SNIA

Storage Networking Industry Association

Common Internet File System (CIFS)

Technical Reference
Revision: 1.0

“Publication of this SNIA Technical Proposal has been approved by the SNIA. This document
represents a stable proposal for use as agreed upon by the SNIA CIFS Technical Work Group. The
SNIA does not endorse this proposal for any other purpose than the use described. This proposal may
not represent the preferred mode, and the SNIA may update, replace, or release competing proposal
a any time. If theintended audience for thisrelease is a liaison standards body, the future support
and revision of this proposal may be outside the control of the SNIA or originating SNIA CIFS
Technica Work Group. Suggestion for revision should be directed to snia-cifs@snia.org”

SNIA Technical Proposal

USE OF THIS DOCUMENT IS GOVERNED BY THE TERMS AND
CONDITIONS SPECIFIED ON PAGES iii-v

Release Date: 3/1/2002

Revision History

Date By: Comments

Feb 27, 2002 SNIA CIFS Technical Work Group Version 1.0

Suggestion for changes or madifications to this document should be sent to the SNIA CIFS Technical Work Group at
snia-cifs@snia.org

CIFS Technical Reference SNIA Technical Proposal
Revision 1.0

Abstract

The Common Internet File System (CIFS) is a file sharing protocol. Client systems use this
protocol to request file access services from server systems over a network. It is based on the
Server Message Block protocol widely in use by personal computers and workstations running a
wide variety of operating systems. This document is a collaborative effort to produce more
comprehensive documentation of the network protocol used by existing CIFS (Common Internet
File System) implementations. Based on the widely used SMB (Server Message Block) network
protocol, CIFS has become a key file sharing protocol due to its widespread distribution and its
inclusion of enhancements that improve its suitability for internet authoring and file sharing. It is an
integral part of workstation and server operating systems as well as embedded and appliance
systems. In addition there has been a recent expansion of NAS (Network Attached Storage) and
SAN-like (Storage Area Network) network storage server products based on CIFS. Although
primarily a file sharing and authoring protocol, CIFS assumes even more importance due to the
indirect use of CIFS as a transport protocol for various higher level NT and Windows9x
communication protocols, as well as for network printing, resource location services, remote
management/administration, network authentication (secure establishment services) and RPC
(Remote Procedure Calls).

Intended Usage

The improved CIFS documentation, used as a development aid, will assist in decreased time-to-
market for product developers and improved interoperability for products in the market place. It is
the intent of the SNIA that this document reflect the best information available about the CIFS
protocol. In certain places within the document indicated by MISSING, additional information is
needed. The CIFS Technical Reference will be maintained by SNIA with the assistance of the
collaborating organizations. This is not a standards document nor CIFS specification. It is a best
effort at documenting the CIFS protocol as used by existing implementations. Inaccuracies or
errors can be brought to the attention of the SNIA as well as new information on the existing
protocol or new implementations. As new information or new implementations become available, it
is the desire of the SNIA to collect and evaluate this information for possible incorporation into any
future CIFS documentation that the SNIA CIFS documentation work group may choose to create.

While the authors did not intend to include any licensable material in the document, some
licensable material may be present. If such material is brought to the attention of the SNIA, this
material will be identified in future versions of this document, if any. The SNIA desires that any
licensable material would be made available by the license owner in a reasonable and non-
discriminatory fashion. If this material cannot be made available in a reasonable and non-
discriminatory fashion, a best effort will be made to remove this material from any future versions
of this document, if any. This intention does not reduce or diminish any rights reserved by the
contributing companies with respect to their licensable material.

USE OF THIS DOCUMENT INDICATES THE USERS ASSENT TO THE DISCLAIMERS,
LIMITATIONS, USAGE AGREEMENT AND OTHER TERMS AND CONDITIONS SPECIFIED ON
PAGES iii-v.

CIFS Technical Reference SNIA Technical Proposal iii
Revision 1.0

DISCLAIMER OF WARRANTIES AND REPRESENTATIONS

This document is provided “as is”, without any express or implied warranties or representations of
any kind. Without limitation, there is no warranty of merchantability, no warranty of
noninfringement, and no warranty of fitness for a particular purpose. All such warranties are
expressly disclaimed.

The SNIA and the SNIA member organizations do not warrant or assume any responsibility for the
accuracy or completeness of any information, text, graphics, links, cross-references, or other
items contained herein.

No express or implied license to any intellectual property exists due to the presentation,
publication, distribution, or other dissemination of this document, or due to any use or
implementation based on the subject matter in this document.

This document is an informal Technical Reference and not a formal Standards Document or
formal specification intended for adoption as a Standard. By releasing this document, the SNIA and
the SNIA member organizations are neither guaranteeing nor implying that any CIFS
implementation(s) distributed or sold by them, presently or in the future, are compliant or
compatible with the implementation(s) described in this document. The release of this document
does not prevent SNIA or any SNIA member organization from modifying and/or extending their
CIFS implementation(s) at any time.

LIMITATION OF LIABILITY

The SNIA and the SNIA member organizations are not liable for any damages whatsoever arising out of the
use of or inability to use this document, even if the SNIA or any SNIA member organization has been notified
of the possibility of such damages.

INTELLECTUAL PROPERTY RIGHTS

The SNIA and the SNIA member organizations take no position regarding the validity or scope of
any intellectual property or other rights that might be claimed to pertain to the implementation or
use of the technology described in this document or the extent to which any license under such
rights might or might not be available; neither do they represent that they have made any effort to
identify any such rights.

CIFS Technical Reference SNIA Technical Proposal iv
Revision 1.0

COPYRIGHT AND USAGE AGREEMENT

The SNIA hereby grants permisson for individuas to use this document for persond use only, and for
corporations and other business entities to use this document for interna use only (including interna copying,
digribution, and display) provided that:

1. Any text, diagram, chart, table or definition reproduced must be reproduced in its entirety with no
dterdion,

2. No modification or creation of derivative documents based on this document, or any part of this
document, is dlowed, and

3. Any document, printed or eectronic, in which materid from this document (or any portion hereof) is
reproduced must acknowledge the SNIA copyright on that materia, and must credit the SNIA for
granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercid use of this document, sdll any
or dl of this document, or distribute this document to third parties. All rights not explicitly granted are
expressy reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-
malling snia-tc@snia.org; please include the identity of the requesting individua and/or company and a brief
description of the purpose, nature, and scope of the requested use.

Copyright © 2001, 2002 Storage Networking Industry Association.

CIFS Technical Reference SNIA Technical Proposal
Revision 1.0

Acknowledgements

The SNIA CIFS Documentation is a cooperative effort of the SNIA CIFS Documentation
Work Group, bringing together the perspectives of system architects and developers from
diverse backgrounds and perspectives in the storage industry. An effort of this scope
could only be successful with support from each of the SNIA member organizations that
sponsored the individuals contributing their time and knowledge to the creation and review
of this document. The SNIA Board of Directors would like to extend its gratitude to this
dedicated group of individuals and their sponsoring companies:

Work Group Chairman Jm Norton, IBM

Co-Author Bob Mastors, EMC

Co-Author Byron Deadwiler, Hewlett-Packard
Co-Author Bob Griswold & Jason Goodman, Microsoft
Co-Author Christopher R. Hertel, Univ. of Minnesota
Co-Author Dennis Chapman, Network Appliance
Co-Author George Colley, Thurshby Software Systems
Co-Author Steve French, IBM

Co-Author Tamir Ram, Veritas

The companies of the SNIA CIFS Documentation Work Group reflector: ADIC, AMI, Cereva, CommVault,
EMC, Eurologic, HP, IBM, KOM Networks, LS| Logic,
Microsoft, Network Appliance, Novell, NSS, Quantum,
Sambaand Veritas

CIFS Technical Reference SNIA Technical Proposal
Revision 1.0

Table of Contents

AABSTRACT .eeuiiresietresteteieseseeseeseseebe st sesbe et s e s eese e eebe st e s e ebe st e s e e b e st sE e £ e Re R e S e e e b e e e e b e Re e A S e b e Re e A e A e R e e A Ao b e Ae e A A e b e ReAE b e R e Re e R A e R et e R e R et nE b e Re et e e eRe e e eRenens Il
INTENDED USAGEcotrtrueuetresteuiesesieesestssesesesessesaessssese st sesesesseesestessesesesessesessssssesentssssesensssssesenensssesentstesesenessnsesenensesesenssentenenessnsesensssesanans Il
DISCLAIMER OF WARRANTIES AND REPRESENTATIONS
LIMITATION OF LIABILITY vt sessssees
INTELLECTUAL PROPERTY RIGHTS.
COPYRIGHT AND USAGE AGREEMENT
A CKNOWLEDGEMENTS.....ccttuttrietetrtsteseseseseesestsessesesesessesesessssesessssssessnsssssesessssssesessssesestssssesensssesesessssssesentsasesentssssesesessesesentasesesensssnsesesessesanes

L. INTRODUCTION ...ttt bbb bbb bbb bbb 1

L1, SUMMARY OF FEATURES......cstettetreuseessessesessssesssssssessessssssssssssssssssssssssssssessssssssssssssssssssassessessesssssssssassssassasssssessesssssssssssassassassasens
1.1.1. Fileaccess.....crneneeen.
1.1.2. Fileandrecord locking
1.1.3. Safecaching, read-ahead, and write-behind

0 O S e =X g = g To T= o) £ o= LA) o TR
1.1.5. ProtocCol VErSiON NEQOLIALIONc.ceuiiierietriceieireses et ssas et et s st s s s st asssae b e s s e sn et es s ansesesnansessnns
11,6, EXIENAEU I TDULES ...ttt bbb bbb bbb ettt
1.1.7. Distributed replicated Virtual VOIUMES..........cccvirieiiiiecesescse st sssssss s et sssssssesssssassessssssssssssssssesssssssesssssnes

1.1.8. Server name resolution independence
1.1.9. Batchedrequests...............
L1.1.00. ODSOIESCENCE ... vttt ea s st A a2 R A s et R et bbb bbbttt

2. PROTOCOL OPERATION OVERVIEWcoiiiiritiiiiisiie it s b 4

21, SERVER NAME DETERMINATION ..cuittuctrtrttuetesseresesessesesessssestsssessesessssssesssssesssstsssesassssssessssssssesssstsssessssssssesssstsssesssstnssesassssssessssesssess
22, SERVER NAME RESOLUTIONittuctetsetuesreststsesessestsssessesssessssestsssesssssssssssssssssesssstsssesasnssssesassssssesssstsssesssssssesasstsssessssenssessssssssessssesssnss
23, SAMPLE MESSAGE FLOW.....cccccuircierreeie e
24. CIFSPrROTOCOL DIALECT NEGOTIATION
25, MESSAGE TRANSPORTcvreeuerreresaeiessesesssessesesssessesessseses
2.5.1. CONNECLION MANAGEITIENTcvueiieieiecteesessete st sesssssesse s sssssse e st es s s sesee s s s et s s e s se s s as e sesesasssastesss e sat et s s snaesnnssnnsesasnnnsen
2.8, OPPORTUNISTIC LOCKS....ccuetitritueerereeuesseststsetessestssssssessssssssestsssessessssssssesssssesssstsssesassssssessssssssesssstsssesasnssssesasstsssesssstnssesssssssesssssssenss
2 Tt TR @ o | oo Q5 o= TR
2.6.1.1. EXCIUSIVE N0 BEICH OPIOCKS.ueeeuirieiriiieetisteeete ettt b ettt b et e s e st s e et e b e s e e st s b e e e bt seemt e b et ebeneentebe e eneneeneabens
2.6.1.2. Level 11 OPIOCKS.......ccocerrerieirieeeereeeie e
2.6.2. Comparison with Other File Locking Methods
2.6.3. OplOCK SMBS......coeecerecerresss st aes
2.6.3.1. Obtaining an Oplock
2.6.3.2. Releasing an Oplock
2.6.3.3. Revoking an Oplock

2.8.4. ORI ISSUES......ceceiueertirentiriaeireae sttt ittt b e b ae e s e e b4 bbb e bR ee bbb bbb e bbbt
27. SECURITY MODEL
28. AUTHENTICATION.

2.8.1. Overview............

2.8.2. BaseAlgorithms

2.8.3. AUthentication AlQOTtRIMS..........coii e ettt s st a s st e e

2831 NT SessionKey
2832. LM SessionKey
2.8.3.3. Response
2.8.314. IMAC KEY .ottt b bbb bbb bbb bbb bbb bbb bR b b £ R R bR R R b bR R bR R R R R R R b bR R b bR R bbb b e bbb R e R b erenene
2.8.3.5. Message Authentication Code
2.8.4. SesSiON AULNENTI CALION PrOLOCOL ..ottt ettt
284.1. Plain Text Password
28.4.2. Chalenge/Response

2.8.5. MeSSage aULtNENLICAtION COUE. ...ttt s et e e s et et b s s s s et e s s st es e nee
2.8.6. SECUNILY LEVEl ..ot
29. DISTRIBUTED FILE SYSTEM (DFS) SUPPORT
3. SMB MESSAGE FORMATSAND DATA TYPES ...ttt sssssssssss s s st ssssssssssssss s asssssssssssessessesssssssssssnsas 20
3. NOTATION .ceieetretreeseeeeeeeseeseessessesessessesssssssessessesssssssssssessessssssassessessssssssnssnsssssssassassessesssssssssssnsssasssssassnssnsssssnssntsnssnsansassassnssnsssssnsanses 20
CIFS Technical Reference SNIA Technical Proposal vii

Revision 1.0

B2, SIMIB HEADER.....coieietetreeec bbbt ss sttt b bbb s bbb s s et e s s bt e b s s b b e b s An b et e s e A b et s e s bbb e an bt ee s A b et s es b et et s s aet s e nntetan
3.2.1. Command field
3.2.2. Flagsfield.......c.......
3.2.3. Flags2 Field................
R S N To I T OO OO O O DO
2 T = 1o I == o [O OO OO U RO
2 T U T To 1= o IO TU RO
R G |V [o I T o OO O OO
3.2.8. SatusField.................
3.29. TimeoutS.....eene.

3.2.10. Data Buffer (BUFFER) and String Formats

33
34.
35
3.6.
3.7.
38.
39.

3.10.
311
312
313.
3.14.
3.15.

NAME RESTRICTIONSoervvveuseesssssssssssaessssssesssssssesesssssesssssssesssssssasssssssssssssssessssssasssssssasssssssssssssssssssssesessssesssssssessssssnsnsssssnne
FILE NAMESooorvvtuueesssssesssssssesssssssesssssssesssssssesssssssesessssessssssse st s s sss s s e
WILDCARDSoomvessaneessssesssssssesssssssessssssssessssssesesssss s ssss a2 s 2 s s s8R s
DFS PATHNAMES.....oorvvvuuasesssssesssssssesssssesssssssssssssssssssssssesssssssesssssssassssssssssssssssesssssssssssssssasssssssassssssssessssssessssssesssssssessssssssnsssssnee
TIME AND DATE ENCODING
ACCESS MODE ENCODING.........
ACCESSMASK ENCODING................
OPEN FUNCTION ENCODING....c.vvveuresesesesssssssesssssssesssssssessssssssssssssssssssssesssssssasssssssssssssssssssssssassssssssssssssessssssessssssnesssssssesssssnns
OPEN ACTION ENCODING.......oovvvveumeesssaensssssssssssssssesssssssssssssssssssssssssssssssesssssssasssssssasssssssssssssssassssssssssssssessssssessssssssssssssnssssssnns
FILE ATTRIBUTE ENCODING......ccvvueueressssesssssssssssssessssssesssssssesssssssssssssssssssssssssssssssssssssssassssssssssssssssssssssssssssssessssssessssssasseses
EXTENDED FILE ATTRIBUTE ENCODINGoessvvvtetenessesesesssasesssssssesssssssesssssssesssssssssssssssesssssssessssssssssssssssssssssessssssesssssssseses
BATCHING REQUESTS ("ANDX" M ESSAGES
"TRANSACTION" STYLE SUBPROTOCOLS

3.15.1. SMB_COM_TRANSACTION2 FOrmat........ccccueereereereenee

3.15.2. SMB_COM_NT_TRANSACTION FOIMELS.....criuiereereurerunsessesessessssessessesssssssssssssssssssssssssssssssssesssssssssassssssssssssssessessesssesas
G L T U g Tox (] = 1 I L= ol T o)1 o) o PO
3.15.4. SMB_COM_TRANSACTION OPEIAiONS.....c.cueveeeerrerierierreressrsresssssessssessssssssssssssssssssssessssssssessssssssessssssssessssssssesssssssesssssnses

3.16.

3.154.1. Mail SIOt TranSACHION PIOIOCOIcueiriiueieiririeiiirie ettt ettt bttt b et b et b et se bbb et e e e e b e e e st et e e neebebeneens

3.154.2. Server Announcement Mailslot Transaction

3.15.4.3. Named Pipe Transaction Protocol

3.15.4.4. CallNamedPipe.........cooevieveeicieenne

3.15.4.5. W AITNGIMEAPI P ..ttt ettt b e e b e b e s e e b e e e be e b e s e e b e s ebeesess et e s et e s ensete s eseeeens et e e easseeneebeseenssteneeneseeneane

3.15.4.6. PEEKINBMEAPIPE.... ..ttt ettt sttt e s e e s e st et e besseae et e e ebeseeae et e e ebesseseebe e eseabeseebesseseabassesesbeseabensesessaneasin

3.15.4.7. GENAMEAPIPEHBNAIESLALE.c.ecveveciiieicteet ettt sttt e seeae s ee st et e e eaesbeseebesaesesbeseebe s esesbeseesensesesaaseenen

3.15.4.8. SEINAMEAPIPEHANAIESLALE. ... cveiveecieieectee ettt sttt e et eseese s e e ae st e e eae st eseebe s esesbeseabesesesbeseasesesessaneenin

3.15.4.9. GetNamedPipelnfo..................

3.15.4.10. TransactNamedPipe............

3.15.4.11. RawReadNamedPipe...........

3.15.4.12. RawWriteNamedPipe
VALID SMB REQUESTS BY NEGOTIATED DIALECT ..oveueiiieteceresee e nesessese e e e se s sese s s esenssassessssssssssenssassessnsssnsenssensesssensaes 48

4. SMB REQUESTS.......o iR b b bbb bbb e 50

4.1

4.1.1. NEGOTIATE: Negotiate Protocol

SESSION REQUESTS....utteseueseesestaesessestsssessesesssessesesssessssesssssessesssssessesssssesssstsssesessssssessssssssesssstsssssesssssssssssesssesessetsssesassesssesnsnsassesssnes

41110 BITOIS.iii e

4.1.2. SESSION_SETUP_ANDX: SESSION SELUP...ceeerreeeerrreresreetreresssssssssssessssesssesssssssssssssssssessssssssssessssssssssssssesessssssssesssssesssssnnes

4.1.3. LOGOFF_ANDX: User Logoff

4.1.4. TREE_CONNECT_ANDX: Tree Connect

g 2 T = (= VI I 0 |V 1 2 OO
A.1.2.2. NT LM .02 ettt ettt ettt e bttt e st et e st e sbesbesbesbesbeeseessess e sebeabeabeeheeheeRsessens e besbesbe et e ebeereereeneesseseaseabeabeareensennan
e T . ¢ (o] ¢ OSSPSR ORRRPPRRPRRPOt

A.1.3. 1. EFTOIS...uiiitieiticcteeite ettt sttt s e s be et te e re e raesaeeeneesneesbeesreennas

I O 1 o = TP P PP PRSP
4.15. TREE _DISCONNECT: Tree DiSCONNECL......cccsurieeeeriresreetrerissesresesssessesesssesssssssssssssssssessssssssssessssssessssssssssessssssssesssssesssssnses

0 T S 1 o = U TP P PPV PROS
4.1.6. TRANS2_QUERY_FS INFORMATION: Get File System INfOrmMation..........cccvveeeenerersesissnenssessesesesssssesssssssssssssssssenees 61

4.1.6.1. SMB_INFO_ALLOGCATION ...ttt sttt e sttt b e sttt s e s e st s b et es e s ehe b esees e s es e as e e e b e e b e bt e s e e et e s esent e s ebeneenenbeeenens 62
CIFS Technical Reference SNIA Technical Proposal viii

Revision 1.0

8162, SMB_INFO VOLUMEcoooovoeeeeeeeeeseeeeeeeeeeeeeoeseessseseeeesesessesessesss s sssssseseeseesess e eeesessseesesses s eesssseeseessessseseeesssseseeeenns
4163. SMB_QUERY_FS VOLUME_INFO

4.164. SMB_QUERY_FS SIZE INFO...oocooomeeeeereeeeeeesseeeseesseeeneons

4165 SMB_QUERY_FS DEVICE_INFO

4.16.6. SMB QUERY_FS ATTRIBUTE_INFOooioeieeeieeseeeeieeseeeeseeseseesseseseessessseesseseseesseseseesseseseessesessesseseseesseseseessesssesssessseensons 64

4.1.6.7. SMB_QUERY _CIFS UNIX_INFOiiieieeeeeeereeeeeeeseeeeseeseeeeseeseseessesessesseseseesseseseessesesessseseseessesessesseseseessesessessesssesssessseessons 64

4.1.68. SMB_QUERY MAC FS INFO.....oiiiieiieereeeeeeseeeeseeseeeeseeseseesseseseessesessesseseseesseseseesseseseesseseseesseseseesseseseesseseseessesesesssessseeseons 65

R = 1 (0] £ TSSO T TP URS PR TOPRRRPRRPRRRTON
4.1.7. ECHO: Ping the Server

4170, EITOIS..coiiiieeieeieeienie e

4.1.8. NT_CANCEL: Cancel request
4.2, FILE REQUESTS.....coi sttt sttt as s sas bt s st sa et e s s e se s et et s e e e s et s e e et b e et s e et s e et e e et s e et s e et s s s ses s e nnnas
4.2.1. NT_CREATE_ANDX: Create Or OPEN FilE....coiioceriecieirisisieiseseste s tssssssssssssessss s sssssssssssssssssssssssssessssssssessssssesssssnnes 67
O O ¢ o =SSR 70
4.2.2. NT_TRANSACT_CREATE: Create or Open File With EASOF SD........ccccovirirnnesesneses st sssssssssssesees 70
N R ¢ o =SSOSR
4.2.3. CREATE_TEMPORARY: Create Temporary File
G T I ¢ o =SSOSR
4.2.4, READ_ANDX: REAU BYLES.......ccieiecieirirericiniseste st s ssssssasesssssssss st ssssssssssssssssssssssssssesessssssessssssssessssnssnsesssssesesenssases
o O ¢ o= PR RPRS
425, WRITE_ANDX: Write BYtESTO fill€ OF FESOUICEcviveeceeiesereeireseste sttt ss sttt s nnes
8 T S ¢ o =TRSO
4.2.6. LOCKING_ANDX: Lockor Unlock Byte Ranges
A.2.6. 1. EITOIS. ittt et
4.2.7. SEEK: SeekinFile
N O S ¢ o =SSR
4.2.8. FLUSH: FIUSN FilE.eeieceecteeeceece ettt ettt et bbb bbb bbb bbb b e b et bbb et et et e b et et et et e b et et et et et et ebebebebebenane
N T N 1 o =PRSS
4.2.9. CLOSE: ClOSE FilBu..ueiiiiiiceceessstsss ettt sttt sttt et e et e et s e et s e e et s e e s s et s s e s nsenntas
A.2.9.1. EITOIS. ittt ettt
4.210. CLOSE_AND_TREE_DISCONNECT
4.2.10.1.] = SO
4.2.11. DELETE: DEIEIE FilE....ocuctciceeectctceteteteetce ettt ettt ettt a bbbt bbbt bbbt bbbt bbb e bbb e b et et et et et et et e b et et et eaetebebenetetetenase
42111,] =SSPt
4.2.12. RENAME: RENAME FIlE.....coiiicieieeeieteeeee ettt ettt bbbt bbbt bbbt bbbttt e b et et et e b et et et et et et et eb et et et eaetebebesetetetesase
42121,] =SSPt
4.2.13. NT_RENAME........ccoeurnun.
4.2.13.1. Errors...ccooevevveevcenennns
4.2.14. MOVE: RenameFile........
4.2.14.1.] =SSPt
T O @ | o o) | = O
4.2.15.1.] =SSPt
4.2.16. TRANS2 QUERY_PATH_INFORMATION: Get File Attributes Given Path ...
42161 SMB_INFO STANDARD & SMB_INFO QUERY _EA SIZE......cooooieomeeeeeeesseeeseessreenenns
42162. SMB_INFO QUERY_EAS FROM_LIST & SMB_INFO QUERY_ALL_EAS
42163, SMB_INFO IS NAME VALID.....iooiieeeeeeeeeeeeeeeeeeeeseeeeeseseseseseesseseseeessesessseseseesseseseessons
42164, SMB_QUERY_FILE BASIC INFO ... ioieesoeeeeeseeeeeeseeeeseeseseesseseseesseseseesseseseesseseseesseseseesseseseesseseseessesessessesssesssessseeseons
42165 SMB_QUERY _FILE_STANDARD INFOoooiisoeeeieseeeeeeeseseeseeseeeesseseseesseseseesseseseessessseesseseseesseseseesseseseessessseessessseeneons
42166, SMB_QUERY _FILE EA INFO ...oioiieeieeeeeeeseeeeeeeeeeeseeseeeeseese s seeseseesseseseesseseseess e seess e seesseseseesseseseesseseseeeseseseessessseeseens
42167. SMB_QUERY _FILE NAME INFO ... iiiosoeeeeseeeseseeeeeeeseseeseeseseesseseseesseseseesseseseesseseseessesessesseseseesseseseesseseseessessseensene
42168. SMB_QUERY_FILE ALL_INFO...ooooierieeeerreceeereeenenne
42169. SMB_QUERY_FILE ALT NAME_INFOcccooorrrunnn.n.
4.216.10. SMB_QUERY_FILE_STREAM_INFO.....ccccomvmircrirenneen.
4216.11. SMB_QUERY_FILE COMPRESSION_INFO
421612, SMB_QUERY _FILE UNIX_BASIC ...oooieeseeeeeeeeeeeeseeeeeeeseseeseeseseess e seesseseseesseseseess e seesseseseesseseseesseseseessessseessessseeneone
421613, SMB_QUERY _FILE UNIX_LINK wooioooeeieeseeeeeeseeeeseeseeeeseeseseesseseseesseseseesseseseesseseseesseseseessesessesseseseesseseseessesesesssessseeneons
421604, SMB_MAC DT _GET APPL ...oiesoeeeeeeeeeeeeeeeee e eeeseeseeeess e st saess e s st se s ss e seeeseseseeeseseseesseseseesseseseeeseeeseeesessseeneene
421615, SMB_MAC DT _GET_TCONoiimieeieeeeeeeeeeseeeeseeseeeeseeseseeseeseseesseseseesseseseesteseseesseseseeeseseseessesessesseseseesseseseesseseseessessseeseens

CIFS Technical Reference SNIA Technical Proposal ix
Revision 1.0

421616, SMB_MAC DT _GET _TCON_INFO ...oooooooeeeieeseseeeeeeeeeeeeeeesessssssseesesssseeseesssssseeeessssseesesessessssseesssseeseessessssseessssseseeens

T A = 1 (0] £ TSRS
4.2.17. TRANS2_QUERY_FILE_INFORMATION: Get File Attributes Given FID
4.2.18. TRANS2_SET_PATH_INFORMATION: Set File Attributes given Path............cccovvveevvecccerenenee.
42181. SMB_INFO_STANDARD & SMB_INFO QUERY EA_SIZEiioieieeeeseieesesseseeseessessesseseessessesssessessessessaens
42182, SMB_INFO QUERY ALL_EAS. ... ieeeeeeeeeeeeeees e eeeseees st ss s ss s s s s s e e sse s s sssss s s s seesnssesesnees s ssensaens
42183, SMB_SET FILE UNIX_BASIC...ooiiesieeeeeeeeeseeeeeeeseeeeseees s s ees s sse s e s se s s s sss s ssessese s ssesnesesesse s ssensanes
42184, SMB_SET FILE UNIX_LINK ...ooieiieieeieeieiseeseesesseeesesseseses e ssessssssesssesssssessssssssssssessssssssssssssssessessssesesssssssessssssssssesssnss
42185 SMB_SET FILE_UNIX_HLINK.........
42.186. SMB_MAC_SET_FINDER_INFO
42187. SMB_MAC DT_ADD APPL.........
42.188. SMB_MAC DT _REMOVE_APPL
42189, SMB_MAC DT _ADD _TCONoiiiieeieeseeeeeeseseeeseses e eseseees s ssesssssse st ees s ssesssesssstesssessessesssesssss s ssessesesessesnssesesssessssessanes
S T O S 1 (o] £ TSRS
4.2.19. TRANS2 _SET FILE INFORMATION: Set File AttributeS GIVEN FID........cccvecerriceiesesesesesessssessssesesessssssssenees
42191, SMB_FILE BASIC INFO.....oiiioieeeeeieeeeeesessseeessesseess s seese s
42192, SMB_FILE_DISPOSITION_INFO......

42193. SMB_FILE_ALLOCATION_INFO
42194. SMB_FILE_END_OF FILE_INFO

4.2.195. [0] £ TSSOSO TSSOSO USRS
4.3, DIRECTORY REQUESTS....cootttuttrtuetreuetsessssessestssessssessesesssstssssssssssssassssasssssssssssssssssstsssstssssssssssssssssassssassssassssssssssssssssssssssssssssessssesns
4.3.1. TRANS2_CREATE_DIRECTORY: Create Directory (with optional EASs)
Nt T = ¢ (o] £ TSSOSO
4.3.2. DELETE_DIRECTORY: Delete Directory.
4321 EITOIS..cuiiiiiiieee e
4.3.3. CHECK_DIRECTORY: ChECK DITECLOIY.....cccvueuriieiereeeresesersressssessssssssesssssssssssssssssessssssssssessssssssssssssssessssssssesssssssessssnses
T T T = ¢ (0] £= OSSOSO T ST PRSPPSO
4.34. TRANS2 _FIND_FIRST2: Search Directory using WIlACards.........cccveerneceenrenssesesessessesessssssssssessssssesssssssnssesnes
4341, SMB_INFO_STANDARDoootiettttretert ettt sttt eh st b e bbbt h b e s e e b e e e b e b e s e e b e b e bt s b e n e eb et e bt st et et e s enene e e e
4342, SMB_INFO QUERY _EA SIZE.....ooeeeoneeoeseeseeeeseesssesseon
4343. SMB_INFO QUERY _EAS FROM LIST ..oooiireieeeseeeeeseeeseene
4344. SMB_FIND_FILE DIRECTORY INFOoooooorieeeeseeeeeseeeeenne
4345 SMB_FIND _FILE_FULL DIRECTORY INFOoiuiiuieeieeeeeeseeeeeeeeeeeeeeseeseess e sseessesseess st ss e sseess s ss e see s e eess s
4346. SMB_FIND FILE BOTH _DIRECTORY INFOoiioiieieeeeeseeeeeeseseeeeessesseesseseeessesseess st eess e sseess s eese e se s s eess s
4347, SMB_FIND _FILE NAMES INFOiiuiiieoeeeieeeeeeseeeeseeeeseeeeses e seeses e sseess et eess e ssess st ss st ss e ss e ss s ss e se s se s
4348, SMB_FIND _FILE UNIX eooeieeseeeeeeseeeeeeeeeeeeeeseeeeeseseseessesss s s eseses s ss e es s s ss e es e es et et ss e sseess s es e ss e seese e eeeese s
43.49. SMB_FINDBOTH_MAC_HFS INFO
4.3.4.10. EITOIS .. et
4.35. TRANS2_FIND_NEXT2: Resume Directory Search Using Wildcards.
T T = ¢ (o] £ TSSOSO TSP TP SRPRRPRR
4.3.6. FIND_CLOSE2: ClOSE DIiTeCtOrY SEAICHccueveerecectetreceet sttt sttt s s s nnes
30 T = ¢ (o] £ TSSOSO TSR PE SO PT SRR
4.3.7. NT_TRANSACT_NOTIFY_CHANGE: Request Change NOtifiCation.........c.cccuvevrenrsnenenseensessssssesesssssessssessesesnes
A.3.7. 1. EITOIS .ttt et
44. DFSOPERATIONS....cccotureerreerrenennenas et
44.1. TRANS2_GET _DFS REFERRAL: Retrieve Distributed Filesystem Referral
O T 1 o = USSP PP PP PR PRSP
4.4.2. TRANS2_REPORT_DFS INCONSSTENCY: Informa server about DFSEFTOr......ccoovecvvenscereseseeesessseessesenes 114
N T = ¢ (0] £ OO TSSO TP TP RURPRRO

45, MISCELLANEOUS OPERATIONS
451. NT_TRANSACT IOCTL
E T T = 1 £ W

452. NT_TRANSACT_QUERY_SECURITY_DESC
S T = ¢ (o] £ TSSOSO U PR TOPTSP PRI
453. NT_TRANSACT_SET SECURITY _DESC......oircirtieintieireteenetsee e sesssssssesisess s s ssse st et ssssessssssssenes
S T T = ¢ (o] £ TSSOSO PE TP SRR
5. SMB SYMBOLIC CONSTANTS.....ccoittriteriaeestieestieetesesee et sessssese s ssesessessssessessestssesesssstssbaesesssesessssessesssssaetsesesstsesssbessbesastesassees 118
CIFS Technical Reference SNIA Technical Proposal X

Revision 1.0

51 SIVIB COMMAND CODES.......oiuiiuiieieististessessessesessessesssssssssesssssssssssssstesssssssssssassassassessessessessessssssssssssesssssssstsssessssssssssessestestessesesesne
5.2. SM B_COM_TRANSACT|ON2 SUBCOMMAND CODES.......ccocerierersrrsrreessesnens

53. SMB_COM_NT_TRANSACTION SUBCOMMAND CODES
54. SMB ProTOCOL DIALECT CONSTANTS.

6. ERROR CODESAND CLASSES........co i b bbb bbb

7. SECURITY CONSIDERATIONS ..ot bbb bbb s 127
8. REFERENCES

9. APPENDIX A -- NETBIOS TRANSPORT OVER TCP......ciiiiciiiinnisnsisss s sssss s 129

9.1, CONNECTION ESTABLISHMENT ...etititttseestentsntseessesssssssssesssssssssssssssssssessssssssssssssssassasssssessessessessssssssssassassessessassessesssssessssssssens
9.2, CONNECTING TO A SERVER USING THE NETBIOSNAME........cccosnrunrereereereenees
9.3. CONNECTING TO A SERVER USING A DNSNAME OR |P ADDRESS
9.3.1. NetBIOSAJAPLEr SLALUS.....covereceeerircerietreres et ssssssesessssssens
0.3.2. GENENIC SEIVEL INAITIE......ceeetieett ettt resetsese e sea e bbb bbb a R R bbb et bbb bbb e et
9.3.3. - Parsing the DNS Name (guessing)
94. NETBIOSNAME CHARACTER SET

10. APPENDIX B - TCP TRANSPORT ...ttt b bbb 131
11. APPENDIX C—SHARE LEVEL SERVER SECURITY ..ot ssssssssses 132
12. APPENDIX D — CIFSUNIX EXTENSION......ccoooiriiiniiisiiisii i bbb snses 133
12.1. INTRODUGCTIONctttttetereresseseseseseesesessssesesesessestsessssesesessesasessssssentssssesesessssesestssssesenssessesestssssesentssssesenssessesentsssesentssssesensssnsesensssns 133
12.2. PRINCIPLES. ...t iteuttrtetetesesee et st ses s sese et ettt b s st e s ase e se ke st se £ b e R e e s A e R e e e e A e b e ae A e E e R e R e e HE e b e e e e A e R e Rt A e e b e R e e e s e e b et ne b ebe e nenbene et ens 133
12.3. CIFSPROTOCOL M ODIFICATIONS ...t trtrtstststsesesesesssssssesssssesessesssssssssssssssssssssnss 133
12.4. MODIFIED SMBs
125. GUIDELINES FOR IMPLEMENTERS......ccttttstitstststsesesssssesesssssssesssssssssssssssessesssssssssssssssssssnsnsns 134

13. APPENDIXE - CIFSMACINTOSH EXTENS ON

131 INTRODUCTION
132 PRINCIPLES ...ttt s nees
133. CIFSPROTOCOL MODIFICATIONS
134. IVIODIFIED SIMBS.....cuiuiiiiitietsereeieisesesese et s s s s s8R E e AR 8 EeEE e e bR et E et s s nen s
135. GUIDELINES FOR IMPLEMENTERS

14. APPENDIX F — APl NUMBERSFOR TRANSACT BASED RAP CALLS

CIFS Technical Reference SNIA Technical Proposal X
Revision 1.0

Common Internet File System (CIFS)

1. Introduction

1.1.

This document describes the file sharing protocol for a proposed Common Internet File System
(CIFS). CIFS is intended to provide an open cross-platform mechanism for client systems to
request file services from server systems over a network. It is based on the standard Server
Message Block (SMB) protocol widely in use by personal computers and workstations running a
wide variety of operating systems. An earlier version of this protocol was documented as part of
the X/OPEN (now Open Group) CAE series of standards [7]; this document updates the document
to include the latest shipping versions, and is published to allow the creation of implementations
that inter-operate with those implementations.

The scope of this document is limited to describing requests and responses for file services.
Separate documents exist for clients requesting services other than file services, e.g. print
services.

Use of the Internet and the World Wide Web has been characterized by read-only access.
Existing protocols such as FTP are good solutions for one-way file transfer. However, new
read/write interfaces will become increasingly necessary as the Internet becomes more interactive
and collaborative. Adoption of a common file sharing protocol having modern semantics such as
shared files, byte-range locking, coherent caching, change notification, replicated storage, etc.
would provide important benefits to the Internet community.

Summary of features

The protocol supports the following features:
File access
File and record locking
Safe caching, read-ahead, and write-behind
File change notification
Protocol version negotiation
Extended attributes
Distributed replicated virtual volumes
Server name resolution independence
Batched requests

Unicode file names

1.1.1. File access

The protocol supports the usual set of file operations: open, close, read, write, and seek.

CIFS Technical Reference SNIA Technical Proposal 1

Revision 1.0

1.1.2. File and record locking

The protocol supports file and record locking, as well as unlocked access to files. Applications that
lock files cannot be improperly interfered with by applications that do not; once a file or record is
locked, non-locking applications are denied access to the file.

1.1.3. Safe caching, read-ahead, and write-behind

The protocol supports caching, read-ahead, and write-behind, even for unlocked files, as long as
they are safe. All these optimizations are safe as long as only one client is accessing a file; read-
caching and read-ahead are safe with many clients accessing a file as long as all are just reading.
If many clients are writing a file simultaneously, then none are safe, and all file operations have to
go to the server. The protocol notifies all clients accessing a file of changes in the number and
access mode of clients accessing the file, so that they can use the most optimized safe access
method.

1.1.4. File change notification

Applications can register with a server to be notified if and when file or directory contents are
modified. They can use this to (for example) know when a display needs to be refreshed, without
having to constantly poll the server.

1.1.5. Protocol version negotiation

There are several different versions and sub-versions of this protocol; a particular version is
referred to as a dialect. When two machines first come into network contact they negotiate the
dialect to be used. Different dialects can include both new messages as well as changes to the
fields and semantics of existing messages in other dialects.

1.1.6. Extended attributes

In addition to many built-in file attributes, such as creation and modification times, non-file system
attributes can be added by applications, such as the author's name, content description, etc.

1.1.7. Distributed replicated virtual volumes

The protocol supports file system subtrees which look like to clients as if they are on a single
volume and server, but which actually span multiple volumes and servers. The files and directories
of such a subtree can be physically moved to different servers, and their names do not have to
change, isolating clients from changes in the server configuration. These subtrees can also be
transparently replicated for load sharing and fault tolerance. When a client requests a file, the
protocol uses referrals to transparently direct a client to the server that stores it.

1.1.8. Server name resolution independence

The protocol allows clients to resolve server names using any name resolution mechanism. In
particular, it allows using the DNS, permitting access to the file systems of other organizations
over the Internet, or hierarchical organization of servers' names within an organization. Earlier

versions of the protocol only supported a flat server name space.

CIFS Technical Reference SNIA Technical Proposal 2
Revision 1.0

1.1.9. Batched requests

The protocol supports the batching of multiple requests into a single message, in order to
minimize round trip latencies, even when a later request depends on the results of an earlier one.

1.1.10.Obsolescence

Throughout this document, references are made to obsolescent elements of the CIFS protocol.
Note that these obsolescent elements are still observed in implementations. The “obsolescent”
label only describes that these elements may be removed from implementations, in the future.

CIFS Technical Reference SNIA Technical Proposal 3
Revision 1.0

2. Protocol Operation Overview

21.

2.2.

In order to access a file on a server, a client has to:

Parse the full file name to determine the server name, and the relative name within that
server

Resolve the server name to a transport address (this may be cached)
Make a connection to the server (if no connection is already available)

Exchange CIFS messages (see below for an example)

This process may be repeated as many times as desired. Once the connection has been idle for a
while, it may be torn down.

Server Name Determination

How the client determines the name of the server and the relative name within the server is
outside of the scope of this document. However, just for expository purposes, here are three
examples.

In the URL "file://fs.megacorp.com/users/fred/stuff.txt", the client could take the part between the
leading double slashes and the next slash as the server name and the remainder as the relative
name — in this example "fs.megacorp.com" and "/users/fred/stuff.txt", respectively.

In the path name "\\corpserver\public\policy.doc" the client could take the part between the leading
double backslashes and the next slash as the server name, and the remainder as the relative
name -- in this example, "corpserver" and "\public\policy.doc" respectively.

In the path name "x:\policy.doc" the client could use "x" as an index into a table that contains a

server name and a file name prefix. If the contents of such a table for "x" were "corpserver" and
"\public", then the server name and relative name would be the same as in the previous example.

Server Name Resolution

Like server name determination, how the client resolves the name to the transport address of the
server is outside the scope of this document. All that is required by CIFS is that a CIFS client
MUST have some means to resolve the name of a CIFS server to a transport address, and that a
CIFS server MUST register its name with a name resolution service known its clients.

Some examples of name resolution mechanisms include: using the Domain Name System (DNS)
[1,2], and using NETBIOS name resolution (see RFC 1001 and RFC 1002 [3,4]). The server name
might also be specified as the string form of an IPv4 address in the usual dotted decimal notation,
e.g., "157.33.135.101"; in this case, "resolution" consists of converting to the 32 bit IPv4 address.

Which method is used is configuration dependent; the default SHOULD be DNS to encourage
interoperability over the Internet.

Note: The name resolution mechanism used may place constraints on the form of the server
name; for example, in the case of NETBIOS, the server name must be 15 characters or less, and
MUST be upper case.

CIFS Technical Reference SNIA Technical Proposal 4

Revision 1.0

2.3.

2.4.

2.5.

Sample Message Flow

The following illustrates a typical message exchange sequence for a client connecting to a user
level server, opening a file, reading its data, closing the file, and disconnecting from the server.
Note: using the CIFS request batching mechanism (called the "AndX" mechanism), the second to
sixth messages in this sequence can be combined into one, so that there are really only three
round trips in the sequence. The last trip can be handled asynchronously by the client.

Client Command Server Response

SMB_COM_NEGOTIATE Must be the first message sent by aclient to the server. Includesa
list of SMB dialects supported by the client. Server response
indicates which SMB dialect should be used.

SMB_COM_SESSION_SETUP_ANDX Transmits the user's name and credentials to the server for
verification. Successful server response has Uid field set in SMB
header used for subsequent SMBs on behalf of thisuser.

SMB_COM_TREE_CONNECT_ANDX Transmits the name of the disk share (exported disk resource) the
client wantsto access. Printer device and interprocess
communication devices are outside the scope of this document.
Successful server response has Tid field set in SMB header used for
subsequent SMBs referring to this resource.

SMB_COM_OPEN_ANDX Transmits the name of thefile, relative to Tid, the client wantsto
open. Successful server response includes afileid (Fid) the client
should supply for subsequent operations on thisfile.

SMB_COM_READ Client supplies Tid, Fid, file offset, and number of bytesto read.
Successful server response includes the requested file data.

SMB_COM_CLOSE Client closesthe file represented by Tid and Fid. Server responds
with success code.

SMB_COM_TREE_DISCONNECT Client disconnects from resource represented by Tid.

CIFS Protocol Dialect Negotiation

The first message sent from an CIFS client to an CIFS server must be one whose Command field
is SMB_COM_NEGOTIATE. The format of this client request includes an array of NULL
terminated strings indicating the dialects of the CIFS protocol which the client supports. The
server compares this list against the list of dialects the server supports and returns the index of
the chosen dialect in the response message.

Message Transport
CIFS is transport independent. The CIFS protocol assumes:

A reliable connection oriented message-stream transport, and makes no higher level
attempts to ensure sequenced delivery of messages between the client and server.

A well known endpoint for the CIFS service, for example port number.

Some mechanism to detect failures of either the client or server node, and to deliver such
an indication to the client or server software so they can clean up state. When a reliable
transport connection from a client terminates, all work in progress by that client is
terminated by the server and all resources open by that client on the server are closed.

CIFS Technical Reference SNIA Technical Proposal 5

Revision 1.0

It can run over any transport that meets these requirements. Some transports do not natively meet
all the requirements, and a standard encapsulation of CIFS for that transport may need to be
defined. Appendix A defines how to run CIFS over NETBIOS over TCP; Appendix B defines how to
run CIFS over TCP.

2.5.1. Connection Management

Once a connection is established, the rules for reliable transport connection dissolution are:

If a server receives a transport establishment request from a client with which it is already
conversing, the server may terminate all other transport connections to that client. This is
to recover from the situation where the client was suddenly rebooted and was unable to
cleanly terminate its resource sharing activities with the server.

A server may drop the transport connection to a client at any time if the client is generating
malformed or illogical requests. However, wherever possible the server should first return
an error code to the client indicating the cause of the abort.

If a server gets a unrecoverable error on the transport (such as a send failure) the transport
connection to that client may be aborted.

A server may terminate the transport connection when the client has no open resources on
the server, however, we recommend that the termination be performed only after some
time has passed or if resources are scarce on the server. This will help performance in
that the transport connection will not need to be reestablished if activity soon begins anew.
Client software is expected to be able to automatically reconnect to the server if this
happens.

2.6. Opportunistic Locks

The CIFS protocol includes a mechanism called “opportunistic locks”, or oplocks, that allows the
client to lock a file in such a manner that the server can revoke the lock. The purpose of oplocks is
to allow file data caching on the client to occur safely. It does this by defining the conditions under
which an oplock is revoked.

When a client opens a file it may request an oplock on the file. If the oplock is given the client may
safely perform caching. At some point in the future a second client may open the file. The following
steps provide an overview of the actions taken in response to the open from the second client:

The server holds off responding to the open from the second client.
The server revokes the oplock of the first client.
The first client flushes all cached data to the server.
The first client acknowledges the revoke of the oplock.
The server responds to the open from the second client.
As can be seen from the above steps, the first client has the opportunity to write back data and

acquire record locks before the second client is allowed to examine the file. Because of this a
client that holds an oplock can aggressively cache file data and state.

Anecdotal evidence suggests that oplocks provide a performance boost in many real-world
applications running on existing CIFS client implementations while preserving data integrity.

CIFS Technical Reference SNIA Technical Proposal 6
Revision 1.0

2.6.1. Oplock Types

There are three types of oplocks:
Exclusive
Batch
Level Il

Versions of the CIFS file sharing protocol including and newer than the "LANMAN1.0" dialect
support oplocks. Level Il oplocks were introduced in NTLM 0.12.

2.6.1.1. Exclusive and Batch Oplocks

When a client has an exclusive oplock on a file, it is the only client to have the file open. The
exclusive oplock allows the client to safely perform file data read and write caching, metadata
caching, and record lock caching. All other operations on the file cannot be safely cached.

The server may revoke the exclusive oplock at any time. The client is guaranteed that the server
will revoke the exclusive oplock prior to another client successfully opening the file. This gives the
client that holds the oplock the opportunity to write back cached information to the file.

The batch oplock was introduced to allow a client to defer closing a file that was opened and re-
opened repetitively by an application. It has the same semantics as the exclusive oplock with the
following additional guarantee. The client holding a batch oplock has the additional guarantee that
the server will revoke the batch oplock prior to another client successfully making any change to
the file.

When a client opens a file it can specify that it wants an exclusive oplock, a batch oplock, or no
oplock. Exclusive and batch oplocks can only be obtained as a side effect of a file being opened.
The protocol does not support other means to obtain exclusive and batch oplocks.

Oplocks can only be obtained on files. Oplocks are not supported on directories and named pipes.
However it is not an error to request an oplock on directories and named pipes. In this case the
server must return that no oplock was granted.

The server response to a successful open request includes information about what type of oplock
was obtained. A server that does not support oplocks should always return that no oplock was
granted.

A client that requests an exclusive oplock will get one of the following:
An exclusive oplock
A level Il oplock

No oplock

A client that requests a batch oplock will get one of the following:
A batch oplock
A level Il oplock

No oplock

A client that requests no oplock will always get no oplock.

CIFS Technical Reference SNIA Technical Proposal 7
Revision 1.0

The following diagrams the behavior of various clients and the server when an exclusive oplock is
obtained on a file and subsequently revoked. The diagram also applies to a batch oplock.

Excl usi ve/ Bat ch Protocol Opl ock Exanpl e

Client A Client B <--> Server
Open file "foo" ->
<- Open response. Open succeeded.
Exclusive oplock granted
Read data ->
<- Read response with data

Write data (cache)

Read data (cache)
Openfile"foo" ->

<- Oplock break to Client A
Write data -2

<- Write response
Discard cached data
Release oplock ->

<- Open response to B. Open succeeded.

No oplock granted.

The revoking of an exclusive or batch oplock involves the server sending an oplock break
message to the client, followed by the client flushing file information to the server, followed by the
client releasing the oplock. If the client does not respond by releasing the oplock within a period of
time acceptable to the server, then the server may consider the oplock released and allow pending
operations to proceed. The protocol does not define the duration of the time out period.

When a client opens a file that already has an exclusive oplock, the server first checks the share
mode on the file. If the sharing allows the client open to succeed then the exclusive oplock is
broken, after which the open is allowed to proceed.

When a client opens a file that already has a batch oplock, the server first revokes the batch
oplock. Then the open is allowed to proceed. The reason for this server behavior is that it gives the
holder of the oplock the opportunity to close the file. This in turn allows the open to obtain an
exclusive or batch oplock.

When a client opens a file that has a security descriptor, the server first checks if the open for the
desired access is allowed by the security descriptor. If access is not allowed, the open fails. Any
exclusive or batch oplock on the file is not disturbed. Because of this behavior a client holding an
exclusive or batch oplock cannot safely cache security descriptor information

2.6.1.2. Levelll Oplocks

When a client has a level |l oplock on a file, it is an indication to the client that other clients may
also have the file open. The level Il oplock allows the client to safely perform file data read caching.
All other operations on the file cannot be safely cached.

CIFS Technical Reference SNIA Technical Proposal 8
Revision 1.0

The server may revoke the level Il oplock at any time. The client is guaranteed that the server will
revoke the level Il oplock prior to another client successfully writing the file. This gives the client
that holds the level Il oplock the opportunity to discard its cached data.

Note however that the level Il oplock is revoked differently than an exclusive or batch oplock. A level
Il oplock break is sent to the client, but a response from the client is not expected. The server
allows the write to proceed immediately after the level Il oplock break is sent to the client.

A client cannot explicitly request that a level Il oplock be granted. A level Il oplock is granted either
when a file is opened or when a server revokes an exclusive or batch oplock.

When a file is opened the client may request an exclusive or batch oplock. The server has the
option of granting a level Il oplock instead of the requested type of oplock. This is the only way to
obtain a level Il oplock when a file is opened.

When a server revokes an exclusive or batch oplock, it may indicate to the client that in
conjunction with the revocation that the client is being granted a level Il oplock.

The following diagrams the behavior of various clients and the server when a level Il oplock is
obtained on a file and subsequently revoked.

Level 1l Oplock Protocol Exanple
Client A ClientB <--> | Server
Open file "foo" ->
<- Open response. Open succeeded. Exclusive oplock
granted
Read data ->
<- Read response with data
Open file "foo" ->
<- Oplock break to Client A. Oplock downgraded to
level I1.
Release oplock to level 11 ->
<- Open response to B. Open succeeded. Oplock level |1
granted.

2.6.2. Comparison with Other File Locking Methods

The CIFS protocol has three mechanisms to enable a client to control how other clients access a
file.

Opportunistic locks
Byte range locks

Sharing locks

Of the three, the server may revoke only opportunistic locks. Byte range and sharing locks are held
for as long as the client desires.

Historically on client systems, byte range and sharing locks are exposed to the application. This
allows the application to have explicit control over the obtaining and releasing of these types of
locks.

CIFS Technical Reference SNIA Technical Proposal 9
Revision 1.0

Typically however oplocks are not exposed to the application. They are implemented inside the
client operating system. The client operating system decides when it is appropriate to obtain and
release oplocks. It also handles all of the issues related to revoking of oplocks by the server.

2.6.3. Oplock SMBs

This section summarizes the SMB commands that affect oplocks.

2.6.3.1. Obtaining an Oplock

The following SMB commands may be used to obtain an oplock:
SMB_COM_OPEN
SMB_COM_CREATE
SMB_COM_CREATE_NEW
SMB_COM_OPEN_ANDX
SMB_COM_TRANSACTIONZ2 (OPEN2)
SMB_COM_NT_CREATE_ANDX
SMB_COM_NT_TRANSACT (NT_CREATE)

The server may only grant a level Il oplock to a client for a file when that file is opened using one of
“SMB_COM_NT_CREATE_ANDX” or “SMB_COM_NT_TRANSACT (NT_CREATE)".

2.6.3.2. Releasing an Oplock

A client releases an oplock with the SMB_COM_LOCKING_ANDX command. Alternatively the
client may release the oplock by closing the file with the SMB_COM_CLOSE command. Any
operation that would invalidate the file handle results in the oplock being released. This includes
disconnecting the tree, logging off the user that opened the file, and any action that would
disconnect the session.

A client should release its exclusive or batch oplock on a file in response to the server revoking the
oplock. Failure to do so is a violation of the protocol.

A client does not need to release a level |l oplock (i.e. respond to the server) on a file in response
to the server revoking the oplock. However doing so is not an error.

2.6.3.3. Revoking an Oplock

The server revokes a client’s oplock by sending a SMB_COM_LOCKING_ANDX command to the
client. The command is sent asynchronously sent from the server to the client. This message has
the LOCKING_ANDX_OPLOCK_RELEASE flag set indicating to the client that the oplock is being
broken. OplockLevel indicates the type of oplock the client now owns. If OplockLevel is 0, the
client possesses no oplocks on the file at all. If OplockLevel is 1, the client possesses a Level I
oplock. The client is expected to flush any dirty buffers to the server, submit any file locks, and
respond to the server with either an SMB_LOCKING_ANDX SMB having the
LOCKING_ANDX_OPLOCK_RELEASE flag set, or with a file close if the file is no longer in use by the
client.

CIFS Technical Reference SNIA Technical Proposal 10
Revision 1.0

2.6.4. Other Issues

2.7.

Since a close being sent to the server and break oplock notification from the server could cross on
the wire, if the client gets an oplock notification on a file that it does not have open, that notification
should be ignored. The client is guaranteed that an oplock break notification will not be issued
before the server has sent the response to the file open.

Due to timing, the client could get an "oplock broken" notification in a user's data buffer as a result
of this notification crossing on the wire with an SMB_COM_READ_RAW request. The client must
detect this (use length of message, "FFSMB," MID of -1 and Command of
SMB_COM_LOCKING_ANDX) and honor the "oplock broken" notification as usual. The server must
also note on receipt of an SMB_COM_READ_RAW request that there is an outstanding
(unanswered) "oplock broken" notification to the client; it must then return a zero length response
denoting failure of the read raw request. The client should (after responding to the "oplock broken"
notification) use a non-raw read request to redo the read. This allows a file to actually contain data
matching an "oplock broken" notification and still be read correctly.

When an exclusive or batch oplock is being revoked, more than one client open request may be
paused until the oplock is released. Once the oplock is released, the order that the paused open
requests are processed is not defined.

The protocol allows a client to obtain an oplock and then issue an operation that causes the oplock
to be revoked. An example of this is a client obtaining an exclusive oplock on a file and then
opening the file a second time.

The protocol allows a client to have a file open multiple times, and each open could have a level
oplock associated with it. A server may choose not to support this situation by simply not handing
out more than one level Il oplock for a particular file to a particular client.

The protocol allows a server to grant on a single file a level Il oplock for some opens and no oplock
for other opens. A server may have heuristics that indicate some file opens would not benefit from
a level Il oplock.

A server that supports access to files via mechanisms other than this protocol must revoke
oplocks as necessary to preserve the semantics expected by the clients owning the oplocks.

A client that has an exclusive or batch oplock on a file may cache file metadata. This includes the
following information: create time, modify time, access time, change time, file size, file attributes,
and extended attributes size. However a server is not required to break an oplock when a second
client examines file metadata. Clients should be aware of this behavior when examining file
metadata without having the file open.

When a server revokes an exclusive or batch oplock it may grant a level Il oplock in its place. The
client should consider the level Il oplock in effect after the client has released the exclusive or
batch oplock. The server may decide to revoke the level Il oplock before the client has released the
exclusive or batch oplock. In this situation the client should behave as if the revoke of the level Il
oplock arrived just after the exclusive or batch oplock was released.

Security Model

Each server makes a set of resources available to clients on the network. A resource being
shared may be a directory tree, printer, etc. So far as clients are concerned, the server has no
storage or service dependencies on any other servers; a client considers the server to be the sole
provider of the file (or other resource) being accessed.

CIFS Technical Reference SNIA Technical Proposal 11

Revision 1.0

The CIFS protocol requires server authentication of users before file accesses are allowed, and
each server authenticates its own users. A client system must send authentication information to
the server before the server will allow access to its resources.

A server requires the client to provide a user name and some proof of identity (often something
cryptographically derived from a password) to gain access. The granularity of authorization is up to
the server. For example, it may use the account name to check access control lists on individual
files, or may have one access control list that applies to all files in the directory tree.

When a server validates the account name and password presented by the client, an identifier
representing that authenticated instance of the user is returned to the client in the Uid field of the
response SMB. This Uid must be included in all further requests made on behalf of the user from
that client.

2.8. Authentication

This section defines the CIFS user and message authentication protocols. User authentication
allows the server to verify that the client knows a password for a user. Message authentication
allows messages in a session to be verified by both the server and the client.

2.8.1. Overview

User authentication is based on the shared knowledge of the user’s password. There are two
styles of user authentication. The first involves the client sending passwords in plain text to the
server. The second involves a challenge/response protocol.

Plain text password authentication exposes the user’s password to programs that have access to
the CIFS protocol data on the network. For this reason plain text password authentication is
discouraged and by default should be disabled in CIFS protocol implementations.

With the challenge/response protocol the server sends a "challenge" to the client, which the client
responds to in a way that proves it knows the user's password. A "response” is created from the
challenge by encrypting it with a 168 bit "session key" computed from the user's password. The
response is then returned to the server, which can validate the response by performing the same
computation.

The user authentication protocol is described as if the CIFS server keeps a client’s password.
However an implementation might actually store the passwords on a key distribution server and
have servers use a protocol outside the scope of this document to enable them to perform the
steps required by this protocol.

Messages may be authenticated by computing a message authentication code (MAC) for each
message and attaching it to the message. The MAC used is a keyed MD5 construction similar to
that used in IPSec [RFC 1828], using a "MAC key" computed from the session key, and the
response to the server's challenge. The MAC is over both the message text and an implicit
sequence number, to prevent replay attacks.

2.8.2. Base Algorithms

Following are definitions of algorithms used by the authentication algorithms.
E(K, D)
denote the DES block mode encryption function [FIPS 81] , which accepts a seven byte key (K) and

CIFS Technical Reference SNIA Technical Proposal 12
Revision 1.0

an eight byte data block (D) and produces an eight byte encrypted data block asits value.

Ex(K,D)
denote the extension of DES to longer keys and data blocks. If the data to be encrypted is longer than
eight bytes, the encryption function is applied to each block of eight bytes in sequence and the results
are concatenated together. If the key islonger than seven bytes, each 8 byte block of dataisfirst
completdy encrypted using the first seven bytes of the key, then the second seven bytes, etc.,
appending the results each time. For example, to encrypt the 16 byte quantity DOD1 with the 14 byte
key KOK1,

Ex(KOK 1,D0D1) = concat(E(K0,D0),E(K0,D1),E(K 1,D0),E(K 1,D1))

concat(A, B, ..., 2)
isthe result of concaterating the byte tringsA, B, ... Z

head(S, N)
denote the first N bytes of the byte string S.

swab(S)
denote the byte string obtained by reversing the order of the bitsin each byte of S, i.e, if Sisbyte
gring of length one, with the value 0x37 then swab(S) is OXEC.

zeros(N)
denote a byte string of length N whose bytes dl have value O (zero).

ones(N)
denote a byte string of length N whose bytes al have vaue 255.

XOr(A, B)
denote a byte string formed by the bytewise logicd "xor" of each of the bytesin A and B.

and(A, B)
denote a byte string formed by the bytewise logicd "and" of each of the bytesin A and B.

substr(S, A, B)

denote a byte string of length N obtained by taking N bytes of S starting at byte A. The first byteis
numbered zero. |.e, if Sisthe string "NONCE" then subgir(S, 0, 2) is"NO".

2.8.3. Authentication Algorithms

Following are definitions of the authentication algorithms.

2.8.3.1. NT Session Key
The session key S21 and partial MAC key S16 are computed as

CIFS Technical Reference SNIA Technical Proposal 13
Revision 1.0

S16 = MD4(PN)
S21 = concat(S16, zeros(5))
where

PN is a Unicode string containing the user’s password in clear text, case sensitive, no
maximum length

MD4(x) of an byte string "x" is the 16 byte MD4 message digest [RFC 1320] of that string

2.8.3.2. LM Session Key
The session key S21 and partial MAC key S16 are computed as
S16X = Ex(swab(P14),N8)
S21 = concat(S16X, zeros(5))
S16 = concat(head(S16X, 8), zeros(8))

Where

P14 is a 14 byte ASCII string containing the user’s password in clear text, upper cased,
padded with nulls

N8 is an 8 byte string whose value is {Ox4b, 0x47, 0x53, 0x21, 0x40, 0x23, 0x24, 0x25}

2.8.3.3. Response
The response to the challenge RN is computed as

RN = EX(S21, C8)

Where
C8 is a 8 byte challenge selected by the server

S21 is the LM session key or NT session key as determined above

2.8.3.4. MAC key

The MAC key is computed as follows:
K = concat(S16, RN)

Where

S16 is the partial MAC key computed with the LM session key or NT session key as
determined above

RN is the response to the challenge as determined above

The result K is either 40 or 44 bytes long, depending on the length of RN. [ed: what
determines length of RN?]
2.8.3.5. Message Authentication Code

The MAC is the keyed MD5 construction:
MAC(K, text) = head(M D5(concat(K, text)), 8)

Where

CIFS Technical Reference SNIA Technical Proposal

Revision 1.0

14

MDS5 is the MD5 hash function; see RFC 1321
K'is the MAC key determined above

text is the message whose MAC is being computed.

2.8.4. Session Authentication Protocol

2.8.4.1. Plain Text Password

If plaintext password authentication was negotiated, clients send the plaintext password in
SMB_COM _TREE_CONNECT, SMB_COM _TREE_CONNECT _ANDX, and/or

SMB_COM _SESSI ON_SETUP_ANDX. The SMB field used to contain the response depends upon
the request:

Password in SMB_COM_TREE_CONNECT
Password in SMB_COM_TREE_CONNECT_ANDX
AccountPassword in SMB_COM_SESSION_SETUP_ANDX in dialects prior to "NTLM

0.12"

CaselnsensitivePassword in SMB_COM_SESSION_SETUP_ANDX in the "NTLM 0.12"
dialect

CaseSensitivePassword in SMB_COM_SESSION_SETUP_ANDX in the "NTLM 0.12"
dialect

2.8.4.2. Challenge/Response

The challenge C8 from the server to the client is contained in the EncryptionKey field in the
SMB_COM NEGPROT response. Clients send the response to the challenge in
SMB_COM_TREE_CONNECT, SMB_COM _TREE_CONNECT_ANDX, and/or

SVB_COM SESSI ON_SETUP_ANDX. The SMB field used to contain the response depends upon
the request:

Password in SMB_COM TREE_CONNECT
Password in SMB_COM_TREE_CONNECT_ANDX

AccountPassword in SMB_COM_SESSION_SETUP_ANDX in dialects prior to "NTLM
0.12"

CaselnsensitivePassword in SMB_COM_SESSION_SETUP_ANDX for a response
computed using the "LM session key" in the "NTLM 0.12" dialect

CaseSensitivePassword in SMB_COM_SESSION_SETUP_ANDX for a response
computed using the "NT session key" in the "NTLM 0.12" dialect
The challenge/response authentication protocol has the following steps:
The server chooses an 8 byte challenge C8 and sends it to the client.
The client computes RN as described above
The client sends the 24 byte response RN to the server

The server computes RN as described above and compares the received response with
its computed value for RN; if equal, the client has authenticated.

CIFS Technical Reference SNIA Technical Proposal 15
Revision 1.0

2.8.5. Message authentication code

Once a user logon has been authenticated, each message can be authenticated as well. This will
prevent man in the middle attacks, replay attacks, and active message modification attacks.

To use message authentication, the client sets SMB_FLAGS2_SMB_SECURI TY_SI GNATURE in
SMB_COM_SESSION_SETUP_ANDX request to the server, and includes a MAC. If the resulting
logon is non-null and non-guest, then the SMB_COM_SESSION_SETUP_ANDX response and all
subsequent SMB requests and responses must include a MAC. The first non-null, non-guest logon
determines the key to be used for the MAC for all subsequent sessions.

Message authentication may only be requested when the "NTML 0.12" dialect has been negotiated.
If message authentication is used, raw mode MUST not be used (because some raw mode
messages have no headers in which to carry the MAC).

Let

SN be a request sequence number, initially set to 0. Both client and server have one SN for
each connection between them.

RSN be the sequence number expected on the response to a request.
req_msg be a request message

rsp_msg be a response message
The SN is logically contained in each message and participates in the computation of the MAC.

For each message sent in the session, the following procedure is followed:

Client computes MAC(req_msg) using SN, and sends it to the server in the request
message. If there are multiple requests in the message (using the "AndX" facility), then the
MAC is calculated as if it were a single large request.

Client increments its SN and saves it as RSN
Client increments its SN — this is the SN it will use in its next request

Server receives each req_msg, validates MAC(req_msg) using SN, and responds
ACCESS_DENIED if invalid

Server increments its SN and saves it as RSN
Server increments its SN — this is the SN it will expect in the next request

Server computes MAC(rsp_msg) using RSN, and sends it to client in the response
message. If there are multiple responses in the message (using the "AndX" facility) , then
the MAC is calculated as if it were a single large response.

Client receives each rsp_msg, validates MAC(rsp_msg) using RSN, and discards the
response message if invalid

In each message that contains a MAC, the following bit is set in the flags2 field:
#define SMB_FLAGS2_SMB_SECURITY_SIGNATURES 0x0004

The sender of a message inserts the sequence number SSN into the message by putting it into
the first 4 bytes of the SecuritySignature field and zeroing the last 4 bytes, computes the MAC over
the entire message, then puts the MAC in the field. The receiver of a message validates the MAC
by extracting the value of the SecuritySignature field, putting its ESN into the first 4 bytes of the

CIFS Technical Reference SNIA Technical Proposal 16
Revision 1.0

SecuritySignature field and zeroing the last 4 bytes, computing the MAC, and comparing it to the
extracted value.

Oplock break messages from the server to the client may not use message authentication, even if
it has been negotiated.

CIFS Technical Reference SNIA Technical Proposal 17
Revision 1.0

2.8.6. Security Level

2.9.

The SMB_COM_NEGPROT response from a server has the following bits in its SecurityMode
field:

#define NEGOTIATE_SECURITY_USER_LEVEL Ox01
#define NEGOTIATE_SECURITY_CHALLENGE RESPONSE ~ 0x02
#defineNEGOTIATE_SECURITY_SIGNATURES ENABLED Ox04
#define NEGOTIATE_SECURITY_SIGNATURES REQUIRED 0x08

If NEGOTIATE_SECURITY_USER_LEVEL is set, then "user level" security is in effect for all the
shares on the server. This means that the client must establish a logon (with
SMB_COM_SESSION_SETUP_ANDX) to authenticate the user before connecting to a share, and
the password to use in the authentication protocol described above is the user's password. If
NEGOTIATE_SECURITY_USER_LEVEL is clear, then "share level" security is in effect for all the
shares in the server. In this case the authentication protocol is a password for the share.

If NEGOTIATE_SECURITY_CHALLENGE_RESPONSE is clear, then the server is requesting
plaintext passwords.

If NEGOTIATE_SECURITY_CHALLENGE_RESPONSE is set, then the server supports the
challenge/response session authentication protocol described above, and clients should use it.
Servers may refuse connections that do not use it.

If the dialect is earlier than "NTLM 0.12" then the client computes the response using the "LM
session key". If the dialect is "NTLM 0.12" then the client may compute the response either using
the "LM session key", or the "NT session key", or both. The server may choose to refuse
responses computed using the "LM session key".

If NEGOTIATE_SECURITY_SIGNATURES_ENABLED is set, then the server supports the
message authentication protocol described above, and the client may use it. This bit may only be
set if NEGOTIATE_SECURITY_CHALLENGE_RESPONSE is set.

If NEGOTIATE_SECURITY_SIGNATURES_REQUIRED is set, then the server requires the use of
the message authentication protocol described above, and the client must use it. This bit may only
be set if NEGOTIATE_SECURITY_SIGNATURES_ENABLED is set. This bit must not be set if
NEGOTIATE_SECURITY_USER_LEVEL is clear (i.e., for servers using "share level" security).

Distributed File System (DFS) Support

Protocol dialects of NT LM 0.12 and later support distributed filesystem operations. The distributed
filesystem gives a way for this protocol to use a single consistent file naming scheme which may
span a collection of different servers and shares. The distributed filesystem model employed is a
referral - based model. This protocol specifies the manner in which clients receive referrals.

The client can set a flag in the request SMB header indicating that the client wants the server to
resolve this SMB's paths within the DFS known to the server. The server attempts to resolve the
requested name to a file contained within the local directory tree indicated by the TID of the request
and proceeds normally. If the request pathname resolves to a file on a different system, the server
returns the following error:

STATUS DFS PATH_NOT_COVERED - the server does not support the part of the DFS
namespace needed to resolve the pathname in the request. The client should request areferra from
this server for further information.

CIFS Technical Reference SNIA Technical Proposal 18

Revision 1.0

A client asks for a referral with the TRANS2_DFS_GET_REFERRAL request containing the DFS
pathname of interest. The response from the server indicates how the client should proceed.

The method by which the topological knowledge of the DFS is stored and maintained by the
servers is not specified by this protocol.

CIFS Technical Reference SNIA Technical Proposal 19
Revision 1.0

3. SMB Message Formats and Data Types

Clients exchange messages with a server to access resources on that server. These messages
are called Server Message Blocks (SMBs), and every SMB message has a common format.

This section describes the entire set of SMB commands and responses exchanged between CIFS
clients and servers. It also details which SMBs are introduced into the protocol as higher dialect

levels are negotiated.

This document makes use of "C"-like notation to describe the formats of messages. Unlike the "C"
language, which allows for implementation flexibility in laying out structures, this document adopts
the following rules. Multi-byte values are always transmitted least significant byte first. All fields,
except "bit-fields", are aligned on the nearest byte boundary (even if longer than a byte), and there
is no implicit padding. Fields using the "bit field" notation are defined to be laid out within the
structure with the first-named field occupying the lowest order bits, the next named field the next
lowest order bits, and so on. BOOLEAN is defined to be a single byte. The SHORT and LONG

3.1. Notation
types are little endian.
3.2. SMB header

While each SMB command has specific encodings, there are some fields in the SMB header,
which have meaning to all SMBs. These fields and considerations are described in the following

sections.

typedef
typedef
t ypedef

unsi gned char UCHAR,
unsi gnhed short USHORT,;
unsi gned | ong ULONG

typedef struct {
ULONG LowPart ;
LONG Hi ghPart ;
} LARGE_I NTEGER;

typedef struct ({
UCHAR Prot ocol [4] ;
UCHAR Conmand;

uni on {
struct {
UCHAR Errord ass;
UCHAR Reser ved;
USHORT Error;
} DosError;
ULONG St at us;
} Status;
UCHAR FIl ags;
USHORT Fl ags2;
uni on {
USHORT Pad] 6] ;
struct {
USHORT Pi dHi gh
UCHAR SecuritySi gnature[8]
} Extra;
b
USHORT Ti d;

CIFS Technical Reference
Revision 1.0

11
11
11

I

11
11

I
I
11
11

11
11

I

/1

SNIA Technical Proposal

8 unsigned bits
16 unsigned bits
32 unsigned bhits

64 bits of data

Cont ai ns OxFF,' SMB
Conmand code

Error cl ass
Reserved for future use
Error code

32-bit error code

Fl ags
More fl ags

Ensure section is 12 bytes | ong

/1 Hi gh Part of PID

/'l reserved for MC

Tree identifier

USHORT Pi d; /1l Caller’'s process |ID, opaque for
client use

USHORT Ui d; /1 User id

USHORT M d; /1 multiplex id

UCHAR WordCount; /1 Count of paraneter words
USHORT Par aret er Wor ds[Wor dCount | ; /1 The paraneter words
USHORT Byt eCount ; /1 Count of bytes

UCHAR Buffer[ByteCount]; /1 The bytes

} SMB_HEADER

All SMBs in this document have an identical format up to the ParameterWords field. (However, this
is not true for some obsolescent SMBs.) For the last fields in the header, different SMBs have a
different number and interpretation of the ParameterWords and Buffer fields. All reserved fields in
the SMB header must be zero.

3.2.1. Command field

The Command is the operation code that this SMB is requesting or responding to. See section 5.1
below for number values, and section 4 for a description of each operation.

3.2.2. Flags field

This field contains 8 individual flags, numbered from least significant bit to most significant bit,
which are defined below. Flags that are not defined MUST be set to zero by clients and MUST be
ignored by servers.

Bit Meaning Earliest Diaect

0 Reserved for obsolescent requests LOCK_AND_READ, LANMANL1.0
WRITE_AND_CLOSE

1 Reserved (must be zero).

2 Reserved (must be zero).

3 When on, all pathnamesin this SMB must be treated as case-less. LANMANL1.0

When off, the pathnames are case sensitive.

4 Obsol escent — client case maps (canonicalizes) file and directory
names; servers must ignore thisflag.

5 Reserved for obsol escent requests— oplocks supported for LANMANL.0
SMB_COM_OPEN, SMB_COM_CREATE and
SMB_COM_CREATE_NEW. Servers must ignore when processing
all other SMB commands.

6 Reserved for obsol escent requests — notifications supported for LANMANL.0
SMB_COM_OPEN, SMB_COM_CREATE and
SMB_COM_CREATE_NEW. Servers must ignore when processing
all other SMB commands.

7 SMB_FLAGS SERVER TO_REDIR - When on, this SMB is being PC NETWORK PROGRAM
sent from the server in responseto aclient request. The Command | 1.0

field usually contains the same value in a protocol request from the
client to the server asin the matching response from the server to
theclient. Thisbit unambiguously distinguishes the command
request from the command response.

CIFS Technical Reference SNIA Technical Proposal 21
Revision 1.0

3.2.3. Flags? Field

This field contains nine individual flags, numbered from least significant bit to most significant bit,
which are defined below. Flags that are not defined MUST be set to zero by clients and MUST be
ignored by servers.

Bit Name: SMB_FLAGS2 _ Meaning Earliest Dialect

0 KNOWS LONG_NAMES | If setin arequest, the server may return long LM1.2X002
components in path namesin the response.

1 KNOWS_EAS If set, the client is aware of extended attributes (EAS).

2 SECURITY_SIGNATURE If set, the SMB isintegrity checked.

3 RESERVED1 Reserved for future use

6 IS LONG_NAME If set, any path namein the request isalong name.

11 EXT_SEC If set, the client is aware of Extended Security NT LM 0.12
negotiation.

12 DFS If set, any request pathnamesin this SMB should be NT LM 0.12
resolved in the Distributed File System.

13 PAGING 10 If set, indicates that aread will be permitted if the client
does not have read permission but does have execute
permission. Thisflag isonly useful on aread request.

14 ERR_STATUS If set, specifiesthat the returned error codeisa 32 bit | NT LM 0.12

error code in Status.Status. Otherwise the
Status.DosError.ErrorClass and Status.DosError.Error
fields contain the DOS-style error information. When
passing NT status codes is negotiated, thisflag
should be set for every SMB.

15 UNICODE If set, any fields of datatype STRING in this SMB NT LM 0.12
message are encoded as UNICODE. Otherwise, they
arein ASCII. The character encoding for Unicode
fields SHOULD be UTF-16 (little endian).

3.2.4. Tid Field

Tid represents an instance of an authenticated connection to a server resource. The server
returns Tid to the client when the client successfully connects to a resource, and the client uses
Tid in subsequent requests referring to the resource.

In most SMB requests, Tid must contain a valid value. Exceptions are those used prior to getting a
Tid established, including SMB_COM_NEGOTIATE, SMB_COM_TREE_CONNECT_ANDX,
SMB_COM_ECHO, and SMB_COM_SESSION_SETUP_ANDX. OxFFFF should be used for Tid
for these situations. The server is always responsible for enforcing use of a valid Tid where
appropriate.

On SMB_COM_TREE_DISCONNECT over a given transport connection, with a given Tid, the
server will close any files opened with that Tid over that connection.

3.2.5. Pid Field

Pid is the caller's process id, and is generated by the client to uniquely identify a process within the
client computer. Concurrency control is associated with Pid (and PidHigh)—sharing modes, and

CIFS Technical Reference SNIA Technical Proposal 22
Revision 1.0

locks are arbitrated using the Pid. For example, if a file is successfully opened for exclusive
access, subsequent opens from other clients or from the same client with a different Pid will be
refused.

Clients inform servers of the creation of a new process by simply introducing a new Pid value into
the dialogue for new processes. The client operating system must ensure that the appropriate
close and cleanup SMBs will be sent when the last process referencing a file closes it. From the
server's point of view, there is no concept of Fids "belonging to" processes. A Fid returned by the
server to one process may be used by any other process using the same transport connection
and Tid.

It is up to the client operating system to ensure that only authorized client processes gain access
to Fids (and Tids). On SMB_COM_TREE_DISCONNECT (or when the client and server session
is terminated) with a given Tid, the server will invalidate any files opened by any process on that
client.Uid Field

3.2.6. Uid Field

Uid is a reference number assigned by the server after a user authenticates to it, and that it will
associate with that user until the client requests the association be broken. After authentication to
the server, the client SHOULD make sure that the Uid is not used for a different user that the one
that authenticated. (It is permitted for a single user to have more than one Uid.) Requests that do
authorization, such as open requests, will perform access checks using the identity associated
with the Uid.

3.2.7. Mid Field

The multiplex ID (Mid) is used along with the Pid to allow multiplexing the single client and server
connection among the client's multiple processes, threads, and requests per thread. Clients may
have many outstanding requests (up to the negotiated number, MaxMpxCount) at one time.
Servers MAY respond to requests in any order, but a response message MUST always contain the
same Mid and Pid values as the corresponding request message. The client MUST NOT have
multiple outstanding requests to a server with the same Mid and Pid.

3.2.8. Status Field

An SMB returns error information to the client in the Status field. Protocol dialects prior to NT LM
0.12 return status to the client using the combination of Status.DosError.ErrorClass and
Status.DosError.Error. Beginning with NT LM 0.12 CIFS servers can return 32 bit error information
to clients using Status.Status if the incoming client SMB has bit 14 set in the Flags2 field of the
SMB header. The contents of response parameters are not guaranteed in the case of an error
return, and must be ignored. For write-behind activity, a subsequent write or close of the file may
return the fact that a previous write failed. Normally write-behind failures are limited to hard disk
errors and device out of space.

3.2.9. Timeouts

In general, SMBs are not expected to block at the server; they should return "immediately". There
are however a series of operations which may block for a significant time. The most obvious of
these is named-pipe operations, which may be dependent on another application completing a
write before they can fully complete their read. (Most named-pipe operations are never expired
unless cancelled). Similarly, with byte-range locking, the Timeout period is specified by the client,
so the server is not responsible for blocking on this operation as long as the client has specified it

CIFS Technical Reference SNIA Technical Proposal 23
Revision 1.0

may. A SMB server should put forth its best effort to handle operations as they arrive in an efficient
manner, such that clients do not timeout operations believing the server to be unresponsive
falsely. A client may timeout a pending operation by terminating the session. If a server
implementation can not support timeouts, then an error can be returned just as if a timeout had
occurred if the resource is not available immediately upon request.

3.2.10.Data Buffer (BUFFER) and String Formats

The data portion of SMBs typically contains the data to be read or written, file paths, or directory
paths. The format of the data portion depends on the message. All fields in the data portion have
the same format. In every case it consists of an identifier byte followed by the data.

Identifier Description Vaue
DataBlock See below 1
Dialect Null terminated string 2
Pathname Null terminated string 3
ASCII Null terminated string 4
Variable Block See below 5

When the identifier indicates a data block or variable block then the format is a word indicating the
length followed by the data.

In all dialects prior to NT LM 0.12, all strings are encoded in ASCII. If the agreed dialect is NT LM
0.12 or later, Unicode strings may be exchanged. Unicode strings include file names, resource
names, and user names. This applies to null-terminated strings, length specified strings and the
type-prefixed strings. In all cases where a string is passed in Unicode format, the Unicode string
must be word-aligned with respect to the beginning of the SMB. Should the string not naturally fall
on a two-byte boundary, a null byte of padding will be inserted, and the Unicode string will begin at
the next address. In the description of the SMBs, items that may be encoded in Unicode or ASCII
are labeled as STRING. If the encoding is ASCII, even if the negotiated string is Unicode, the
quantity is labeled as UCHAR.

For type-prefixed Unicode strings, the padding byte is found after the type byte. The type byte is 4
(indicating SMB_FORMAT _ASCII) independent of whether the string is ASCII or Unicode. For
strings whose start addresses are found using offsets within the fixed part of the SMB (as
opposed to simply being found at the byte following the preceding field,) it is guaranteed that the
offset will be properly aligned.

Strings that are never passed in Unicode are:
The protocol strings in the Negotiate SMB request.

The service name string in the Tree_Connect AndX SMB.

When Unicode is negotiated, the SMB_FLAGS2_UNICODE bit should be set in the Flags2 field of
every SMB header.

Despite the flexible encoding scheme, no field of a data portion may be omitted or included out of
order. In addition, neither a WordCount nor ByteCount of value 0 at the end of a message may be
omitted.

CIFS Technical Reference SNIA Technical Proposal 24
Revision 1.0

3.3.

3.4.

3.5.

Name Restrictions

The following four reserved characters MUST not be used in share names (network names), user
names, group names or domain names.

B W A

The following ten characters SHOULD not be used in share names, user names, group names or
domain names as they are considered reserved by multiple existing implementations:

“[n, “]u [T TR] nlu [O “+” “<17 “>u

y "y 1) LI))

(1Rl

A share name or server or workstation name SHOULD not begin with a period (“.”) nor should it
include two adjacent periods (“..”).

The same naming considerations apply for RFC 1001 names for servers or workstations when
using Netbios over TCP/IP name resolution mechanisms.

File Names

File names in the CIFS protocol consist of components separated by a backslash ('\'). Early
clients of the CIFS protocol required that the name components adhere to an 8.3 format name.
These names consist of two parts: a basename of no more than 8 characters, and an extension
of no more than 3 characters. The basename and extension are separated by a'.". All characters
are legal in the basename and extension except the space character (0x20) and:

[CLLEL R T ﬂ/”, “\”, “[“, “]” “.n “+” “|

L TPt R TG L TP L B T3 L R TR L1 Y I 1T L]
LI | LI |) < > ?

’ ’ P R B} ’

If the client has indicated long name support by setting bit2 in the Flags2 field of the SMB header,
this indicates that the client is not bound by the 8.3 convention. Specifically this indicates that any
SMB which returns file names to the client may return names which do not adhere to the 8.3
convention, and have a total length of up to 255 characters. This capability was introduced with
the LM1.2X002 protocol dialect.

The two special path components "." and ".." MUST be recognized. They indicate the current
directory and the parent directory respectively. Although the use of ".." permits the specification of
resources "above" the root of the tree connection, servers SHOULD prevent access to files or
directories above the root of the exported share.

Wildcards

Some SMB requests allow wildcards to be given for the filename. The wildcard allows a number of
files to be operated on as a unit without having to separately enumerate the files and individually
operate on each one from the client. Two different sets of search semantics are supported. DOS
search semantics are used for searching by 8.3 (or short names). Normal search semantics are
used for searching by long names (those which support file names different from 8.3).

In the 8.3 naming scheme, each file name can contain up to 8 characters, a dot, and up to 3
trailing characters. Each part of the name (base (8) or extension (3)) is treated separately. The “*”,
the “?” and the “.” can be used as wildcards. The “*” matches 0 or more characters until
encountering and matching the “.” in the name. The “?” matches any single character, or upon
encountering a “.” or end of name string, advances the expression to the end of the set of
contiguous “?”s. So if the filename part commences with one or more “?”s then exactly that

number of characters will be matched by the wildcards, e.g., “??x” equals “abx” but not “abcx” or

CIFS Technical Reference SNIA Technical Proposal 25

Revision 1.0

3.6.

“ax”. When a filename part has trailing “?”s then it matches the specified number of characters or

less, e.g., “x??” matches “xab”, “xa” and “x”, but not “xabc”. If only “?”s are present in the filename
part, then it is handled as for trailing “?”s. Finally, the “.” Matches either a “.” or an empty extension
string.

In the normal naming scheme, the “.” In the name is significant even though there is no longer a
restriction on the size of each of the file name components. A file name may have none, one or
more than one “.”s within its name. Spaces “ “ are also allowed within file names and both follow
normal wildcard searching rules. For example, if the files “foo bar none” and “foo.bar.none” exist,

the pattern “foo*” equals both, “foo.*” equals “foo.bar.none” and “foo *” equals “foo bar none”.

The ? character is a wildcard for a single character. If the match pattern commences with one or
more "?"s then exactly that number of characters will be matched by the wildcards, e.g., "??x"
equals "abx" but not "abcx" or "ax". When a match pattern has trailing "?"s then it matches the
specified number of characters or less, e.g., "x??" matches "xab", "xa" and "x", but not "xabc". If
only "?"s are present in the match pattern, then it is handled as for trailing "?"s.

nin

The * character matches an entire name. For example, "*" matches all files in a directory.
If the negotiated dialect is "NT LM 0.12" or later, and the client requires MS-DOS wildcard matching
semantics, UNICODE wildcards should be translated according to the following rules:

Translate the “?” literal to “>”
Translate the “.” literal to “" if it is followed by a “?” or a “*”

Translate the “*” literal to “<” if it is followed by a “.”

The translation can be performed in-place.

DFS Pathnames

A DFS pathname adheres to the standard described in the FileNames section. A DFS enabled
client accessing a DFS share should set the Flags2 bit 12 in all name based SMB requests
indicating to the server that the enclosed pathname should be resolved in the Distributed File
System namespace. The pathname should always have the full file name, including the server
name and share name. If the server can resolve the DFS name to a piece of local storage, the
local storage will be accessed. If the server determines that the DFS name actually maps to a
different server share, the access to the name will fail with the 32-bit status
STATUS_PATH_NOT_COVERED (0xC0000257), or DOS error ERRsrv/ERRbadpath.

On receiving this error, the DFS enabled client should ask the server for a referral (see
TRANS2_GET_DFS_REFERRAL). The referral request should contain the full file name.

The response to the request will contain a list of server and share names to try, and the part of the
request file name that junctions to the list of server shares. If the ServerType field of the referral is
set to 1 (SMB server), then the client should resubmit the request with the original file name to one
of the server shares in the list, once again setting the Flags2 bit 12 bit in the SMB. If the
ServerType field is not 1, then the client should strip off the part of the file name that junctions to
the server share before resubmitting the request to one of servers in the list.

A response to a referral request may elicit a response that does not have the StorageServers bit
set. In that case, the client should resubmit the referral request to one of the servers in the list, until
it finally obtains a referral response that has the StorageServers bit set, at which point the client
can resubmit the request SMB to one of the listed server shares.

CIFS Technical Reference SNIA Technical Proposal 26

Revision 1.0

If, after getting a referral with the StorageServers bit set and resubmitting the request to one of the
server shares in the list, the server fails the request with STATUS PATH_NOT_COVERED, it
must be the case that there is an inconsistency between the view of the DFS namespace held by
the server granting the referral and the server listed in that referral. In this case, the client may
inform the server granting the referral of this inconsistency via the
TRANS2_REPORT_DFS_INCONSISTENCY SMB.

3.7. Time And Date Encoding

When SMB requests or responses encode time values, the following describes the various
encodings used.

struct {
USHORT Day : 5;
USHORT Month @ 4;
USHORT Year : 7;
} SMB_DATE;

The Year field has a range of 0-119, which represents years 1980 - 2099. The Month is encoded
as 1-12, and the day ranges from 1-31.

struct {
USHORT TwoSeconds : 5;
USHORT M nutes : 6;
USHORT Hours : 5;

} SMB_TI ME

Hours ranges from 0-23, Minutes range from 0-59, and TwoSeconds ranges from 0-29
representing two second increments within the minute.

typedef struct {
ULONG LowTi ne;
LONG Hi ghTi ne;
} TIME;

TIME indicates a signed 64-bit integer representing either an absolute time or a time interval.
Times are specified in units of 100ns. A positive value expresses an absolute time. The time
base (the 64-bit integer with value 0) is the beginning of the year 1601 AD in the Gregorian
calendar UTC. However, file creation, modification and access times include an additional
correction factor as follows:

Tf = Tutc + Tdaf - Tdan
Where

Tf time reported for file creation/nodification/deletion

Tutc UTC time (secs since 1601 AD)

Tdaf Daylight savings adjustnment (positive quantity) in effect at Tf
Tdan Current daylight savings adjustnment (positive quantity)

For example, if a file is created in the summer - when daylight savings time is in effect - the
creation time will be reported as

Sumrer: Tutc + 3600 - 3600
Wnter: Tutc + 3600 - O

Tut c
Tutc + 3600

If a file is created during the winter - when daylight savings time not in effect - the creation time will
be reported as:

Sunmer : Tutc + 0 - 3600
Wnter: Tutc + 0 - O

Tutc - 3600
Tutc

A negative value expresses a time interval relative to some base time, usually the current time.

CIFS Technical Reference SNIA Technical Proposal 27
Revision 1.0

typedef unsigned | ong UTI ME;
UTIME is the number of seconds since Jan 1, 1970, 00:00:00.0.

CIFS Technical Reference SNIA Technical Proposal
Revision 1.0

28

3.8. Access Mode Encoding

Various client requests and server responses, such as SMB_COM_OPEN, pass file access
modes encoded into a USHORT. The encoding of these is as follows:

1111 11
5432 1098 7654 3210
rWC rLLL rSSS r AAA

where:

W- Wite through node. No read ahead or wite behind allowed on
this file or device. Wen the response is returned, data is
expected to be on the disk or device.

S - Sharing node:

0 - Compatibility node

1 - Deny read/wite/execute (exclusive)
2 - Deny wite

3 - Deny read/execute

4 - Deny none

A - Access node
0 - Open for reading
1 - Open for witing
2 - Open for reading and witing
3 - Open for execute

r SSSr AAA = 11111111 (hex FF) indicates FCB open (??7?)

C - Cache npde
0 - Normal file
1 - Do not cache this file
L - Locality of reference
O - Locality of reference is unknown
1 - Mainly sequential access
2 - Mainly random access
3 - Random access with some locality
4 to 7 - Currently undefined

3.9. Access Mask Encoding

The ACCESS_MASK structure is one 32-bit value containing standard, specific, and generic
rights. These rights are used in access-control entries (ACEs) and are the primary means of
specifying the requested or granted access to an object.

The bits in this value are allocated as follows: Bits 0-15 contain the access mask specific to the
object type associated with the mask. Bits 16-23 contain the object's standard access rights and
can be a combination of the following predefined flags:

CIFS Technical Reference SNIA Technical Proposal 29
Revision 1.0

Flag Vaue M eaning

DELETE 0x00010000 Delete access

READ_CONTROL (0x00020000 Read access to the owner, group, and
discretionary access-control list (ACL) of the
security descriptor

WRITE_DAC (0x00040000 Write access to the discretionary access-control
list (ACL)

WRITE_OWNER (0x00080000 Write access to owner

SYNCHRONIZE (0x00200000 Windows NT: Synchronize access

STANDARD_RIGHTS REQUIRED (0x000F0000

STANDARD_RIGHTS_READ READ_CONTROL

STANDARD_RIGHTS WRITE READ_CONTROL

STANDARD_RIGHTS EXECUTE READ_CONTROL

STANDARD_RIGHTS ALL 0x001F0000

SPECIFIC_RIGHTS ALL OxO000FFFF

2

23

ACCESS SYSTEM_SECURITY 0x01000000 Thisflag isnot atypical accesstype. It isused
to indicate access to asystem ACL. Thistype of
access requires the calling processto have a
specific privilege.

MAXIMUM_ALLOWED (0x(02000000

26 Reserved

27 Reserved

GENERIC_ALL (0x10000000

GENERIC_EXECUTE (0x20000000

GENERIC_WRITE (0x40000000

GENERIC_READ (0x80000000

3.10. Open Function Encoding

OpenFunction specifies the action to be taken depending on whether or not the file exists. This
word has the following format:

1111 11
5432 1098 7654 3210
rrer rrrr rrrC rrOO

where:
C - Create (action to be taken if file does not exist)
0 -- Fail
1 -- Create file
r - reserved (rust be zero)
CIFS Technical Reference SNIA Technical Proposal

Revision 1.0

O - Open (action to be taken if file exists)
0 - Fail
1 - Open file
2 - Truncate file

3.11. Open Action Encoding

Action in the response to an open or create request describes the action taken as a result of the
request. It has the following format:

1111 11
5432 1098 7654 3210
Lrrr rrrr rrrr rrQO

where:
L - Lock (single user total file |lock status)
0 -- file opened by another user (or nopde not supported by server)
1 -- file is opened only by this user at the present tinme

r - reserved (rust be zero)
O - Open (action taken on Open)

1 - The file existed and was opened

2 - The file did not exist but was created
3 - The file existed and was truncated

3.12. File Attribute Encoding

When SMB messages exchange file attribute information, it is encoded in 16 bits as:

Vaue Description
ox01 Read only file
0x02 Hidden file
ox04 System file
0x08 Volume

0x10 Directory
0x20 Archivefile

Others Reserved — Must be 0

CIFS Technical Reference SNIA Technical Proposal
Revision 1.0

3.13. Extended File Attribute Encoding

The extended file attributes is a 32 bit value composed of attributes and flags.

Any combination of the following attributes is acceptable, except all other file attributes override

FILE_ATTR_NORMAL:

Name Vdue Meaning

ATTR _ARCHIVE 0x020 Thefile has not been archived since it was last modified. Applications use
this attribute to mark files for backup or removal.

ATTR_COMPRESSED | Ox800 Thefile or directory is compressed. For afile, this meansthat al of the
datain thefileis compressed. For adirectory, this means that compression
isthe default for newly created files and subdirectories. The state of the
attribute ATTR_COMPRESSED does not affect how dataisread or written
to thefile or directory using the SMB operations. The attribute only
indicates how the server internally stores the data.

ATTR_NORMAL 0x080 Thefile has no other attributes set. This attributeisvalid only if used
alone.

ATTR_HIDDEN 0ox002 Thefileishidden. It isnot to beincluded in an ordinary directory listing.

ATTR_READONLY Ox001 Thefileisread only. Applications can read the file but cannot writeto it or
deleteit.

ATTR_TEMPORARY 0x100 Thefileistemporary.

ATTR _DIRECTORY 0x010 Thefileisadirectory.

ATTR_SYSTEM 0x004 Thefileispart of or isused exclusively by the operating system.

Any combination of the following flags is acceptable:

Name

Vaue

M eaning

WRITE_THROUGH

(0x80000000 Instructs the operating system to write through any intermediate

cache and go directly to the file. The operating system can still
cache write operations, but cannot lazily flush them.

NO_BUFFERING

(0x20000000 Requests the server to open the file with no intermediate buffering

or caching; the server is not obliged to honor the request. An
application must meet certain requirements when working with files
opened with FILE_FLAG_NO_BUFFERING. File access must
begin at offsets within the file that are integer multiples of the
volume's sector size; and mu st be for numbers of bytesthat are
integer multiples of the volume's sector size. For example, if the
sector size is 512 bytes, an application can request reads and
writes of 512, 1024, or 2048 bytes, but not of 335, 981, or 7171
bytes.

RANDOM_ACCESS

(x10000000 Indicates that the application intends to access the file randomly.

The server MAY use thisflag to optimize file caching.

CIFS Technical Reference

SNIA Technical Proposal
Revision 1.0

Vaue M eaning

SEQUENTIAL_SCAN (0x08000000 Indicates that thefileisto be accessed sequentially from

beginning to end. Windows uses this flag to optimize file caching.
If an application movesthe file pointer for random access, optimum
caching may not occur; however, correct operation is still
guaranteed. Specifying thisflag can increase performance for
applicationsthat read large files using sequential access.
Performance gains can be even more noticeable for applications
that read large files mostly sequentially, but occasionally skip over
small ranges of bytes.

DELETE ON_CLOSE 0x04000000 Requests that the server is delete the file immediately after all of its

handles have been closed.

BACKUP_SEMANTICS 0x(02000000 Indicates that the file is being opened or created for a backup or

restore operation. The server SHOULD allow the client to override
normal file security checks, provided it has the necessary
permission to do so.

POSIX_SEMANTICS 0x01000000 Indicates that the fileisto be accessed according to POSIX rules.

Thisincludes allowing multiple files with names differing only in
case, for file systems that support such naming. (Use care when
using this option because files created with this flag may not be
accessible by applications written for MSDOS, Windows 3., or
Windows NT.)

3.14. Batching Requests ("AndX" Messages)

LANMAN1.0 and later dialects of the CIFS protocol allow multiple SMB requests to be sent in one
message to the server. Messages of this type are called AndX SMBs, and they obey the following

The embedded command does not repeat the SMB header information. Rather the next
SMB starts at the WordCount field.

All multiple (chained) requests must fit within the negotiated transmit size. For example, if
SMB_COM_TREE_CONNECT_ANDX included SMB_COM_OPEN_ANDX and
SMB_COM_WRITE, they would all have to fit within the negotiated buffer size. This would
limit the size of the write.

There is one message sent containing the chained requests and there is one response
message to the chained requests. The server may NOT elect to send separate responses
to each of the chained requests.

All chained responses must fit within the negotiated transmit size. This limits the maximum
value on an embedded SMB_COM_READ for example. It is the client's responsibility to not
request more bytes than will fit within the multiple response.

The server will implicitly use the result of the first command in the "X" command. For
example the Tid obtained via SMB_COM_TREE_CONNECT_ANDX would be used in the
embedded SMB_COM_OPEN_ANDX, and the Fid obtained in the
SMB_COM_OPEN_ANDX would be used in the embedded SMB_COM_READ.

Each chained request can only reference the same Fid and Tid as the other commands in
the combined request. The chained requests can be thought of as performing a single
(multi-part) operation on the same resource.

The first Command to encounter an error will stop all further processing of embedded
commands. The server will not back out commands that succeeded. Thus if a chained

CIFS Technical Reference SNIA Technical Proposal 33

Revision 1.0

request contained SMB_COM_OPEN_ANDX and SMB_COM_READ and the server was
able to open the file successfully but the read encountered an error, the file would remain
open. This is exactly the same as if the requests had been sent separately.

If an error occurs while processing chained requests, the last response (of the chained
responses in the buffer) will be the one which encountered the error. Other unprocessed
chained requests will have been ignored when the server encountered the error and will not
be represented in the chained response. Actually the last valid AndXCommand (if any) will
represent the SMB on which the error occurred. If no valid AndXCommand is present, then
the error occurred on the first request/response and Command contains the command
which failed. In all cases the error information are returned in the SMB header at the start
of the response bulffer.

Each chained request and response contains the offset (from the start of the SMB header)
to the next chained request/response (in the AndXOffset field in the various "and X"
protocols defined later e.g. SMB_COM_OPEN_ANDX). This allows building the requests
unpacked. There may be space between the end of the previous request (as defined by
WordCount and ByteCount) and the start of the next chained request. This simplifies the
building of chained protocol requests. Note that because the client must know the size of
the data being returned in order to post the correct number of receives (e.g.
SMB_COM_TRANSACTION, SMB_COM_READ_MPX), the data in each response SMB is
expected to be truncated to the maximum number of 512 byte blocks (sectors) which will fit
(starting at a 32 bit boundary) in the negotiated buffer size with the odd bytes remaining (if

any) in the final buffer.

3.15. "Transaction" Style Subprotocols

The "transaction" style subprotocols are used for commands that potentially need to transfer a
large amount of data (greater than 64K bytes).

3.15.1.SMB_COM TRANSACTIONZ2 Format

The following list describes the format of the TRANSACTION2 client request:

Primary Client Request

Conmand
UCHAR Wor dCount ;

USHORT Tot al Par anet er Count ;
USHORT Tot al Dat aCount ;
USHORT MaxPar amet er Count ;
USHORT MaxDat aCount ;

UCHAR MaxSet upCount ;

UCHAR Reser ved;

USHORT FI ags;

ULONG Ti neout ;

USHORT Reserved?;
USHORT Par anet er Count ;
USHORT Par anet er O f set ;

USHORT Dat aCount ;
USHORT Dat aOf f set ;

CIFS Technical Reference

Description

SVB_COM TRANSACTI ON2

Count of paraneter words; value =
(14 + SetupCount)

Total paraneter bytes being sent

Total data bytes being sent

Max paraneter bytes to return

Max data bytes to return

Max setup words to return

Addi tional information:
bit 0 - Disconnect TID

Par anet er bytes sent this buffer
Offset (from header start) to
Par anet ers
Data bytes sent this buffer
O fset (from header start) to data

SNIA Technical Proposal A
Revision 1.0

UCHAR Set upCount ;
UCHAR Reserveds3;
USHORT Set up[Set upCount];
USHORT Byt eCount ;
STRI NG Nane[];
UCHAR Pad[];
UCHAR Par anet er s|
Par anet er Count] ;
UCHAR Padi|];
UCHAR Dat a[Dat aCount] ;

Count of setup words

Reserved (pad above to word boundary)
Setup words (# = SetupWrdCount)
Count of data bytes

Must be NULL

Pad to SHORT or LONG

Par anet er bytes (# = Paraneter Count)

Pad to SHORT or LONG
Dat a bytes (# = DataCount)

CIFS Technical Reference SNIA Technical Proposal

Revision 1.0

The interim server response will consist of two fields:

UCHAR Wér dCount ;
USHORT Byt eCount ;

\\ Count of parameter words = 0
\\ Count of data bytes =0

The following list describes the format of the TRANSACTIONZ2 secondary client request:

Secondary Client Request

Command

UCHAR Wér dCount ;

USHORT Tot al Par anet er Count ;
USHORT Tot al Dat aCount ;
USHORT Par anet er Count ;
USHORT Par anet er Of f set ;
USHORT Par anet er Di spl acenent ;
USHORT Dat aCount ;

USHORT Dat aCf f set ;

USHORT Dat abi spl acenent ;
USHORT Fi d;

USHORT Byt eCount ;
UCHAR Pad[];
UCHAR Par anet er s|

Par anet er Count] ;
UCHAR Padi|];
UCHAR Dat a[Dat aCount] ;

Descri ption

SMB_COM_TRANSACTI ON_SECONDARY

Count of paraneter words = 8

Total paraneter bytes being sent

Total data bytes being sent

Paramet er bytes sent this buffer

O fset (from header start) to Paraneters

Di spl acenent of these Paraneter bytes

Data bytes sent this buffer

O fset (from header start) to data

Di spl acenent of these data bytes
FID for handl e based requests, else
OXFFFF. This field is present only
if this is an SMB_COM TRANSACTI ON2
request.

Count of data bytes

Pad to SHORT or LONG

Par anet er bytes (# = Paraneter Count)

Pad to SHORT or LONG
Dat a bytes (# = DataCount)

And, the fields of the server response are described in the following list:

Server Response

UCHAR Wor dCount ;

USHORT Tot al Par amet er Count ;
USHORT Tot al Dat aCount ;

USHORT Reserved,;

USHORT Par anet er Count ;

USHORT Par anet er Of f set ;
USHORT Par anet er Di spl acenent ;

USHORT Dat aCount ;
USHORT Dat aCf f set ;
USHORT Dat abi spl acenent;
UCHAR Set upCount ;
UCHAR Reserved2;
USHORT Set up[Set upWor dCount] ;
USHORT Byt eCount ;
UCHAR Pad[];
UCHAR Par anet er s

Par anet er Count] ;
UCHAR Padi|];
UCHAR Dat a[Dat aCount] ;

CIFS Technical Reference

Descri ption

Count of data bytes; value = 10 +
Set upCount

Total paraneter bytes being sent

Total data bytes being sent

Par anet er bytes sent this buffer
O fset (from header start) to Paraneters
Di spl acenent of these Paraneter

byt es
Data bytes sent this buffer
Offset (from header start) to data
Di spl acenent of these data bytes
Count of setup words
Reserved (pad above to word boundary)
Setup words (# = Set upWor dCount)
Count of data bytes
Pad to SHORT or LONG
Par anet er bytes (# = Paraneter Count)

Pad to SHORT or LONG
Data bytes (# = Dat aCount)

SNIA Technical Proposal

Revision 1.0

3.15.2.SMB_COM NT TRANSACTION Formats

The following list describes the format of the TRANSACTION primary client request:

Primary Client Request Descri ption

UCHAR Wor dCount ; Count of paraneter words; value =
(19 + SetupCount)

UCHAR MaxSet upCount ; Max setup words to return

USHORT Reserved;

ULONG Tot al Par amet er Count ; Total paraneter bytes being sent

ULONG Tot al Dat aCount ; Total data bytes being sent

ULONG MaxPar anmet er Count ; Max paraneter bytes to return

ULONG MaxDat aCount ; Max data bytes to return

ULONG Par anet er Count ; Par anet er bytes sent this buffer

ULONG Par anet er O f set ; Offset (from header start) to Paraneters

ULONG Dat aCount ; Data bytes sent this buffer

ULONG Dat aOx f set ; O fset (from header start) to data

UCHAR Set upCount ; Count of setup words

USHORT Functi on; The transaction function code

UCHAR Buffer[1];

USHORT Set up[Set upWor dCount] ; Set up words

USHORT Byt eCount ; Count of data bytes

UCHAR Padi|]; Pad to LONG

UCHAR Par anet er s Par anet er bytes

Par amet er Count] ;
UCHAR Pad?[]; Pad to LONG
UCHAR Dat a[Dat aCount] ; Dat a bytes

The interim server response will consist of two fields:

UCHAR

Wor dCount ; \\ Count of paranmeter words = 0

USHORT ByteCount; \\ Count of data bytes = 0

The following list describes the format of the TRANSACTION secondary client request:

Secondary Client Request Descri ption
UCHAR Wor dCount ; Count of paranmeter words = 18
UCHAR Reserved[3] ; MUST BE ZERO
ULONG Tot al Par anet er Count ; Total paraneter bytes being sent
ULONG Tot al Dat aCount ; Total data bytes being sent
ULONG Par anet er Count ; Par anet er bytes sent this buffer
ULONG Par anet er Of f set ; O fset (from header start) to

Par aneters
ULONG Par amet er Di spl acenent ; Specifies the offset fromthe start

of the overall paranmeter block to
the paraneter bytes that are
contained in this nessage

ULONG Dat aCount ; Data bytes sent this buffer
ULONG Dat aCf f set ; Offset (from header start) to data
ULONG Dat abDi spl acenent ; Specifies the offset fromthe start
of the overall data block to the
data bytes that are contained in
CIFS Technical Reference SNIA Technical Proposal

Revision 1.0

37

this nmessage
UCHAR Reservedi,;

USHORT Byt eCount ; Count of data bytes
UCHAR Padl|]; Pad to LONG
UCHAR Par anet er s[Par anmet er bytes
Par anet er Count] ;
UCHAR Pad?[]; Pad to LONG
UCHAR Dat a[Dat aCount] ; Dat a bytes

And, the fields of the server response are described in the following list:

Server Response Descri ption
UCHAR Wor dCount ; Count of data bytes; value = 18 +
Set upCount
UCHAR Reserved|[3] ;
ULONG Tot al Par anet er Count ; Total paraneter bytes being sent
ULONG Tot al Dat aCount ; Total data bytes being sent
ULONG Par anet er Count ; Par anet er bytes sent this buffer
ULONG Par anet er Of f set ; O fset (from header start) to
Par anet ers
ULONG Par amet er Di spl acenent ; Specifies the offset fromthe start

of the overall paranmeter block to
the paraneter bytes that are
contained in this nessage

ULONG Dat aCount ; Data bytes sent this buffer
ULONG Dat aCf f set ; Offset (from header start) to data
ULONG Dat abDi spl acenent ; Specifies the offset fromthe start

of the overall data block to the
data bytes that are contained in
thi s nmessage

UCHAR Set upCount ; Count of setup words
USHORT Set up[Set upWor dCount] ; Set up words
USHORT Byt eCount ; Count of data bytes
UCHAR Padi|]; Pad to LONG
UCHAR Par anet er s| Par amet er bytes

Par anet er Count] ;
UCHAR Pad2[]; Pad to SHORT or LONG
UCHAR Dat a[Dat aCount] ; Dat a bytes

3.15.3.Functional Description

The transaction Setup information and/or Parameters define functions specific to a particular
resource on a particular server. Therefore the functions supported are not defined by the
transaction sub-protocol. The transaction protocol simply provides a means of delivering them and
retrieving the results.

The number of bytes needed in order to perform the transaction request may be more than will fit
in a single buffer.

At the time of the request, the client knows the number of parameter and data bytes expected to
be sent and passes this information to the server via the primary request (TotalParameterCount
and TotalDataCount). This may be reduced by lowering the total number of bytes expected
(TotalParameterCount and TotalDataCount) in each (if any) secondary request.

CIFS Technical Reference SNIA Technical Proposal 38
Revision 1.0

When the amount of parameter bytes received (total of each ParameterCount) equals the total
amount of parameter bytes expected (smallest TotalParameterCount) received, then the server
has received all the parameter bytes.

Likewise, when the amount of data bytes received (total of each DataCount) equals the total
amount of data bytes expected (smallest TotalDataCount) received, then the server has received
all the data bytes.

The parameter bytes should normally be sent first followed by the data bytes. However, the server
knows where each begins and ends in each buffer by the offset fields (ParameterOffset and
DataOffset) and the length fields (ParameterCount and DataCount). The displacement of the
bytes (relative to start of each) is also known (ParameterDisplacement and DataDisplacement).
Thus the server is able to reassemble the parameter and data bytes should the individual requests
be received out of sequence.

If all parameter bytes and data bytes fit into a single buffer, then no interim response is expected
and no secondary request is sent.

The client knows the maximum amount of data bytes and parameter bytes which may be returned
by the server (from MaxParameterCount and MaxDataCount of the request). Thus the client
initializes its bytes expected variables to these values. The server then informs the client of the
actual amounts being returned via each message of the server response (TotalParameterCount
and TotalDataCount). The server may reduce the expected bytes by lowering the total number of
bytes expected (TotalParameterCount and/or TotalDataCount) in each (any) response.

When the amount of parameter bytes received (total of each ParameterCount) equals the total
amount of parameter bytes expected (smallest TotalParameterCount) received, then the client has
received all the parameter bytes.

Likewise, when the amount of data bytes received (total of each DataCount) equals the total
amount of data bytes expected (smallest TotalDataCount) received, then the client has received all
the data bytes.

The parameter bytes should normally be returned first followed by the data bytes. However, the
client knows where each begins and ends in each buffer by the offset fields (ParameterOffset and
DataOffset) and the length fields (ParameterCount and DataCount). The displacement of the
bytes (relative to start of each) is also known (ParameterDisplacement and DataDisplacement).
The client is able to reassemble the parameter and data bytes should the server responses be
received out of sequence.

The flow for these transactions over a connection oriented transport is:

1. The client sends the primary client request identifying the total bytes (both parameters and
data) which are expected to be sent and contains the set up words and as many of the
parameter and data bytes as will fit in a negotiated size buffer. This request also identifies
the maximum number of bytes (setup, parameters and data) the server is to return on the
transaction completion. If all the bytes fit in the single buffer, skip to step 4.

2. The server responds with a single interim response meaning "OK, send the remainder of
the bytes" or (if error response) terminate the transaction.

3. The client then sends another buffer full of bytes to the server. This step is repeated until all
of the bytes are sent and received.

4. The Server sets up and performs the transaction with the information provided.

CIFS Technical Reference SNIA Technical Proposal 39
Revision 1.0

5. Upon completion of the transaction, the server sends back (up to) the number of parameter
and data bytes requested (or as many as will fit in the negotiated buffer size). This step is
repeated until all result bytes have been returned.

The flow for the transaction protocol when the request parameters and data do not all fit in a single

buffer is:

Client <--> Server

Primary TRANSACTION request ->
<- Interim Server Response

Secondary TRANSACTION request 1 ->

Secondary TRANSACTION request 2 ->

Secondary TRANSACTION request n ->
<- Transaction response 1
<- Transaction response 2
<- Transaction response m

The flow for the transaction protocol when the request parameters and data do all fit in a single

buffer is:
Client <--> Server
Primary TRANSACTION request ->
<- Transaction response 1
<- Transaction response 2
<- Transaction response m

The primary transaction request through the final response make up the complete transaction
exchange, thus the Tid, Pid, Uid and Mid must remain constant and can be used as appropriate by
both the server and the client. Of course, other SMB requests may intervene as well.

There are (at least) three ways that actual server responses have been observed to differ from
what might be expected. First, some servers will send Pad bytes to move the DataOffset to a 2-
or 4-byte boundary even if there are no data bytes; the point here is that the ByteCount must be
used instead of ParameterOffset plus ParameterCount to infer the actual message length.
Second, some servers always return MaxParameterCount bytes even if the particular Transact2
has no parameter response. Finally, in case of an error, some servers send the "traditional
WordCount==0/ByteCount==0" response while others generate a Transact response format.

3.15.4.SMB_COM TRANSACTION Operations

DCE/RPC documents were defined by the Open Group (TOG) used to be called the X/open
group. CIFS uses DCE/RPC to process Server and User management information, like logon
information, Local Security, Account management, Server/Workstation services and CIFS
networking management functions (like browsing and domain controller management). DCE/RPC
are implemented on top of SMB. SMB protocol is used as a transport for the DCE/RPC protocol.
DCE/RPC uses Protocol Data Unit (PDU) fragments to communicate. The PDUs are totally
independent of the SMB transmission size. So PDU can span over multiple SMB transmission
boundaries and multiple PDUs can be transmitted in a single SMB transmission. Name Pipe are

CIFS Technical Reference SNIA Technical Proposal 40
Revision 1.0

used as the transmission vehicle. Once and Named Pipe is opened all the DCE/RPC calls related
to that Name Pipe will be written and read through SMB_COM_TRANSCATION operation.
SMB_COM_TRANSACTION will communicate to the Name Pipe with as much PDU fragments it
can contains, the rest of the fragments will follow with either SMBReadX or SMBWriteX. Some of
the RPC calls are defined at Appendix E.

The "smb com transaction" style subprotocols are used mostly as MS RPC commands for
managing the server and the client. Mail Slots are used for broadcasting and informing the other
nodes on the networks. Named Pipes are mostly used for RPC. The details of the use of these
RPCs are outside of the scope of this document. The following section describes the data format,
but not the content of the content of the RPC. After the client or the server has open a Name Pipe
the RPC are communicated using that pipe.

3.15.4.1. Mail Slot Transaction Protocol

The only transaction allowed to a mailslot is a mailslot write. The following table shows the
interpretation of parameters for a mailslot transaction:

Name Value Description

Command SMB_COM_TRANSACTION

Name \MAILSLOT\<name> STRING Name of mail slot to write
SetupCount 3

Setup[0] 1 Command code == write mailslot
Setup[1] Ignored

Setup[2] Ignored

Total DataCount n Size of datato write to the mailslot
Data] n] The data to write to the mailslot

3.15.4.2. Server Announcement Mailslot Transaction

A server announces its presence on the network by periodically transmitting an announcement
mailslot message to a well known name. The server initially announces itself every minute, but as
the server stays up for longer and longer periods, it should stretch out its announcement period to
a maximum of once every 12 minutes. If a server has not been heard from for three
announcements, it is considered unavailable. The announcements can be received by any entity
on the network wishing to keep a reasonably up to date view of the available network servers.

Systems wishing to be visible on the network and compatible with LANMAN 1.0 periodically send
the following announcement:

Name Value Description
Command SMB_COM_TRANSACTION
Name \MAILSLOT\LANMAN
SetupCount 3
Setup[0] 1 Command code -- write maildlot
Setup[1] Ignored
CIFS Technical Reference SNIA Technical Proposal 41

Revision 1.0

Setup[2] Ignored
TotalDataCount N Size of following data to write to the mailslot
Data[n] Description
USHORT Opcode; Announcement (value==1)
ULONG InstalledServices, Bit mask describing the services running on the system
Ox1 SMB Workstation
0x2 SMB Server
0x4 SQL Server
0x800 UNIX Operating System
0x1000 NT Operating System
UCHAR MagjorVersion; Major version number of network software
UCHAR MinorVersion; Minor version number of network software
USHORT Periodicity; Announcement frequency in seconds
UCHAR ServerName(]; NULL terminated ASCI| server name
UCHAR ServerComment][]; NULL terminated ASCII server comment (up to 43 bytesin length)

The NETBIOS address for this mailslot transaction is the domain name padded with blanks and
having a zero as the sixteenth octet.

A client can cause LANMAN 1.0 severs to announce themselves to the client by sending the
following mailslot transaction to the specific computer of interest or to the domain name as
previously described:

Name Vaue Description

Command SMB_COM_TRANSACTION

Name \MAILSLOT\LANMAN

SetupCount 3

Setup[0] 1 Command code -- write mailslot

Setup[1] Ignored

Setup[2] Ignored

TotalDataCount N Size of following datato write to the mailslot

Data[n] Description

USHORT Opcode; Request announcement (value==2)

UCHAR ResponseComputerName][]; NULL terminated ASCII name to which the announcement
response should be sent.

Nodes wishing to be visible on the network and compatible with systems using W ndows f or
Wor kgr oups 3. la and later dialects periodically send the following directed mailslot message to

CIFS Technical Reference SNIA Technical Proposal 42
Revision 1.0

a NETBIOS address consisting of the domain name padded with blanks and having a 0x1D in the

sixteenth octet.

Name Vaue Description

Command SMB_COM_TRANSACTION

Name \MAILSLOT\LANMAN

SetupCount 3

Setup[0] 1 Command code -- write mailslot
Setup[1] Ignored

Setup[2] Ignored

Total DataCount n

Size of following datato write to the mailslot

Data[n] Description

UCHAR BrowseType; Announcement (value==1)

UCHAR Reserved; value ==

ULONG Periodicity; Announcement frequency in milliseconds

UCHAR ServerName[16] Name of this node doing the announcement. ServerName[16] ==
UCHAR VersonMgjor; Major version number of network software

UCHAR VersionMinor;

Minor version number of network software

ULONG IngtalledServices;

Bit mask describing the services running on the system

0x1 SMB Workstation

0x2 SMB Server

0x4 SQL Server

0x800 UNIX Operating System

0x1000 NT Operating System

ULONG AStrangeValue,

== OXAAS55001F

UCHAR ServerComment[44];

NULL terminated ASCII server comment (up to 44 bytesin length)

3.15.4.3. Named Pipe Transaction Protocol

A named pipe SMB_COM TRANSACTI ONis used to wait for the specified named pipe to become
available (WaitNmPipe) or perform a logical "open -> write -> read -> close" of the pipe
(CallNmPipe), along with other functions defined below.

The identifier "\PIPE\<name>" denotes a named pipe transaction, where the <name> is the pipe

name to apply the transaction against.

Name Vaue Description

Command SMB_COM_TRANSACTION

Name \PIPE\<name> Name of pipe for operation
SetupCount 2

Setup[0] See Below Subcommand code

CIFS Technical Reference

SNIA Technical Proposal
Revision 1.0

Setup[1] Fid of pipe If required

Total DataCount n Size of data

Datg[n] If required

The subcommand codes, placed in SETUP[0], for named pipe operations are:

SubCommand Code Value Description

CallNamedPipe x4 open/write/read/close pipe
WaitNamedPipe 0x53 wait for pipe to be nonbusy
PeekNmPipe 0x23 read but don't remove data
QNmPHandState ox21 query pipe handle modes
SetNmPHandState Oox01 set pipe handle modes

QNmPipelnfo ox22 query pipe attributes

TransactNmPipe 0x26 write/read operation on pipe
RawReadNmPipe ox11 read pipein "raw" (non message mode)
RawWriteNmPipe 0x31 write pipe"raw" (non message mode) */

3.15.4.4. CallNamedPipe

This command is used to implement the Win32 CallNamedPipe() API remotely. The
CallNamedPipe function connects to a message-type pipe (and waits if an instance of the pipe is
not available), writes to and reads from the pipe, and then closes the pipe.

This form of the transaction protocol sends no parameter bytes, thus the bytes to be written to the
pipe are sent as data bytes and the bytes read from the pipe are returned as data bytes.

The number of bytes being written is defined by TOTALDATACOUNT and the maximum number
of bytes to return is defined by MAXDATACOUNT.

On the response TOTALPARAMETERCOUNT is 0 (no Parameter bytes to return),
TOTALDATACOUNT indicates the amount of databytes being returned in total and DATACOUNT
identifies the amount of data being returned in each buffer.

Note that the full form of the Transaction protocol can be used to write and read up to 65,535 bytes
each utilizing the secondary requests and responses.

3.15.4.5. WaitNamedPipe

The command is used to implement the Win32 WaitNamedPipe() APl remotely. The
WaitNamedPipe function waits until either a time-out interval elapses or an instance of the
specified named pipe is available to be connected to (that is, the pipe's server process has a
pending ConnectNamedPipe operation on the pipe).

The server will wait up to TIMEOUT milliseconds for a pipe of the name given to become
available. Note that although the timeout is specified in milliseconds, by the time that the timeout
occurs and the client receives the timed out response much more time than specified may have
occurred.

CIFS Technical Reference SNIA Technical Proposal a4
Revision 1.0

This form of the transaction protocol sends no data or parameter bytes. The response also
contains no data or parameters. If the transaction response indicates success, the pipe may now
be available. However, this request does not reserve the pipe, thus all waiting programs may race
to get the pipe now available. The losers will get an error on the pipe open attempt.

3.15.4.6. PeekNamedPipe

This form of the pipe Transaction protocol is used to implement the Win32 PeekNamePipe() API
remotely. The PeekNamedPipe function copies data from a named or anonymous pipe into a
buffer without removing it from the pipe. It also returns information about data in the pipe.

TOTALPARAMETERCOUNT and TOTALDATACOUNT should be 0 for this request. The FID of
the pipe to which this request should be applied is in Setup[1]. MAXPARAMETERCOUNT should
be set to 6, requesting 3 words of information about the pipe, and MAXDATACOUNT should be
set to the number of bytes to "peek”.

The response contains the following PARAMETER WORDS:

Name Description

Parameterg[0, 1] Total number of bytes available to be read from the pipe

Parameterg[2,3] Total number of bytes remaining in the message at the "head" of the pipe

Parameterg[4,5] Pipe status.

1 Disconnected by server

2 Listening

3 Connection to server is OK

4 Server end of pipeis closed

The DATA portion of the response is the data peeked from the named pipe.

3.15.4.7. GetNamedPipeHandleState

This form of the pipe transaction protocol is used to implement the Win32
GetNamedPipeHandleState() API. The GetNamedPipeHandleState function retrieves information
about a specified named pipe. The information returned can vary during the lifetime of an instance
of the named pipe.

This request sends no parameters and no data. The FID of the pipe to which this request should
be applied is in Setup[1]. MAXPARAMETERCOUNT should be set to 2 (requesting the 1 word of
information about the pipe) and MAXDATACOUNT should be 0 (not reading the pipe).

The response returns one parameter of pipe state information interpreted as:

Pi pe Handle State Bits
54321009

876543210
BE** TTRR]-

-- lcount --|
wher e:
B - Bl ocking
0 => reads/wites block if no data available
1 => reads/wites return immediately if no data
E - Endpoint
0 => client end of pipe

CIFS Technical Reference SNIA Technical Proposal 45
Revision 1.0

1 => server end of pipe
TT - Type of pipe
00 => pipe is a byte stream pi pe
01 => pipe is a nessage pipe
RR - Read Mbde
00 => Read pipe as a byte stream
01 => Read nessages from pi pe
Icount - 8-bit count to control pipe instancing

The E (endpoint) bit is O because this handle is the client end of a pipe.

3.15.4.8. SetNamedPipeHandleState

This form of the pipe transaction protocol is used to implement the Win32
SetNamedPipeHandleState() API. The SetNamedPipeHandleState function sets the read mode
and the blocking mode of the specified named pipe.

This request sends 1 parameter word (TOTALPARAMETERCOUNT = 2) which is the pipe state
to be set. The FID of the pipe to which this request should be applied is in SETUP[1].

The response contains no data or parameters.

The interpretation of the input parameter word is:

Pi pe Handle State Bits
543210987
B* * * * * RRO
wher e:
B - Bl ocking
0 => reads/wites block if no data available
1 => reads/wites return imediately if no data
RR - Read Mbde
00 => Read pipe as a byte stream
01 => Read nessages from pi pe

Note that only the read mode (byte or message) and blocking/nonblocking mode of a named pipe
can be changed. Some combinations of parameters may be illegal and will be rejected as an
error.

6543210
0000O0OO0O

3.15.4.9. GetNamedPipelnfo

This form of the pipe transaction protocol is used to implement the Win32 GetNamedPipelnfo()
API. The GetNamedPipelnfo function retrieves information about the specified named pipe.

The request sends 1 parameter word (TOTALPARAMETERCOUNT = 2) which is the information
level requested and must be set to 1. The FID of the pipe to which this request should be applied
is in SETUP[1]. MAXDATACOUNT should be set to the size of the buffer specified by the user in
which to receive the pipe information.

Pipe information is returned in the data area of the response, up to the number of bytes specified.
The information is returned in the following format:

CIFS Technical Reference SNIA Technical Proposal 46
Revision 1.0

Name Sze Description

OutputBufferSize USHORT | actual size of buffer for outgoing (server) 1/0

InputBufferSize USHORT | actual size of buffer for incoming (client) 1/0

Maximuml nstances UCHAR Maximum allowed number of instances

Currentlnstances UCHAR Current number of instances

PipeNamelLength UCHAR Length of pipe name (including the null)

PipeName STRING Name of pipe (NOT including\\NodeName - \\NodeName is prepended to
this string by the client before passing back to the user)

3.15.4.10. TransactNamedPipe

This form of the pipe transaction protocol is used to implement the Win32 TransactNamedPipe()
API. The TransactNamedPipe function combines into a single network operation the functions that
write a message to and read a message from the specified named pipe.

It provides an optimum way to implement transaction-oriented dialogs. TransactNamedPipe will
fail if the pipe currently contains any unread data or is not in message read mode. Otherwise the
call will write the entire request data bytes to the pipe and then read a response from the pipe and
return it in the data bytes area of the response protocol. In the transaction request, SETUP[1]
must contain the FID of the pipe.

If NAME is \PIPE\LANMAN, this is a server API request. The request encoding is:
Request Field Description

Parameterq 0->1] APl #

Parameterg 2->N] ASCIIZ RAP description of input structure

ParametergN->X] Theinput structure

The response is formatted as:

Response Field Description
Parameterq 0->1] Result Status
Parameterq 2->3] Offset to result structure

The state of blocking/nonblocking has no effect on this protocol (TransactNamedPipe does not
return until a message has been read into the response protocol). If MAXDATACOUNT is too
small to contain the response message, an error is returned.

3.15.4.11.RawReadNamedPipe

RawReadNamedPipe reads bytes directly from a pipe, regardless of whether it is a message or
byte pipe. For a byte pipe, this is exactly like sSM8_com READ. For a message pipe, this is exactly like
reading the pipe in byte read mode, except message headers will also be returned in the buffer
(note that message headers will always be returned in toto--never split at a byte boundary).

This request sends no parameters or data to the server, and SETUP[1] must contain the FID of
the pipe to read. MAXDATACOUNT should contain the number of bytes to read raw.

CIFS Technical Reference SNIA Technical Proposal a7
Revision 1.0

The response will return 0 parameters, and DATACOUNT will be set to the number of bytes read.

3.15.4.12.RawWriteNamedPipe

RawWriteNamedPipe puts bytes directly into a pipe, regardless of whether it is a message or byte
pipe. The data will include message headers if it is a message pipe. This call ignores the
blocking/nonblocking state and always acts in a blocking manner. It returns only after all bytes

have been written.

The request sends no parameters. SETUP[1] must contain the FID of the pipe to write.
TOTALDATACOUNT is the total amount of data to write to the pipe. Writing zero bytes to a pipe
is an error unless the pipe is in message mode.

The response contains no data and one parameter word. If no error is returned, the one
parameter word indicates the number of the requested bytes that have been "written raw" to the

specified pipe.

3.16. Valid SMB Requests by Negotiated Dialect
CIFS clients and servers may exchange the following SMB messages if the "PC NETWORK

PROGRAM 1.0" dialect is negotiated:

SMB_COM_CREATE_DI RECTORY
SMB_COM OPEN

SMB_COM CLOSE

SVB_COM DELETE

SVB_COM _QUERY_| NFORNMATI ON
SVB_COM READ

SMB_COM LOCK_BYTE_RANGE
SMB_COM_CREATE_TEMPORARY
SMB_COM_CHECK_DI RECTORY
SMB_COM SEEK

SMB_COM TREE_DI SCONNECT
SVB_COM QUERY_| NFORMATI ON_DI SK
SVB_COM OPEN_PRI NT_FI LE
SVB_COM CLOSE_PRI NT_FI LE

SMB_COM DELETE_DI RECTORY
SMB_COM CREATE

SMB_COM FLUSH
SMVB_COM_RENANME

SMB_COM _SET_| NFORMATI ON
SMB_COM WRI TE

SMB_COM UNLOCK_BYTE_RANGE
SMB_COM _CREATE_NEW
SMB_COM_PROCESS_EXI T
SMB_COM_TREE_CONNECT
SMB_COM NEGOTI ATE
SMB_COM_SEARCH
SMB_COM VRl TE_PRI NT_FI LE
SMB_COM GET_PRI NT_QUEUE

If the "LANMAN 1.0" dialect is negotiated, all of the messages in the previous list must be
supported. Clients negotiating LANMAN 1.0 and higher dialects will probably no longer send
SMB_COM_PROCESS_EXIT, and the response format for SMB_COM_NEGOTIATE is modified
as well. New messages introduced with the LANMAN 1.0 dialect are:

SVB_COM LOCK_AND_READ
SVB_COM READ_RAW
SVB_COM VRl TE_MPX
SMB_COM WRI TE_COMPLETE
SMVB_COM SET_| NFORMATI ON2
SMB_COM_LOCKI NG_ANDX
SMVB_COM_TRANSACTI ON_SECONDARY
SMB_COM | OCTL_SECONDARY
SVB_COM_MOVE

SVB_COM WRI TE_AND_CLOSE
SVB_COM_READ_ANDX

SMB_COM SESSI ON_SETUP_ANDX
SMB_COM FI ND

CIFS Technical Reference

SNIA Technical Proposal

SMB_COM WRI TE_AND_UNLOCK
SMB_COM READ_MPX
SVB_COM WRI TE_RAW
SMB_COM WRI TE_MPX_SECONDARY
SVB_COM_QUERY_| NFORMATI ON2
SVB_COM_TRANSACTI ON
SMB_COM | OCTL

SMB_COM_COPY

SMB_COM ECHO
SVB_COM_OPEN_ANDX
SMVB_COM WRI TE_ANDX
SVB_COM TREE_CONNECT _ANDX
SMB_COM FI ND_UNI QUE

Revision 1.0

SVB_COM FI ND_CLOSE

The "LM1.2X002" dialect introduces these new SMBs:

SMB_COM_TRANSACTI ON2 SMB_COM_TRANSACTI ON2_ SECONDARY
SMB_COM_FI ND_CLOSE2 SMB_COM_LOGOFF_ANDX

"NT LM 0.12" dialect introduces:

SMB_COM NT_TRANSACT SMB_COM NT_TRANSACT_SECONDARY
SMB_COM NT_CREATE_ANDX SMB_COM NT_CANCEL
SMB_COM NT_RENANME

Capabilities are used to determine which SMB requests a server supports. However, they do not
directly map to which info levels associated with that particular request are supported. In the event
that a client sends a request with an info-level that the server does not support or recognize (if it is
legacy), it should return STATUS_UNSUPPORTED (or the non-NT equivalent). The extended
functionality that was added later is then simply not available to client applications who would ask
forit. (If a file system or SMB server does not support unique file ID's, then the query file
information asking for it would return Unsupported, where as the query for other types of file
information would return successfully.)

CIFS Technical Reference SNIA Technical Proposal 49
Revision 1.0

4. SMB Requests

This section lists the "best practice” SMB requests -- ones that would permit a client to exercise
full CIFS functionality and optimum performance when interoperating with a server speaking the
latest dialect as of this writing ("NT LM 0.12").

Note that, as of this writing, no existing client restricts itself to only these requests, so no useful
server can be written that supports just them. The classification is provided so that future clients
will be written to permit future servers to be simpler.

4.1. Session Requests

4.1.1. NEGOTIATE: Negotiate Protocol

The following list describes the format of the NEGOTIATE client request:

Cli ent Request Description
UCHAR Wor dCount ; Count of paraneter words = 0
USHORT Byt eCount ; Count of data bytes; mn = 2
struct {
UCHAR Buf f er For mat ; 0x02 -- Dialect
UCHAR Di al ect Nane[]; ASCII null-termi nated string
} Dialects[];

The Client sends a list of dialects with which it can communicate. The response is a selection of
one of those dialects (numbered 0 through n) or -1 (hex FFFF) indicating that none of the dialects
were acceptable. The negotiate message is binding on the virtual circuit and must be sent. One
and only one negotiate message may be sent, subsequent negotiate requests will be rejected with
an error response and no action will be taken.

The protocol does not impose any particular structure to the dialect strings. Implementers of
particular protocols may choose to include, for example, version numbers in the string.

If the server does not understand any of the dialect strings, or if PC NETWORK PROGRAM 1.0 is
the chosen dialect, the response format is:

Server Response Descri ption

UCHAR Wor dCount ; Count of paraneter words = 1
USHORT Di al ect | ndex; I ndex of selected dialect
USHORT Byt eCount ; Count of data bytes = 0

If the chosen dialect is greater than core up to and including LANMANZ2.1, the protocol response

format is:
Server Response Descri ption

UCHAR Wor dCount ; Count of paraneter words = 13

USHORT Di al ect | ndex; I ndex of selected dialect

USHORT SecurityMde; Security node:
bit 0: 0 = share, 1 = user
bit 1: 1 = use challenge/response
aut henti cation

USHORT MaxBuf ferSi ze; Max transmit buffer size (>= 1024)

CIFS Technical Reference SNIA Technical Proposal 50

Revision 1.0

USHORT MaxMoxCount ; Max pendi ng mul ti pl exed requests
USHORT MaxNumnber Vcs; Max VCs between client and server
USHORT Rawibde; Raw nodes support ed:
bit 0: 1 = Read Raw supported
bit 1: 1 = Wite Raw supported

ULONG Sessi onKey; Uni que token identifying this session
SMB_TI ME ServerTi ne; Current tinme at server
SMB_DATE Ser ver Dat e; Current date at server
USHORT Server Ti meZone; Current tine zone at server
USHORT Encrypti onKeylLengt h; MUST BE ZERO i f not LM2.1
di al ect
USHORT Reser ved; MUST BE ZERO
USHORT Byt eCount ; Count of data bytes
UCHAR EncryptionKey[]; The chal | enge encryption key
STRI NG Pri maryDomai n[] ; The server's primary domain

MaxBufferSize is the size of the largest message which the client can legitimately send to the
server.

If bit0 of the Flags field is set in the negotiate response, this indicates the server supports the
obsolescent SMB_COM_LOCK_AND_READ and SMB_COM_WRITE_AND_UNLOCK client
requests.

If the SecurityMode field indicates the server is running in user mode, the client must send
appropriate SMB_COM_SESSION_SETUP_ANDX requests before the server will allow the client
to access resources. If the SecurityMode field indicates the client should use challenge/response
authentication, the client should use the authentication mechanism specified in the Section 2.8.

Clients using the "MICROSOFT NETWORKS 1.03" dialect use a different form of raw reads than
documented here, and servers are better off setting RawMode in this response to 0 for such
sessions.

If the negotiated dialect is "DOS LANMANZ2.1" or "LANMANZ2.1", then PrimaryDomain string should
be included in this response.

If the negotiated dialect is NT LM 0.12, the response format is:

Server Response Description
UCHAR Wér dCount ; Count of paraneter words = 17
USHORT Di al ect | ndex; I ndex of selected dial ect
UCHAR Securit yMode; Security node:

bit 0: 0 = share, 1 = user

bit 1: 1 encrypt passwords

bit 2: 1 = Security Signatures
(SMB sequence numbers) enabl ed
bit 3: 1 = Security Signatures
(SMB sequence numbers) required

USHORT MaxMpxCount ; Max pendi ng out standi ng requests
USHORT MaxNumber Vcs; Max VCs between client and server
ULONG MaxBuf fer Si ze; Max transmit buffer size
ULONG MaxRawSi ze; Maxi mum raw buf fer size
ULONG Sessi onKey; Uni que token identifying this session
ULONG Capabi lities; Server capabilities
ULONG Syst emTli meLow; System (UTC) time of the server (low)
CIFS Technical Reference SNIA Technical Proposal 51

Revision 1.0

ULONG Syst enili neHi gh; System (UTC) tinme of the server (high)

USHORT Server Ti neZone; Time zone of server (mnutes from UTC)
CHAR Encrypti onKeyLengt h; Length of encryption key

USHORT Byt eCount ; Count of data bytes

UCHAR Encrypti onKey[]; The chal | enge encryption key;

Present only for Non Extended Security i.e.,
CAP_EXTENDED _SECURI TY is off in the Capabilities
field
UCHAR OCenDormai nNane[] ; The nane of the domain (in OEM chars);
Present Only for Non Extended Security i.e.,
CAP_EXTENDED _SECURI TY is off in the Capabilities
field
UCHAR GUI O 16] ; A gl obal ly unique identifier assigned to the
server; Present only when
CAP_EXTENDED SECURITY is on in Capabilities field
UCHAR SecurityBl ob[]; Opaque Security Blob associated with the
security package if CAP_EXTENDED SECURI TY
is onin the Capabilities field; else challenge
for CIFS chal |l enge/ response aut hentication

In addition to the definitions above, MaxBufferSize is the size of the largest message which the
client can legitimately send to the server. If the client is using a connectionless protocol,
MaxBufferSize must be set to the smaller of the server's internal buffer size and the amount of
data which can be placed in a response packet.

MaxRawsSize specifies the maximum message size the server can send or receive for the
obsolescent SMB_COM_WRITE_RAW or SMB_COM_READ_ RAW requests.

Connectionless clients must set Sid to 0 in the SMB request header.

The Capabilities field allows the server to tell the client what it supports. The client must not ignore
any capabilities specified by the server. The bit definitions are:

Capability Name Encoding Meaning

CAP_RAW_MODE 0x0001 The server supports
SMB_COM_READ_RAW and
SMB_COM_WRITE_RAW (obsolescent)

CAP_MPX_MODE 0x0002 The server supports
SMB_COM_READ_MPX and
SMB_COM_WRITE_MPX (obsolescent)

CAP_UNICODE 0x0004 The server supports UNICODE strings

CAP _LARGE FILES 0x0008 The server supports large fileswith 64 bit offsets

CAP_NT_SMBS 0x0010 The server supports the SMBs particular to the NT LM
0.12 dialect. Implies CAP_NT_FIND.

CAP_RPC_REMOTE_APIS 0x0020 The server supports remote admin APl requests viaDCE
RPC

CAP_STATUS32 0x0040 The server can respond with 32 bit status codesin
Status.Status

CAP_LEVEL Il_OPLOCKS 0x0080 The server supports level 2 oplocks

CAP_LOCK_AND_READ 0x0100 The server supportsthe SMB,

SMB_COM_LOCK_AND_READ

CIFS Technical Reference SNIA Technical Proposal 52
Revision 1.0

Capability Name Encoding M eaning

CAP_NT_FIND 0x0200 Reserved

CAP_DFS 0x1000 The server isDFS aware

CAP_INFOLEVEL_PASSTHRU 0x2000 The server supports NT information level requests passing
through

CAP_LARGE_READX 0x4000 The server supportslarge
SMB_COM_READ_ANDX (up to 64k)

CAP_LARGE_WRITEX 0x8000 The server supportslarge
SMB_COM_WRITE_ANDX (up to 64k)

CAP_UNIX 0x00800000 | The server supports CIFS Extensionsfor UNIX. (See
Appendix D for more detail)

CAP_RESERVED 0x(02000000 Reserved for future use

CAP_BULK_TRANSFER 0x20000000 The server supports SMB_BULK_READ,

SMB_BULK_WRITE (should be 0, no known
implementations)

CAP_COMPRESSED_DATA 0x40000000 | The server supports compressed data transfer
(BULK_TRANSFER capability is required to support
compressed data transfer).

CAP_EXTENDED_SECURITY 0x80000000 The server supports extended security exchanges

Undefined bit MUST be set to zero by servers, and MUST be ignored by clients.

Extended security exchanges provide a means of supporting arbitrary authentication protocols
within CIFS. Security blobs are opaque to the CIFS protocol; they are messages in some
authentication protocol that has been agreed upon by client and server by some out of band
mechanism, for which CIFS merely functions as a transport. When CAP_EXTENDED_SECURITY
is negotiated, the server includes a first security blob in its response; subsequent security blobs
are exchanged in SMB_COM_SESSION_SETUP_ANDX requests and responses until the
authentication protocol terminates.

If the negotiated dialect is NT LM 0.12, then the capabilities field of the Negotiate protocol response
indicates whether the server supports Unicode. The server is not required to support Unicode.
Unicode is supported in Win9x and NT clients. If Unicode is not supported by the server then some
localized of these clients may experience unexpected behavior with filenames, resource names
and user names.

ASCII defines the values of 128 characters (0x00 through 0x7F). The remaining 128 values (0x80
through OxFF) are mapped into different DOS Code Pages (aka the OEM character set). Different
localized clients may use different code pages. (For example, Code Page 437 is the default in
English based systems). Clients can create file and folder names in their default code page that
follows the file naming rules and may contain both ASCII and non-ASCII characters.

4111. Errors

SUCCESS/ SUCCESS
ERRSRV/ ERRer r or

CIFS Technical Reference SNIA Technical Proposal 53
Revision 1.0

4.1.2. SESSION SETUP_ ANDX: Session Setup

This SMB is used to further "Set up" the session normally just established via the negotiate
protocol.

One primary function is to perform a "user logon" in the case where the server is in user level
security mode. The Uid in the SMB header is set by the client to be the userid desired for the
AccountName and validated by the AccountPassword.

41.21. PreNTLMO0.12

If the negotiated protocol is prior to NT LM 0.12, the format of
SMB_COM_SESSION_SETUP_ANDX is:

Cli ent Request

Description

UCHAR Wor dCount ;
UCHAR AndXConmand;
UCHAR AndXReserved,;
USHORT AndXOr f set ;
USHORT MaxBufferSi ze;

Count of paraneter words = 10
Secondary (X) command; OxFF = none
Reserved (nust be 0)

O fset to next comand Wor dCount
Client maxi mum buffer size

USHORT MaxMoxCount ; Actual nmaximum rmul ti pl exed pendi ng requests
USHORT VcNunber ; 0 = first (only), nonzero=additional
VC nunber

ULONG Sessi onKey;

Session key (valid iff VcNunber != 0)

USHORT Passwor dLengt h;
ULONG Reserved;

USHORT Byt eCount ;

UCHAR Account Password[];
STRI NG Account Nane[];
STRI NG Pri maryDomai n[];
STRI NG NativeOS[];

STRI NG Nati veLanMan[];

The server response is:

Server Response

UCHAR Wor dCount ;
UCHAR AndXConmand;

UCHAR AndXReserved;
USHORT AndXOf f set ;
USHORT Acti on;

USHORT Byt eCount ;

STRI NG NativeQS[];

STRI NG Nati veLanMan[];
STRI NG Pri mar yDonmai n[];

If the server is in "share level security mode", the account name and password should be ignored

by the server.

CIFS Technical Reference

Account password size

Mist be O

Count of data bytes; nmn =20
Account Password

Account Nane

Client's primary domain

Client's native operating system
Client's native LAN Manager type

Descri ption

Count of paraneter words = 3
Secondary (X) command; OxFF =
none
Reserved (nmust be 0)
O fset to next command Wor dCount
Request node:
bitO0 = | ogged in as GUEST
Count of data bytes
Server's native operating system
Server's native LAN Manager type
Server's primary donain

SNIA Technical Proposal
Revision 1.0

If challenge/response authentication is not being used, AccountPassword should be a null
terminated ASCII string with PasswordLength set to the string size including the null; the password
will be case insensitive. If challenge/response authentication is being used, then
AccountPassword will be the response to the server's challenge, and PasswordLength should be
set to its length.

The server validates the name and password supplied and if valid, it registers the user identifier on
this session as representing the specified AccountName. The Uid field in the SMB header will then
be used to validate access on subsequent SMB requests. The SMB requests where permission
checks are required are those which refer to a symbolically named resource such as
SMB_COM_OPEN, SMB_COM_RENAME, SMB_COM_DELETE, etc. The value of the Uid is
relative to a specific client/server session so it is possible to have the same Uid value represent
two different users on two different sessions at the server.

Multiple session setup commands may be sent to register additional users on this session. If the
server receives an additional SMB_COM_SESSION_SETUP_ANDX, only the Uid, AccountName
and AccountPassword fields need contain valid values (the server MUST ignore the other fields).

The client writes the name of its domain in PrimaryDomain if it knows what the domain name is. If
the domain name is unknown, the client either encodes it as a NULL string, or as a question mark.

If bitO of Action is set, this informs the client that although the server did not recognize the
AccountName, it logged the user in as a guest. This is optional behavior by the server, and in any
case one would ordinarily expect guest privileges to limited.

Another function of the Session Set Up protocol is to inform the server of the maximum values
which will be utilized by this client. Here MaxBufferSize is the maximum message size which the
client can receive. Thus although the server may support 16k buffers (as returned in the
SMB_COM_NEGOTIATE response), if the client only has 4k buffers, the value of MaxBufferSize
here would be 4096. The minimum allowable value for MaxBufferSize is 1024. The
SMB_COM_NEGOTIATE response includes the server buffer size supported. Thus this is the
maximum SMB message size which the client can send to the server. This size may be larger
than the size returned to the server from the client via the SMB_COM_SESSION_SETUP_ANDX
protocol which is the maximum SMB message size which the server may send to the client. Thus
if the server's buffer size were 4k and the client's buffer size were only 2K, the client could send up
to 4k (standard) write requests but must only request up to 2k for (standard) read requests.

The VcNumber field specifies whether the client wants this to be the first VC or an additional VC.

The values for MaxBufferSize, MaxMpxCount, and VcNumber must be less than or equal to the
maximum values supported by the server as returned in the SMB_COM_NEGOTIATE response.

If the server gets a SMB_COM_SESSION_SETUP_ANDX request with VcNumber of 0 and other
VCs are still connected to that client, they will be aborted thus freeing any resources held by the
server. This condition could occur if the client was rebooted and reconnected to the server before
the transport level had informed the server of the previous VC termination.

41.22. NTLMO0.12

If the negotiated SMB dialect is "NT LM 0.12" and the server supports ExtendedSecurity i.e. the
CAP_EXTENDED_SECURITY flag is set in the Capabilities field of the Negotiate Response SMB,
the Extended Security SessionSetup SMB format is:

Cli ent Request Description
UCHAR Wor dCount ; Count of paraneter words = 12
CIFS Technical Reference SNIA Technical Proposal 55

Revision 1.0

UCHAR AndXConmand;
UCHAR AndXReser ved,;
USHORT AndXOf f set ;
USHORT MaxBuf f er Si ze;
USHORT MaxMpxCount ;

USHORT VcNunber ;

ULONG Sessi onKey;

USHORT SecurityBl obLengt h;
ULONG Reserved,;

ULONG Capabilities;

USHORT Byt eCount ;

UCHAR SecurityBl ob[];

STRI NG NativeOS[];

STRI NG Nati veLanMan[];

And the server response is:

Server Response

UCHAR Wor dCount ;
UCHAR AndXConmand;

UCHAR AndXReserved;
USHORT AndXOf f set ;
USHORT Acti on;

USHORT SecurityBl obLengt h;

USHORT Byt eCount ;
UCHAR SecurityBlob[];

STRI NG NativeOS[];
STRI NG NativeLanMan[];
STRI NG Pri maryDomai n[];

Secondary (X) command; OxFF =
Reserved (nust be 0)
O fset to next command WrdCount

Client's maxi nrum buffer size

none

Actual maxi mum rul ti pl exed pendi ng
requests

0 = first (only), nonzero=additiona
VC number

Session key (valid iff VcNumber
Lengt h of opaque security blob
Must be O

Client capabilities

Count of data bytes; mn

The opaque security bl ob

Client's native operating system
Uni code

Client's native LAN Manager type,
Uni code

1= 0)

0

Descri ption

Count of parameter words

Secondary (X) command;
none
Reserved (nust

O fset to next
Request node:
bito | ogged in as GUEST

Length of Security Bl ob that
follows in a later field

Count of data bytes

SecurityBl ob of |ength specified
by the field, SecurityBl obLength

Server's native operating system

Server's native LAN Manager type

Server's primary domain

4
OxXFF

be 0)
command Wor dCount

There may be multiple round trips involved in the security blob exchange. In that case, the server
may return an error STATUS_MORE_PROCESSING_REQUIRED (a value of 0xC0000016) in the
SMB status. The client can then repeat the SessionSetupAndX SMB with the rest of the security
blob.

If the negotiated SMB dialect is "NT LM 0.12" or later and the server does not support Extended
Security (i.e. the CAP_EXTENDED_SECURITY flag in the Capabilities field of the Negotiate
Response SMB is not set), the format of the response SMB is unchanged, but the request is:

Client Request Descri ption
UCHAR Wor dCount ; Count of paraneter words = 13
UCHAR AndXConmmand; Secondary (X) command; OxFF = none

UCHAR AndXReserved;
USHORT AndXOf f set ;
USHORT MaxBufferSi ze;

Reserved (nust be 0)

Offset to next command Wor dCount
Client's maxi nrum buffer size
CIFS Technical Reference

SNIA Technical Proposal
Revision 1.0

USHORT MaxMpxCount ;
USHORT VcNunber ;

ULONG Sessi onKey;
USHORT

Actual maximum rmul ti pl exed pending
requests

0 = first (only), nonzero=additiona
VC numnber

Session key (valid iff VcNunber != 0)

Account password size, ANS

Casel nsensiti vePasswor dLengt h;

USHORT

Account password size, Unicode

CaseSensi ti vePasswor dLengt h;

ULONG Reserved,;
ULONG Capabilities;
USHORT Byt eCount ;
UCHAR

Must be O

Client capabilities

Count of data bytes; min =0
Account Password, ANSI

Casel nsensitivePassword[];

UCHAR

CaseSensitivePassword[];

UCHAR Reserved?2

STRI NG Account Nane[];

STRI NG Pri mar yDomai n[] ;

STRI NG Nati veOS[];

STRI NG Nati veLanMan[];

Account Password, Unicode

Present if Unicode negotiated to even byte
boundary
Account Nane, Unicode
Client's primary donain, Unicode
Client's native operating system
Uni code
Client's native LAN Manager type,
Uni code

The client expresses its capabilities to the server encoded in the Capabilities field. The format of

that field is:
Capability Name Encoding | Meaning
CAP_UNICODE 0x0004 The client can use UNICODE strings
CAP_LARGE FILES 0x0008 The client can deal with files having 64 bit offsets
CAP_NT_SMBS 0x0010 The client understands the SMBs introduced with the NT LM 0.12
dialect. Implies CAP_NT_FIND.
CAP_STATUS32 0x0040 Theclient can receive 32 bit errors encoded in Status.Status
CAP_LEVEL Il_OPLOCKS 0x0080 The client understands Level 11 oplocks
CAP_NT_FIND 0x0200 Reserved

The entire message sent and received including the optional ANDX SMB must fit in the negotiated
maximum transfer size. The following are the only valid SMB commands for AndXCommand for

SMB_COM_SESSION_SETUP_ANDX:

SVB_COM TREE_CONNECT _ANDX

SMB_COM_OPEN_ANDX
SMB_COM CREATE_NEW
SMB_COM DELETE
SMB_COM FI ND
SMB_COM_COPY
SMVB_COM _NT_RENAME

SMB_COM QUERY_| NFORMATI ON
SMB_COM_NO_ANDX_COMVAND
SMB_COM GET_PRI NT_QUEUE

CIFS Technical Reference

SMB_COM OPEN

SMB_COM CREATE

SMB_COM CREATE_DI RECTORY
SMB_COM DELETE_DI RECTORY
SMB_COM FI ND_UNI QUE
SVB_COM_RENANME

SMB_COM CHECK_DI RECTORY
SMB_COM SET_| NFORMATI ON
SMB_COM OPEN_PRI NT_FI LE
SMB_COM_TRANSACTI ON

SNIA Technical Proposal

Revision 1.0

57

41.2.3. Errors

ERRSRV/ ERRerror - No NEG _PROT issued

ERRSRV/ ERRbadpw - Password not correct for given username

ERRSRV/ ERRt oomanyui ds - Maxi mum nunber of users per session exceeded
ERRSRV/ ERRnosupport - Chaining of this request to the previous is not
supported

4.1.3. LOGOFF ANDX: User Logoff

This SMB is the inverse of SMB_COM_SESSION_SETUP_ANDX.

Cli ent Request Descri ption

UCHAR Wor dCount ; Count of paranmeter words = 2

UCHAR AndXCommand; Secondary (X) command; OxFF =
none

UCHAR AndXReser ved; Reserved (nust be 0)

USHORT AndXOf f set ; O fset to next command Wor dCount

USHORT Byt eCount ; Count of data bytes = 0

The server response is:

Server Response Descri ption
UCHAR Wor dCount ; Count of paranmeter words = 2
UCHAR AndXCommand; Secondary (X) comrmand; OxFF =
none
UCHAR AndXReser ved; Reserved (nust be 0)
USHORT AndXCOf f set ; O fset to next command Wor dCount
USHORT Byt eCount ; Count of data bytes =0

The user represented by Uid in the SMB header is logged off. The server closes all files currently
open by this user, and invalidates any outstanding requests with this Uid.

SMB_COM_SESSION_SETUP_ANDX is the only valid AndXCommand for this SMB.

41.3.1. Errors

ERRSRV/invnid - TID was invalid
ERRSRV/ baduid - U D was invalid

4.1.4. TREE CONNECT ANDX: Tree Connect

The TREE_CONNECT_ANDX client request is defined below:

Client Request Descri ption
UCHAR Wor dCount ; Count of paraneter words = 4
UCHAR AndXConmmand; Secondary (X) conmmand; OxFF = none
UCHAR AndXReser ved; Reserved (nust be 0)
USHORT AndXOf f set ; O fset to next command WrdCount
USHORT FI ags; Addi tional information

bit 0 set = Disconnect Tid

CIFS Technical Reference SNIA Technical Proposal 58
Revision 1.0

USHORT Passwor dLengt h; Length of Password[]

USHORT Byt eCount ; Count of data bytes; mn = 3
UCHAR Password[]; Passwor d

STRI NG Pat h[]; Server name and share nane
STRI NG Service[]; Servi ce nane

The serving machine verifies the combination and returns an error code or an identifier. The full
name is included in this request message and the identifier identifying the connection is returned in
the Tid field of the SMB header. The Tid field in the client request is ignored. The meaning of this
identifier (Tid) is server specific; the client must not associate any standard meaning to it.

If the negotiated dialect is LANMAN1.0 or later, then it is a protocol violation for the client to send
this message prior to a successful SMB_COM_SESSION_SETUP_ANDX, and the server ignores
Password.

If the negotiated dialect is prior to LANMAN1.0 and the client has not sent a successful
SMB_COM_SESSION_SETUP_ANDX request when the tree connect arrives, a user level security
mode server must nevertheless validate the client's credentials as discussed earlier in this
document.

Path follows UNC style syntax, that is to say it is encoded as \\server\share and it indicates the
name of the resource to which the client wishes to connect.

Because Password may be an authentication response, it is a variable length field with the length
specified by PasswordLength. If authentication is not being used, Password should be a null
terminated ASCII string with PasswordLength set to the string size including the terminating null.

The server can enforce whatever policy it desires to govern share access. Typically, if the server
is paused, administrative privilege is required to connect to any share; if the server is not paused,
administrative privilege is required only for administrative shares (C$, etc.). Other such policies
may include valid times of day, software usage license limits, number of simultaneous server
users or share users, etc.

The Service component indicates the type of resource the client intends to access. Valid values

are:
Service Description Earliest Dialect Allowed
A: Disk share PC NETWORK PROGRAM 1.0
LPT1: Printer PC NETWORK PROGRAM 1.0
IPC Named pipe MICROSOFT NETWORKS 3.0
COMM Communicationsdevice | MICROSOFT NETWORKS 3.0
7? Any type of device MICROSOFT NETWORKS 3.0

If bitO of Flags is set, the tree connection to Tid in the SMB header should be disconnected. If this
tree disconnect fails, the error should be ignored.

If the negotiated dialect is earlier than DOS LANMAN2.1, the response to this SMB is:

Server Response Descri ption
UCHAR Wér dCount ; Count of paraneter words = 2
UCHAR AndXConmand; Secondary (X) conmand; OxFF = none
UCHAR AndXReser ved; Reserved (must be 0)
CIFS Technical Reference SNIA Technical Proposal 59

Revision 1.0

USHORT AndXCOf f set ; O fset to next command Wor dCount
USHORT Byt eCount ; Count of data bytes; mn = 3

If the negotiated is DOS LANMANZ2.1 or later, the response to this SMB is:

Server Response Descri ption

UCHAR Wor dCount ; Count of paraneter words = 3

UCHAR AndXConmmand; Secondary (X) command; OxFF = none
UCHAR AndXReser ved; Reserved (nust be 0)

USHORT AndXCOf f set ; O fset to next command Wor dCount
USHORT Opti onal Support; Optional support bits

SMB_SUPPORT_SEARCH BI TS = 0x0001
Excl usi ve search bits

(“MUST HAVE BITS") supported
SMB SHARE IS I N DFS = 0x0002

USHORT Byt eCount ; Count of data bytes; nmin = 3
UCHAR Service[]; Service type connected (Al ways ANSII)
STRI NG Nati veFil eSysteni]; Native file systemfor this tree

NativeFileSystem is the name of the filesystem. Expected values include FAT, NTFS, etc.

Some servers negotiate "DOS LANMAN2.1" dialect or later and still send the "downlevel" (i.e.
wordcount==2) response. Valid AndX following commands are:

SMB_COM OPEN SMB_COM OPEN_ANDX SMB_COM CREATE
SMB_COM CREATE_NEW SMB_COM CREATE_DI RECTORY SMB_COM DELETE
SMB_COM DELETE_DI RECTORY SMB_COM FI ND SMB_COM_COPY
SMB_COM_FI ND_UNI QUE SMB_COM_RENANME

SMB_COM CHECK_DI RECTORY SMB_COM QUERY_| NFORMATI ON
SMB_COM GET_PRI NT_QUEUE SMB_COM OPEN_PRI NT_FI LE
SMB_COM TRANSACTI ON SMB_COM _NO_ANDX_CMD
SMB_COM SET_| NFORMATI ON SMB_COM NT_RENAVE

4141. Errors

ERRDOS/ ERRnonem
ERRDOS/ ERRbadpat h
ERRDOS/ ERRiI nvdevi ce
ERRSRV/ ERRaccess
ERRSRV/ ERRbadpw
ERRSRV/ ERRi nvnet nane

4.1.5. TREE DISCONNECT: Tree Disconnect

This message informs the server that the client no longer wishes to access the resource
connected via a prior SMB_COM_TREE_CONNECT or SMB_COM_TREE_CONNECT_ANDX.

Cli ent Request Description
UCHAR Wor dCount ; Count of paraneter words = 0
USHORT Byt eCount ; Count of data bytes =0

CIFS Technical Reference SNIA Technical Proposal

Revision 1.0

The resource sharing connection identified by Tid in the SMB header is logically disconnected from
the server. Tid is invalidated; it will not be recognized if used by the client for subsequent requests.
All locks, open files, etc. created on behalf of Tid are released.

Server Response Descri ption
UCHAR Wor dCount ; Count of paraneter words = 0
USHORT Byt eCount ; Count of data bytes = 0

4151. Errors

ERRSRV/ ERRi nvni d
ERRSRV/ ERRbadui d

4.1.6. TRANS2 QUERY FS INFORMATION: Get File System Information

This transaction requests information about a filesystem on the server. Its format is:

Client Request Val ue

Wor dCount 15

Tot al ParaneterCount 2 or 4

Max Set upCount 0

Set upCount 1 or 2

Set up[0] TRANS2_QUERY_FS | NFORMATI ON

The request’s parameter block encodes InformationLevel (a USHORT), describing the level of
filesystem info that should be returned. Values for InformationLevel are specified in the table
below.

The filesystem is identified by Tid in the SMB header.
MaxDataCount in the transaction request must be large enough to accommodate the response.

The encoding of the response parameter block depends on the InformationLevel requested.
Information levels whose values are greater than 0x102 are mapped to corresponding operating
system calls (NtQueryVolumelnformationFile calls) by the server. The two levels below 0x102 are
described below. The requested information is placed in the Data portion of the transaction
response.

Information Level Vaue
SMB_INFO_ALLOCATION 1

SMB_INFO_VOLUME 2

SMIB_QUERY_FS VOLUME_INFO X102
SMB_QUERY_FS SIZE INFO ox103
SMB_QUERY_FS DEVICE_INFO X104
SMB_QUERY_FS ATTRIBUTE_INFO 0x105
SMB_QUERY_CIFS UNIX_INFO X200
SMB_QUERY_MAC_FS INFO X301

CIFS Technical Reference SNIA Technical Proposal 61

Revision 1.0

The following sections describe the InformationLevel dependent encoding of the data part of the
transaction response.

4.1.6.1. SMB_INFO_ALLOCATION

I nformati onLevel
Dat a Bl ock Encodi ng Descri ption

ULONG i dFi | eSyst em File systemidentifier (NT server always returns 0)
ULONG cSectorUnit; Nunber of sectors per allocation unit

ULONG cUni t; Total nunber of allocation units

ULONG cUni t Avai | ; Total nunber of available allocation units

USHORT cbSector; Nunber of bytes per sector

4.1.6.2. SMB_INFO_VOLUME

I nformati onLevel
Dat a Bl ock Encodi ng Descri ption

ULONG ul Vsn; Vol une serial nunber
UCHAR cch; Number of characters in Label
STRI NG Label ; The vol une | abel

41.6.3. SMB_QUERY_FS_VOLUME_INFO

I nformati onLevel
Dat a Bl ock Encodi ng Description

SMB_TI ME Vol une Creation Tinme

ULONG Vol urme Serial Nunber

ULONG Lengt h of Vol ume Label in bytes
BYTE Reserved

BYTE Reserved

STRI NG Label ; The vol une | abel

4.1.6.4. SMB_QUERY_FS_SIZE_INFO

I nformati onLevel
Dat a Bl ock Encodi ng Descri ption

LARGE | NTEGER Total Nunber of Allocation units on the Vol une
LARGE_| NTEGER Number of free Allocation units on the Vol une
ULONG Nurmber of sectors in each Allocation unit
ULONG Nunber of bytes in each sector

4.1.6.5. SMB_QUERY_FS DEVICE_INFO

I nformati onLevel
Dat a Bl ock Encodi ng Description

ULONG Devi ceType; Val ues as specified bel ow
ULONG Characteristics of the device; Values as specified
bel ow

CIFS Technical Reference SNIA Technical Proposal

Revision 1.0

62

For DeviceType, note that the values 0-32767 are reserved for the exclusive use of Microsoft
Corporation. The following device types are currently defined:

FI LE_DEVI CE_BEEP 0x00000001
FI LE_DEVI CE_CD_ROM 0x00000002
FI LE_DEVI CE_CD_ROM FI LE_SYSTEM 0x00000003
FI LE_DEVI CE_CONTROLLER 0x00000004
FI LE_DEVI CE_DATALI NK 0x00000005
FI LE_DEVI CE_DFS 0x00000006
FI LE_DEVI CE_DI SK 0x00000007
FI LE_DEVI CE_DI SK_FI LE_SYSTEM 0x00000008
FI LE_DEVI CE_FI LE_SYSTEM 0x00000009
FI LE_DEVI CE_| NPORT_PORT 0x0000000a
FI LE_DEVI CE_KEYBOARD 0x0000000b
FI LE_DEVI CE_MAI LSLOT 0x0000000c
FI LE_DEVICE_M DI _IN 0x0000000d
FI LE_DEVI CE_M DI _OUT 0x0000000e
FI LE_DEVI CE_MOUSE 0x0000000f
FI LE_DEVI CE_MULTI _UNC_PROVI DER 0x00000010
FI LE_DEVI CE_NAMED_PI PE 0x00000011
FI LE_DEVI CE_NETWORK 0x00000012
FI LE_DEVI CE_NETWORK_BROWSER 0x00000013
FI LE_DEVI CE_NETWORK_FI LE_SYSTEM 0x00000014
FI LE_DEVI CE_NULL 0x00000015
FI LE_DEVI CE_PARALLEL_PORT 0x00000016
FI LE_DEVI CE_PHYSI CAL_NETCARD 0x00000017
FI LE_DEVI CE_PRI NTER 0x00000018
FI LE_DEVI CE_SCANNER 0x00000019
FI LE_DEVI CE_SERI AL_MOUSE_PORT 0x0000001a
FI LE_DEVI CE_SERI AL_PORT 0x0000001b
FI LE_DEVI CE_SCREEN 0x0000001c
FI LE_DEVI CE_SOUND 0x0000001d
FI LE_DEVI CE_STREAMS 0x0000001e
FI LE_DEVI CE_TAPE 0x0000001f
FI LE_DEVI CE_TAPE_FI LE_SYSTEM 0x00000020
FI LE_DEVI CE_TRANSPORT 0x00000021
FI LE_DEVI CE_UNKNON 0x00000022
FI LE_DEVI CE_VI DEO 0x00000023
FI LE_DEVI CE_VI RTUAL_DI SK 0x00000024
FI LE_DEVI CE_WAVE_I N 0x00000025
FI LE_DEVI CE_WAVE_OUT 0x00000026
FI LE_DEVI CE_8042_PORT 0x00000027
FI LE_DEVI CE_NETWORK_REDI RECTOR 0x00000028
FI LE_DEVI CE_BATTERY 0x00000029
FI LE_DEVI CE_BUS_EXTENDER 0x0000002a
FI LE_DEVI CE_MODEM 0x0000002b
FI LE_DEVI CE_VDM 0x0000002¢

Some of these device types are not currently accessible over the network, and may never be
accessible on the network. Some may change to be accessible in the future. The values for device
types that will never be accessible over the network may be redefined to be “reserved”.

For the encoding of “Characteristics” in the protocol request, this field is the sum of any of the
following:

CIFS Technical Reference SNIA Technical Proposal 63
Revision 1.0

FI LE_REMOVABLE_MEDI A
FI LE_READ_ONLY_DEVI CE
FI LE_FLOPPY_DI SKETTE
FI LE_WRI TE_ONE_MEDI A
FI LE_REMOTE_DEVI CE

FI LE_DEVI CE_I S_MOUNTED

FI LE_VI RTUAL_VOLUME

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040

41.6.6. SMB_QUERY_FS_ATTRIBUTE_INFO

I nf ormati onLevel
Dat a Bl ock Encodi ng

LONG

ULONG
STRI NG

Description

File System Attri butes;
possi bl e val ues descri bed bel ow
Maxi mum | ength of each file name conponent

in number

Length, in bytes,
Nane of the file system

of bytes

of the nanme of the file system

Where FileSystemAttributes are the sum of any of the following:

FI LE_CASE_SENSI Tl VE_SEARCH
FI LE_CASE_PRESERVED_NAMES

FI LE_PERSI STENT_ACLS
FI LE_FI LE_COVPRESSI ON
FI LE_VOLUVE_QUOTAS

FI LE_DEVI CE_I S_MOUNTED

FI LE_VOLUVE_| S_COVPRESSED

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00008000

4.1.6.7. SMB_QUERY_CIFS_UNIX_INFO

I nformati onLevel
Dat a Bl ock Encodi ng

Descri ption

UNI T16 Maj or Ver si onNunber ; Maj
server

UNI T16 M nor Ver si onNunber ;

LARGE | NTEGER Capabi lity;

or version of CIFS UN X supported by

M nor version of CIFS UNI X supported by

server

Capabilities of CIFS UNI X support by

Server

VWere Capability is the sumof the follow ng:

Cl FS UNI X_FCNTL CAP 0x1

Reserved. Shoul d be zero

Cl FS UNI X_POSI X ACL CAP | 0x2

Reserved. Shoul d be zero

CIFS Technical Reference

SNIA Technical Proposal
Revision 1.0

4.1.6.8. SMB_QUERY_MAC _FS_INFO

I nf ormati onLevel
Dat a Bl ock Encodi ng

LARGE_| NTEGER
LARGE_|I NTEGER
LARGE_|I NTEGER
ULONG
ULONG
ULONG

UCHAR [32] ;

LONG
LONG
LONG
LONG

LONG

Description

CreationTine; Volunme creation time - NT TIME
Modi fyTi me; Volume Modify tine - NT TI M
BackUpTi ne; Vol ume was | ast Backup time - NT TIME.
Defaults to Create Tine.
NmAl Bl ks; The nunber of allocation blocks in the
vol ume
Al Bl kSi z; The allocation block size (in bytes) Mist
be in multiple of 512 bhytes
FreeBks; The number of unused allocations bl ocks on
t he vol une
Fndrinfo[32]; Information used by the finder that is
al ways in Big Endian.
Bytes 0-3 File Type
If afile default to ' TEXT' otherw se
default to zero
Bytes 4-7 File Creator
If a file default to 'dosa' otherw se default
to zero
Bytes 8-9 a UWORD flags field
If hidden itemset this UAMRD to 0x4000 el se
defaults to zero
Al'l other bytes should default to zero and are
only changeabl e by the Maci nt osh
NmFl s; The nunber of files in the root directory;
Zero if not known
NnRt Dirs; The nunber of directories in the root
directory; Zero if not known
Fil Cnt; The nunber of files on the volunme; Zero if
not known
DirCnt; The nunmber of directories on the volune; Zero
i f not known
MacSupport Fl ags; Must be zero unl ess you support the
ot her Maci ntosh options

Where MacSupportFlags is the sum of any of the following:

SUPPORT_MAC_ACCESS_CNTRL 0x00000010 | The server will return fol der

access control in the
Trans2_Find_First2 and

Trans2_Fi nd_Next 2 nessage
described later in this docunent.

SUPPORT MAC GETSETCOMMVENTS | 0x00000020 | Not currently support ed.

SUPPORT_MAC _DESKTOPDB_CALLS | 0x00000040 | The Server supports setting and

getting Maci ntosh desktop
dat abase information using the
mechanismin this docunent.

CIFS Technical Reference

SNIA Technical Proposal 65
Revision 1.0

SUPPORT_MAC_UNI QUE_I DS 0x00000080 | The server will return a uni que
id for files and directories in
the Trans2_Find_First2 and
Trans2_Fi nd_Next 2 message
described later in this docunent.
NO_STREAMS_OR_MAC_SUPPORT 0x00000100 | The server will return this flag
telling the client that the
server does not support streans
or the Macintosh extensions. The
client will ignore the rest of
this nmessage.

416.9. Errors

ERRSRV/invnid - TID was invalid

ERRSRV/ baduid - U D was invalid

ERRHRD/ ERRnot ready - The file system has been renoved

ERRHRD/ ERRdata - Disk 1/0O error

ERRSRV/ ERRaccess - User does not have rights to performthis operation
ERRSRV/ ERRi nvdevi ce - Resource identified by TIDis not a file system

4 1.7. ECHO: Ping the Server

This request is used to test the connection to the server, and to see if the server is still responding.
The client request is defined as:

Client Request Descri ption

UCHAR Wor dCount ; Count of paraneter words = 1
USHORT EchoCount ; Number of tinmes to echo data back
USHORT Byt eCount ; Count of data bytes; mn =1
UCHAR Buffer[1]; Data to echo

And, the server response is:

Server Response Descri ption
UCHAR Wor dCount ; Count of paraneter words = 1
USHORT SequenceNunber ; Sequence nunber of this echo
USHORT Byt eCount ; Count of data bytes; mn = 4
UCHAR Buffer[1]; Echoed data

Each response echoes the data sent, though ByteCount may indicate “no data”. If EchoCount is
zero, no response is sent.

Tid in the SMB header is ignored, so this request may be sent to the server even if there are no
valid tree connections to the server.

The flow for the ECHO protocol is:

CIFS Technical Reference SNIA Technical Proposal 66
Revision 1.0

Client Request <--> | Server Response
Echo request (EchoCount == n) ->
<- Echo response 1
<- Echo response 2
<- Echo responsen

41.71. Errors

ERRSRV/ ERRbadui d - UDwas invalid
ERRSRV/ ERRnoaccess - session has not been established
ERRSRV/ ERRnosupport - ECHO function is not supported

4.1.8. NT CANCEL: Cancel request

This SMB allows a client to cancel a request currently pending at the server. The client request is

defined as:
Client Request Descri ption
UCHAR Wér dCount ; No words are sent (== 0)
USHORT Byt eCount ; No bytes (==0)

The Sid, Uid, Pid, Tid, and Mid fields of the SMB are used to locate an pending server request from
this session. If a pending request is found, it is "hurried along" which may result in success or
failure of the original request. No other response is generated for this SMB.

4.2. File Requests

421. NT CREATE ANDX: Create or Open File

This command is used to create or open a file or a directory. The client request is defined as:

Cli ent Request Description

UCHAR Wor dCount ; Count of paranmeter words = 24
UCHAR AndXConmmand; Secondary command; OxFF = None
UCHAR AndXReser ved; Reserved (nust be 0)

USHORT AndXOf f set ; O fset to next command Wor dCount
UCHAR Reserved,; Reserved (nust be 0)

USHORT NarnelLengt h; Length of Nanme[] in bytes

ULONG FIl ags; Create bit set:

0x02 - Request an opl ock
0x04 - Request a batch opl ock
0x08 - Target of open nust be directory

ULONG Root Di rect oryFi d; If non-zero, open is relative to
this directory
ACCESS_MASK Desi redAccess; Access desired (See Section 3.8 for an
expl anation of this field)
LARGE | NTEGER Al | ocati onSi ze; Initial allocation size
ULONG Ext Fil eAttri butes; File attributes
ULONG Shar eAccess; Type of share access
ULONG Cr eat eDi sposi tion; Action if file does/does not exist
CIFS Technical Reference SNIA Technical Proposal 67

Revision 1.0

ULONG Cr eat eOpti ons; Options to use if creating a file
ULONG | nmper sonati onLevel ; Security QOS information
UCHAR SecurityFl ags; Security tracking node fl ags:
0x1 - SECURI TY_CONTEXT_TRACKI NG
0x2 - SECURI TY_EFFECTI VE_ONLY
USHORT Byt eCount ; Length of byte paraneters
STRI NG Nane[]; File to open or create

The Name parameter contains the full path from the tree connect point unless the
RootDirectoryFid is used. To use the RootDirectoryFid perform a NT_CREATE_ANDX to open the
directory and then use the returned Fid for subsequent NT_CREATE_ANDX calls to open/create
files within that directory.

The DesiredAccess parameter is specified in section 3.8, Access Mask Encoding. If no value is
specified, an application can still query attributes without actually accessing the file.

The ExtFileAttributes parameter specifies the file attributes and flags for the file. The parameter's
value is the sum of allowed attributes and flags defined in section 3.12, Extended File Attribute
Encoding.

The ShareAccess field specifies how the file can be shared. This parameter must be some
combination of the following values:

Name Vaue Meaning
FILE NO_SHARE (0x00000000 Prevents the file from being shared.
FILE_ SHARE_READ (0x00000001 Other open operations can be performed on the file for read access.

FILE_SHARE WRITE 0x00000002 Other open operations can be performed on the file for write access.

FILE_ SHARE DELETE | 0x00000004 Other open operations can be performed on the file for delete access.

The CreateDisposition parameter can contain one of the following values:

Name Vaue Meaning

FILE SUPERSEDE 0x00000000 FILE_SUPERSEDE- Indicatesthat if the file already existsthen it
should be superseded by the specified file. If it does not already
exist then it should be created.

FILE OPEN 0x00000001 FILE_OPEN - Indicatesthat if thefile already existsit should be
opened rather than creating anew file. If thefile doesnot aready
exist then the operation should fail.

FILE CREATE 0x00000002 FILE_CREATE - Indicatesthat if thefile aready exists then the
operation should fail. If the file does not already exist then it should
be created.

FILE_ OPEN_IF 0x00000003 FILE_OPEN_IF - Indicatesthat if thefile already exists, it should be

opened. If thefile does not already exist then it should be created.

FILE OVERWRITE (0x00000004 FILE_OVERWRITE - Indicates that if the file already existsit should
be opened and overwritten. If thefile does not already exist then the
operation should fail.

FILE_ OVERWRITE_IF (0x00000005 FILE_OVERWRITE_IF - Indicatesthat if the file already existsit
should be opened and overwritten. If the file does not already exist
then it should be created.

CIFS Technical Reference SNIA Technical Proposal 68
Revision 1.0

Name

Vaue

M eaning

FILE_ MAXIMUM_DISP
OSITION

(0x00000005

The ImpersonationLevel parameter can contain one or more of the following values:

Name Vaue | Meaning

SECURITY_ANONYMOUS 0 Impersonation of the client at the Anonymous level
SECURITY _IDENTIFICATION 1 Impersonation of the client at the Identification level
SECURITY_IMPERSONATION 2 Impersonation of the client at thelmpersonation level
SECURITY_DELEGATION 3 Impersonation of the client at the Delegation level

The SecurityFlags parameter can have either of the following two flags set:

Name Vaue Meaning

SECURITY_CONTEXT_TRACKING 0x00040000 | Specifiesthat the security tracking modeis dynamic. If
thisflag is not specified, Security Tracking Modeis
static.

SECURITY_EFFECTIVE ONLY (0x00080000 Specifies that only the enabled aspects of the client's

security context are available to the server. If thisflag
is not specified, all aspects of the client's security
context are available. Thisflag allowsthe client to limit
the groups and privileges that a server can use while
impersonating the client.

The server response to the NT_CREATE_ANDX request is as follows:

Server Response

UCHAR Wor dCount ;
UCHAR AndXConmand;

UCHAR AndXReserved;

USHORT AndXOF f set ;
UCHAR Opl ockLevel ;

USHORT Fi d;

ULONG Cr eat eActi on;

TI ME CreationTine;

TI ME Last AccessTi ne;
TI ME Last Wi teTine;

TI ME ChangeTi ne;
ULONG Ext Fil eAttri

LARGE | NTEGER Al | ocati onSi ze;

but es;

LARGE_| NTEGER EndCf Fi | e;

USHORT Fi | eType;

USHORT Devi ceSt at e;

BOOLEAN Directory;
USHORT Byt eCount ;

Descri ption

Count of paraneter words = 26
OxFF = None

MUST BE ZERO

O fset to next command Wor dCount
The opl ock | evel granted:

0 - No oplock granted

1 - Exclusive oplock granted
2 - Batch oplock granted

3 - Level Il oplock granted

The file ID

The action taken

The tinme the file was created

The tinme the file was accessed

The time the file was last witten
The tinme the file was | ast changed
The file attributes

The nunber of byes allocated

The end of file offset

State of | PC device (e.g. pipe)
TRUE if this is a directory

0

The following SVMBs may foll ow SMB_COM NT_CREATE_ANDX:

CIFS Technical Reference

SNIA Technical Proposal
Revision 1.0

69

SVB_COM READ SMB_COM READ_ANDX
SMB_COM | OCTL

4211. Errors
ERRDOS codes

ERRbadfil e
ERRbadpat h
ERRnof i ds
ERRnoaccess
ERRnonmem
ERRbadaccess
ERRbadshar e
ERRfi | eexi sts
ERRquot a

ERRSRV codes
ERRaccess
ERRi nvdevi ce
ERRi nvti d
ERRbadui d

4.2.2. NT TRANSACT CREATE: Create or Open File with EAs or SD

This command is used to create or open a file or a directory, when EAs or an SD must be applied
to the file. The parameter and data blocks for the client's CREATE request include the following

data:

Request Par anet er Bl ock Encoding

ULONG FI ags;
ULONG Root Di r ect or yFi d;

ACCESS_MASK Desi redAccess;
LARGE_I NTEGER Al | ocati onSi ze;

ULONG Ext Fil eAttri butes;

ULONG Shar eAccess;

ULONG Cr eat eDi sposition

ULONG Creat eOpti ons;

ULONG Securi tyDescri ptorLength;
ULONG EalLengt h;

ULONG NaneLengt h;

ULONG | nper sonati onLevel

UCHAR SecurityFl ags;

STRI NG Nanme[NaneLengt h];

Descri ption

Creation flags (see bel ow)
Optional directory for relative
open

Access desired (See Section 3.8 for

an explanation of this field)

The initial allocation size in
bytes, if file created

The extended file attributes

The share access

Action if file does/does not exist
Options for creating a new file
Length of SD in bytes

Length of EA in bytes

Length of name in characters
Security QOS informtion

Security QOS information

The nane of the file (not NULL
t er m nat ed)

CIFS Technical Reference SNIA Technical Proposal 70
Revision 1.0

Request Data Bl ock Encodi ng Description

UCHAR SecurityDescriptor|
SecurityDescri ptorlLength];
UCHAR Ext endedAttri but es[EaLength];

The Flags parameter can contain one of the following values:

Creation Flags Name Vaue | Description

NT_CREATE REQUEST_OPLOCK ox02 Exclusive oplock requested
NT_CREATE_REQUEST OPBATCH ox04 | Batch oplock requested
NT_CREATE_OPEN_TARGET_DIR Ox08 | Target for openisadirectory

The parameter block of the server response is defined as:

Response Paraneter Bl ock Encodi ng Descri ption

UCHAR Opl ockLevel ;
UCHAR Reser ved;
USHORT Fi d;

ULONG Cr eat eActi on;

The opl ock | evel granted

The file ID
The action taken

ULONG EaError Of f set;

Offset of the EA error

TI ME CreationTine; The tine the file was created

Tl ME Last AccessTi ne; The tine the file was accessed
TIME LastWiteTine; The tinme the file was last witten
TI ME ChangeTi ne; The tinme the file was | ast changed
ULONG Ext Fil eAttri butes; The file attributes

LARGE | NTEGER Al | ocati onSi ze; The nunber of byes all ocated
LARGE | NTEGER EndCOf Fi | e; The end of file offset

USHORT Fi | eType;

USHORT Devi ceSt at e; State of I PC device (e.g. pipe)

BOOLEAN Directory;

TRUE if this is a directory

See the description of NT_CREATE_ANDX (section 4.2.1) for further definition of the CREATE

request/response parameters.

4221. Errors
ERRDOS codes

ERRbadfil e
ERRbadpat h
ERRnof i ds
ERRnoaccess
ERRNnonmem
ERRbadaccess
ERRbadshar e
ERRfi | eexists
ERRquot a

ERRSRV codes

ERRaccess

CIFS Technical Reference

SNIA Technical Proposal

Revision 1.0

71

ERRi nvdevi ce
ERRi nvti d
ERRbadui d

4.2.3. CREATE TEMPORARY: Create Temporary File

The server creates a data file in the specified Directory, relative to Tid in the SMB header, and
assigns a unique name to it. The client request and server response for the command are:

Cli ent Request

UCHAR Wor dCount ;

USHORT reserved

UTI ME CreationTi ne;
USHORT Byt eCount ;
UCHAR Buf f er For mat ;
STRI NG Di rectoryNane[];

Server Response

UCHAR Wér dCount ;
USHORT Fi d;

USHORT Byt eCount ;
UCHAR Buf f er For nat ;
STRI NG Fi | enane[];

Description

Count of paraneter words = 3

I gnored by the server

New file's creation time stanp
Count of data bytes; min = 2
0x04

Directory nanme

Descri ption

Count of paraneter words =1
Fil e handl e

Count of data bytes; nmin = 2
0x04

File name

Fid is the returned handle for future file access. Filename is the name of the file that was created

within the requested Directory. It is opened in compatibility mode with read/write access for the

client.

Support of CreationTime by the server is optional.

42.31. Errors
ERRDOS codes

ERRbadfil e
ERRbadpat h
ERRnof i ds
ERRnoaccess
ERRnonmem
ERRbadaccess
ERRbadshar e
ERRfi | eexi sts
ERRquot a

ERRSRV codes
ERRaccess
ERRi nvdevi ce
ERRi nvti d
ERRbadui d

CIFS Technical Reference

SNIA Technical Proposal
Revision 1.0

72

4.2.4. READ ANDX: Read Bytes

Client requests a file read, using the SMB fields specified below:

Cli ent Request Description

UCHAR Wor dCount ; Count of paranmeter words = 10 or 12

UCHAR AndXCommand; Secondary (X) command; OxFF = none

UCHAR AndXReser ved; Reserved (nust be 0)

USHORT AndXOf f set ; O fset to next command Wor dCount

USHORT Fi d; File handl e

ULONG O f set; Offset in file to begin read

USHORT MaxCount ; Max nunber of bytes to return

USHORT M nCount ; Reserved for obsol escent requests

ULONG MaxCount Hi gh; High 16 bits of MaxCount if
CAP_LARGE_READX; el se MUST BE ZERO

USHORT Rermmai ni ng; Reserved for obsol escent requests

ULONG O f set Hi gh; Upper 32 bits of offset (only if
WordCount is 12)

USHORT Byt eCount ; Count of data bytes = 0

And, the server response is:

Server Response Descri ption

UCHAR Wor dCount ; Count of paranmeter words = 12

UCHAR AndXCommand; Secondary (X) command; OxFF = none

UCHAR AndXReser ved; Reserved (nust be 0)

USHORT AndXOf f set ; O fset to next command Wor dCount

USHORT Rermai ni ng; Reserved -- nust be -1

USHORT Dat aConpacti onMode;

USHORT Reserved; Reserved (nmust be 0)

USHORT Dat aLengt h; Nunber of data bytes (min = 0)

USHORT Dat aCf f set ; O fset (from header start) to data

USHORT Dat aLengt hHi gh; High 16 bits of nunber of data bytes if
CAP_LARGE_READX; el se MUST BE ZERO

USHORT Reserved[4] ; Reserved (nust be 0)

USHORT Byt eCount ; Count of data bytes; ignored if
CAP_LARGE_READX

UCHAR Pad[];

UCHAR Dat a[Dat aLengt h] ; Data from resource

If the file specified by Fid has any portion of the range specified by Offset and MaxCount locked for
exclusive use by a client with a different connection or Pid, the request will fail with ERRIock.

If the negotiated dialect is NT LM 0.12 or later, the client may use the 12 parameter word version of
the request. This version allows specification of 64 bit file offsets.

CIFS Technical Reference SNIA Technical Proposal 73
Revision 1.0

If CAP_LARGE_READX was indicated by the server in the negotiate protocol response, the
request's MaxCount field may exceed the negotiated buffer size if Fid refers to a disk file. The
server may arbitrarily elect to return fewer than MaxCount bytes in response.

The SMB server MAY use the MinCount on named-pipe calls to determine if this is a blocking read or a non-
blocking read. (Non blocking is determined by MinCount = 0). Note that for blocking reads, the length required
to succeed is actually the ReadLength and not the MinCount. (So in some sense, MinCount has become
more of an indicator of blocking vs. non-blocking rather than a true length)

The following SMBs may follow SMB_COM_READ_ANDX:
SMB_COM_CLCSE

4241. Errors

ERRDOS/ ERRnoaccess
ERRDOS/ ERRbadfi d
ERRDOS/ ERRI ock
ERRDOS/ ERRbadaccess
ERRSRV/ ERRi nvi d
ERRSRV/ ERRbadui d

4.2.5. WRITE ANDX: Write Bytes to file or resource

Client requests a file write, using the SMB fields specified below:

Cli ent Request Descri ption

UCHAR Wor dCount ;
UCHAR AndXConmand,;
UCHAR AndXReser ved,;
USHORT AndXOr f set ;
USHORT Fi d;

ULONG O f set;

ULONG Reser ved;
USHORT Wit eMode;

USHORT
USHORT

Remai ni ng;
Dat aLengt hHi gh;

USHORT Dat aLengt h;
USHORT Dat aCf f set ;
ULONG O f set Hi gh;
USHORT Byt eCount ;

UCHAR Pad[];
UCHAR Dat a[Dat aLengt h] ;

And, the server response is:

Server Response

UCHAR Wor dCount ;
UCHAR AndXConmand;
UCHAR AndXReserved;

CIFS Technical Reference

Count of paraneter words = 12 or 14

Secondary (X) conmmand; OxFF = none

Reserved (nmust be 0)

O fset to next command Wor dCount

Fil e handl e

Offset infile to begin wite

Mist be O

Wite npde bits:
0 - wite through

Bytes remai ning to satisfy request

High 16 bits of data length if
CAP_LARGE_WRI TEX; el se MJUST BE ZERO

Nunber of data bytes in buffer (>=0)

Offset to data bytes

Upper 32 bits of offset (only present if
Wor dCount = 14)

Count of data bytes; ignored if
CAP_LARGE_WRI TEX

Pad to SHORT or LONG

Data to write

Descri ption

Count of paraneter words = 6
Secondary (X) conmmand; OxFF = none
Reserved (nmust be 0)

SNIA Technical Proposal 74
Revision 1.0

USHORT AndXCOf f set ; O fset to next command Wor dCount

USHORT Count ; Nunber of bytes witten
USHORT Renmi ni ng; Reser ved

ULONG Reser ved,;

USHORT Byt eCount ; Count of data bytes =0

If the file specified by Fid has any portion of the range specified by Offset and MaxCount locked for
shared or exclusive use by a client with a different connection or Pid, the request will fail with
ERRIock.

A ByteCount of 0 does not truncate the file. Rather a zero length write merely transfers zero bytes
of information to the file. A request such as SMB_COM_WRITE must be used to truncate the file.

If WriteMode has bit0 set in the request and Fid refers to a disk file, the response is not sent from
the server until the data is on stable storage.

If the negotiated dialect is NT LM 0.12 or later, the 14 word format of this SMB may be used to
access portions of files requiring offsets expressed as 64 bits. Otherwise, the OffsetHigh field
must be omitted from the request.

If CAP_LARGE_WRITEX was indicated by the server in the negotiate protocol response, the
request's DataLength field may exceed the negotiated buffer size if Fid refers to a disk file.

The following are the valid AndXCommand values for this SMB:

SMVB_COM READ SMB_COM_READ_ANDX
SMB_COM LOCK_AND_READ SMVB_COM WRI TE_ANDX
SMB_COM CLOSE

4251. Errors

ERRDOS/ ERRnoaccess
ERRDOS/ ERRbadf i d
ERRDOS/ ERRI ock
ERRDOS/ ERRbadaccess
ERRSRV/ ERRI nvi d
ERRSRV/ ERRbadui d

4.2.6. LOCKING ANDX: Lock or Unlock Byte Ranges

SMB_COM_LOCKING_ANDX allows both locking and/or unlocking of file range(s). A description
of the fields of the client request, and explanations for several of the fields are provided below.

Cli ent Request Description

UCHAR Wor dCount ; Count of paraneter words = 8

UCHAR AndXCommand; Secondary (X) command; OxFF = none
UCHAR AndXReser ved; Reserved (nust be 0)

USHORT AndXOf f set ; O fset to next command Wor dCount
USHORT Fi d; File handl e

UCHAR LockType; See LockType tabl e bel ow

UCHAR Opl ockLevel ; The new opl ock | evel

ULONG Ti meout ; MI1liseconds to wait for unlock
USHORT Nunber Of Unl ocks; Nurmber of unl ock range structures that

foll ow
CIFS Technical Reference SNIA Technical Proposal 75

Revision 1.0

USHORT Number Of Locks;

USHORT Byt eCount ;

LOCKI NG_ANDX_RANGE Unl ocks[];
LOCKI NG_ANDX_RANGE Locks[];

Nunber of | ock range structures that
foll ow

Count of data bytes

Unl ock ranges

Lock ranges

The LockType parameter can take on one of the values in the following table:

Fag Name Vaue Description
LOCKING_ANDX_SHARED_ | OCK ox01 Read-only lock
LOCKING_ANDX_OPLOCK_RELEASE Oox02 Oplock break notification

LOCKING_ANDX_CHANGE_LOCKTY PE oxo4

Change lock type

LOCKING_ANDX_CANCEL_LOCK

0x08

Cancel outstanding request

LOCKING_ANDX_LARGE_FILES

0x10

Largefilelocking format

The format for LOCKING _ANDX RANGE is:

USHORT Pi d;
ULONG O f set ;
ULONG Lengt h;

And, for a large file, it is:

USHORT Pi d;
USHORT Pad;
ULONG O f set Hi gh;
ULONG O f set Low;
ULONG Lengt hHi gh;

ULONG Lengt hLow;

The server response is:

Server Response

UCHAR Wor dCount ;
UCHAR AndXConmand;
UCHAR AndXReser ved,;
USHORT AndXOr f set ;
USHORT Byt eCount ;

Locking is a simple mechanism for excluding other processes read/write access to regions of a

PI D of process "owning" | ock
O fset to bytes to [un]lock
Nunber of bytes to [un]lock

PI D of process "owning" |ock

Pad to DWORD align (Mist be zero)
Offset to bytes to [un]lock (high)
Offset to bytes to [un]lock (Ilow)
Nunber of bytes to [un]lock

(hi gh)

Nurmber of bytes to [un]lock (Iow)

Descri ption

Count of paraneter words = 2
Secondary (X) command; OxFF = none
Reserved (must be 0)

O fset to next command Wor dCount
Count of data bytes = 0

file. The locked regions can be anywhere in the logical file. Locking beyond end-of-file is permitted.
Lock conflicts (overlapping lock-requests) should cause the server to refuse the lock to the latter

requestor. Any process using the Fid specified in this request's Fid has access to the locked

bytes; other processes will be denied the locking of the same bytes.

CIFS Technical Reference

SNIA Technical Proposal

Revision

1.0

76

The proper method for using locks is not to rely on being denied read or write access on any of the
read/write protocols but rather to attempt the locking protocol and proceed with the read/write only
if the locks succeeded.

Locking a range of bytes will fail if any subranges or overlapping ranges are locked, if the PID/UID
of the requestor is not the same, and the locks are not compatible. In other words, if any of the
specified bytes are already locked, the lock will fail.

If NumberOfUnlocks is non-zero, the Unlocks vector contains NumberOfUnlocks elements. Each
element requests that a lock at Offset of Length be released. If NumberOfLocks is nonzero, the
Locks vector contains NumberOfLocks elements. Each element requests the acquisition of a lock
at Offset of Length.

Timeout is the maximum amount of time to wait for the byte range(s) specified to become
unlocked. A timeout value of 0 indicates that the server should fail immediately if any lock range
specified is locked. A timeout value of -1 indicates that the server should wait as long as it takes
for each byte range specified to become unlocked so that it may be again locked by this protocol.
Any other value of smb_timeout specifies the maximum number of milliseconds to wait for all lock
range(s) specified to become available.

If any of the lock ranges timeout because of the area to be locked is already locked (or the lock
fails), the other ranges in the protocol request which were successfully locked as a result of this
protocol will be unlocked (either all requested ranges will be locked when this protocol returns to
the client or none).

If LockType has the LOCKING_ANDX_SHARED_LOCK flag set, the lock is specified as a shared
lock. Locks for both read and write (where LOCKING_ANDX SHARED LOCK is clear) should be
prohibited, but other shared locks should be permitted. If shared locks can not be supported by a
server, the server should map the lock to a lock for both read and write. Closing a file with locks
still in force causes the locks to be released in no defined order.

If LockType has the LOCKING_ANDX_LARGE_FILES flag set and if the negotiated protocol is NT
LM 0.12 or later, then the Locks and Unlocks vectors are in the Large File
LOCKING_ANDX_RANGE format. This allows specification of 64 bit offsets for very large files.

If the one and only member of the Locks vector has the LOCKING_ANDX_CANCEL_LOCK flag
set in the LockType field, the client is requesting the server to cancel a previously requested, but
not yet responded to, lock.

If LockType has the LOCKING_ANDX_ CHANGE_LOCKTYPE flag set, the client is requesting that
the server atomically change the lock type from a shared lock to an exclusive lock or vice versa. If
the server can not do this in an atomic fashion, the server must reject this request. (Note:
Windows NT and Windows 95 servers do not support this capability.)

If the client sends an SMB_LOCKING_ANDX SMB with the LOCKING_ANDX_OPLOCK_RELEASE flag
set and NumberOfLocks is zero, the server does not send a response.The entire message sent
and received including the optional second protocol must fit in the negotiated maximum transfer
size. The following are the only valid SMB commands for AndXCommand for
SMB_COM_LOCKING_ANDX:

SVB_COM READ SVB_COM_READ_ANDX
SVB_COM WRI TE SVB_COM VRl TE_ANDX
SMB_COM FLUSH

426.1. Errors
ERRDOS/ ERRbadfi | e

CIFS Technical Reference SNIA Technical Proposal 7
Revision 1.0

ERRDOS/ ERRbadf i d
ERRDOS/ ERRI ock
ERRDOS/ ERRi nvdevi ce
ERRSRV/ ERRi nvi d
ERRSRV/ ERRbadui d

4.2.7. SEEK: Seek in File

The seek message is sent to set the current file pointer for Fid.

Cli ent Request Description
UCHAR Wor dCount ; Count of paraneter words = 4
USHORT Fi d; Fil e handl e
USHORT Mode; Seek node:
0 = fromstart of file

1 = fromcurrent position
2 = fromend of file
LONG O f set ; Rel ative of fset
USHORT Byt eCount ; Count of data bytes = 0

The "current position" reflects the offset plus data length specified in the previous read, write, or
seek request; and the pointer set by this command will be replaced by the offset specified in the
next read, write, or seek command.

Server Response Descri ption

UCHAR Wér dCount ; Count of paraneter words = 2
ULONG Of f set ; O fset fromstart of file
USHORT Byt eCount ; Count of data bytes =0

The response returns the new file pointer in Offset, which is expressed as the offset from the start
of the file, and may be beyond the current end of file. An attempt to seek to before the start of file
sets the current file pointer to start of the file.

This request should generally be issued only by clients wishing to find the size of a file, because all
read and write requests include the read or write file position as part of the SMB. This request is
inappropriate for very large files, as the offsets specified are only 32 bits. A seek that results in an
Offset that cannot be expressed in 32 bits returns the least significant.

4271. Errors

ERRDOS/ ERRbadf i d
ERRDOS/ ERRnoaccess
ERRSRV/ ERRi nvdevi ce
ERRSRV/ ERRi nvi d
ERRSRV/ ERRbadui d

CIFS Technical Reference SNIA Technical Proposal 78
Revision 1.0

4.2.8. FLUSH: Flush File

The flush SMB is sent to ensure all data and allocation information for the corresponding file has
been written to stable storage. When the Fid has a value -1 (hex FFFF), the server performs a
flush for all file handles associated with the client and Pid. The response is not sent until the
writes are complete.

Cli ent Request Descri ption

UCHAR Wér dCount ; Count of paraneter words = 1
USHORT Fi d; Fil e handl e

USHORT Byt eCount ; Count of data bytes =0

This client request is probably expensive to perform at the server, since the server's operating
system is generally scheduling disk writes is a way which is optimal for the system's read and
write activity integrated over the entire population of clients. This message from a client
"interferes" with the server's ability to optimally schedule the disk activity; clients are discouraged
from overuse of this SMB request.

Server Response Descri ption
UCHAR Wor dCount ; Count of paraneter words = O
USHORT Byt eCount ; Count of data bytes = 0

428.1. Errors

ERRDOS/ ERRbadf i d
ERRSRV/ ERRi nvi d
ERRSRV/ ERRbadui d

4.29. CLOSE: Close File

The close message is sent to invalidate a file handle for the requesting process. All locks or other
resources held by the requesting process on the file should be released by the server. The
requesting process can no longer use Fid for further file access requests.

Cli ent Request Descri ption

UCHAR Wér dCount ; Count of paraneter words = 3
USHORT Fi d; Fil e handl e

UTI ME LastWiteTine; Tinme of last wite

USHORT Byt eCount ; Count of data bytes =0

If LastWriteTime is 0, the server should allow its local operating system to set the file's times.
Otherwise, the server should set the time to the values requested. Failure to set the times, even if
requested by the client in the request message, should not result in an error response from the
server.

If Fid refers to a print spool file, the file should be spooled to the printer at this time.

Server Response Descri ption
UCHAR Wor dCount ; Count of paraneter words = 0
USHORT Byt eCount ; Count of data bytes = 0
CIFS Technical Reference SNIA Technical Proposal 79

Revision 1.0

4291. Errors

ERRDOS/ ERRbadf i d
ERRSRV/ ERRi nvdevi ce
ERRSRV/ ERRI nvi d
ERRSRV/ ERRbadui d

4.2.10.CLOSE AND TREE DISCONNECT

Close the file and perform a tree disconnect.

The close and tree disconnect message is sent to close a file and perform a tree disconnect. All
locks or other resources held by the requesting process on the file should be released by the
server. The requesting process can no longer use Fid for further file access requests. The server
will perform a TREE_DISCONNECT after completing the close operation. The requesting process
can no longer use Tid for further access requests.

Client Request Descri ption

UCHAR Wor dCount ; Count of paraneter words = 3
USHORT Fi d; File handl e

UTI ME LastWiteTine; Time of last wite

USHORT Byt eCount ; Count of data bytes =0

If LastWriteTime is 0, the server should allow its local operating system to set the file's times.
Otherwise, the server should set the time to the values requested. Failure to set the times, even if
requested by the client in the request message, should not result in an error response from the
server.

If Fid refers to a print spool file, the file should be spooled to the printer at this time.

Server Response Description
UCHAR Wor dCount ; Count of paraneter words = 0
USHORT Byt eCount ; Count of data bytes =0

4.2.10.1. Errors

ERRDOS/ ERRbadf i d
ERRSRV/ ERRi nvdevi ce
ERRSRV/ ERRi nvi d
ERRSRV/ ERRbadui d

4.2.11.DELETE: Delete File

The delete file message is sent to delete a data file. The appropriate Tid and additional pathname
are passed. Read only files may not be deleted, the read-only attribute must be reset prior to file

deletion.
Cli ent Request Descri ption
UCHAR Wér dCount ; Count of paraneter words = 1
USHORT SearchAttri butes;
USHORT Byt eCount ; Count of data bytes; mn = 2
UCHAR Buf f er For nat ; 0x04
CIFS Technical Reference SNIA Technical Proposal 80

Revision 1.0

STRI NG Fi | eNane[]; File name

Multiple files may be deleted in response to a single request as SMB_COM_DELETE supports
wildcards.

SearchAttributes indicates the attributes that the target file(s) must have. If the attribute is zero
then only normal files are deleted. If the system file or hidden attributes are specified, then the
delete is inclusive - both the specified type(s) of files and normal files are deleted. File attributes
are described in the "Attribute Encoding" section (3.11) of this document.

If bitO of the Flags2 field of the SMB header is set, a pattern is passed in, and the file has a long
name, then the passed pattern must match the long file name for the delete to succeed. If bit0 is
clear, a pattern is passed in, and the file has a long name, then the passed pattern must match the
file's short name for the deletion to succeed.

Server Response Descri ption
UCHAR Wor dCount ; Count of paraneter words = 0
USHORT Byt eCount ; Count of data bytes = 0

4211.1. Errors

ERRDOS/ ERRbadpat h
ERRDOS/ ERRbadfi | e
ERRDOS/ ERRnoaccess
ERRHRD/ ERRnowr i t e
ERRSRV/ ERRaccess
ERRSRV/ ERRiI nvdevi ce
ERRSRV/ ERRi nvi d
ERRSRV/ ERRbadui d

4 .2.12 RENAME: Rename File

The rename file message is sent to change the name of afile.

Client Request Descri ption
UCHAR Wér dCount ; Count of paraneter words = 1
USHORT Sear chAttri butes; Target file attributes
USHORT Byt eCount ; Count of data bytes; mn =4
UCHAR Buf f er For mat 1; 0x04
STRI NG A dFi | eNane[]; ad file name
UCHAR Buf f er For mat 2; 0x04
STRI NG Newri | eNane[]; New file name

The file, OldFileName, must exist and NewFileName must not. Both pathnames must be relative
to the Tid specified in the request. Open files may be renamed.

Multiple files may be renamed in response to a single request as Rename File supports wildcards
in the file name (last component of the pathname).

CIFS Technical Reference SNIA Technical Proposal 81
Revision 1.0

SearchAttributes indicates the attributes that the target file(s) must have. If SearchAttributes is
zero then only normal files are renamed. If the system file or hidden attributes are specified then
the rename is inclusive - both the specified type(s) of files and normal files are renamed. The
encoding of SearchAttributes is described in section 3.11 - File Attribute Encoding.

Server Response Descri ption
UCHAR Wor dCount ; Count of paraneter words = O
USHORT Byt eCount ; Count of data bytes = 0

4212.1. Errors

ERRDOS/ ERRbadpat h
ERRDOS/ ERRbadfi |l e
ERRDOS/ ERRnoaccess
ERRDOS/ ERRdi f f devi ce
ERRHRD/ ERRnowr i t e
ERRSRV/ ERRaccess
ERRSRV/ ERRi nvdevi ce
ERRSRV/ ERRi nvi d
ERRSRV/ ERRbadui d

4.2.13.NT_RENAME:

The rename file message is sent to change the name of a file. This version of RENAME supports
NT link tracking info.

Client Request Descri ption
UCHAR Wér dCount ; Count of paraneter words = 4
USHORT SearchAttri butes;
USHORT I nformati on Level;
ULONG C ust er Count ;
USHORT Byt eCount ; Count of data bytes; mn = 4
UCHAR Buffer[1]; Buf f er contai ni ng:

UCHAR Buf fer Format1 0x04 -- ASCI |
UCHAR O dFi |l eNane[] O d file nane
UCHAR Buf f er Format 2 0x04 -- ASCI |
UCHAR NewFi | eName[] New file nanme

Server Response Descri ption

UCHAR Wor dCount ; Count of paraneter words = 0
USHORT Byt eCount ; Count of data bytes = 0
UCHAR Buffer[1]; enpty

Non-NT machines can ignore the extra parameters (InfoLevel, SearchAttributes, ClusterCount)
and just perform a normal rename.

4213.1. Errors
ERRDOS codes

ERRbadfil e
ERRbadpat h

CIFS Technical Reference SNIA Technical Proposal 82
Revision 1.0

ERRnof i ds
ERRnoaccess
ERRnonem
ERRfi | eexi sts

ERRSRV codes
ERRaccess
ERRi nvdevi ce
ERRi nvti d
ERRbadui d

4.2.14 MOVE: Rename File

The source file is copied to the destination and the source is subsequently deleted.

Client Request Descri ption
UCHAR Wor dCount ; Count of paraneter words = 3
USHORT Ti d2; Second (target) file id
USHORT OpenFuncti on; What to do if target file exists
USHORT Fl ags; Flags to control nove operations:

0 - target nmust be a file

1 - target nust be a directory
2 - reserved (nust be 0)

3 - reserved (nust be 0)

4 - verify all wites

USHORT Byt eCount ; Count of data bytes; nmin = 2
UCHAR For mat 1; 0x04

STRI NG A dFi | eNane[]; ad file name

UCHAR For mat New; 0x04

STRI NG NewFi | eNane[]; New fil e name

OldFileName is copied to NewFileName, then OldFileName is deleted. Both OldFileName and
NewFileName must refer to paths on the same server. NewFileName can refer to either a file or a
directory. All file components except the last must exist; directories will not be created.

NewFileName can be required to be a file or a directory by the Flags field.

The Tid in the header is associated with the source while Tid2 is associated with the destination.
These fields may contain the same or differing valid values. Tid2 can be set to -1 indicating that
this is to be the same Tid as in the SMB header. This allows use of the move protocol with
SMB_TREE_CONNECT_ANDX.

Server Response Descri ption
UCHAR Wor dCount ; Count of paraneter words = 1
USHORT Count ; Nurmber of files noved
USHORT Byt eCount ; Count of data bytes; mn =20
UCHAR ErrorFil eFor mat ; 0x04 (only if error)
STRI NG ErrorFil eNane[]; Pat hnane of file where error
Cccurred
CIFS Technical Reference SNIA Technical Proposal 83

Revision 1.0

The source path must refer to an existing file or files. Wildcards are permitted. Source files
specified by wildcards are processed until an error is encountered. If an error is encountered, the
expanded name of the file is returned in ErrorFileName. Wildcards are not permitted in

NewFileName.

OpenFunction controls what should happen if the destination file exists. If (OpenFunction & 0x30)
== 0, the operation should fail if the destination exists. If (OpenFunction & 0x30) == 0x20, the

destination file should be overwritten.

4214.1. Errors

ERRDOS/ ERRf i | exi sts
ERRDOS/ ERRbadfi |l e
ERRDOS/ ERRnoaccess
ERRDOS/ ERRnof i | es
ERRDOS/ ERRbadshar e
ERRHRD/ ERRnowr i t e
ERRSRV/ ERRnoaccess
ERRSRV/ ERRi nvdevi ce
ERRSRV/ ERRi nvi d
ERRSRV/ ERRbadui d
ERRSRV/ ERRnosuppor t
ERRSRV/ ERRaccess

4.2.15.COPY: Copy File

The source file is copied to the target.

Cli ent Request

UCHAR Wor dCount ;
USHORT Ti d2

USHORT OpenFuncti on;
USHORT FI ags;

USHORT Byt eCount ;

UCHAR Sour ceFi | eNanmeFor nat ;
STRI NG Sour ceFi | eNane;
UCHAR Tar get Fi | eNaneFor nat ;
STRI NG Tar get Fi | eNane;

Description

Count of paraneter words = 3
Second (target) path TID
VWat to do if target file exists
Flags to control copy operation
bit 0 - target nust be a file
bit 1 - target nust be a dir.
bit 2 - copy target node:
0 = binary, 1 = ASClII
bit 3 - copy source node:
0 = binary, 1 = ASClII
bit 4 - verify all wites
bit 5 - tree copy
Count of data bytes; min = 2
0x04
Pat hname of source file
0x04
Pat hnane of target file

The file at SourceName is copied to TargetFileName, both of which must refer to paths on the

same server.

The Tid in the header is associated with the source while Tid2 is associated with the destination.
These fields may contain the same or differing valid values. Tid2 can be set to -1 indicating that

CIFS Technical Reference

SNIA Technical Proposal
Revision 1.0

4

this is to be the same Tid as in the SMB header. This allows use of the move protocol with
SMB_TREE_CONNECT_ANDX.

Server Response Descri ption

UCHAR Wor dCount ; Count of paranmeter words = 1
USHORT Count ; Nunber of files copied
USHORT Byt eCount ; Count of data bytes; mn =0
UCHAR ErrorFil eFormat ; 0x04 (only if error)

STRI NG Error Fi | eNane;

The source path must refer to an existing file or files. Wildcards are permitted. Source files
specified by wildcards are processed until an error is encountered. If an error is encountered, the
expanded name of the file is returned in ErrorFileName. Wildcards are not permitted in
TargetFileName. TargetFileName can refer to either a file or a directory.

The destination can be required to be a file or a directory by the bits in Flags. If neither bit0 nor bit1
are set, the destination may be either a file or a directory. The Flags field also controls the copy
mode. In a binary copy for the source, the copy stops the first time an EOF (control-Z) is
encountered. In a binary copy for the target, the server must make sure that there is exactly one
EOF in the target file and that it is the last character of the file.

If the destination is a file and the source contains wildcards, the destination file will either be
truncated or appended to at the start of the operation depending on bits in OpenFunction (see
section 3.7). Subsequent files will then be appended to the file.

If the negotiated dialect is LM1.2X002 or later, bit5 of Flags is used to specify a tree copy on the
remote server. When this option is selected the destination must not be an existing file and the
source mode must be binary. A request with bit5 set and either bitO or bit3 set is therefore an
error. When the tree copy mode is selected, the Count field in the server response is undefined.

42151. Errors

ERRDOS/ ERRf i | exi sts
ERRDOS/ ERRshar e
ERRDOS/ ERRnof i ds
ERRDOS/ ERRbadfi | e
ERRDOS/ ERRnoaccess
ERRDOS/ ERRnof i | es
ERRDOS/ ERRbadshar e
ERRSRV/ ERRnoaccess
ERRSRV/ ERRi nvdevi ce
ERRSRV/ ERRi nvi d
ERRSRV/ ERRbadui d
ERRSRV/ ERRaccess

4.2.16. TRANS2 QUERY PATH INFORMATION: Get File Attributes Given Path

This request is used to get information about a specific file or subdirectory.

Client Request Val ue
Wor dCount 15
MaxSet upCount 0
Set upCount 1
CIFS Technical Reference SNIA Technical Proposal 85

Revision 1.0

Set up[0] TRANS2_QUERY_PATH_I NFORMATI ON

The request’s parameter block uses the following format:

Par amet er Bl ock Encodi ng Descri ption

USHORT | nf ormati onLevel ; Level of information requested
ULONG Reserved,; Mist be zero
STRI NG Fi | eNane; File or directory name

InformationLevels are specified using these values:

InformationL evel Vaue

SMB_INFO_STANDARD

SMB_INFO_QUERY_EA_SIZE

SMB_INFO_QUERY_ALL_EAS

1
2
SMB_INFO_QUERY_EAS FROM_LIST 3
4
6

SMB_INFO_IS NAME_VALID

SMB_QUERY_FILE_BASIC_INFO Ox101
SMB_QUERY_FILE_STANDARD_INFO 0x102
SMB_QUERY_FILE_EA_INFO 0x103
SMB_QUERY_FILE NAME_INFO 0x104
SMB_QUERY_FILE ALL_INFO 0x107
SMB_QUERY_FILE_ ALT_NAME_INFO 0x108
SMB_QUERY_FILE_STREAM_INFO 0x109
SMB_QUERY_FILE_COMPRESSION_INFO Ox108
SMB_QUERY_FILE_UNIX_BASIC 0x200
SMB_QUERY_FILE_UNIX_LINK Ox201

The requested information is placed in the Data portion of the transaction response. For the
information levels greater than 0x100, the transaction response has 1 parameter word which
should be ignored by the client.

The following sections describe the InformationLevel dependent encoding of the data part of the
transaction response.

4.2.16.1. SMB_INFO_STANDARD & SMB_INFO_QUERY_EA SIZE
Dat a Bl ock Encodi ng Descri ption

CIFS Technical Reference SNIA Technical Proposal
Revision 1.0

SMB_DATE Creati onDat e; Date when file was created

SMB_TI ME CreationTi ne; Time when file was created
SMB_DATE Last AccessDat e; Date of last file access

SMB_TI ME Last AccessTi ne; Time of last file access

SMB_DATE Last Wit eDat e; Date of last wite to the file
SMB_TI ME LastWiteTine; Time of last wite to the file
ULONG Dat aSi ze; File Size

ULONG Al | ocati onSi ze; Size of filesystemallocation unit
USHORT Attri butes; File Attributes

ULONG EaSi ze; Size of file's EA information

(SMB_I NFO_QUERY_EA_SI ZE)

4.2.16.2. SMB_INFO_QUERY_EAS_FROM_LIST & SMB_INFO_QUERY_ALL_EAS

Response Field Val ue

MaxDat aCount Length of EAlist found (mninmumvalue is 4)

Par anet er Bl ock
Encodi ng Descri ption

USHORT EaErrorOifset; O fset into EALi st of EA error

Dat a Bl ock Encodi ng Descri ption

ULONG Li st Lengt h; Length of the remaining data
UCHAR EalList[]; The extended attributes |ist

4.2.16.3. SMB_INFO_IS_NAME_VALID

This requests checks to see if the name of the file contained in the request's Data field has a valid
path syntax. No parameters or data are returned on this information request. An error is returned if
the syntax of the name is incorrect. Success indicates the server accepts the path syntax, but it
does not ensure the file or directory actually exists.

4.2.16.4. SMB_QUERY_FILE_BASIC_INFO

Dat a Bl ock Encodi ng Description

TI ME CreationTine; Time when file was created

TI ME Last AccessTi ne; Time of last file access

TIME LastWiteTine; Time of last wite to the file
TI ME ChangeTi ne; Time when file was | ast changed
ULONG Attri butes; File Attributes

ULONG Pad; Undef i ned

The valid file attributes are:

CIFS Technical Reference SNIA Technical Proposal 87
Revision 1.0

Attribute

Vaue

Description

FILE_ATTRIBUTE_READONLY

(0x00000001

Thefileisread only. Applications can read
thefile but cannot writeto it or deleteit.

FILE ATTRIBUTE_HIDDEN

(0x00000002

Thefileishidden. It isnot to beincluded in
an ordinary directory listing.

FILE_ ATTRIBUTE_SYSTEM

(0x00000004

Thefileispart of or isused exclusively by
the operating system.

FILE_ ATTRIBUTE_VOLUMEID

(0x00000008

The corresponding object represents a
label for afilesystem object (obsol ete)

FILE_ ATTRIBUTE_DIRECTORY

(0x00000010

Thefileisadirectory.

FILE_ATTRIBUTE_ARCHIVE

(0x00000020

Thefileisan archivefile. Applications use
this attribute to mark files for backup or
removal.

FILE_ ATTRIBUTE_DEVICE

(0x00000040

Thefileis mapped to adevice e.g. aprinter
or serial device.

FILE_ ATTRIBUTE_NORMAL

(0x00000080

Thefile has no other attributes set. This
attributeisvalid only if used alone. All
other attributes override this attribute.

FILE_ATTRIBUTE_TEMPORARY

(0x00000100

Thefileisbeing used for temporary
storage. Applications should write to the
fileonly if absolutely necessary. Most of
thefile's dataremainsin memory without
being flushed to the media because thefile
will soon be del eted.

FILE ATTRIBUTE_SPARSE FILE

(0x00000200

Thefileisasparsefile.

FILE ATTRIBUTE_REPARSE_POINT

0x00000400

Thefile has an associated reparse point.

FILE_ATTRIBUTE_COMPRESSED

(0x00000800

The file or directory is compressed. For
a file, this means that all of the data in
the file is compressed. For a directory,
this means that compression is the
default for newly created files and
subdirectories.

FILE ATTRIBUTE_OFFLINE

(0x00001000

The data of the file is not immediately
available. This attribute indicates that
the file data has been physically moved
to offline storage. This attribute is used
by Remote Storage, the hierarchical
storage management software in
Windows 2000. Applications should not
arbitrarily change this attribute.

FILE_ ATTRIBUTE_NOT CONTENT INDEXED

(0x00002000

The file will not be indexed by the
content indexing service.

FILE ATTRIBUTE_ENCRYPTED

(0x00004000

The file or directory is encrypted. For a
file, this means that all data streams in
the file are encrypted. For a directory,
this means that encryption is the default
for newly created files and
subdirectories.

4.2.16.5. SMB_QUERY_FILE_STANDARD _INFO
Dat a Bl ock Encodi ng Description

CIFS Technical Reference SNIA Technical Proposal

Revision 1.0

LARGE | NTEGER Al | ocati onSi ze; Al l ocated size of the file in nunber

of bytes
LARGE | NTEGER EndOf Fi | e; O fset to the first free byte in the
file
ULONG Nunber Of Li nks; Nunber of hard links to the file
BOOLEAN Del et ePendi ng; I ndi cat es whether the file is marked
for deletion
BOOLEAN Directory; I ndi cates whether the file is a
Directory
4.2.16.6. SMB_QUERY_FILE_EA_INFO
Dat a Bl ock Encodi ng Descri ption
ULONG EASI ze; Size of the file's extended

attributes in nunber of bytes

4.2.16.7. SMB_QUERY_FILE_NAME_INFO

Dat a Bl ock Encodi ng Descri ption

ULONG Fi | eNanelLengt h; Length of the file nane in nunber of
byt es

STRI NG Fi | eNane; Nanme of the file

NOTE: Do not include the path to the file.

4.2.16.8. SMB_QUERY_FILE_ALL_INFO

Dat a Bl ock Encodi ng Descri ption

TIME CreationTine; Time when file was created

TIME Last AccessTi ne; Time of last file access

TIME LastWiteTine; Time of last wite to the file

TI ME ChangeTi ne; Time when file was | ast changed

USHORT Attri butes; File Attributes

LARGE | NTEGER Al | ocati onSi ze; Al'l ocated size of the file in number
of bytes

LARGE_| NTEGER EndOf Fi | e; O fset to the first free byte in the
file

ULONG Nunber Of Li nks; Nurmber of hard links to the file

BOOLEAN Del et ePendi ng; I ndi cates whether the file is marked
for deletion

BOOLEAN Di rectory; I ndi cates whether the file is a
directory

LARGE | NTEGER | ndexNunber ; A file systemunique identifier

ULONG EASI ze; Size of the file's extended
attributes in nunber of bytes

ULONG AccessFl ags; Access that a caller has to the

file; Possible values and neani ngs
are specified bel ow

LARGE | NTEGER | ndexNunber 1; A file systemunique identifier
LARGE_| NTEGER Current byte offset within the file
CIFS Technical Reference SNIA Technical Proposal

Revision 1.0

Current Byt eOf f set ;
ULONG Mode; Current Open node of the file handle
to the file; possible val ues and
meani ngs are detail ed bel ow

ULONG Al i gnment Requi renent ; Buf fer Alignment required by device;
possi bl e val ues detail ed bel ow

ULONG Fi | eNanmeLengt h; Length of the file nane in nunber of
byt es

STRI NG Fi | eNane; Name of the file

The AccessFlags specifies the access permissions a caller has to the file. It can have any
suitable combination of the following values:

AccessFlag Name Value Meaning

FILE_READ_DATA (0x00000001 Data can be read from thefile

FILE WRITE_DATA (0x00000002 Data can be written to thefile

FILE_APPEND_DATA (0x00000004 Data can be appended to thefile

FILE READ_EA (0x00000008 Extended attributes associated with the file can be read

FILE WRITE_EA (0x00000010 Extended attributes associated with the file can be written

FILE EXECUTE 0x00000020 Data can be read into memory from the file using system
paging 1/O

FILE_ READ_ATTRIBUTES (0x00000080 Attributes associated with the file can be read

FILE WRITE_ATTRIBUTES | Ox00000100 | Attributes associated with the file can be written

DELETE 0x00010000 | Thefile can be deleted

READ_CONTROL (0x00020000 The access control list and ownership associated with the file
can beread

WRITE_DAC (0x00040000 The access control list and ownership associated with the file
can be written

WRITE_OWNER (0x00080000 Ownership information associated with the file can be written

SYNCHRONIZE (0x00200000 Thefile handle can waited on to synchronize with the

completion of an input/output request

The Mode field specifies the mode in which the file is currently opened. The possible values may
be a suitable and logical combination of the following:

Mode Name Value Meaning

FILE WRITE_THROUGH (0x00000002 Fileis opened in amode where datais written to
the file before the driver completes awrite
request

FILE_SEQUENTIAL_ONLY 0x00000004 | All accessto thefileissequential

FILE_SYNCHRONOUS |10 ALERT 0x00000010 | All operations on thefile are performed
synchronously

FILE_SYNCHRONOUS 10 NONALERT 0x00000020 | All operations on thefile are to be performed
synchronously. Waitsin the system to
synchronize |/O queuing and completion are
not subject to alerts.

CIFS Technical Reference SNIA Technical Proposal 20
Revision 1.0

The AlignmentRequirement field specifies buffer alignment required by the device and can have
any one of the following values:

AlignmentReqguirement Name Vaue Meaning

FILE_ BYTE ALIGNMENT (0x00000000 The buffer needs to be aligned on a byte boundary

FILE WORD_ALIGNMENT (0x00000001 The buffer needsto be aligned on aword boundary

FILE_ LONG_ALIGNMENT (0x00000003 The buffer needs to be aligned on a 4 byte boundary
FILE QUAD_ALIGNMENT (0x00000007 The buffer needs to be aligned on an 8 byte boundary
FILE OCTA_ALIGNMENT O0x0000000F | The buffer needs to be aligned on a 16 byte boundary
FILE 32 BYTE ALIGNMENT O0x0000001F | The buffer needsto be aligned on a 32 byte boundary
FILE 64 BYTE ALIGNMENT 0x0000003F | The buffer needs to be aligned on a 64 byte boundary
FILE 128 BYTE ALIGNMENT 0x0000007F | The buffer needsto be aligned on a 128 byte boundary
FILE 256 BYTE ALIGNMENT OxO00000FF | The buffer needs to be aligned on a 256 byte boundary
FILE 512 BYTE ALIGNMENT Ox000001FF | The buffer needsto be aligned on a’512 byte boundary

Extended attributes are used primarily by OS/2 Network Clients since OS/2 1.2a, but are an
optional feature (l.e., filesystems and network servers are not required to support it). Extended
attributes provided alternate data streams that are most commonly used by OS/2 client programs
for the following purposes:

1) Storing the compiled form of a batch file (the first time a REXX program is run it is
compiled on the fly and stored in extended attributes, subsequent runs use the compiled
form)

2) Storing desktop attributes for folders and desktop objects for the OS/2Workplace Shell.

Supporting extended attributes is not mandatory in order to support OS/2 clients or to support the
vast majority of OS/2 programs. Note that Windows NT Workstations can generate extended
attribugte request when requested by older programs (such as OS/2) and Windows NT servers do
support requests to get or set extended attributes. Windows NT programs with needs to store
"extended" attribute information, now largely use the capability to associate data streams with files
that was introduced in NT 4. In both cases, the general concept is similar to the data fork concept
introduced by the Macintosh filesystem. Extended Attributes have been used for Macintosh
compatibility in the past (to emulate data forks).

4.2.16.9. SMB_QUERY_FILE_ALT_NAME_INFO

Retrieves the 8.3 form of the file name, given the long name specified in the data block encoding.

Dat a Bl ock Encodi ng Description
ULONG Fi | eNanelLengt h; Length of the file nane in nunber
of bytes
STRI NG Fi | eNane; Nane of the file

4.2.16.10.SMB_QUERY_FILE_STREAM_INFO

Data Bl ock Encodi ng Description
ULONG Next EntryCf f set ; O fset to the next entry (in bytes)
ULONG St reanNanelLengt h; Length of the stream nane in nunber
of bytes
CIFS Technical Reference SNIA Technical Proposal 91

Revision 1.0

LARGE | NTEGER St reanSi ze; Si ze of the streamin nunber of

byt es
LARGE | NTEGER Al |l ocated size of the streamin
StreanmAl | ocati onSi ze; nunber of bytes
STRI NG Fi | eNane; Name of the stream

NOTE: When nore than one data block is returned, the NextEntryOffset is the
offset to the next entry and is O for the last entry. STATUS | NVALI D_PARAMETER i s
returned if file streams are not supported.

4.2.16.11.SMB_QUERY_FILE_COMPRESSION_INFO

Dat a Bl ock Encodi ng Description

LARGE | NTEGER Si ze of the conpressed file in
Conpr essedFi | eSi ze; nunber of bytes

USHORT Conpr essi onFor mat ; A constant signifying the

conpression al gorithm used. Possible
val ues are:
0 - There is no conpression
2- Conpression Format is LZNT
UCHAR Conpr essi onUni t Shift;

UCHAR ChunksShi ft; Stored in log2 format (1 << ChunkShift =
ChunkSi zel nByt es)
UCHAR Cl ust er Shift; I ndi cat es how much space nust be

saved to successfully conpress a
conmpressi on unit
UCHAR Reserved[3] ;

4.2.16.12.SMB_QUERY_FILE_UNIX_BASIC

Used to retrieve UNIX specific file information

Dat a Bl ock Encodi ng Description
LARGE | NTEGER EndCOf Fi | e; File size
LARGE | NTEGER NumOf Byt es Nunber of file system bytes used to store file
TI ME Last St at usChange; Last time the status of the file was changed.
This is in DCE tine.
TI ME Last AccessTi ne; Time of last file access. This is DCE tine.
TI ME Last Modi ficationTinme; Last nodification tinme. This is DCE tine.
LARGE | NTEGER Ui d; Nuneric user id for the owner
LARGE | NTEGER G d; Nurmeric group id of owner
ULONG Type; Enuneration specifying the file type.
0 — File
1 — Directory
2 — Synbolic Link
3 — Character device
4 — Bl ock device
5 — FIFO
6 -- Socket
LARGE | NTEGER DevMj or; Maj or device nunber if file type is device.
LARGE | NTEGER DevM nor ; M nor device nunber if file type is device
LARGE_I NTEGER Uni quel d; This is a server-assigned unique id for the
file. The client will typically map this onto
CIFS Technical Reference SNIA Technical Proposal 92

Revision 1.0

an i node nunber. The scope of uniqueness is

t he share.
LARGE | NTEGER Permi ssions; Standard UNI X fil e perm ssions
LARGE | NTEGER N i nks; The nunber of directory entries that map to

this entry or nunber of hard |inks.

4.2.16.13.SMB_QUERY_FILE_UNIX_LINK

Used to retrieve destination file of a symbolic link
Dat a Bl ock Encodi ng Descri ption

STRI NG Li nkDest ; Destination for synbolic Iink

4.2.16.14.SMB_MAC_DT_GET_APPL

The Macintosh needs to be able to get an application name and its creator from a database. The
Client sends a Trans2_Query_Path_Information call in which the name field is just ignored. The
Client will send an info level that represents getting an application name with a structure that
contains the File Creator and index. Where index has the following meaning.

Index = 0; Get the application path from the database with the most current date.

Index > 0; Use the index to find the application path from the database. e.g. index of 5
means get the fifth entries of this application name in the database.

If no more entry return an error. The Server returns with a structure that contains the full
path to the application and it’s creator’s data.

Supporting the Desktop Database calls requires having a way to store information in a
database. There are two kinds of information store in the database. Applications path that
is associated with an application signature. Icons are stored based on size, icon type, file
creator, and file type.

Data Block Encoding Description

ULONG FileCrestor; The application’s signature. Alwaysin big endian.

WORD Index;

Response Field Description

LARGE_INTEGER CregtionTime; The application's creation time NT date type

LONG FullPathL ength; Length field for Unicode

STRING FullPeth; If Unicode supported then Unicode string otherwise a ASCI|I string

4.2.16.15.SMB_MAC_DT_GET_ICON

The Macintosh needs to be able to get an icon from a database. The Client sends a
Trans2_Query_Path_Information call in which the path name is ignored. The Client will send an
info level that represents getting an icon with a structure that contains the Requested size of the
icon, the Icon type, File Creator, and File Type. The Server returns with a structure that contains
the actual size of the icon (must be less than requested length) and the icon bit map.

Data Block Encoding Description

CIFS Technical Reference SNIA Technical Proposal 93
Revision 1.0

ULONG ReqCount;

Size of theicon being requested

ULONG FileCrestor;

The application’ s signature. Alwaysin big endian.

ULONG FileType;

The application'stype. Alwaysin Big Endian

WORD IconType;

Theicon type. Alwaysin Big Endian

Response Field

Description

UCHARIconDatd(];

Icon data. Alwaysin Big Endian

4.2.16.16.SMB_MAC_DT_GET_ICON_INFO

The Macintosh needs to be able to get an icon from a database. The Client sends a
Trans2_Query_Path_Information call in which the path name is ignored. The Client will send an
info level that represents getting an icon with a structure that contains the index and File Creator.
The index allows the client to make repeated calls to the server gathering all icon stored by this file
creator. The Server returns with a structure that contains the actual size of the icon (must be less

than requested length) and the icon bit map, File Type, and Icon Type.

Data Block Encoding

Description

ULONG FileCresator;

The application’ s signature. Alwaysin big endian.

ULONG Index;
Response Field Description
ULONG ActCount; Size of theicon being requested

ULONG FileType;

The application'stype. Alwaysin Big Endian

WORD IconType;

Theicon type. Alwaysin Big Endian

4.2.16.17.Errors

ERRDOS codes

ERRbadfil e
ERRbadpat h
ERRnoaccess
ERRnonmem

CIFS Technical Reference

ERRSRV codes
ERRaccess
ERRi nvdevi ce
ERRi nvtid
ERRbadui d

SNIA Technical Proposal
Revision 1.0

4.2.17.TRANS2 QUERY FILE INFORMATION: Get File Attributes Given FID

This request is used to get information about a specific file or subdirectory given a handle to it.

Client Request Val ue
Wor dCount 15
MaxSet upCount 0
Set upCount 1
Set up[0] TRANS2_QUERY_FI LE_| NFORMATI ON

Par anmet er Bl ock Encodi ng Descri ption

USHORT Fi d; Handl e of file for request
USHORT | nf ormati onLevel ; Level of information requested

The available information levels, as well as the format of the response are identical to
TRANS2 QUERY_PATH_INFORMATION.

4.2.18. TRANS2 SET PATH INFORMATION: Set File Attributes given Path

This request is used to set information about a specific file or subdirectory.

Cli ent Request Val ue
Wor dCount 15
Max Set upCount 0
Set upCount 1
Set up[0] TRANS2_SET_PATH | NFORMATI ON

Par anet er Bl ock Encodi ng Descri ption

USHORT | nfor mati onLevel ; Level of information to set
ULONG Reser ved; Miust be zero
STRI NG Fi | eNane; File or directory name

The following Information Levels may be set:

InformationLevel Name Vaue | Meaning
SMB_INFO_STANDARD 1
SMB_INFO_QUERY_EA SIZE 2
SMB_INFO_QUERY _ALL EAS |4
SMB_SET_FILE_UNIX_BASIC 000
SMB_SET_FILE_UNIX_LINK X201
SMB_SET_FILE_UNIX_HLINK X203

The response formats are:

CIFS Technical Reference SNIA Technical Proposal
Revision 1.0

4.2.18.1. SMB_INFO_STANDARD & SMB_INFO_QUERY_EA_SIZE

Par anet er Bl ock Encodi ng Descri ption

USHORT Reserved 0
Dat a Bl ock Encodi ng Descri ption

SMB_DATE Creati onDat e; Date when file was created
SMB_TI ME CreationTi ne; Time when file was created
SMB_DATE Last AccessDat e; Date of last file access
SMB_TI ME Last AccessTi ne; Time of last file access
SMB_DATE Last Wit eDat e; Date of last wite to the file
SMB TI ME LastWiteTinme; Time of last wite to the file
ULONG Dat aSi ze; File Size

ULONG Al | ocati onSi ze; Si ze of filesystem allocation

unit
USHORT Attri butes; File Attributes
ULONG EaSi ze; Size of file's EA information

(SMB_I NFO_QUERY_EA_SI ZE)

4.2.18.2. SMB_INFO_QUERY_ALL_EAS

Response Field Val ue

MaxDat aCount Length of FEAlist found (mninmumvalue is 4)

Par anet er Bl ock

Encodi ng Description

(USHORT EaErrorGifset; Offset into EAList of EA error

Dat a Bl ock Encodi ng Descri ption

ULONG Listlength; Length of the remaining data
UCHAR EalList[]; The extended attributes |ist

4.2.18.3. SMB_SET_FILE_UNIX_BASIC

Used to set UNIX specific file attributes and create files

Dat a Bl ock Encodi ng Descri ption

LARGE_| NTEGER EndCf Fi l e; File size

LARGE | NTEGER NunOF Byt es; Nunber of file system bytes used to
store file

Tl ME Last St at usChange; Last time the status of the file was
changed. This is in DCE tine.

Tl ME Last AccessTi ne; Time of last file access. This is DCE
time.

TI ME Last Modi fi cationTi ne; Last nmodification time. This is DCE

CIFS Technical Reference SNIA Technical Proposal

Revision 1.0

time.

LARGE | NTEGER Ui d; Nuneric user id for the owner

LARGE | NTEGER G d; Nurmeric group id of owner

ULONG Type; Enuneration specifying the file type.
0 — File

1 — Directory
2 — Synbolic Link

3 — Character device
4 — Bl ock device
5 — FIFO
6 -- Socket
LARGE | NTEGER DevMj or; Maj or device nunber if file type is
devi ce
LARGE | NTEGER DevM nor ; M nor device nunber if file type is
devi ce
LARGE | NTEGER Uni quel d; This is a server-assigned unique id

for the file. The client wll
typically map this onto an inode
number. The scop of uniqueness is

t he share
LARGE | NTEGER Per ni ssi ons; Standard UNI X file perm ssions
LARGE_I NTEGER N i nks; The nunber of directory entries that
map to this entry or nunmber of hard
I'inks
4.2.18.4. SMB_SET_FILE_UNIX_LINK
Used to create symbolic link file.
Dat a Bl ock Encodi ng Descri ption
STRI NG Li nkDest ; Destination for synbolic link
4.2.18.5. SMB_SET_FILE_UNIX_HLINK
Used to create hard link file.
Dat a Bl ock Encodi ng Descri ption
STRI NG Li nkDest ; Destination for hard |ink
4.2.18.6. SMB_MAC_SET_FINDER_INFO
Parameter Block Encoding Description
USHORT Reserved 0
Data Block Encoding Description
WORD Type; Type of action to take, described below
UCHAR FLAttrib; Macintosh SetFLock if a1 then thefileis Macintosh locked
UCHAR Pad;
CIFS Technical Reference SNIA Technical Proposal

Revision 1.0

LARGE_INTEGER CregtionTime; Timeof filecreation

LARGE_INTEGER LastWriteTime; Time of file last modify

LARGE_INTEGER ChangeTime; Time of filelast change
UL ONG ExtFileAttributes; Extended file attributes
UCHAR Fndrinfol[16]; Information set by the finder.
Described above in MacFindBothinfo structure
UCHAR Fndrinfo2[16]; Information set by the finder.

Described above in MacFindBothlnfo structure

Listed below are the types of actions that the client may request with this Information Level:

SetCreateDate 0x0001 If thisis set then set the create date of the file/folder
SetModDate 0x0002 If thisis set then set the modify date of the file/folder
SetFLAttrib 0x0004 If thisis set then set the Macintosh lock bit of the file/folder
Fndrinfol 0x0008 If thisis set then set the first 16 bytes of finder info
Fndrinfo2 0x0010 If thisis set then set the second 16 bytes of finder info
SetHidden 0x0020 | TheClient iseither setting or unsetting the hidden bit

4.2.18.7. SMB_MAC_DT_ADD_APPL

The Macintosh needs to be able to store an application name and its creator in a database. The
Client sends a Trans2_Set Path_Information call with the full path of the application in the path
field. The Client sends an info level that represents adding an application name and creator to the
database. The Client will pass the File Creator in the data message. The Server should just
respond with no error if it was successful or an error if the operation failed.

Parameter Block Encoding Description

USHORT Reserved 0

Data Block Encoding Description

ULONG FileCrestor; The application’ s signature. Alwaysin big endian. The path name
passed in this calls needs to be stored with this signature.

4.2.18.8. SMB_MAC_DT_REMOVE_APPL

The Macintosh needs to be able to remove an application name and its creator from a database.
The Client sends a Trans2_Set_Path_Information call with the full path of the application in the
path field. The Client will send an info level that represents removing an application name and
creator from the database. The Client will pass the File Creator in the data message. The Server
should just respond with no error if it was successful or an error it the operation failed.

Parameter Block Encoding Description
USHORT Reserved 0
CIFS Technical Reference SNIA Technical Proposal 9%

Revision 1.0

DataBlock Encoding Description

ULONG FileCrestor; The application’s signature. Alwaysin big endian. The path name
passed in this calls needs to be removed with this signature.

4.2.18.9. SMB_MAC_DT_ADD_ICON

The Macintosh needs to be able to add an icon to a database. The Client sends a

Trans2_Set Path_Information call in which the path name is ignored. The Client will send an info
level that represents setting an icon with a structure that contains the icon data, icon size, icon
type, the file type, and file creator. The Server returns only if the call was successful or not.

Parameter Block Encoding Description

USHORT Reserved 0

Data Block Encoding Description

ULONG IconSize; Size of theiconin bytes.

ULONG FileCregtor; The application’s signature. Always in big endian.
ULONG FileType; The application’ stype. Alwaysin big endian.
WORD IconType; Theicon type. Alwaysin big endian.

UCHAR IconDatd(]; Icon data,

4.2.18.10.Errors
ERRDOS codes

ERRbadfil e
ERRbadpat h
ERRnoaccess
ERRnomem
ERRbadaccess
ERRbadshar e

ERRSRV codes
ERRaccess
ERRi nvdevi ce
ERRi nvti d
ERRbadui d

4.2.19.TRANS2 SET FILE INFORMATION: Set File Attributes Given FID

This request is used to set information about a specific file or subdirectory given a handle to the file
or subdirectory.

Client Request Val ue
Wor dCount 15
MaxSet upCount 0
CIFS Technical Reference SNIA Technical Proposal 9

Revision 1.0

Set upCount 1
Set up[0] TRANS2_SET_FI LE_| NFORMATI ON

Par anmet er Bl ock Encodi ng Descri ption

USHORT Fi d; Handl e of file for request
USHORT | nf ormati onLevel ; Level of information requested
USHORT Reserved; I gnored by the server

The following InformationLevels may be set:

InformationLevel Name Vaue | Meaning
SMB_INFO_STANDARD 1
SMB_INFO_QUERY_EA_SIZE 2

SMB_SET_FILE BASIC_INFO 0x101

SMB_SET_FILE DISPOSITION_INFO | Ox102
SMB_SET_FILE_ ALLOCATION_INFO | 0x103
SMB_SET_FILE_END_OF FILE_INFO | Ox104

SMB_SET_FILE_UNIX_BASIC 0x200
SMB_SET_FILE_UNIX_LINK 0x201
SMB_SET_FILE_UNIX_HLINK 0x203

The two levels below 0x101 and the three levels 0x200, 0x201, and 0x202 are as described in the
NT_SET _PATH_INFORMATION transaction. The requested information is placed in the Data
portion of the transaction response. For the information levels greater than 0x100 and below
0x200, the transaction response has 1 parameter word, which should be ignored by the client.

4.2.19.1. SMB_FILE_BASIC_INFO

Dat a Bl ock Encodi ng Descri ption
TI ME CreationTine; Time when file was created
TI ME Last AccessTi ne; Time of last file access
TI ME Last WiteTinme; Time of last wite to the file
TI ME ChangeTi ne; Time when file was | ast changed
ULONG Attri butes; File Attributes

The valid file attributes are listed in section 4.2.15.4 SMB_QUERY_FILE BASIC INFO:

4.2.19.2. SMB_FILE_DISPOSITION_INFO

Response Field Val ue
BOOLEAN A bool ean which is TRUE if the file is marked
Fi | el sDel et ed; for deletion

4.2.19.3. SMB_FILE_ALLOCATION_INFO

Response Field Val ue

CIFS Technical Reference SNIA Technical Proposal 100
Revision 1.0

LARGE_| NTEGER

File All ocation size in nunber

of bytes

4.2.19.4. SMB_FILE_END OF FILE_INFO

Response Field

LARGE_| NTEGER

4.2.19.5. Errors
ERRDOS codes

ERRbadfil e
ERRbadpat h
ERRnoaccess
ERRnonmem
ERRbadaccess
ERRbadshar e

ERRSRV codes
ERRaccess
ERRi nvdevi ce
ERRi nvtid
ERRbadui d

4.3. Directory Requests

Val ue

The t ot al

nunmber of bytes that need to be
traversed fromthe beginning of the file in
order to locate the end of the file

4.3.1. TRANS2 CREATE DIRECTORY: Create Directory (with optional EAs)

This requests the server to create a directory relative to Tid in the SMB header, optionally

assigning extended attributes to it.

Client Request

Wor dCount
MaxSet upCount
Set upCount
Set up[0]

Par anet er Bl ock Encodi ng

ULONG Reserved;
STRI NG Nare[];
UCHAR Dat a[] ;

Bl ock

Response Par anet er

USHORT EaError O f set

CIFS Technical Reference

SNIA Technical Proposal

TRANS2_CREATE_DI RECTORY

Description

Reserved--nmust be zero
Directory name to create

Optional FEAList for the new directory
Descri ption
O fset into FEAList of first error which

occurred while setting Eas

101
Revision 1.0

4.3.1.1. Errors
ERRDOS codes

ERRbadfil e
ERRbadpat h
ERRnoaccess
ERRnonmem
ERRbadaccess
ERRfi | eexi sts
ERRquot a

ERRSRV codes
ERRaccess
ERRi nvdevi ce
ERRi nvti d
ERRbadui d

4.3.2. DELETE DIRECTORY: Delete Directory

The delete directory message is sent to delete an empty directory. The appropriate Tid and
additional pathname are passed. The directory must be empty for it to be deleted.

Client Request

UCHAR Wor dCount ;

USHORT Byt eCount ;

UCHAR Buf f er For nat ;
STRI NG DirectoryNane[];

The directory to be deleted cannot be the root of the share specified by Tid.

Server Response

UCHAR Wor dCount ;
USHORT Byt eCount ;

43.21. Errors
ERRDOS codes

ERRbadfil e
ERRbadpat h
ERRnoaccess
ERRnomem
ERRbadaccess
ERRfi | eexi sts

ERRSRV codes
ERRaccess
ERRi nvdevi ce
ERRi nvti d
ERRbadui d

CIFS Technical Reference

Descri ption

Count of paraneter words = 0
Count of data bytes; nmin
0x04

Directory nane

1
N

Descri ption

Count of paraneter words = O
Count of data bytes = 0

SNIA Technical Proposal
Revision 1.0

102

4.3.3. CHECK DIRECTORY: Check Directory

This SMB is used to verify that a path exists and is a directory. No error is returned if the given
path exists and the client has read access to it. When the path turns out to specify a file (non-
directory) then STATUS_NOT_A DIRECTORY is returned. Client machines which maintain a
concept of a "working directory" will find this useful to verify the validity of a "change working
directory" command. Note that the servers do NOT have a concept of working directory for a
particular client. The client must always supply full pathnames relative to the Tid in the SMB

header.
Client Request Descri ption
UCHAR Wor dCount ; Count of paraneter words = 0
USHORT Byt eCount ; Count of data bytes; nmin = 2
UCHAR Buf f er For mat ; 0x04
STRI NG DirectoryPath[]; Directory path
Server Response Descri ption
UCHAR Wor dCount ; Count of paraneter words = 0
USHORT Byt eCount ; Count of data bytes = 0

DOS clients, in particular, depend on the SMB_ERR_BAD_PATH return code if the directory is not
found.

4.3.3.1. Errors

ERRDOS/ ERRbadfi | e
ERRDOS/ ERRbadpat h
ERRDOS/ ERRnoaccess
ERRHRD/ ERRdat a
ERRSRV/ ERRi nvi d
ERRSRV/ ERRbadui d
ERRSRV/ ERRaccess

4.3.4. TRANS2 FIND FIRSTZ2: Search Directory using Wildcards

Client Request Val ue
Wor dCount 15
Tot al Dat aCount Total size of extended attribute |ist
Set upCount 1
Set up[0] TRANS2_FI ND_FI RST2
Par amet er Bl ock Encodi ng Descri ption

USHORT SearchAttri butes;
USHORT Sear chCount ; Maxi mum number of entries to return
USHORT FI ags; Addi tional information:

Bit O - close search after this request

CIFS Technical Reference SNIA Technical Proposal 103
Revision 1.0

USHORT | nf ormati onLevel ;
ULONG Sear chSt or ageType;
STRI NG Fi | eNane;

UCHAR Dat a[Tot al Dat aCount] ;

Bl ock

Response Par anet er
USHORT Si d;

USHORT Sear chCount ;
USHORT EndOrF Sear ch;
USHORT EaError O f set ;
USHORT Last NanmeOf f set ;

UCHAR Dat a[Tot al Dat aCount] ;

Bit 1 -
reached
Bit 2 - return resune keys for
entry found
Bit 3 - continue search from previous
endi ng pl ace
Bit 4 - find with backup intent

See bel ow

close search if end of search

each

Pattern for the search
FEALi st if InformationLeve
QUERY_EAS FROM LI ST

is

Descri ption

Search handl e
Nunmber of entries returned
Was | ast entry returned?

O fset into EAlist if EA error

O fset into Data[] holding the file nane of
the last entry, if server needs it to resune
search; else O

Level dependent info about the matches

found in the search

This request allows the client to search for the file(s) which match the file specification. The
search can be continued if necessary with TRANS2_FIND_NEXT2. There are numerous levels of
information which may be obtained for the returned files, the desired level is specified in the
InformationLevel field of the request. The following values can be specified for InformationLevel:

InformationLevel Name Vaue | Meaning
SMB_INFO_STANDARD 1
SMB_INFO_QUERY_EA_SIZE 2
SMB_INFO_QUERY_EAS FROM_LIST 3
SMB_FIND_FILE_DIRECTORY_INFO ox101
SMB_FIND_FILE _FULL_DIRECTORY_INFO X102
SMB_FIND_FILE_NAMES _INFO 0x103
SMB_FIND_FILE_BOTH_DIRECTORY_INFO X104
SMB_FIND_FILE_UNIX X202

The following sections detail the data returned for each InformationLevel. The requested
information is placed in the Data portion of the transaction response. Note: a client which does not
support long names can only request SMB_INFO_STANDARD.

The search Id is the Search Handle returned back from the server on the FindFirst response which
can be used on the FindNext request so that the full path can be avoided. Search Handle is
session wide. The server doesn’t care what process uses it on the client.

A four-byte resume key precedes each data item (described below). The return of resume keys is
dependent upon setting the flag SMB_FIND_RETURN_RESUME_KEYS in the FLAGS of the
REQ_FIND_NEXT2 packet. The resume key tells the server where to resume the operation on the

CIFS Technical Reference

SNIA Technical Proposal

104
Revision 1.0

FindNext request in order to avoid duplicate entries. The contents of the resume key are opaque to

the client.

If the search doesn’t find any names, the server should return either STATUS_NO SUCH_FI LE or
the corresponding error code ERROR_FI LE_NOT_FOUND.

4.3.4.1. SMB_INFO_STANDARD

Response Field

SMB_DATE Creati onDat e;
SMB_TI ME CreationTi ne;
SMB_DATE Last AccessDat e;
SMB_TI ME Last AccessTi ne;
SMB_DATE Last Wit eDat e;
SMB TI ME LastWiteTinme;
ULONG Dat aSi ze;

ULONG Al | ocati onSi ze;
USHORT Attri butes;

UCHAR Fi | eNanelLengt h;
STRI NG Fi | eNane;

Descri ption

Date when file was created
Time when file was created
Date of last file access

Time of last file access

Date of last wite to the file
Time of last wite to the file
File Size

Si ze of filesystemallocation unit
File Attributes

Length of filenane in bytes
Nanme of found file

4.3.4.2. SMB_INFO QUERY EA_SIZE

Response Field

SMB_DATE Creati onDat e;
SMB_TI ME CreationTine;
SMB_DATE Last AccessDat e;
SMB_TI ME Last AccessTi ne;
SMB_DATE Last Wit eDat e;
SMB_TIME LastWiteTine;
ULONG Dat aSi ze;

ULONG Al | ocati onSi ze;
USHORT Attri butes;

ULONG EaSi ze;

UCHAR Fi | eNanmeLengt h;
STRI NG Fi | eNane;

Descri ption

Date when file was created
Time when file was created
Date of last file access

Time of last file access

Date of last wite to the file
Time of last wite to the file
File Size

Size of filesystemallocation unit
File Attributes

Size of file's EA information
Length of filenane in bytes
Name of found file

4.34.3. SMB_INFO_QUERY_EAS_FROM_LIST

This request returns the same information as SMB_INFO_QUERY_EA_SIZE, but only for files
which have an EA list which match the EA information in the Data part of the request.

4.3.44. SMB_FIND_FILE_DIRECTORY_INFO

Response Field

ULONG Next EntryCf f set;

ULONG Fi | el ndex;

TIME CreationTine;

TI ME Last AccessTi ne;
TIME LastWiteTine;

TI ME ChangeTi ne;
LARGE | NTEGER EndOf Fi | e;

Descri ption

Offset fromthis structure to
t he begi nning of the next one

File creation tinme

Last access tinme for the file

Last wite time for the file

Last attribute change tinme for the file
File size

CIFS Technical Reference SNIA Technical Proposal 105

Revision 1.0

LARGE | NTEGER Al | ocati onSi ze; Size of filesystem allocation
i nformation

ULONG ExtFil eAttri butes; Extended file attributes (see
Section 3.12)

ULONG Fi | eNanmelLengt h; Length of filename in bytes

STRI NG Fi | eNane; Nane of the file

4.3.4.5. SMB_FIND_FILE_FULL_DIRECTORY_INFO

Response Field Descri ption

ULONG Next EntryCf f set; Offset fromthis structure to
t he begi nning of the next one
ULONG Fi | el ndex;

TIME CreationTine; File creation tinme
TI ME Last AccessTi ne; Last access time for the file
TIME LastWiteTine; Last wite tinme for the file
TI ME ChangeTi ne; Last attribute change tinme for the file
LARGE | NTEGER EndOf Fi | e; File size
LARGE_ | NTEGER Al | ocati onSi ze; Size of filesystem allocation
i nformation
ULONG Ext Fil eAttri butes; Extended file attributes (see
Section 3.12)
ULONG Fi | eNameLengt h; Length of filename in bytes
ULONG EaSi ze; Size of file's extended attributes
STRI NG Fi | eNane; Nane of the file

4.3.4.6. SMB_FIND_FILE BOTH_DIRECTORY_INFO

Response Field Descri ption

ULONG Next EntryCf f set ; O fset fromthis structure to
t he begi nning of the next one
ULONG Fi | el ndex;

TIME CreationTine; File creation tine
TIME Last AccessTi ne; Last access time for the file
TIME LastWiteTine; Last wite tinme for the file
TI ME ChangeTi ne; Last attribute change tinme for the file
LARGE | NTEGER EndCOf Fi | e; File size
LARGE_I NTEGER Al | ocati onSi ze; Size of filesystem allocation
i nformation
ULONG Ext Fil eAttri butes; Extended file attributes (see
Section 3.12)
ULONG Fi | eNanelLengt h; Length of FileNane in bytes
ULONG EaSi ze; Size of file's extended attributes
UCHAR Shor t NaneLengt h; Length of file's short name in
byt es
UCHAR Reser ved;
WCHAR Short Nane[12] ; File's 8.3 conformant name in Uni code
CIFS Technical Reference SNIA Technical Proposal 106

Revision 1.0

43.4.7.

4.3.4.8.

STRI NG Fi | eNane;

Response Fiel d

ULONG Next EntryOf f set ;

ULONG Fi | el ndex;
ULONG Fi | eNanmeLengt h;
STRI NG Fi | eNane;

Dat a Bl ock Encodi ng

ULONG Next EntryCf f set;
ULONG ResuneKey;

LARGE_| NTEGER EndCf Fi | e;
LARGE_| NTEGER Nun®X Byt es

Tl ME Last St at usChange;

SMB_FIND_FILE_UNIX

File's full length nane

SMB_FIND_FILE_NAMES_INFO

Description

O fset fromthis structure to
t he begi nning of the next one

Length of FileNane in bytes
File's full length nane

Used to return UNIX attribute information in a file search response

Descri ption

Offset fromthis structure to the beginning
of the next one

Used for continuing search

File size

Nunber of file system bytes used to store
file

Last time the status of the file was changed.

This is in DCE tine.

Time of last file access. This is DCE tine.
Last nodification tinme. This is DCE tine.
Nurmeric user id for the owner

Nuneric group id of owner

TI ME Last AccessTi ne;

TI ME Last Modi ficationTi ne;
LARGE | NTEGER Ui d;

LARGE | NTEGER G d;

ULONG Type; Enuneration specifying the file type.
0 — File
1 — Directory
2 — Synbolic Link
3 — Character device
4 — Bl ock device
5 — FIFO
6 -- Socket

LARGE_| NTEGER DevMj or;
LARGE | NTEGER DevM nor ;
LARGE | NTEGER Uni quel d;

Maj or device nunber if file type is device
M nor device nunber if file type is device
This is a server-assigned unique id for the
file. The client will typically map this onto
an i node nunber. The scop of uniqueness is
the share
Standard UNI X file perm ssions
The nunber of directory entries that map to
this entry or nunber of hard |inks
Case-preserved alternative filenane

LARGE | NTEGER Per ni ssi ons;
LARGE_| NTEGER N i nks;

STRI NG Nare;

4.3.4.9. SMB_FINDBOTH_MAC_HFS_INFO

Response Fiel d Descri ption

ULONG NextEntryOffset;

Offset from this structure to beginning of next one

CIFS Technical Reference SNIA Technical Proposal 107

Revision 1.0

CIFS Technical Reference

ULONG Filelndex;
LARGE_INTEGER CregtionTime;
LARGE_INTEGER LagtWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER EndOfFile R;
LARGE_INTEGER AllocationSize;
LARGE_INTEGER AllocationSize R;
ULONG ExtFileAttributes;
UCHAR FLAttrib;

UCHAR Pad;

UWORD DrNmFls;

ULONG AccessCntrl;
UCHAR Fndrinfo[32];

ULONG FileNameLength;
UCHAR ShortNameL ength;
UCHAR Reserved
WCHAR ShortName[12];
STRING Filename;

LONG UniqueFilelD;

4.3.4.10. Errors

ERRDOS codes

ERRbadpat h
ERRnoaccess
ERRnonmem

ERRSRV codes

ERRaccess

SNIA Technical Proposal
Revision 1.0

file creation time

last writetime

last attribute change time

Datastream file size

Resource stream file size

Data stream size of file system all ocation information
Resource stream size of file system allocation information
Extended file attributes

Macintosh SetFLock if a1 then thefileislocked.

If adirectory the number of itemsin that directory otherwise
ignored.

Ignored unless SUPPORT_MAC_ACCESS CNTRL isset.

Fndrinfo[32]; Information used by the finder that isalwaysin
Big Endian.

Bytes 0-3 File Type

If afiledefault to TEXT' otherwise default to zero
Bytes 4-7 File Creator

If afile default to 'dosa’ otherwise default to zero
Bytes 8-9 a UWORD flags field

If hidden item set this UWORD to 0x4000 else defaults to
Zero

All other bytes should default to zero and are only
changeabl e by the Macintosh

Length of Filename in bytes

Length of file's short namein bytes

File's 8.3 conformant name in Unicode
Filesfull length name

Uniquefile or directory identifier - only supported if the
SUPPORT_MAC_UNIQUE_IDShit issetinthe
MacSupportFlags.

108

ERRi nvdevi ce
ERRi nvti d
ERRbadui d

4.3.5. TRANS2 FIND NEXT2: Resume Directory Search Using Wildcards

This request resumes a search which was begun with a previous TRANS2_FIND_FIRST2

request.

Cli ent Request

Wor dCount
Set upCount
Set up[0]

Par anet er Bl ock Encodi ng

USHORT Si d;
USHORT Sear chCount ;
USHORT | nf or mati onLevel ;

ULONG ResuneKey;
USHORT FI ags;

A WNPEFEO

STRI NG Fi | eNane;

TRANS2_FI ND_NEXT2

Descri ption

Search handl e
Maxi mum nunmber of entries to return
Level s described in
TRANS2_FI ND_FI RST2 request
Val ue returned by previous find2 cal
Addi tional information: bit set-
cl ose search after this request
cl ose search if end of search reached
return resune keys for each entry found

resune/ continue from previ ous endi ng pl ace

find with backup intent
Resume file nanme

Sid is the value returned by a previous successful TRANS2_FIND_FIRST2 call. If Bit3 of Flags is

set, then FileName may be the NULL string, since the search is continued from the previous
TRANSZ2_FIND request. Otherwise, FileName must not be more than 256 characters long.

Response Field

USHORT Sear chCount ;
USHORT EndOr Sear ch;
USHORT EaError O f set;
USHORT Last NameOf f set ;

UCHAR Dat a[Tot al Dat aCount] ;

4351. Errors
ERRDOCS codes

ERRi nvti d

CIFS Technical Reference

Description

Nunber of entries returned

Was | ast entry returned?

Ofset into EAlist if EA error

Offset into Data[] holding the file name
of the last entry, if server needs it
to resunme search; else 0

Level dependent info about the
mat ches found in the search

SNIA Technical Proposal

Revision 1.0

109

ERRbadui d

4.3.6. FIND CLOSEZ2: Close Directory Search

This SMB closes a search started by the TRANS2_FIND_FIRST2 transaction request.

Client Request Descri ption
UCHAR Wér dCount ; Count of paraneter words = 1
USHORT Si d; Fi nd handl e
USHORT Byt eCount ; Count of data bytes =0
Server Response Descri ption
UCHAR Wor dCount ; Count of paraneter words = 0
USHORT Byt eCount ; Count of data bytes = 0
4.3.6.1. Errors
ERRDOS/ ERRbadf i d
ERRSRV/ ERRi nvi d
ERRSRV/ ERRaccess
4.3.7. NT_TRANSACT NOTIFY CHANGE: Request Change Notification
Client Setup Wrds Descri ption
ULONG Conpl etionFilter; Speci fies operation to nonitor
USHORT Fi d; Fid of directory to nonitor
BOOLEAN Wt chTr ee; TRUE = Watch all subdirectories too
UCHAR Reser ved; MUST BE ZERO

This command notifies the client when the directory specified by Fid is modified. It also returns the
name(s) of the file(s) that changed. The command completes once the directory has been
modified based on the supplied CompletionFilter. The command is a "single shot" and therefore
needs to be reissued to watch for more directory changes.

A directory file must be opened before this command may be used. Once the directory is open,
this command may be used to begin watching files and subdirectories in the specified directory for
changes. The first time the command is issued, the MaxParameterCount field in the transact
header determines the size of the buffer that will be used at the server to buffer directory change
information between issuances of the notify change commands.

When a change that is in the CompletionFilter is made to the directory, the command completes.
The names of the files that have changed since the last time the command was issued are
returned to the client. The ParameterCount field of the response indicates the number of bytes
that are being returned. If too many files have changed since the last time the command was
issued, then zero bytes are returned and the NTSTATUS code STATUS_NOTIFY_ENUM_DIR
(0x0000010C) is returned in the Status field of the response.

The CompletionFilter is a mask created as the sum of any of the following flags:

FI LE_NOTI FY_CHANGE_FI LE_NAME 0x00000001
FI LE_NOTI FY_CHANGE_DI R_NAME 0x00000002
FI LE_NOTI FY_CHANGE_NAME 0x00000003
CIFS Technical Reference SNIA Technical Proposal 110

Revision 1.0

FI LE_NOTI FY_CHANGE_ATTRI BUTES 0x00000004

FI LE_NOTI FY_CHANGE_SI ZE 0x00000008

FI LE_NOTI FY_CHANGE_LAST_WRI TE 0x00000010

FI LE_NOTI FY_CHANGE_LAST_ACCESS 0x00000020

FI LE_NOTI FY_CHANGE_CREATI ON 0x00000040

FI LE_NOTI FY_CHANGE_EA 0x00000080

FI LE_NOTI FY_CHANGE_SECURI TY 0x00000100

FI LE_NOTI FY_CHANGE_STREAM_NAME 0x00000200

FI LE_NOTI FY_CHANGE_STREAM S| ZE 0x00000400

FI LE_NOTI FY_CHANGE_STREAM WRI TE 0x00000800

Server Response Descri ption
Par anet er Count # of bytes of change data
Par anet er s[Par anet er Count] FI LE_NOTI FY_I NFORMATI ON

Structures

The response contains FILE_NOTIFY_INFORMATION structures, as defined below. The
NextEntryOffset field of the structure specifies the offset, in bytes, from the start of the current
entry to the next entry in the list. If this is the last entry in the list, this field is zero. Each entry in
the list must be longword aligned, so NextEntryOffset must be a multiple of four.

typedef struct {
ULONG Next EntryCf f set;
ULONG Act i on;
ULONG Fi | eNanelLengt h;
WCHAR Fi | eNane[1] ;

} FI LE_NOTI FY_I NFORMATI ON,;

Where Action describes what happened to the file named FileName:

FI LE_ACTI ON_ADDED 0x00000001
FI LE_ACTI ON_REMOVED 0x00000002
FI LE_ACTI ON_MODI FI ED 0x00000003

FI LE_ACTI ON_RENAMED _OLD_NAME 0x00000004
FI LE_ACTI ON_RENAMED NEW NAME 0x00000005
FI LE_ACTI ON_ADDED_STREAM 0x00000006
FI LE_ACTI ON_REMOVED _STREAM 0x00000007
FI LE_ACTI ON_MODI FI ED_STREAM 0x00000008

The client waits on the response after it sends the notify change request. If the client wants to
discard the request, it can send NT_CANCEL to the server which should return
STATUS_CANCELED. The server can reject the request with STATUS_NOT_IMPLEMENTED.

4.3.71. Errors
ERRDOS codes

ERRbadpat h
ERRnoaccess
ERRnonmem

ERRSRV codes

CIFS Technical Reference SNIA Technical Proposal 111
Revision 1.0

ERRaccess

ERRi nvdevi ce

ERRi nvti d

ERRbadui d

ERRSRV/ ERROR_NOTI FY_ENUM DI R

4.4. DFS Operations

441. TRANS2 GET DFS REFERRAL: Retrieve Distributed Filesystem Referral

The client sends this request to ask the server to convert RequestFilename into an alternate name
for this file. This request can be sent to the server if the server response to the NEGOTIATE SMB
included the CAP_DFS capability. The TID of the request must be IPC$. Bit15 of Flags2 in the
SMB header must be set, indicating this is a UNICODE request.

Client Request Descri ption
Wor dCount 15

Tot al Dat aCount 0

Set upCount 1

Set up[0] TRANS2_GET_DFS_REFERRAL
Par anmet er Bl ock Encodi ng Descri ption
USHORT MaxReferral Level ; Latest referral version nunber understood
WCHAR Request Fi | eNane[] ; DFS name of file for which referral is

sought

Response Data Bl ock Description
USHORT Pat hConsuned; Nunmber of RequestFil enane bytes consumed

by the server

USHORT Number Of Ref erral s; Nunber of referrals contained in this
response

USHORT Fl ags; Bit0O - The servers in Referrals are
capabl e of fielding
TRANS2_GET_DFS_REFERRAL.
Bitl - The servers in Referrals should
hold the storage for the requested file

REFERRAL_LI ST Referrals[]; Set of referrals for this file

UNI CODESTRI NG Stri ngs; Used to hold the strings pointed to by
Version 2 Referrals in REFERRALS

The server response is a list of Referrals which inform the client where it should resubmit the
request to obtain access to the file. PathConsumed in the response indicates to the client how
many characters of RequestFilename have been consumed by the server. When the client
chooses one of the referrals to use for file access, the client may need to strip the leading
PathConsumed characters from the front of RequestFileName before submitting the name to the
target server. Whether or not the pathname should be trimmed is indicated by the individual
referral as detailed below.

Flags indicates how this referral should be treated. If bitO is clear, any entity in the Referrals list
holds the storage for RequestFileName. If bit0 is set, any entity in the Referrals list has further

CIFS Technical Reference SNIA Technical Proposal 112
Revision 1.0

referral information for RequestFilename - a TRANS2 _GET DFS REFERRAL request should be
sent to an entity in the Referrals list for further resolution.

The format of an individual referral contains version and length information allowing the client to
skip referrals it does not understand. MaxReferralLevel indicates to the server the latest version of
referral which the client can digest. Since each referral has a uniform element, MaxReferralLevel
is advisory only. Each element in Referrals has this envelope:

REFERRAL_LI ST El enent

USHORT Ver si onNunber ; Version of this referral el enent
USHORT Referral Si ze; Size of this referral el enent

The following referral element versions are defined:

Version 1 Referral Elenment Format

USHORT Server Type; Type of Node handling referral:
0 - Don't know
1 - SMB Server
2 - Netware Server
3 - Domain
USHORT Ref erral Fl ags; Fl ags which describe this referral:
01 - Strip off PathConsumed characters
before submitting RequestFil eName to Node
UNI CODESTRI NG Node; Nane of entity to visit next

Version 2 Referral El enent Format

USHORT Server Type; Type of Node handling referral:
0 - Don't know
1 - SMB Server
2 - Netware Server
3 - Domain
USHORT Ref erral Fl ags; Fl ags which describe this referral:
01 - Strip off PathConsuned characters
before submtting RequestFil eNane to Node
ULONG Proxi mty; A hint describing the proximty of this
server to the client. 0 indicates the
cl osest, higher nunmbers indicate
increasingly "distant"” servers. The
nunber is only relevant within the
context of the servers listed in this
particul ar SMB.

ULONG Ti nmeTolLi ve; Nunmber of seconds for which the client
can cache this referral.
USHORT Df sPat hOf f set ; O fset, in bytes fromthe begi nning of

this referral, of the DFS Path that
mat ched Pat hConsuned bytes of the
Request Fi | eNane.

USHORT Offset, in bytes fromthe beginning of

Df sAl t er nat ePat hOF f set ; this referral, of an alternate nane

(8.3 format) of the DFS Path that
mat ched Pat hConsumed bytes of the
Request Fi | eNane.

USHORT Net wor KAddressOffset; Offset, in bytes fromthe beginning of

CIFS Technical Reference SNIA Technical Proposal 113

Revision 1.0

this referral, of the entity to visit next.
The CIFS protocol imposes no referral selection policy.

4411. Errors
ERRDOS codes

ERRnoaccess
ERRnonmem

ERRSRV codes
ERRaccess
ERRi nvdevi ce
ERRi nvtid
ERRbadui d

4.42. TRANS2 REPORT DFS INCONSISTENCY: Inform a server about DFS Error

As part of the Distributed Name Resolution algorithm, a DFS client may discover a knowledge
inconsistency between the referral server (i.e., the server that handed out a referral), and the
storage server (i.e., the server to which the client was redirected by the referral server). When
such an inconsistency is discovered, the DFS client optionally sends this SMB to the referral
server, allowing the referral server to take corrective action.

Client Request Descri ption

Wor dCount 15

MaxPar amet er Count 0

Set upCount 1

Set up[0] TRANS2_REPCORT_DFS_| NCONSI STENCY
Par amet er Bl ock Encodi ng Descri ption

UNI CODESTRI NG Request Fi | eNane; DFS Nane of file for which

referral is sought

The data part of this request contains the referral element (Version 1 format only) believed to be in
error. These are encoded as described in the TRANS2_GET_DFS_REFERRAL response. If the
server returns success, the client can resubmit the TRANS2_GET_DFS_REFERRAL request to
this server to get a new referral. It is not mandatory for the DFS knowledge to be automatically
repaired - the client must be prepared to receive further errant referrals and must not wind up
looping between this request and the TRANS2_GET_DFS_REFERRAL request.

Bit15 of Flags2 in the SMB header must be set, indicating this is a UNICODE request.

4421. Errors
ERRDOS codes

ERRnoaccess
ERRnonmem

CIFS Technical Reference SNIA Technical Proposal 114
Revision 1.0

ERRSRV codes
ERRaccess
ERRi nvdevi ce
ERRi nvtid
ERRbadui d

4.5. Miscellaneous Operations

4.5.1. NT TRANSACT IOCTL

This command allows device and file system control functions to be transferred transparently from

client to server.

Setup Words Encodi ng

ULONG Functi onCode;
USHORT Fi d;

BOOLEAN | sFsct | ;

UCHAR | sFl ags;

Dat a Bl ock Encodi ng

UCHAR Dat a]
Tot al Dat aCount] ;

Server Response

Set upCount
Set up[0]

Dat aCount

Dat a[Dat aCount]

451.1. Errors
ERRDOCS codes

ERRnoaccess
ERRnonmem

ERRSRV codes

ERRaccess
ERRi nvdevi ce
ERRi nvti d
ERRbadui d

CIFS Technical Reference

Descri ption

NT device or file systemcontrol code
Handl e for i/o or file system control

unl ess BI TO of | SFLAGS is set
I ndi cat es whether the command is for device
(FALSE) or a file systemcontrol (TRUE)
BITO - conmand is to be applied to share
root handle. Share nmust be a DFS share.

Descri ption

Passed to the Fsctl or loctl

Descri ption

Length of information returned by
i/oor file systemcontro

Length of information returned by
i/o or file systemcontro

The results of the i/o or file system
control

SNIA Technical Proposal 115
Revision 1.0

4.5.2. NT TRANSACT QUERY SECURITY DESC

This command allows the client to retrieve the security descriptor on a file.

Client Parameter Bl ock Descri ption
USHORT Fi d; FI D of target
USHORT Reserved; MUST BE ZERO

ULONG Securitylnformation; Fields of descriptor to get

NtQuerySecurityObject() is called, requesting SecurityInformation. The result of the call is
returned to the client in the Data part of the transaction response.

4521. Errors
ERRDOCS codes

ERRnoaccess
ERRnonmem
ERRbadaccess

ERRSRV codes
ERRaccess
ERRi nvdevi ce
ERRi nvti d
ERRbadui d

4.5.3. NT TRANSACT SET SECURITY DESC

This command allows the client to change the security descriptor on a file.

Client Parameter Bl ock Encoding Descri ption

USHORT Fi d; FI D of target

USHORT Reserved; MUST BE ZERO

ULONG Securityl nfornation,; Fields of Security Descriptor to set
Dat a Bl ock Encodi ng Descri ption

Dat a[Tot al Dat aCount] Security Descriptor information

Data is passed directly to NtSetSecurityObject(), with Securitylnformation describing which
information to set. The transaction response contains no parameters or data.

453.1. Errors
ERRDOS codes

ERRnoaccess
ERRnonmem

ERRbadaccess
ERRbadshar e

CIFS Technical Reference SNIA Technical Proposal 116
Revision 1.0

ERRSRV codes
ERRaccess
ERRi nvdevi ce
ERRi nvtid
ERRbadui d

CIFS Technical Reference SNIA Technical Proposal 117
Revision 1.0

5. SMB Symbolic Constants

5.1.

CIFS Technical Reference

SMB Command Codes

The following values have been assigned for the SMB Commands.

SVB_COM CREATE_DI RECTORY
SVB_COM DELETE_DI RECTORY
SVB_COM OPEN

SMB_COM CREATE

SMB_COM CLOSE

SMB_COM FLUSH

SMB_COM DELETE

SMVB_COM RENANE

SVB_COM QUERY_| NFORNMATI ON
SVB_COM SET_| NFORMATI ON
SVB_COM READ

SMB_COM WRI TE

SMB_COM LOCK_BYTE_RANGE
SMB_COM_UNLOCK_BYTE_RANGE
SMB_COM_CREATE_TEMPORARY
SMB_COM CREATE_NEW
SVB_COM CHECK_DI RECTORY
SVB_COM PROCESS_EXI T
SVB_COM SEEK

SMB_COM LOCK_AND_READ
SMB_COM WRI TE_AND_UNLOCK
SMB_COM_READ_RAW

SMB_COM READ_MPX

SMB_COM READ_MPX_SECONDARY
SVB_COM WRI TE_RAW
SVB_COM VRl TE_MPX
SVB_COM WRI TE_VPX_SECONDARY
SMB_COM WRI TE_COMPLETE
SMB_COM_QUERY_SERVER
SMVB_COM _SET_| NFORMATI ON2
SMVB_COM_QUERY_| NFORMATI ON2
SMB_COM_LOCKI NG_ANDX
SVB_COM TRANSACTI ON
SVB_COM TRANSACTI ON_SECONDARY
SVB_COM | OCTL

SMB_COM | OCTL_SECONDARY
SVB_COM COPY

SVB_COM MOVE

SMB_COM ECHO

SMB_COM WRI TE_AND_CLOSE
SVB_COM OPEN_ANDX
SVB_COM_READ_ANDX
SVB_COM VRl TE_ANDX

SMB_COM NEW FI LE_SI ZE
SMB_COM _CLOSE_AND_TREE_DI SC
SMB_COM_TRANSACTI ON2
SMVB_COM TRANSACT! ON2_ SECONDARY
SMB_COM FI ND_CLOSE2
SVB_COM FI ND_NOTI FY_CLOSE

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0Ox0E
OxO0F
0x10
Ox11
0x12
0x13
0Ox14
Ox1A
0x1B
0x1C
0x1D
Ox1E
Ox1F
0x20
0x21
0x22
0x23
0x24
0x25
0x26
0x27
0x28
0x29
Ox2A
0x2B
0x2C
0x2D
Ox2E
Ox2F
0x30
0x31
0x32
0x33
0x34
0x35

SNIA Technical Proposal
Revision 1.0

118

/* Used by Xeni x/Unix 0x60 — Ox6E */

SMB_COM TREE_CONNECT
SMB_COM TREE_DI SCONNECT
SMB_COM _NEGOTI ATE

SMB_COM _SESSI ON_SETUP_ANDX
SMB_COM LOGOFF_ANDX
SMB_COM TREE_CONNECT _ANDX

0x70
0x71
0x72
0x73
0Ox74
0x75

SVB_COM QUERY_| NFORMATI ON_DI SK 0x80

SVB_COM_SEARCH
SVB_COM FI ND
SMB_COM FI ND_UNI QUE
SMB_COM FI ND_CLOSE
SMB_COM _NT_TRANSACT

0x81
0x82
0x83
0x84
0xA0

SMB_COM NT_TRANSACT SECONDARY OxAl

SMB_COM NT_CREATE_ANDX
SMB_COM NT_CANCEL
SMB_COM NT_RENANME
SMB_COM OPEN_PRI NT_FI LE
SMB_COM WRI TE_PRI NT_FI LE
SMB_COM CLOSE_PRI NT_FI LE
SMB_COM _GET_PRI NT_QUEUE
SMB_COM READ_BULK
SMB_COM WRI TE_BULK
SMB_COM VRl TE_BULK_DATA

OxA2
OxA4
OxAb
0xCo
0xC1
oxC2
0xC3
0xD8
0xD9
OxDA

5.2. SMB_COM_TRANSACTION2 Subcommand codes

The subcommand code for SMB_COM_TRANSACTIONZ2 request is placed in Setup[0]. The
parameters associated with any particular request are placed in the Parameters vector of the

request. The defined subcommand codes are:

Setup[0] Transaction2 Subcommand Code Vaue | Meaning

TRANS2_OPEN2 0x00 Createfile with extended attributes

TRANS2 FIND_FIRST2 Ox0L | Begin search for files

TRANS2_FIND_NEXT2 ox02 Resume search for files

TRANS2 QUERY_FS INFORMATION ox03 Get file system information

x4 | Reserved (TRANS SET_FS INFORMATION?)

TRANS2 QUERY_PATH_INFORMATION Ox05 Get information about a named file or directory

TRANS2_SET_PATH_INFORMATION 0x06 Set information about a named file or directory

TRANS2_QUERY_FILE INFORMATION 0x07 Get information about a handle

TRANS2 SET_FILE_INFORMATION OX08 | Setinformation by handle

TRANS2_FSCTL ox09 Not implemented by NT server

TRANS2_|OCTL2 OxOA | Notimplemented by NT server

TRANS2 FIND_NOTIFY_FIRST OxOB | Notimplemented by NT server

TRANS2 FIND_NOTIFY_NEXT OxOC | Not implemented by NT server

TRANS2 CREATE _DIRECTORY OxOD | Createdirectory with extended attributes

TRANS2 SESSION_SETUP OxOE | Session setup with extended security information
CIFS Technical Reference SNIA Technical Proposal

Revision 1.0

119

Setup[0] Transaction2 Subcommand Code Value | Meaning

TRANS2_GET_DFS REFERRAL 0x10 | GetaDFSreferra

TRANS2_REPORT_DFS INCONSISTENCY Ox11 Report a DFS knowledge inconsistency

5.3. SMB_COM_NT_TRANSACTION Subcommand Codes

For these transactions, Function in the primary client request indicates the operation to be
performed. It may assume one of the following values:

Transaction Subcommand Code Vaue | Meaning
NT_TRANSACT_CREATE 1 File open/create
NT_TRANSACT_IOCTL 2 Device IOCTL
NT_TRANSACT_SET_SECURITY_DESC 3 Set security descriptor
NT_TRANSACT NOTIFY_CHANGE 4 Start directory watch
NT_TRANSACT_RENAME 5 Reserved (Handle-based rename)
NT_TRANSACT QUERY_ SECURITY_ DESC 6 Retrieve security descriptor info

5.4. SMB Protocol Dialect Constants

This is the list of CIFS protocol dialects, ordered from least functional (earliest) version to most
functional (most recent) version:

Diaect Name Comment

PC NETWORK PROGRAM 1.0 The original MSNET SMB protocol (otherwise known asthe "core
protocol")

PCLAN1.0 Some versions of the original MSNET defined this as an alternate to the

core protocol name

MICROSOFT NETWORKS 1.03 Thisisused for the MSNET 1.03 product. It defines
L ock& Read,Write& Unlock, and a special version of raw read and raw
write.

MICROSOFT NETWORKS 3.0 Thisisthe DOSLANMAN 1.0 specific protocol. It isequivaent to the
LANMAN 1.0 protocol, except the server isrequired to map errors from the
OS/2 error to an appropriate DOS error.

LANMAN1.0 Thisisthefirst version of the full LANMAN 1.0 protocol

Windows for Workgroups 3.1a Windows for Workgroups Version 1.0 (similar to LANMAN1.0 dialect)

LM1.2X002 Thisisthefirst version of the full LANMAN 2.0 protocol

DOSLM1.2X002 Thisisthe DOS equivalent of the LM 1.2X002 protocol. It isidentical to the
LM 1.2X002 protocol, but the server will perform error mapping to
appropriate DOS errors. See section 6.0

DOSLANMAN2.1 DOSLANMAN2.1
LANMAN2.1 OS2 LANMAN2.1
NT LM 0.12 The SMB protocol designed for NT networking. This has special SMBs

which duplicate the NT semantics.

CIFS Technical Reference SNIA Technical Proposal
Revision 1.0

CIFS servers select the most recent version of the protocol known to both client and server. Any
CIFS server, which supports dialects newer than the original core dialect, must support all the
messages and semantics of the dialects between the core dialect and the newer one. This is to
say that a server, which supports the NT LM 0.12 dialect, must also support all of the messages of
the previous 10 dialects. It is the client's responsibility to ensure it only sends SMBs, which are
appropriate to the dialect negotiated. Clients must be prepared to receive an SMB response from
an earlier protocol dialect -- even if the client used the most recent form of the request.

CIFS Technical Reference SNIA Technical Proposal 121
Revision 1.0

6. Error Codes and Classes

This section lists all of the valid values for Status.DosError.ErrorClass, and most of the error
codes for Status.DosError.Error. Additionally, a mapping between STATUS codes and DOS errors
are provided.

The following error classes may be returned by the server to the client.

Cl ass Code Coment

SUCCESS 0 The request was successful

ERRDCS 0x01 Error is fromthe core DOS operating system set.

ERRSRV 0x02 Error is generated by the server network file
manager .

ERRHRD 0x03 Error is a hardware error

ERRCMVD OxFF Command was not in the "SMB" format.

The following error codes may be generated with the SUCCESS error class.

SUCCESS 0 The request was successful

The following error codes may be generated with the ERRDOS error class.

Error Code Descri ption

ERRbadf unc 1 Invalid function. The server did not
recogni ze or could not performa system cal
generated by the server, e.g., set the
DI RECTORY attribute on a data file, invalid

seek node.

ERRbadfil e 2 File not found. The |ast conponent of a
file's pathname could not be found.

ERRbadpat h 3 Directory invalid. A directory conponent in
a pat hname coul d not be found.

ERRnof i ds 4 Too many open files. The server has no file
handl es avai |l abl e.

ERRnoaccess 5 Access denied, the client's context does not

permt the requested function. This includes
the follow ng conditions: invalid rename comrand,
wite to Fid open for read only, read on Fid

open for wite only, attenpt to delete a
non-enpty directory

ERRbadfi d 6 Invalid file handle. The file handle
speci fied was not recogni zed by the server
ERRbadnthb 7 Menmory control bl ocks destroyed.
ERRnonmem 8 I nsufficient server menory to performthe
requested function.
ERRbadnmem 9 Invalid nmenory bl ock address.
CIFS Technical Reference SNIA Technical Proposal 122

Revision 1.0

ERRbadenv 10 I nvalid environnent.

ERRbadf or mat 11 Invalid format.

ERRbadaccess 12 I nval id open node.

ERRbaddat a 13 Invalid data (generated only by I OCTL calls
within the server).

ERRbaddri ve 15 Invalid drive specified.

ERRr encd 16 A Delete Directory request attenpted to
remove the server's current directory.

ERRdi f f devi ce 17 Not sane device (e.g., a cross volunme renane
was attenpted)

ERRnofi | es 18 A File Search command can find no nore files
mat ching the specified criteria.

ERRbadshar e 32 The sharing node specified for an Open
conflicts with existing FIDs on the file.

ERRI ock 33 A Lock request conflicted with an existing

| ock or specified an invalid node, or an
Unl ock requested attenpted to renove a | ock
hel d by anot her process.

ERRfi | exi sts 80 The file named in the request already exists.

Err Quot a 0x200 The operation would cause a quota limt to be
exceeded.

Er r Not ALi nk 0x201 A link operation was perforned on a pathnane

that was not a |ink.
The following error codes may be generated with the ERRSRYV error class.

Error Code Description

ERRer r or 1 Non-specific error code. It is returned under
the follow ng conditions: resource other than
di sk space exhausted (e.g. TIDs), first SMVB
command was not negotiate, multiple negotiates
attenpted, and internal server error

ERRbadpw 2 Bad password - nane/password pair in a Tree
Connect or Session Setup are invalid.
ERRaccess 4 The client does not have the necessary access

rights within the specified context for the
requested function.

ERRi nvtid 5 The Tid specified in a command was invalid

ERRi nvnet name 6 Invalid network nane in tree connect.

ERRi nvdevi ce 7 Invalid device - printer request nmade to
non-printer connection or non-printer request
made to printer connection.

ERRqf ul | 49 Print queue full (files) -- returned by open
print file.

ERRqt oobi g 50 Print queue full -- no space.

ERRgeof 51 ECF on print queue dunp.

ERRi nvpfid 52 Invalid print file FID

ERRsnbcd 64 The server did not recognize the conmand received.

ERRsrverror 65 The server encountered an internal error
e.g., systemfile unavail able.

ERRbadBI D 66 (obsol et e)

ERRf i | especs 67 The Fid and pat hnane paraneters contained an
i nval i d conbi nati on of val ues.

ERRbadLi nk 68 (obsol ete)

ERRbadperm ts 69 The access pernissions specified for a file

CIFS Technical Reference SNIA Technical Proposal

Revision 1.0

ERRbadPI D
ERRset at t r nnde

ERRpaused
ERRms gof f
ERRnor oom

ERRr muns
ERRt i meout
ERRnor esour ce
ERRt oomanyui ds
ERRbadui d

ERRusenpx
ERRusestd

ERRcont npx
ERRbadPasswor d

70
71

81
82
83
87
88
89
90
91

250
251

252
254

ERR_NOTI FY_ENUM DI R 1024

ERRaccount Expi r ed
ERRbadCl i ent
ERRbadLogonTi e

2239
2240
2241

ERRpasswor dExpi red 2242

ERRnosupport

65535

or directory are not a valid conbination.
The server cannot set the requested attribute.

The attribute node in the Set File Attribute
request is invalid.
Server is paused. (Reserved for nessagi ng)
Not receiving nmessages. (Reserved for nessaging)
No roomto buffer nessage. (Reserved for nessaging)
Too many renote user nanes. (Reserved for nessagi ng)
Operation tinmed out.
No resources currently available for request.
Too many Uids active on this session
The Uid is not known as a valid user
identifier on this session.
Tenporarily unable to support Raw, use MPX npde
Tenporarily unable to support Raw,
use standard read/write.
Conti nue in MPX node.
(obsol et e)
Too many files have changed since the last tinme a
NT_TRANSACT_NOTI FY_CHANGE was i ssued

Cannot access the server fromthis workstation
Cannot access the server at this tine.

Function not supported.

The following error codes may be generated with the ERRHRD error class.

ERRnowrite
ERRbaduni t
ERRnot r eady
ERRbadcd
ERRdat a
ERRbadr eq
ERRseek
ERRbadnedi a
ERRbadsect or
ERRnopaper
ERRwrite
ERRr ead
ERRgener a
ERRbadshar e
ERRI ock

ERRwr ongdi sk
ERRFCBUnavai
ERRshar ebuf exc

CIFS Technical Reference

34
35
36

Descri ption

Attenpt to wite on wite-protected nedia

Unknown unit.

Drive not ready.

Unknown comand.

Data error (CRC).

Bad request structure |ength.

Seek error.

Unknown nedi a type.

Sect or not found.

Printer out of paper.

Wite fault.

Read fault.

General failure

A open conflicts with an existing open.

A Lock request conflicted with an existing
| ock or specified an invalid node, or an
Unl ock requested attenpted to renove a | ock
hel d by anot her process.

The wrong di sk was found in a drive.

No FCBs are available to process request.

A sharing buffer has been exceeded.

SNIA Technical Proposal 124
Revision 1.0

These are the mappings of the listed STATUS_codes to the DOS errors.

DOS Error

ERROR_INVALID_FUNCTION
ERROR_FILE_NOT_FOUND
ERROR_PATH_NOT_FOUND
ERROR TOO_MANY_OPEN_FILES
ERROR_ACCESS DENIED
ERROR_INVALID_HANDLE
ERROR NOT_ENOUGH_MEMORY
ERROR_INVALID_ACCESS
ERROR_INVALID_DATA
ERROR_CURRENT DIRECTORY
ERROR_NOT_SAME _DEVICE
ERROR_NO_MORE_FILES
ERROR_WRITE_PROTECT
ERROR NOT_READY
ERROR_CRC

ERROR BAD_LENGTH
ERROR_NOT_DOS DISK
ERROR_SECTOR_NOT_FOUND
ERROR_OUT_OF PAPER
ERROR_SHARING_VIOLATION
ERROR_LOCK_VIOLATION
ERROR_WRONG_DISK
ERROR_NOT_SUPPORTED
ERROR REM_NOT _LIST
ERROR_DUP_NAME
ERROR_BAD_NETPATH
ERROR_NETWORK_BUSY
ERROR DEV_NOT_EXIST
ERROR_TOO MANY_CMDS
ERROR_ADAP_HDW_ERR
ERROR_BAD_NET_RESP
ERROR_UNEXP _NET_ERR
ERROR_BAD_REM_ADAP
ERROR_PRINTQ FULL
ERROR_NO_SPOOL_SPACE
ERROR_PRINT_CANCELLED
ERROR_NETNAME _DELETED
ERROR_NETWORK_ACCESS DENIED
ERROR BAD_DEV_TYPE
ERROR_BAD_NET_NAME
ERROR_TOO_MANY_NAMES
ERROR_TOO_MANY_SESS
ERROR_SHARING_PAUSED
ERROR_REQ NOT_ACCEP
ERROR_REDIR_PAUSED
ERROR _FILE_EXISTS
ERROR_INVALID_PASSWORD
ERROR_INVALID_PARAMETER
ERROR NET_WRITE_FAULT
ERROR BROKEN_PIPE
ERROR_OPEN_FAILED
ERROR_BUFFER_OVERFLOW
ERROR _DISK_FULL
ERROR_SEM_TIMEOUT

CIFS Technical Reference

Status Code

STATUS NOT_IMPLEMENTED
STATUS NO_SUCH FILE_
STATUS OBJECT_PATH_NOT_FOUND
STATUS TOO_MANY_OPENED_FILES
STATUS ACCESS DENIED
STATUS INVALID_HANDLE
STATUS INSUFFICIENT_RESOURCES
STATUS ACCESS DENIED
STATUS DATA_ERROR
STATUS DIRECTORY_NOT_EMPTY
STATUS NOT_SAME_DEVICE
STATUS NO_MORE_FILES
STATUS MEDIA_WRITE_PROTECTED
STATUS DEVICE_NOT_READY
STATUS CRC_ERROR
STATUS DATA_ERROR
STATUS DISK_CORRUPT_ERROR
STATUS NONEXISTENT_SECTOR
STATUS DEVICE_PAPER EMPTY
STATUS SHARING_VIOLATION
STATUS FILE_LOCK_CONFLICT
STATUS WRONG_VOLUME
STATUS NOT_SUPPORTED
STATUS REMOTE_NOT_LISTENING
STATUS DUPLICATE_NAME
STATUS BAD_NETWORK_PATH
STATUS NETWORK_BUSY
STATUS DEVICE_DOES NOT_EXIST
STATUS TOO_MANY_COMMANDS
STATUS ADAPTER HARDWARE_ERROR
STATUS INVALID_NETWORK_RESPONSE
STATUS UNEXPECTED_NETWORK_ERROR
STATUS BAD_REMOTE_ADAPTER
STATUS PRINT_QUEUE_FULL
STATUS NO_SPOOL_SPACE
STATUS PRINT_CANCELLED
STATUS NETWORK_NAME_DELETED
STATUS NETWORK_ACCESS DENIED
STATUS BAD_DEVICE_TYPE
STATUS BAD_NETWORK_NAME
STATUS TOO_MANY_NAMES
STATUS TOO_MANY_SESSIONS
STATUS SHARING_PAUSED
STATUS REQUEST NOT_ACCEPTED
STATUS REDIRECTOR_PAUSED
STATUS OBJECT_NAME_COLLISION
STATUS WRONG_PASSWORD
STATUS INVALID_PARAMETER
STATUS NET_WRITE_FAULT
STATUS PIPE_BROKEN
STATUS OPEN_FAILED
STATUS BUFFER OVERFLOW
STATUS DISK_FULL
STATUS |0_TIMEOUT

SNIA Technical Proposal
Revision 1.0

125

CIFS Technical Reference

ERROR_INSUFFICIENT BUFFER
ERROR_INVALID_NAME
ERROR INVALID_LEVEL
ERROR_BAD_PATHNAME
ERROR _BAD_PIPE
ERROR_PIPE_BUSY

ERROR_NO DATA
ERROR_PIPE_NOT_CONNECTED
ERROR_MORE_DATA
ERROR_VC_DISCONNECTED
ERROR_INVALID_EA_NAME
ERROR _EA_LIST_INCONSISTENT
ERROR_EAS DIDNT_FIT
ERROR_FA_FILE_CORRUPT
ERROR_EA_TABLE FULL
ERROR_INVALID_EA_HANDLE

STATUS BUFFER TOO_SMALL

STATUS OBJECT NAME_INVALID

STATUS INVALID_LEVEL

STATUS OBJECT PATH_INVALID
STATUS INVALID_PARAMETER
STATUS PIPE_NOT_AVAILABLE
STATUS PIPE_EMPTY

STATUS_PIPE_DISCONNECTED

Revision 1.0

STATUS BUFFER_OVERFLOW
STATUS VIRTUAL_CIRCUIT_CLOSED
STATUS INVALID_EA_NAME
STATUS EA_LIST_INCONSISTENT
STATUS EA_TOO_LARGE

STATUS EA_CORRUPT_ERROR
STATUS EA_CORRUPT_ERROR
STATUS EA_CORRUPT_ERROR

SNIA Technical Proposal

126

7. Security Considerations
MISSING

Suggested content for this section:

Define share security level. What dialect support it?

1.

2.

3.

Define user security level.
How is it supported in PDC/BDC environment (NT4)

How it supported in Active directory environment. Define the different security
considerations in different Active Directory modes.

How Kerbros security is used?

5. What are the protocols (or DCE/RPC) needed for each of the User level security models

Some discussion on how file access is authenticated, or how the SID is retrieved in each
of the user level environments mentioned above for ACL

Include the security protocol, or refrence to it

CIFS Technical Reference SNIA Technical Proposal 127

Revision 1.0

8. References
[1] P. Mockapetris, "Domain Names- Concepts A nd Facilities’, RFC 1034, November 1987
[2] P. Mockapetris, "Domain Names- Implementation And Specification”, RFC 1035, November 1987

[3] Karl Auerbach, "Protocol Standard For A Netbios Service On A TCP/UDP Transport: Concepts And Methods', RFC
1001, March 1987

[4] Karl Auerbach, "Protocol Standard For A Netbios Service On A TCP/UDP Transport: Detailed Specifications', RFC 1002,
March 1987

[5] USNational Bureau of Standards, "Data Encryption Standard", Federal Information Processing Standard (FIPS)
Publication 46-1, January 1988

[6] Rivest, R.-MIT and RSA Data Security, Inc., "The MD4 Message Digest Algorithm", RFC 1320, April 1992

[7 Rivest, R.—MIT and RSA Data Security, Inc., “The MD5 Message-Digest Algorithm”, RFC 1321, April 1992

[8] Metzger, P. Piermont, Simpson, W. Daydreamer, “|P Authentication using Keyed MD5”, RFC 1828, August 1995
[9] Leach, P.—Microsoft, “ CIFS Authentication Protocols Specification, Author’ s Draft 4

[10] B. Kaliski, M.Robshaw, "M essage Authentication with MD5", CryptoBytes, Spring 1995, RSA Inc,
(ftp://ftp.rsasecurity.com/pub/cryptobytes/cryptolnl.pdf)

[11] X/Open Company Ltd., "X/Open CAE Specification - Protocols for X/Open PC Interworking: SMB, Version 2", X/Open
Document Number: CAE 209, September 1992.

CIFS Technical Reference SNIA Technical Proposal 128
Revision 1.0

9. Appendix A -- NETBIOS transport over TCP

With respect to the the 7-layer OSI reference model, NetBIOS is a session layer (layer 5)
Application Programmer's Interface (API). The NetBIOS API has been implemented on top of a
variety of transports (layer 4), including TCP/IP. NetBIOS over TCP/IP transport is specified in
RFC 1001 and RFC 1002 (IETF Standard #19).

NetBIOS is the traditional session layer interface for SMB/CIFS. For backward compatibility with
older systems, CIFS implementations SHOULD provide support for RFC 1001/1002 transport.

9.1. Connection Establishment

Connections are established and messages transferred via the NetBIOS session service (see
section 5.3 of RFC 1001 and section 4.3 of RFC 1002). The system that originates the connection
is the "calling" node; the target node is the "called" node. In order to establish an SMB session, a
TCP connection must be established between the calling and called nodes. If a TCP connection
already exists, the SMB session may make use of the existing connection.

9.2. Connecting to a server using the NetBIOS name

Before a NetBIOS session can be established, the node initiating the session (the "calling" node)
must discover the IP address of the target node (the "called" node). This is done using the
NetBIOS name service (see section 5.2 of RFC 1001 and section 4.2 of RFC 1002). NetBIOS
names are always 16 bytes, padded with spaces (0x20) if necessary, as specified in the RFCs.
The 16th byte has been reserved, however, for use as a service indicator. This field is known as
the "suffix byte".

The NetBIOS session service requires that the client provide the NetBIOS names of both the
calling and called nodes. The calling name is the default NetBIOS name of the client, space
padded as described, with a suffix byte value of 0x00. The called name is the NetBIOS name of
the server with a suffix byte value of 0x20. Server implementations which support SMB via
NetBIOS over TCP/IP MUST support the registration and use of the server NetBIOS name.

The calling name is not significant in CIFS, except that an identical name from the same transport address
is assumed to represent the same client. SMB session establishment is initiated using a "Session
Request" packet sent to port 139 (see section 4.3.2 of RFC 1002).

9.3. Connecting to a server using a DNS name or IP address

Implementations MAY support the use of DNS names or IP addresses in addition to NetBIOS
names when initiating SMB connections via NetBIOS over TCP/IP transport. This functionality is
an extension to the NetBIOS over TCP/IP behavior specified in RFC 1001 and RFC 1002, and is
not part of that standard.

As stated above, the Session Request packet requires a called and a calling name, both of which
are NetBIOS names. In order to create a Session Request packet, the DNS name or IP address
of the server must be reverse-mapped to the server's NetBIOS name. Mechanisms for doing so
are as follows:

9.3.1. NetBIOS Adapter Status

A NetBIOS Adapter Status Query is sent to the target IP address. If a response is received and
the target is offering SMB services via NetBIOS over TCP, then the response will include a
NetBIOS name with a suffix byte value of 0x20. This NetBIOS name may be used as the called
name in a Session Request packet.

CIFS Technical Reference SNIA Technical Proposal 129
Revision 1.0

9.3.2. Generic Server Name

Servers offering SMB services via NetBIOS over TCP/IP MAY accept the generic SMB server
name ""SMBSERVER". A client can simply use the name "*SMBSERVER" as the called name
in a Session Request packet. As with all SMB server NetBIOS names, the ""SMBSERVER"
name must be space padded and terminated with a suffix byte value of 0x20.

The ""SMBSERVER" name MUST NOT be registered with the NetBIOS name service, as it is an
illegal NetBIOS name (see section 5.2 of RFC 1001).

The target may return a CALLED NAME NOT PRESENT error. This may simply indicate that the
server does not support the "*"SMBSERVER" generic name.

9.3.3. - Parsing the DNS Name (guessing)

9.4.

Systems which support NetBIOS transport over TCP/IP will often use the same base name within
the DNS and NetBIOS name spaces. Thus, the first label of the DNS name represents a good
guess at the NetBIOS name of the server.

The first label of the DNS name consists of the initial portion of the DNS name string, up to but not
including the first dot character ('."). If the label is greater than 15 bytes in length, it must be
truncated to 15 bytes. The result is then space padded to a total of 15 bytes, and a suffix value
0x20 is used. This forms a valid NetBIOS name that may be used as a called name in a Session
Request packet.

If the target returns a CALLED NAME NOT PRESENT error, then the DNS name guess is
incorrect. If the original user input was an IP address, the DNS name can be determined using a
reverse lookup against the DNS. Any or all of the above MAY be tried in any order.

NetBIOS Name character set

There is no standard character set for NetBIOS names. NetBIOS names are simply strings of
octets, with the following restrictions:

Names which are to be registered with the NetBIOS Name Service must not begin with an
asterisk (0x2A). (The *SMBSERVER name is never registered.)

Names should not contain a NUL (0x00) octet. Common implementation languages may
interpret the NUL octet value as a string terminator.

CIFS Technical Reference SNIA Technical Proposal 130

Revision 1.0

10. Appendix B -- TCP transport

When operating CIFS over TCP, connections are established to TCP port 445, and each message
is framed as follows:

1111111111222222222233
01234567890123456789012345678901
T S i s S S s e Tt o
| ZERO | LENGTH |
s S T ST S S T s S S i S S S S S

I I

/ SMB (Packet Type Dependent) /

I I

BT ST S S L T ST S S S i e S e T T aTuis S O SR B

Each CIFS request starts with a 4 byte field encoded as above: a byte of zero, followed by three
bytes of length; after that follows the body of the request.

CIFS Technical Reference SNIA Technical Proposal 131
Revision 1.0

11.

Appendix C — Share Level Server Security

Each server makes a set of resources available to clients on the network. A resource being
shared may be a directory tree, named pipe, printer, etc. As far as clients are concerned, the
server has no storage or service dependencies on any other servers; a client considers the server
to be the sole provider of the file (or other resource) being accessed.

The CIFS protocol requires server authentication of users before file accesses are allowed, and
each server authenticates its own users. A client system must send authentication information to
the server before the server will allow access to its resources.

The CIFS protocol used to define two methods that can be selected by the server for security:
share level and user level. User level security is the only non-obsolescent method.

A share level server makes some directory on a disk device (or other resource) available. An
optional password may be required to gain access. Thus, any user on the network who knows the
name of the server, the name of the resource, and the password has access to the resource.
Share level security servers may use different passwords for the same shared resource with
different passwords, allowing different levels of access.

Share-level-only clients do not send SESSION_SETUP_ANDX requests. Instead, they send
TREE_CONNECT_ANDX requests that include a password or use challenge/response
authentication to prove that they know a password.

When a user level server validates the account name and password presented by the client, an
identifier representing that authenticated instance of the user is returned to the client in the Uid field
of the response SMB. In contrast, a share level server returns no useful information in the Uid field.

If the server is executing in share level security mode, Tid is the only thing used to allow access to
the shared resource. Thus, if the user is able to perform a successful connection to the server
specifying the appropriate nethame and passwd (if any), the resource may be accessed according
to the access rights associated with the shared resource (same for all who gained access this
way).

The user level security model was added after the original dialect of the CIFS protocol was issued,
and subsequently some clients may not be capable of sending account name and passwords to
the server. A server in user level security mode communicating with one of these clients may
allow a client to connect to resources even if the client has not sent account name information:

1) If the client's computer name is identical to an account name known on the server, and if the
password supplied or authenticated via challenge/response to connect to the shared resource
matches that account's password, an implicit "user logon" will be performed using those
values. If the above fails, the server may fail the request or assign a default account name of
its choice.

2) The value of Uid in subsequent requests by the client will be ignored, and all access will be
validated assuming the account name selected above.

CIFS Technical Reference SNIA Technical Proposal 132

Revision 1.0

12. Appendix D — CIFS UNIX Extension

12.1. Introduction

The purpose of these extensions is to allow UNIX based CIFS clients and servers to exchange
information used by UNIX systems, but not present in Windows based CIFS servers or clients.
These extensions may not be implemented by all UNIX systems. Two simple examples are
symbolic links and UNIX special files (e.g. UNIX named pipes).

The CIFS UNIX Extension are intended for use by all UNIX and UNIX-like systems the implement
the CIFS protocol.

12.2. Principles

These are a set of principles that the extensions meet.

Minimal changes To make the extensions easier to implement, the nurmber of changes and additions
were minimized.

Can be implemented on While being useful for UNIX, the extension allow one end of the connection to be a
non-UNIX systems non-UNIX system. Thisis so that other CIFS servers and clients can better integrate
withaUNIX CIFSclient or server.

Use current commands The changes only affect current commands. There was no need for UNIX CIFS
clientsto use CIFS commands marked as obsol ete, nor should there be any changes
to obsolete requests.

Retain existing CIFS The existing semantics of CIFS are retained. Perhaps the most notable isthat file
semantics names are case insensitive, but case should be preserved.

Use CIFS security model | The standard CIFS security model is still used. This requires each distinct user to be
logged into the server.

Addition to dialect This specification is an addition to the CIFS dialect, currently NT LM 0.12. Itis
selected by the capability bit in the server's Negotiate protocol response.

Future resilient Future enhancements MUST not modify or change the meaning of previous
implementations of the specification.

12.3. CIFS Protocol Modifications

This section details the require changes to the CIFS protocol that are needed to support CIFS
UNIX Extensions. A summary of the changes is listed below.

In the Negotiate Protocol SMB reserve a capabilities bit, CAP_UNIX with the value of 0x00800000,
in the Server capabilities field to indicate support of CIFS Extension for UNIX.

Reserve information levels numbers 0x200-0x2FF

TRANS2_QUERY_FS_INFORMATION, TRANS2_QUERY_PATH_INFO,
TRANS2_QUERY_FILE_INFO, TRANS2_SET_PATH_INFO, TRANS2_SET_FILE_INFO,
TRANS2Z_FINDFIRST, and TRANS2_FINDNEXT SMBs for CIFS Extensions for UNIX.

CIFS Technical Reference SNIA Technical Proposal 133
Revision 1.0

12.4. Modified SMBs

SMB

Modification

NEGOTIATE

Added CAP_UNIX (0x00800000) to the server capabilitiesfield.

Seed.?2

TRANS2_QUERY_FS INFORMATION

Added Following Information Levels:
SMB_QUERY_CIFS UNIX_INFO (0x200) See 4.1.6.7

TRANS2_ QUERY_PATH_INFORMATION

Added Following Information Levels:
SMB_QUERY_FILE UNIX_BASIC (0x200) See 4.2.15.12
SMB_QUERY_FILE_UNIX_LINK (0x201) See4.2.15.13

TRANS2_QUERY_FILE INFORMATION

Same modification asdonein
TRANS2_QUERY_PATH_INFORMATION

TRANS2_SET_PATH_INFORMATION

Added Following Information Levels:
SMB_SET_FILE_UNIX_BASIC (0x200) See 4.2.17.3
SMB_SET_FILE UNIX_LINK (0x201) See4.2.17.4
SMB_SET_FILE_UNIX_HLINK (0X203) See4.2.17.5

TRANS2_SET_FILE INFORMATION

Same modification asdonein
TRANS2 SET PATH_INFORMATION

TRANS2_FINDFIRST

Added following Information Levels:
SMB_FIND_FILE _UNIX (0X202) Sec4.34.8

TRANS2_FINDNEXT

Same modification as donein TRANS2_FINDFIRST

12.5. Guidelines for implementers

Once the Client determines that the server supports the CIFS UNIX Extension it should first
send SMB_QUERY_CIFS_UNIX_INFO before sending any other CIFS UNIX Extension
SMBs to determine the version and capabilities that are supported by the server.

Clients or servers using this extension should have no specific reserved filenames (eg
CON, AUX, PRN), and should not need to take specific action to protect the other end of
the connection from them. If they have any such requirements, they must do them
internally. This also applies to reserved characters in filenames (eg : \|).

Inodes can be transferred in the uniqueid field of SMB_QUERY_FILE_UNIX_BASIC

(0x200).

Clients should operate in UNICODE if at all possible. A useful bridging step is to implement

UTF-8

Symbolic links are created by calling TRANS2_SET_PATH_INFO with the
SMB_QUERY_FILE_UNIX_LINK infolevel data structure provided.

Device file (and other special UNIX files) are created by calling TRANS2_SET_PATH_INFO
with the SMB_QUERY_FILE_UNIX_BASIC infolevel data structure appropriately filled in for

a device node.

CIFS Technical Reference SNIA Technical Proposal

Revision 1.0

134

Servers should return their timezone as UTC. This will then require no timezone mapping
by the client or server. The NetRemoteTimeOfDay IPC should still return the real local
time.

Creates with particular permissions can be achieved by sending a CREATE_AND_X and a
TRANS2_SET_PATH_INFO SMBs.

CIFS Technical Reference SNIA Technical Proposal 135
Revision 1.0

13. Appendix E — CIFS Macintosh Extension

13.1. Introduction

The purpose of these extensions is to allow the Macintosh to better interoperate in a CIFS network.
With these extensions Macintosh Clients will be able to reduce network traffic generated by the
Macintosh, which in turn would speed up file access by the Client. These extensions will allow
non-Macintosh Clients access to Macintosh files and also allow for the server to decide how to
store Macintosh files and folders.

The CIFS Macintosh Extension is intended for use by all systems that implement the CIFS
protocol.

13.2. Principles

These are a set of principles that the extensions meet.

Minimal changes To make the extensions easier to implement, the number of changes and additions
were minimized.

Can be implemented on While being useful for Macintosh, the extension allows one end of the connection to
non-Macintosh systems | be anon-Macintosh system. Thisis so that other CIFS servers and clients can better
integrate with a Macintosh CIFS client or server.

Use current commands The changes only affect current commands. There is no need for CIFS clientsto use
CIFS commands marked as obsol ete, nor should there be any changes to obsolete
reguests.

Retain existing CIFS The existing semantics of CIFS are retained.
semantics

Use CIFS security model | The standard CIFS security model is still used. This requires each distinct user to be
logged into the server.

Addition to dialect These items are an addition to the CIFS dialect, currently NT LM 0.12. These
extensions are turn on by the server responding with out an error to the
TRANS2_QUERY_FS_INFORMATION call with aninfo level of
Trans2_GetSMB_MAC_QUERY_FS_INFO.

Future resilient Future enhancements MUST not modify or change the meaning of previous
implementations of the specification.

13.3. CIFS Protocol Modifications

This section details the require changes to the CIFS protocol that are needed to support CIFS
Macintosh Extensions. These extensions require support of the NT LM 0.12 dialect with some
minor additions. The Server must support the NT stream format for the opening of the resource,
comments, and data streams of a file. A summary of the changes is listed below.

Reserve information levels numbers 0x300-0x3FF in the TRANS2_QUERY_FS_INFORMATION,
TRANS2_QUERY_PATH_INFO, TRANS2_SET_PATH_INFO, TRANS2_FINDFIRST, and
TRANS2_FINDNEXT SMBs for CIFS Extensions for Macintosh.

CIFS Technical Reference SNIA Technical Proposal 136
Revision 1.0

13.4. Modified SMBs

SMB

Modification

TRANS2_QUERY_FS INFORMATION

Added Following Information Levels:
SMB_QUERY_ MAC_FS INFO (0x301) See4.1.6.7

TRANS2_FINDFIRST

Added following Information Levels:
SMB_ FINDBOTH_MAC_HFS INFO (0X302) See4.3.4.9

TRANSZ_FINDNEXT

Same modification as donein TRANS2_FINDFIRST

TRANS2_SET_PATH_INFORMATION

Added Following Information Levels:
SMB_MAC_SET_FINDER_INFO (0x303) See 4.2.18.6
SMB_MAC DT_ADD_APPL (0x304) See4.2.18.7
SMB_MAC DT _REMOVE_APPL (0x305) See4.2.18.8
SMB_MAC DT _ADD_ICON (0x309) See4.2.18.9

TRANS2_QUERY_PATH_INFORMATION

Added Following Information Levels:
SMB_MAC_DT_GET_APPL (0x306) See4.2.16.14
SMB_MAC_DT_GET_ICON (0x307) See4.2.16.15
SMB_MAC_DT_GET_ICON_INFO (0x308) See4.2.16.16

13.5. Guidelines for implementers

These extensions will be processed on share-by-share bases. This means that the Client

will have to confirm that each share supports these extensions not just that the Server

supports these extensions. This will allow a server to have some shares that are
Macintosh aware and others that are not.

When a file or folder is deleted then all streams and information stored on the sever
associated with that file or folder should be removed. When a file or folder is

Copied/Renamed/Moved then all streams and information stored on the sever associated
with that file or folder should be Copied/Renamed/Moved.

Clients or servers using this extension should have no specific reserved filenames (eg

CON, AUX, PRN), and should not need to take specific action to protect the other end of
the connection from them. If they have any such requirements, they must do them
internally. This also applies to reserved characters in filenames (eg : \|).

Clients should operate in UNICODE if at all possible.

CIFS Technical Reference

Supporting the Desktop Database calls requires having a way to store information in a
database. There are two kinds of information store in the database. Applications path that
is associated with an application signature. Icons are stored based on size, icon type, file
creator, and file type.

SNIA Technical Proposal 137
Revision 1.0

14. Appendix F — APl Numbers for Transact based RAP calls
API_WshareEnum 0

API_WshareGetInfo 1
API_WshareSetInfo 2
API_WshareAdd 3
API_WshareDel 4
API_NetShareCheck 5
API_WsessionEnum 6
API_WsessionGetInfo 7
API_WsessionDel 8
API_WconnectionEnum 9
API_WfileEnum 10
API_WfileGetInfo 11
API_WfileClose 12
API_WserverGetinfo 13
API_WserverSetinfo 14
API_WserverDiskEnum 15
API_WserverA dminCommand 16
API_NetAuditOpen 17
API_WauditClear 18
API_NetErrorLogOpen 19
API_WerrorLogClear 20
API_NetCharDevEnum 21
API_NetCharDevGetinfo 22
API_WCharDevControl 23
API_NetCharDevQEnum 24
API_NetCharDevQGetInfo 25
API_WCharDevQSetInfo 26
API_WCharDevQPurge 27
API_WCharDevQPurgeSelf 28
API_WMessageNameEnum 29
APlI_WMessageNameGetInfo 30
API_WMessageNameAdd 31
API_WMessageNameDel 32
API_WMessageNameFwd 3

APlI_WMessageNameUnFwd
API_WMessageBufferSend
API_WMessageFileSend
API_WMessagel ogFileSet
APlI_WMessagel ogFileGet
API_WServiceEnum
API_WServicelnstall
API_WServiceControl
API_WA-ccessEnum
API_WAccessGetInfo
API_WAccessSetInfo
API_WAccessAdd
API_WAccessDel
API_WGroupEnum
API_WGroupAdd
API_WGroupDel
API_WGroupAddUser
APlI_WGroupDelUser
API_WGroupGetUsers
API_WUserEnum
API_WUserAdd
API_WUserDel

RELBRBLEEEISEGREIELEBLE8ILHR

CIFS Technical Reference SNIA Technical Proposal
Revision 1.0

API_WUserGetInfo 56

API_WUserSetinfo 57
API_WUserPasswordSet 58
API_WUserGetGoups 59
API_DeadTableEntry 60
/*Thisline and number replaced a Dead Entry */
API_WWkstaSetUID 62
APl_WWkstaGetInfo 63
API_WWkstaSetInfo 64
API_WUseEnum 65
API_WUseAdd 66
API_WUseDel 67
API_WUseGetInfo 68
APl_WPrintQEnum 69
API_WPrintQGetInfo 70
API_WPrintQSetInfo 71
API_WPrintQAdd 72
API_WPrintQDel 73
API_WPrintQPause 74
APlI_WPrintQContinue 75
API_WPrintJobEnum 76
API_WPrintJobGetInfo 7
API_WPrintJobSetInfo_OLD 78

/* Thisline and number replaced a Dead Entry */
/* Thisline and number replaced a Dead Entry */
API_WPrintJobDel 81

API_WPrintJobPause 82
API_WPrintJobContinue 83
API_WPrintDestEnum &4
API_WPrintDestGetInfo 85
API_WPrintDestControl 86
API_WProfileSave 87
API_WProfileLoad 83
API_WStatisticsGet 89
API_WStatisticsClear 20
API_NetRemoteTOD 91
API_WNetBiosEnum 92
API_WNetBiosGetInfo 93
API_NetServerEnum A
API_I_NetServerEnum 95
API_WServiceGetlnfo %

/* Thisline and number replaced a Dead Entry */
/* Thisline and number replaced a Dead Entry */
/* Thisline and number replaced a Dead Entry */
/* Thisline and number replaced a Dead Entry */
/* Thisline and number replaced a Dead Entry */
/* Thisline and number replaced a Dead Entry */

APlI_WPrintQPurge 103
API_NetServerEnunm? 14
API_WAccessGetUserPerms 105
API_WGroupGetlnfo 106
API_WGroupSetinfo 107
API_WGroupSetUsers 108
API_WUserSetGroups 109
API_WUserModal sGet 110
API_WUserModal sSet 11
API_WFileEnum2 112
API_WUserAdd2 113
CIFS Technical Reference SNIA Technical Proposal

Revision 1.0

API_WUserSetInfo2
API_WUserPasswordSet2
API_|_NetServerEnum?2
API_WConfigGet2
API_WConfigGetAll2
API_WGetDCName
API_NetHandleGetInfo
API_NetHandleSetInfo
API_WStatisticsGet2
API_WBLuildGetInfo
API_WFileGetInfo2
API_WFileClose2
API_WNetServerReqChallenge
API_WNetServerAuthenticate
API_WNetServerPasswordSet
API_WNetAccountDeltas
API_WNetA ccountSync
APl_WUserEnum2
API_WWskstaUserL ogon
API_WWkstaUserL ogoff
API_WLogonEnum
API_WErrorLogRead
API_WI_NetPathType
API_WI_NetPathCanonicalize
API_WI_NetPathCompare
API_WI_NetNameValidate
API_WI_NetNameCanonicalize
API_WI_NetNameCompare
API_WAuditRead
API_WPrintDestAdd
API_WPrintDestSetInfo
API_WPrintDestDel
API_WUserValidate?
API_WPrintJobSetInfo
API_TI_NetServerDiskEnum
API_TI_NetServerDiskGetInfo
API_TI_FTVerifyMirror
API_TI_FTAbortVerify
API_TI_FTGetInfo
API_TI_FTSetInfo
API_TI_FTLockDisk
API_TI_FTFixError
API_TI_FTAbortFix
API_TI_FTDiagnoseError
API_TI_FTGetDriveStats

114
115
116
117
118
119

121

123
124
125
126
127
128

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

/* Thisline and number replaced a Dead Entry */

API_TI_FTErrorGetinfo

160

/* Thisline and number replaced a Dead Entry */
/* Thisline and number replaced a Dead Entry */

API_NetAccessCheck
API_NetAlertRaise
API_NetAlertStart
API_NetAlertStop
API_NetAuditWrite
API_NetlRemoteAPI
API_NetServiceStatus
API_|_NetServerRegister
API_|_NetServerDeregister

CIFS Technical Reference

163
164
165
166
167
168
169
170
171

SNIA Technical Proposal
Revision 1.0

140

APl _|_NetSessionEntryMake 172

API_|_NetSessionEntryClear 173
API_|_NetSessionEntryGetlnfo 174
API_|_NetSessionEntrySetinfo 175
API_|_NetConnectionEntryMake 176
API_|_NetConnectionEntryClear 177
API_|_NetConnectionEntrySetinfo 178
API_|_NetConnectionEntryGetinfo 179
API_|_NetFileEntryMake 180
API_|_NetFileEntryClear 181
API_|_NetFileEntrySetinfo 182
API_|_NetFileEntryGetinfo 183
API_AltSrvMessageBufferSend 184
API_AltSrvMessageFileSend 185
API_wl_NetRplWkstaEnum 186
API_wl_NetRplWkstaGetInfo 187
API_wl_NetRplWkstaSetInfo 188
API_wl_NetRplWkstaAdd 189
API_wl_NetRplWkstaDel 190
API_wl_NetRplProfileEnum 191
API_wl_NetRplProfileGetInfo 192
API_wl_NetRplProfileSetInfo 193
API_wl_NetRplProfileAdd 194
API_wl_NetRplProfileDd 195
API_wl_NetRplProfileClone 196
API_wl_NetRplBaseProfileEnum 197

/* Thisline and number replaced a Dead Entry */
/* Thisline and number replaced a Dead Entry */
/* Thisline and number replaced a Dead Entry */
API_WIServerSetinfo 201
/* Thisline and number replaced a Dead Entry */
/* Thisline and number replaced a Dead Entry */
/* Thisline and number replaced a Dead Entry */

API_WPrintDriverEnum 205
API_WPrintQProcessorEnum 206
API_WPrintPortEnum 207
API_WNetWriteUpdatel og 208
API_WNetAccountUpdate 209
API_WNetAccountConfirmUpdate 210
API_WConfigSet 211
API_WAccountsReplicate 212
[* 213 isused by WfW */
API_SamOEM ChgPasswordUser2_P 214
API_NetServerEnum3 215
API_WoprintDriverGetInfo 250
API_WoprintDriverSetinfo 251
API_WaliasAdd 252
API_WaliasDel 253
API_WaliasGetInfo 254
API_WaliasSetInfo 255
API_WaliasEnum 256
API_WuserGetL ogonAsn 257
API_WouserSetLogonAsn 258
API_WuserGetAppSel 259
API_WuserSetAppSel 260
API_WappAdd 261
API_WappDel 262
APlI_WappGetinfo 263
CIFS Technical Reference SNIA Technical Proposal 141

Revision 1.0

APl_WappSetinfo 264

API_WappEnum 265
API_WUserDCDBInit 266
API_WDASDAdd 267
API_WDASDDel 268
API_WDASDGetInfo 269
API_WDASDSetInfo 270
API_WDASDEnum 271
API_WDASDCheck 272
API_WDASDCII 273
API_WuserRemotel ogonCheck 274
API_WUserPasswordSet3 275
API_WCreateRIPLMachine 276
API_WDeleteRIPLMachine 277
API_WGetRIPLMachinelnfo 278
API_WSetRIPLMachinelnfo 279
API_WEnumRIPLMachine 280
API_WI_ShareAdd 281
API_WI_AliasEnum 282
API_WaccessApply 283
API_WPrt16Query 284
API_WPrt16Set 285
API_WUserDel 100 286
API_WUserRemotel ogonCheck?2 287
API_WRemoteT OD Set 294
API_WprintJobMoveAll 295
APlI_W16AppParmAdd 296
API_W16AppParmDel 297
API_W16A ppParmGet 298
API_W16AppParmSet 299
API_W16RIPLMachineCreate 300
API_W16RIPLMachineGetInfo 301
API_W16RIPLMachineSetinfo 302
API_W16RIPLMachineEnum 303
API_W16RIPLMachineListParmEnum 304
API_W16RIPLMachClassGetInfo 305
API_W16RIPLMachClassEnum 306
API_W16RIPLMachClassCresate 307
API_W16RIPLMachClassSetInfo 308
API_W16RIPLMachClassDelete 309
API_W16RIPLMachClassL PEnum 310
API_W16RIPLMachineDelete 311
API_W16WSL evel Getinfo 312
API_WserverNameAdd 313
APl_WserverNameDel 314
API_WserverNameEnum 315
API_I_WDASDEnum 316
API_|_WDASDEnumTerminate 317
API_I_WDASDSetInfo2 318
MAX_API 318
CIFS Technical Reference SNIA Technical Proposal 142

Revision 1.0

