

Software
Product
Description
PRODUCT NAME: PL/I for OpenVMS SPD 25.30.21

This SPD describes the following two products:

VAX PL/I Version 3.5A

DEC PL/I Version 4.0 for OpenVMS AXP Systems

The general description section describes features com-
mon to both products. Within the context of the general
description both products will be referred to as DEC
PL/I. The differences in product functionality are indi-
cated in separate sections that follow.

DESCRIPTION

DEC PL/I is an extended implementation of the ANSI
X3.74 1981, American National Standard PL/I General
Purpose Subset. DEC PL/I extensions include com-
patibility features with industry standard implementa-
tions and ANSI full language features as well as Open-
VMS system-specific features. DEC PL/I consists of a
shareable compiler, a HELP facility, and a system inter-
face library which includes declarations for system rou-
tines. The DEC PL/I compiler runs under the OpenVMS
Operating System and generates optimized, position-
independent machine code.

DEC PL/I is a comprehensive and powerful program-
ming language that supports scientific computation,
commercial data handling and data organization, and
extensive string manipulation. The block-structuring
provided by the PL/I language helps to reduce the costs
of program development and support.

DEC PL/I allows access to CDD/Repository.� A
compile-time preprocessor facility allows language ex-
tension and conditional compilation. All OpenVMS Sys-
tem Services, the Common Run-Time Library, and sys-
tem utilities are available through the PL/I CALL state-
ment. A library of predefined ENTRY declarations pro-
vided with DEC PL/I minimizes the coding required to
use OpenVMS system services, the Common Run-Time
Library, and many system utilities.

� The reference to CDD/Repository refers to all CDD products: VAX CDD,
VAX CDD/Plus, and CDD Repository.

Features

• Support for the CDD/Repository, allowing DEC PL/I
programmers to extract a designated CDD/Repository
record description node and represent the record as
a PL/I structure declaration. CDD/Repository struc-
ture declarations may be optionally included in the
compiler listing.

• Support for the following data types:

Binary integer (FIXED BINARY), floating point
(FLOAT BINARY, FLOAT DECIMAL), decimal (FIXED
DECIMAL), fixed or varying length character strings
(CHARACTER [VARYING]), fixed length bit strings
(BIT), edited numeric data in character format (PIC-
TURE), address manipulation (AREA, OFFSET, and
POINTER), entry point (ENTRY), label with an op-
tional subscript (LABEL), and condition (CONDI-
TION).

• An assignment operator that operates on equivalent
structures or arrays of data as well as scalar vari-
ables. A scalar can be assigned to an entire array.

• Support for all OpenVMS RMS file organizations (se-
quential, relative, and indexed), and access methods
(sequential, direct, and keyed). A set of ENVIRON-
MENT options provides access to a large subset of
RMS features. The OPTIONS option on READ pro-
vides extended control of record locking.

• Five storage classes:

— AUTOMATIC: Variables are allocated upon block
entry.

— STATIC: Variables are allocated at compile time.
Static data can be EXTERNAL or globally shared.
The GLOBALDEF attribute provides program sec-
tion (PSECT) control of data.

— DEFINED: Variables are overlaid upon existing
variables.

— BASED: Variable allocation is dynamically con-
trolled by the programmer.

— CONTROLLED: Variables are allocated and freed
dynamically as generations. Only the most recent
generation is available to the programmer.

November 1993d

PL/I for OpenVMS SPD 25.30.21

• INITIAL values may be specified for AUTOMATIC,
BASED, CONTROLLED, and STATIC variables.

• A REFER option is available for the creation of dy-
namically self-defining based structures. This option
may be specified for any or all bounds and extents
for structure members which are arrays, bit strings,
character strings, or areas.

• ALLOCATE statement with the SET and IN options
for explicit dynamic storage allocation.

— FREE space previously allocated by the ALLO-
CATE statement

— POINTER and OFFSET data types for address
manipulation of scalar and aggregate data

— AREA as an address base for variables of OFF-
SET type with language supported allocation and
deallocation

• LIKE attribute to allow the members of a structure
to be declared in terms of an already-declared struc-
ture.

• UNION attribute to declare overlaid minor structures.

• TYPE attribute to allow scalars, arrays, or members
of a structure to be declared in terms of already de-
clared scalars, arrays, and structures.

• A powerful set of structured program control state-
ments.

— DO statement with TO, BY, WHILE, UNTIL, and
REPEAT options

— LEAVE statement to transfer control out of one or
more levels of containing DO-groups

— SELECT-WHEN-OTHERWISE group allowing CASE-
like selection of a statement or statement group

— IF...THEN...ELSE conditional statement

— CALL statement and function reference (RE-
TURN)

— GOTO statement for transfer of control

— OTHERWISE option applies to the GOTO state-
ment

• Condition Handling

— ON statement to establish ON-units (for AREA,
CONDITION, CONVERSION, ENDFILE, END-
PAGE, KEY, UNDEFINEDFILE, FIXEDOVER-
FLOW, OVERFLOW, UNDERFLOW(1), ZERODI-
VIDE, STORAGE, STRINGRANGE, SUBSCRIP-
TRANGE, ERROR, FINISH, ANYCONDITION,
and VAXCONDITION conditions).

— REVERT statement to cancel ON-units.

— RESIGNAL statement that allows conditions to be
passed to other ON-units.

• Input/Output Control

— OPEN and CLOSE file control statements.

— READ, WRITE, DELETE, and REWRITE record-
oriented I/O statements.

— GET and PUT stream-oriented I/O statements
(with FILE, STRING, EDIT, LIST, PAGE, and SKIP
options).

— ENVIRONMENT and OPTIONS clauses provide
access to RMS features including a USEROPEN
feature and extended record locking control.

• Program Structuring Statements

— PROCEDURE blocks: Internal (nested) and EX-
TERNAL

— BEGIN...END blocks, allowing local variable dec-
laration

— DO groups that provide compound statement ca-
pabilities

— ENTRY statement that allows a routine to have
multiple entry points

• Preprocessor Statements

— %REPLACE statement for compile-time replace-
ment of arithmetic, bit-, or character-string con-
stants

— %INCLUDE statement for compile-time source
copying, with full library support for INCLUDE
modules and default and user-specified system
libraries

— %DICTIONARY for CDD record extraction

— %DECLARE, %ACTIVATE, %DEACTIVATE state-
ments for declaration and control of compile-time
variables

— %DO...%END, %IF...%THEN...%ELSE, and %GOTO
statements for compilation control

— %PROCEDURE to define compile-time proce-
dures

— %INFORM, %WARN, %ERROR, %FATAL state-
ments for user-generated diagnostics

— %[NO]LIST[_ALL], %[NO]LIST_DICTIONARY, %[NO]LIST_
INCLUDE, %[NO]LIST_MACHINE, and %[NO]LIST_
SOURCE statements for selective listing control

— %PAGE, %TITLE, %SBTTL statements for listing
format control

• Preprocessor Expressions and Built-in Functions

• Built-In Functions

— A full set of arithmetic functions: ABS, ADD, CEIL,
DIVIDE, FLOOR, MAX, MIN, MOD, MULTIPLY,
ROUND, SIGN, SUBTRACT, TRUNC

2

PL/I for OpenVMS SPD 25.30.21

— A full set of mathematical (transcendental) func-
tions: ACOS, ASIN, ATAN, ATAND, ATANH, COS,
COSD, COSH, EXP, LOG, LOG10, LOG2, SIN,
SIND, SINH, SQRT, TAN, TAND, TANH

— String functions: BOOL, COLLATE, COPY, EV-
ERY, HIGH, INDEX, LENGTH, LOW, MAXLENGTH,
REVERSE, SEARCH, SOME, STRING, SUB-
STR, TRANSLATE, TRIM, LTRIM, RTRIM, VER-
IFY

— Conversion functions: BINARY, BIT, BYTE,
CHARACTER, DECIMAL, DECODE, ENCODE,
FIXED, FLOAT, RANK, UNSPEC, INT, POSINT

— Condition-handling functions: ONARGSLIST, ON-
CHAR, ONCODE, ONFILE, ONKEY, ONSOURCE

— Array-handling functions: DIMENSION, HBOUND,
LBOUND, PROD, SUM, ADDREL

— Storage functions: ADDR, ALLOCATION, EMPTY,
NULL, OFFSET, POINTER, SIZE, BYTESIZE

— Timekeeping functions: DATE, DATETIME, TIME

— File Control functions: LINENO, PAGENO

— Pseudovariables (functions allowed on left-hand
side of an assignment): INT, ONCHAR, ON-
SOURCE, PAGENO, POSINT, STRING, SUB-
STR, UNSPEC

— Calling mechanism support functions: DESCRIP-
TOR, REFERENCE, VALUE, ACTUALCOUNT,
PRESENT

— Picture Variable Validation function: VALID

• Built-in Subroutines are provided for:

— File-handling: DISPLAY, EXTEND, FLUSH, FREE,
NEXT_VOLUME, RELEASE, REWIND, SPACE-
BLOCK

— Condition-handling: RESIGNAL

Other DEC PL/I language capabilities include:

• Expressions in format lists

• Replication factors for string constants

• Preprocessor statements in any context

Compiler Options

Compile-time command qualifiers provide a variety of
options:

• /[NO]ANALYSIS_DATA: Causes Source Code Ana-
lyzer component information to be generated.(1)

• /[NO]ALIGN: to allow for natural data alignment for
RISC machine data types.

• /[NO]CHECK: Produce extra code to check array and
string references. Options: Bounds.

• /[NO]CROSS_REFERENCE: Produce an alphabeti-
cal symbol cross-reference.

• /DATA: Specifies integer size and status of align-
ment.(2)

• /[NO]DEBUG: Causes DEBUG information to be in-
cluded with the object code. Options inline, trace-
back, symbols.

• /[NO]DIAGNOSTICS: Causes Language-Sensitive
Editor component information to be generated.(1)

• /[NO]FIXED BINARY: Sets the default size of fixed
binary. Options: 31, 15.

• /FLOAT: Specifies the default representation of
floating-point variables.(2)

• /[NO]G_FLOAT: Specifies the default floating point
representation.

• /GRANULARITY: Specifies the smallest unit of data
that can be cached in a register.(2)

• /[NO]LIST: Controls the production of a listing file.

• /SHOW: Selects specific listing. Options: source,
CDD definitions, include files, map, statistics, trace,
header, terminal, and expansion.

• /[NO]ERROR_LIMIT: Controls the compiler diagnos-
tic message limit.

• /VARIANT: Permits specification of compilation vari-
ants.

• /[NO]MACHINE_CODE: Causes machine code to be
listed with the source.

• /[NO]OBJECT: Controls the production of the object
file.

• /[NO]OPTIMIZE: Controls optimizations performed
by the compiler. Options: common_subexpressions,
disjoint, inline, invariant, locals_in_registers, peep-
hole, result_incorporation.

• /[NO]WARNINGS: Controls the printing of compiler
warning messages. Options: noinformationals,
nowarnings.

• /LIBRARY: Indicates the associated file is a library of
source text modules specified by %INCLUDE state-
ments.

• /[NO]DESIGN: Controls the generation of design in-
formation for the Program Design Facility. Options:
comments, placeholders.(1)

At the end of each compilation in which messages are
generated, the DEC PL/I compiler will display the num-
ber of informational, warning, and error messages.

Optimizations

DEC PL/I generates efficient object code. Optimizations
include:

3

PL/I for OpenVMS SPD 25.30.21

• Value propagation

• Subexpression elimination

• Allocation of local variables to registers

• Removal of invariant computations from loops

• Simplification of Boolean expressions

• Extensive special case code generation

• Pattern replacement in generated code

• Inline expansion of procedure calls

Industry PL/I Compatibility

DEC PL/I provides many of those PL/I features of-
ten used by mainframe PL/I programmers. Conver-
sion effort depends upon the individual program and
the set of PL/I features used by the programmer.
Well-structured programs that do not rely on system-
specific or implementation-specific features convert with
a minimum of effort (from no changes to a few per-
cent of the lines in the program). Programs that use
implementation-specific features such as ENVIRON-
MENT and OPTIONS can require a larger conversion
effort.

Digital does not provide any special programs or other
conversion aids. The user is responsible for determin-
ing the extent of any conversion effort and for providing
appropriate conversion tools to convert programs and
data.

* Unusual conversion requirements may be necessary
if programs use the machine-dependent representa-
tion of data. The VAX and AXP architecture orga-
nizes bytes within an integer differently than most
other vendors’ hardware. This can lead to different
results when UNSPEC or DEFINED operations are
used to convert between BIT and FIXED BINARY
data.

Run-Time Library Redistribution

The DEC PL/I kit may include updated Run-Time Li-
brary shareable images. Digital grants the user a
nonexclusive royalty-free worldwide right to reproduce
and distribute the executable version of the Run-
Time Library designated as PLIRTL.EXE (VAX) and
DPLI$RTLSHR.EXE (AXP)(the "RTL’s") provided that
the user:

• distribute the RTLs only in conjunction with and as a
part of the user’s software application product which
is designed to operate in the OpenVMS environment;

• does not use Digital’s name, logo, or trademarks to
market the user’s software application product;

• includes Digital’s copyright notice for DEC PL/I on the
user’s product disk label and/or on the title page of
the documentation for software application product;
and

• agrees to indemnify, hold harmless, and defend Digi-
tal from and against any claims or lawsuits, including
attorney’s fees, that arise or result from the use or
distribution of the software application product. Ex-
cept as expressly provided herein, Digital grants no
implied or express license under any of its patents,
copyrights, trade secrets, trademarks, or any license
or other proprietary interest and rights.

VAX PL/I Special Features

As a native-mode VAX language, VAX PL/I is integrated
into the VAX common language environment. This in-
tegration provides VAX PL/I users with support for the
VAX Interlanguage Calling Standard, access to the VAX
Symbolic Debugger (including support for source-line
debugging), and callable interfaces to VAX utilities and
optional products (such as SORT, DEC DATATRIEVE,
and DEC DBMS).

VAX PL/I also interfaces to the DEC Language-Sensitive
Editor/Source Code Analyzer. Source programs can be
written and compiled using the Language-Sensitive Ed-
itor component which has built-in intelligence about the
source format of PL/I programs.

Language elements that support the VAX extended
range and extended precision floating point architectural
features are as follows:

• 64-bit G_floating point data type, with an 11-bit ex-
ponent and 53-bit mantissa, which provides a range
of 0.56*10**-308 to 0.09*10**308 and a precision of
15 decimal digits.

• 128-bit H_floating data type, with a 15-bit exponent
and a 113-bit mantissa, which provides a range of
0.84*10**-4932 to 0.59*10**4932 and a precision of
33 decimal digits.

VAX PL/I provides support for low-level program design,
including the processing of pseudo code and the extrac-
tion of design information from comments.

DEC PL/I for OpenVMS AXP Systems Special Features

As a native-node language, DEC PL/I for OpenVMS
AXP Systems is integrated into the OpenVMS common
language environment. This integration provides DEC
PL/I users with support for Interlanguage Calling Stan-
dard, access to the OpenVMS Debugger (including sup-
port for source-line debugging), and callable interfaces
to utilities and optional products (such as SORT, DEC
DATATRIEVE, and DEC DBMS).

4

PL/I for OpenVMS SPD 25.30.21

DEC PL/I also interfaces to the DEC Language-
Sensitive Editor. Source programs can be written and
compiled using the Language-Sensitive Editor compo-
nent which has built-in intelligence about source format
of PL/I programs.

Language elements that support the extended range
and extended precision floating point architectural fea-
tures:

• 64-bit G_floating point data type, with an 11-bit ex-
ponent and 53-bit matissa, which provides a range
of 0.56*10**-308 to 0.09*10**308 and a precision of
15 decimal digits.

HARDWARE REQUIREMENTS

Processor and/or hardware as specified in the System
Support Addendum (SSA 25.30.21-x).

SOFTWARE REQUIREMENTS

For VAX Systems:

For Systems Using Terminals (No DECwindows Inter-
face):

OpenVMS VAX Operating System

For Workstations Running VWS:

OpenVMS VAX Operating System
OpenVMS VAX Workstation Software

For Workstations Running DECwindows:

OpenVMS VAX Operating System (and necessary
components of OpenVMS DECwindows)

For Alpha AXP Systems:

For Systems Using Terminals (No DECwindows Inter-
face):

OpenVMS AXP Operating System

For Workstations Running DECwindows:

OpenVMS AXP Operating System

Refer to the System Support Addendum (SSA 25.30.21-
x) for availability and required versions of prerequisite
/optional software and for information regarding compo-
nents of OpenVMS DECwindows.

ORDERING INFORMATION

VAX PL/I

Software License:
Unlimited System Use: QL-114A*-**

Software Media/Documentation: QA-114A*-**
Software Documentation (Hard Copy): QA-114AA-GZ
Software Product Services: QT-114A*-***

DEC PL/I for OpenVMS AXP Systems

Software Licenses:
Personal Use: QL-0HZAA-2B
Unlimited System Use: QL-0HZA*-**

Software Media/Documentation (CD-ROM):
QA-03XAA-H8

Software Documentation (Hard Copy):
QA-0HZAA-GZ

Software Product Services: QT-0HZA*-**

* Denotes variant fields. For additional information on
available licenses, services, and media, refer to the
appropriate price book.

SOFTWARE LICENSING

This software is furnished under the licensing provisions
of Digital Equipment Corporation’s Standard Terms and
Conditions.
For more information about Digital’s licensing terms and
policies, contact your local Digital office.

License Management Facility Support

This layered product supports the OpenVMS License
Management Facility.

License units for this product are allocated on an Un-
limited System Use for VAX systems and an Unlimited
System Use plus Personal Use basis for Alpha AXP
systems.

Each Personal use license allows one identified individ-
ual to use the layered product. This license is available
only on DEC PL/I for OpenVMS AXP Systems.

For more information on the License Management Facil-
ity, refer to the appropriate Operating System Software
Product Description (SPD) or documentation.

SOFTWARE PRODUCT SERVICES

A variety of service options are available from Digital.
For more information, contact your local Digital office.

5

PL/I for OpenVMS SPD 25.30.21

SOFTWARE WARRANTY

Warranty for this software product is provided by Digital
with the purchase of a license for the product as defined
in the Software Warranty Addendum of this SPD.

NOTES:

1. VAX PL/I only
2. DEC PL/I for OpenVMS AXP Systems only

™ The DIGITAL Logo, Alpha AXP, AXP, CDD/Plus,
CDD/Repository, DATATRIEVE, DBMS, DEC, DECwin-
dows, Digital, OpenVMS, and VAX are trademarks of
Digital Equipment Corporation.

1993 Digital Equipment Corporation. All Rights Re-
served.

6

