
implementation’s limit. Reduce the size of the picture and recompile.
Error: A picture specification is too complex or contains more than 255
characters.
User Action: Correct the picture.

BITNOTBIN, Implicit conversion. A bit string, entity, has been used as the first
operand of a FIXED, FLOAT, or DECIMAL built-in function.
Warning: The first operand of the built-in functions listed must be
arithmetic, but a bit-string argument was specified. The compiler converted
the bit-string argument to binary.
User Action: To avoid this message when you want the compiler to convert
the bit-string expression to the appropriate arithmetic data type, use the
BINARY built-in function, followed by a FIXED, DECIMAL, or FLOAT built-
in function, if necessary. You can also suppress the message by compiling the
program with the /NOWARNINGS qualifier.

BLANKGIVEN, An arithmetic constant must be separated from the following
symbol by a delimiter. A blank delimiter has been supplied.
Warning: This message indicates a syntax error in a constant, for example,
an invalid character in a floating-point number or the omission of apostrophes
around a bit-string constant.
User Action: Correct the constant.

BLAWHEZER, The CDD description for structure item entity contains the Blank
When Zero attribute. Blank When Zero is being ignored by PL/I.
Informational: PL/I does not support the Common Data Dictionary Blank
When Zero attribute.
User Action: None.

CDDERROR, Common Data Dictionary description extraction condition for
pathname entity.
Informational: The PL/I compiler is in the process of extracting a data
definition from the Common Data Dictionary.
User Action: See the accompanying messages for more information.

CDDTOOBIG, The attributes for some member of the Common Data Dictionary
record description entity exceed the implementation’s limit for member
complexity.
Error: A member of the Common Data Dictionary record description has too
many attributes and has created a program that is too large.
User Action: Change the Common Data Dictionary description to make the
field description smaller.

PL/I Messages A–13

CDDTOODEEP, The attributes for the Common Data Dictionary record
description entity exceed the implementation’s limit for record complexity.
Error: The Common Data Dictionary record descriptions are nested too
deeply.
User Action: Change the Common Data Dictionary description to reduce the
level of nesting in the record description.

CIRCDECL, The declaration of entity is circular. Some reference or expression
in this declaration depends on the declaration itself.
Error: The compiler cannot resolve a reference, as in DECLARE P POINTER
BASED(P).
User Action: Correct the reference so that its definition depends on some
other variable.

CMPLXDOPE, The dope vector required for the argument entity is too
complicated.
Error: A structure parameter has so many members with asterisk (*)
extents that the required dope vector cannot be represented in the compiler’s
intermediate language.
User Action: Simplify the parameters.

CNDNAMEVAL, A parenthesized name or value is not valid with the entity
condition.
Error: Only the I/O condition names and the VAXCONDITION condition
name can specify values.
User Action: Correct the ON condition name in the statement.

COLMAJOR, The CDD description for structure item entity specifies that it is a
column-major array.
Error: PL/I only supports row-major arrays.
User Action: Change the Common Data Dictionary description to specify a
row-major array.

CONFLATTR, Attributes declared for entity conflict with factored attributes.
Error: An attribute specified for a variable within a list of factored attributes
conflicts with an attribute specified in the variable declaration. For example,
this error occurs if a precision or extent is specified twice and the values do
not match, as in DECLARE (X CHAR(8),Y) CHAR(10);.
User Action: Determine which declaration of the attribute is invalid, and
correct the statement.

CONFLOPT, The entity options entity and entity conflict.
Error: The specified recording locking options conflict with each other.
User Action: Remove some of the options.

A–14 PL/I Messages

CONPREC, The precision arguments of BINARY, DECIMAL, FIXED, FLOAT,
DIVIDE, ADD, and MULTIPLY built-in functions must be decimal integer
constants.
Error: A nonconstant value is specified for the precision argument of one of
the built-in functions listed.
User Action: Correct the argument list for the built-in function in error so
that it specifies a constant value for the precision argument. Replace the
variable specified for the precision argument with an integer constant.

CONSTCOND, A condition occurred while an expression with constant operands
was being evaluated.
Warning: The compiler evaluated an expression at compile time which
resulted in the occurrence of a PL/I condition. The most common condition
that occurs is FIXEDOVERFLOW.
User Action: Try to determine which expression caused the condition.
Look especially at subscripts, the second and third arguments of SUBSTR
references, expressions for string sizes, and array bounds. When you locate
the reference (you may want to use the debugger to help locate the reference),
correct it.

CONSTCVT, An ERROR occurred during the conversion of the constant entity to
the context in which it is used.
Error: A constant is either invalid for conversion to another data type
(for example, the string ’XXX’ cannot be converted to arithmetic), or the
FIXEDOVERFLOW or OVERFLOW condition occurred during the conversion.
User Action: Correct the constant.

CVTBIFSCAL, The scale factor specified in a conversion built-in function does
not lie in the range entity:31.
Error: A conversion built-in function, for example, DECIMAL, is invoked
with a scale-factor argument that is not a valid precision.
User Action: Determine the correct range of precision for the indicated data
type and specify a value in that range in the argument list for the built-in
function.

DCLENGTH, Entity has been declared with a length or size less than 0 or
greater than the maximum for its data type.
Error: The variable is incorrectly declared.
User Action: Determine the correct range of values for the data type of the
indicated variable and correct its declaration.

DCLEXPRES, An expression or reference contained within this DECLARE
statement is excessively complex. Reduce the complexity and recompile.
Fatal: The compiler cannot interpret the statement.
User Action: Rewrite the declaration using two or more statements.

PL/I Messages A–15

DCLTOOLONG, The total number of declarations, parameter descriptors, and
returns descriptors in this DECLARE statement exceeds the implementation’s
limit.
Fatal: The compiler cannot interpret the statement.
User Action: Simplify the statement. If it is a DECLARE statement,
place the declarations in different statements. If the statement contains a
parameter descriptor or returns descriptor, simplify the procedure calling
sequences.

DECDIVSCA, Use of the division operator resulted in a negative scale for the
result. A result scale of zero has been used instead.
Warning: The division operator (/), when used to divide fixed decimal
operands, yielded an expression that would have a negative scale factor in
full PL/I. The PL/I for OpenVMS VAX compiler does not allow negative scale
factors for fixed-point decimal numbers.
User Action: Use the DIVIDE built-in function to divide the fixed-point
operands, and specify the scale of the result.

DEFBASCLA, The base reference specified for the DEFINED variable entity is
itself DEFINED or BASED.
Warning: The PL/I for OpenVMS VAX language does not allow a DEFINED
variable to be defined on a variable that is either BASED or DEFINED.
User Action: If you intended to define the variable on a BASED or
DEFINED variable, you need do nothing; the results are likely to work as you
expect.

DEFDATATYP, The undeclared name entity has been declared as a FIXED
BINARY variable in the containing procedure.
Warning: A name that is not declared or that is not a label has been
referenced; the compiler gives the attributes FIXED BINARY by default.
User Action: Check that the reference is correctly spelled; if it is not, correct
the spelling. If the variable is not declared, declare it with the appropriate
attributes for its use.

DESCRIBIF, Invalid use of the DESCRIPTOR built-in function.
Error: The DESCRIPTOR built-in function can be used in an argument
list only to specify that an argument be passed by descriptor to a non-PL/I
procedure; the corresponding parameter must be declared with the attributes
ANY and VALUE. This message indicates that you are using the built-in
function in an inappropriate context. Note that by default the PL/I compiler
passes character strings and arrays by descriptor, so you need not specify the
manner in which they are passed.

This message is also issued when the DESCRIPTOR built-in function
is specified with more than one argument or with an argument that is
noncomputational, pictured, or an array of noncomputational or pictured
data.
User Action: Remove the reference to the built-in function from the
statement.

A–16 PL/I Messages

DICTABORT, %DICTIONARY processing of the Common Data Dictionary record
description entity aborted.
Error: The PL/I compiler is unable to process the Common Data Dictionary
record description.
User Action: See the accompanying messages for further information.

DIVSCALE, Use of the division operator produced a result whose scale factor
would exceed the implementation limit.
Error: The resulting scale factor must be in the range –31 through 31.
User Action: Use the DIVIDE built-in function to control the scale factor
used in the division operation, or change the scale factors of the values used
in the division operation.

DUMMYARG, A dummy argument has been created for entity, because it does
not exactly match the entity parameter.
Warning: The compiler converted the argument to the data type of the
corresponding parameter, and placed the result in a dummy argument. Thus,
it passes a reference to the dummy argument rather than to the actual
argument to the called procedure.
User Action: If the conversion is acceptable, and if the argument will not
be modified in the called procedure, you need do nothing. You can enclose
the argument in parentheses to suppress the message. However, if the
argument must be passed by reference so that the called procedure may
modify it, correct the declaration of the argument or the parameter descriptor
or parameter list for the corresponding parameter.

DUPATTR, Duplicate attribute in list near entity.
Error: An attribute was specified more than once for the declaration.
User Action: Change the list to specify attributes only once for each entity
being declared.

DUPDCL, This statement contains a duplicate declaration of entity.
Error: The same identifier is used in more than one declaration at the same
level.
User Action: Determine which declaration of the variable specifies the
incorrect attributes, if they are different, and change the incorrect declaration.

DUPLABL, This statement contains a label prefix that has appeared on a
previous statement in the same block.
Error: Two labels in the same block specify the same user-specified identifier
and constant subscript.
User Action: Correct the identifier or the subscript and all references to it.

DUPOPTN, This statement contains duplicate, missing, or conflicting options.
Error: A statement contains more than one specification of the same option;
for example, the LIST option is specified more than once in a PUT statement.
User Action: Determine which specification of the duplicated option is the
incorrect one, and delete it from the statement.

PL/I Messages A–17

DUPPRESCA, Multiple precisions or scale factors have been specified for this
variable.
Error: A variable can only have one precision and scale factor specified. For
example, declarations such as FIXED(31) BINARY(15) are not valid.
User Action: Remove the duplicate specifications.

DUPSIGN, Entity contains multiple sign symbols.
Error: A picture specification contains more than one plus or minus sign
symbol.
User Action: Correct the picture so that it contains only a single sign.

EMPTYARG, Entity has been referenced with an argument list that is
incompatible with its declaration. An empty argument list is required to
satisfy the declaration.
Error: A CALL statement or a function reference specifies an argument list
for a procedure that has no parameters.
User Action: Verify the arguments required for the procedure invocation. If
the parameter descriptor or parameter list does not specify any parameters,
the procedure invocation must not specify any arguments. Note whether
the parameter descriptor list or parameter list is in error; if so, correct it.
Otherwise, correct the procedure invocation.

ENDGIVEN, An END statement has been supplied to close a DO-group,
SELECT-group, begin block, or procedure.
Warning: The compiler inserted an END statement in the file.
User Action: The listing file, if any, indicates the END statement that
was inserted by PL/I. Verify that PL/I placed the END statement in the
correct position. This message is informational, and the program may be
correct; however, you should correct the source program and insert the END
statement.

ENTRYGIVEN, Entity has been declared with a RETURNS attribute but no
ENTRY attribute. An ENTRY attribute has been supplied.
Warning: The compiler supplied the ENTRY attribute for a name that has
the RETURNS attribute.
User Action: Specify the ENTRY attribute on the declaration of the external
entry to avoid this message. This message is a warning, and the program will
be executed correctly.

ENTRYVALUE, An internal procedure is being passed by value. Uplevel
references to AUTOMATIC variables and PARAMETERS will be invalid.
Warning: If an internal procedure is passed by value, it cannot make uplevel
references to automatic variables or parameters because the entry’s frame
pointer will not be passed along with the address of the entry.
User Action: Change the declaration of the parameter to entry, or pass an
external procedure instead of an internal one.

ENTYPEDEF, The variable entity TYPE reference is an entry point which is not
allowed.
Error: An entry TYPE reference is not allowed.
User Action: Declare the variable with explicit attributes.

A–18 PL/I Messages

ENVSYN, Invalid syntax or value in ENVIRONMENT option.
Error: An ENVIRONMENT option is specified with an expression of a data
type that is not valid for the option.
User Action: Determine the data type required by the option, and correct
the expression.

EXTRATEXT, The source text contains extraneous data. Check for excess END
statements, unbalanced apostrophes, and unbalanced /* */.
Error: The source file contains data following the last END statement, or
following a string or comment.
User Action: Examine the listing file to locate the error. If there are too
many END statements, check that all PROCEDURE and BEGIN statements
are specified in the correct sequence. Correct the source program.

FIXBPREC, The precision specified for entity exceeds the implementation’s limit
of FIXED BINARY(31). The maximum precision of 31 has been supplied. Use
FIXED DECIMAL for larger values.
Warning: The maximum precision for fixed-point binary variables is 31; the
compiler changed a larger value to the maximum.
User Action: Correct the declaration of the variable so that it does not
specify a precision greater than 31.

FIXBSCALE, The scale factor q specified for entity is not in the range
-31<=q<=p, where p is the variable’s precision. The scale factor has been
set to zero.
Warning: Fixed-point binary numbers may have a scale factor within the
range –31 to 31, but the scale factor must not be greater than the specified
precision.
User Action: Adjust the scale factor so that it is less than the specified
precision.

FIXDPREC, The precision specified for entity exceeds the implementation’s limit
of FIXED DECIMAL(31). The maximum precision of 31 has been supplied.
Warning: The compiler changed the precision of the fixed-point decimal
variable.
User Action: Correct the declaration of the variable so that it does not
specify a precision greater than 31.

FIXDPRECZERO, The precision specified for a fixed decimal is zero which is not
in the implementation defined range of 1-31.
Error: The precision of a fixed-point decimal must be in the implementation
defined range of 1-31. This error indicates that a fixed-point decimal variable
was declared with a precision of zero, or one of the built-in functions specified
a fixed decimal precision of zero.
User Action: Either correct the declaration of the variable so that it does
not specify a precision of zero or correct the precision argument in the built-in
function reference that caused the error.

PL/I Messages A–19

FLTBPREC, The precision specified for entity exceeds the implementation’s
limit of FLOAT BINARY(entity). The maximum precision of entity has been
supplied.
Warning: The compiler changed the precision of the floating-point variable.
User Action: Correct the declaration of the variable so that it does not
specify a precision greater than the system’s maximum.

FLTDPREC, The precision specified for entity exceeds the implementation’s
limit of FLOAT DECIMAL(entity). The maximum precision of entity has been
supplied.
Warning: The compiler changed the precision of the floating-point variable.
User Action: Correct the declaration of the variable so that it does not
specify a precision greater than the system maximum.

IDENTSIZE, An identifier contains more than 31 characters. Only the first 31
characters will be used.
Warning: The compiler truncated a user-specified identifier that is longer
than 31 characters.
User Action: Shorten the identifier to 31 characters or less.

ILLABEL, Duplicate or out of order label for a GOTO statement with a label
array reference.
Error: A label with an asterisk subscript (i.e., label_name(*)) is out of order
or is a duplicate.
User Action: Remove the condition causing the error.

ILLIKEREF, The variable entity is declared with the LIKE attribute and
references a structure that contains a REFER option.
Error: The REFER option conflicts with the LIKE attribute because the
REFER option dynamically remaps storage for a structure.
User Action: Rename the variable or remove either the LIKE attribute or
the REFER option from the declaration.

ILLOTHER, OTHERWISE is associated with a label array which includes a
label with an asterisk subscript.
Error: OTHERWISE or a label with an asterisk subscript can be associated
with a label array but not both.
User Action: Remove the OTHERWISE from the GOTO (or GO TO)
statement.

ILLREFOBJ, A refer object entity is not a member of the same structure.
Error: The refer object reference must reference a refer object that is a
previous member of the structure containing the REFER option.
User Action: If possible, reposition the REFER option so that it follows the
refer object in the same structure.

ILLREFOPTN, The variable entity contains a REFER option, but is not a
member of a BASED structure.
Error: The REFER option can be applied only to members of BASED
structures. The program contains a REFER option that has been used with a
storage class other than BASED.
User Action: Change the storage class to BASED.

A–20 PL/I Messages

ILLSUBSCRIP, Illegal label array subscript.
Error: If the label array includes a target label with an asterisk subscript,
the label array subscript must be a scalar variable, an aggregate member, or
a function call whose parameter is a scalar variable or aggregate member.
User Action: Remove the condition causing the error.

ILLTYPEREF, The variable entity is declared with the TYPE attribute and
references a structure entity that contains a REFER option.
Error: The REFER option conflicts with the TYPE attribute because the
REFER option dynamically remaps storage for a structure.
User Action: Rename the variable or remove either the TYPE attribute or
the REFER option from the declaration.

IMPLBLTIN, Entity has been implicitly declared as a built-in function.
Warning: The undeclared name of a built-in function with no arguments has
been used without an explicit empty argument list; for example, DATE was
specified instead of DATE().
User Action: Declare the function or specify with the empty argument list.

INCSYN, Invalid syntax in %INCLUDE statement. The correct syntax is
‘‘%INCLUDE ’file-spec’;’’, ‘‘%INCLUDE text-module-name;’’ or ‘‘%INCLUDE
’text-library-name(text-module-name)’;’’.
Error: A %INCLUDE statement is incorrectly specified.
User Action: Examine the %INCLUDE statement. If the INCLUDE file is
in an individual file, the file specification must be enclosed in apostrophes. If
the INCLUDE file is in a text library module, apostrophes must not be used
and the module name must not contain any punctuation marks.

INITCVT, One of the initial values specified for entity cannot be converted to the
type of the variable.
Error: An invalid value is specified in an INITIAL attribute.
User Action: Compare the data type of the constants specified in the
INITIAL attribute list with the attributes specified for the variable.
Determine which has the invalid data type, and correct it.

INITVALUE, The CDD description for structure item entity contains the Initial
Value attribute. Initial Value is being ignored by PL/I.
Informational: PL/I does not support the Common Data Dictionary Initial
Value attribute.
User Action: None.

INNOTAREA, The reference in the IN option of an ALLOCATE or FREE
statement must be to an AREA.
Error: AREAs are the only variable type that can have other variables
allocated inside them.
User Action: Correct the IN option to refer to an area.

PL/I Messages A–21

INVALCVT, A value used in this statement cannot be converted to the data type
required by the context in which it is used.
Error: An operand in an expression is not compatible with the data type
required for the expression; for example, a pointer value is used in an
arithmetic operation such as addition.
User Action: Verify the data types of the variables in the expression, and
correct the statement.

INVATTRSYN, Invalid syntax in attribute list or duplicate attribute near entity.
Error: An attribute list contains an erroneous symbol, for example, a comma
or parenthesis, where the compiler does not expect it. This error also occurs
if the same attribute is specified more than once in the declaration of the
attribute.
User Action: Verify the syntax of the attributes specified in the declaration.
Check that a precision or length extent, if present, is enclosed in parentheses,
that commas are present in factored declarations or in structure declarations,
and so on.

INVBIFPREC, The precision specified for the result of this built-in function
exceeds the implementation’s maximum allowed for the resulting data type.
Error: An argument list for a built-in function contains a precision argument
that is invalid.
User Action: Correct the precision argument in the built-in function
reference that caused the error.

INVDESCLVL, A descriptor is an apparent structure member, but does not
immediately follow a descriptor with a level number.
Error: A structure in a parameter descriptor is declared incorrectly, or an
extraneous integer precedes an attribute in a parameter descriptor.
User Action: If the parameter is a member of a structure, verify that the
structure declaration is properly numbered and properly punctuated. The
first level number in a structure declaration must be 1. If the parameter is
not a member of a structure, check the syntax of the descriptor and remove
the number preceding the parameter.

INVFACTLVL, A factored level cannot be applied to entity.
Error: A declaration containing a structure is factored with an attribute that
conflicts with a variable declared in the structure.
User Action: Verify the syntax of the declaration and determine the
attributes that are in error. If necessary, revise the structure declaration so
that attributes are not factored.

INVLABL, Entity is a label prefix previously declared.
Error: More than one statement has the same label. The compiler cannot
resolve references to the label.
User Action: Examine the source program, and change the label or labels
that are duplicates. Verify that all references to the labels are also corrected.

A–22 PL/I Messages

INVOPTN, Entity is an invalid option for this statement or it is incorrectly
specified.
Error: A statement contains an invalid option.
User Action: Check whether keyword options are misspelled or if any
OPTIONS options are specified without the OPTIONS keyword. Correct the
specification.

INVPARM, Entity is a parameter but has been declared with a storage class or
as a label.
Error: The declaration of a variable that is in the procedure’s parameter list
contains the BASED, CONTROLLED, DEFINED, AUTOMATIC, or STATIC
attribute; or the name of a parameter is specified as a label.
User Action: Correct the declaration of the parameter so that it does not
specify a storage class attribute. A parameter occupies the storage of its
corresponding argument at the time of the invocation, and thus cannot be
allocated storage in any other way. It also cannot be used as a label.

INVSTAREXT, An asterisk is not a valid subscript or argument.
Error: You cannot use an asterisk (*) as a subscript or an argument.
User Action: Remove or replace the asterisk.

INVSTARUSE, Entity is declared with an asterisk as its extent but is not a
parameter or a descriptor.
Error: An asterisk is specified for the length of a character string or for the
dimension of an array, and the string or array is not a parameter.
User Action: Correct the declaration of the variable so that its extent is
specified with a constant or a valid variable declaration.

INVSUBLABL, Entity is a subscripted label prefix previously declared with a
different data type or a different number of dimensions.
Error: A label conflicts with the declaration of a variable.
User Action: If the label prefix has the same identifier as a declared
variable, change either the label or the variable, and correct all references to
them.

INVZEROLVL, Structure level numbers must be greater than zero.
Error: The level number for a structure member must not be zero.
User Action: Correct the level number so that it is in the range 1 through
32767.

ITERFACT, If an iteration factor is used with a string constant, the constant
must be enclosed in parentheses. This construction means ‘‘iteration’’
occurrences of the constant as opposed to concatenation.
Warning: An iteration factor is specified for a string constant in an INITIAL
attribute, but the iteration factor is not enclosed in parentheses. The compiler
assumes that the factor is in parentheses.
User Action: Place the iteration factor in parentheses, for example:
INITIAL((5)(’strings’)).

PL/I Messages A–23

ITERVAL, Entity has been declared with a variable or incorrect iteration factor.
An iteration factor of 1 has been supplied.
Error: A nonconstant iteration factor was used to initialize a static variable.
Nonconstant iteration factors are valid only in the initialization of automatic
variables.
User Action: Specify a constant in the iteration factor, or declare the
variable with the AUTOMATIC attribute.

LARGEDST, Unable to write debugger information. Submit an SPR with a
problem description.
Fatal: An internal compiler error occurred during an attempt to write
debugging information.
User Action: Submit an SPR with the program that caused this error. The
program can be recompiled successfully if the /DEBUG option is removed
from the command line.

LEAVE, Entity is not a LABEL constant of a DO statement in this block.
Error: The LEAVE statement cannot transfer control out of the block that
contains it. Furthermore, the LEAVE statement can only transfer control
forward in the program. Therefore, the LABEL CONSTANT must appear
forward in the program text.
User Action: Check that the LABEL CONSTANT has been spelled correctly.
Also check that the LABEL CONSTANT is forward in the same block as the
LEAVE statement.

LIKEHASMEM, Only structures without members can be declared with the
LIKE attribute.
Error: The structure declaration containing the LIKE attribute already
contains other members.
User Action: Remove the members of the structure or substructure
containing the LIKE attribute.

LOCNEED, Entity is a based variable referenced without a locator qualifier.
Error: A variable is declared with the BASED attribute without a pointer
variable and is referenced without a locator qualifier (–>).
User Action: Specify a pointer variable in the declaration of the variable, or
specify the current pointer reference in the statement that caused the error.

MINDIGITS, The CDD description for structure item entity specifies precision
less than allowed for the data type. Minimum precision has been supplied.
Informational: Some Common Data Dictionary data types specify a number
of digits that is incompatible with PL/I data types. The PL/I compiler has
expanded the data type to conform to a PL/I data type.
User Action: None.

MINOCCURS, The CDD description for structure item entity contains the
Minimum Occurs attribute. Minimum Occurs is being ignored by PL/I.
Informational: PL/I does not support the Common Data Dictionary
Minimum Occurs attribute.
User Action: None.

A–24 PL/I Messages

MINUSCAL, Entity has been declared with a negative size. A size of 1 has been
supplied.
Warning: A negative number is specified for a variable’s extent.
User Action: Check the declaration of the character-string or bit-string
variable, and change the length to a positive value.

MISDEFINE, The DEFINED variable entity does not match its specified base
reference as required by the rules for defining.
Warning: The data type attributes of a variable with the DEFINED storage
class do not match the attributes of the variable on which it is defined.
User Action: If the mismatch is acceptable, you need do nothing. Otherwise,
correct the declaration so that it specifies the correct attributes.

MIXEDSTAR, Entity has been referenced with mixed asterisk and constant
bounds. If any bound is an asterisk, all bounds must be asterisks.
Error: The declaration of an array’s dimensions contains both constants
and asterisks for bounds; or, when initializing an array, both constants and
asterisks were used for subscripts.
User Action: Determine whether the array’s bounds are known within the
current procedure or the array is a parameter. If the bounds are known,
specify them in the array declaration. If the array is a parameter whose
bounds are not known, specify all extents as asterisks. When using asterisks
to specify the entire array for initialization, all subscripts must be asterisks.

MOREERRORS, There are more errors in this statement.
Error: The compiler cannot continue interpreting the statement.
User Action: Correct the previous errors.

MULTLABL, Multiple labels on a statement are not permitted. To achieve the
effect of multiple labels on any statement except a PROCEDURE, ENTRY, or
FORMAT statement, write L1:; L2:; statement.
Error: A statement contains more than one label.
User Action: Delete the extraneous label, or follow it with a null statement.

NEEDSCALAR, The array or structure value entity has been used in a context
that requires a scalar value.
Error: An aggregate was used when a scalar value was required.
User Action: Replace the reference to the aggregate with a reference to a
scalar value.

NEEDVECTOR, A scalar value is being passed to a vector parameter.
Error: A scalar value cannot be passed as an actual parameter to a routine
whose formal parameter is declared as a vector.
User Action: Change the actual and formal parameters to either both
vectors or both scalars.

NEGSIZE, A computed string length or aggregate size is negative.
Error: The compiler calculated the length of a character string or bit string
or an aggregate specified with nonconstant extents, and the result is negative.
User Action: Determine how the extent came to be in error and respecify it.

PL/I Messages A–25

NESTDEPTH, The nesting of DO, SELECT, PROCEDURE, and BEGIN
statements exceeds the implementation’s limit of 64.
Fatal: There are too many nested blocks. Nesting of DO, PROCEDURE, and
BEGIN statements must not exceed 64. Nesting of SELECT statements must
not exceed 31.
User Action: Simplify the nesting of blocks in the program.

NESTEDPSV, This statement contains a nested pseudovariable reference to
entity.
Error: One of the built-in functions that may be used on the left side of an
assignment contains a reference to another pseudovariable. Nested use of
pseudovariables as in SUBSTR(UNSPEC(x),3,1) = ’0’b; is invalid.
User Action: Correct the expression so that it does not contain a nested
pseudovariable reference.

NOCNDVAL, A value is required with the entity condition.
Error: The ENDFILE, ENDPAGE, KEY, UNDEFINEDFILE, or
VAXCONDITION condition name is specified without a value.
User Action: Specify a value for the condition.

NODATATYP, Entity is declared without a data type. The default data type
FIXED BINARY has been supplied.
Warning: The indicated name has been declared, but is declared without a
data type attribute. The compiler provides the default data type of FIXED
BINARY.
User Action: If you want the variable to have the default data type, you
need do nothing. Otherwise, correct the declaration of the variable so that it
has a data type attribute.

NODFLOAT, The CDD description for structure item entity specifies the
D_Floating data type. The data cannot be represented when compiled with
/G_FLOAT.
Warning: The wrong PLI command qualifier was used to compile the
program.
User Action: Ignore the warning message or recompile the program using
the /NOG_FLOAT qualifier.

NODIM, Entity is an entry or file constant and cannot be declared with a
dimension.
Error: The ENTRY or FILE attribute was specified for an array, but the
VARIABLE attribute is not specified.
User Action: Specify the VARIABLE attribute to create an array of file or
entry variables.

NOGFLOAT, The CDD description for structure item entity specifies the
G_Floating data type. The data cannot be represented when compiled with
/NOG_FLOAT.
Warning: The wrong PLI command qualifier was used to compile the
program.
User Action: Ignore the warning message or recompile the program using
the /G_FLOAT qualifier.

A–26 PL/I Messages

NOHFLOAT, The CDD description for structure item entity specifies the
H_Floating data type. The data cannot be represented when compiled with
/NOG_FLOAT.
Warning: The wrong PLI command qualifier was used to compile the
program.
User Action: Ignore the warning message or recompile the program using
the /G_FLOAT qualifier.

NOINALL, The IN option is not allowed with CONTROLLED variables.
Error: CONTROLLED variables cannot be allocated in an AREA.
User Action: Either remove the IN option to allow the variable to be
allocated normally, or use a BASED variable instead of a CONTROLLED
variable if you really want the allocation to be inside the specified area.

NOLABL, PROCEDURE, ENTRY, and FORMAT statements must have a label.
Error: The indicated statement is not labeled.
User Action: Place a label on the statement that caused the error.

NOLABSUB, This statement contains a reference to an undefined subscripted
label array element entity(entity).
Error: The compiler cannot resolve a reference to the indicated subscripted
program label.
User Action: Verify that the label is correctly specified, and, if it is an
element of an array of label constants, that the label is properly subscripted
in the source program.

NOLOCNEED, Entity is a nonbased variable referenced with a locator qualifier.
Error: A locator-qualified reference is specified for a variable that does not
have the BASED attribute.
User Action: Remove the locator qualifier (–>) from the reference. If you
expected that the variable needed a locator qualifier, verify that the variable
has the BASED attribute.

NONCONEXTN, Entity is declared with nonconstant extents but is not an
automatic, based, or defined variable.
Error: The indicated variable or descriptor for a character-string, bit-
string, or array variable used a variable instead of a constant to define the
extent. Variables are permitted for extents only for automatic, BASED, and
DEFINED variables.
User Action: Correct the declaration of the variable.

NONCONINIT, Entity has been declared with a nonconstant initial value. Static
variables must have constant initial values.
Error: A static variable is incorrectly initialized.
User Action: Correct the declaration so that it uses only constant values in
the INITIAL attribute.

PL/I Messages A–27

NONCONUNION, Entity is a member of a UNION but does not have constant
size.
Error: A UNION is a variation of a structure in which all immediate
members occupy the same storage. Consequently, all members of a UNION
must have a constant size.
User Action: Remove the VARYING attribute from the structure declaration.

NORETVAL, All RETURN statements in a function must return values.
Error: A RETURN statement in a function does not specify a value.
User Action: Specify a value on the RETURN statement, ensuring that
the data type of the value matches the data type specified on the RETURNS
option of the PROCEDURE statement.

NOSETALL, Entity is a CONTROLLED variable; this ALLOCATE statement
cannot have the SET option.
Error: The SET option sets a pointer variable to the memory location of
storage acquired for a BASED variable. A CONTROLLED variable cannot be
used in a pointer-qualified reference.
User Action: Remove the SET option or change the variable declaration
from CONTROLLED to BASED.

NOTARITH, Implicit conversion. A nonarithmetic expression, entity, has been
used in a context requiring an arithmetic value.
Warning: A bit- or character-string expression was used in a context where
an arithmetic expression is required. The PL/I compiler has converted the
expression to arithmetic. This situation may or may not constitute an error.
User Action: To avoid this message in circumstances in which you want the
compiler to convert the expression to the appropriate arithmetic data type,
use the BINARY built-in function to convert a bit string, or use the BINARY,
FIXED, DECIMAL, or FLOAT built-in function to convert a character string.
You can also suppress the message by compiling the program with the
/NOWARNINGS qualifier.

NOTARRAY, The first argument to an LBOUND, HBOUND, DIM, PROD, or
SUM built-in function must be an array reference.
Error: The argument list for one of the functions listed is incorrectly
specified.
User Action: Correct the argument list for the built-in function.

NOTBASED, The variable entity is not a BASED or CONTROLLED variable.
Error: The target variable specified in the ALLOCATE statement does not
have the BASED attribute.
User Action: Verify that the variable is specified correctly. If so, correct the
variable’s declaration so that it specifies BASED.

A–28 PL/I Messages

NOTBIT, Implicit conversion. A nonbit expression, entity, has been used in a
context requiring a bit-string value.
Warning: An arithmetic or character-string expression was used in a
context where a bit string is required. The PL/I compiler has converted the
expression to a bit string. This situation may or may not constitute an error.
User Action: To avoid this message in circumstances in which you want
the compiler to convert the expression to a bit string, use the BIT built-in
function to convert the character-string or arithmetic expression to a bit
string. You can also suppress the message by compiling the program with the
/NOWARNINGS qualifier.

NOTCHAR, Implicit conversion. A noncharacter expression, entity, has been
used in a context requiring a character-string value.
Warning: An arithmetic or bit-string expression was used in a context
where a character string is required. The PL/I compiler has converted the
expression to a character string. This situation may or may not constitute an
error.
User Action: To avoid this message in circumstances in which you want
the compiler to convert the expression to a character string, use the
CHARACTER built-in function to convert the arithmetic or bit-string
expression. You can also suppress the message by compiling the program
with the /NOWARNINGS qualifier.

NOTCONDVAL, The name given in the CONDITION condition must be a
declared CONDITION.
Error: Only names explicitly declared with the CONDITION attribute in a
DECLARE statement can be used with the CONDITION condition.
User Action: Declare the condition name explicitly.

NOTCONNECT, This statement contains an invalid reference to an unconnected
array.
Error: A member of a structure that has the dimension attribute is
referenced in an invalid context. Because the storage of such an array is not
contiguous, the array cannot be referenced in any of the contexts listed in the
message.
User Action: If possible, change the declaration of the structure so that the
array that caused the error becomes a connected array. Otherwise, do not
reference the array in the context that caused the error.

NOTDIM, Invalid dimension specified in HBOUND, LBOUND, DIM, PROD, or
SUM.
Error: The value specified for the dimension argument of the built-in
function that caused the error is invalid for the array. For example, this error
occurs if a value of 10 is specified for an array that has only 5 dimensions.
User Action: Determine the number of dimensions in the array and correct
the argument.

NOTDIMVAL, The second argument of the LBOUND, HBOUND, or DIM built-in
function must be an integer constant.
Error: The dimension argument for one of the functions listed is specified
using a nonconstant expression.
User Action: Specify an integer constant for the argument.

PL/I Messages A–29

NOTEXEC, A FORMAT, ENTRY, PROCEDURE, END, or DECLARE statement
appears in a context that requires an executable single statement, DO-group,
SELECT-group, or begin block.
Error: ON statements and THEN, ELSE, WHEN, and OTHERWISE clauses
require that the target action be an executable statement, a DO-group,
SELECT-group, or a begin block.
User Action: Move the statement in error. If appropriate, place the
statement in a begin block.

NOTFILEVAL, The name given in an I/O condition must be the name of a file
value.
Error: The UNDEFINEDFILE, ENDFILE, or KEY condition name is
specified with a value that is not a file reference.
User Action: Verify that the reference in the condition name is to a file
constant or file variable that is declared correctly.

NOTINT, Implicit conversion. A noninteger expression, entity, has been used in
a context requiring an integer value.
Warning: A character-string, bit-string, or noninteger arithmetic expression
is used in a context where an integer is required. The PL/I compiler has
converted the expression to an integer. This situation may or may not
constitute an error.
User Action: To avoid this message in circumstances in which you want the
compiler to convert the expression to an integer, use the BINARY built-in
function to convert bit- or character-string expressions to an integer. You
can use the FIXED built-in function to convert floating-point expressions
or fixed-point decimal expressions with a nonzero scale factor to integers.
You can also suppress the message by compiling the program with the
/NOWARNINGS qualifier.

NOTINTBND, A constant has been used as an array bound, but it is not an
integer constant whose value is less than 2**29. If a constant is used as a
bound, it must be a valid integer.
Error: An invalid constant is specified for an array bound.
User Action: Verify that the bound specified is within the valid range for
array bounds and correct the declaration. Note that this error may occur
when any parenthesized expression follows an identifier in a declaration. In
this context, the message indicates that the statement syntax is in error and
must be corrected.

NOTINTCON, An expected optionally signed integer was not found.
Error: A nonconstant expression is specified in a context that requires an
integer constant.
User Action: Specify an integer constant.

NOTLOCATOR, A value that is not a pointer or offset value has been used in a
context requiring a locator value.
Error: The reference specified as a locator qualifier is not a pointer or offset
value.
User Action: Correct the locator-qualified reference so that the item on the
left of the locator qualifier (–>) is a pointer or offset.

A–30 PL/I Messages

NOTPARAM, Illegal use of the PRESENT function. Its argument must be a
parameter.
Error: The argument of the PRESENT built-in function is invalid. It must
be a parameter. It cannot be a variable, expression, or constant.
User Action: Change the argument of the PRESENT built-in function to a
parameter name.

NOTPLIDATA, BIT_FIELD and BYTE_FIELD data can be referenced only in
contexts that do not require a data type interpretation.
Error: A reference to data declared as BIT_FIELD or BYTE_FIELD was
made in an illegal context.
User Action: BIT_FIELD and BYTE_FIELD data can be referenced only in
the ADDR, INT, POSINT, BYTESIZE, SIZE, and UNSPEC built-in functions,
or as an ANY parameter. If a data type interpretation is required, define a
BASED or DEFINED variable that overlays the storage of the variable.

NOTSCALAR, An array or structure value has been used in a context that
requires a scalar value.
Error: An array or structure reference is specified in an invalid context, for
example, as an operand of an arithmetic operation.
User Action: Correct the statement so that it does not contain a reference to
an aggregate.

NOTSUBROUT, The reference in a CALL statement is not a subroutine
reference.
Error: A CALL statement specifies the name of an entry that has the
RETURNS attribute.
User Action: If the invoked procedure is a function, correct the statement
in error so that the procedure is invoked as a function reference. Otherwise,
delete the RETURNS option from the PROCEDURE statement of the
procedure so that it can be invoked by a CALL statement.

NULLARG, Entity has been referenced with too many empty argument lists.
Error: A procedure call or function reference specified too many empty
argument lists, for example, F()()(A,B).
User Action: Determine the correct number of empty argument lists, and
correct the reference.

NULLPTR, The pointer or offset in a reference to entity is NULL.
Error: A pointer or offset reference in a locator-qualified reference has a null
value. The reference cannot be resolved.
User Action: Verify that the correct pointer or offset variable is referenced
in the statement and that it was properly given a value, either with a
SET option of ALLOCATE or by assignment with an ADDR, POINTER, or
OFFSET built-in function.

OBJNOTDCL, The refer object entity is not declared.
Error: A refer object refers to a variable that has not been declared, or the
variable follows the refer object reference in the source program.
User Action: Verify that the refer object reference has been declared, or
reposition the REFER option so that it follows the declaration of the refer
object reference.

PL/I Messages A–31

OBJNOTMEM, The refer object entity is not a structure member.
Error: The refer object must be a member of the structure declared with the
REFER option.
User Action: Declare the refer object within the structure that contains the
REFER option.

OFFBASINV, A base area was specified for the OFFSET parameter or descriptor
entity.
Error: An offset parameter or argument specifies a base area.
User Action: Remove the area specification from the parameter’s declaration
or from the parameter descriptor for the argument.

OFFSETNOBASE, In a conversion between pointer and offset data, the offset
data does not have an associated base area.
Error: The compiler cannot resolve the location of the specified offset without
the specification of the area in which the offset is based.
User Action: Correct the declaration of the offset so that it specifies a base
area.

ONUNIT, An IF, ON, RETURN, DO, or SELECT statement cannot be used as
the first statement of an ON-unit.
Error: An ON-unit contains an invalid action statement.
User Action: Correct the ON-unit so that the first statement is not an
IF, ON, RETURN, DO, or SELECT statement. To execute more than one
statement in an ON-unit, use a begin block.

ONUNITLABL, A label prefix cannot appear on a statement used as an ON-unit.
Error: An ON-unit action statement contains a label.
User Action: Remove the label from the statement.

PICNOTALL, The CDD description for the structure item entity specifies a
PICTURE FOR PLI in conjunction with a data type that is not a numeric
string. PICTURE FOR PLI is being ignored.
Informational: The picture specification in the Common Data Dictionary
description does not conform to PL/I picture specifications.
User Action: Change the data type to conform to PL/I pictures, remove
PICTURE FOR PLI, or ignore the warning message.

PICNOTALW, The PICTURE variable entity has been used in a context requiring
a FIXED or FLOAT value.
Error: A variable having the PICTURE data type has been used in a context
requiring a FIXED or FLOAT variable.
User Action: Change the data type of the variable or use one of the built-in
conversion functions to convert the variable to either FIXED or FLOAT.

PLACEEOL, Placeholder not terminated before end of line.
Error: Placeholders cannot cross line boundaries.
User Action: Modify the source code so that each placeholder begins and
ends on the same line.

A–32 PL/I Messages

PLACELONG, Placeholder too long.
Error: Placeholders are limited to 256 characters.
User Action: Reduce the length of the placeholder. The 256-character limit
includes the outer brackets.

PLACENODESIGN, Placeholders invalid without
/DESIGN=PLACEHOLDERS.
Error: Placeholders are not allowed unless /DESIGN=PLACEHOLDERS was
specified.
User Action: Specify the /DESIGN=PLACEHOLDERS qualifier or remove
the placeholders from the source file.

PLACENODOT, Invalid pseudocode list placeholder detected.
Error: Pseudocode placeholders are not to have the list option.
User Action: Remove the ellipsis (. . .) following the placeholder.

PLACENOOBJ, Placeholders detected - no object code generated.
Warning: The compiler does not produce object code when the source
contains placeholders.
User Action: None.

PLACESYNTAX, Invalid placeholder syntax detected.
Error: Nesting of pseudocode placeholders is not allowed, or a mismatch in
outer brackets was detected.
User Action: Correct the invalid placeholder.

PLACEUNMAT, Unmatched placeholder delimiter.
Error: The placeholder delimiters do not match correctly.
User Action: Correct the source code so the delimiters match.

PPARMDCL, The name entity has previously been declared as a preprocessor
procedure parameter. It cannot be declared as a preprocessor label in this
procedure.
Error: The same name was used for both a preprocessor procedure
parameter and a label.
User Action: Determine which name is correct; rename either the label or
the parameter.

PPBADPAREN, This preprocessor STATEMENT procedure invocation contains
unbalanced parentheses.
Error: The invocation of a preprocessor procedure as a pseudo-statement
contains unbalanced parentheses.
User Action: Examine the invocation and add or remove opening or closing
parentheses as necessary.

PPBADRET, %RETURNS cannot be used except in a preprocessor procedure.
Error: A %RETURN statement appears in a context other than in a
preprocessor procedure.
User Action: Remove the %RETURN statement or reposition it so that it is
contained within a preprocessor procedure.

PL/I Messages A–33

PPBIFARG, The entity preprocessor built-in function has been referenced with
the wrong number of arguments.
Error: An argument list for a preprocessor built-in function contains an
invalid number of arguments.
User Action: Correct the number of arguments to the built-in function.

PPBIGEXPR, An expression or reference contained within this preprocessor
usage is excessively complex.
Error: The compiler cannot follow the flow of the preprocessing due to an
expression or reference that is too complex.
User Action: Simplify the preprocessor statement.

PPCONVERR, Evaluation of a preprocessor expression caused a
CONVERSION error.
Error: The indicated expression does not have a valid preprocessor
computational data type. The operands of a preprocessor expression can
consist only of unsubscripted references to preprocessor variables, decimal
integer constants, bit-string constants, character-string constants, and
references to preprocessor built-in functions. For arithmetic operations, only
decimal integer arithmetic of precision (10,0) is performed.
User Action: Examine the expression and correct the error.

PPDCLREP, The name entity has previously been declared as a preprocessor
variable. It cannot be declared as a %REPLACE identifier.
Error: Preprocessor variables cannot have the same name.
User Action: Rename one of the variables so that there are no duplicate
names.

PPDEFPARAM, A preprocessor procedure references the undeclared
preprocessor parameter entity. It is being declared as a FIXED preprocessor
parameter.
Warning: A preprocessor parameter that was not declared has been
referenced; the compiler gives the attribute FIXED by default.
User Action: Check that the reference is correctly spelled; if it is not, correct
the spelling reference. If the parameter was not declared, declare it with the
appropriate attribute.

PPDEFTYPE, A %entity statement references the undeclared preprocessor name
entity. It is being declared as a FIXED preprocessor variable.
Warning: A name that is not declared or that is not a label has been
referenced; the compiler supplies the attribute FIXED by default.
User Action: Check that the reference is correctly spelled; if not, correct the
spelling of the reference. If the variable is not declared, declare it with the
appropriate attribute for its use: BIT, FIXED, or CHARACTER.

PPDUPARAM, Entity is a duplicate preprocessor procedure parameter.
Error: The same parameter name is used more than once in a preprocessor
procedure.
User Action: Correct the preprocessor procedure statements so that there is
only one reference to each parameter.

A–34 PL/I Messages

PPDUPDCL, The name entity has already been declared as a preprocessor
variable.
Error: The same identifier is used in more than one preprocessor declaration
at the same level.
User Action: Determine which preprocessor declaration of the variable
specifies the incorrect attributes, if they are different, and correct the
declarations.

PPELSENOT, A %ELSE does not properly correspond with a %THEN.
Error: A %ELSE clause was used without a corresponding %THEN clause.
User Action: Verify that the %ELSE clause is not extraneous. If it is not,
add a %THEN clause to the program, and, if no action is desired, follow it by
a preprocessor null statement.

PPENDNODO, A %END does not properly correspond with a %DO.
Error: A group contains a %END statement without a preceding %DO
statement.
User Action: Verify the need for a %END statement. If it is extraneous,
remove it. If it terminates a preprocessor %DO-group, include the %DO
statement.

PPEXPRSYN, Invalid expression in a %entity statement. Entity was found
where entity was expected.
Error: The operands of a preprocessor expression can consist only of
unsubscripted references to preprocessor variables, decimal integer constants,
bit-string constants, character-string constants, and references to preprocessor
built-in functions. Furthermore, only decimal integer arithmetic of precision
(10,0) is performed.
User Action: Examine the preprocessor expression, and correct the error.

PPFIXOVER, Evaluation of a preprocessor expression caused the
FIXEDOVERFLOW condition.
Error: The evaluation of a preprocessor expression resulted in a number that
has exceeded the maximum precision. For BIT and BINARY numbers, the
maximum precision is 31; for DECIMAL numbers, the maximum precision is
10.
User Action: Simplify the expression.

PPGOTOBACK, A %GOTO statement references a previously declared label.
Backwards %GOTO and %GOTO out of preprocessor procedures is not
permitted.
Error: The PL/I for OpenVMS VAX embedded preprocessor permits only
forward scanning for labels corresponding to a %GOTO statement.
User Action: Verify that the label is properly specified or rename the label
so that the %GOTO is forward.

PPGOTOEND, The target of a %GOTO statement, entity, was not found.
Error: The compiler cannot locate the specified target label for a %GOTO
statement, or the target label is missing.
User Action: Verify that the target label exists. If no matching label exists,
include one. Make certain that corresponding labels are spelled the same.

PL/I Messages A–35

PPGOTOSYN, Invalid syntax in a %GOTO statement. The target of a %GOTO
statement must be an unsubscripted label identifier.
Error: A %GOTO target is incorrectly specified or it is not an unsubscripted
label.
User Action: Correct the syntax of the %GOTO statement, and verify that it
is an unsubscripted label.

PPINVLABL, Entity is a preprocessor label prefix previously declared.
Error: The same preprocessor label has been declared for more than one
statement, resulting in ambiguous label references.
User Action: Rename the preprocessor label.

PPINVRADIX, An invalid radix was specified in the encode or decode
preprocessor function.
Error: The radix specified in the encode or decode preprocessor function was
invalid. It must lie in the range 2 through 16.
User Action: Correct the radix value.

PPINVSTRING, An invalid string was specified in the decode preprocessor
function.
Error: The string specified in the decode preprocessor function contains
invalid characters. They must lie in the range 0 through the radix – 1.
User Action: Correct the string.

PPLABDCL, The name entity has previously been declared as a preprocessor
label. It cannot be declared as a preprocessor variable.
Error: The same name has been used as both a preprocessor label and a
variable name. Therefore, the compiler cannot follow program flow.
User Action: Rename either the label or the variable so that there are no
duplicate names or declarations.

PPLABREP, The name entity has previously been declared as a preprocessor
label. It may not be declared as a %REPLACE identifier.
Error: Preprocessor labels and identifiers cannot have the same name.
User Action: Rename either the label or the variable so that there are no
duplicate names.

PPLABSYN, Invalid syntax in preprocessor label. A label must be of the form
%identifier:, and cannot follow %THEN or %ELSE.
Error: A preprocessor label has been incorrectly specified. The correct syntax
is %label: and cannot follow %THEN or %ELSE.
User Action: Examine the preprocessor label, and make certain that the
percent sign and colon are positioned properly. It is not necessary to include
another percent sign on that line.

PPMULTLABL, Multiple labels on a preprocessor statement are not permitted.
To achieve the effect of multiple labels, write %L1:; %L2: statement.
Error: No statement, including preprocessor statements may have more than
one label.
User Action: A statement can, however, be preceded by any number of
labeled null statements. To achieve the effect of multiple preprocessor labels,
write %L1:; %L2: in your source program.

A–36 PL/I Messages

PPNEST, Nested preprocessor procedures are not allowed.
Error: A %PROCEDURE statement cannot be used within a preprocessor
procedure.
User Action: Restructure the preprocessor procedures so that they are not
nested.

PPNOFILE, Cannot access source file for preprocessor scanning.
Fatal: The compiler cannot access an include file; it cannot be found on the
disk.
User Action: Verify that the file is accessible and recompile.

PPNORET, Preprocessor procedure exited without execution of %RETURN.
Error: The %RETURN statement is required in preprocessor procedures.
Values are passed back to the invoking source program by means of the
%RETURN statement.
User Action: Include a %RETURN statement in your program.

PPNOTHEN, %IF is not terminated with %THEN.
Error: A preprocessor %IF-group is not followed by a %THEN statement.
User Action: Either include a %THEN statement or delete the %IF
statement.

PPNOTSTMT, The clause following %THEN or %ELSE is not a preprocessor
statement.
Error: Clauses following the %THEN or %ELSE statements require a
preprocessor statement. Otherwise the statement cannot be executed. Valid
actions of the %THEN and %ELSE clauses are preprocessor statements.
User Action: Verify that the statement is a preprocessor statement preceded
by a percent symbol. It must not be a %END statement.

PPRECURS, The preprocessor procedure entity has been invoked recursively 999
times. No further recursion will be performed.
Error: A preprocessor procedure has called itself 999 times.
User Action: Correct or simplify the program.

PPREPDCL, The name entity has previously been declared as a %REPLACE
identifier. It cannot be declared as a preprocessor variable.
Error: Preprocessor statements cannot have duplicate identifiers, and
%REPLACE is a preprocessor statement.
User Action: Rename one of the identifiers so that there are no duplicate
declarations.

PPREPLAB, The name entity has previously been declared as a %REPLACE
identifier. It may not be declared as a preprocessor label.
Error: Preprocessor labels cannot have the same name as identifiers.
User Action: Rename either the identifier or the label so that there are no
duplicate names.

PL/I Messages A–37

PPSTMTSYN, Invalid syntax in a %entity statement. Entity was found where
entity was expected.
Error: A preprocessor statement was improperly specified. The format of a
preprocessor statement is as follows:

%[label:]STATEMENT;

User Action: Correct the syntax.

PPSTRINGSIZE, The length of a preprocessor character string exceeds the
implementation limit of 32500.
Error: A preprocessor expression yields a string larger than the
implementation limit.
User Action: Attempt to reduce the size of the string or segment it among
several variables.

PPSTRRANGE, Evaluation of a preprocessor expression caused the
STRINGRANGE condition.
Error: The STRINGRANGE condition (string index out of bounds) was
detected during evaluation of a preprocessor expression.
User Action: Correct the preprocessor source code to have only valid string
and substring references.

PPSUBSTR2, The second operand of a preprocessor SUBSTR is out of range.
Error: The second operand in a reference to a SUBSTR preprocessor built-in
function is beyond the range of the string. This message is issued only if the
procedure containing the reference was compiled with the /CHECK qualifier.
User Action: Correct the reference.

PPSUBSTR3, The third operand of a preprocessor SUBSTR is out of range.
Error: The third operand in a reference to a SUBSTR preprocessor built-in
function is beyond the range of the string. This message is issued only if the
procedure containing the reference was compiled with the /CHECK qualifier.
User Action: Correct the reference.

PPTEXTRA, A %entity statement contains extraneous text where ‘‘;’’ was
expected.
Warning: Nonpreprocessor text follows a preprocessor statement.
User Action: Locate the beginning of the extraneous text and check for
unbalanced or missing comment delimiters (/* or */).

PPTHENNOIF, A %THEN does not properly correspond with a %IF.
Error: A %THEN statement must have a corresponding %IF statement. The
format of the %IF statement is as follows:

%IF test-expression %THEN action [%ELSE action];

User Action: Verify that the syntax is correct.

A–38 PL/I Messages

PPTOOBIG, Preprocessor text expansion exceeds the implementation limit for
number of characters per line.
Error: A source input record has more than 255 characters, which is the
capacity of the input buffer.
User Action: Ensure that the RESCAN option has been used properly and
is not needlessly replacing characters. Otherwise, reduce the size of the text
and recompile.

PPTOODEEP, Combined %DO and %IF nesting has exceeded the
implementation limit for maximum depth of nesting.
Error: There are too many nested %DO and %IF groups.
User Action: Simplify the nesting of %DO and %IF groups in the program.

PPTOOFEW, Insufficient %END statements. An additional %END statement
has been supplied.
Warning: The compiler inserted a %END statement in the program so that
the number of %ENDs is correct.
User Action: Match the %END statements with %DO statements to ensure
that each preprocessor group is properly terminated.

PPTOOMANY, Preprocessor replacements have been applied to this statement
999 times. No further replacements will be performed.
Warning: Replacement has exceeded the implementation limit of 999.
User Action: Ensure that the RESCAN option has been used properly and
is not needlessly replacing characters. Otherwise, reduce the number of
replacements.

PPUNRFUNC, Entity is not a preprocessor built-in function known to this
implementation.
Error: A function does not contain any recognizable PL/I preprocessor
statements or keywords, or a statement contains extraneous names.
User Action: Examine the function in error and correct it.

PPVARDCL, The name entity has previously been declared as a preprocessor
variable. It may not be declared as a preprocessor label.
Error: The same name has been used as both a preprocessor label and a
variable name. Therefore, the compiler cannot follow program flow.
User Action: Rename either the label or the variable so that there are no
duplicate names or declarations.

PPZERODIV, Evaluation of a preprocessor expression caused the ZERODIVIDE
condition.
Error: The divisor in a division operation has the value of zero. The value
resulting from such an operation is undefined.
User Action: Recompile the program with a valid expression.

PL/I Messages A–39

PROLOGVAL, The value of the AUTOMATIC or DEFINED variable entity is
used in an extent expression or initial-value expression in the declaration of
an AUTOMATIC or DEFINED variable in the same block.
Warning: Dependency on the value of an AUTOMATIC or DEFINED
variable that is declared in the same block is not allowed. When the compiler
generates code for the variable, the referenced automatic or defined variable
may not have been allocated or initialized.
User Action: Correct the extent or initial-value expression so that it specifies
a constant value, a static variable, or parameter, or so that it references a
variable that is defined in a containing block.

PTQTYPEDEF, The variable entity TYPE reference is a pointer-qualified
variable which is not allowed.
Error: A pointer-qualified TYPE reference implies that the typed variable
can inherit, from the type definition, the BASED attribute which is not true.
User Action: Declare the variable with explicit attributes.

PUTGETUNION, The union entity occurs as a source or target in a GET or PUT
statement.
Warning: The UNION attribute must be associated with a level number in
a structure declaration, but structure declarations containing the UNION
attribute cannot be used in I/O statements.
User Action: Remove the UNION attribute.

REFERENCE, The CDD description for structure item entity contains the
REFERENCE attribute. REFERENCE is being ignored by PL/I.
Informational: The REFERENCE attribute is not supported by PL/I.
User Action: None.

REFERENCEBIF, Invalid use of the REFERENCE built-in function.
Error: The REFERENCE built-in function can be used only to override
the passing mechanism of an argument. This means it must be used in an
argument list, and its parameter must be an argument.
User Action: Remove the reference to the built-in function from the
statement.

REPLSYN, Invalid syntax in a %REPLACE statement.
Error: A %REPLACE statement is specified incorrectly.
User Action: Correct the statement.

REQINIT, An INITIAL attribute must be specified for entity.
Warning: The indicated name is not specified with the INITIAL attribute.
This error occurs for names declared with the READONLY or VALUE
attributes. Because names with these attributes cannot be modified, their
values are unpredictable if they are not initialized.
User Action: Specify the INITIAL attribute to give the name a value.

A–40 PL/I Messages

RESIGNOTON, RESIGNAL built-in function has been referenced from outside
an ON unit.
Error: The RESIGNAL built-in function has been referenced in a block that
is not the first level block of an ON-unit.
User Action: The RESIGNAL built-in function cannot be referenced from
outside an ON-unit or in a nested block of an ON-unit. Control must be
passed back down to the immediate block of the ON-unit through a nonlocal
GOTO before RESIGNAL is called.

RETANY, A returns descriptor must not specify ANY as its data type for entity.
FIXED BINARY(31) has been forced.
Error: The ANY attribute is specified in a returns descriptor.
User Action: Correct the returns descriptor so that it specifies data type
attributes for the return value. The ANY attribute is valid only for parameter
descriptors for non-PL/I procedures.

RETLENGTH, A RETURNS attribute must not specify an array, structure, or
area for entity.
Error: The data type specified in a returns descriptor is an aggregate or
area.
User Action: Ensure that the returns descriptor in the RETURNS option of
the PROCEDURE statement for the function does not specify an aggregate or
area value.

RETSTAR, Invalid *-extent in a RETURNS attribute for entity.
Error: An asterisk is specified for an extent or precision in a RETURNS
attribute. The only valid use of an asterisk in a RETURNS attribute is
RETURNS (CHARACTER(*)).
User Action: Specify a value in the RETURNS attribute.

RETURNON, A RETURN statement is not allowed in an ON-unit.
Error: A RETURN statement is specified within a begin block specified for
an ON-unit.
User Action: To exit from the program, use a nonlocal GOTO within the
ON-unit.

RETVAL, A RETURN statement in a subroutine cannot return a value.
Error: A RETURN statement in a subroutine specifies a value.
User Action: Ascertain whether the indicated procedure is to be invoked as
a subroutine or as a function. If it is a subroutine, remove the return value
from the RETURN statement. If it is a function, specify the RETURNS option
on its PROCEDURE statement.

RETVALCVT, Implicit conversion of the return value entity to the function type
entity.
Warning: The data type specified in a RETURN statement does not match
the data type given in the corresponding returns descriptor, and the compiler
has performed an implicit conversion of the value to the specified data type.
In the case of a procedure with multiple entry points, this message will be

PL/I Messages A–41

issued once for each occurrence of a RETURN statement that requires an
implied conversion.
User Action: If the conversion is desirable, use a specific conversion built-in
function to return the value, as in RETURN(CHAR(n)). Either correct the
RETURNS option on the PROCEDURE or ENTRY statement that is in error,
or correct the value specified in the RETURN statement.

RETVALXX, The value entity in a RETURN statement is not valid for conversion
to the entity function type of one of the entry points of this multi-entry-point
procedure.
Warning: This warning message is given only for a RETURN statement in
a procedure that has multiple entry points. It is issued when a RETURN
statement specifies a return value that is incompatible with the data type
specified in the corresponding returns descriptor of one or more of the entries.
The message is issued once for each incompatible return value.
User Action: Verify that the program’s flow of control is such that the
invalid conversion will not take place. To avoid this message, correct the
return data type in one or more RETURN statements.

RIGHTJUST, The CDD description for structure item entity contains the Right
Justified attribute. Right Justified is being ignored by PL/I.
Informational: PL/I does not support the Common Data Dictionary Right
Justified attribute.
User Action: None.

ROUNDARG2, The first argument of the ROUND built-in function must be fixed
decimal or pictured or fixed binary and must have a positive scale factor. The
second argument must be an integer constant in the range 0 through 31.
Error: A reference to the ROUND built-in function specifies an invalid
argument list.
User Action: Correct the argument in the reference to the ROUND built-in
function.

SBSTYPEDEF, The variable entity TYPE reference is a subscripted variable
which is not allowed.
Error: When an array is declared, the attributes are associated with the
array and not with the array member.
User Action: Omit the subscript from the TYPE reference.

SCAERROR, Internal compiler error during SCA processing. Please submit an
SPR.
Fatal: An internal compiler error during SCA processing.
User Action: Submit an SPR. Recompile the program without the /ANA
qualifier.

SCALEIGNOR, Entity has been declared FLOAT with a scale factor. The scale
factor will be ignored.
Warning: A floating-point variable has been declared with a scale factor.
User Action: Correct the declaration of the floating-point variable so that it
does not specify a scale factor.

A–42 PL/I Messages

SETREQ, Because the variable entity was not declared with a base pointer, this
ALLOCATE statement requires a SET option.
Error: The variable referenced in the ALLOCATE statement has the BASED
attribute but is not declared with an explicit pointer reference.
User Action: Specify the SET option on the ALLOCATE statement, or
correct the BASED variable’s declaration so that it specifies a pointer
variable.

SIZE, Invalid type of argument for the SIZE or BYTESIZE built-in function.
Error: The argument of the SIZE or BYTESIZE built-in function was not
a reference to a variable. For example, it might have been a constant or an
expression.
User Action: Supply a valid argument.

SMALLAREA, If the AREA entity is to be initialized it must have an extent of at
least 24 bytes.
Error: The AREA variable was declared with an extent of less than 24 bytes.
AREAs of this size are too small to be initialized by the EMPTY() built-in
function.
User Action: Change the extent specified so that the area has an extent of
at least 24 bytes.

SOURCETYPE, The CDD description for structure item entity contains the
Source Type attribute. Source Type is being ignored by PL/I.
Informational: PL/I does not support the Common Data Dictionary Source
Type attribute.
User Action: None.

STAREAINIT, Entity has been declared with an invalid initial value. Static
AREAs can be initialized only to EMPTY().
Error: An invalid initial value has been specified for the AREA variable
referenced in the DECLARE statement. AREAs with the STATIC attribute
can be initialized only with the EMPTY() built-in function.
User Action: Change the initial value to EMPTY() or change the declaration
so that the variable does not have the STATIC attribute.

STMTOOBIG, A statement exceeds the implementation’s limit of constants,
identifiers, operators, and punctuation symbols. Or, there are more than
approximately 4500 statements in the procedure.
Fatal: The statement contains more than 2048 constants, identifiers, and
punctuation symbols, including operators.
User Action: Simplify the statement.

STMTSYNKEY, Invalid syntax in an entity statement. Entity was found where
the entity keyword was expected.
Error: A statement is missing a keyword.
User Action: Correct the syntax of the statement as indicated by the
message.

PL/I Messages A–43

STMTSYNTOK, Invalid syntax in an entity statement. Entity was found where
entity was expected.
Error: The compiler looks for specific types of tokens within statements,
attribute lists, and extents. This error occurs when one type of token appears
in an inappropriate context, for example, if the ADDR built-in function
occurs in an INITIAL attribute list or if the required string is missing from a
PICTURE attribute.
User Action: Determine what data the compiler expects and correct the
statement.

STPTOFINIT, Entity has been declared with an invalid initial value. Static
POINTERs or OFFSETs can be initialized only to NULL().
Error: An invalid initial value has been specified for the POINTER or
OFFSET variable referenced in the DECLARE statement. POINTERs and
OFFSETs with the STATIC attribute can be initialized only with the NULL()
built-in function.
User Action: Change the initial value to NULL(), or change the declaration
so that the variable does not have the STATIC attribute.

STRDEPTH, The depth of nesting of a structure exceeds the implementation’s
limit of 16.
Fatal: A structure contains too many levels.
User Action: Correct the declaration of the structure. If necessary, modify
the structure so that it has no more than 16 levels.

STREFCNT, A structure-qualified reference contains more than 15 qualifying
names.
Error: A reference in the form name1.name2.name3 . . . contains more than
15 names.
User Action: Examine the structure-qualified reference and compare it
with the declaration of the structure to ensure that each qualifying name is
specified correctly.

STRGTOOBIG, The length of a name or constant exceeds the implementation
limit of 32500 characters. Ensure that all string constants are delimited with
’ and that any contained ’s occur in pairs. Also check for unbalanced /* */.
Fatal: The compiler read more than 32500 characters following the
occurrence of an open apostrophe (’) or comment (/*).
User Action: Terminate the unterminated string or comment at the
appropriate location.

STRINGBIF, The argument of the STRING built-in function must be a variable
that is suitable for use in string overlay defining. It must contain only bit
or only character data and must not be VARYING or ALIGNED or be an
unconnected array.
Error: The STRING built-in function is used incorrectly.
User Action: Verify that the correct argument is specified for the STRING
built-in function. If the argument seems correct, be sure that its declaration
does not violate any of the rules given in the message.

A–44 PL/I Messages

SUBRANGE, The integer value entity does not lie in the range entity : entity.
Error: An integer constant appears in a context where the value of the
integer is outside the permissible range.
User Action: Check that the constant was specified correctly and that it
does not exceed the implementation limit for the context.

SUBROUT, The subroutine entity has been called as a function.
Error: The statement contains a reference to a procedure that does not have
the RETURNS attribute.
User Action: If the invoked procedure is a subroutine, correct the statement
in error so that the procedure is invoked with a CALL statement. Otherwise,
add the RETURNS attribute to the PROCEDURE statement of the procedure
so that it can be invoked by a function reference.

TAGVALUES, The CDD description for structure item entity contains the Tag
Values attribute. Tag Values is being ignored by PL/I.
Informational: PL/I does not support the Common Data Dictionary Tag
Values attribute.
User Action: None.

TAGVARIAB, The CDD description for structure item entity contains the Tag
variable attribute. Tag variable is being ignored by PL/I.
Informational: PL/I does not support the Common Data Dictionary Tag
variable attribute.
User Action: None.

TOOFEWARG, Entity has been referenced with too few arguments.
Error: The number of parameters in a parameter list or parameter descriptor
list exceeds the number of arguments specified in the corresponding procedure
reference.
User Action: Verify the number of arguments required by the invoked
procedure, and correct the argument list. If the procedure has a variable-
length argument list, specify the TRUNCATE attribute on the proper formal
parameters in the entry declaration.

TOOFEWSUB, Entity has been referenced with too few subscripts. Subscripted
references must have as many subscripts as the array has dimensions,
including any inherited dimensions.
Error: The number of subscripts specified in the reference to the array
variable is fewer than the number of dimensions in the array.
User Action: Examine the declaration of the array to determine the number
of subscripts required, determine the missing subscripts, and correct the
statement. If the array is declared within a structure that is dimensioned, be
sure to include the structure dimensions in the total dimensions of the array.

TOOFEWVAL, The INITIAL attribute specified for entity contains fewer values
than are required to fully initialize the variable.
Warning: An INITIAL attribute specified for an array specifies fewer items
than there are elements of the array.
User Action: Verify that the program will execute successfully without all
array elements initialized. If not, correct the declaration of the array so that
all elements are initialized.

PL/I Messages A–45

TOOMANYARG, Entity has been referenced with too many arguments.
Error: The number of arguments in a procedure reference exceeds the
number of parameters in the corresponding parameter list or parameter
descriptor list.
User Action: Verify the number of arguments required by the invoked
procedure, and correct the argument list. If the procedure is a non-PL/I
procedure with a variable-length argument list, specify the LIST attribute on
the last parameter of the entry declaration.

TOOMANYDIM, More than eight dimensions have been specified in the
declaration of an array.
Error: The parenthesized list of dimensions in the declaration of the array
contains more than eight items.
User Action: Correct the declaration of the array so that it has no more
than eight dimensions.

TOOMANYLBARS, Too many label arrays associated with GOTO
OTHERWISES and/or ASTERISK LABEL SUBSCRIPTS.
Error: The number of label arrays associated with GOTO OTHERWISES
and/or ASTERISK LABEL SUBSCRIPTS is limited to 500 per compilation.
User Action: Reduce the number of label arrays associated with GOTO
OTHERWISES and/or ASTERISK LABEL SUBSCRIPTS.

TOOMANYOPS, More than 253 operands have been used with an operator,
function, or call.
Error: An expression contains more than 253 operands.
User Action: Simplify the statement in error.

TOOMANYSUB, Entity has been referenced with too many subscripts.
Error: The number of subscripts in the reference to an array element exceeds
the number of dimensions of the array.
User Action: Examine the declaration of the array to determine the number
of subscripts required, determine the subscripts in excess, and correct the
statement.

TOOMANYVAL, Excess initial values have been specified for entity.
Warning: An INITIAL list for an array declaration specifies more constant
values than array elements, or multiple values were specified for a scalar
constant. A list of values is valid only in an array declaration. The
declaration DCL (A,B) . . . INIT(1,2) initializes both A and B to 1. The
second value specified is ignored.
User Action: Delete the excess values.

TOTALDIM, More than eight dimensions have been specified for the array
entity. This may include dimensions inherited from containing structures.
Error: An array has been declared with more than eight dimensions, or an
array is declared within a structure, and the sum of the array’s dimensions
and those of the structure exceeds a total of eight.
User Action: Correct the declaration of the array.

A–46 PL/I Messages

TYPEHASMEM, Only structures without members can be declared with the
entity TYPE attribute.
Error: The structure declaration containing the TYPE attribute already
contains other members.
User Action: Remove the members of the structure or substructure
containing the TYPE attribute.

UNALIGNED, Entity has been declared with the UNALIGNED attribute. Only
BIT or CHARACTER string variables can be declared UNALIGNED.
Error: PL/I for OpenVMS VAX does not implement the UNALIGNED
attribute for types other than NONVARYING strings.
User Action: Remove the UNALIGNED attribute.

UNDCLBASE, Entity is undeclared and has been used in an ALLOCATE
statement as the name of a BASED or CONTROLLED variable.
Error: The target variable in the ALLOCATE statement is a name that is
not declared.
User Action: Verify that the variable is specified correctly. If it is, declare it
with the BASED or CONTROLLED attribute.

UNDCLPARM, Entity is an undeclared parameter. It has been declared in its
containing block and will acquire default attributes.
Warning: A name specified in a parameter list is not declared with data type
attributes. The compiler gave the parameter the attributes FIXED BINARY.
User Action: Declare the parameter with the appropriate data type
attributes.

UNLIKEREF, Entity, which has been declared with the LIKE attribute,
references a variable that is not known to this block.
Error: The major or minor structure referenced by the LIKE attribute is
not known to the current block. Therefore, the compiler cannot locate the
referenced structure.
User Action: Declare the referenced structure outside of the procedure, if
the STATIC storage class is acceptable. Otherwise, declare the referenced
structure within the appropriate block.

UNRATTR, Entity is an unrecognizable attribute.
Error: A declaration in a descriptor contains an invalid keyword.
User Action: Check for typographical errors on the statement. Verify the
syntax of the descriptor, noting particularly that commas, parentheses, and
spaces appear where required.

UNRCNDNAME, Entity is an unrecognizable condition name.
Error: An ON, SIGNAL, or REVERT statement specifies an invalid condition
name.
User Action: Check the statement for a typographical error. Verify that the
condition name specified is a valid PL/I for OpenVMS VAX condition name.

PL/I Messages A–47

UNRENV, Entity is an unrecognized ENVIRONMENT keyword.
Error: An ENVIRONMENT option list is incorrectly specified or contains an
invalid option.
User Action: Check the list of ENVIRONMENT options for a typographical
error, a missing underscore character, or an invalidly abbreviated option
name. Verify that all options specified are valid ENVIRONMENT options in
PL/I for OpenVMS VAX.

UNRFMT, Entity is an unrecognizable format item.
Error: A format list in a GET EDIT or PUT EDIT statement contains a
character that is not a valid PL/I for OpenVMS VAX format item.
User Action: Verify the syntax of the format list and ensure that the format
item is a valid PL/I for OpenVMS VAX format item.

UNRLOCREF, A locator-qualified reference to entity cannot be resolved to any
declaration known to this block.
Error: A reference to a BASED variable is not valid.
User Action: Check the declaration of the variable to ensure that it is
correctly specified and that the qualified reference specifies a valid pointer or
offset value.

UNRPERSTMT, Entity is an unrecognizable preprocessor statement.
Error: A statement beginning with a percent sign (%) is not a valid PL/I for
OpenVMS VAX preprocessor statement.
User Action: Check that a preprocessor keyword is spelled correctly; or, if a
percent sign is specified in a character-string constant, verify that the string
is properly delimited.

UNRSTMT, This is an unrecognizable statement. Starting at entity.
Error: A statement does not contain any identifiable PL/I statement
keywords, or a statement contains extraneous tokens. For example, the
statement ON . . . THEN causes this error.
User Action: Examine the statement in error and correct it.

UNRSTREF, A structure-qualified reference to entity cannot be resolved to any
declaration known to this block.
Error: A reference in the form name1.name2.name3 . . . cannot be resolved.
User Action: Examine the structure-qualified reference in the statement
that caused the error. Verify that the structure member that is referenced is
a part of the specified structure. Correct the reference so that it refers to the
correct structure or to the correct member.

UNSUPPTYPE, The CDD description for structure item entity specifies an
unsupported data type.
Informational: The Common Data Dictionary description for a structure
item has attempted to use a data type that is not supported by PL/I. The PL/I
compiler has supplied the data type of BYTE_FIELD or BIT_FIELD.
User Action: Change the data type to one which is supported by PL/I, or
use the PL/I built-in functions ADDR, SIZE, BYTESIZE, or UNSPEC to
manipulate BYTE_FIELD and BIT_FIELD.

A–48 PL/I Messages

UNTYPEREF, Entity has been declared with the TYPE attribute; entity
references a variable that is not known to entity in this block.
Error: The major or minor structure referenced by the TYPE attribute is
not known to the current block. Therefore, the compiler cannot locate the
referenced structure.
User Action: Declare the referenced structure outside of the procedure, if
the STATIC storage class is acceptable. Otherwise, declare the referenced
structure within the appropriate block.

UPPRGTRLOW, One of the bounds declared for entity is invalid because the
lower bound is greater than the upper bound.
Error: An array is incorrectly declared.
User Action: Correct the declaration of the array variable in error so that
all bounds are valid. In the declaration of the bound x:y, the value of x must
be numerically less than the value of y.

USERDIAG, Entity.
Error: The PL/I for OpenVMS VAX embedded preprocessor permits you to
write your own compile-time diagnostic messages. The text of the message is
user-specified and responds to a user-specified compile-time condition. Error
messages inhibit the production of an object file.
User Action: Determine the cause of the problem from the source text and
correct the error.

VALPARAM, The PRESENT function may return an unpredictable result when
its argument is a value parameter.
Warning: The argument to the PRESENT built-in function is a parameter
that is passed by value. Correct results may not be returned by this function,
because passing a zero will cause PRESENT to return false.
User Action: Change the passing mechanism of the parameter, or make sure
that a zero is never passed as an argument to this routine.

VALSIZE, The size or precision of entity is incompatible with the VALUE
attribute.
Error: A parameter descriptor or variable declared with the VALUE attribute
specifies a fixed binary value with a precision not equal to 31 or a bit-string
value with a length not equal to 32.
User Action: Correct the declaration so that it specifies a variable that
requires 32 bits or less of storage.

VALTYPE, The data type of entity is incompatible with the VALUE attribute.
Error: The VALUE attribute is specified for a variable that does not have
either the FIXED BINARY or BIT(32) ALIGNED attribute.
User Action: Correct the declaration.

VALUEBIF, Invalid use of the VALUE built-in function.
Error: The VALUE built-in function can be used only to override the passing
mechanism of an argument. This means it must be used in an argument list
and its parameter must be an argument.
User Action: Remove the reference to the built-in function from the
statement.

PL/I Messages A–49

VARFORMAT, The Common Data Dictionary record description entity specifies
variable format.
Error: PL/I does not accept variable formats from the Common Data
Dictionary.
User Action: Rewrite the Common Data Dictionary record description so
that the format is fixed length.

VARYING, Entity has been declared with the VARYING attribute. Only
CHARACTER variables can be declared VARYING.
Error: The VARYING attribute is specified for a variable to which it cannot
be applied.
User Action: Correct the declaration so that it does not specify VARYING.

VARYSCALE, The scale factor q specified for entity is not in the range 0<=q<=p,
where p is the variable’s precision. The scale factor has been set to zero.
Warning: A scale is specified for a variable that is not in its declared range.
User Action: Specify a scale factor in the allowed range.

WHATBIF, Entity is not a built-in function or procedure known to this
implementation. If this is an external entry, it must be declared by a
DECLARE statement with an ENTRY attribute.
Error: A reference to a procedure cannot be resolved.
User Action: Verify that the variable referenced in the statement is a valid
subroutine or function. If it is an external function, declare it with the
ENTRY attribute.

A.2 Run-Time Messages
This section lists the diagnostic messages produced by the PL/I for OpenVMS
VAX and PL/I for OpenVMS AXP run-time systems.

ANYCOND, PL/I ANYCONDITION condition.
Fatal: This error message is displayed when ANYCONDITION is specifically
signaled and there is no ON-unit for ANYCONDITION.
User Action: Write an ON-unit to handle ANYCONDITION, or do not signal
ANYCONDITION. Correct the source program.

AREA, PL/I AREA condition.
Fatal: The PL/I AREA condition was raised either by a SIGNAL AREA
statement, or by the PL/I run-time library.
User Action: If the exception was raised by the RTL, see the secondary
condition for more information.

AREA_ACTIVE, Operation attempted on an already active area.
Informational: The PL/I run-time library detected that an area it was about
to perform an operation on is already active. If this condition occurs, it is
typically because an operation is being attempted on an area from both AST
level and non-AST level simultaneously, or because the area is in a shared
memory environment and being modified by more than one processor at once.
User Action: Rewrite the application to avoid simultaneous modification
of an area. If that is not desirable, you may want to consider handling the
condition with an ON-unit. See Chapter 10 for more information.

A–50 PL/I Messages

AREA_ASSIGN, Target area in area assignment is too small.
Informational: An assignment was attempted, and the size of the target
area was insufficient to hold the extent of the source area.
User Action: Correct the situation that caused the problem to occur, or add
an ON-unit to process the condition.

AREA_FORMAT, Operation attempted on an incorrectly formatted area.
Informational: The PL/I run-time library detected an area to be incorrectly
formatted while attempting an allocation or deallocation in the area, or while
performing an area assignment from the area.
User Action: The area may be corrupt because it was never initialized with
the EMPTY() built-in function, or because of invalid pointer references or
data access.

AREA_FREE, Error detected deallocating a variable in an area.
Informational: The PL/I run-time library detected that a FREE operation
in an area was not valid. For example, the variable being freed incorrectly
extends beyond the end of the area, extends into a free section of the area, or
is already in a free section of the area. This problem normally arises when
a variable of a different size than the one originally allocated is used for the
free operation, or when the variable is freed more than one time.
User Action: Correct the logic problem in the source program.

AREA_FULL, No room for variable allocation in area at address entity.
Informational: An allocation was attempted in an area that could not be
performed because the area did not have enough contiguous space to allocate
the variable requested. The address of the area is in hexadecimal.
User Action: Handle the condition. See Chapter 10 for more information.

AREA_INACTIVE, Attempt to unlock an area failed.
Informational: The PL/I run-time library detected an error while attempting
to unlock the interlock bit on an area after performing an operation on the
area. This error can be caused by assigning to the target area while another
operation is active, since area assignment cannot be fully interlocked.
User Action: Rewrite the application to avoid assignment to an area while
another operation is in progress.

AREA_SIZE, Impossible to allocate variable in area.
Informational: An allocation was attempted in an area that could not be
performed because the size requested was too large to be allocated from the
area, even if the area was empty.
User Action: Correct the situation that caused the problem to occur.

AUTOINIT, Error in automatic initialization.
Fatal: An automatic variable declared with the INITIAL attribute cannot
be initialized. This error can be caused by a negative repetition factor
in an initial list, or when too few or too many values are specified in the
initialization of an array. PL/I for OpenVMS VAX also does not allow
automatic initialization of automatic unconnected aggregates.
User Action: Correct the initial list.

PL/I Messages A–51

BADATTR, File attributes conflict with request.
Informational: An error occurred in the execution of the PL/I compiler or a
run-time module.
User Action: Gather as much information as possible about the
circumstances under which the error occurred, and submit an SPR.

BADRTL, Invalid file control block or uninitialized FILE VARIABLE.
Informational: A PL/I program was compiled with a field-test version of
the PL/I for OpenVMS VAX compiler and linked with a later version of the
run-time library.
User Action: Determine what the correct run-time library is for your
version of the compiler (ask your system manager or operator, if necessary).
Recompile the program with the correct run-time library.

BASECTLINIT, Error in BASED or CONTROLLED initialization.
Fatal: A BASED or CONTROLLED variable declared with the INITIAL
attribute cannot be initialized. This error can be caused by a negative
repetition factor in an initial list, or when too few or too many values are
specified in the initialization of an array. PL/I for OpenVMS VAX also does
not allow automatic initialization of BASED or CONTROLLED unconnected
aggregates.
User Action: Correct the initial list.

BIFSTAPOS, Starting position for a string built-in function is out of range.
Informational: The third operand in a reference to an INDEX, SEARCH,
or VERIFY built-in function is beyond the range of the string. This condition
is always signaled when strings are being processed by the PL/I run-time
library, but it is raised for in-line code only if the /CHECK qualifier was
specified for the procedure containing the reference.
User Action: Examine the program to determine the proper value for the
third parameter, and correct the program.

CNVERR, Conversion error.
Informational: An input or output value could not be converted as specified
by the default conversion rules (for example, in list-directed stream I/O) or as
specified by the corresponding format item (for edit-directed stream I/O).
User Action: Examine the program logic and correct it if possible. If edit-
directed stream I/O is being performed, check to ensure that the input or
output value is matched to the correct format item.

CONAPPSUP, APPEND and SUPERSEDE conflict.
Informational: These ENVIRONMENT options conflict and must not be
both specified for the same file.
User Action: Determine whether you want to append new records to the
existing file or to supersede it and write a new file. Correct the source
program so that one of these options is not specified in the DECLARE or
OPEN statement for the file.

A–52 PL/I Messages

CONATTR, Conflicting attributes specified while opening file.
Informational: A file was implicitly opened with an attribute that conflicts
with an atttribute specified in the file’s declaration. This error occurs when
a file is declared with any of the following: the DIRECT and SEQUENTIAL
attributes, the RECORD and STREAM attributes, or more than one of the
attributes INPUT, OUTPUT, and UPDATE.
User Action: Determine the correct set of attributes for the file, and correct
the file’s declaration.

CONBLOKIO, BLOCK_IO conflicts with other attributes or options.
Informational: The ENVIRONMENT option list for a file contains the
BLOCK_IO option and one or more of the options that conflict with BLOCK_
IO.
User Action: Consult the description of the BLOCK_IO option to determine
the options that conflict, and examine the file’s declaration and OPEN
statement. Decide whether the file is to be opened for BLOCK_IO, and
correct the program.

CONDITION, PL/I CONDITION(entity) condition.
Informational: A user-defined condition was signaled with the SIGNAL
CONDITION(user-cond) statement.
User Action: Do nothing, or add an ON-unit to handle the condition.

CONENVOPT, DECLARED option conflicts with OPEN option.
Informational: The value of an option specified in the ENVIRONMENT
option list in the declaration of a file conflicts with the value specified on the
OPEN statement for the file.
User Action: Determine which value is the correct value for the option, and
correct either the file’s declaration or the OPEN statement.

CONFIXLEN, FIXED_LENGTH_RECORDS conflicts with other attributes or
options.
Informational: The file’s attribute list contains the
FIXED_LENGTH_RECORDS option and an option that conflicts with it.
User Action: Consult the option descriptions to determine the options in
conflict, and correct the program.

CONPRINTCR, CARRIAGE_RETURN_FORMAT conflicts with PRINT attribute.
Informational: A PL/I file with the PRINT attribute has variable records
with fixed-length control; the carriage control information is provided by PL/I.
The CARRIAGE_RETURN_FORMAT option of ENVIRONMENT cannot be
specified for it.
User Action: Determine whether the file is to be a PL/I PRINT file or a file
with VMS carriage return format and correct the file’s attribute list.

CONPRTFRM, PRINTER_FORMAT conflicts with other attributes or options.
Informational: The ENVIRONMENT option PRINTER_FORMAT conflicts
with the CARRIAGE_RETURN_FORMAT option and with the PRINT and
STREAM file description attributes.
User Action: Correct the file’s attribute list.

PL/I Messages A–53

CONVERSION, PL/I CONVERSION condition.
Fatal: An invalid character was detected during the conversion of character
data to another data type. (For example, the colon in ’12:4’ would cause
conversion to be raised if this string was being converted to a FIXED value.)
User Action: Correct the input data or add an ON-unit to handle the
CONVERSION condition. Note that the ONSOURCE and ONCHAR built-in
functions can be used to determine the source of the error, and that the
corresponding pseudovariables can be used to correct the source string.

CONVFILE, On file entity.
Informational: This displays the name of the file constant for which the
conversion error occurred.
User Action: None.

CREINDEX, Attempting to create an indexed file. Use RMS Define.
Informational: A file was opened with the OUTPUT attribute and with the
ENVIRONMENT option INDEXED. You cannot create an indexed sequential
file in a PL/I program. Indexed files can be opened only for UPDATE or
INPUT.
User Action: Use the RMS utility program FDL to create the file. Correct
the program to open the file with the UPDATE attribute and write records to
it.

CVTPICERR, Error in picture conversion.
Informational: A value could not be edited as specified by the corresponding
picture.
User Action: If the value is negative, be sure that the picture includes one
of the sign characters.

ENDFILE, PL/I ENDFILE condition on file entity.
Fatal: This message is displayed when a READ or GET statement attempts
to access data that is beyond the end of the given file. The message is
displayed only when no user-specified ON-unit exists to handle the end-of-file
condition for the given file.
User Action: Provide an ON-unit for the ENDFILE condition for the input
file.

ENDPAGE, PL/I ENDPAGE condition on file entity.
Warning: This message is displayed when a PUT statement causes the
current line number to exceed the page size specified for a print file. The
message is displayed only if there is no ON-unit within the file to handle the
ENDPAGE condition for the given file.
User Action: If your program is displaying lines on the terminal, you may
want to include this statement:

ON ENDPAGE(SYSPRINT);

This null ON-unit causes PL/I to ignore the ENDPAGE condition when many
lines are being written to the terminal.

For other types of print files, you may want to take special action for the
ENDPAGE condition and code an ON-unit to perform the action.

A–54 PL/I Messages

ENDSTRING, End of string encountered during GET STRING or PUT STRING.
Informational: A GET STRING statement attempted to read past the end
of the source string variable, or a PUT STRING statement attempted to write
past the end of the target string variable. This error occurs most frequently
when a LIST option is specified on a GET STRING statement and the target
string does not have either a trailing blank or a comma.
User Action: Verify the length of the target or source string variable, the
data types specified in the GET or PUT list, and correct the program.

ENVPARM, PL/I compiler/run-time error. Please submit an SPR.
Informational: An error occurred in the execution of the PL/I compiler or a
run-time module.
User Action: Gather as much information as possible about the
circumstances under which the error occurred, and submit an SPR.

ERROR, PL/I ERROR condition.
Fatal: This message is displayed whenever the ERROR condition is signaled
and not handled within the procedure.
User Action: This message is usually followed by additional messages
that indicate the specific error that occurred. Examine these messages to
determine the corrective action required.

FILEIDENT, PL/I compiler/run-time error. Please submit an SPR.
Informational: An error occurred in the execution of the PL/I compiler or a
run-time module.
User Action: Gather as much information as possible about the
circumstances under which the error occurred, and submit an SPR.

FILENAME, File name: entity.
Informational: This message specifies the VMS file specification of the file
to which I/O was attempted.
User Action: Examine this informational message to determine the full
specification of the VMS file on which the I/O that failed was attempted.
From this name, you can verify whether the file was correctly specified in the
TITLE option, whether the correct logical name assignments exist, whether
the correct defaults are being applied, and so on.

FINISH, PL/I Program FINISH condition.
Success: This message is displayed when the FINISH condition is signaled
and the program has no ON-unit for the FINISH condition.
User Action: In many cases, this message is displayed when you have
interrupted a program with Ctrl/c or Ctrl/y and executed another program or
a DCL command. In these cases, no action is required. Otherwise, you may
want to write an ON-unit to respond specifically to the FINISH condition in a
program. For a description of image exit, and the circumstances under which
PL/I signals the FINISH condition, see Chapter 10.

PL/I Messages A–55

FIXOVF, PL/I FIXEDOVERFLOW condition.
Fatal: This message is displayed when the FIXEDOVERFLOW condition
occurs or is signaled and no ON-unit exists for FIXEDOVERFLOW.
User Action: Determine the variable whose value overflowed and give it a
larger precision, or verify that the program logic is correct and is not trying
to assign a value larger than it should to the variable. If the condition is
expected, code an ON-unit in your program that handles this condition.

FORMATOVFL, Too many iteration factors or remote formats.
Informational: A format list is too complex to be interpreted.
User Action: Simplify the stream I/O statement.

FXCSIZ, FIXED_CONTROL_SIZE incorrect.
Informational: The size of the variable in the FIXED_CONTROL_FROM
or FIXED_CONTROL_TO option does not match the size of the file’s
fixed-control area.
User Action: Determine the correct size of the fixed-control area, and correct
the source program or verify that the correct file is being accessed.

INCRETURN, RETURN statement is incompatible with ENTRY.
Fatal: A procedure does not have the RETURNS attribute, but an entry
within that procedure specifies the RETURNS option and attempts to execute
a RETURN statement.
User Action: Correct the source program by specifying the RETURNS
attribute on the PROCEDURE statement or by removing it from the ENTRY
statement.

INTERNAL, PL/I compiler/run-time error. Please submit an SPR.
Fatal: An error occurred in the execution of the PL/I compiler or a run-time
module.
User Action: Gather as much information as possible about the
circumstances under which the error occurred, and submit an SPR.

INVBKTSIZ, Invalid BUCKET_SIZE specified.
Informational: The value specified in the BUCKET_SIZE
ENVIRONMENT option is not in the range 0 through 32. The largest number
of blocks allowed in a bucket by VAX RMS is 32.
User Action: Select a bucket size that is in the correct range, and correct
the source program.

INVBLKSIZ, Invalid BLOCK_SIZE specified.
Informational: The value specified in the BLOCK_SIZE ENVIRONMENT
option is not in the range 20 through 65532 or is not 0.
User Action: Select a block size that is in the valid range, and correct the
program.

A–56 PL/I Messages

INVDATYP, Invalid data type for record I/O.
Informational: The data type of a variable in a record I/O statement is
not a computational data type; or the data type is computational but is an
unconnected array or structure, an unaligned bit string, or an aggregate of
unaligned bit strings.
User Action: Verify that the correct variable name was specified in the I/O
statement. If the variable is an aggregate, you may have to redimension or
restructure it so that the required array is connected.

INVDFNAM, Invalid DEFAULT_FILE_NAME.
Informational: The expression value specified in the
DEFAULT_FILE_NAME ENVIRONMENT option is not a valid character-
string expression, or it is longer than 128 characters.
User Action: Verify that the expression is correctly specified, if a variable
reference is specified, that the reference is correct. Correct the source
program.

INVEXTSIZ, Invalid EXTENSION_SIZE specified.
Informational: The value specified in the EXTENSION_SIZE option of
ENVIRONMENT is not in the range 0 through 65535 or is not a valid integer
expression.
User Action: Correct the expression.

INVFMTPARM, Invalid format parameter specified.
Informational: A value specified for a format item was not a positive
integer, or the value was not in the valid range for the given format item.
For example, this error occurs if a negative number is specified for the A or B
format item, or if a value greater than 31 is specified for the F format item.
User Action: Correct the value specified for the format item in the source
program.

INVFORGKEY, Invalid file organization for KEYED access.
Informational: The KEYED attribute was specified for a file that cannot be
accessed by key, for example, a magnetic tape file.
User Action: Verify that the correct file is being opened by checking
the TITLE and DEFAULT_FILE_NAME options, if any, logical name
assignments, and file specification defaults. If the file is the expected file,
correct the attribute list so that it does not specify the KEYED attribute.

INVFORMAT, PL/I compiler/run-time error. Please submit an SPR.
Informational: An error occurred in the execution of the PL/I compiler or a
run-time module.
User Action: Gather as much information as possible about the
circumstances under which the error occurred and submit an SPR.

INVFXCSIZ, Invalid FIXED_CONTROL_SIZE specified.
Informational: The value specified in the FIXED_CONTROL_SIZE
ENVIRONMENT option is not in the range 0 through 255.
User Action: Verify that the expression in the FIXED_CONTROL_SIZE
option is correctly specified or that it refers to the correct variable. Or choose
a fixed-control size that is within the valid range. Correct the program.

PL/I Messages A–57

INVINDNUM, Invalid INDEX_NUMBER specified.
Informational: The value specified for the INDEX_NUMBER option does
not have a corresponding index in the indexed sequential file.
User Action: Verify that the expression specified in the option is correct or
that it refers to the correct variable. Or specify an index number that is in
the proper range, ensuring that the indexed sequential file was defined with
the correct number of index keys. Correct the program.

INVMAXREC, Invalid MAXIMUM_RECORD_SIZE specified.
Informational: The value specified for the MAXIMUM_RECORD_SIZE
option of ENVIRONMENT is not in the range 0 through 32767.
User Action: Correct the value so that it is not larger than 32767.

INVMLTBLK, Invalid MULTIBLOCK_COUNT specified.
Informational: The value specified in the MULTIBLOCK_COUNT count of
the ENVIRONMENT option is not in the range 0 through 127, or is not a
valid integer expression.
User Action: Verify that the expression in the MULTIBLOCK_COUNT
option is correct, or that the correct variable reference is specified. Correct
the program.

INVMLTBUF, Invalid MULTIBUFFER_COUNT specified.
Informational: The value specified in the MULTIBUFFER_COUNT count of
the ENVIRONMENT option is not in the range –128 through 127, or is not a
valid integer expression.
User Action: Verify that the expression in the MULTIBUFFER_COUNT
option is correct, or that the correct variable reference is specified. Correct
the program.

INVNUMOPT, PL/I compiler/run-time error. Please submit an SPR.
Informational: An error occurred in the execution of the PL/I compiler or a
run-time module.
User Action: Gather as much information as possible about the
circumstances under which the error occurred and submit an SPR.

INVOWNGRP, Invalid OWNER_GROUP specified.
Informational: The value specified for the OWNER_GROUP
ENVIRONMENT option is not in the range 0 through 16383, or is not a
valid integer expression.
User Action: Correct the program.

INVOWNMEM, Invalid OWNER_MEMBER specified.
Informational: The value specified for the OWNER_MEMBER
ENVIRONMENT option is not in the range 0 through 65535, or is not a
valid integer expression.
User Action: Correct the program and recompile.

A–58 PL/I Messages

INVPROT, Invalid protection string specified.
Informational: The value specified for one of the ENVIRONMENT options
GROUP_PROTECTION, OWNER_PROTECTION,
SYSTEM_PROTECTION, or WORLD_PROTECTION is not a valid string
expression; the string contains more than four characters; or the string
contains characters other than the characters R, W, E, or D, or their
lowercase equivalents.
User Action: Correct the value specified in the option, and recompile the
program.

INVRADIX, An invalid radix was specified.
Fatal: The radix specified for the ENCODE or DECODE built-in function
was not a value between 2 and 16.
User Action: Change the radix to a value between 2 and 16.

INVRTVPTR, Invalid RETRIEVAL_POINTERS specified.
Informational: The value specified for the ENVIRONMENT option
RETRIEVAL_POINTERS is not in the range –1 through 127, or is not a valid
integer expression.
User Action: Verify that the expression specified in the
RETRIEVAL_POINTERS option is a valid integer expression or, if a variable
reference is specified, that it refers to the appropriate variable. Correct the
program.

INVSKIP, Invalid value for SKIP option specified.
Informational: The value specified in a SKIP option is zero (on an input
operation) or is negative (for either an input or an output operation).
User Action: Determine the value of the SKIP option; if a variable reference
is specified, verify that the variable contains the correct value.

INVSTRFMT, Invalid format item for STRING I/O.
Informational: One of the format items COL, SKIP, LINE, PAGE, or TAB
was specified in a GET STRING or PUT STRING statement. These format
items are not valid for these statements.
User Action: Correct the format list for the statement that caused the error.

INVSTRING, Invalid character encountered in string.
Fatal: Invalid characters were specified for the string argument of the
DECODE built-in function.
User Action: Remove the invalid characters.

INVTIME, Invalid timeout value specified.
Fatal: An invalid timeout value has been specified. The number of seconds
to wait must be less than 256.
User Action: Correct the timeout value.

INV_KEY, Invalid KEY data type.
Informational: The data type of a key in an indexed sequential file is not a
data type known to PL/I.
User Action: Verify that the file has not been corrupted. Revert to an earlier
version of the file, if possible.

PL/I Messages A–59

IOERROR, I/O error on file entity.
Informational: This informational message indicates that an error occurred
during an I/O operation.
User Action: Examine the accompanying messages to determine the error.

KEY, PL/I KEY condition on file entity.
Fatal: This message is followed by one or more messages that indicate the
specific error that occurred while processing the key on the given file.
User Action: Determine the specific error that occurred by examining
the accompanying RMS message. Verify in your program that the correct
key value was specified in the I/O statement, that the data type of the key
value can be converted to the data type of the given key, and so on. Also
determine whether the file to which the I/O was attempted is the correct file.
If appropriate, write an ON-unit to handle the KEY condition.

LABELRANGE, Uninitialized label subscript used.
Fatal: A label subscript is specified with a variable reference, but the
variable is not initialized.
User Action: Correct the program’s logic so that the variable has a valid
value.

LINESIZE, Invalid LINESIZE specified.
Informational: The value specified in the LINESIZE option exceeds the
implementation’s limit of 32767 or the value is not a positive integer value.
User Action: Correct the LINESIZE option.

LINOVRFLO, Line number overflow.
Informational: The number of lines on a stream file page exceeds the
implementation’s limit of 32767.
User Action: Write an ON-unit using the VAXCONDITION or
ANYCONDITION to handle the condition.

NAME, PL/I compiler/run-time error. Please submit an SPR.
Fatal: An error occurred in the execution of the PL/I compiler or a run-time
module.
User Action: Gather as much information as possible about the
circumstances under which the error occurred, and submit an SPR.

NOCURREC, No current record.
Informational: A DELETE or REWRITE statement was specified for a file
opened with the UPDATE attribute, but the KEY option was not specified.
These statements may omit the KEY option only if the current record contains
a valid value.
User Action: Correct the statement in the source program and recompile.

A–60 PL/I Messages

NOFROM, No FROM specified or buffer not allocated.
Informational: A REWRITE statement was specified without the FROM
option. The REWRITE statement is valid without the FROM option only if a
previous READ statement on the file specified the SET option to allocate a
buffer and set a pointer to the record read.
User Action: Correct the previous READ statement for the file so that
it specifies the SET option, or correct the REWRITE statement so that it
specifies the FROM option.

NOKEY, No KEY or KEYFROM specified.
Informational: A keyed I/O statement must specify a KEY or KEYFROM
option.
User Action: Correct the statement and recompile the program. If you are
attempting sequential access to a file, verify that you have also specified
SEQUENTIAL in the file’s attribute list.

NOSELECT, No WHEN clause selected and no OTHERWISE specified.
Fatal: It is possible to omit either the WHEN or OTHERWISE clause, but if
no WHEN clause is selected, then an OTHERWISE clause must be present.
User Action: Include an OTHERWISE clause in the SELECT-group.

NOSHARE, SHARED_READ or SHARED_WRITE conflict with NO_SHARE.
Informational: The ENVIRONMENT options SHARED_READ and
SHARED_WRITE permit read or write sharing on a file, but the NO_SHARE
option prohibits all sharing.
User Action: Determine whether the file is to be accessed for sharing. If not,
delete the option in error. If it is to be shared, delete the NO_SHARE option.

NOTIMPL, The image being run requires a more recent version of PLIRTL.
Fatal: This message is displayed when an image containing PL/I code is
moved to a system with an older version of PLIRTL that does not support a
function that is required to run the program.
User Action: Upgrade the system to the necessary level to run the program.

NOTINDEXED, Requested operation requires an INDEXED file.
Informational: A keyed I/O statement specifies an operation that is valid
only for a file with indexed sequential file organization.
User Action: Determine from the information in the FILENAME message
whether the operation was requested to the appropriate file. If the file is
correctly specified but is not an indexed file, it may not have been properly
created.

NOTINPUT, Attempting to GET from an OUTPUT or UPDATE file.
Informational: A GET statement is not valid on a file that is opened with
the OUTPUT or UPDATE attributes.
User Action: Correct the file’s attribute list.

PL/I Messages A–61

NOTKEYD, Not a KEYED file.
Informational: A KEY or KEYFROM option was specified in a record I/O
statement for a file that does not have the KEYED attribute.
User Action: Verify that the file is a keyed file, and if it is, correct the
DECLARE or OPEN statement for the file so that it specifies the KEYED
attribute.

NOTOUT, Attempting to PUT to an INPUT or UPDATE file.
Informational: The PUT statement is not valid for files that are opened
with the INPUT or UPDATE attribute.
User Action: Correct the file’s attribute list.

NOTPRINT, PAGE or LINE specified for non-PRINT file.
Informational: The PAGE and LINE options of the PUT statement are valid
only for files that are opened with the PRINT attribute.
User Action: Verify that the file is a stream output file and, if so, add PRINT
to the file’s attribute list and recompile.

NOTREC, Not a RECORD file.
Informational: A record I/O statement (READ, WRITE, DELETE, or
REWRITE) was specified for a file that has the STREAM attribute.
User Action: Correct the file’s attribute list or use a stream I/O statement to
process the file and recompile.

NOTRELSQL, Not a RELATIVE or SEQUENTIAL file
Fatal: The LOCK_NONEXISTENT record option may only be used with
relative or sequential files.
User Action: Remove the LOCK_NONEXISTENT option or use a different
file organization.

NOTSQL, Not a SEQUENTIAL file.
Informational: A sequential READ or WRITE statement was specified for a
file that has the DIRECT attribute. The I/O statement must specify a KEY or
KEYFROM option.
User Action: Decide whether the file was to be accessed sequentially or
directly, and correct the I/O statement that caused the error.

NOTSTREAM, Stream I/O attempted on RECORD file.
Informational: A GET or PUT statement was used to process a file that has
the RECORD attribute.
User Action: Correct the file’s attribute list, remembering that certain
file description attributes imply the RECORD attribute, and recompile the
program.

NOTUPDATE, Attempting to REWRITE or DELETE an INPUT or OUTPUT
file.
Informational: The REWRITE and DELETE statements are not valid for
files that are opened with either the INPUT or OUTPUT attributes; the file
must have the UPDATE attribute.
User Action: Correct the file’s attribute list and recompile.

A–62 PL/I Messages

NOVIRMEM, Virtual memory overflow.
Informational: The run-time system attempted to allocate virtual memory
for an I/O buffer in the program, but there was insufficient virtual memory
available.
User Action: Simplify the source program so that it requires less space.

ONCNVPOS, The erroneous character is at position entity.
Informational: This message displays an up arrow below the character in
error in the ONSOURCE message.
User Action: Use the information to correct the source field of the
conversion.

ONSNOTMOD, ONSOURCE value not modified.
Informational: A normal return occurred from a CONVERSION condition,
which would normally result in a retry of the conversion. However, the
ONSOURCE value was not modified, so the ERROR condition was raised to
prevent an infinite loop.
User Action: Change the ON unit handling the condition to modify
the ONSOURCE value using either the ONSOURCE or ONCHAR
pseudovariables.

ONSOURCE, The conversion source is entity.
Informational: This displays the source string.
User Action: None.

OPEN, Open failure.
Informational: An attempt was made to open a file implicitly by an I/O
statement, but the file could not be opened. The UNDEFINEDFILE condition
was signaled, but the ON-unit did not successfully open the file.
User Action: Write an ON-unit to handle the UNDEFINEDFILE condition
for the given file to ensure that the file will be opened.

PAGESIZE, Invalid PAGESIZE specified.
Informational: The value specified in the PAGESIZE option exceeds the
implementation’s limit of 32767 or the value is not a positive integer.
User Action: Correct the value specified in the PAGESIZE option.

PAGOVRFLO, Page number overflow.
Informational: The number of pages in a stream file exceeds the
implementation’s limit of 32767.
User Action: Write an ON-unit using the VAXCONDITION or
ANYCONDITION to handle the condition.

PARM, PL/I compiler/run-time error. Please submit an SPR.
Informational: An error occurred in the execution of the PL/I compiler or a
run-time module.
User Action: Gather as much information as possible about the
circumstances under which the error occurred and submit an SPR.

PL/I Messages A–63

PROMPTOBIG, PROMPT option too long. Must be less than 254 characters.
Informational: The string specified in the PROMPT option of the GET
statements exceeds the maximum length of 253 characters.
User Action: Shorten the prompting string.

READOP, PL/I compiler/run-time error. Please submit an SPR.
Informational: An error occurred in the execution of the PL/I compiler or a
run-time module.
User Action: Gather as much information as possible about the
circumstances under which the error occurred and submit an SPR.

READOUT, Attempting to READ from an OUTPUT file.
Informational: A file that is opened with the OUTPUT attribute cannot be
accessed with a READ statement. If you are attempting to read a file that
was just written, you must first close the file and reopen it with the INPUT
attribute.
User Action: Correct the source program and recompile.

RECID, File not open for RECORD_ID_ACCESS.
Informational: The RECORD_ID_TO and RECORD_ID_FROM
options are valid only if the file’s ENVIRONMENT option list specified
RECORD_ID_ACCESS.
User Action: Correct the ENVIRONMENT option list.

RECIDKEY, RECORD_ID_FROM conflicts with KEY or KEYFROM.
Informational: A record I/O statement may not specify the KEY or
KEYFROM option and the RECORD_ID_FROM option at the same time.
User Action: Correct the statement.

RECORD, Record length does not match target length.
Informational: A fixed-length character string buffer is not the same length
as a record being read by a READ statement, or an area is too small to hold
the extent of an area being read into it.
User Action: Verify that the variable to which you are transferring data is
the correct length for the records in the file. Correct the source program.

RECORDCND, PL/I compiler/run-time error. Please submit an SPR.
Fatal: An error occurred in the execution of the PL/I compiler or a run-time
module.
User Action: Gather as much information as possible about the
circumstances under which the error occurred, and submit an SPR.

RECURSIO, Illegal recursive I/O attempted.
Informational: An input or output operation was attempted to a file on
which another I/O operation is currently being performed.
User Action: Correct the logic of the program.

A–64 PL/I Messages

RMSF, PL/I internal FAB condition.
Informational: An error occurred in the execution of the PL/I compiler or a
run-time module.
User Action: Gather as much information as possible about the
circumstances under which the error occurred, and submit an SPR.

RMSR, PL/I internal RAB condition.
Informational: An error occurred in the execution of the PL/I compiler or a
run-time module.
User Action: Gather as much information as possible about the
circumstances under which the error occurred, and submit an SPR.

SIZE, PL/I compiler/run-time error. Please submit an SPR.
Fatal: An error occurred in the execution of the PL/I compiler or a run-time
module.
User Action: Gather as much information as possible about the
circumstances under which the error occurred, and submit an SPR.

STORAGE, PL/I STORAGE condition.
Fatal: A failure status was returned by LIB$GET_VM for an ALLOCATE
statement. The secondary condition value indicates the reason for the failure.
User Action: Correct the situation that caused the condition to be raised.

STROVFL, Stream item too big. Must be less than 1000 characters.
Informational: The run-time system cannot process a string longer than
1000 characters.
User Action: Correct the input or output field width. If necessary, use more
than one stream I/O statement.

STRRANGE, PL/I STRINGRANGE condition.
Fatal: The third operand in a reference to a SUBSTR built-in function or
pseudovariable, or the third parameter in a reference to an INDEX, SEARCH
or VERIFY built-in function is beyond the range of the string. This message
is only issued for checks that fail in in-line code if the procedure containing
this reference was compiled with the /CHECK qualifier. This condition is
always checked by PL/I run-time library routines.
User Action: Correct the reference.

STRSIZE, PL/I STRINGSIZE condition.
Fatal: The second operand in a reference to a SUBSTR built-in function or
pseudovariable is beyond the range of the string. This message is issued only
if the procedure containing this reference was compiled with the /CHECK
qualifier.
User Action: Correct the reference.

SUBRANGE, Subscript range check error.
Informational: The compiler detected a value that is beyond the range
specified for a variable. This message is issued only if the procedure
containing the reference was compiled with the /CHECK qualifier.
User Action: Correct the reference.

PL/I Messages A–65

SUBRANGE1, Subscript 1 range check error.
Informational: The first subscript in an array reference specifies a value
that is beyond the bounds of that dimension. This message is issued only
if the procedure containing the reference was compiled with the /CHECK
qualifier.
User Action: Correct the reference.

SUBRANGE2, Subscript 2 range check error.
Informational: The second subscript in an array reference specifies a value
that is beyond the bounds of that dimension. This message is issued only
if the procedure containing the reference was compiled with the /CHECK
qualifier.
User Action: Correct the reference.

SUBRANGE3, Subscript 3 range check error.
Informational: The third subscript in an array reference specifies a value
that is beyond the bounds of that dimension. This message is issued only
if the procedure containing the reference was compiled with the /CHECK
qualifier.
User Action: Correct the reference.

SUBRANGE4, Subscript 4 range check error.
Informational: The fourth subscript in an array reference specifies a value
that is beyond the bounds of that dimension. This message is issued only
if the procedure containing the reference was compiled with the /CHECK
qualifier.
User Action: Correct the reference.

SUBRANGE5, Subscript 5 range check error.
Informational: The fifth subscript in an array reference specifies a value
that is beyond the bounds of that dimension. This message is issued only
if the procedure containing the reference was compiled with the /CHECK
qualifier.
User Action: Correct the reference.

SUBRANGE6, Subscript 6 range check error.
Informational: The sixth subscript in an array reference specifies a value
that is beyond the bounds of that dimension. This message is issued only
if the procedure containing the reference was compiled with the /CHECK
qualifier.
User Action: Correct the reference.

SUBRANGE7, Subscript 7 range check error.
Informational: The seventh subscript in an array reference specifies a value
that is beyond the bounds of that dimension. This message is issued only
if the procedure containing the reference was compiled with the /CHECK
qualifier.
User Action: Correct the reference.

A–66 PL/I Messages

SUBRANGE8, Subscript 8 range check error.
Informational: The eighth subscript in an array reference specifies a value
that is beyond the bounds of that dimension. This message is issued only
if the procedure containing the reference was compiled with the /CHECK
qualifier.
User Action: Correct the reference.

SUBRG, PL/I SUBSCRIPTRANGE condition.
Fatal: The compiler detected a value that is beyond the range specified
for a variable. This message is issued only if the procedure containing the
reference was compiled with the /CHECK qualifier.
User Action: Correct the reference.

SUBSTR2, Operand 2 of a SUBSTR is out of range.
Informational: The second operand in a reference to a SUBSTR built-in
function or pseudovariable is beyond the range of the string. This message is
issued only if the procedure containing this reference was compiled with the
/CHECK qualifier.
User Action: Correct the reference.

SUBSTR3, Operand 3 of a SUBSTR is out of range.
Informational: The third operand in a reference to a SUBSTR built-in
function or pseudovariable is beyond the range of the string. This message is
issued only if the procedure containing this reference was compiled with the
/CHECK qualifier.
User Action: Correct the reference.

TITLE, Invalid TITLE specified.
Informational: The size of the character-string expression specified in the
TITLE option exceeds the maximum size of 128 bytes.
User Action: Select a smaller file title, and correct the program.

TRANSMIT, PL/I compiler/run-time error. Please submit an SPR.
Fatal: An error occurred in the execution of the PL/I compiler or a run-time
module.
User Action: Gather as much information as possible about the
circumstances under which the error occurred, and submit an SPR.

UNDFILE, PL/I UNDEFINEDFILE condition on file entity.
Fatal: This message is followed by one or more messages that indicate the
specific error that occurred during opening of the given file.
User Action: Determine the corrective action from the accompanying
messages. Verify the file specification in the FILENAME message to
determine whether the correct defaults are being applied, whether all
required logical name assignments are in effect, and so on.

VAXCOND, User defined condition, entity.
Warning: This message is displayed when VAXCONDITION is signaled and
no ON-unit exists to handle the specific numeric condition value.
User Action: Verify that the condition value specified in the SIGNAL
statement matches the condition value in a corresponding ON-unit. Correct
the source program.

PL/I Messages A–67

VIRMEMDEAL, PL/I compiler/run-time error. Please submit an SPR.
Informational: An error occurred in the execution of the PL/I compiler or a
run-time module.
User Action: Gather as much information as possible about the
circumstances under which the error occurred and submit an SPR.

WRITEIN, Attempting to WRITE to an INPUT file.
Informational: A file that is opened with the INPUT attribute cannot
be accessed with a WRITE statement. If you are attempting to write
a file that was just read, you must first close the file and reopen it
either with the UPDATE attribute or with the OUTPUT attribute and
ENVIRONMENT(APPEND).
User Action: Correct the source program.

ZERODIV, PL/I ZERODIVIDE condition.
Fatal: This message is displayed when the ZERODIVIDE condition occurs;
that is, the divisor in a division operation has a value of zero. This message
is displayed when the condition is not handled by an ON-unit within the PL/I
program.
User Action: Determine the statement that caused the error and correct the
program logic, if possible. If practical, code an ON-unit to detect the condition
and take appropriate action.

A.3 %DICTIONARY Error Messages
When an error occurs during use of the Common Data Dictionary (CDD), it is
generated by one of the following:

• The PL/I compiler, which generates error messages that begin with %PLIG.
These messages appear in Section A.1.

• The Common Data Dictionary, which generates error messages that begin
with %CDD. These messages appear in the VAX CDD/Plus Utilities Reference
Manual. CDDL error messages appear in the VAX CDD/Plus.

• The CRX, which generates error messages that begin with %CRX. These
messages are given in Table A–1.

Informational messages do not inhibit the production of an object file, but may
indicate that your results might not be as you had anticipated.

Most error messages indicate that there is an error that cannot be corrected by
the user. Therefore, it is requested that you submit an SPR to the CDD or to the
product that created the record description.

Table A–1 CRX Error Messages

CRX Error Message User Action

%CRX-E-BADBASE Field description specifies
base other than 2 or 10.

Correct the description to be base 2 or 10.

%CRX-E-BADCORLEV Record description specifies
unsupported core level.

Submit SPR to CDD or to the product that
created the description.

(continued on next page)

A–68 PL/I Messages

Table A–1 (Cont.) CRX Error Messages

CRX Error Message User Action

%CRX-E-BADDIGITS Field description specifies
improper number of digits.

Correct the field description to specify the
proper number of digits.

%CRX-E-BADFORMAT Record description specifies
improper record format.

Submit SPR to CDD or to the product that
created the description.

%CRX-E-BADLENGTH Field description specifies
improper length.

Submit SPR to CDD or to the product that
created the description.

%CRX-E-BADOCCURS Dimension description
improperly specifies
Minimum Occurs.

Submit SPR to CDD or to the product that
created the description.

%CRX-E-BADOFFSET Field description specifies
improper offset.

Submit SPR to CDD or to the product that
created the description.

%CRX-E-BADOVERLAY Field description specifies
overlay for nonoverlay field.

Submit SPR to CDD or to the product that
created the description.

%CRX-E-BADPRTCL Path name does not designate
a node with record protocol.

Correct the path name.

%CRX-E-BADREFER Field description specifies
reference for nonpointer field.

Submit SPR to CDD or to the product that
created the description.

%CRX-E-BADSCALE Field description specifies
scale greater than precision.

Correct the precision or scale specified in
the field description.

%CRX-E-BADSTRIDE Dimension description
specifies improper stride.

Submit SPR to CDD or to the product that
created the description.

%CRX-E-BADTAGVAR Field description specifies tag
for nonoverlay field.

Submit SPR to CDD or to the product that
created the description.

%CRX-I-INITVAL Initial value in field
description being ignored.

No action.

%CRX-I-LITERALS Literal definitions in record
description being ignored.

No action.

%CRX-E-MEMBADTYP Field description specifies
data type for field with
members.

Submit SPR to CDD or to the product that
created the description.

%CRX-I-NOCONTIN Improper continuation after a
noncontinuable condition.

Submit a PL/I SPR.

%CRX-E-NOCORATT Record description does not
specify core level.

Submit SPR to CDD or to the product that
created the description.

%CRX-E-NOFORMAT Record description does not
specify record format.

Submit SPR to CDD or to the product that
created the description.

%CRX-E-NOLENGTH Field description does not
specify length.

Submit SPR to CDD or to the product that
created the description.

%CRX-E-NOLOWER Dimension description does
not specify lower bound.

Submit SPR to CDD or to the product that
created the description.

%CRX-E-NOOFFSET Field description does not
specify offset.

Submit SPR to CDD or to the product that
created the description.

%CRX-E-NOOVERLAY Field description does not
specify overlay for overlay
field.

Submit SPR to CDD or to the product that
created the description.

(continued on next page)

PL/I Messages A–69

Table A–1 (Cont.) CRX Error Messages

CRX Error Message User Action

%CRX-E-NOSTRIDE Dimension description does
not specify stride.

Submit SPR to CDD or to the product that
created the description.

%CRX-E-NOTCOMPUT Field definition specifies
numeric attributes for
nonnumeric data.

Submit SPR to CDD or to the product that
created the description.

%CRX-E-NOUPPER Dimension description does
not specify upper bound.

Submit SPR to CDD or to the product that
created the description.

%CRX-I-REFERENCE Reference in overlay
description being ignored.

No action.

%CRX-I-TAGVALUES Tag values in overlay
description being ignored.

No action.

%CRX-E-UNALIGNED Field description specifies
improper field alignment.

Correct the field description to specify the
proper alignment.

%CRX-I-UNKFACIL Unknown facility specified for
record description extraction.

Submit a PL/I SPR.

A–70 PL/I Messages

B
Correspondence of PL/I and RMS

Table B–1 lists the PL/I for OpenVMS VAX and PL/I for OpenVMS AXP
ENVIRONMENT options and gives the VAX Record Management Services (RMS)
macro, field, or bit setting, as appropriate, that corresponds to each.

For detailed descriptions of the RMS fields, see the OpenVMS Record
Management Services Reference Manual.

Table B–1 RMS Fields for PL/I ENVIRONMENT Options

Option RMS Macro Field

APPEND $RAB ROP=EOF
$FAB FOP=CIF,-
^MXV,^NEF,^SUP

BATCH $FAB FOP=SCF

BLOCK_BOUNDARY_FORMAT $FAB RAT=BLK

BLOCK_IO $FAB FAC=BIO

BLOCK_SIZE $FAB BLS

BUCKET_SIZE $FAB BKS

CARRIAGE_RETURN_FORMAT $FAB RAT=CR

CONTIGUOUS $FAB FOP=CTG

CONTIGUOUS_BEST_TRY $FAB FOP=CBT

CREATION_DATE $XABDAT CDT

CURRENT_POSITION $FAB FOP=POS

DEFAULT_FILE_NAME $FAB DNM

DEFERRED_WRITE $FAB FOP=DFW

DELETE $FAB FOP=DLT

EXPIRATION_DATE $XABDAT EDT

EXTENSION_SIZE $FAB DEQ

FILE_ID n/a

FILE_ID_TO n/a

FILE_SIZE $FAB ALQ

FIXED_CONTROL_SIZE $FAB FSZ

FIXED_CONTROL_SIZE_TO $FAB RFM=VFC

FIXED_LENGTH_RECORDS $FAB RFM=FIX

GROUP_PROTECTION $XABPRO

(continued on next page)

Correspondence of PL/I and RMS B–1

Table B–1 (Cont.) RMS Fields for PL/I ENVIRONMENT Options

Option RMS Macro Field

IGNORE_LINE_MARKS n/a

INDEX_NUMBER $RAB KRF

INDEXED $FAB ORG=IDX

INITIAL_FILL $RAB ROP=LOA

MAXIMUM_RECORD_NUMBER $FAB MRN

MAXIMUM_RECORD_SIZE $FAB MRS

MULTIBLOCK_COUNT $RAB MBC

MULTIBUFFER_COUNT $RAB MBF

NO_SHARE $FAB SHR=NIL

OWNER_GROUP $XABPRO UIC

OWNER_MEMBER $XABPRO UIC

OWNER_PROTECTION $XABPRO PRO

PRINTER_FORMAT $FAB RAT=PRN

READ_AHEAD $RAB ROP=RAH

READ_CHECK $FAB FOP=RCK

RECORD_ID_ACCESS $RAB FAC=RFA

RETRIEVAL_POINTERS $FAB RTV

REWIND_ON_CLOSE $FAB FOP=RWC

REWIND_ON_OPEN $FAB FOP=RWO

SCALARVARYING n/a

SHARED_READ $FAB SHR=GET

SHARED_WRITE $FAB SHR=PUT,-
GET,UPD,DEL

SPOOL $FAB FOP=SPL

SUPERSEDE $FAB FOP=SUP,-
NEF,^MXV,^CIF
$RAB ROP=^EOF

SYSTEM_PROTECTION $XABPRO PRO

TEMPORARY $FAB FOP=TMP

TRUNCATE $FAB FOP=TEF

WORLD_PROTECTION $XABPRO PRO

WRITE_BEHIND $RAB ROP=WBH

WRITE_CHECK $FAB FOP=WCK

B–2 Correspondence of PL/I and RMS

C
Optional Programming Productivity Tools

This appendix provides an overview of optional programming productivity
tools. These tools are not included with the PL/I for OpenVMS VAX or PL/I for
OpenVMS AXP software; they must be purchased separately. Using these tools
can increase your productivity as a PL/I programmer. For information on how to
purchase these tools, contact your Digital sales representative.

C.1 Using LSE with PL/I
The Language-Sensitive Editor (LSE) is a powerful and flexible text editor
designed specifically for software development. LSE has important features that
help you produce syntactically correct code in PL/I for OpenVMS VAX and PL/I
for OpenVMS AXP.

To invoke LSE, specify the LSEDIT command followed by a file name with a PLI
file type at the DCL prompt. For example:

$ LSEDIT USER.PLI

The following sections describe some of the key features of LSE. Section C.1.1
discusses how to enter source code using LSE, and Section C.1.2 describes LSE’s
compiler interface features. Section C.1.3 gives examples of how to generate PL/I
source code with LSE.

For more details on advanced features of LSE and SCA, see the Guide to
Language-Sensitive Editor for VMS Systems and the Guide to Source Code
Analyzer for VMS Systems.

C.1.1 Entering Source Code Using Tokens and Placeholders
LSE’s language-sensitive features simplify the tasks of developing and
maintaining software systems. These features include language-specific
placeholders and tokens, aliases, comment and indentation control, and templates
for subroutine libraries. The following sections describe these features in detail.

LSE can be used as a traditional text editor. In addition, you can have the power
of using LSE’s tokens and placeholders to step through each program construct
and supply text for those constructs needing it.

Placeholders are markers in the source code that indicate locations where you
can provide program text. These placeholders help you to supply the appropriate
syntax in a given context. Generally, you do not need to enter placeholders;
rather, they are inserted for you by LSE. Placeholders are surrounded by brackets
or braces.

The types of LSE placeholders are as follows:

Optional Programming Productivity Tools C–1

Type Description

Terminal placeholders Provide text strings that describe valid replacements for the
placeholder

Nonterminal
placeholders

Expand into additional language constructs

Menu placeholders Provide a list of options corresponding to the placeholder

Placeholders are either optional or required. Required placeholders, indicated by
braces, represent places in the source code where you must provide program text.
Optional placeholders, indicated by brackets, represent places in the source code
where you can either provide additional constructs or erase the placeholder.

You can move forward or backward from placeholder to placeholder. In addition,
you can delete or expand placeholders as needed.

Tokens typically represent keywords in PL/I. Tokens are provided for all PL/I
statements, built-in functions, and built-in subroutines. When expanded, tokens
provide additional language constructs. You can enter tokens directly into the
buffer.

Generally, you use tokens in situations, such as modifying an existing program,
where you want to add additional language constructs and there are no
placeholders. For example, typing IF and issuing the EXPAND command causes
a template for an IF construct to appear on your screen.

You can use tokens to insert text when editing an existing file by typing the name
for a function or keyword and issuing the EXPAND command. You can also use
tokens to bypass long menus in situations where expanding a placeholder, such
as [statement], would result in a lengthy menu.

LSE provides commands that allow you to manipulate tokens and placeholders.
These commands and their default key bindings are as follows:

Command Key Binding Function

EXPAND Ctrl/e Expands a placeholder

UNEXPAND PF1-Ctrl/e Reverses the effect of the most recent
placeholder expansion

GOTO PLACEHOLDER/FORWARD Ctrl/n Moves the cursor forward to the next
placeholder

GOTO PLACEHOLDER/REVERSE Ctrl/p Moves the cursor backward to the previous
placeholder

ERASE PLACEHOLDER/FORWARD Ctrl/k Erases a placeholder

UNERASE PLACEHOLDER PF1-Ctrl/k Restores the most recently erased placeholder

None Down arrow Moves the indicator through a screen menu
toward the bottom

None Up arrow Moves the indicator through a screen menu
toward the top

None n
ENTER
RETURN

o Selects a menu option

To display a list of all the defined tokens provided by PL/I, enter the SHOW
TOKEN command as follows:

C–2 Optional Programming Productivity Tools

LSE> SHOW TOKEN

To display a list of all the defined placeholders provided by PL/I, enter the SHOW
PLACEHOLDER command as follows:

LSE> SHOW PLACEHOLDER

You must have a PLI file in your current buffer in order to use the SHOW
TOKEN or SHOW PLACEHOLDER command. To put a copy of either list into a
separate file, first enter the appropriate SHOW command to put the list into the
$SHOW buffer. Then enter the following commands:

LSE> GOTO BUFFER $SHOW
LSE> WRITE filename

To obtain a hard copy of the list, use the PRINT command at the DCL level to
print the file you created.

To obtain information about a particular token or placeholder, you can also
specify a token name or placeholder name after the SHOW TOKEN or SHOW
PLACEHOLDER command.

C.1.2 Compiling Source Code
To compile your code and to review compilation errors without leaving the
editing session, you can use the LSE commands COMPILE and REVIEW. The
COMPILE command issues a DCL command in a subprocess to invoke the
PL/I compiler. The compiler then generates a file of compile-time diagnostic
information that LSE can use to review compilation errors. The diagnostic
information is generated with the /DIAGNOSTICS qualifier that LSE appends
onto the compilation command.

For example, if you issue the COMPILE command while in the buffer USER.PLI,
the resulting DCL command is as follows:

$ PLI USER.PLI/DIAGNOSTICS=USER.DIA

LSE supports all of the PL/I compiler’s command qualifiers as well as user-
supplied command procedures. You can specify DCL qualifiers, such as the
/LIBRARY qualifier, when invoking the compiler from LSE. For example, to
generate Source Code Analyzer (SCA) data, you can use the following command:

LSE> COMPILE $/ANALYSIS_DATA

The REVIEW command displays any diagnostic messages that result from
a compilation. LSE displays the compilation errors in one window and the
corresponding source code in a second window. This multiwindow capability
allows you to review your errors while examining the associated source code.
This capability eliminates tedious steps in the error correction process, and helps
ensure that all the errors are fixed before you compile your program again.

LSE provides several commands to help you review errors and examine your
source code. The following table lists these commands and their default key
bindings where applicable.

Command Key Binding Function

COMPILE None Compiles the contents of the source buffer

Optional Programming Productivity Tools C–3

Command Key Binding Function

COMPILE
/REVIEW

None Compiles the contents of the source buffer,
puts LSE into REVIEW mode, and displays
any errors resulting from the compilation

REVIEW None Performs the same function as the /REVIEW
qualifier on the COMPILE command: puts
LSE into REVIEW mode, and displays any
errors resulting from the last compilation

END REVIEW None Removes the buffer $REVIEW from the
screen; returns the cursor to a single window
containing the source buffer

GOTO SOURCE Ctrl/g Moves the cursor to the source buffer that
contains the error

NEXT STEP Ctrl/f Moves the cursor to the next error in the
buffer $REVIEW

PREVIOUS STEP Ctrl/b Moves the cursor to the previous error in the
buffer$REVIEW

None n
Down arrow
Up arrow

o Moves the cursor within a buffer

C.1.3 Examples
This section describes the special features of PL/I available through LSE and
provides examples of PL/I code written with LSE.

The following examples show expansions of the more frequently used PL/I for
OpenVMS VAX and PL/I for OpenVMS AXP tokens and placeholders. The
examples are expanded to show the formats and guidelines LSE provides;
however, not all of the examples are fully expanded.

The examples show expansions of the following PL/I for OpenVMS VAX and PL/I
for OpenVMS AXP features:

• DO Statement

• IF Statement

• Assignment Statement

• DECLARE Statement

• SUBSTR Expression

• %PROCEDURE Statement

Instructions and explanations precede each example, and an arrow (!) indicates
the line in the code where an action has occurred.

To reproduce the examples, invoke LSE and the PL/I language by using the
following syntax:

LSEDIT [/qualifier . . .] filename.PLI

See Section C.1.1 for the commands that manipulate tokens and placeholders.

When you use LSE to create a new PL/I program, the initial string appears at the
top of the screen as follows:

[program]

Expand the placeholder [program] to produce the following:

C–4 Optional Programming Productivity Tools

/*
[module_header_comments]
**/
[preprocessor_statement] . . .
[declare_statement] . . .
{procedure} . . .

Erase the first five lines of this expansion and expand the placeholder {procedure}.

/*
[procedure_header_comments]
**/

--> {entry_name}: procedure [parameters] [options] [returns] [recursive];
[declare_statement] . . .
[statement] . . .
end {entry_name};
[procedure] . . .

Erase the first three lines. Enter test over the placeholder {entry_name}. (Once
the cursor is moved from that text, LSE automatically fills in the next occurrence
of {entry_name}.) Erase the placeholder [parameters].

--> test: procedure [options] [returns] [recursive];
[declare_statement] . . .
[statement] . . .
end test;
[procedure] . . .

Expand the placeholder [options].

--> test: procedure options({option} . . .) [returns] [recursive];
[declare_statement] . . .
[statement] . . .
end test;
[procedure] . . .

Expand the list placeholder {option} to produce a menu and select the option
MAIN.

--> test: procedure options(main, [option] . . .) [returns] [recursive];
[declare_statement] . . .
[statement] . . .
end test;
[procedure] . . .

Erase the duplicated placeholder [option], and the placeholders [returns],
[recursive], and [declare_statement].

test: procedure options(main);
[statement] . . .
end test;
[procedure] . . .

Each of the following examples starts from this expansion.

C.1.4 DO Statement
Begin at the following expansion developed in Section C.1.3.

test: procedure options(main);
[statement] . . .
end test;
[procedure] . . .

Optional Programming Productivity Tools C–5

Expand the list placeholder [statement] to display a menu and select the option
DO.

test: procedure options(main);
--> do [do_specification];

[statement] . . .
end;

[statement] . . .
end test;
[procedure] . . .

Expand the placeholder [do_specification] to display a menu and select the option
while ({boolean_expression}).

test: procedure options(main);
--> do while({boolean_expression});

[statement] . . .
end;

[statement] . . .
end test;
[procedure] . . .

Enter ’1’b over the placeholder {boolean_expression}.

test: procedure options(main);
--> do while(’1’b);

[statement] . . .
end;

[statement] . . .
end test;
[procedure] . . .

C.1.5 IF Statement
Begin at the following expansion developed in Section C.1.3.

test: procedure options(main);
[statement] . . .
end test;
[procedure] . . .

Expand the list placeholder [statement] to display a menu and select the option
IF.

test: procedure options(main);
--> if {boolean_expression}

then
[if_action]

[else_clause]
[statement] . . .
end test;
[procedure] . . .

Enter not_control over the placeholder {boolean_expression}.

test: procedure options(main);
--> if not_control

then
[if_action]

[else_clause]
[statement] . . .
end test;
[procedure] . . .

C–6 Optional Programming Productivity Tools

Enter string=’missile’; over the placeholder [if_action].

test: procedure options(main);
if not_control
then

--> string=’missile’;
[else_clause]
[statement] . . .
end test;
[procedure] . . .

Expand the placeholder [else_clause].

test: procedure options(main);
if not_control
then

string=’missile’;
--> else

{if_action}
[statement] . . .
end test;
[procedure] . . .

Enter string=’control’; over the placeholder {if_action}.

test: procedure options(main);
if not_control
then

string=’missile’;
else

--> string=’control’;
[statement] . . .
end test;
[procedure] . . .

C.1.6 Assignment Statement
Begin at the following expansion developed in Section C.1.3.

test: procedure options(main);
[statement] . . .
end test;
[procedure] . . .

Expand the list placeholder [statement] to display a menu and select the option
ASSIGNMENT.

test: procedure options(main);
--> {target_variable} . . . ={expression};

[statement] . . .
end test;
[procedure] . . .

Expand the placeholder {target_variable} to display a menu and select the option
{SCALAR_VARIABLE}.

test: procedure options(main);
--> {SCALAR_VARIABLE},[target_variable] . . . ={expression};

[statement] . . .
end test;
[procedure] . . .

Optional Programming Productivity Tools C–7

Enter general over the placeholder {SCALAR_VARIABLE} and erase the
placeholder [target_variable]. Enter ’Lee’ over the placeholder {expression}.

test: procedure options(main);
--> general=’Lee’;

[statement] . . .
end test;
[procedure] . . .

C.1.7 DECLARE Statement
Begin at the following expansion developed in Section C.1.3.

test: procedure options(main);
[statement] . . .
end test;
[procedure] . . .

Expand the placeholder [statement] to display a menu and select the option
DECLARE.

test: procedure options(main);
--> declare

{declaration} . . . ;
[statement] . . .
end test;
[procedure] . . .

Expand the list placeholder {declaration} to display a menu and select the option
{NON_STRUCTURE_DECLARATION}.

test: procedure options(main);
declare

--> {NON_STRUCTURE_DECLARATION} . . . ,
[declaration] . . . ;

[statement] . . .
end test;
[procedure] . . .

Expand the placeholder {NON_STRUCTURE_DECLARATION} to display a menu
and select the option {SIMPLE_DECLARATION}.

test: procedure options(main);
declare

--> {identifier}[array_bounds] [datatype] [storage_class],
[declaration] . . . ;

[statement] . . .
end test;
[procedure] . . .

Enter what_if over the placeholder {identifier} and erase the placeholder [array_
bounds].

test: procedure options(main);
declare

--> what_if [datatype] [storage_class],
[declaration] . . . ;

[statement] . . .
end test;
[procedure] . . .

C–8 Optional Programming Productivity Tools

Expand the placeholder [datatype] to display a menu and select the option [BIT_
DATATYPE].

test: procedure options(main);
declare

--> what_if bit[string_length_opt] [aligned] [storage_class],
[declaration] . . . ;

[statement] . . .
end test;
[procedure] . . .

Erase the placeholder [string_length_opt] and expand the placeholder [aligned].

test: procedure options(main);
declare

--> what_if bit aligned [storage_class],
[declaration] . . . ;

[statement] . . .
end test;
[procedure] . . .

Expand the placeholder [storage_class] to display a menu and select the option
[CONTROLLED].

test: procedure options(main);
declare

--> what_if bit aligned controlled [external],
[declaration] . . . ;

[statement] . . .
end test;
[procedure] . . .

Erase the placeholders [external] and [declaration].

test: procedure options(main);
declare

--> what_if bit aligned controlled;
[statement] . . .
end test;
[procedure] . . .

C.1.8 SUBSTR Expression
Begin at the following expansion developed in Section C.1.3.

test: procedure options(main);
[statement] . . .
end test;
[procedure] . . .

Expand the placeholder [statement] to produce a menu and select the option
ASSIGNMENT.

test: procedure options(main);
--> {target_variable} . . . ={expression};

[statement] . . .
end test;
[procedure] . . .

Expand the placeholder {target_variable} to display a menu and select the option
{SCALAR_VARIABLE}.

Optional Programming Productivity Tools C–9

test: procedure options(main);
--> {SCALAR_VARIABLE},[target_variable] . . . ={expression};

[statement] . . .
end test;
[procedure] . . .

Enter vhf over the placeholder {SCALAR_VARIABLE}. Erase the placeholder
[target_variable]. Enter substr over the placeholder {expression} and expand
substr.

test: procedure options(main);
--> vhf=substr({string_expression},{position}[length_option]);

[statement] . . .
end test;
[procedure] . . .

Enter ’where’’s dixie’ over the placeholder {string_expression}.

test: procedure options(main);
--> vhf=substr(’where’’s dixie’,{position}[length_option]);

[statement] . . .
end test;
[procedure] . . .

Enter the value 9 over the placeholder {position}. Expand the placeholder
[length_option], and enter the value 5 over the placeholder {integer_expression}.

test: procedure options(main);
--> vhf=substr(’where’’s dixie’,9,5);

[statement] . . .
end test;
[procedure] . . .

C.1.9 %PROCEDURE Statement
Begin at the following expansion developed in Section C.1.3.

test: procedure options(main);
[statement] . . .
end test;
[procedure] . . .

Erase the list placeholder [statement]. Enter %proc and expand it.

test: procedure options(main);
--> %{identifier}: procedure [parameters] [statement_option]

returns({prep_attribute});
[prep_proc_statements] . . .
return({prep_expression});
%end;

end test;
[procedure] . . .

Enter f over the placeholder {identifier}.

test: procedure options(main);
--> %f: procedure [parameters] [statement_option]

returns({prep_attribute});
[prep_proc_statements] . . .
return({prep_expression});
%end;

end test;
[procedure] . . .

C–10 Optional Programming Productivity Tools

Erase the placeholders [parameters] and [statement_option].

test: procedure options(main);
--> %f: procedure returns({prep_attribute});

[prep_proc_statements] . . .
return({prep_expression});
%end;

end test;
[procedure] . . .

Enter char over the placeholder {prep_attribute} and erase the placeholder [prep_
proc_statements].

test: procedure options(main);
--> %f: procedure returns(char);

return({prep_expression});
%end;

end test;
[procedure] . . .

Enter time() over the placeholder {prep_expression}.

test: procedure options(main);
%f: procedure returns(char);

--> return(time());
%end;

end test;
[procedure] . . .

C.2 Using the Source Code Analyzer
The Source Code Analyzer (SCA) is an interactive source code cross-reference
and static analysis tool that works with most OpenVMS VAX and OpenVMS
AXP programming languages. SCA helps developers keep track of the details
of complex, large-scale software systems by displaying source information in
response to user queries. SCA uses data generated by the PL/I compiler to
supply the requested source information. That information is stored in a unique
location, the SCA library. The data in an SCA library consists of the names of,
and information about, all the symbols, modules, and files encountered during a
specific compilation of the source.

SCA has both cross-reference and static analysis query features. Cross-
referencing supplies information about program symbols and source files.
Cross-referencing features include the following:

• Locating names, and occurrences (uses) of these names

• Querying a specified set of names or partial names (with wildcards allowed)

• Limiting a query to specific characteristics (such as routine names, variable
names, or source files)

• Limiting a query to specific occurrences (such as the primary declaration of a
symbol, read or write occurrences of a symbol, or occurrences of a file)

The static analysis query features of SCA provide structural information on the
interrelation of routines, symbols and files. Static analysis features include the
following:

• Displaying routine calls to and from a specified routine

• Analyzing routine calls for consistency as to the numbers and data types of
arguments passed, and the types of values returned

Optional Programming Productivity Tools C–11

SCA is fully integrated with LSE to provide extended features. By using SCA
with LSE, you can view any portion of an entire system and edit related source
files.

C.2.1 Multimodular Development
The cross-referencing and static analysis features of SCA can become useful
during the implementation and maintenance phases of a project that involves
many programming modules. For example, Figure C–1 shows a project team
work area that contains a set of source modules. To keep track of these modules
in their various development stages, the team can use a code management tool,
such as Code Management System (CMS), which is represented in the figure by
the CMS Library.

Figure C–1 Use of SCA for Multimodular Development

NU−2470A−RA

Project Work Area

Compile
Load

Compile
Load

Some source
code modules

CMS
Library

SCA
Library

SCA
Library

Individual

Debugger, source,
or reference
copy area

.ANA
Files

.ANA
Files

Pointers to source
for LSE

Pointers to SCA
information for LSE

Individual Developer Work Area

When the team compiles the source code, a /ANALYSIS_DATA qualifier to the
COMPILE command instructs the PL/I compiler to generate SCA-required source
information (.ANA data files) from the sources. The team then instructs SCA to
load the .ANA files into a previously established SCA Library.

When a team member wants to do additional development work on specific
modules, that member sets up an individual work area. Such individual work
areas might consist of the following:

• Copies of source and object modules from the project libraries.

C–12 Optional Programming Productivity Tools

• Local SCA libraries that contain copies of the module information required to
complete assigned tasks.

To make available the module-viewing capabilities of SCA/LSE integration, the
project team member must inform LSE of the locations of latest sources, and
the related source information. The team member provides pointers to these
locations by supplying a search list for LSE. The search list first points to source
modules in individual team members’ default directories, and then points to the
remaining modules in the project source directory. With such an arrangement,
each member can effectively see through the local work area to the project-wide
area. If an individual work area contains only new modules, and all of the work
can be done with local resources, the team member need not specify the pointers
to the project-wide area.

The following sections provide a general overview of SCA and discuss some of the
commands that are available to you while using SCA within LSE. For detailed
information on SCA and its use with various programming languages, refer to the
manual Using VAXset.

C.2.2 Setting Up an SCA Environment
To set up an SCA environment, you must take the following steps:

1. Create an SCA library in a subdirectory.

2. Use the PL/I compiler to generate the data analysis (.ANA) files for each
source module in your system.

3. Load these data analysis files into your local SCA library.

You are then ready to use SCA to conduct source information queries.

C.2.2.1 Creating an SCA Library
To use SCA, you must have an SCA library to store the detailed source analysis
data that the PL/I compiler collects. Source analysis data is information about all
of the symbols, files and modules contained in the source.

To create an SCA library you first create a subdirectory at the DCL level. For
example:

$ CREATE/DIRECTORY PROJ:[USER.LIB1]

This command creates a subdirectory LIB1 for a local SCA library.

To initialize a new SCA library you specify the CREATE LIBRARY command.
This command has the following form:

CREATE LIBRARY [/qualifier . . .] directory-spec[, . . .]

For example:

$ SCA CREATE LIBRARY [.LIB1]

This command initializes and activates library LIB1.

C.2.2.2 Generating the Data Analysis Files
SCA uses detailed source data that is generated by the PL/I compiler. When you
specify the /ANALYSIS_DATA qualifier on the PLI command, the generated data
is output to a file with the default type .ANA. For example:

$ PLI/LIST/DIAGNOSTICS/ANALYSIS_DATA PG1,PG2,PG3

Optional Programming Productivity Tools C–13

This command line compiles the input files PG1.PLI, PG2.PLI, and PG3.PLI, and
generates four corresponding output files for each input file with the file types
OBJ, LIS, DIA, and ANA. SCA puts these files in your current default directory
unless you specify otherwise.

C.2.2.3 Loading Data Analysis Files into a Local Library
Before you can examine the information in the compiler-generated source
analysis (.ANA) files, you must load the files into an SCA library using the
LOAD command. The LOAD command has the following form:

LOAD [/qualifier . . .] file-spec[, . . .]

For example:

LSE> LOAD PG1,PG2,PG3

This command loads your library with the modules contained in the data analysis
files PG1, PG2, and PG3.

C.2.2.4 Selecting an SCA Library
To select an existing SCA library to use with your current SCA session, use the
SET LIBRARY command. The command has the following form:

SET LIBRARY [/qualifier . . .] directory-spec[, . . .]

A message appears in the message buffer at the bottom of your screen, indicating
whether your SCA library selection succeeded.

C.2.3 Using SCA for Cross-Referencing
Once you have set up your SCA environment, you can ask for symbol or file
information by using the SCA command FIND. The FIND command has the
following form:

FIND [/qualifier . . .] [name-expression[, . . .]]

name-expression
The name-expression can be explicit (for example, ABC) or can contain wildcards
(for example, ABC* or AB%).

For example:

LSE> FIND ABC,XY%

You can query an SCA library for the following:

Name A series of characters that uniquely identifies a symbol or a file.

Item An appearance of a symbol (such as a variable, constant, label, or
procedure) or a file.

Occurrence The use of a symbol or a file.

To limit the information resulting from a query, you can use qualifiers on the
FIND command, such as the /DECLARATIONS and /REFERENCE qualifiers.
For example:

LSE> FIND/REFERENCES=CALL BUILD_TABLE

This command causes SCA to report only references in the source code where the
routine BUILD_TABLE is called.

C–14 Optional Programming Productivity Tools

When you first issue a FIND command within LSE, you initiate a query session.
Within this context, the integration of LSE and SCA provides the following
commands that can be used only within LSE:n

NEXT
PREVIOUS

o
8>><
>>:

NAME
ITEM
OCCURRENCE
QUERY
STEP

9>>=
>>;

Closely associated commands that let you step
through one or more query buffer displays
within LSE.

GOTO SOURCE Displays the source corresponding to the current
query item.

GOTO DECLARATION Positions the cursor on a symbol declaration
in one window, and displays the source code
that contains the symbol declaration in another
window.

Optional Programming Productivity Tools C–15

D
Rules for Conversion of Data

This appendix provides details of the data type conversions that PL/I performs
when assigning values to variables. The rules for conversions apply to the
following:

• Assignment statements

• Arguments passed to a procedure

• Values specified in a RETURN statement

• Arguments converted by the built-in functions FIXED, FLOAT, BINARY,
DECIMAL, BIT, or CHARACTER

• Character-string arguments to the PUT and GET statements

D.1 Assignments to Arithmetic Variables
You can assign expressions of any computational type to arithmetic variables.
Note, however, that the compiler may issue a warning message unless an explicit
conversion function is used. The conversion rules are described in the following
sections for each source type.

D.1.1 Arithmetic to Arithmetic Conversions
You can assign a source expression of any arithmetic type to a target variable of
any arithmetic type. Note the following qualifications:

• If the target is a variable of type FIXED BINARY or FIXED DECIMAL, then
the FIXEDOVERFLOW condition is signaled when the source value has a
larger number of integral digits than are specified in the precision of the
target. If the target is a fixed-point binary variable, FIXEDOVERFLOW is
signaled if the source value exceeds the storage allocated for the target.

• If the target is a variable of type FIXED-POINT(p,q) and the source value has
more than q fractional digits, then the excess fractional digits of the source
are truncated, and no condition is signaled. If the source has fewer than q
fractional digits, the source value is padded on the right with zeros.

• If the target value is floating point and the absolute source value is too
large to be represented by an OpenVMS VAX or OpenVMS AXP floating-
point type (see Chapter 10), then the OVERFLOW condition is signaled,
and the value of the target is undefined. If the absolute source value is
too small to be represented, the value zero is assigned to the target if the
UNDERFLOW option is not enabled. If the UNDERFLOW option is enabled,
the UNDERFLOW condition is signaled, and the value of the target is
undefined.

Rules for Conversion of Data D–1

D.1.2 Pictured to Arithmetic Conversions
In PL/I for OpenVMS VAX and PL/I for OpenVMS AXP, all pictured values have
the associated attributes FIXED DECIMAL(p,q), where p is the total number
of characters in the picture specification that specify decimal digits, and q is
the total number of these digits that occur to the right of the V character. If
the picture specification does not include a V character, then q is zero. This
associated fixed-point decimal value is assigned to the target, following the rules
for arithmetic to arithmetic conversion described in Section D.1.1.

D.1.3 Bit-String to Arithmetic Conversions
When a bit-string value is assigned to an arithmetic variable, PL/I treats the
bit string as a nonnegative fixed-point binary value. If the converted value is
greater than or equal to 231 for OpenVMS VAX or 263 for OpenVMS AXP, then
FIXEDOVERFLOW is signaled. The leftmost bit in the bit string (as output by
PUT LIST) is the most significant bit in the fixed-point binary value, not its sign.
If the bit string is null, the fixed-point binary value is zero. The intermediate
fixed-point binary value is then converted to the target arithmetic type.

Note that a bit string interpreted as a fixed-point binary value changes its value
when assigned to a bit-string variable of a different length. See the PL/I for
OpenVMS Systems Reference Manual for further details.

D.1.4 Character String to Arithmetic Conversions
When a character string is assigned to an arithmetic value, PL/I interprets the
string as an arithmetic constant and creates an intermediate numeric value based
on the characters in the string. The string can contain any series of characters
that describes a valid arithmetic constant. If it contains any invalid characters,
the ERROR condition is signaled.

PL/I then converts the intermediate value to the data type of the target, following
the rules for arithmetic to arithmetic conversions. In conversions to fixed point,
FIXEDOVERFLOW is signaled if the character string specifies too many integral
digits. Excess fractional digits are truncated without signaling a condition.

If the source character string is null or contains all spaces, the resulting
arithmetic value is zero.

D.2 Assignments to Bit-String Variables
In the conversion of any data type to a bit string, PL/I first converts the source
data item to an intermediate bit-string value. Then, based on the length of the
target string, it performs one of the following:

• If the length of the target bit-string value is greater than the length of the
intermediate string, the target bit string (as represented by PUT LIST) is
padded with zeros on the right.

• If the length of the target bit-string value is less than the length of the
intermediate string, the intermediate bit string (as represented by PUT LIST)
is truncated on the right.

The following sections describe how PL/I arrives at the intermediate bit-string
value for each data type.

D–2 Rules for Conversion of Data

D.2.1 Arithmetic and Pictured to Bit-String Conversions
In converting an arithmetic value to a bit-string value, PL/I first computes the
absolute value of the arithmetic value, and then converts it to an integer of type
FIXED BINARY with a maximum precision of 31 for OpenVMS VAX or 63 for
OpenVMS AXP. If this conversion results in an integer larger than the data type
can accommodate, the FIXEDOVERFLOW condition is signaled; otherwise, each
of the bits of the intermediate bit string represents a binary digit of n.

During the conversion, the sign of the arithmetic value and any fractional digits
are lost. As a result, a value that contains only fractional digits (such as 0.2312)
is converted to an all-zero bit string.

If an arithmetic value is assigned to a bit-string variable, and that variable is
assigned to a second variable of different length, the effect is to multiply or divide
the arithmetic value as a result of padding or truncating the bit string. See the
PL/I for OpenVMS Systems Reference Manual for further details.

D.2.2 Character-String to Bit-String Conversions
PL/I can convert a character string of 0s and 1s to a bit string. Any character in
the character string other than 0 or 1, including spaces, will signal the ERROR
condition. If the source is a null character string, the intermediate string is a
null bit string.

D.3 Assignments to Character-String Variables
In the conversion of any data type to a character string, PL/I first converts the
source value to an intermediate character-string value. Then it performs one of
the following:

• If the length of the intermediate string is zero, a null string is assigned to the
target.

• If the target is a returns descriptor with an asterisk extent (as in RETURNS
CHAR(*)), the intermediate string is assigned to the target.

• If the intermediate string is shorter than the maximum length of the target,
and the target has the VARYING attribute, it is assigned the value of the
intermediate string without trailing spaces. If the target does not have the
VARYING attribute, the string is padded with trailing spaces.

• If the maximum length of the target character string is less than the length
of the intermediate string, the intermediate string is truncated.

The following sections describe how PL/I arrives at the intermediate string for
conversion of each data type. Examples show the intermediate and resulting
values.

D.3.1 Arithmetic to Character-String Conversions
The manner in which PL/I converts the arithmetic item depends on the data type
of the source, as described in the following subsections.

Rules for Conversion of Data D–3

D.3.1.1 Conversion from Fixed-Point Binary or Decimal
If the source value is of type FIXED BINARY, PL/I first converts it to type
FIXED DECIMAL. PL/I converts a value with attributes FIXED DECIMAL to an
intermediate string with the numeric value right justified in the string. Following
is a description of the format of the intermediate string:

• If there are no fractional digits, the first two characters of the string are
spaces. The last characters in the string are the digit characters representing
all the digits in the integer; leading zeros are replaced by spaces except in the
last position. If the integer is negative, a minus sign immediately precedes
the first digit; if not, this position contains a space. At least one digit always
appears in the last position in the string.

• If there are no integral digits, the first three characters are (in order) an
optional minus sign if the fraction is negative, the digit 0, and a decimal
point. If the number is not negative, the first character is a space. The last
characters in the string are all the fractional digits of the number.

• If there are both integral and fractional digits, the first character is always
a space. The last characters are all the fractional digits of the number and
are preceded by a decimal point; the decimal point is always preceded by at
least one digit, which may be 0; all integral digits appear before the decimal
point, and leading zeros are replaced by spaces. A minus sign precedes the
first integral digit if the number is negative; if not, then the minus sign is
replaced by a space.

These rules may cause confusion if you do not take into account the leading
spaces. In the following examples, the letter b represents a space:

DECLARE STRING1 CHARACTER (8),
STRING2 CHARACTER (4);

STRING1 = 283472.;
/* intermediate string = ’bbb283472’,
STRING1 = ’bbb28347’ */

STRING2 = 283472.;
/* intermediate string = ’bbb283472’,
STRING2 = ’bbb2’ */

STRING2 = -283472.;
/* intermediate string = ’bb-283472’,
STRING2 = ’bb-2’ */

STRING2 = -.003344;
/* intermediate string = ’-0.003344’,
STRING2 = ’-0.0’ */

STRING2 = -283.472;
/* intermediate string = ’b-283.472’,
STRING2 = ’b-28’ */

STRING2 = 283.472;
/* intermediate string = ’bb283.472’,
STRING2 = ’bb28’ */

D–4 Rules for Conversion of Data

D.3.1.2 Conversion from Floating-Point Binary or Decimal
If the source value is of type FLOAT BINARY, it is converted to FLOAT
DECIMAL. For a value of type FLOAT DECIMAL(p), where p is less than or
equal to 34, the intermediate string is of length p+6; this allows extra characters
for the sign of the number, the decimal point, the letter E, the sign of the
exponent, and the 2-digit exponent.

Note

For PL/I for OpenVMS VAX or PL/I for OpenVMS AXP, if the value is a
floating-point number of the type G-float, three characters are allocated to
the exponent, and the length of the string is p+7. For PL/I for OpenVMS
VAX only, if the value is of type H-float, four characters are allocated to
the exponent, and the length of the string is p+8.

If the number is negative, the first character is a minus sign; otherwise, the first
character is a space. The subsequent characters are a single digit (which may be
0), a decimal point, p–1 fractional digits, the letter E, the sign of the exponent
(always + or –), and the exponent digits. The exponent field is of fixed length, and
the zero exponent is shown as all zeros in the exponent field.

For example:

CONCH: PROCEDURE OPTIONS(MAIN);

DECLARE OUT PRINT FILE;

OPEN FILE(OUT) TITLE(’CONCH.OUT’);

PUT SKIP FILE(OUT) EDIT(’’’’,25E25,’’’’) (A);
PUT SKIP FILE(OUT) EDIT(’’’’,-25E25,’’’’) (A);
PUT SKIP FILE(OUT) EDIT(’’’’,1.233325E-5,’’’’) (A);
PUT SKIP FILE(OUT) EDIT(’’’’,-1.233325E-5,’’’’) (A);

END CONCH;

The program CONCH produces the following output:

’ 2.5E+26’
’-2.5E+26’
’ 1.233325E-05’
’-1.233325E-05’

The PUT statement converts its output sources to character strings, following
the rules described in this section. Note that the output strings have been
surrounded with apostrophes to make the spaces distinguishable. Also note
that, in each case, the width of the quoted output field (that is, the length of the
converted character string) is the precision of the floating-point constant plus 6.

D.3.2 Pictured to Character-String Conversions
If the source value is pictured, its internal, character-string representation is
used without conversion as the intermediate character string.

D.3.3 Bit-String to Character-String Conversions
When PL/I converts a bit string to a character string, it converts each bit (as
represented by PUT LIST) to a 0 or 1 character in the corresponding position of
the intermediate character string.

If the bit string is a null string, the intermediate character string is also null.

Rules for Conversion of Data D–5

D.4 Assignments to Pictured Variables
A source expression of any computational type can be assigned to a pictured
variable. The target pictured variable has a precision (p), which is defined as the
number of characters in its picture specification that specify decimal digits. It
also has a scale factor (q), which is defined as the number of picture characters
that specify digits and occur to the right of the V character in the picture
specification. If there is no V character, or if all digit-specification characters are
to the left of V, then q is zero.

The source expression is converted to a fixed-point decimal value v of precision
(p,q), following the rules given in Section D.1 for conversion from the source
data type to fixed decimal. This value is then edited to a character string s, as
specified by the picture specification, and the value s is assigned to the pictured
target.

When the value v is being edited to the string s, the ERROR condition is signaled
if the value of v is less than zero and the picture specification does not contain
one of the characters S, +, –, T, I, R, CR, or DB. The value of s is then undefined.
FIXEDOVERFLOW is also signaled if the value v has more integral digits than
are specified by the picture specification of the target.

D.5 Conversions Between Offsets and Pointers
Offset variables are given values by assignment from existing offset values
or from conversion of pointer values. Pointer variables are given values by
assignment from existing pointer values or from conversion of offset values.

The OFFSET built-in function converts a pointer value to an offset value. The
POINTER built-in function converts an offset value to a pointer. These functions
are described in the PL/I for OpenVMS Systems Reference Manual.

PL/I also automatically converts a pointer value to an offset value, and an offset
value to a pointer value, in an assignment statement. The following assignments
are valid:

• pointer-variable = pointer-value;

• offset-variable = offset-value;

• pointer-variable = offset-variable;

• offset-variable = pointer-value;

In the latter two cases, the offset variable must have been declared with an area
reference.

D–6 Rules for Conversion of Data

E
The VAX Common Data Dictionary

This appendix describes the VAX Common Data Dictionary (CDD).

The CDD is a set of shareable data definitions (language-independent structure
declarations) that are defined by a system manager or data administrator. The
CDD provides a central repository that can be shared and that is protected from
unauthorized access. The definitions stored in the CDD help the system manager
coordinate an effective data management system.

Using the CDD has two advantages:

• Record declarations are language independent.

• A single declaration helps guarantee the accuracy and reliability of data.

The CDD is one of the many layered products available from Digital, and not
all systems that use PL/I for OpenVMS VAX use the CDD. Therefore, PL/I CDD
support is only meaningful if the CDD is on your system. If you are not certain,
see your system manager.

CDD data definitions are organized hierarchically in much the same way that
files are organized in directories and subdirectories. For example, a dictionary for
defining personnel data might have separate directories for each employee type.
A directory for salespeople might have subdirectories that would include data
definitions for records such as salary and commission history or personnel history.

CDD entries are stored as an internal form; descriptions of data definitions are
entered into the dictionary in a unique, general-purpose language called Common
Data Dictionary Language (CDDL), and the CDDL compiler converts the data
descriptions to an internal form, making them independent of any higher-level
language. When a program is compiled, CDD data definitions are drawn into
higher-level language programs (provided the data attributes are consistent).
Program listings include CDD data definitions in the same language as the
application program.

The following examples illustrate how data definitions are written for the CDD.
The first example is a structure declaration written in CDDL. The second
example shows the same structure as it would appear in a PL/I listing.

Example 1
PAYROLL_RECORD STRUCTURE.
SALESPERSON STRUCTURE.
NAME DATATYPE IS TEXT 30.
ADDRESS DATATYPE IS TEXT 40.
SALESPERSON_ID DATATYPE IS UNSIGNED NUMERIC 5.

END SALESPERSON STRUCTURE.

The VAX Common Data Dictionary E–1

Example 2
DECLARE 1 PAYROLL_RECORD,

2 SALESPERSON,
3 NAME CHARACTER(30),
3 ADDRESS CHARACTER(40),
3 SALESPERSON_ID PIC ’(5)9’;

The CDD provides two utilities for creating and maintaining a dictionary:

• The Dictionary Management Utility (DMU), for creating and maintaining the
CDD’s directory hierarchy, history lists, and access control lists

• The Dictionary Verify/Fix Utility (CDDV), for repairing damaged dictionary
files

DMU commands create directories and define record paths. Once these paths
are established, records can be included and used in PL/I for OpenVMS VAX
programs with the %DICTIONARY statement. For a detailed description of the
%DICTIONARY statement, see Section 10.2.6 of the PL/I for OpenVMS Systems
Reference Manual.

At compile time, the CDD record and its attributes are extracted from the
designated CDD record node; then the record’s corresponding PL/I declaration
is entered into the object module.

E.1 PL/I and CDDL Data Types
The CDD supports some data types that are not native to PL/I. If a data
definition contains an unsupported data type, PL/I makes the unsupported data
type accessible by declaring it as data type BIT_FIELD or BYTE_FIELD. PL/I
does not attempt to approximate a data type that is not supported by PL/I. For
example, an F_FLOATING_COMPLEX number is declared BYTE_FIELD(8), not
(2)FLOAT(24).

However, the use of the BIT_FIELD and BYTE_FIELD types is limited. Data
declared with these data types can be manipulated only with the PL/I built-in
functions ADDR, INT, POSINT, SIZE, and UNSPEC. Variables declared with
BIT_FIELD or BYTE_FIELD can also be passed as parameters provided the
parameter is declared as ANY. This limits references to data declared with
BIT_FIELD or BYTE_FIELD to contexts in which the interpretation of a data
type is not applied to the reference.

For example:

/* Declaration supplied by programmer */

DCL 1 A BASED(P),
2 B FLOAT BINARY(24),
2 C FLOAT BINARY(24);

/* Data definition supplied by CDD */

DCL 1 Q BASED,
2 X BYTE_FIELD(8);

.

.

.
P = ADDR(Q.X);

In this example, the ADDR built-in function gives the address of Q.X, which is
assigned to P. Therefore, A can be used to reference X.

E–2 The VAX Common Data Dictionary

The following table summarizes the CDDL data types and corresponding PL/I
data types. For further information on CDDL data types see the VAX CDD/Plus.

CDDL Data Type PL/I Data Type Remark

DATE BYTE_FIELD(8)

VIRTUAL ignored

BIT n ALIGNED BIT(n) ALIGNED

BIT n BIT(n)

UNSPECIFIED BYTE_FIELD(n) Depending on length

BIT_FIELD(n) of field

TEXT CHARACTER(n)

VARYING STRING CHARACTER(n)
VARYING

The VAX Common Data Dictionary E–3

D_FLOATING FLOAT BINARY Depending on BASE

FLOAT DECIMAL specified in CDDL

D_FLOATING COMPLEX BYTE_FIELD(16)

F_FLOATING FLOAT BINARY Depending on BASE

FLOAT DECIMAL specified in CDDL

F_FLOATING COMPLEX BYTE_FIELD(8)

G_FLOATING FLOAT BINARY Depending on BASE

FLOAT DECIMAL specified in CDDL

G_FLOATING COMPLEX BYTE_FIELD(16)

H_FLOATING FLOAT BINARY Depending on BASE

FLOAT DECIMAL specified in CDDL

H_FLOATING COMPLEX BYTE_FIELD(32)

SIGNED BYTE FIXED BINARY(7)

UNSIGNED BYTE BYTE_FIELD(1)

SIGNED WORD FIXED BINARY(15)

UNSIGNED WORD BYTE_FIELD(2)

SIGNED LONGWORD FIXED BINARY(31)

UNSIGNED LONGWORD BYTE_FIELD(4)

SIGNED QUADWORD BYTE_FIELD(8)

UNSIGNED QUADWORD BYTE_FIELD(8)

SIGNED OCTAWORD BYTE_FIELD(16)

UNSIGNED OCTAWORD BYTE_FIELD(16)

PACKED NUMERIC FIXED DECIMAL

SIGNED NUMERIC BYTE_FIELD(n)

UNSIGNED NUMERIC PICTURE ’(d)9V(s)9’

LEFT OVERPUNCHED PICTURE ’T(d)9V(s)9’

LEFT SEPARATE PICTURE ’S(d)9V(s)9’

RIGHT OVERPUNCHED PICTURE ’(d)9V(s)9T’

RIGHT SEPARATE PICTURE ’(d)9V(s)9S’

PL/I ignores CDD features that are not supported by PL/I, but issues error
messages when the features conflict with PL/I.

E.2 Creating CDD Structure Declarations
CDD source files must be written in the Common Data Dictionary Language
(CDDL). You enter them into your file directory using a VMS editor utility, just as
you would enter any other file into your directory. CDD source files should have a
file type of DDL, which is the file type recognized by the CDD compiler.

Once you have created a CDD source file, you can invoke the CDDL compiler to
insert your record definitions in the CDD. First, however, you can define CDDL
as a global symbol by issuing the following command line or including it in your
login command procedure:

$ CDDL:==SYSSYSTEM:CDDL

E–4 The VAX Common Data Dictionary

After you have done so, you need only enter CDDL to invoke the CDD compiler.
For example, to compile your FILE.DDL and insert it into the CDD, enter the
following:

$ CDDL FILE.DDL

The CDD compiler compiles the structure declaration and issues messages, if
necessary. To correct errors in your structure declaration, invoke an editor and
change the data definition text as needed, and then recompile. The CDD enters
only the highest version of a file; if you attempt to compile another file with the
same name, the CDD compiler issues an error message. However, the Dictionary
Management Utility (DMU) permits updates. For further information see the
VAX CDD/Plus Utilities Reference Manual.

E.3 Using the CDD
The %DICTIONARY statement incorporates VAX CDD data definitions into the
current PL/I source file during compilation. The %DICTIONARY statement can
occur anywhere in a PL/I source file. It has the following format:

%DICTIONARY cdd-path;

cdd-path
Is any preprocessor expression. The preprocessor expression is evaluated and
converted to a character string, if necessary. The resulting character string is
then interpreted as the full or relative path name of a CDD object. The resultant
path name must conform to the rules for forming VAX CDD path names.

There are two types of CDD path name: full and relative. A full path name
begins with CDD$TOP and specifies the given names of all its descendants; it is
a complete path to the record definition. Descendant names are separated from
each other by a period.

A relative path name begins with any generation name other than CDD$TOP,
and specifies the given names of the descendants after that point. You can create
a relative path by establishing a default directory with a logical name. For
example:

$ DEFINE CDD$DEFAULT CDD$TOP.PLI

This logical name definition specifies the beginning of the CDD path name; thus,
a relative path name specifies the remainder of the path to the record definition.
Note also that a CDD path name beginning with CDD$TOP overrides the default
CDD path name. For example, if you have a record with the following path name:

CDD$TOP.SALES.JONES.SALARY

You can specify a relative path name as follows:

%DICTIONARY ’SALARY’;

Or you can specify an absolute path name as follows:

%DICTIONARY ’_CDD$TOP.SALES.JONES.SALARY’;

The compiler extracts the record definition from the CDD and inserts the PL/I
structure declaration corresponding to the record description in the PL/I program.

A %DICTIONARY statement can appear as a statement by itself, or it can appear
within a regular PL/I structure declaration. However, the resulting structures
appear somewhat different, depending on the way %DICTIONARY is included.

The VAX Common Data Dictionary E–5

If the %DICTIONARY statement is not embedded in a PL/I language statement
(that is, if %DICTIONARY immediately follows a nonpreprocessor semicolon or is
the first statement in the program), then the resulting structure is declared with
the logical level 1, and the BASED storage attribute is furnished. The logical
member levels increment from 2. For example:

DECLARE PRICE FIXED BINARY(31);
%DICTIONARY ’ACCOUNTS’;

would result in a declaration of the form:

DECLARE PRICE FIXED BINARY(31);
DECLARE 1 ACCOUNTS BASED,

2 NUMBER,
3 LEDGER CHARACTER(3),
3 SUBACCOUNT CHARACTER(5),

2 DATE CHARACTER(12),
.
.
.

Notice that in the previous example, ACCOUNTS is a relative dictionary path
name.

If the %DICTIONARY statement is embedded in a PL/I language statement,
as in a structure declaration, then the resulting structure is declared with no
logical level and no storage attribute. Logical member numbers are supplied and
incremented from 100. For example:

DECLARE 1 COMMON_INTERFACES STATIC EXTERNAL,
%DICTIONARY ’ACCOUNTS’; ,
%DICTIONARY ’ADDRESSES’; ;

Notice the syntax in this example: the %DICTIONARY statement is terminated
with the usual preprocessor terminator semicolon before the normal PL/I
punctuation. The normal PL/I punctuation must also be included so that the final
structure declaration will contain proper PL/I punctuation. At compile time, this
declaration would result in a declaration of the following form:

DECLARE 1 COMMON_INTERFACES STATIC EXTERNAL,
100 ACCOUNTS,
101 NUMBER,

102 LEDGER CHARACTER(3),
102 SUBACCOUNT CHARACTER (5),

101 DATE CHARACTER(12),
.
.
.

100 ADDRESSES,
.
.
.

When you extract a record definition from the CDD, you can choose to
include this translated record in the program’s listing by using the /LIST
/SHOW=DICTIONARY qualifiers on the PLI command line.

CDD data definitions can contain explanatory text in the CDDL DESCRIPTION
IS clause. If you specify /SHOW=DICTIONARY, this text is included in the PL/I
listing comments. You can use these comments to indicate the data type of each
structure and member. The punctuation for CDDL comments is the same as for
other PL/I programs.

E–6 The VAX Common Data Dictionary

Even if you choose not to list the extracted record, the names, data types,
and offsets of the CDD record definition are displayed in the program listing’s
allocation map.

The VAX Common Data Dictionary E–7

Index

A
Access modes, 6–3

block I/O, 6–4
random by key, 6–4
record identification, 6–5
relative record number, 6–4
sequential, 6–4

Access privileges, 7–44
ADDR built-in function, 12–4

passing pointer value, 11–8
Address expression

with DEPOSIT debugger command, 3–16
with EXAMINE debugger command, 3–14
with SET BREAK debugger command, 3–10
with SET TRACE debugger command, 3–12
with SET WATCH debugger command, 3–12

Addressable variable, 15–4
/ALIGN qualifier, 2–9
ALIGNED attribute

bit-string arguments, 11–35
ALLOCATE command, 6–8

establishing logical name, 4–4
Allocation

device, 6–11
determining status of, 9–5

disk file space
extending, 9–6

Alternate keys, 6–18, 6–27
accessing file using, 8–1, 8–7
accessing records by, 6–31
specifying numbers for, 6–29

/ANALYSIS_DATA qualifier, 2–10
ANSI magnetic tape labels, 6–9
ANY attribute, 11–7, 11–12, 11–14

examples of, 11–34
used with VALUE, 11–15

ANY CHARACTER, 11–11
ANY DESCRIPTOR, 11–12
ANY OPTIONAL, 11–16
ANYCONDITION ON-unit

called during unwind, 10–11
effect of nonlocal GOTO, 10–11
located in search for ON-units, 10–7, 10–8
STOP statement in, 10–11

APPEND
ENVIRONMENT option, 6–9, 7–8, B–1

determining if set, 9–2
example, 6–7

AREA condition
signal value, 10–16

Argument list, 11–4
passed to ON-unit, 10–13

Argument pointer (AP), 11–3
Arguments

for AST routines, 11–40
for system routines, 11–22
optional, 11–16
optional number of, 11–15
passed to ON-unit

display, 10–15
passing

by descriptor, 11–9
by reference, 11–5
by value, 11–13
conversion of values, D–1

rules for passing, 11–17
specifying pointer values, 11–8
truncating lists of, 11–16

Array descriptor, 11–9
Arrays

bound checking, 2–10
passing as arguments, 11–5

to FORTRAN procedures, 11–8
passing by descriptor, 11–10

Assembly language code
including in listing file, 2–13

Assign I/O Channel system service, 11–36
Assignment statement

conversion during
values, D–1

AST routines
considerations for, 11–39, 11–40
passing parameters to, 11–39, 11–40

Asynchronous I/O (mailboxes), 13–5
Attributes

device
determining, 9–5

file
determining, 9–2
effect on file sharing, 7–46
for file access, 6–3

Index–1

Attributes (cont’d)
program section, 15–1
to declare global symbols, 12–2

B
BACKUP_DATE

ENVIRONMENT option, 7–9
BATCH

ENVIRONMENT option, 7–9, B–1
determining if set, 9–2

Batch jobs
compiler errors during, 2–21

Bit strings
arguments to system routines, 11–35
assigning integer values to, 11–32
converting from bit strings

to arithmetic, D–2
to character, D–5

converting to bit strings, D–2
passing as arguments

by reference, 11–5
by value, 11–14

BIT_FIELD data type, E–2
Block I/O, 6–4

magnetic tape files, 6–10
space block, 9–9

Block size
determining, 9–2

Blocking files, 6–4, 6–9
BLOCK_BOUNDARY_FORMAT

ENVIRONMENT option, 7–9, B–1
determining if set, 9–2

BLOCK_IO
ENVIRONMENT option, 6–4, 7–10, B–1

determining if set, 9–2
BLOCK_SIZE

ENVIRONMENT option, 6–9, 7–11, B–1
Boolean expressions

in ENVIRONMENT options, 7–2
Breakpoint, 3–10
Bucket size

determining, 9–2
relative file, 6–13

Bucket splitting, 6–18
BUCKET_SIZE

ENVIRONMENT option, 6–13, 7–11, 7–50, B–1
Buffer

file system
flushing, 9–7

Built-in functions
condition-handling, 10–13
ONARGSLIST, 10–13
ONCODE, 10–15
ONFILE, 10–17
ONKEY, 10–18

Built-in subroutines
DISPLAY, 9–1, 9–2, 9–4 to 9–6
EXTEND, 9–6
file-handling (summary), 9–1
FLUSH, 9–7
FREE, 9–7
NEXT_VOLUME, 9–7
RELEASE, 9–8
RESIGNAL, 10–1, 10–2
REWIND, 9–8
SPACEBLOCK, 9–9

BYTE_FIELD data type, E–2

C
Call frame

for ON-unit, 10–6
removing from call stack, 10–4

CALL instruction, 11–3
Call stack, 3–9

execution of ON-unit, 10–6
searching for ON-units, 10–6, 10–8

during unwind, 10–5
effect of RESIGNAL, 10–2

unwind, 10–4
CALL statement, 11–3
Calling non-PL/I procedures

FORTRAN example, 11–8
Calling standard, 11–2

VAX register definitions, 11–2
VAX stack usage, 11–2

CANCEL MODULE debugger command, 3–18
CANCEL SCOPE debugger command, 3–19
CANCEL_CONTROL_O option, 8–3
Carriage control, 6–7

determining, 9–2
FTN,determining if file has, 9–4

CARRIAGE_RETURN_FORMAT
ENVIRONMENT option, 6–7, 7–12, B–1

determining if set, 9–2
fixed control records, 8–4

CDD (VAX Common Data Dictionary), E–1, E–5
data types, E–2
including in listing, 2–15
path names, E–5

Cell (in relative file), 6–12
relationship to record number, 6–2

CHANGE command, 2–3
Channel number

assigning, 11–40
mailbox, 11–34, 13–3

assigning, 11–36
deassigning, 13–3
specifying, 13–5

Character strings
ANY CHARACTER declaration, 11–11
arguments to ENVIRONMENT options, 7–2
as procedure arguments

Index–2

Character strings
as procedure arguments (cont’d)

for system routines, 11–22
passing by descriptor, 11–10
varying-length, 11–10

converting from character strings
to arithmetic, D–2
to bit, D–3

converting to character strings, D–3
descriptors, 11–11

user-coded, 11–12
fixed- or varying-length parameters, 11–11
keys in indexed files, 6–29
reading and writing

fixed-length, 6–6
varying-length, 6–6

/CHECK qualifier, 2–10
$CHFDEF

example, 10–15
fields defined in, 10–14

CLOSE statement
deassigning mailbox channel, 13–3
destroying logical network link, 14–3
specify ENVIRONMENT options, 7–1

Code program section, 15–2
$CODE program section, 15–2
Colon

in DEFAULT_FILE_NAME option, 4–6
in TITLE option, 4–3

Column number
determining current, 9–4

Command
See also Debugger command
procedures

used for network I/O, 14–3
qualifiers

with the LINK command, 2–2
Command>qualifiers>with the PLI command,

2–2, 2–5
Common block, 12–1, 15–2
Common Data Dictionary, E–1
Compiler

control optimization (OpenVMS AXP), 2–14
control optimization (OpenVMS VAX), 2–14
diagnostic messages, A–1

format, 2–21
listing, 2–13
listing options, 2–15
options, 2–8

Compiler listing, 2–22
Compiling

/DEBUG qualifier, 3–3
/NOOPTIMIZE qualifier, 3–4

CONDITION condition
signal value, 10–16

Condition handler, 10–5
argument list, 10–13
compared to ON-unit, 10–5

Condition handler (cont’d)
default, 10–7
LIB$ESTABLISH, 10–6

Condition handling
courses of action, 10–2
criteria, 10–2

Condition values, 10–13, 11–28
bits defined in, 11–28
file errors, 4–8
testing for success or failure, 11–30

Conditions, 10–5
Ctrl/c, 11–39, 11–40
effect of handling, 10–2
multiple active, 10–10
resignaling, 10–1, 10–2, 10–3
unwind the call stack, 10–4

CONTIGUOUS
ENVIRONMENT option, 7–13, 7–50, B–1

determining if set, 9–2
CONTIGUOUS_BEST_TRY

ENVIRONMENT option, 7–14, 7–50, B–1
determining if set, 9–2

Control bits (in status value), 11–29
CONTROLLED attribute

program section attributes on, 15–2
Conversion

arithmetic to arithmetic, D–1
arithmetic to bit string, D–3
arithmetic to character string, D–3
bit string to arithmetic, D–2
bit string to character string, D–5
character string to arithmetic, D–2
character string to bit string, D–3
data

rules for, D–1
fixed-point to character string, D–4
floating-point to character string, D–5
offset to pointer, D–6
picture to arithmetic, D–2
picture to bit string, D–3
picture to character string, D–5
pointer to offset, D–6
to arithmetic, D–1
to bit string, D–2
to character string, D–3
to picture, D–6

Creation date of file
determining, 9–2
example of specifying, 11–37

CREATION_DATE
ENVIRONMENT option, 7–14, B–1

example, 11–37
Cross-reference listing, 2–10, 2–27
Ctrl/c, 11–39, 11–40, 11–42

effect on PL/I compiler, E–7
effect on PL/I program, 11–39
establishing routine, 11–40, 11–41

Index–3

Ctrl/o, 8–3
Ctrl/r

effect of PROMPT option, 8–9
suppressing recognition, 8–8

Ctrl/u
effect of PROMPT option, 8–9
suppressing recognition, 8–8

Ctrl/y
interrupting debugger, 3–5

Ctrl/z
effect on stream input, 9–8
exiting debugger, 3–5

CURRENT_POSITION
ENVIRONMENT option, 6–9, 7–14, B–1

determining if set, 9–2

D
D floating-point format, 2–12, 2–13
DAT file type, 4–6

usage, 4–3
Data

arithmetic
converting from other types, D–1
converting to bit string, D–3
converting to character string, D–3

conversion
rules for, D–1

$DATA program section, 15–2
DATA qualifier

compile-time options, 2–11
Data types

arguments
passed by descriptor, 11–9
passing by immediate value, 11–14
passing by reference, 11–5

BIT_FIELD, E–2
BYTE_FIELD, E–2
for CDD declarations, E–2
for keys in indexed files, 6–28
for system routine arguments, 11–22

DCL commands
for program development, 2–1

DEBUG command, 3–5
/DEBUG qualifier, 3–3

PLI command, 2–11
Debugger, 3–1

command
summary, 3–22

compile-time options, 2–11
Decimal overflow

detecting, 10–17
DECnet–VAX, 14–1
Default condition handling

main procedure, 10–7
non-main procedure, 10–8

Default file specifications
at open, 4–6
changing, 4–5

Default libraries
INCLUDE modules, 2–6

PLI$LIBRARY, 2–6
PLI$STARLET, 2–7

DEFAULT_FILE_NAME
ENVIRONMENT option, 4–5, 7–15, B–1

DEFERRED_WRITE
ENVIRONMENT option, 7–15, 7–51, B–1

determining if set, 9–2
DEFINE command

DCL
defining program I/O files, 4–3

DEL key
suppressing recognition, 8–8

DELETE
ENVIRONMENT option, 7–16

DELETE ENVIRONMENT option, B–1
determining if set, 9–2

DELETE statement
valid options for, 8–3

DEPOSIT debugger command, 3–16
Descriptor

argument passing, 11–9
character-string, 11–11, 11–12
data types created for, 11–9
define a structure for, 11–11
passing by, 11–11

DESCRIPTOR attribute, 11–12
/DESIGN qualifier, 2–11
Device

allocated, 6–11
attributes

returned by DISPLAY, 9–5
default, 4–6
independence

ENVIRONMENT options, 7–3
spooled, 6–11

/DIAGNOSTICS qualifier, 2–12
%DICTIONARY error messages, A–68
%DICTIONARY statement, E–2, E–5
DIRECT attribute, 6–3

determining if file has, 9–4
Directory

default, 4–6
Disk files

extend allocation, 9–6
Display

file information, 9–1
source code, 3–5

DISPLAY built-in subroutine, 9–1 to 9–6
device information, 9–5, 9–6
ENVIRONMENT information, 9–2
file attribute information, 9–4

Index–4

Dummy arguments
for by-value arguments, 11–15
passed by reference, 11–7

Duplicate keys, 6–30
testing for errors, 4–9, 6–34

Dynamic module setting, 3–18

E
Edit command

EDIT/EDT
indexed files, 6–21

EDIT/FDL
examples, 6–21
indexed files, 6–21

Editors
EDT, 2–3
EDT Keypad Emulator interface, 2–5
EVE interface, 2–4
LSE, C–1 to C–15

EDT editor
invoking, 2–3
using, 2–3

EDT Keypad Emulator interface, 2–5
End-of-file

indicated by SORT, 11–48
meaning in mailbox I/O, 13–3
meaning in network communication, 14–3
stream files

REWIND, 9–8
End-of-tape

on volume, 6–11
End-of-volume switching, 6–11
ENDFILE condition, 4–8

mailbox I/O, 13–3, 13–4
network I/O, 14–4
rewinding the stream file, 9–8
signal value, 10–16

ENDPAGE condition, 4–8
action by default handler, 10–7
signal value, 10–16

ENTRY attribute
declaring non-PL/I procedures, 11–13

Entry name
passing as procedure argument, 11–14

ENVIRONMENT options, 7–1, 7–2
file sharing, 7–46
for I/O optimization, 7–50
obtaining information, 9–2
specifying, 7–1
specifying arguments, 7–2
summary, 7–3, 7–8

ERROR condition
action by default handler, 10–7
default ON-unit action, 10–2
for file errors, 4–8
signal value, 10–16
signaled

ERROR condition
signaled (cont’d)

by default ON-unit, 10–8
conversion of character strings, D–2
conversion of values, D–6

Errors
compiler

message format, 2–21
ENVIRONMENT options, 7–3
file

default handling, 4–9
error handler, 4–9

handling, 10–1
file, 4–8
of file-related error, 10–17
ON conditions, 10–1

indexed sequential files, 6–34
relative files, 6–17
severity

meaning to compiler, 2–21
syntax

detected by compiler, 2–22
/ERROR_LIMIT qualifier, 2–12
EVALUATE debugger command, 3–16
EVE (Extensible VAX Editor) interface, 2–4
Event flag

as argument, 11–22
clearing, 11–38
in a timer, 11–38
waiting for, 11–38, 11–41
with a timer, 11–38

EXAMINE debugger command, 3–14
Execution

start/resume in debugging, 3–8
EXIT debugger command, 3–5
Expiration date of file

determining, 9–2
example of specifying, 11–37

EXPIRATION_DATE
ENVIRONMENT option, 7–16, B–1

example, 11–37
Expression

See Address expression
See Language expression

EXTEND built-in subroutine, 9–6
Extensible VAX Editor

See EVE
Extension size

determining, 9–2
relative file, 6–14

EXTENSION_SIZE
ENVIRONMENT option, 6–14, 7–16, 7–50,

B–1
External procedures

AST routine, 11–39
non-PL/I, 11–1
passing as arguments, 11–14

Index–5

External variables
compared to global symbols, 12–1
program section, 15–2
program section attributes, 15–2

F
Facility name, 2–21

in global symbol name, 11–30
Facility number

setting customer value, 11–32
Facility number (in status value), 11–29
FAST_DELETE option, 8–3
Fatal (severity)

effect on condition handling, 10–7
meaning to compiler, 2–21

FDL$CREATE, 6–23
File attribute

access modes, 6–3
determining current, 9–4

File constants
associating with OpenVMS file, 4–2
program sections for, 15–2

File identification
determining, 9–2

File information
display values, 9–1

File names
in DEFAULT_FILE_NAME option, 4–6

File organizations, 6–1
determining, 9–4

File sharing, 7–47
attributes and options, 7–46
example, 7–49

File size
determining, 9–2
relative file, 6–14

File specifications
completing, 4–3
defaults

file opening, 4–6
in TITLE option, 4–3

expanded
determining, 9–4
examples of, 4–6

for error, 10–17
invalid, 4–3
relating to file constant, 4–2
TITLE option, 4–2

File types
DAT, 4–6

usage, 4–3
default

used by PL/I, 4–6
user-establishing, 4–5

LIS, 2–13
OBJ, 2–13
TLB, 2–18

File version numbers
default, 4–6

Files
See also Indexed sequential files, Records,

Relative files, Sequential files
access modes and PL/I attributes, 6–3
access privileges, 7–44
blocking, 6–4, 6–9
built-in subroutines for, 9–1 to 9–9
carriage control, 6–7
creating, 6–7
creation date of

example, 11–37
error conditions in, 4–8
errors

error handler, 4–9
expiration date of

example, 11–37
indexed sequential, 6–18 to 6–34

error handler example, 4–9
locked, 7–47
magnetic tapes, 6–8
mailboxes, 13–3
network access, 14–1
opening

ENVIRONMENT options, 7–2
ownership, 7–43

specifying, 7–44
positioning at beginning of, 9–8
printer format, 6–7
process permanent, 4–4
protection, 7–43

specifying, 7–44
reading and writing, 6–9, 6–15, 6–16, 6–30,

6–31, 8–4, 8–10
record, 6–1
relative, 6–2, 6–11 to 6–17
sequential, 6–2, 6–7 to 6–11
sharing, 7–45 to 7–48
sorting, 11–20

examples, 11–46
statements for controlling, 4–1
writing

to spooled devices, 4–3
FILE_ID

ENVIRONMENT option, 7–17, B–1
FILE_ID_TO

ENVIRONMENT option, 7–17, B–1
FILE_SIZE

ENVIRONMENT option, 6–14, 7–18, 7–50,
B–1

FINISH condition
signaled

by default handler, 10–7
by STOP statement, 10–5

STOP statement in ON-unit, 10–11

Index–6

Fixed control area, 6–6
determining size, 9–2
reading, 8–5
writing or rewriting, 8–4

example, 8–4
Fixed-length records, 6–5
FIXEDOVERFLOW condition

sample ON-unit, 10–17
signal value, 10–16
signaled

conversion of bit strings, D–2
conversion of character strings, D–2
conversion of values, D–1, D–6

/FIXED_BINARY qualifier, 2–12
FIXED_CONTROL_FROM option, 6–7, 8–4
FIXED_CONTROL_SIZE

ENVIRONMENT option, 6–6, 7–19, B–1
FIXED_CONTROL_SIZE_TO

ENVIRONMENT option, 7–19, B–1
FIXED_CONTROL_TO option, 6–7, 8–5
FIXED_LENGTH_RECORDS

ENVIRONMENT option, 6–5, 7–20, B–1
determining if set, 9–2

Floating-point
selecting default format, 2–12

FLUSH built-in subroutine, 9–7
Formats

of records, 6–5
FORTRAN programs

common block, 15–2
passing arrays, 11–8

FP (Frame Pointer)
when condition signaled, 10–13

Frame pointer (FP), 11–3
FREE built-in subroutine, 9–7
FTN carriage control, 9–4
Function codes (I/O), 11–40

for mailbox I/O, 13–5
Function value, 11–3

G
G floating-point format, 2–12
General registers

saved, 11–3
GET statement

conversion of values, D–1
default file title, 4–5
NO_ECHO option, 8–7
suppressing display of input, 8–7
valid options for, 8–3
with NO_FILTER option, 8–8
with PROMPT option, 8–9

GETBINTIM procedure, 11–37
Global symbols, 12–1

compared with external variables, 12–1
condition value, 10–17
declaring and referencing in PL/I, 12–2, 12–5

Global symbols (cont’d)
defining in PL/I, 12–3
in system routine arguments, 11–28
multiply defined, 12–3
ONCODE values, 10–16
program section, 15–2
reference in ON-unit, 6–34

example, 6–17
referencing in ON-unit, 4–9, 10–16
system, 12–4

location of definitions, 12–5
with VALUE attribute, 12–4

restrictions, 12–4
GLOBALDEF attribute, 12–2, 12–3, 12–4

program section attributes on, 15–2
restrictions, 12–2

GLOBALREF attribute, 11–28, 12–2 to 12–5
program section attributes on, 15–2
restrictions, 12–2

GO debugger command, 3–8
GOTO statement

nonlocal, 10–4
Group number

of file’s owner, 7–43
determining, 9–2

GROUP_PROTECTION
ENVIRONMENT option, 7–20, 7–44, B–1

determining current value, 9–2
/G_FLOAT qualifier, 2–12

H
Handling

conditions, 10–2
Ctrl/c, 11–39, 11–40, 11–42
errors

indexed file, 6–34
relative file, 6–17

HELP debugger-command, 3–22
Help facility, 3–2
Host task, 14–2

I
I/O

block, 6–4
optimization, 7–50
overview of OpenVMS features, 4–1
PL/I and RMS, 4–2
using mailboxes, 13–1 to 13–6

I/O channels
assigning, 11–36

I/O function codes, 11–40
reading mailbox, 13–6

I/O statement options, 8–1 to 8–11
summary, 8–1

Index–7

I/O status block, 11–40
determining length of data read, 13–6

IGNORE_LINE_MARKS
ENVIRONMENT option, 7–21, B–2

determining if set, 9–2
Image file

program section, 15–1
INCLUDE files

including in listing, 2–15
example, 2–25, 2–35

libraries, 2–6
default, 2–6
specifying in PLI command, 2–18

Index number, 6–29
determining current, 9–2
resetting by WRITE statement, 6–30
specifying for EDIT/FDL, 6–29
specifying on I/O statements, 6–29, 8–5

INDEXED
ENVIRONMENT option, 7–22, B–2

determining if set, 9–2
Indexed sequential files, 6–2, 6–18 to 6–34

creating, 6–21, 6–23
defining, 6–19
defining key fields, 6–25
determining if indexed, 9–2
examples of, 6–30
key data types, 6–28
ONKEY built-in function, 10–18
positioning at beginning of, 9–8
reading, 6–31
specifying index number, 6–29
specifying type of key match, 6–32, 8–6, 8–7
speeding up record deletion, 8–3
updating, 6–32
writing records to, 6–30

INDEX_NUMBER
ENVIRONMENT option, 6–32, 7–21, B–2

INDEX_NUMBER option, 6–29, 6–31, 8–5
Informational (severity)

meaning to compiler, 2–22
Initialization

debugger, 3–4
Initialize

global symbols, 12–3
INITIALIZE command, 6–9
INITIAL_FILL

ENVIRONMENT option, 6–31, 7–22, B–2
determining if set, 9–2

Input
record, 6–1

INPUT attribute
determining if file has, 9–4
effect on file sharing, 7–46

Input files
defining for program I/O, 4–2

Input/output
file specifications, 4–2
record file, 6–1
stream file, 5–1

Integer overflow
detecting, 10–17

Integer values
assigning to bit strings, 11–32

Internal variables
program section, 15–2

Interrupting
debugging session, 3–5

Invoking
debugger, 3–4
non-PL/I procedures, 11–1

Item list
SYS$GETJPI, 11–43

J
$JPIDEF module, 11–43

K
KEY condition, 4–8

attempting to change a key, 6–30
determining key that caused, 10–18
duplicate keys, 6–30
ON-unit, 6–34
sample ON-unit, 4–9, 6–17
signal value, 10–16

Key fields
defining, 6–25
using compiler storage map, 6–25

KEY option
required with INDEX_NUMBER, 8–5
specifying for indexed files, 6–30
specifying for relative file, 6–15

Key values
indexed sequential files, 6–18

valid data types, 6–28
relative files, 6–12

KEYED attribute, 6–3
creating a relative file, 6–12
determining if file has, 9–4

Keypad mode, 2–3
Keys

alternate, 6–18, 6–27
accessing file using, 8–1, 8–7
accessing records by, 6–31
specifying numbers for, 6–29

binary, 6–29
character-string, 6–29
decimal, 6–29
determining number, 9–4
duplicate, 6–30
for relative files, 6–12
generic matching, 6–32

Index–8

Keys (cont’d)
handling

errors, 4–9
invalid data type, 4–9
key not found, 6–17

matching key values for
greater, 6–32, 8–6
greater or equal, 8–7

modifying alternate, 6–30
options, 6–30
segmented, 6–33
specifying, 6–25

alternate, 6–31
position in record with, 6–25

L
Labels

magnetic tape, 6–9
Language expression

with DEPOSIT debugger command, 3–16
with EVALUATE debugger command, 3–16

Language-Sensitive Editor
See LSE

Length
of fixed control area, 6–6
of variable-length records, 6–6

Level-one procedure
identifying in listing, 2–25, 2–35

LIB$ANALYZE_SDESC Run-Time Library routine,
11–11

LIB$ESTABLISH, 10–5
Libraries

INCLUDE file, 2–18
INCLUDE files

default, 2–6
search order, 2–6
system, 2–7

PLI$LIBRARY, 2–7
PLI$STARLET.TLB, 2–7
searched for global symbols, 12–5
SYS$LIBRARY, 2–7

/LIBRARY qualifier, 2–18
PLI command, 2–6, 2–18

Line mode, 2–3
Line number

debugger source display, 3–7
fixed control area, 8–4
SET BREAK debugger command, 3–10
SET TRACE debugger command, 3–12
source file, 2–25, 2–35

assigned by compiler, 2–22
in INCLUDE file, 2–25, 2–35
in run-time traceback, 2–45

stream files
determining current, 9–4

Line printer
spooling program output, 4–3, 6–11

/LINE qualifier, 3–12
Line size

stream files
determining current, 9–4

LINK command, 2–40
Linking

/DEBUG qualifier, 3–3
LIS file type, 2–13
LIST attribute, 11–15
/LIST qualifier, 2–13
Listing

compilation, 2–22
Listing file (compiler), 2–25, 2–27, 2–28, 2–30,

2–32, 2–35
default, 2–25, 2–35
machine code listing, 2–29, 2–30, 2–38
printing

cross-references in, 2–10
INCLUDE files, 2–15
machine code, 2–13

request, 2–13
statistic summary, 2–28
storage map, 2–27, 2–28

Local variables
program section, 15–2

Locked files, 7–47
handling error condition, 7–47

Locked records, 7–48
detecting, 7–50
unlocking, 9–7, 9–8

LOCK_ON_READ option, 8–6
LOCK_ON_WRITE option, 8–6
Logical link (network)

break, 14–3
creating, 14–2

Logical name translation, 11–33
on TITLE option, 4–3
suppressing, 4–4

Logical names
define with MOUNT command, 6–8
for program I/O files, 4–3
for remote files, 14–1
in TITLE option, 4–4
mailboxes, 13–1
PLI$LIBRARY, 2–6
process permanent files, 4–4
SYS$COMMAND, 4–5
SYS$DISK, 4–5
SYS$ERROR, 4–5
SYS$INPUT, 4–5
SYS$LIBRARY, 2–7
SYS$NET, 14–3, 14–4
SYS$OUTPUT, 4–5
TT, 11–40

Index–9

LP: device, 6–11
LSE

PL/I specific examples, C–4 to C–11
LSE (Language-Sensitive Editor), C–1 to C–15
LSE (VAX Language-Sensitive Editor)

using, 2–3

M
Machine code listing, 2–29, 2–30, 2–38
/MACHINE_CODE qualifier, 2–13
Magnetic tapes, 6–8

allocating drive, 4–4
blocking, 6–9
labels, 6–9
mounting next volume, 9–7
multivolume, 6–10, 9–7
positioning, 6–9
rewinding, 9–8
setting expiration date for

example, 11–37
version numbers, 6–8
volume switching, 6–11

Mailbox messages
type codes, 13–4

Mailboxes, 13–1 to 13–6
assigning channels

example, 11–36
creating, 11–34
deleting, 11–36, 13–1, 13–3
determining if files are, 9–5
specifying OPEN, 13–3
temporary and permanent, 13–1

MAIN option
default condition handling, 10–7

Main procedure
default condition handling, 10–7

MANUAL_UNLOCKING option, 8–6
MATCH_GREATER option, 8–6
MATCH_GREATER_EQUAL option, 8–7
MATCH_NEXT option, 8–6
MATCH_NEXT_EQUAL option, 8–7

example, 6–33
Maximum record number, 6–13

determining, 9–2
handling error condition, 6–17

Maximum record size
determining, 9–2

MAXIMUM_RECORD_NUMBER
ENVIRONMENT option, 6–13, 7–22, B–2

MAXIMUM_RECORD_SIZE
ENVIRONMENT option, 6–5, 6–6, 6–13, 7–23,

B–2
Mechanism array arguments, 10–15

displaying, 10–15
Member number, of file’s owner

determining, 9–2

Message identification, A–1
Message number

code in global symbol name, 11–30
setting, 11–32

Message number (in status value), 11–29
Messages

compiler
format, 2–21
suppressing, 2–16

compiler diagnostics, A–1
correspondence to status values, 11–28
%DICTIONARY, A–68
explanations, A–1, A–50
facility name, 2–21
identification, 2–22
run-time, A–50

format, 2–44
run-time errors, A–50
severity

meaning to compiler, 2–21
Module

setting, 3–18
Module name

in run-time traceback, 2–44
text module

specifying name for, 2–6
MOUNT command, 6–8

establishing logical name, 4–4
Multiblock count

determining, 9–2
MULTIBLOCK_COUNT

ENVIRONMENT option, 7–24, 7–51, B–2
Multibuffer count

determining, 9–2
MULTIBUFFER_COUNT

ENVIRONMENT option, 7–25, 7–51, B–2
Multiple active conditions, 10–10
Multivolume tape files, 6–10

mounting next volume, 9–7

N
Network

node names, 14–1
operations in PL/I, 14–1
remote file access, 14–1
task-to-task communication, 14–2

NEXT_VOLUME built-in function, 6–11
NEXT_VOLUME built-in subroutine, 9–7
/NOALIGN qualifier, 2–9
/NOANALYSIS_DATA qualifier, 2–10
/NOCHECK qualifier, 2–10
Node names, 14–1

default, 4–6
/NODEBUG qualifier, 2–45

PLI command, 2–11

Index–10

/NOG_FLOAT qualifier, 2–12
Nokeypad mode, 2–3
/NOLIST qualifier, 2–13
NOLOCK option, 8–8
/NOMACHINE_CODE qualifier, 2–13
Non-PL/I procedures

invoking, 11–1
Nonaddressable variable, 15–4
NONEXISTENT_RECORD option, 8–9
Nonlocal GOTO, 10–4
/NOOBJECT qualifier, 2–13
/NOOPTIMIZE qualifier

effect on debugging, 3–4
/NOOPTIMIZE qualifier (OpenVMS AXP), 2–14
/NOOPTIMIZE qualifier (OpenVMS VAX), 2–14
/NOTRACEBACK qualifier, 2–45
/NOWARNINGS qualifier, 2–17
NO_ECHO option, 8–7
NO_FILTER option, 8–8
NO_SHARE

ENVIRONMENT option, 7–26, 7–46, B–2
determining if set, 9–2

Null key values, 6–30
Null statement

in ON-unit, 10–13

O
OBJ file type, 2–13
Object module

creating, 2–13
program sections for, 15–1

Object module file
specifying name for, 2–13

/OBJECT qualifier, 2–13
Offsets

converting to pointers, D–6
ON conditions, 10–1

resignaling, 10–1
ON-units

argument list, 10–13
call frame created for, 10–6
compared to condition handler, 10–5
courses of action, 10–2
examples, 10–12
for KEY condition

in indexed file, 4–9, 6–34
in relative file, 6–17

in Ctrl/c routine, 11–42
reference global symbols

examples, 6–17
referencing global symbols, 10–16

examples, 4–9
referencing global symbols with, 6–34
scope, 10–11
searching of call stack, 10–6

ONARGSLIST built-in function, 10–13
example, 10–15

ONCODE built-in function, 4–8, 10–17
condition names, 10–13
testing, 10–3
using

ERROR condition, 10–12
value for locked files, 7–47
value for locked records, 7–49
values in KEY ON-unit, 4–9, 6–17
values returned

bits defined in, 11–28
global symbol names for, 10–16

ONFILE built-in function, 4–8, 10–17
ONKEY built-in function, 4–8, 10–18

ONCODE values, 4–9, 6–17
OPEN statement

effect on mailbox, 13–3
opening remote files, 14–2
specifying TITLE option, 4–2

Optimization
compile-time options (OpenVMS AXP), 2–14
compile-time options (OpenVMS VAX), 2–14
I/O, 7–50

/OPTIMIZE qualifier (OpenVMS AXP), 2–14
/OPTIMIZE qualifier (OpenVMS VAX), 2–14
OPTIONAL attribute, 11–16
Options

compiler, 2–8, 2–15
ENVIRONMENT, 7–1

how to specify, 7–1
summary, 7–3

I/O statements, 8–1
how to specify, 8–1
summary, 8–1

OPTIONS (MAIN)
default condition handling, 10–7

OPTIONS option
I/O statements, 8–1

Output
record, 6–1

OUTPUT attribute
creating a new file, 6–7
determining if file has, 9–4
effect on file sharing, 7–46

Output files
program

defining, 4–2
spool to line printer, 6–11

OVERFLOW condition
signal value, 10–16
signaled

conversion of values, D–1
Owner of a file

defining, 7–44
determining, 9–2

Index–11

OWNER_GROUP
ENVIRONMENT option, 7–26, 7–44, B–2

OWNER_ID
ENVIRONMENT option, 7–27

OWNER_MEMBER
ENVIRONMENT option, 7–28, 7–44, B–2

OWNER_PROTECTION
ENVIRONMENT option, 7–28, 7–44, B–2

P
Padding

bit strings, D–3
character strings, D–3

Page number
determining, 9–4

Page size
determining, 9–4

Parameter descriptors
non-PL/I procedures, 11–4
VALUE attribute, 11–13

Parentheses
enclose arguments, 11–10

Path name
in debugging, 3–7, 3–9, 3–10, 3–19

PC (Program Counter)
and SHOW CALLS debugger display, 3–9
and source display, 3–7
and STEP debugger command, 3–9
breakpoint, 3–10
display in ON-unit, 10–15
in run-time traceback, 2–45
when condition signaled, 10–13

Picture
converting from other types, D–6
converting to arithmetic, D–2
converting to bit string, D–3
converting to character string, D–5

PL/I compiler
diagnostic messages, A–1
listing file, 2–13
listing options, 2–15
options, 2–8

PL/I condition values, 10–16
PL/I for OpenVMS VAX compiler

function, 2–5
PLI command, 2–2 to 2–18

diagnostic messages, A–1
messages

format, 2–21
parameters, 2–8
qualifiers, 2–7, 2–8
specifying libraries, 2–6

PLI$LIBRARY, 2–6
multiple definitions, 2–7

PLI$STARLET.TLB, 2–7
$CHFDEF, 10–14
SORT procedure declarations, 11–45

PLI$STARLET.TLB (cont’d)
$STSDEF, 11–30
system service declarations, 11–22

PLI_FILE_DISPLAY structure, 9–1
device attributes, 9–5
ENVIRONMENT information, 9–2
file attribute information, 9–4

Pointers
converting to offsets, D–6
passing as actual arguments, 11–8

Position
key (in indexed file), 6–25, 6–27
magnetic tapes, 6–9

Position (file)
using READ, 6–4
using REWIND, 9–8

Preprocessor, 2–18
built-in functions, 2–21
listing, 2–32
replacement listing, 2–16
variables, 2–18, E–2

Primary key, 6–18, 6–29
PRINT attribute

determining if file has, 9–4
Printer format, 6–7

detecting, 9–2
PRINTER_FORMAT

ENVIRONMENT option, 6–7, 7–29, B–2
Printing

using SPOOL option, 7–37
Procedure

inline expansion, 2–14
%PROCEDURE statement, 2–19
Procedures

passing as arguments, 11–14
preprocessor, 2–19

Process
obtaining information, 11–43

Process permanent files, 4–4
Program

linking, 2–39
Program counter (PC), 11–3
Program output

redefining SYSPRINT, 4–3
spool to line printer, 6–11
spooling to line printer, 4–3

Program sections
attributes, 15–1
common blocks, 15–2
created by compiler, 15–2
for external variables, 15–2
for file constants, 15–2
for global symbols, 12–2, 15–2
names in compiler listing, 2–16
storage class attributes, 15–2

Prompt
with GET statement, 8–9

Index–12

PROMPT option, 8–9
Prompt>debugger (DBG>), 3–4
Protection (file), 7–43

determining group access, 9–2
determining owner access, 9–2
determining system access, 9–2
determining world access, 9–2
specifying, 7–44

Protection (for variables), 12–3
Protection mask, 11–35
PSL (Processor Status Longword)

when condition signaled, 10–13
PURGE_TYPE_AHEAD option, 8–10
PUT statement

canceling effect of Ctrl/o, 8–3
conversion of values, D–1
default file title, 4–5
valid options for, 8–3

Q
Queue I/O Request system service, 11–39

R
R0

display in ON-unit, 10–15
when condition signaled, 10–13

Random access
by key, 6–4
by record identification, 6–5
by relative record number, 6–4

READ statement
mailbox I/O, 13–2
valid options for, 8–3

Reading files, 6–4, 6–15, 6–16, 6–31
READONLY attribute, 12–3, 15–2

program section, 15–2
READ_AHEAD

ENVIRONMENT option, 7–33, 7–51, B–2
determining if set, 9–2

READ_CHECK
ENVIRONMENT option, 7–33, B–2

determining if set, 9–2
READ_REGARDLESS option, 8–10
RECORD attribute

determining if file has, 9–4
Record formats, 6–5

fixed-length, 6–5
variable-length, 6–6

Record identification
accessing a record, 8–10
accessing records by, 6–5
obtaining, 8–11

Record locking, 7–48, 7–50
options of READ statement, 7–48

Record number
maximum

determining, 9–2
relative, 6–2, 6–12

Record size
determining, 9–2
relative files, 6–13
specifying, 6–5

Records
accessing by record indentification, 8–10
determining size of, 9–2
numbers for relative files, 6–2
obtaining record identification, 8–11
read into varying strings, 6–6
record files, 6–1
record I/O, 6–1
sorting

example, 11–47
unlocking, 9–7, 9–8

RECORD_ID option, 6–5, 8–10
RECORD_ID_ACCESS

ENVIRONMENT option, 6–5, 7–33, B–2
determining if set, 9–2

RECORD_ID_TO option, 6–5, 8–11
Reference

passing by, 11–5
ANY attribute, 11–7

REFERENCE built-in function, 11–12
References

global symbols
resolve, 12–5

resolution of
global symbols, 12–5

to system services, 11–22
Registers, 11–2

saved, 11–3
variables in, 2–14

Relative files, 6–2, 6–11 to 6–17
creating, 6–12
error handling, 6–17
examples, 6–11, 6–15
ONKEY built-in function, 10–18
populate, 6–16
rewinding to first occupied cell, 9–8
updating, 6–16

Relative record number, 6–12
maximum, 6–13

RELEASE built-in subroutine, 9–8
Remote file access, 14–1
RESIGNAL built-in subroutine, 10–1, 10–2, 10–3
Retrieval pointers

determining number, 9–2
RETRIEVAL_POINTERS

ENVIRONMENT option, 7–34, 7–51, B–2
RETURN statement

conversion of values, D–1
effect on call stack, 11–3
return status value, 11–28

Index–13

Return status values
for system routines, 11–28
format, 11–28
setting fields, 11–32
test for success or failure, 11–30
testing, 11–30

REVERT statement
effect on ON-unit, 10–11

REVISION_DATE
ENVIRONMENT option, 7–34

REWIND built-in subroutine, 9–8
effect on locked records, 7–48

REWIND_ON_CLOSE
ENVIRONMENT option, 6–9, 7–35, B–2

determining if set, 9–2
REWIND_ON_OPEN

ENVIRONMENT option, 7–35, B–2
determining if set, 9–2

REWRITE statement
valid options for, 8–3

RMS (VAX Record Management Services)
condition values, 4–9, 10–16
relationship to PL/I, 4–2

Routine names
in run-time traceback, 2–44

RST (run-time symbol table), 3–18
RUN command, 2–44, 3–4
Run-time error messages, A–50

S
SCA (Source Code Analyzer), C–11 to C–15
SCALARVARYING

ENVIRONMENT option, 7–35, B–2
determining if set, 9–2

Scope
debugging, 3–19

Screen mode, 3–5
Search order

INCLUDE file libraries, 2–6
ON-units, 10–6, 10–7, 10–8

Segmented character-string keys, 6–29
Segmented keys, 6–33
Sequence numbers

in fixed control area, 8–4
Sequential access to files, 6–4
SEQUENTIAL attribute, 6–3

determining if file has, 9–4
Sequential files, 6–2, 6–7 to 6–11

appending records to, 6–7
creating, 6–7
magnetic tapes, 6–8, 6–9, 6–10

SET BREAK debugger command, 3–10
SET MODE SCREEN debugger command, 3–5
SET MODE [NO]DYNAMIC debugger command,

3–18

SET MODULE debugger command, 3–18
SET PROTECTION command, 7–45
SET SCOPE debugger command, 3–19
SET TRACE debugger command, 3–11
SET WATCH debugger command, 3–12
Severity

of compiler errors, 2–21
of conditions, 10–16
of resignaled condition, 10–8

Severity (in status value), 11–29
/SHARE qualifier, 3–12
SHARED_READ

ENVIRONMENT option, 7–36, 7–46, B–2
determining if set, 9–2

SHARED_WRITE
ENVIRONMENT option, 7–37, 7–46, B–2

determining if set, 9–2
Sharing data

with non-PL/I procedures, 15–2
Sharing files, 7–45 to 7–48

ENVIRONMENT options, 7–46
example, 7–49

SHOW CALLS debugger command, 3–9
SHOW MODULE debugger command, 3–18
/SHOW qualifier, 2–15, 2–23
SHOW SCOPE debugger command, 3–19
SHOW SYMBOL debugger command, 3–19
Signal (condition)

values, 10–15
Signal array arguments, 10–15

displaying, 10–15
/SILENT qualifier, 3–12
SORT procedures, 11–45

file sort example, 11–46
invoking from PL/I programs, 11–20
record sorting example, 11–47

Source Code Analyzer
See SCA

Source display, 3–5, 3–7
not available, 3–7
TYPE debugger command, 3–6

Source programs
compiling, 2–2
creating, 2–2
linking, 2–2

SPACEBLOCK built-in subroutine, 9–9
open for block I/O, 6–10

SPOOL
ENVIRONMENT option, 7–37, B–2

determining if set, 9–2
Spooled devices

obtaining information about, 9–5
writing to, 6–11

Stack
call stack, 11–3

Index–14

STARLET.OLB, 11–22
Statements

file control, 4–1
Static variables

program sections, 15–2
Statistics

compiler
including in listing, 2–16, 2–28

program performance
obtaining, 11–43

Status values
fields defined in, 11–30

STEP debugger command, 3–9
STOP statement

executed in ON-unit, 10–5
Storage classes

program sections, 15–2
READONLY attribute, 12–3
VALUE attribute, 12–4

STORAGE condition
signal value, 10–16

Storage map
in compiler listing, 2–15

determine key fields, 6–25
example, 2–27, 2–28

Stream
I/O processing, 5–1

STREAM attribute
determining if file has, 9–4

Stream files
handling end-of-file, 9–8
mailboxes, 13–3

String descriptor, 11–9
STRINGRANGE condition

signal value, 10–16
Structures

passing as arguments, 11–9
passing by descriptor, 11–9

STS$SUCCESS, 11–30
STS$VALUE, 11–30

setting fields in, 11–32
$STSDEF, 11–30

example, 11–30
fields defined in, 11–30

Subroutines
calling non-PL/I, 11–1
file-handling, 9–1 to 9–9

summary, 9–1
SUBSTR built-in function

check extents, 2–10
Success (severity)

test for, 11–30
SUPERSEDE

ENVIRONMENT option, 7–38, B–2
determining if set, 9–2
example, 6–8

Symbol
module setting, 3–18
record, 3–4
relation to path name, 3–9
resolving, 3–19

Symbol definitions
for system routines, 11–28

Symbol table
created by compiler, 2–11

Synchronous I/O
mailboxes, 13–4
network logical link, 14–3

Syntax errors
detected by compiler, 2–22

SYS$ASSIGN system service, 11–36, 11–39
SYS$BINTIM system service, 11–37
SYS$CLREF system service, 11–38
SYS$COMMAND, 4–5
SYS$CREMBX system service, 11–34
SYS$DELMBX system service, 11–36, 13–3
SYS$DISK, 4–5
SYS$ERROR, 4–5
SYS$EXIT system service

called by STOP statement, 10–5
SYS$GETJPI system service, 11–43, 11–44
SYS$INPUT, 4–5
SYS$LIBRARY, 2–7
SYS$NET, 14–4
SYS$OUTPUT, 4–5
SYS$QIO

mailboxes, 13–5
SYS$QIO system service, 11–39
SYS$SETIMR system service, 11–38
SYS$TRNLNM system service, 11–33
SYS$WAITFR system service, 11–38
SYSIN

default definition of, 4–5
redefining, 4–3

SYSPRINT
default definition of, 4–5
redefining, 4–3

System libraries
PLI$STARLET.TLB, 2–7

/SYSTEM qualifier, 3–12
System routines, 11–1

arguments, 11–22
symbol definition files, 11–28
test return status, 11–28
variable-length argument lists, 11–27

System services, 11–19, 11–22
SYSTEM_PROTECTION

ENVIRONMENT option, 7–38, 7–44, B–2

Index–15

T
Task-to-task communication, 14–2, 14–3, 14–4
TEMPORARY

ENVIRONMENT option, 7–39, B–2
determining if set, 9–2

Terminal
I/O with $QIO, 11–40
input

displaying prompting message, 8–9
suppressing display, 8–7

TT logical name, 11–40
Text libraries, 2–18
Text modules

specifying name for, 2–6
Time

converting ASCII string to binary, 11–37
specifying for ENVIRONMENT options, 11–37
system 64-bit value, 11–37

TIMEOUT_PERIOD option, 8–11
Timer

setting with system services, 11–38
TIMRB entry, 11–43, 11–44
TIMRE entry, 11–43, 11–44
TITLE option, 4–2

default for SYSIN, 4–5
default for SYSPRINT, 4–5
determining expanded value, 9–4
specifying logical name, 4–4
specifying mailbox, 13–3
specifying remote file, 14–1

TLB file type, 2–18
Traceback

exclude from image, 2–45
following condition signal, 10–8
for run-time errors

file errors, 4–10
information, 2–44

SHOW CALLS debugger command, 3–9
specifying at compile time, 2–11

Tracepoint, 3–11
Translating logical names, 11–33
TRUNCATE

ENVIRONMENT option, 7–40, B–2
determining if set, 9–2

TRUNCATE attribute, 11–16
Truncation

of bit strings, D–3
of character strings, D–3

TT logical name, assign channel, 11–40
TYPE debugger command, 3–6
Type-ahead buffer

purging, 8–10

U
UNDEFINEDFILE condition, 4–8

ENVIRONMENT option conflicts, 7–3
network errors, 14–3
signal value, 10–17
signaled

invalid file specifications, 4–3
UNDERFLOW condition

default PL/I action, 10–8
signal value, 10–17
signaled

conversion of values, D–1
UNSPEC built-in function

examples, 11–33
setting bit fields, 11–32

Unwind, 10–4
UPDATE attribute

determining if file has, 9–4
effect on file sharing, 7–46

Updating
indexed sequential files, 6–32
relative files, 6–16

User identification code
of file’s owner

determining, 9–2
specifying file ownership, 7–43
specifying value, 7–44

USER_OPEN
ENVIRONMENT option, 7–40

V
Value

passing by, 11–13
VALUE attribute, 11–28

global symbols, 12–4, 12–5
restrictions, 12–4

parameter descriptor, 11–13
examples, 11–34

used with ANY, 11–15
Variable

addressable, 15–4
as address expression for SET WATCH

debugger command, 3–12
external and global, 12–1
global symbols, 12–1
in registers, 2–14
nonaddressable, 15–4
nonstatic, 3–13, 3–14
preprocessor, 2–18
read-only, 12–3

Variable name
DEPOSIT debugger command, 3–16
EVALUATE debugger command, 3–16
EXAMINE debugger command, 3–14

Index–16

Variable-length argument lists, 11–27
Variable-length records, 6–6

with fixed control area, 6–6, 8–4
printing, 8–4

/VARIANT qualifier, 2–17
VARYING character strings

passing as arguments, 11–10
reading and writing, 6–6

VAXCONDITION condition
called during unwind, 10–11
example, 11–42
located in search for ON-units, 10–7, 10–8
signal value, 10–17

VAXTPU (VAX Text Processing Utility)
using, 2–4

Version numbers
default, 4–6
magnetic tapes, 6–8

Volume sets (magnetic tapes), 6–10
Volume switching, 6–11

W
WAIT_FOR_RECORD option, 8–12
Warning (severity)

meaning to compiler, 2–22
causes, 2–22

suppressing messages, 2–17
/WARNINGS qualifier, 2–17
Watchpoint, 3–12

nonstatic variable, 3–13
WORLD_PROTECTION

ENVIRONMENT option, 7–42, 7–44, B–2
WRITE statement

valid options for, 8–3
WRITE_BEHIND

ENVIRONMENT option, 7–42, 7–51, B–2
determining if set, 9–2

WRITE_CHECK
ENVIRONMENT option, 7–43, B–2

determining if set, 9–2
Writing files, 6–9, 6–15, 6–16, 6–30

to allocated devices, 6–11
to spooled devices, 6–11

Z
ZERODIVIDE condition

signal value, 10–17

Index–17

