
I P A
C T

ntegrated rocess utomation &
ontrol echnologies

IPACT Queuer and Router Services
User Reference Manual

Document Revision: August 16, 1999

Software Version: 2.5

Operating System: OpenVMS AXP

Integrated Process Automation and Control Technologies
260 South Campbell

Valparaiso, IN 46383
(219) 464-7212

Fax: (219) 462-5387

August 1999

This document is the property of and is proprietary to Integrated Process Automation and Control
Technologies (IPACT). The information in this document is subject to change without notice and should not
be construed as a commitment by IPACT. IPACT assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such a license.

Integrated Process Automation and Control Technologies makes no representations that the use of its
products in the manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Copyright © 1999 by Integrated Process Automation and Control Technologies
All Rights Reserved
USA

The data furnished in this document is subject to the terms of the copyright page and remain the property of
IPACT Inc. No part of this document or included distribution media shall be duplicated, used, stored, or
disclosed in whole or in part except as provided by the license agreement.

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, VMS, DEC, DECnet,
VMS, and VAX. IPACT is a trademark of Integrated Process Automation and Control Technologies.

Please notify IPACT of any errors or omissions of this document.

This document was created using Microsoft Word for Windows, version 6.0

TABLE OF CONTENTS

1. INTRODUCTION _____________ 1
1.1 Introduction 1

1.2 Supported Systems 1

1.3 Audience 1

1.4 Document Structure 1

2. OVERVIEW _________________ 2
2.1 General Information 2

2.2 IQR Components 2
2.2.1 Hub 2
2.2.2 Message Queue 3
2.2.3 IQR Router 4

2.3 IQR System Service 5

2.4 Message Flow 5

3. INSTALLATION ______________ 6
3.1 Command Procedure 6

3.2 Sample Directory Structure 7

3.3 IQR Logicals 8

3.4 Command Procedures 9

3.5 Test Utilities 9

3.6 Required Privileges 10

3.7 Sample Installation Procedure 10

4. IQR SYSTEM SERVICE
LIBRARY _____________________ 14

4.1 iqr_ack_read 14

4.2 iqr_add_message_q 16

4.3 iqr_allocate_msgblks 19

4.4 iqr_attach_h 22

4.5 iqr_backup_rna 25

4.6 iqr_connect_read 27

4.7 iqr_connect_write 30

4.8 iqr_deallocate_msgblks 32

4.9 iqr_delete_q 34

4.10 iqr_disconnect_h 36

4.11 iqr_disconnect_q 37

4.12 iqr_fill_msgblks 39

4.13 iqr_get_q_info 42

4.14 iqr_modify_q 44

4.15 iqr_read_hmb 47

4.16 iqr_read_q 49

4.17 iqr_read_qw 51

4.18 iqr_read_segment 53

4.19 iqr_reset_stat_h 56

4.20 iqr_reset_stat_q 57

4.21 iqr_rtr_write_q 59

4.22 iqr_thread_msgblks 62

4.23 iqr_write_q 64

5. RETURN STATUS CODES_____67
5.1 Successful Status Codes 67

5.2 Failure Status Codes 67

6. USING THE SYSTEM
SERVICES ____________________69

6.1 Code Generation 69

6.2 Using IQR with C 70

6.3 Using IQR with FORTRAN 70

7. COMPATIBILITY_____________71
7.1 MAQ System Service Patch Library 72

7.2 MQD System Service Patch Library 74

8. IQR ROUTER _______________77
8.1 Introduction 77

8.2 TCP/IP IQR Router 77

8.3 DECnet Router Routing Database 77

8.4 DECnet Routing Utilities 82

8.5 TCP/IP Router Routing Database 82
8.5.1 TCP/IP Router Database [GLOBAL]
Section 82
8.5.2 TCP/IP Router Database
[INCOMING] Section 83
8.5.3 TCP/IP Router Database
[OUTGOING] Section 83

9. UTILITIES__________________ 87
9.1 DMPQUE 87

9.2 DMPRTR 90

9.3 DQIT 92

9.4 IQU 94
9.4.1 IQU /ADD 94
9.4.2 IQU /CREATE 95
9.4.3 IQU /DELETE 95
9.4.4 IQU /INFO 96
9.4.5 IQU /INSTALL 96
9.4.6 IQU /MODIFY 96
9.4.7 IQU /REMOVE 97
9.4.8 IQU /RESET 98

9.5 LSTRTR 99

9.6 QIT 101

9.7 RTRDBS 102

9.8 TCPIQRSTAT 102

10. APPENDIX _______________104
10.1 IQR Glossary 104

IPACT Queuer and Router
©1996 by IPACT, Inc. Introduction

Introduction

Page 1

1. Introduction

1.1 Introduction
The IPACT Queuer and Router Services (IQR) provides a standard Application
Programming Interface (API) for sending messages. By using IQR, application
programmers relieved of the burden of developing messaging methods between
applications on the same or multiple nodes (via a network connection or through a cluster).

IQR provides delivery, recovery, and connectivity between multiple nodes using a router installed over
DECnet or TCP/IP. IQR services are provided that allow for the addition of user supplied routers to
alternate networks. IPACT has a library of other routers written for process control devices, SNA, and
other networks.

A link library is provided that interfaces the Manufacturing Automation Queuing and Routing Software
(available from DECUS).

The need to deliver transactions and events reliably between different computer systems have been
identified for most process control computer systems. DECnet does not guarantee the delivery of
messages at the application layer. The IQR router and IQR services provide this end to end delivery
guarantee. The use of these two mechanisms provides the ability to deliver information from one
computer system to another in applications where such guarantees are required (e.g. the CIM
environment). Messages are not deleted or lost until the receiving process acknowledges the message.
This can be thought of in a similar manner as a database “commit”.

1.2 Supported Systems
The IPACT Queuer and Router Services currently supports the AXP/Open VMS v6.1 and higher
operating system. IQR also supports clustered systems.

1.3 Audience
This document is designed for the Application Programmer and the System Manager. The casual
reader may choose to only read the Overview Chapter. This manual is intended for the programmer
and installer of the IPACT Queuer and Router Services. This document assumes that the reader has
sufficient knowledge of the VMS calling standards, system services, and typical system management
skills.

1.4 Document Structure
This document contains an overview and a detailed description of the IQR product. The Overview
Chapter gives a description of the product and the component parts. The API, the router, installation,
and utilities are all documented in separate chapters.

IPACT Queuer and Router
©1996 by IPACT, Inc. Overview

General Information

Page 2

2. Overview

2.1 General Information
The IQR software is designed to provide guaranteed message delivery between two
different locations. This is done by creating a messaging hub which contains
message queues. Each message queue contains actual messages to be read. Also,
the IQR software provides a router which will move a message from one hub to another (even across
different nodes).

2.2 IQR Components

2.2.1 Hub
A hub is an individual “container” that holds all the information required for a group of message
queues and their respective messages.

Each hub is created by using the IQU utility. When created, the hub occupies both system memory and
a disk container file. System memory is used to store general hub information, as well as non-
journaled message queues. The container file holds a backup of hub information and journaled
message queues.

All hubs can contain a pre-defined number of message queues, either journaled or non-journaled.
The hub is created in protected memory to prevent accidental “corruption” of the Hub’s information.

Container
Disk
File

Journaled SpaceNon-journaled Space

Message
Queue

Replicating
Message

Queue

Message
Queue Message

Queue

Message
Queue

Message
Queue

HUB REGION
Local Node Memory

An example of a hub
on a node. This
shows the mapping
of the Journaled
space to a container
disk file, and how a
replicating message
queue can write to
messages within a
hub.

IPACT Queuer and Router
©1996 by IPACT, Inc. Overview

IQR Components

Page 3

2.2.2 Message Queue
Within any hub are usually many message queues. A message queue has a number of properties that
can be defined during the process of creating a message queue. Message queues are created by using
the IQU utility or by using the IQR System Service.

Messages are written to a message queue using utilities (like QIT), system service routines, or from
another hub via the router. Messages are then read from a message queue using utilities (like DQIT),
system service routines, or sent to another hub via the router.

All message queues are remembered between system startups. There is no need to create the queues
after each startup as they will exist when the hub is re-installed using the IQU utility (see Utility
Chapter). The characteristics of each message queue are also maintained over a system startup for all
message queues.

The following list of properties can be defined for any message queue:

Properties Description

Name All message queues have a name that consists of up to 16
characters. No two message queues in a hub can have the same
name.

Size Messages written to a message queue can be of many varying
sizes. Each message queue can specify the size (in bytes) of the
largest message that can be written to it.

Location A message queue can be either journaled or non-journaled.
Journaled message queues are saved in a disk file and are
recoverable after abnormal events like a system crash.
Additionally, journaled message queues can be shared over a
cluster. Non-journaled message queues are stored in memory and
offer a speed advantage over journaled message queues, but are
not recoverable in the event of a system shutdown and cannot be
shared over a cluster.

Volatility Message queues can be created so that messages written to it are
volatile. A volatile message always has the possibility of being
lost in the event that the message queue has run out of room and
requires more space to write a new message. In this case, the
oldest message is deleted from the message queue.

Number of Messages A message queue can be specified to hold only a certain number
of messages at any one time, regardless of the size of the actual
message. An example would be a volatile message queue that can
hold only two messages at a time. Any time a message is written
to it that would exceed the two message limit, an error message is
reported (unless other flags modify its operation).

IPACT Queuer and Router
©1996 by IPACT, Inc. Overview

IQR Components

Page 4

Acknowledgment All messages must be acknowledged from a message queue after
being read. Acknowledging a message indicates to the queue that
the receiver has properly received the message, and the message
queue is now clear to delete the message from the queue.
Acknowledgment is usually done by the user to guarantee
message delivery; however, it can be set up to be done
automatically after a message is read.

Number of Readers To read a message from a message queue, you must first connect
to it and declare yourself as a reader. A message queue can only
have one (or possibly two) readers connected to it at a time. The
number of readers allowed is defined at the time the message
queue is created. If more readers try to connect than are allowed,
an error is returned. The first reader to connect is the Primary
Reader and the second reader to connect is the Secondary
Reader.

Stale Messages Message queues can be set up to have stale messages. A message
becomes stale when it exists on a queue for longer than a preset
amount of time. After a message becomes stale, it is deleted from
the queue (without a chance to be read).

Replication Some message queues can be created to replicate any message
written to it to other message queues within its hub. This can aid
in the ability to perform just one write to a message queue that in
turn will automatically write the message to up to four other
message queues. Messages are never actually written to a
replicating message queue; therefore readers are not allowed to
connect to this kind of queue.

Within each message queue are its contained messages. Each message is stored in FIFO (first in, first
out) order. All messages will remain in the queue until one of the following conditions is met:

• A reader acknowledges a message
• A process requests to delete a message
• A message becomes stale
• A volatile message queue runs out of space.

Messages are not stored in any particular format. It is up to the writer/reader of the messages to
interpret the actual message being passed.

It is important to remember that all messages that are read must be acknowledged. If a read message is
never acknowledged, the reading process will not be able to read another message until it
acknowledges the current one. If, however, the process would abnormally exit and never acknowledge
the message, the read message is again placed at the front of the queue. This will insure that a process
will properly read and process each message.

2.2.3 IQR Router
The IQR Router is responsible for routing messages from message queues in a particular hub to other
hubs or remote nodes. Currently, only the DECnet transport is supported. Future releases will be
available which will support TCP/IP. The remote nodes may be any DECnet compatible node that
supports the IQR Router protocol (to include routers of the MAQ/MQD and IMS type).

IPACT Queuer and Router
©1996 by IPACT, Inc. Overview

IQR System Service

Page 5

.

Message
Queue

Message
Queue

Message
Queue

Local Node

Router

Hub Region

Message
Queue

Message
Queue

Message
Queue

Hub Region

Message
Queue

Message
Queue

Message
Queue

Local Node

Router

Hub Region

Message
Queue

Message
Queue

Message
Queue

Hub Region

Router

2.3 IQR System Service
The interface to the IQR software is through an Application Programming Interface (API). This API is
written as a user written system service and is installed with protected privileges. The system service
allows the ability of the IQR software to protect the files, shared regions, and access methods from
errant user programs. All of the data structures are protected in either executive or kernel mode. The
following is a list of the common services provided. The IQR System Service Library Descriptions
Chapter gives a more complete description of the system service calls including those typically only
used by the IQR router and the IQR utilities.

• IQR_ACK_READ - Acknowledge a message read from a message queue
• IQR_ATTACH_H - Attach to a hub
• IQR_BACKUP_RNA - Negative acknowledgment of a message from a message queue
• IQR_CONNECT_READ - Connect to a message queue with intent to read
• IQR_CONNECT_WRITE - Connect to a message queue with intent to write
• IQR_READ_Q - Read a message from a message queue
• IQR_READ_QW - Read or wait for a message from a message queue
• IQR_WRITE_Q - Write a message to a message queue

2.4 Message Flow
When a VMS process writes a message to a message queue, the IQR services determine if and where
the message can be queued. This determination depends on how the message queue was defined. If
successful, the message will be placed in region or hub container file depending if the message queue is
journaled or not. The reader process reads the message, processes the message, and then acknowledges
the message from the message queue. Until the message is acknowledged the message is not deleted.

An example of how
routers
communicate. Note
that a router can talk
within its own node
and across a
network to a different
router.

IPACT Queuer and Router
©1996 by IPACT, Inc. Installation

Command Procedure

Page 6

3. Installation

3.1 Command Procedure
The IQR Software is installed using the VAX/VMS INSTALL procedure in the
SYS$UPDATE directory. The product name is of the form: IQRvvr (where
vv=version and r=revision). The install kit will request a minimal number of
questions to help customize your installation.

To begin your installation, insure that any previous versions of IQR are not operational. If you are
installing a new version of IQR, it is recommended that you dump the messages from your message
queues before beginning the installation process. To remove messages, use the following from the
command line:

DQIT /ID=[mesg_queue] /HUB=[hub] /ALL /DUMPFILE=[filename] /ADD

Enter this command line for each message queue within a hub that you want to save. All messages
within a message queue will be appended to the dumpfile filename. Note that you must have a separate
filename for each hub that you want to back up. After installation, you can restore the messages by
adding the message queues to the hub and then using the QIT utility to repopulate the message queues.

To begin the actual installation, enter at the command line:

$ @SYS$UPDATE:VMSINSTAL

This will begin the installation procedure. Follow the on-screen prompts and answer all questions to
complete the installation. The name of the product is IQR.

Additionally, after the IQR software is installed you have the option of running the IVP (Installation
Verification Procedure). This will create a test hub, create some message queues, write and read to
them, and then remove the message queue. Successful operation of this process will indicate that your
IQR software is now properly installed.

After the installation is completed, a file named IQR_STARTUP.COM is created in your
SYS$STARTUP directory. This file must be executed before attempting to use any of the IQR System
Services. The installation program will automatically execute this file; however, in order to use it after
a system reset, a call to this routine should be placed into your SYSTARTUP.COM file. Use the
following to execute the command procedure:

$ @SYS$STARTUP:IQR_STARTUP

Additionally, you will need to execute the following command procedure during your login to use the
IQR commands. If you are getting errors regarding unknown commands, you should try executing this
command procedure first:

$ @IQR$PROD:IQR_COMMANDS

IPACT Queuer and Router
©1996 by IPACT, Inc. Installation

Sample Directory Structure

Page 7

3.2 Sample Directory Structure
The default directory structure created by the installation process is as follows:

DEF DOCS PROD SOURCE

MAQ MQD TEST

UTILITY

IQR

SYS$COMMON:

HUB RTR

IQR

DEVICE:

Alternatively, the installation routine can install the SYS$COMMON files onto a separate device. In
addition, a command procedure, IQR_STARTUP.COM, is created in your SYS$STARTUP directory.

The subroutines in each of the directories will contain the following:

Directory Name Contents

DEF Contains all of the C and FORTRAN header files to be used by a
user’s source code. A library is also created (in the SOURCE
directory) for all of the C header files.

DOCS This contains your online documentation and release notes.

PROD This contains all of the executable code and the system service. The
logical IQR$PROD is defined to this directory.

SOURCE This contains any necessary object files, libraries, or linkable code.
The logical IQR$LIB is defined to this directory.

HUB The location for all hub container files. The logical IQR$QQQQ is
defined to this directory.

RTR The location for all router database files. The logical IQR$RTR is
defined to this directory.

MAQ Test utility for MAQ compatibility.

MQD Test utility for MQD compatibility.

TEST Test utility for IQR System Service functionality.

This device name is
specified during
installation.

This is the default
installation directory.
You can change this
during installation.

IPACT Queuer and Router
©1996 by IPACT, Inc. Installation

IQR Logicals

Page 8

3.3 IQR Logicals
The following are the defined logicals used by the IQR System Service. Most of these logicals are set
up by running the command procedure IQR_STARTUP.COM in the SYS$STARTUP directory.

Logical Name Type Description

IQRSS System This is assigned to the directory containing
the IQR System Service shared system
service file (IQRSS.EXE).

IQR$PROD System This is assigned to the directory containing
all of the executable code for the IQR
Software. This includes all utilities and
command procedures.

IQR$LIB System This is assigned to the directory that contains
all linkable object libraries, header libraries,
text libraries, and object files.

IQR$RTR System/Group This is assigned to the directory that contains
the router database files.

IQR$QQQQ System/Group This is assigned to the directory that contains
the hub message queue container files.

IQR$EXAMPLES System This is assigned to the directory that contains
the example programs in C and FORTRAN.

IQRHUB System/Group This is defined to be the default hub name.

RTRDEF System/Group This is defined to be the default router
database name.

IPACT Queuer and Router
©1996 by IPACT, Inc. Installation

Command Procedures

Page 9

3.4 Command Procedures
The following command procedures are included with the installation:

Procedure Name Location Description

IQR_COMMANDS.COM IQR$PROD This will setup all of the IQR utility
commands as foreign commands. You
should execute this file during login if
you intend on using the IQR utility.
This may not be necessary if you
installed the CLD files into your
system command definition file.

IQR_STARTUP.COM SYS$STARTUP This will define all system-wide
logicals necessary for the operation of
the IQR System Service. In addition,
it will install the System Service into
memory.

xxxx_START.COM IQR$RTR This will start the router named xxxx.
This command procedure is created by
the RTRDBS utility when it compiles
a router database.

IQR_START_xxxx.COM IQR$PROD This will start your default hub (named
xxxx) that you specified during
installation. This will not initially
create the hub. To create the hub, see
the IQU /CREATE utility chapter of
this manual.

3.5 Test Utilities
The installation routine will install some test utilities to test the functionality of the IQR System
Service. The test utilities are provided along with their source code. To run the test utilities the user
must first compile the programs with the included command procedure in their respective directories.
The base location for the utilities is normally the SYS$COMMON:[IQRvvr.UTILITIES] directory.
The following test routines are provided:

Test Utility Description

IQR_TEST This tests all of the basic IQR System Service calls. To
compile, execute IQR_TEST.COM and then run
IQR_TEST.EXE.

MQD This tests the compatibility of the IQR System Service to the
older MQD System Service. To compile, execute
MENU_MQD.COM and then run MENU.EXE. You must
have already installed a HUB on your system with message
queues to use this program.

IPACT Queuer and Router
©1996 by IPACT, Inc. Installation

Required Privileges

Page 10

MAQ This tests the compatibility of the IQR System Service to the
older MAQ System Service. To compile, execute
MENU_MAQ.COM and then run MENU.EXE. You must
have already installed a HUB on your system to use this
program.

3.6 Required Privileges
The installer should have the following privileges in order to install the IQR System Service:

• CMEXEC
• GRPNAM
• GRPPRV
• PRMGBL
• SETPRV
• SYSGBL
• SYSNAM

3.7 Sample Installation Procedure
The following is a dump from a sample installation of the IQR product. You can use it to compare
against your specific installation. Items in bold reflect user input.
IPCALP$ @SYS$UPDATE:VMSINSTAL

OpenVMS AXP Software Product Installation Procedure V6.2

It is 9-AUG-1995 at 13:30.

Enter a question mark (?) at any time for help.

* Are you satisfied with the backup of your system disk [YES]? YES
* Where will the distribution volumes be mounted: DVA0

Enter the products to be processed from the first distribution volume set.
* Products: IQR
* Enter installation options you wish to use (none):

The following products will be processed:

IQR Vxx.x

Beginning installation of IQR Vxx.x at 13:30

%VMSINSTAL-I-RESTORE, Restoring product save set A ...

* IPACT Queuer and Router Services *

Copyright (C) 1995 by:

IPACT Inc.
260 South Campbell
Valparaiso, IN 46383

(219) 464-7212 fax (219) 462-5387

All rights reserved.

Your IQR Serial number: xxx-xxxxxx-xxxx

About to begin installation of the IQR Services. If
you do not want to install at this time, please
enter a N at the prompt. Otherwise, press RETURN
and answer all questions presented.

* Are you ready to begin installation? [Y]? Y

***************** SELECT DEFAULT PATHS *****************

The IQR System Service, all source code, all executables,
all utilities, and the development environment are all
placed in the SYS$COMMON:[IQRxxx] directory.

Alternatively, any drive can be selected. Common service

IPACT Queuer and Router
©1996 by IPACT, Inc. Installation

Sample Installation Procedure

Page 11

files will be placed in <drive>:[IQRxxx]. The drive
selected should be one that is mounted upon system
startup such that the system service can be installed.

* Place IQR Service in SYS$COMMON: directory? [Y]? Y

*********************** SELECT FACILITY CODE ************************

The facility code for the system service and the routing process
error messages are selected by the following question. The user
should be aware that the message codes are in the range of 1 to 2047.
The actual value is supposed to be assigned by digital, but since
this code does not come from digital, we are not able to or desire
to go through the hassle. Instead, we will let you select the
factility number. One should be aware, as should all users of the
queue service (not really a problem with the router), what factility
number was chosen. If a user selects the same number, then the
translation of error messages can be all messed up (ie: QUESUC may
translate to a user defined facility code that means: BADINPUT). The
normal standard defined of facility codes for digital products can be
found in the QUEMSG macro.

The system manager may choose to add the error codes for queue
services for all users or for an individual user. The following
command will define all of the queue service error codes.

SET MESSAGE IQR$LIB:IQR_MSG.EXE

* Enter the QUEUE SERVICE facility number (1 to 2047) [9]: 9

**************** SELECT CONTAINER DEVICE ****************

The IQR System Service stores all HUB and ROUTER database
information on any mounted disk. Note that the HUB
container file is implemented as an RMS paged file that
stores your entire hub information and all journaled
messages.

Ideally, this should NOT be your system disk. This disk
should be on a disk that is not heavily used or at least
some thought should be given to partitioning loads for
the I/O required to checkpoint the global section to the
RMS page file. Also, a disk with a high access and read
speeds will greatly improve the speed of the IQR services
that reference the HUB container file.

This disk will need to be mounted before any IQR operations
can be performed (ideally in your system startup).

* Which device should contain Queue container file: DKA500

The hub file itself can be any size but will require system
global pages and disk space. You should use the INSTALL
utility to determine how many free pages are available, and
add the number you intend to allocate for the Queue container
file. Finally, each process that connects to the global
section must be able to map the queue container file,
therefore, the virtual page count must be large enough. For
this software 3000 plus the number of pages allocated for the
queue file is adequate. A normal size for the queue file is
2000 to 5000 pages.

Below are the current settings of these sysgen parameters.

Number pages allocated for global sections: 166208
Current number of global pages free: 48576
System Process largest Virtual Address Space: 139264

* Do you wish to change these and reinstall this kit later [N]? N

****************** DEFAULT HUB NAME ******************

The installation routine will set up a file that will
initalize a default HUB for your message queues. This
must be no more than 8 characters and have no blanks.
The file will be called IQR_START_<name>.COM and should
be executed in order to install the hub on the system.
Note that you may have to first create the hub on the
system before you can install it. See the user's
manual on the IQU utility for more information.

* Enter the name of default message hub file: ALPHA

****************** COMMAND DEFINITON ******************

You have the option of installing the IQR commands into
your system CLD tables. If you do this, then anyone
who logs in with a copy of these tables will get access
to the IQR commands. If you do not choose this option,
then you will have to run the following command
procedure in order to set up the IQR utilities as
foreign commands:

@IQR$PROD:IQR_COMMANDS

This is the recommended procedure which will keep
things from getting messed up in the event the
system CLD tables are replaced.

* Install CLD files? [N]? N

****************** END Q/A SESSION ******************

* Are you happy with your answers [Y]? Y

**************** CONTINUING INSTALLATION ****************

IPACT Queuer and Router
©1996 by IPACT, Inc. Installation

Sample Installation Procedure

Page 12

%IQR-I-MILLERTIME, Interaction section is complete - installation continuing

Creating common directory tree
Resulting Directory Tree for this product will be:

SYS$COMMON:[IQR004]
+-[DEF]
+-[DOCS]
+-[PROD]
+-[SOURCE]
+-[UTILITY]-+

|
+-[TEST]
+-[MAQ]
+-[MQD]

_IPCALP$DKA500:[IQR004]
+-[HUB]
+-[RTR]

Creating directory tree
%VMSINSTAL-I-SYSDIR, This product creates system disk directory IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004].
%CREATE-I-EXISTS, _IPCALP$DKA500:[IQR004] already exists
Creating definitions directory
%VMSINSTAL-I-SYSDIR, This product creates system disk directory IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004.DEF].
Creating documentation directory
%VMSINSTAL-I-SYSDIR, This product creates system disk directory IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004.DOCS].
Creating production directory
%VMSINSTAL-I-SYSDIR, This product creates system disk directory IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004.PROD].
Creating source files directory
%VMSINSTAL-I-SYSDIR, This product creates system disk directory IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004.SOURCE].
Creating utility directory
%VMSINSTAL-I-SYSDIR, This product creates system disk directory IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004.UTILITY].
Creating utility:test directory
%VMSINSTAL-I-SYSDIR, This product creates system disk directory
IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004.UTILITY.TEST].
Creating utility:maq directory
%VMSINSTAL-I-SYSDIR, This product creates system disk directory IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004.UTILITY.MAQ].
Creating utility:mqd directory
%VMSINSTAL-I-SYSDIR, This product creates system disk directory IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004.UTILITY.MQD].
Creating hub container storage directory
Creating route directory
Loading documentation directory
Loading source directory
Loading default queue directory
Loading default router directory
Loading MQD test utilities
Loading MAQ test utilities
Loading IQR test utilities
Loading definitions directory
Loading production directory
Building IQR_MSG
Linking IQR_MSG and replacing in HUB Library
Linking IQR System Service
Linking utility: DMPQUE
Linking utility: DMPRTR
Linking utility: DQIT
Linking utility: QIT
Linking utility: IQU
Linking utility: LSTRTR
Linking utility: RTRDBS
Linking utility: IQR_RTR
Creating IQR startup procedure

************ INSTALLATION VERIFICATION PROCEDURE ************

This kit is supplied with an IVP that is part of
the VMSINSTAL kit. If you choose to execute the IVP, then
the IQRSS system service will be installed. A test hub named
TEST_HUB will then be created. Two message queues will be
created, TESTMID1 and TESTMID2. Some messages will then be
written to the queues. Both message queues should only contain
two messages after writing. Then, the queues are displayed and
then read off of the message queue. Finnaly, the test hub is
removed from memory (and disk) and an indication of your
installation configuration is displayed.

* Execute IVP [Y]? Y

************************* FINISHING UP *************************

Your installation is now complete. After the files are moved,
we will test your installation if you requested it.

Please remember to read the user's manual for more information
about configuring the installation for your particular needs.

%VMSINSTAL-I-MOVEFILES, Files will now be moved to their target directories...
Installing IQRSS and defining logicals
%INSTALL-W-NOPREV, no previous entry exists - new entry created for
IPCALP$DKA300:[SYS0.SYSCOMMON.IQR004.PROD]IQRSS.EXE;1

++++ IQR installation verification procedure ++++

Defining IQR symbols
Creating TEST_HUB test container
Creating message queues

Writing messages to message queues
Writing to message queue: TESTMID1
Writing to message queue: TESTMID1
Writing to message queue: TESTMID1
Writing to message queue: TESTMID1
Writing to message queue: TESTMID2
Writing to message queue: TESTMID2

IPACT Queuer and Router
©1996 by IPACT, Inc. Installation

Sample Installation Procedure

Page 13

HUB information for: TEST_HUB on IPCALP::
HUB Operational since 9-AUG-1995 13:32:42.79 Up for 0 00:00:01.48

Location Size Free Blk Write Cntr Read Cntr Act Queues
--------- -------- -------- ---------- --------- ----------
Container 12104 12096 0 0 0
Region 197 120 6 0 2

Queue Name Flags CurMsg MaxMsg Last Wrt Last Ack CumTran
-------------- -------- ------ ------ -------- -------- -------
TESTMID2 2 20 13:32:44 00:00:00 0:00:00
TESTMID1V 2 2 13:32:43 13:32:43 0:00:00

Read from message queue: TESTMID1
Header follows:

Source node name:
Destination node name:
Message type: 0
Sequence number: 3
Message length: 22
On Queue time: 9-AUG-1995 13:32:43.74

Total on queue time: 0days and 00:00:00.78
------- MESSAGE FOLLOWS ---------
this is test message3

Header follows:
Source node name:
Destination node name:
Message type: 0
Sequence number: 4
Message length: 22
On Queue time: 9-AUG-1995 13:32:43.86

Total on queue time: 0days and 00:00:00.89
------- MESSAGE FOLLOWS ---------
this is test message4
End of message queue reached.
%IQRSRV-W-NOMESS, No message for the specified message queue

Read from message queue: TESTMID2
Header follows:

Source node name:
Destination node name:
Message type: 0
Sequence number: 1
Message length: 22
On Queue time: 9-AUG-1995 13:32:43.97

Total on queue time: 0days and 00:00:00.95
------- MESSAGE FOLLOWS ---------
this is test message1

Header follows:
Source node name:
Destination node name:
Message type: 0
Sequence number: 2
Message length: 22
On Queue time: 9-AUG-1995 13:32:44.09

Total on queue time: 0days and 00:00:00.99
------- MESSAGE FOLLOWS ---------
this is test message2
End of message queue reached.
%IQRSRV-W-NOMESS, No message for the specified message queue

Removing TEST_HUB from memory and disk

IQR -- IPACT Queuer and Router

Serial #xxx-xxxxxx-xxxx
Version : xx
Revision: x

**** Verification procedure complete ****

Installation of IQR Vxx.x completed at 13:32

Adding history entry in VMI$ROOT:[SYSUPD]VMSINSTAL.HISTORY
Creating installation data file: VMI$ROOT:[SYSUPD]IQR004.VMI_DATA

Enter the products to be processed from the next distribution volume set.
* Products:

VMSINSTAL procedure done at 13:33

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_ack_read

Page 14

4. IQR System Service Library

4.1 iqr_ack_read
Acknowledge an already read message from a message queue.

FORMAT
iqr_ack_read (hub, queue_name, queue_index)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of acknowledgment of message from the message queue.

ARGUMENTS
hub
Type: Record of type hbkdef
Access: Read only
Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service defined by the
structure HBKDEF in the file HBKDEF.H

queue_name
Type: Descriptor
Access: Read only
Mechanism: By reference

Message queue name to acknowledge.

queue_index
Type: Longword
Access: Read only
Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the
iqr_connect_read or iqr_connect_write service routines for the message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_ack_read

Page 15

DESCRIPTION
This routine will acknowledge a message that has been read but not yet
acknowledged on a particular message queue. For any message, once it has been
read, it will need to be acknowledged from the queue to re-allocate space in the
queue. An acknowledgment will indicate that the calling process has properly
received the message and that the queue may delete the message and prepare to
read the next.

Also, further messages will be unable to be read until the last read message is
acknowledged. Message queues that are set up with the MQD_M_ACKREAD
flag set will automatically acknowledge the message from the message queue
once it is read via iqr_read_q or iqr_read_qw.

Failure to acknowledge a message from the queue and then disconnecting will
result in a stale message being left on the message queue. When a reader
reconnects to the message queue, the stale message will be placed back at the
head of the message queue.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully acknowledge the message off of
the queue.

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not
writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.
Examine extended status in hbk and contact
developers.

QUE_NOTFOUND Requested message queue was not found
within the current hub.

QUE_NOTCONREAD The caller has not yet connected for read to
this queue.

QUE_NORNAMESS No message was read off of the queue -- the
RNA has not been set. You need to first read
a message before you can acknowledge it.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_add_message_q

Page 16

4.2 iqr_add_message_q
Creates a new message queue (journaled or non-journaled) within a specific hub.

FORMAT
iqr_add_message_q (hub, queue_name, max_messages,
stale_time, type, max_mesg_size)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of queue creation including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read only
Mechanism: By reference

Hub is a buffer that was returned by the iqr_attach_h service. This is defined by
the structure HBKDEF in the file HBKDEF.H

queue_name
Type: Character descriptor
Access: Read only
Mechanism: By reference

This is the name of the queue to be created in descriptor format - maximum of 16
characters.

max_messages
Type: Longword
Access: Read only
Mechanism: By value

This will indicate the maximum number of queued messages that will be allowed
on the queue at any one time. This does not include messages currently read but
not yet acknowledged.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_add_message_q

Page 17

stale_time
Type: Longword
Access: Read only
Mechanism: By value

This value will reference the number of minutes that messages on the queue will
remain as valid messages. After that time, messages will become stale and
deleted from the queue. Requires the value MQD_M_TIMED to be set for type.

type
Type: Longword
Access: Read only
Mechanism: By value

This is set to indicate the type of message queue to be created. Valid types are as
follows:

MQD_M_ACKREAD Automatically acknowledge a message when
it is read.

MQD_M_DUALREAD Message queue supports both a primary and
secondary reader (two readers).

MQD_M_JOURNALED Messages are kept in journaled space (on
disk) instead of within memory.

MQD_M_READER Do not queue (write) messages unless there
is a reader connected to the message queue.

MQD_M_REPLICATING Writing to this message queue will instead
queue the message to multiple message
queues on the current hub (replicate).

MQD_M_TIMED Timed message queue. Stale messages are
removed from the queue. Requires a value
for stale_time.

MQD_M_VOLATILE Message queue can contain volatile
messages. The oldest message will be
deleted if there is not room for a new one.

max_mesg_size
Type: Longword
Access: Read only
Mechanism: By value

This is set to the size (in bytes) of the largest message that will be allowed to be
written to the queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_add_message_q

Page 18

DESCRIPTION
This routine is used to create or add a new message queue to an existing hub. In
order to be able to read/write messages to a queue, the queue must first be created
with iqr_add_message_q.

If the message queue already exists within the hub (and has not been deleted), an
error message is returned.

The routine will build the message queue in memory (or on disk if the
MQD_M_JOURNALED option is specified) and reset all message queue
counters.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully created the message queue.

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hbk was invalid. Missing or not
writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.
Examine extended status in hbk and contact
developers.

QUE_CONTAINERFULL The disk container is at its maximum size.

QUE_NOCACHE No cache space available for the message
queue.

QUE_ADDED The queue was successfully added.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_allocate_msgblks

Page 19

4.3 iqr_allocate_msgblks
Allocate space in a message queue for a multi-packet message.

FORMAT
iqr_allocate_msgblks (hub, queue_name, msg_size, hmb_blck,
queue_index)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of allocation, including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read
Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined
by the structure HBKDEF in the file HBKDEF.H

queue_name
Type: Descriptor
Access: Read only
Mechanism: By reference

This is the name of the message queue to write to.

msg_size
Type: Longword
Access: Read only
Mechanism: By value

This is the size of the message to be written. This does not include the message’s
header.

hmb_blck
Type: Longword
Access: Write
Mechanism: By reference

This is the returned value of the block number for the header message block
created by the routine. This is used by other calls to iqr_fill_msgblks and
iqr_thread_msgblks.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_allocate_msgblks

Page 20

queue_index
Type: Longword
Access: Read
Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the
iqr_connect_read or iqr_connect_write service routines for the message queue.

DESCRIPTION
This service entry is called by a router or another program that desires to allocate
space for a message that will later be populated and then threaded into the
message queue chain. If the allocated blocks are not needed after they are
allocated, then the service iqr_deallocate_msgblks may be used to return them
back to the free space.

This routine is used in conjunction with the routines iqr_fill_msgblks and
iqr_thread_msgblks to first populate and then thread the message into the queue.

This service requires that the user has the SYSNAME privilege. This test is made
to ensure that the caller is a more knowledgeable user. The privilege is not
actually needed by the service.

The service functions somewhat like the iqr_write_q service by checking to
make sure that the message queue will accept another message and that the user is
correctly connected to the message queue before actually doing anything to the
queue.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successful completion.

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not
writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.
Examine extended status in hbk and contact
developers.

QUE_NOTFOUND Requested message queue was not found
within the current hub.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_allocate_msgblks

Page 21

QUE_NOTCONWRITE The caller has not yet connected for write (or
read) to this queue.

QUE_MQDFULL The message queue is full (the number of
messages in the queue exceeds that set by
iqr_add_message_q).

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_attach_h

Page 22

4.4 iqr_attach_h
Attach to a messaging hub.

FORMAT
iqr_attach_h (hub [, hub_name] [, mqd_count])

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of hub attachment including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read/Write
Mechanism: By reference

This is the returned hub reference required for any calls to the IQR service
routines.

hub_name
Type: Descriptor
Access: Read only
Mechanism: By reference

Contains the name of the hub to map, maximum of 8 characters. (Optional.
Defaults to Hub defined by logical IQRHUB)

mqd_count
Type: Longword
Access: Read only
Mechanism: By value

This specifies the maximum number of message queues that the caller intends to
connect to. (Optional. Defaults to an internal value of 4)

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_attach_h

Page 23

DESCRIPTION
This routine creates an area for the process (PEX - process expanded region)
where the process can store information on the queue process and provide
working space for other queue services.

The starting and ending address of the PEX is returned to the caller in the hub
parameter.

Additionally, the routine establishes an exit handler for the process which will
disconnect from all queues and the hub upon exit.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully attached to the message hub.

QUE_PREATT Informational: indicates that the message hub
has already been attached.

QUE_INVALIDPEX User passed hbk was invalid. Missing or not
writeable. Usually caused by not having the
hbk initialized through the iqr_attach_h
routine.

QUE_BADHNAME User passed hub name was invalid. Name was
too short, too long, or was not accessible for
read.

QUE_DEFHNAME Unable to translate the default hub name.
Most likely logical not defined by the system
manager.

QUE_BADCCTMQD The user specified number of message queues
exceeds a reasonability test defined by the
software. Contact developers if this is too low
for your environment. The maximum number
was specified when the software was
packaged.

QUE_BADPRCINF The queue service was unable to get
information about the current process.
Examine the condition code in the extended
status field of the hbk. Contact the developers.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_attach_h

Page 24

QUE_PRCLCKNM The queue service was unable to create a
process lock. Examine the condition code in
the extended status field of the hbk.

QUE_BADSIG The queue service was unable to establish a
signal resource lock. Examine the condition
code in the extended status field of the hbk.

QUE_BADPRCLCK Unable to capture process lock. Examine the
condition code in the extended status field of
the hbk.

QUE_BADSRV Internal error. Unable to demote lock on the
signal resource.

Additionally, extended status is provided in the hub structure. If the error is QUE_ACCVIO, the
number of the parameter that was not readable or writeable is stored in this entry if the hub was at least
writeable.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_backup_rna

Page 25

4.5 iqr_backup_rna
Restore a read, but not yet acknowledged message back onto the front of a
message queue.

FORMAT
iqr_backup_rna (hub, queue_name, queue_index)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of restore, including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read
Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined
by the structure HBKDEF in the file HBKDEF.H

queue_name
Type: Descriptor
Access: Read only
Mechanism: By reference

This is the name of the message queue to backup the message.

queue_index
Type: Longword
Access: Read
Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the
iqr_connect_read or iqr_connect_write service routines for the message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_backup_rna

Page 26

DESCRIPTION
This service is called to backup a message that has been read but not yet
acknowledged to the front of the message queue. After reading a message from a
message queue, the message will remain “held” until the message is
acknowledged off of the queue. If the reader desires to return the message back
to queue, then call this routine before acknowledging the message. All backed-up
messages are returned to the front of the message queue.

This action is usually done during abnormal process rundown, but the user may
also desire a way to easily return a message back onto the queue to be read again
later.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully restored the message back onto
the message queue.

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not
writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.
Examine extended status in hbk and contact
developers.

QUE_NOTFOUND Requested message queue was not found
within the current hub.

QUE_NOTCONREAD The caller has not yet connected for read to
this queue.

QUE_NORNAMESS No message was read off of the queue -- the
RNA has not been set. You need to first read
a message before you can acknowledge it.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_connect_read

Page 27

4.6 iqr_connect_read
Connect to a message queue for subsequent reading.

FORMAT
iqr_connect_read (hbk, queue_name, event_sync, queue_index)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of message queue connection, including possible VMS and RMS status
codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read
Mechanism: By reference

Hub is a buffer that was returned by the iqr_attach_h service. This is defined by
the structure HBKDEF in the file HBKDEF.H

queue_name
Type: Descriptor
Access: Read only
Mechanism: By reference

Message queue name, 16 characters max.

event_sync
Type: Longword
Access: Read only
Mechanism: By value

Event flag for synchronization.

queue_index
Type: Longword
Access: Write
Mechanism: By reference

This is a pointer to a longword that will hold the memory address for the
Connected Message Queue (CMQ) definition created by the connection. This
value will be required by any subsequent calls that use this particular message
queue.

DESCRIPTION

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_connect_read

Page 28

This service defines the calling process as a reader of a particular message queue.
In order to connect for read, the user must have already attached to the message
hub and the message queue must already exist.

If these conditions are met, a new connect message queue block is allocated in the
user's process expanded region. Then an attempt is made to capture the message
queue lock. If the lock can be captured in exclusive mode, then the caller is the
one and only primary reader of the message queue. If the lock cannot be
captured, then another user is currently connected for read and an error is
returned. Also, an AST is created by the service which will set the caller’s event
flag when one of the IQR Service routines wishes to notify all readers of this
message queue that a new message has arrived.

If the message queue was created with the MQD_M_DUALREAD option, then a
secondary reader can also be connected as well. At any one time, only one
primary and one secondary reader can be connected. Any other attempts to
connect as a reader will result in the error QUE_TOOMANYRDR.

Upon connection the message queue is checked for messages that have been read
but not yet acknowledged. If the reader who read the message is no longer
connected to the queue, then that message is again re-queued at the beginning of
the queue.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully attached to the message queue for
read within the hub.

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length. Can also
indicate trying to connect to a replicating
queue (which is invalid).

QUE_INVARG User passed argument invalid, or not readable.

QUE_MAXMSGQUEUES User has exceeded the maximum number of
message queues that may be attached. The
number specified on the iqr_attach_h or
mqd_count must be increased.

QUE_TOOMANYRDR Maximum number of readers already
connected to the message queue.

QUE_INVALIDPEX User passed hbk was invalid. Missing or not
writeable.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_connect_read

Page 29

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.
Examine extended status in hbk and contact
developers.

QUE_NOTFOUND Requested message queue was not found
within the current hub.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_connect_write

Page 30

4.7 iqr_connect_write
Connect to a message queue for subsequent writing.

FORMAT
iqr_connect_write (hub, queue_name, queue_index)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of connection, including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read
Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined
by the structure HBKDEF in the file HBKDEF.H

queue_name
Type: Descriptor
Access: Read only
Mechanism: By reference

This is the name of the message queue to connect to, maximum of 16 characters.

queue_index
Type: Longword
Access: Write
Mechanism: By reference

This is a pointer to a longword that will hold the memory address for the
Connected Message Queue (CMQ) definition created by the connection. This
value will be required by any subsequent calls that use this particular message
queue.

DESCRIPTION
This routine defines the caller as a writer to a particular message queue. In order
to connect for write, the user must have already attached to the message hub and
the message queue must already exist.

If the conditions are met, then the caller is connected for write to the message
queue. Any number of writers can be connected to the queue at any one time.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_connect_write

Page 31

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully attached to the message queue for
write within the hub.

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_MAXMSGQUEUES User has exceeded the maximum number of
message queues that may be attached. The
number specified on the iqr_attach_h or
mqd_count must be increased.

QUE_INVALIDPEX User passed hub was invalid. Missing or not
writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.
Examine extended status in hbk and contact
developers.

QUE_NOTFOUND Requested message queue was not found
within the current hub.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_deallocate_msgblks

Page 32

4.8 iqr_deallocate_msgblks
This will release allocated blocks (from iqr_allocate_msgblks) back to the
queue.

FORMAT
iqr_deallocate_msgblks (hub, queue_name, hmb_blck,
queue_index)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of deallocation, including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read
Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined
by the structure HBKDEF in the file HBKDEF.H

queue_name
Type: Descriptor
Access: Read only
Mechanism: By reference

This is the name of the message queue to use, 16 characters maximum.

hmb_blck
Type: Longword
Access: Read
Mechanism: By value

This is a pointer to the value of the block number of the header message block for
the message that is to be deallocated.

queue_index
Type: Longword
Access: Read
Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the
iqr_connect_read or iqr_connect_write service routines for the message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_deallocate_msgblks

Page 33

DESCRIPTION
This routine will release blocks that have been allocated to a message and its
header for a particular message queue.

These blocks must have been allocated with the iqr_allocate_msgblks service.
Generally, this routine is used as a rundown or error condition service to free
allocated blocks back to the message queue if the message could not be properly
written.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successful return.

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not
writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.
Examine extended status in hbk and contact
developers.

QUE_NOTFOUND Requested message queue was not found
within the current hub.

QUE_NOTCONWRITE The caller has not yet connected for write (or
read) to this queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_delete_q

Page 34

4.9 iqr_delete_q
This routine will mark a message queue as deleted from a specific hub.

FORMAT
iqr_delete_q (hub, queue_name)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of queue deletion, including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read only
Mechanism: By reference

Hub is a buffer that was returned by the iqr_attach_h service. This is defined by
the structure HBKDEF in the file HBKDEF.H

queue_name
Type: Character descriptor
Access: Read only
Mechanism: By reference

This is the name of the queue to be deleted in descriptor format - maximum of 16
characters.

DESCRIPTION
This routine will search for the passed message queue name within the indicated
hub. If it is found, then it will mark that queue as being deleted. Any future
attempts to read/write to the queue will not be allowed. The message queue must
not contain any waiting messages in order to be deleted.

Note that the information for the queue is not actually deleted -- it is only marked
as invalid. This can allow for the re-creation of the queue in the event it is
needed.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_delete_q

Page 35

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successful modification of the message queue.

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.
Also can indicate that the message queue still
has waiting messages.

QUE_INVALIDPEX User passed hbk was invalid. Missing or not
writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.
Examine extended status in hbk and contact
developers.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_disconnect_h

Page 36

4.10 iqr_disconnect_h
Disconnect the calling process from all connected hubs and message queues
(rundown service).

FORMAT
iqr_disconnect_h (hub)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of disconnection, including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read
Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined
by the structure HBKDEF in the file HBKDEF.H

DESCRIPTION
This service is used as a part of the general rundown for the IQR System Service.
It will disconnect the caller from all connected message queues, zeroing out the
caller’s process expanded region. Also, it will remove all process locks created
by the IQR Service calls.

This routine should be called upon completion of the caller’s program to insure
that all locks are released and resources are returned to the system.

Additionally, this service is called as a part of the CTRL-Y AST handler in order
to properly allow for a rundown of the IQR services.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully completed.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_disconnect_q

Page 37

4.11 iqr_disconnect_q
This service will allow the caller to disconnect from a message queue.

FORMAT
iqr_disconnect_q (hub, queue_name, queue_index)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of disconnect, including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read
Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined
by the structure HBKDEF in the file HBKDEF.H

queue_name
Type: Descriptor
Access: Read only
Mechanism: By reference

This is the name of the message queue to disconnect.

queue_index
Type: Longword
Access: Write
Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the
iqr_connect_read or iqr_connect_write service routines for the message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_disconnect_q

Page 38

DESCRIPTION
This service will disconnect the caller from a particular message queue. If the
caller has connected for read or write, this routine will disconnect him from the
message queue and mark his connection block as invalid.

To access a message queue again, you must reconnect using iqr_connect_read or
iqr_connect_write service.

You should call this service when you have finished working with a message
queue. This will insure that all information is properly handled within the queue,
and in the case of readers, will open up the availability for another process to
connect as a reader.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully disconnected from the message
queue.

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hbk was invalid. Missing or not
writeable.

QUE_INTERNALFAULT Contact developers.

QUE_NOTFOUND Requested message queue was not found
within the current hub.

QUE_INVALQIDX The queue_index is not valid.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_fill_msgblks

Page 39

4.12 iqr_fill_msgblks
Fill previously allocated message blocks in a message queue.

FORMAT
iqr_write_q (hub, queue_name, size, offset, buffer, hmb_blck,
queue_index)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of fill, including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read
Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined
by the structure HBKDEF in the file HBKDEF.H

queue_name
Type: Descriptor
Access: Read only
Mechanism: By reference

This is the name of the message queue to write to.

size
Type: Longword
Access: Read only
Mechanism: By value

This is the size (in bytes) of the current segment to be written to the queue. This
is not the total size of the message, but just the size for the current packet. Unless
this is the last segment to be written, the value must be a multiple of 512 bytes.

offset
Type: Longword
Access: Read only
Mechanism: By value

The current byte offset of the current packet that is being written to a message
queue. The offset is relative to the start of the message and should always be a
multiple of 512 bytes.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_fill_msgblks

Page 40

buffer
Type: Longword block index
Access: Read
Mechanism: By reference

This is a pointer to a block buffer where the information is to be placed on the
queue. This does not include a message header.

hmb_blck
Type: Longword
Access: Read
Mechanism: By value

This is the value of the block number of the header message block for the message
that is to be threaded.

queue_index
Type: Longword
Access: Write
Mechanism: By reference

This is the Connected Message Queue (CMQ) value returned by the
iqr_connect_read or iqr_connect_write service routines for the message queue.

DESCRIPTION
This service is designed to allow a privileged user the ability to populate the
blocks of a message that was previously allocated using the
iqr_allocate_msgblks. Since there exists the ability to corrupt the threads in the
hub, this service will test to ensure that the caller has the SYSNAM privilege.

This service is primarily used to fill allocated message space with multiple
“packets”. Each packet is a small part of the entire message, and when
completed, will fill the blocks in the queue identical to that of a basic
iqr_write_q service. The parameters size and offset are used to keep track of the
current position being written in the current message. Size must always be a
multiple of 512 bytes (unless you are writing the final packet, in which size may
be smaller than 512 bytes). Offset is a user-maintained value that tells the service
where in the message you are currently writing. Offset is calculated from the
beginning of the actual message, disregarding any headers, and must always be a
multiple of 512 bytes.

Before writing any data, the hmb block is checked to make sure it is valid. The
hmb_blck value passed must match that which was stored there by the
iqr_allocate_msgblks service.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_fill_msgblks

Page 41

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successful completion.

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not
writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.
Examine extended status in hbk and contact
developers.

QUE_NOTFOUND Requested message queue was not found
within the current hub.

QUE_INVALUSERBUF The buffer passed by the user is invalid

QUE_NOTCONWRITE The caller has not yet connected for write (or
read) to this queue.

QUE_MQDFULL The message queue is full (the number of
messages in the queue exceeds that set by
iqr_add_message_q).

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_get_q_info

Page 42

4.13 iqr_get_q_info
Gather information about a specific message queue.

FORMAT
iqr_get_q_info (hub, queue_name, q_info)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of message queue connection, including possible VMS and RMS status
codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read
Mechanism: By reference

Hub is a buffer that was returned by the iqr_attach_h service. This is defined by
the structure HBKDEF in the file HBKDEF.H

queue_name
Type: Descriptor
Access: Read only
Mechanism: By reference

Message queue name, 16 characters max.

q_info
Type: Record structure MQDDEF
Access: Write
Mechanism: by reference

This is a pointer to a buffer with a structure type of MQDDEF (found in
MQDDEF.H) to hold the message queue information.

DESCRIPTION
This routine will copy all of a message queue’s information into the passed
structure pointed to by q_info.

Some notable information presented in the message queue are:

q_info->mqd._q.L_type Type of message queue
q_info->mqd._q.Lcnt Number of messages in the queue
q_info->mqd._q.L_rna Last read, but not yet acknowledged

message id

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_get_q_info

Page 43

q_info->mqd._q.L_srna Last read, but not yet acknowledged
message id via secondary reader.

q_info->mqd._q.max_cnt Maximum number of messages
allowed on a message queue.

q_info->mqd._q.expire Time (in minutes) before a message
becomes stale.

q_info->mqd._q.msg_name Name of the message queue
q_info->mqd._q.L_lost Number of messages lost due to full

message queue.

Note that the information returned represents just a copy of the current state of the
message queue. Therefore, the actual state of the queue may change after you
have received your information.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully attached to the message queue for
write within the hub.

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.
Examine extended status in hbk and contact
developers.

QUE_NOTFOUND Requested message queue was not found
within the current hub.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_modify_q

Page 44

4.14 iqr_modify_q
Modifies a specific message queue’s parameters including message queue type
flags, time for stale messages, maximum message size, and maximum number of
messages in the queue at one time.

FORMAT
iqr_modify_q (hub, queue_name, max_mesg, stale_time,
queue_type, max_msgsize)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of queue modification, including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read only
Mechanism: By reference

Hub is a buffer that was returned by the iqr_attach_h service. This is defined by
the structure HBKDEF in the file HBKDEF.H

queue_name
Type: Character descriptor
Access: Read only
Mechanism: By reference

This is the name of the queue to be modified in descriptor format - maximum of
16 characters.

max_messages
Type: Longword
Access: Read only
Mechanism: By value

This will indicate the maximum number of queued messages that will be allowed
on the queue at any one time. Set this value to zero if you do not wish to modify
this parameter.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_modify_q

Page 45

stale_time
Type: Longword
Access: Read only
Mechanism: By value

This value will reference the number of minutes that messages on the queue will
remain as valid messages. After that time, messages will become stale and
deleted from within the queue. Requires the value MQD_M_TIMED to be set for
type. Set this value to zero if you do not wish to modify this parameter.

type
Type: Longword
Access: Read only
Mechanism: By value

Set this argument to any of the following codes to modify the message queue’s
parameters. If you do not specify a code it will then be cleared in the message
queue. Logical OR the following codes to select more than one option. Valid
types are as follows:

MQD_M_ACKREAD Automatically acknowledge a message when
it is read.

MQD_M_DUALREAD Message queue supports both a primary and
secondary reader (two readers).

MQD_M_READER Do not queue (write) messages unless there
is a reader connected to the message queue.

MQD_M_TIMED Timed message queue. Stale messages are
removed from the queue. Requires a value
for stale_time.

MQD_M_VOLATILE Message queue can contain volatile
messages. The oldest message will be
deleted if there is not room for a new one.

MQD_M_NOCHANGE Use this value if you do not want to change
any of the current values for the message
queue flags.

max_mesg_size
Type: Longword
Access: Read only
Mechanism: By value

This is set to the size (in bytes) of the largest message that will be allowed to be
written to the queue. Set this value to zero if you do not wish to modify this
parameter.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_modify_q

Page 46

DESCRIPTION
This routine is used to modify an existing message queue on an existing hub
region. Use this routine if you wish to modify one of the passed parameters for
the message queue.

NOTE: If you do not want to change the flags for the queue, you must pass the
parameter MQD_Q_NOCHANGE. Failure to do so will result in all of the flags
being reset to a value of zero.

If you do not want to change any of the other parameters (stale time, maximum
message size, etc.), set them to a value of zero.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successful modification of the message queue.

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hbk was invalid. Missing or not
writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.
Examine extended status in hbk and contact
developers.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_hmb

Page 47

4.15 iqr_read_hmb
This service is used to only read the header of the next available message on a
message queue.

FORMAT
iqr_read_hmb (hub, queue_name, user_header, queue_index)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of read, including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read
Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined
by the structure HBKDEF in the file HBKDEF.H

queue_name
Type: Descriptor
Access: Read only
Mechanism: By reference

This is the name of the message queue to read from.

user_header
Type: Record structure hdrdef
Access: Write
Mechanism: By reference

This will hold the header information for the current message being read from the
queue.

queue_index
Type: Longword
Access: Write
Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the
iqr_connect_read or iqr_connect_write service routines for the message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_hmb

Page 48

DESCRIPTION
This service will read the next message’s header information from the queue. All
queue information is preserved, including the current message on the queue.

This routine is used to let the calling program determine the characteristics of the
next message to be read on the queue (such as message size, time written, etc.)
without actually reading the message off of the queue.

It is possible, with dual readers, that the message read from iqr_read_hmb will
not be the same one read by a successive read call. This can happen if the other
reader reads the message before the calling process actually gets to read the
message. In order to avoid this conflict, it is recommended that message queues
for processes that require using this routine (including the IQR Router) be set up
to not use dual readers.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successful read of header from the queue.

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not
writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.
Examine extended status in hbk and contact
developers.

QUE_NOTFOUND Requested message queue was not found
within the current hub.

QUE_NOTCONREAD The caller has not yet connected for read to
this queue.

QUE_USRBUFSML The size of the passed buffer is too small.

QUE_NOMESS The message queue is currently empty. No
messages exist to read.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_q

Page 49

4.16 iqr_read_q
Read the next message from a message queue.

FORMAT
iqr_read_q (hub, queue_name, buffer, queue_index)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of read, including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read
Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined
by the structure HBKDEF in the file HBKDEF.H

queue_name
Type: Descriptor
Access: Read only
Mechanism: By reference

This is the name of the message queue to read from.

buffer
Type: Descriptor
Access: Write
Mechanism: By reference

This is a descriptor for the buffer where the read information is to be written.
This buffer must be large enough to hold both the message header block
(HMBDEF) and the message itself.

queue_index
Type: Longword
Access: Write
Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the
iqr_connect_read or iqr_connect_write service routines for the message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_q

Page 50

DESCRIPTION
This routine will attempt to read the next message from the given message queue.

If a message exists, then the message’s header information and the message itself
are returned in the passed buffer location. The actual message will be located at
an offset of size HBKDEF (or HDR$K_SIZ) from the start of the buffer.

If the message queue is empty, then a condition of QUE_NOMESS is a returned
indication that there are no messages currently in the queue.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully read a message.

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not
writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.
Examine extended status in hbk and contact
developers.

QUE_NOTFOUND Requested message queue was not found
within the current hub.

QUE_INVALUSERBUF The buffer passed by the user is invalid.

QUE_NOTCONREAD The caller has not yet connected for read to
this queue.

QUE_USRBUFSML The size of the passed buffer is too small.

QUE_NOMESS The message queue is currently empty. No
messages exist to read.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_qw

Page 51

4.17 iqr_read_qw
Read the next message from a message queue if one does not exist, wait for one
to arrive.

FORMAT
iqr_read_qw (hub, queue_name, buffer, queue_index)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of read, including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read
Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined
by the structure HBKDEF in the file HBKDEF.H

queue_name
Type: Descriptor
Access: Read only
Mechanism: By reference

This is the name of the message queue to read from.

buffer
Type: Descriptor
Access: Write
Mechanism: By reference

This is a descriptor for the buffer where the read information is to be written.
This buffer must be large enough to hold both the message header block
(HMBDEF) and the message itself.

queue_index
Type: Longword
Access: Write
Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the
iqr_connect_read or iqr_connect_write service routines for the message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_qw

Page 52

DESCRIPTION
This routine is very much like iqr_read_q except that it will wait for a message
to arrive if none currently exists in the queue.

If a message exists, then the message’s header information and the message itself
are returned in the passed buffer location. The actual message will be located at
an offset of size HDR$K_SIZ from the start of the buffer.

If the message queue is empty, then the routine will wait for a message to arrive at
the queue. After the message arrives, it will then repeat the process of reading the
message.

Note that with two readers (primary and secondary) only one of the readers will
be able to get a message when it first arrives to an empty queue. The one that is
unable to get the message will again go into a wait mode unless more messages
exist in the queue.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully read a message from the queue.

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not
writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.
Examine extended status in hbk and contact
developers.

QUE_NOTFOUND Requested message queue was not found
within the current hub.

QUE_INVALUSERBUF The buffer passed by the user is invalid.

QUE_NOTCONREAD The caller has not yet connected for read to
this queue.

QUE_USRBUFSML The size of the passed buffer is too small.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_segment

Page 53

4.18 iqr_read_segment
This service is used to read messages off of the queue in individual segments at a
time.

FORMAT
iqr_read_segment (hub, user_header, buffer_size, buffer,
queue_index)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of read, including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read
Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined
by the structure HBKDEF in the file HBKDEF.H

user_header
Type: Record structure hdrdef
Access: Write
Mechanism: By reference

This will hold the header information for the current message being read from the
queue.

buffer_size
Type: Longword
Access: Read
Mechanism: By value

This is the size (in bytes) of the read buffer. The size must be a multiple of 512
bytes (one block)

buffer
Type: Descriptor
Access: Write
Mechanism: By reference

This is a descriptor for the buffer where the message segment is to be written.
The buffer will contain only the current message segment -- no headers.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_segment

Page 54

queue_index
Type: Longword
Access: Write
Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the
iqr_connect_read or iqr_connect_write service routines for the message queue.

DESCRIPTION
This service will read messages off of the queue in individual segments at a time.
This routine will keep track of where it is currently reading from in the message.

Upon the initial read of a message, the service will return the header information
of the message along with the first message segment. Further calls to the service
will return successive segments of the message with each call (along with the
header). Upon reading the last segment of the message, the routine will return a
status code of QUE_LASTSEG, signaling that the end of the message has been
reached.

You may acknowledge the message off of the queue at any time during the read
of the segments, but will not be able to read a new message until the current one
is acknowledged. In order to insure that you do not prematurely acknowledge a
message, wait until this service returns a status code of QUE_LASTSEG before
acknowledging.

Normally, this routine is used by the router reading segments of a message and
then sending the segments to another router.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_LASTSEG Successfully read segment from the queue (no
more segments exist, must acknowledge
message before reading again).

QUE_SUCCESS Successfully read segment from the queue
(more segments still exist for message).

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not
writeable.

QUE_INTERNALFAULT Contact developers.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_read_segment

Page 55

QUE_ALLOCLOCK Unable to capture hub allocation lock.
Examine extended status in hbk and contact
developers.

QUE_NOTFOUND Requested message queue was not found
within the current hub.

QUE_INVALUSERBUF The buffer passed by the user is invalid.

QUE_NOTCONREAD The caller has not yet connected for read to
this queue.

QUE_USRBUFSML The size of the passed buffer is too small.

QUE_NOMESS The message queue is currently empty. No
messages exist to read.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_reset_stat_h

Page 56

4.19 iqr_reset_stat_h
This service is used to reset statistical counters and timers for a message hub.

FORMAT
iqr_reset_stat_h (hub)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of read, including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read
Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined
by the structure HBKDEF in the file HBKDEF.H

DESCRIPTION
This service will reset statistics for a message hub. All timers, except for the time
of modification, will be reset to a time of zero. In addition, the number of reads
and writes for the message queues will be reset to zero.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully read segment from the queue
(more segments still exist for message).

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not
writeable.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_reset_stat_q

Page 57

4.20 iqr_reset_stat_q
This service is used to reset statistical counters and timers for a message queue.

FORMAT
iqr_reset_stat_q (hub, queue_name)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of read, including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read
Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined
by the structure HBKDEF in the file HBKDEF.H

queue_name
Type: Descriptor
Access: Read
Mechanism: By reference

This is the name of the message queue to reset statistics for.

DESCRIPTION
This service will reset statistics for a message queue. All timers for reads, writes,
acknowlegment, and cumulative timers will be reset to a time of zero. In
addition, the number of reads and writes for the message queue will be reset to
zero.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_reset_stat_q

Page 58

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successfully read segment from the queue
(more segments still exist for message).

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not
writeable.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_rtr_write_q

Page 59

4.21 iqr_rtr_write_q
Write a message to a message queue using a buffer formatted with header
information.

FORMAT
iqr_rtr_write_q (hub, queue_name, buffer, queue_index)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of write, including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read
Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined
by the structure HBKDEF in the file HBKDEF.H

queue_name
Type: Descriptor
Access: Read only
Mechanism: By reference

This is the name of the message queue to write to.

buffer
Type: Descriptor
Access: Read
Mechanism: By reference

This is a descriptor for the buffer where the information is to be placed on the
queue. This buffer contains both a filled header (of type HDRDEF) followed by
its message. The descriptor length must include the length of the header
(HDR$K_SIZ), but the buffer location should point to the actual message. The
header portion must immediately precede the message buffer address passed.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_rtr_write_q

Page 60

queue_index
Type: Longword
Access: Write
Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the
iqr_connect_read or iqr_connect_write service routines for the message queue.

DESCRIPTION
This routine will attempt to write a new message to a message queue using the
provided message header information passed in the buffer.

The caller must have already connected either for read or write (both allow write
access). The message in the user’s buffer is then copied onto the queue to await
for reading. If there were no messages currently waiting in the queue, then the
routine will attempt to notify any processes that are currently waiting for a new
message to arrive.

Note that there are two limits to the number of messages that can be written to the
queue. At any one time, there is a maximum size to both the messages allowed
and the size of the queue itself. If your message exceeds either of these limits,
then an error is returned. Also, the message queue was set up with a maximum
number of messages allowed. Exceeding this value will also return an error
condition.

This particular routine is similar to iqr_write_q, but differs in that the caller must
pass both the header information and message to the service. Use this service if
you have a header for a message that you want to preserve along with the
message. Pay special attention to the format of the buffer (see above)! This
service will preserve the header onto the queue, updating only necessary
information. This service is usually called by the router when moving a message
from another router.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successful completion.

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not
writeable.

QUE_INTERNALFAULT Contact developers.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_rtr_write_q

Page 61

QUE_ALLOCLOCK Unable to capture hub allocation lock.
Examine extended status in hbk and contact
developers.

QUE_NOTFOUND Requested message queue was not found
within the current hub.

QUE_INVALUSERBUF The buffer passed by the user is invalid.

QUE_NOTCONWRITE The caller has not yet connected for write (or
read) to this queue.

QUE_MQDFULL The message queue is full (the number of
messages in the queue exceeds that set by
iqr_add_message_q).

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_thread_msgblks

Page 62

4.22 iqr_thread_msgblks
Thread allocated and filled message blocks into a message queue.

FORMAT
iqr_thread_msgblks (hub, queue_name, hmb_blck, queue_index)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of threading, including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read
Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined
by the structure HBKDEF in the file HBKDEF.H

queue_name
Type: Descriptor
Access: Read only
Mechanism: By reference

This is the name of the message queue to use.

hmb_blck
Type: Longword
Access: Read
Mechanism: By value

This is the value of the block number of the header message block for the message
that is to be threaded.

queue_index
Type: Longword
Access: Read
Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the
iqr_connect_read or iqr_connect_write service routines for the message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_thread_msgblks

Page 63

DESCRIPTION
This service entry is called by the router or another process that needs to thread a
message that has been filled into the message queue's message thread. This
service requires that the user has the SYSNAM privilege. This test is to ensure
that the caller is a knowledgeable user. The privilege is not actually needed by
the service.

The blocks of the message have been assumed to have been allocated using the
iqr_allocate_msgblks and populated with the iqr_fill_msgblks.

Note: Since the test for full message queues is done at the time of allocation, it is
possible to end up with a message queue that has more messages than allowed.
This should not; however, affect the overall operation of the queue service.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successful return.

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not
writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.
Examine extended status in hbk and contact
developers.

QUE_NOTFOUND Requested message queue was not found
within the current hub.

QUE_NOTCONWRITE The caller has not yet connected for write (or
read) to this queue.

QUE_MQDFULL The message queue is full (the number of
messages in the queue exceeds that set by
iqr_add_message_q).

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_write_q

Page 64

4.23 iqr_write_q
Write a message to a message queue.

FORMAT
iqr_write_q (hub, queue_name, buffer, queue_index)

RETURNS
VMS usage: Condition code
Type: Longword
Mechanism: By value

Result of write, including possible VMS and RMS status codes.

ARGUMENTS
hub
Type: Record structure hbkdef
Access: Read
Mechanism: By reference

This is the buffer that was returned by the iqr_attach_h service. This is defined
by the structure HBKDEF in the file HBKDEF.H

queue_name
Type: Descriptor
Access: Read only
Mechanism: By reference

This is the name of the message queue to write to.

buffer
Type: Descriptor
Access: Read
Mechanism: By reference

This is a descriptor for the buffer where the information is to be placed on the
queue.

queue_index
Type: Longword
Access: Write
Mechanism: By value

This is the Connected Message Queue (CMQ) value returned by the
iqr_connect_read or iqr_connect_write service routines for the message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_write_q

Page 65

DESCRIPTION
This routine will attempt to write a new message to a message queue.

The caller must have already connected either for read or write (both allow write
access). The message in the user’s buffer is then copied onto the queue to await
for reading. If there were no messages currently waiting in the queue, then the
routine will attempt to notify any processes that are currently waiting for a new
message to arrive.

Note that there are two limits to the number of messages that can be written to the
queue. At any one time there is a maximum size to both the messages allowed
and the size of the queue itself. If your message would exceed either of these
limits, then an error is returned. Also, the message queue was set up with a
maximum number of messages allowed. Exceeding this value will also return an
error condition.

If the message queue is full, then it is checked for any stale or volatile messages
that can be deleted before writing to the message queue. Deleted messages
cannot be recovered.

CONDITION
VALUES
RETURNED

VMS Condition Codes

QUE_SUCCESS Successful completion

QUE_INVALQNAME User passed message queue name was not
valid. Not readable, or long length.

QUE_INVARG User passed argument invalid, or not readable.

QUE_INVALIDPEX User passed hub was invalid. Missing or not
writeable.

QUE_INTERNALFAULT Contact developers.

QUE_ALLOCLOCK Unable to capture hub allocation lock.
Examine extended status in hbk and contact
developers.

QUE_NOTFOUND Requested message queue was not found
within the current hub.

QUE_INVALUSERBUF The buffer passed by the user is invalid

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR System Service Library

iqr_write_q

Page 66

QUE_NOTCONWRITE The caller has not yet connected for write (or
read) to this queue.

QUE_MQDFULL The message queue is full (the number of
messages in the queue exceeds that set by
iqr_add_message_q).

IPACT Queuer and Router
©1996 by IPACT, Inc. Return Status Codes

Successful Status Codes

Page 67

5. Return Status Codes
This is a summary of status condition codes returned from IQR System Service
routines.

5.1 Successful Status Codes
VMS Error Code Description

QUE_ADDED A new message queue was successfully added. Only returned
from iqr_add_message_q.

QUE_LASTSEG Successful read of a segment from the queue (no more segments
exist, must ACK message before reading again). Only returned
from iqr_read_segment.

QUE_SUCCESS Normal, successful return.

5.2 Failure Status Codes
VMS Error Code Description

QUE_ALLOCLOCK Unable to capture hub allocation lock. Examine extended status
in hbk and contact developers.

QUE_BADCCTMQD The user specified number of message queues exceeds a
reasonability test defined by the software. Contact developers if
this is too low for your environment. The maximum number was
specified when the software was packaged.

QUE_BADHNAME User passed hub name was invalid. Name was too short, too
long, or was not accessible for read.

QUE_BADPRCINF The queue service was unable to get information about the current
process. Examine the condition code in the extended status field
of the hbk. Contact the developers.

QUE_CONTAINERFULL The disk container is at its maximum size. Either remove waiting
messages in a message queue, remove a message queue, or
increase the size of the container file.

QUE_DEFHNAME Unable to translate the default hub name. IQRHUB logical not
defined by the system manager.

QUE_INTERNALFAULT Contact developers.

QUE_INVALIDPEX User passed hub value was invalid. Missing or not writeable.
Usually caused by not having the hub initialized through the
iqr_attach_h routine.

IPACT Queuer and Router
©1996 by IPACT, Inc. Return Status Codes

Failure Status Codes

Page 68

QUE_INVALQIDX The queue_index is not valid. Usually caused by not successfully
connecting to a message queue via iqr_connect_read or
iqr_connect_write or trying to access a queue after
disconnecting.

QUE_INVALQNAME User passed message queue name was not valid. Not readable, or
long length. Can also indicate the message queue name does not
match that given by the queue_index.

QUE_INVALUSERBUF The buffer passed by the user is invalid. Either too small or not a
valid memory index passed.

QUE_INVARG User passed argument invalid, or not readable.

QUE_MAXMSGQUEUES User has exceeded the maximum number of message queues that
may be attached. The number specified on the iqr_attach_h or
mqd_count must be increased.

QUE_MQDFULL The message queue is full (the number of messages in the queue
exceeds that set by iqr_add_message_q).

QUE_NOCACHE No cache space available for the message queue.

QUE_NOMESS The message queue is currently empty. No messages exist to
read.

QUE_NORNAMESS No message was read off of the queue -- the RNA has not been
set. You need to first read a message before you can
acknowledge it.

QUE_NOTCONREAD The caller has not yet connected for read to this queue.

QUE_NOTCONWRITE The caller has not yet connected for write to this queue.

QUE_NOTFOUND Requested message queue was not found within the current hub.

QUE_PRCLCKNM The queue service was unable to create a process lock. Examine
the condition code in the extended status field of the hbk.

QUE_PREATT Informational status indicating that the message hub has already
been attached.

QUE_TOOMANYRDR Maximum number of readers already connected to the message
queue.

QUE_USRBUFSML The size of the passed buffer is too small.

IPACT Queuer and Router
©1996 by IPACT, Inc. Using the System Services

Code Generation

Page 69

6. Using the System Services

6.1 Code Generation
While the bulk of the IQR software was written in DEC C, header files are provided
for both C and FORTRAN. Specific information relative to each programming
environment is provided in following sections.

Program code written to use the IQR System Service usually follows some basic patterns in order to
read/write to message queues. They are:

• First, attach to a specific hub by calling iqr_attach_h. The returned hub value must be saved
for future service calls that reference this particular messaging hub.

• Insure that the message queue you are going to use exists. If it does not, you can create it with
the IQU utility, or call the iqr_add_message_q service. If the message queue does not exist,
then any attempts to connect to the message queue will fail.

• Connect for read or write to a particular message queue, depending on what you intend to do.
The number of readers on a queue is limited, so unless you intend to read from a queue, select
to connect as a writer. Readers can both read and write messages. Call iqr_connect_read or
iqr_connect_write according to your intentions. Be sure to save the returned queue_index
value for future service calls that refer to these message queues.

• Actually performs the read/write. Reading can be done with a number of services such as:

 iqr_read_q - read a message from the queue (normal read).
 iqr_read_qw - read a message from the queue. If none exists, wait for one to arrive.
 iqr_read_segment - read a part of a message from the queue. Successive calls to

this service are needed to read in the entire message.
 iqr_read_hmb - call this service to just check the information about the next

message on the queue. The message remains at the head of the queue.

 After reading from the queue, you will need to acknowledge the message. This lets the queue
know that you are done with the message and may remove it from the message queue. You
may not have to do this if the message queue was set up as auto acknowledging (see
iqr_modify_q or iqr_add_message_q). Use the routine iqr_ack_read to acknowledge the
message.

 Writing a message can be done with these services:

 iqr_write_q - the normal write routine
 iqr_rtr_write_q - this will write a message to a queue, preserving an already built

header for the message.
 iqr_allocate_msgblks, iqr_fill_msgblks, and iqr_thread_msgblks - these services

combined allow the caller to fill a message on the queue using separate segments.

• When you have finished working with a specific message queue, you should disconnect from
it (especially if you are a reader; other readers may need to connect). Call iqr_disconnect_q
to disconnect yourself from the message queue. Further access to the message queue will
require that you reconnect again. If you are completely done with a message queue, or as a
rundown service, you may wish to execute the service iqr_disconnect_h which disconnects
the program from the hub and shutdown all opened message queues.

IPACT Queuer and Router
©1996 by IPACT, Inc. Using the System Services

Using IQR with C

Page 70

6.2 Using IQR with C
The following suggestions are for people who wish to program in C:

• In source code that uses IQR routines or definitions, you need to include the following
header file:

#include IQR

• When compiling programs that use the IQR system service, you need to make reference to
the header library. Do this by:

CC <source> <options> + IQR$LIB:HUB.TLB/LIBRARY

• To link programs to the IQR system service, do the following:

$ LINK <source> SYS$INPUT/OPTIONS
<options>
IQR$LIB:HUB/LIBRARY
IQR$PROD:IQRSS/SHARE

6.3 Using IQR with FORTRAN
The following suggestions are for people who wish to program in FORTRAN:

• In source code that uses IQR routines or definitions, you need to include the following
header file:

INCLUDE ‘IQR$LIB:HUB_FOR(IQR)’

• When compiling programs that use the IQR system service, you need to cancel warnings
about structure alignment. Do this by:

FORTRAN /NOWARN=ALIGN <options> <source>

• To link programs to the IQR system service, do the following:

$ LINK <source> SYS$INPUT/OPTIONS
<options>
IQR$LIB:HUB/LIBRARY
IQR$PROD:IQRSS/SHARE

IPACT Queuer and Router
©1996 by IPACT, Inc. Compatibility

Using IQR with FORTRAN

Page 71

7. Compatibility
The IQR System Services includes a patch library that will enable users to link older
MAQ or MQD software to the current version of the IQR System Service. The IQR
Service and Router were designed to be compatible with these previous queuing
software programs. However, complete compatibility is not entirely possible, and
some general notes for both MAQ and MQD versions of software are given below:

• The IQR System Service requires that the user pass an index value in the service calls. In
order to provide compatibility, the patch library will check for a valid index argument,
and if not found, will attempt to search the callers connected message queues for a valid
index. If the index is still not found, then an attempt will be made to connect to the
message queue to get an index. If the user is a reader of a message queue, he must
connect before attempting to read from the queue -- the patch library will not perform a
connect_read.

• The IQR System Service no longer provides the user with a valid RNA value. This
number is now kept internally by the IQR software. To provide compatibility, the patch
routines will return a value of one (1) for all routines that return a valid RNA value.

• MAQ/MQD System calls that relied upon the gathering of information from the message
queue will not work under the new IQR System Service -- mainly due to the
incompatibility of how the message queues are actually stored on each software platform
and the format of data structures. If you desire information about a message queue, use
the provided IQR System Service utilities or calls.

• MAQ/MQD System calls that actually perform message queue functions (i.e. read, write,
delete, attach) are all supported through the use of a patch library that is included along
with the IQR System Service. Original source code will need to be re-linked (and
possibly recompiled) with the new patch library in order to work with the IQR System
Service.

Specific information regarding the two versions of queuing software is described below.

IPACT Queuer and Router
©1996 by IPACT, Inc. Compatibility

MAQ System Service Patch Library

Page 72

7.1 MAQ System Service Patch Library
The patch library for the MAQ System Service supports MAQ version 5.3. For more specific
information of function calls, see the MAQ manual. The following function calls are currently
supported:

MAQ Service Calls Notes

ack_read Acknowledge last read message.

ack_sec_read Outdated service. Calling this routine will actually perform
ack_read.

add_message_id Adds a new message queue to a hub with default parameters except
for the max_count parameter.

attach_q Will attach to a messaging hub. For a default hub name, you must
have IQRHUB defined in either the group or system tables.

attach_qe Identical to attach_q.

backup_rna Backup the RNA of the current read message.

backup_srna Outdated service. Calling this routine will actually perform
backup_rna.

change_message_id Performs a limited form of the iqr_modify_q service. This will
only allow the caller to modify the maximum number of messages
in a queue at one time.

con_secread Outdated service. Calling this routine will actually perform
connect_read.

connect_read Connects the caller as either a primary or secondary reader to a
message queue.

delete_message_id Delete a message queue from a hub.

detach_q Detaches the current process from all connected message queues
(rundown handler).

disconnect_read This will disconnect a reader (or writer) from a message queue.

get_mid_index Actually performs an iqr_connect_write. This is used to get an
index value for writers to a message queue.

read_q Reads a message from a message queue.

read_qrec Read a message from the queue (record format).

read_sq Outdated service. Actually performs the read_q service.

IPACT Queuer and Router
©1996 by IPACT, Inc. Compatibility

MAQ System Service Patch Library

Page 73

write_q Writes a message to a message queue.

write_qrec Writes a message to a message queue (record format).

The following MAQ routines are not supported and will return a QUE_NOTSUPP warning error.

Unsupported MAQ Service Calls Notes

display_message_id Invalid data under IQR.

display_queue_head Invalid data under IQR.

display_region Invalid data under IQR.

find_q_processes Not supported in IQR.

opr_fao_msg Not supported in IQR.

read_msg Not yet supported.

rtr_write_q Not yet supported.

shutdown_q Not yet supported.

IPACT Queuer and Router
©1996 by IPACT, Inc. Compatibility

MQD System Service Patch Library

Page 74

To compile MAQ Service programs, the following must be done:

• Compile all source code. In particular, on the Alpha platform. It is imperative that some
of the data structures be aligned properly. This usually will either require a special
command line switch or a command statement in the source code. The following data
structures must be compiled so as to be byte aligned, otherwise strange data and errors
may appear (particularly when dealing with messages going to/from the router):

 HDRDEF

 If you need to know how to compile a module so as to be aligned, see your compiler’s

documentation. For FORTRAN code, use the following technique for the included file:

 cdec$options/align=(record=packed) !Turn on byte alignment
INCLUDE 'QUEUE.TLB(HDRDEF)' !Aligns this module

cdec$end options !Restore to normal alignment

 In addition, add the /NOWARN=ALIGN switch to the FORTRAN compiler command line to

disable reports about misalignment.

• Include the IQR Patch MAQ Library (iqr_patch_maq), IQR System Service (iqrss), and
service messages library (hub) in the link statement of your program. This should be like
the following:

 $ LINK <source> SYS$INPUT/OPTIONS

<options>
IQR$LIB:HUB/LIBRARY
IQR$PROD:IQRSS/SHARE

7.2 MQD System Service Patch Library
The patch library for the MQD System Service supports MQD version 4.0. For more specific
information of function calls, see the MQD manual. The following function calls are currently
supported:

MQD Service Calls Notes

ack_read Acknowledge last read message.

attach_q Will attach to a messaging hub. For a default hub
name, you must have IQRHUB defined in either the
group or system tables.

attach_qe Identical to attach_q.

backup_rna Backup the RNA of the current read message.

connect_read Connects the caller as either a primary or secondary
reader to a message queue.

detach_q Detaches the current process from all connected
message queues (rundown handler).

IPACT Queuer and Router
©1996 by IPACT, Inc. Compatibility

MQD System Service Patch Library

Page 75

get_mid_index Actually performs an iqr_connect_write. This is
used to get an index value for writers to a message
queue.

mqd$ack_read Acknowledge last read message.

mqd$add_message_id Adds a new message queue to a hub.

mqd$attach_q Will attach to a messaging hub. For a default hub
name, you must have IQRHUB defined in either the
group or system tables.

mqd$backup_rna Backup the RNA of the current read message.

mqd$change_message_id Modifies the number of messages allowed on a
message queue.

mqd$connect_read Connects the caller as either a primary or secondary
reader to a message queue.

mqd$connect_write Connects the caller as a writer to a message queue.

mqd$delete_message_id Deletes a message queue from a hub.

mqd$detach_q Detaches the current process from all connected
message queues (rundown handler).

mqd$disconnect_id Disconnect from a message queue.

mqd$read_q Reads a message from a message queue.

mqd$read_qw Reads a message from a message queue (wait for
message to arrive).

mqd$write_q Writes a message to a message queue.

read_q Reads a message from a message queue.

read_qrec Read a message from a message queue (record
format).

write_q Writes a message to a message queue.

write_qrec Write a message to a message queue (record
format).

IPACT Queuer and Router
©1996 by IPACT, Inc. Compatibility

MQD System Service Patch Library

Page 76

The following MQD routines are not supported and will return a QUE_NOTSUPP warning error.

Unsupported MQD Service Calls Notes

mqd$attach_d Invalid data under IQR.

mqd$cplx_time Not supported in IQR.

mqd$display_message_id Invalid data under IQR.

mqd$display_queue_head Invalid data under IQR.

mqd$display_region Invalid data under IQR.

mqd$read_qn Not supported in IQR.

mqd$rtr_write_q Not yet supported.

mqd$set_ctime Not supported in IQR.

To compile MQD Service programs, the following must be done:

• Compile all source code. In particular, on the Alpha platform, it is imperative that some
of the data structures be aligned properly. This usually will either require a special
command line switch or a command statement in the source code. The following data
structures must be compiled so as to be byte aligned, otherwise strange data and errors
may appear:

 HDRDEF

 If you need to know how to compile a module so as to be aligned, see your compiler’s

documentation. For FORTRAN code, use the following technique for the included file:

 cdec$ options/align=(record=packed) !Turn on byte alignment
 INCLUDE 'QUEUE.TLB(HDRDEF)' !Aligns this module
 cdec$ end options !Restore to normal

 In addition, add the /NOWARN=ALIGN switch to the FORTRAN compiler command line to

disable reports about misalignment.

• Include the IQR Patch MQD Library (iqr_patch_mqd), IQR System Service (IQRSS), and
service messages library (hub) in the link statement of your program. This should be
similar to the following:

$ LINK <source> SYS$INPUT/OPTIONS

<options>
IQR$LIB:HUB/LIBRARY
IQR$PROD:IQRSS/SHARE

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

Introduction

Page 77

8. IQR Router

8.1 Introduction
The IQR Routers provides the ability to route message queues to other nodes.
Currently, DECnet and TCP/IP transports are supported. The remote nodes may be
any DECnet or TCP/IP compatible node that supports the IQR Router protocol. This
protocol and example test programs are available from IPACT to any end user who desires to write
their own router to communicate with the IQR Router.

The TCP/IP IQR Router can be used in conjunction with the MAQ product as well as with the IQR
product. MAQ is a package available to the public through the DECUS organization. It provides a
queuing service to OpenVMS VAX environments. The TCP/IP IQR Router can be installed on a
system having the MAQ product, and will route the MAQ messages to other nodes supporting the IQR
Router Protocol.

Applications and their message queues should be partitioned such that a particular router may be taken
down while still allowing other applications to function.

8.2 TCP/IP IQR Router
The TCP/IP IQR Router is a threads based application that facilitates the transmission of queue
messages from one hub/node to another over a standard TCP/IP connection. The router uses standard
Posix Compliant thread calls and standard TCP/IP socket services. This router variation has been tested
on OpenVMS VAX and OpenVMS AXP. OpenVMS must be at least version 6.2 to support the
threads environment. Two TCP/IP stacks have been tested with this version of TCP/IP Router. DEC
(Compaq) TCP/IP Services version 4.2 or greater and Process Software Corporation’s TCPWARE
version 5.2 or greater have been used successfully with this product. Other stacks should function as
well, if they provide a standard socket library to the OpenVMS environment.

The TCP/IP IQR Router is provided as a standard part of the IQR product. It can also be used in the
MAQ environment by obtaining a recent version of the MAQ kit from IPACT. You will then be able to
route messages between IQR and MAQ over TCP/IP in addition to DECnet.

8.3 DECnet Router Routing Database
The IQR DECnet Router uses a routing database that specifies which message queues are to be
received by a particular router and which are to be transmitted by a router. Each IQR Router has its
own unique routing database. Multiple routers may be present on a single node such that applications
may be partitioned. Each router has the ability to connect to one or more hubs (beta release only
supports a single hub connection). A DECnet router is known to other DECnet routers by its node
name and its object name. Object names should reflect the functionality of the router. DECnet requires
that object names be unique on a single node. This means that if your application requires multiple
routers on a single node, they must have unique object names.

To generate a routing database for a DECnet router the following language is provided. The language
is then compiled and built into a routing database image by the RTRDBS utility. The RTRDBS utility
also creates a startup command procedure for the router that can be used by the system manager to start
the particular IQR DECnet Router. This command procedure specifies adequate resources needed by
the router, based on the information contained within the routing database.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

DECnet Router Routing Database

Page 78

The following four statements are used in combination to define the routing database:

• ROUTER - Specifies information for the IQR Router process
• NODE - Specifies connection to remote nodes
• ROUTE_QUEUE_OUT - Specify message queues to be routed off this node by this

router
• RECEIVE_QUEUE - Specify message queues to be received by this router

Each of the statements are shown below with their syntax. All parameters are separated by commas
and are free of format. All lines beginning with an exclamation point and the remainder of any line
after an exclamation point is considered to be a comment. Parameters enclosed by square brackets “[]”
are optional and a default value will be supplied by the RTRDBS utility. All statements must end with
a semicolon. The language is translated to upper case prior to parsing. Therefore, all message queues,
process names, object names, and hub names are all converted to upper case. The user may not use any
of the reserved words shown in capital letters.

ROUTER
OUTBUF_SIZE=blkcnt,
OUTBUF_COUNT=bufcnt,
PROCESS_NAME=pname,
DENCET_OBJECT_NAME=objname,
[QUEUE_NOACK_TIMER=tvalue];

blkcnt = Size of the output buffers. This number is specified in 512 byte blocks (e.g. a value of 2
specifies a 1024 byte buffer)

bufcnt = Number of output buffers. This effects the number of messages that may be transmitted by
the router at a single time. It also effects the buffer I/O quota required by the router.

pname = Process name that the router should define itself. The router will change its process name to
this name when it begins running. This is done to ensure that there can never be two routers running
against the same routing database. Standard VMS process names are valid.

objname = This is the DECnet object that will be mapped within the router database that is used to
identify itself to DECNET. This name must be unique. The system manager can use the following
VMS command to determine if the object name is unique: “NCP SHOW KNOWN OBJECTS”.

tvalue = This is a timer specified in seconds that indicates how long a message written to a remote
node will be considered, not acknowledged. This value is defaulted to fifteen seconds.

NODE
NODE_NAME=logical node name,
NODE_LIST=(node1[,node2,node3,node4]),
OBJECT=object name,
MAX_RECV_MSG_SIZE=blkcnt,
[FLAGS=(flag1,flag2)],
[RETRY_TIMER=rtime];

logical node name = This is a logical name for a node or nodes where the local router may send
outbound message queues. Normally, this is specified as a service name on the remote node. Typical
names might be: “lineups, production, development”. This name must be sixteen characters or less.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

DECnet Router Routing Database

Page 79

(node1,..,node4) = This is a list of DECnet node names of where a remote router might exist. This list
may be from one to four in number. The router will attempt to connect to the object name indicated at
each of the nodes with a one minute interval between attempts. If the DECnet object is not available on
any of the nodes, then the router will delay for “RETRY_TIMER” minutes before trying the list again.

object name = This is the DECnet object on each of the remote nodes where the router should attempt
to connect. The router uses the same object name for each of the nodes in the NODE_LIST.

blkcnt = This is the largest message that may be received from the remote node in 512 byte blocks.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

DECnet Router Routing Database

Page 80

(flag1,..,flagn) = These are character flags that are used by the router for particular functioning to a
remote router. Currently, the following flags are defined:

• RSX - If this flag is set, the router will use the non-multipacked router protocol used by
the MAQ router on the RSX platform or the MAQ router for VMS releases less than 5.3.
The MAQ router for RSX is available from IPACT or DECUS.

• MQD - If this flag is set, the router will use the multipacked router protocol used by the
MQD router. The MQD router is a proprietary router developed by IPACT for Inland
Steel.

rtime = Time in minutes between attempts of the route list. If none of the nodes in the route list are
found to be reachable or are unable to connect to the remote router on any of the nodes in the route list,
then the router will wait this amount of time before trying the list again. The default value is fifteen
minutes.

ROUTE_QUEUE_OUT
QUEUE_NAME=message queue,
FROM_HUB=hub,
TO_NODE=logical node name,
[FULL_TIMER=ftime,]
[AS_QUEUE=alternate message queue name];

message queue = This is the name of a message queue that the router will connect as a reader to and
attempt to route to a remote router.

hub = This is the hub where the message queue resides.

logical node name = This specifies which node the messages contained in the message queue are to be
routed. There must be a node statement with the “NODE_NAME” specified to this.

ftime = If the router receives a response from a remote router that its hub is full, then the router will
wait this amount of time before trying to send this message to the remote router again.

alternate message queue name = This allows the ability to change the name of the message queue
when it is routed off node.

RECEIVE_QUEUE
QUEUE_NAME=message queue,
TO_HUB=hub

message queue = This is a message queue that this router should expect to receive from any of the
nodes that connects to it.

hub = This is the hub where the router should place the message queue when it is received.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

DECnet Router Routing Database

Page 81

A sample routing database follows:

!
! -- A sample router database file for use with the TEST_IQR hub --
!
!
! This section defines global parameters for the router that uses this
! router database.
!
ROUTER

OUTBUF_COUNT=4, ! Number of output buffers
OUTBUF_SIZE=4, ! Size of output buffers in 512Kb blocks
PROCESS_NAME=TEST_RTR, ! Name of the process when running
DECNET_OBJECT_NAME=TEST_RTR, ! DECNET object name of this router
QUEUE_NOACK_TIMER=60; ! Timer if a message is sent to a remote

! node and no acknowledge is received (in
! seconds)

!
! This section defines the NODE names that the router can connect to. Each node
! name actually can have up to four named nodes in it.
!
NODE

NODE_NAME= MV3, ! Define remote logical node service as this name
NODE_LIST=(IPCMV3), ! List of nodes in this group that we try to connect
OBJECT=IPCMV3_RTR, ! Remote router object name is this
MAX_RECV_MSG_SIZE=10, ! Largest message to be received

! from this node is in 512 Kb blocks
FLAGS=(MQD), ! Some flags
RETRY_TIMER=15; ! And if we can't connect any of the nodes in

! route list, how long to wait before
! trying the route list again (in minutes)

!
! This section defines outbound routed message queues. You must have a separate
! entry for every message queue to be routed out.
!
ROUTE_QUEUE_OUT

QUEUE_NAME=MSG_OUT, ! Msg queue from this hub to be routed outbound
AS_QUEUE=MSG_OUT, ! Routed queue name
FROM_HUB=TEST_IQR, ! and from this hub
TO_NODE=MV3, ! to this target node
FULL_TIMER=120; ! if full, how long before trying again in seconds

!
! This section defines a message queue that is capable of receiving routed
! messages from another router. You must have a seperate section for each
! message queue to be received.
!
RECEIVE_QUEUE

QUEUE_NAME=MSG_IN, ! Receive into this message queue from anyone
TO_HUB=TEST_IQR; ! Which is located in this hub

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

DECnet Routing Utilities

Page 82

8.4 DECnet Routing Utilities
To help diagnose the actions of the router the following utilities are supplied:

• DMPRTR - This utility will display the connection status of all the remote routers. It
will also display statistics for each of the paths.

• LSTRTR - This utility will display the message queues transmitted or received by the
router.

These utilities are fully described in the Utilities Chapter.

8.5 TCP/IP Router Routing Database
The function of the TCP/IP Router’s Routing Database is similar in nature to the one used by the
DECnet Router. The main difference between the two being, the method used to generate the actual
database. The database, or initialization file, used by the TCP/IP IQR Router is a simple text file which
is created using your favorite text editor. Its structure is similar to the structure used in many Windows
based applications having initialization files.

The database is created by opening a standard text file using a text editor. The name of the file is
usually chosen to be representative of the environment to be serviced by the specific router. The length
of the file name is limited only by the operating system on which the router will be running.

The database file is partitioned into three major sections. Each major section name is delimited by a
pair of open an closed square brackets “[]”. Section parameter values are specified following each
section identifier by using a set of predefined and unique keywords. Each section and each keyword for
these sections is discussed in the following paragraphs. Each keyword is assigned a value by forming a
definition such as HUB = ABCDEF_GH or PORT = 12345.

The following three sections are used in combination to define the TCP/IP routing database:

• GLOBAL - Specifies information for the IQR Router process
• INCOMING - Specifies connection to remote nodes
• OUTGOING - Specify message queues to be routed off this node by this router

References to “Nodes” in the context of the TCP/IP IQR Router refer to a name entry in the hosts file
of the local node. These names are subsequently translated into complete TCP/IP addresses by use of
standard socket service calls. Relationships may be established, by the System or Network
administrator, which result in specific paths being used for connections to remote routers. Please
consult your TCP/IP stack provider’s management guide or contact your administrator for assistance in
these areas.

8.5.1 TCP/IP Router Database [GLOBAL] Section
The first section to be defined in the Routing Database of a TCP/IP IQR Router is the [Global] section,
not to be confused with a global section of memory. This section of the Router Database, or
initialization file, describes the hub to which this instance of router will attach and then service. The
Global section has only 3 parameters. All three of these parameters are optional. If they are not
explicitly defined, a default is used for the parameter.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

TCP/IP Router Routing Database

Page 83

Hub -The first of the optional parameters for the [GLOBAL] section is the HUB parameter. This
parameter identifies the hub to which this instance of router is to attach. If the hub parameter is not
defined, the logical name IQRHUB is translated to obtain the default hub name on this node. The hub
name is limited to eight characters in length.

Port -The next [GLOBAL] parameter is the TCP/IP port on which to listen for incoming connections
from other routers or utility applications such as TCPIQRSTAT. If a port is not specified in the global
section of the initialization file, a default of port 3000 is used. If a port other than 3000 is used, the port
number must also be specified in utility operations as well. TCPIQRSTAT will use port 3000 by
default. When choosing a port number it is best to check with the system or network administration for
your network. You must insure that the chosen port number is not used by any other applications on
your network. Unexpected behavior will result if other applications are using the same port number.

BufferSize -The last parameter which can be specified for the Global section is BufferSize. This
parameter is only used in environments which are using the MAQ product mentioned previously in this
document. The MAQ product is only able to deliver a complete queue message to the router when read,
unlike the IQR product which feeds the router smaller portions of a queue message for processing.
Given this mode of operation by the MAQ, it is necessary that the TCP/IP IQR Router have sufficient
buffer space to accommodate the largest message being queued within the MA Queue. If a value is not
provided in the initialization file, a default value of 8192 bytes is used by default. The minimum size
that may be specified is currently 1024 bytes. The largest buffer that may be specified is currently
32767 bytes. If the router is being used in an IQR environment, the buffersize parameter is ignored.
Calculate the correct buffersize by determining the largest message contained in the hub and adding
106 bytes to that value. This is the correct size for parameter BufferSize.

8.5.2 TCP/IP Router Database [INCOMING] Section
The next section of the TCP/IP Router Database is the Incoming section. It defines a list of queues to
which incoming messages are expected to be routed to, from other routers. A queue specified in this
section is attached to by the router for write access. Only a single parameter is supported in the
Incoming section of the initialization file.

QueueName – This parameter defines the name of a message queue, in the attached hub, to which this
instance of the router will write messages. Any number of QueueName entries may follow the Incoming
section heading. The number of entries is limited only by the number of queues defined in the attached
hub. The remote router sending messages to this queue will have a corresponding entry in the Outgoing
section of its initialization file.

8.5.3 TCP/IP Router Database [OUTGOING] Section
The last section of the TCP/IP Router Database is the Outgoing section. This section defines those
queues, whose messages are destined for other cooperating TCP/IP Routers. Entries in this section
describe local message queues and the destination routers for the messages contained within them.
There are six parameters supported in the Outgoing section of the initialization file. The first two
parameters are required for each outgoing queue. The next four parameters are optional.

QueueName – This is the first parameter to be defined for an entry in the Outgoing section of the
initialization file. It specifies the name of a queue whose messages are destined for another hub. The
TCP/IP Router is notified when a message is deposited in the specified local message queue. The router
is then responsible for delivering the message to the specified cooperating router for entry in that
router’s target hub.

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

TCP/IP Router Routing Database

Page 84

RemoteNode – The next parameter used in defining an outgoing queue is the RemoteNode parameter.
It is a required parameter for an outgoing queue. The parameter can be used in two distinct ways. If the
parameter is used horizontally, such as RemoteNode = NodeABCD, NodeJKLM, the nodes specified
on the line are treated as primary and secondary. If a send to the first node is unsuccessful, a connection
is made to the secondary node and an attempt is made to send the queued message to that node.
Attempts are then made at defined intervals to these nodes, in a round robin fashion, until a successful
send occurs. That node then becomes the current primary node for that message queue.

If multiple RemoteNode entries are present for an outgoing message queue, each node in the list is sent
a copy of the message being routed, if the number of nodes connected is greater than or equal to the
number specified by parameter Mincon. If that number of connections have not been established for
the current outgoing queue, no messages are sent. When the specified number of connections are finally
made, the messages are then transmitted by the router to the list of nodes.

You may also use a combination of the two RemoteNode specifications. You may choose to have
multiple RemoteNode lines specified for an outgoing queue in addition to supplying a many as two
nodes per RemoteNode parameter line.

Bear in mind that a TCP/IP socket is consumed for each active connection to a remote router from the
local router. If you have you have defined eight incoming and eight outgoing queues you have just
consumed a minimum of 16 TCP/IP sockets for this configuration. If you have specified multiple
RemoteNode parameter lines for outgoing queues you have increased the original number of sockets
consumed by the number of additional RemoteNode lines present. An additional socket is used by the
main router thread to listen for incoming connect request from remote routers. One final socket us used
by the TCPIQRSTAT utility in order to obtain routing information from a TCP/IP router. Attention
must be paid to the number of sockets being consumed as the limit on socket usage for the router at
present is 64. Exceeding this number will result in unpredictable behavior of the router and message
delivery.

RemotePort – The RemotePort parameter designates the port to which a connection should be made at
the remote router. If not specified, the default port of 3000 is used. This is an optional parameter.

RemoteQName –The RemoteQName parameter is used when the target queue at the remote end
differs from the queue name locally. Under normal circumstances the specified QueueName is also
used as the name of the target queue at the remote destination. In fact that is the default case when the
RemoteQName parameter is omitted. This is an optional parameter.

RetryTimer – The RetryTimer parameter is used to set the retry interval for reconnection attempts
between the local router and the remote router for this queue. The parameter is specified as an integer
number of minutes between retry attempts to a disconnected router. This parameter is optional. If
unspecified, a default of 1 minute is used.

MinCon – The MinCon parameter specifies the minimum number of remote connections required
before forwarding of messages from this queue will begin. This parameter is especially important when
using multiple RemoteNode parameter lines for a single outgoing queue. This parameter is optional. If
unspecified, a default of 1 is used for the parameter. An example of its use would be specifying three
RemoteNode parameter lines each with a single node identified. If a MinCon value of 2 is specified, the
router must have established a connection with at least 2 of the three routers specified in the
RemoteNode parameter lines before any message will be forwarded from the local message queue.

Example of TCP/IP IQR Router Database initialization file:

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

TCP/IP Router Routing Database

Page 85

!***
! This version of the TCPIQR initialization file was created as an example *
! of how you might structure your initialization file. *
!***
! TCP/IP IQR Router definition file
!
! This file is read during startup of the TCPIQR process to configure
! global buffers for local and remote queue access. The file has a
! structure similar to other Windows based application initialization files
! as shown below.
!
! Specify sections with brackets used to designate the beginning of a
! section, such as: [SECTION_NAME]. Valid sections are GLOBAL,
! INCOMING, and OUTGOING
!
! Specify section parameters as PARAMETER = VALUE
! You may have spaces/tabs around both PARAMETER and VALUE. Leading
! and trailing spaces are stripped by TCPIQR. Valid paramters for the
! various sections are shown below.
!
!
! GLOBAL parameters. All are optional.
!
! Parameters:
! HUB name of hub to attach to. If not supplied use logical name IQRHUB
! to derive the hub name.
! PORT is the port number on which the router listens for incoming
! connect requests. If not supplied, the default port of 3000 is used.
! BUFFERSIZE
! Only used on MAQ based systems to specify largest expected message
! to be read from a local queue. It is optional. It is ignored on
! IQR based systems. 8192 is the default buffersize when not specified.
!
[GLOBAL]
HUB=TEST_HUB
!
! Incoming section. Specifications in this section pertain to local queues
! which are to be written to by other routers. These routers may be located
! on remote nodes or the same node.
!
!
! INCOMING parameters. Only a single parameter is currently supported.
!
! Parameters:
! QUEUENAME Is the name of the local que to be written to by the router
! upon receipt of a message designated for that queue.
!
[INCOMING]
QueueName=LOCAL_QUE1 ! Incoming queue name
QueueName=LOCAL_QUE2 ! Incoming queue name
QueueName=LOCAL_QUE3 ! Incoming queue name
!
! OUTGOING Parameters. Specify a list of queues that are located outside
! of our local hub, plus attributes for these associations.
!
! Parameters:
! QUEUENAME The name of a queue whose messages are to routed outside
! of the local hub.
! REMOTENODE A list of nodes to which messages are to be routed from
! the previously specified queue. At least one node must
! be in the list for automatic message routing to occur.
! As many as two nodes may be in the list. If there are
! no nodes specified, the queue becomes a "POLLED" queue.
! Remote clients may then poll the queue for messages. The
! parameter may be either an IP address or a name which
! can be translated to an IP address using standard socket
! services.
! REMOTEPORT The port on which the remote router listens for incoming
! connect requests. (OPTIONAL) If not specified, the default
! port number of 3000 is used.
! REMOTEQNAME The name of the remote queue to which messages from our

IPACT Queuer and Router
©1996 by IPACT, Inc. IQR Router

TCP/IP Router Routing Database

Page 86

! queue are routed. (OPTIONAL) Only specified if the name
! of the remote queue differs from the local QUEUENAME.
! RETRYTIMER Is the wait period (in minutes) between attempts to
! connect with a remote node.(OPTIONAL) A default of 1
! minute is used if the parameter is not specified.
! MINCON Is another (OPTIONAL) parameter which can specified. It
! determines how many remote routers must be connected
! before the local router is allowed to route messages from
! the local queue.
!
! Comment delimeters are !
!
[OUTGOING] ! OUTGOING QUEUES
QueueName=REMOTE_QUE1 ! Queue name

RemoteNode=PRIMARY_NODE,BACKUP_NODE ! list of nodes (up to 2 names/addresses)
RetryTimer=1 !retry connections (every minute)
MinCon=1 ! Minimum connections required

QueueName=REMOTE_QUE2 ! Queue name
RemoteNode=PRIMARY_NODE,BACKUP_NODE ! List of nodes (Up to 2 names/addresses)
RetryTimer=1 !retry connections (every minute)
MinCon=1 ! Minimum connections required

QueueName=REMOTE_QUE3 ! Queue name
RemoteNode=PRIMARY_NODE,BACKUP_NODE ! List of nodes (Up to 2 names/addresses)
RemoteNode=PRIME_NODE2,BACKUP_NODE2 ! List of nodes (Up to 2 names/addresses)
RemotePort=2999 ! Alternate port used at remote router
RemoteQName=PRIME_QUE3 ! Name of remote queue to forward to
RetryTimer=1 ! retry connections (every minute)
MinCon=1 ! Minimum connections required

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

DMPQUE

Page 87

9. Utilities

9.1 DMPQUE
This utility is provided to browse the message queues within a hub and to display
individual statistics about each of the message queues it contains. The following is
displayed for each message queue:

• Time last written
• Time last read
• Elapsed time from read to acknowledge of the last message
• Total elapsed time from read to acknowledge
• VMS process connected for read to the message queue

Calling format:

DMPQUE [/COUNT=nn][/SINCE=["DD-mmm-yyyy hh:mm:ss"]] [/MONITOR]
[/FULL]
[/BRIEF] [hubname]
[/ACTIVE]

where:
/COUNT Display only message queues with at least nn messages in the message

queue.

/SINCE This will only display message queues that have been read, written, or
acknowledged since the provided time stamp. Note that the On_Queue time
for a message may still be older than the time specified. By not providing a
time stamp, only message queues modified for the current day will be
displayed.

/MONITOR This will activate the monitoring feature of DMPQUE. This will provide a
continuously updated display of the hub’s message queue information every
three seconds. Press CTRL-Y to cancel the display.

/FULL This causes DMPQUE to display all message queues for the hub, to include
deleted message queues. Normally, deleted message queues are not
displayed.

/BRIEF This will cause the output to display only 80 columns of data. Because of
the smaller screen size, some of the queue information will not be shown.

/ACTIVE Displays only those queues that are active (i.e. times are not zero).

hubname Name of the hub from which to display messages. If not given, DMPQUE
will attempt to translate the GROUP or SYSTEM definition of IQRHUB for
the default hub name.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

DMPQUE

Page 88

The following is a sample screen dump of the called routine:

$dmpque/full

HUB information for hub name: TEST_IQR on IPCALP::
HUB Operational since 27-JUL-1995 11:35:44.95 Up for 3 07:00:36.49

Location Size Free Blk Write Cntr Read Cntr Act Queues Last Update
--------- -------- -------- ---------- --------- ---------- -----------------------
Container 4038 4030 16 28 3 27-JUL-1995 12:51:37.34
Region 197 128 41 41 6 27-JUL-1995 12:31:05.15

Queue Name Flags CurMsg MaxMsg LostCnt Last Wrt Last Rd Last Ack Last Trans CumTran Primary Reader SecondaryReader
-------------- -------- ------ ------ ------- -------- -------- -------- ---------- ------- ---------------- ---------------
REPL ..R..... Replicate to: TEST, MSG_IN
TEST2. 0 20 0 12:29:53 12:31:05 12:31:05 1:11.48 0:08:05
MIKE ...TW... 0 5 0 00:00:00 00:00:00 00:00:00 0:00.00 0:00:00 IQR_ROUTER
TRACY2. 0 10 0 00:00:00 00:00:00 00:00:00 0:00.00 0:00:00
MESSAGESA2. 0 25 0 10:50:36 10:50:45 10:50:54 0:09.04 0:00:19 IQR_3 IQR_2
MSG_IN .J....2. 0 20 0 12:51:06 12:51:13 12:51:14 0:07.38 0:02:45
IPACT XJ....2. 0 20 0 00:00:00 00:00:00 00:00:00 0:00.00 0:00:00
EARL .J.T..2V 3 10 3 11:20:27 11:20:34 11:20:58 0:23.42 0:00:24 IQR_1
ROUTER .J..W... 2 10 0 11:31:55 11:32:04 11:32:05 0:00.33 0:00:04 IQR_ROUTER

The first line shows the name of the hub and the location of the container file. The next line will show
the time the hub was installed in addition to how long the hub has been operational. The top portion of
the next display area shows general information about the hub for both its journaled and non-journaled
space. The given information is as follows:

Location This will either be “Container” or “Region”. This will indicate what
information on the current line is given. Container information is for
journaled message queues and Region information is for non-journaled
message queues.

Size This is the size of the area in 512 byte blocks.

Free Blk The number of free blocks.

Write Cntr The number of writes made to this particular area.

Read Cntr The number of reads made to this particular area.

Act Queues The total number of active message queues in this area. Deleted message
queues are not included in the count.

Last Update The last time the area was updated with information.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

DMPQUE

Page 89

The bottom portion of the window shows information about individual message queues on the hub.
Given information is as follows:

Queue Name This is the name of the message queue.

Flags This will show current status flags for the message queue. A flag is shown
when it is active; otherwise a dot is displayed. Valid codes are as follows:

X Deleted
J Journaled message queue
R Replicating message queue
T Timed message queue (deletes stale messages)
W A reader must be connected in order to write to the queue
A Automatically acknowledge a message read from the queue
2 Dual readers allowed (primary and secondary)
V Volatile message queue

CurMsg The current number of messages in the queue that are waiting to be read.

MaxMsg The maximum number of messages that can be in the queue waiting to be
read.

LostCnt The number of messages that were deleted in order to make room for new
messages (volatile message queue).

Last Write The time of the last write to the queue.

Last Read The time of the last read from the queue.

Last Ack The time of the last acknowledge of a message on the queue.

Last Trans Time (in seconds) that it took between writing a message to the queue and
then acknowledging the message.

CumTran The cumulative time that it took between writing a message to the queue
and then acknowledging the message.

Primary
Reader

The process name of the currently connected primary reader.

Secondary
Reader

The process name of the currently connected secondary reader.

Replicating message queues will not have the usual information found in a regular message queue.
Instead, it will list the name of the message queues it will be sending messages to.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

DMPRTR

Page 90

9.2 DMPRTR
This utility displays statistics about an IQR router logical link connection status. The format for this
utility is as follows:

DMPRTR [router]

where router is an optionally provided name of a currently running router. If not given, then DMPRTR
will default to the name of the router defined by the GROUP or SYSTEM definition of RTRDEF.

The following is a sample display from DMPRTR:

$DMPRTR TEST_RTR

Log Node Flags DEC Node DECnet Obj Rem. Link Uptime In Seq# Out Seq#
---------------- ------ ------- ----------- ---------------- ------- --------
MV3 AM IPCMV3 IPCMV3_RTR 0 00:52:30.49 2 47
ALPHA DTM ** No link, retry at: 30-MAY-1995 15:08:05.71 **

RTR Mids [Buffers]
Object Name Links In Out Inp Out Resp RTR Time RTR Cntr
-------------------- ----- --- --- ---- ----- ----- --------- ------------

TEST_RTR 2 001 001 0002 00001 00004 14:53:05 10

Size of output buffers: 2048

The first section shows the information on all logical links to remote nodes. The information given is
as follows:

Log Node The name of a node group defined in the router database.

Flags This can be any of the following:
D Remote link down
C Local connect for remote node in progress
L Local disconnect from remote node in progress
Y Outbound remote link established and connected
R Remote node requesting connection
A Logical link established with remote node
T Connect timer active
X Routing shutdown in progress
P No outbound messages routed by this node
W This node connect race winner
O Remote node is of the old type
M Node supports multipacket messages
J Sending multipacket message
N Negotiate buffer size
B Receiving multipacket message
U Waiting for multipacket size message

DEC Node Actual name of node on the network.

DECnet Obj Name of the router on the DECnet node that is communicatingwith this
router.

Rem Link
Uptime

This is elapsed time that the link to the remote node has been up and
operational.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

DMPRTR

Page 91

In Seq # Current input sequence number of current node.

Out Seq # Current output sequence number of current node.

If the remote link is not raised, the flags item will contain the status, followed by possible
future connection information for the node.

The second part of the display shows information about the local router. Information is as follows:

Object Name Name of the local router.

RTR Links Number of links to remote nodes.

MIDS In The number of Message ID’s that are being routed to this node.

MIDS Out The number of Message ID’s that are being routed from this node.

Buffers Inp The number of input buffers allocated.

Buffers Out The number of output buffers allocated.

Buffers Resp The number of response buffers allocated.

RTR Time The current time on the local router (adjusted for the network).

RTR Cntr The number of I/O operations performed by the router.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

DQIT

Page 92

9.3 DQIT
The DQIT utility provides a simple method of removing/reading messages from a particular message
queue within a specific hub. It also has the ability of placing the removed messages into a dump file
that can be read by QIT. The command syntax is:

$DQIT /ID=message_id [/HUB=hub_name] [/TIME] [/NOPRINT] [/COUNT=nn]
[/WAIT] [/SYMBOL=symbol] [/NOACK] [/DUMPFILE=file] [/ADD] [/ALL]

where:
/ID=message_id This will indicate the message queue from which messages are to be

read. This parameter is required.

/HUB=hub_name This allows the user to specify the name of the particular hub from
which the message_id is to be found. If not specified, the default
specified by the logical IQRHUB will be used.

/TIME This will take the first 8 bytes of the message and convert them into a
VMS equivalent 23 character time using SYS$ASCTIM.

/NOPRINT Will not print out the message or its header information to the display.

/COUNT=nn Specifying this parameter will instruct DQIT to remove nn number of
messages from the queue. If there are not at least nn messages, then
all of the messages in the queue will be read. If a nn is set to zero,
then all messages will be removed from the queue. The default value
of /COUNT is one.

/WAIT Instructs DQIT to wait for a message to arrive in the message queue if
the queue is currently empty. Normally, DQIT will return with an
error if the message queue is empty.

/SYMBOL
=symbol

This will set the DCL symbol to the value read by DQIT.

/NOACK This will not acknowledge the message read from the queue. Use this
to just browse the top message in a message queue, without actually
removing it from the queue. You cannot use this option with
/DUMPFILE or /COUNT.

/DUMPFILE =file Messages read from the queue will be placed in a special dump file
named file. This file can then be used by QIT to re-populate message
queues.

/ADD This option is only valid with /DUMPFILE. If specified the messages
read will be added to the current dumpfile specified by /DUMPFILE.
This can be used to create one large dump file with all messages for a
particular hub and multiple message queues.

/ALL This will dump all messages from a message queue. This works the
same as setting /COUNT=0.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

DQIT

Page 93

DQIT has the ability to backup a hub. To do so, use the following command format. You must run
this command for each message queue you want backed up. Note that DQIT will remove messages
from the queue, so it may be a good idea to insure that no one is using the message queues before
backing them up. Also, the message will be deleted after performing this operation. To restore the
queues to their status before the backup, just use QIT to place the messages back onto the queue. The
format is:

DQIT /ID=message_id /HUB=hub_name /DUMPFILE=file /ADD /ALL

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

IQU

Page 94

9.4 IQU
The IQU utility is responsible for maintaining the IQR hub. It creates, installs, and allows the user to
define message queues and their characteristics. The IQU utility is invoked via the command prompt.
Its function is to provide communication with the IQR hub process and serve as a maintenance tool for
the various global sections.

The following major functions are supported:

• IQU /ADD Create a new message queue on a HUB
• IQU /CREATE Create a new HUB
• IQU /DELETE Delete a message queue on a HUB
• IQU /INFO Show current info about the IQR software
• IQU /INSTALL Install a HUB onto the system
• IQU /MODIFY Modify an existing message queue
• IQU /REMOVE Remove a HUB from the system

9.4.1 IQU /ADD
IQU_ADD creates a message queue based on parameters and qualifiers entered on the command line.

The command used to start this routine and its parameter and qualifiers is as follows:

IQU/ADD=msg_que [/loc=directory] [/lngmax=nnnn] [/descrp=description]
[/jrn] [/vol] [/cntmax=nnnn] [/noack] [/dual] [/expire=nnnn] [/reader]
[/replicate=(msg_que1[,...msg_que4])] hub_name

where:
msg_que The name of the message queue (max 16 characters).

hub_name The name of the hub (max 8 characters). If not specified, it will
default to the logical IQRHUB.

/loc Location of hub container file. Default is IQR$QQQQ

/lngmax=nnnn Maximum message size in nnnn bytes. Default is 8192 bytes

/descrp=description A description of the message queue (max 80 characters).

/jrn Messages are journaled. Default is messages non-journaled.

/vol Messages are volatile.

/cntmax=nnnn The maximum number of messages (nnnn) in the message queue at
any one time. Default is 20.

/noack Message acknowledgment not required. Automatically performed
upon successful read of message queue.

/dual Dual readers allowed.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

IQU

Page 95

/expire=nnnn Messages will become stale (and deleted) after nnnn minutes in the
queue.

/reader A reader is required to write to the queue.

/replicate Makes this message queue a replicating queue. Enter for
(msg_que1[,...msg_que4]) up four message queues that you want this
one to replicate to.

You cannot add a message queue that already exists in a hub.

9.4.2 IQU /CREATE
This command will allow the user to create a new hub based on parameters and qualifiers entered on
the command line.

The command used to start this routine and its parameter and qualifiers is as follows:

IQU/CREATE [/fsize=nnnn] [/oldh=filename] [/dump=filename] [/loc=directory]
hub_name

where:
hub_name The name of the hub to create. If not specified, it will default to the

logical IQRHUB.

/fsize=nnnn Size of hub container data in nnnn 512 byte disk blocks. Default is
12096 blocks.

/loc=directory Location of new hub and QND files. Default is IQR$QQQQ

Use this command to prepare a new mesaging hub on your local node. The new hub will contain no
messages or message queues.

Creating a new hub while one is in use will create a new hub file. However, the new hub will not be
used until it is installed. The new hub will not use any of the current message queue definitions or
messages.

Do not use IQU/CREATE after a IQU/REMOVE or a system restart unless you want to completely
remove all information from your hub!

9.4.3 IQU /DELETE
This command will delete a message queue from a hub. The format for this command is as follows:

IQU/DELETE=msg_que [/loc=directory] hub_name

where:
msg_que The name of the message queue (max 16 characters).

hub_name The name of the hub (max 8 characters). If not specified, it will
default to the logical IQRHUB.

/loc Location of hub container file. Default is IQR$QQQQ

Message queues to be deleted must contain no waiting messages.

!

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

IQU

Page 96

Note that message queues are not actually deleted, but marked as being so. They will eventually either
be removed during a re-install of the hub or when a new message queue is created over it.

9.4.4 IQU /INFO
Issuing this command will display information about your IQR software installation. The command
format is:

IQU/INFO

Information presented will include your IQR serial number, version numbers, and any other possible
information about your installation.

9.4.5 IQU /INSTALL
IQU_INSTALL will actually install a hub and prepare it for use by the IQR services.

The command used to start this routine and its parameter and qualifiers is as follows:

IQU/INSTALL [/loc=directory] [/msize=nnnn] [/cchmaxmqd=nnnn]
[/regmaxmqd=nnnn] hub_name

where:
hub_name The name of the hub to create. If not specified, it will default to the

logical IQRHUB.

/loc=directory Location of hub and QND files

/msize=nnnn Size of hub region data in nnnn 512 byte memory blocks

/cchmaxmqd=nnnn Maximum number of cached journal message queues

/regmaxmqd=nnnn Maximum number of non-journal message queues

If the hub experiences an abnormal shutdown (i.e. power failure, system crash) or is rundown using the
IQU/REMOVE utility, use IQU/INSTALL to restart the hub. This will preserve only journaled
message queues and their respective messages. Non-journaled message queues will be re-created, but
their messages will be lost.

9.4.6 IQU /MODIFY
IQU MODIFY allows you to modify a message queue’s existing configuration based on parameters and
qualifiers entered on the command line.

The command used to start this routine and its parameter and qualifiers is as follows:

IQU/MODIFY=msg_que [/loc=directory] [/lngmax=nnnn] [/descrp=description][/vol]
[/cntmax=nnnn] [/noack] [/dual] [/expire=nnnn] [/reader] hub_name

where:
msg_que The name of the message queue (max 16 characters).

hub_name The name of the hub (max 8 characters). If not specified, it will
default to the logical IQRHUB.

/loc Location of hub container file.

/lngmax=nnnn Maximum message size in nnnn bytes.

/descrp=description A description of the message queue (max 80 characters).

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

IQU

Page 97

/vol Messages are volatile.

/cntmax=nnnn The maximum number of messages (nnnn) in the message queue at
any one time.

/noack Message acknowledgment not required. Automatically performed
upon successful read of message queue.

/dual Dual readers allowed.

/expire=nnnn Messages will become stale (and deleted) after nnnn minutes in the
queue.

/reader A reader is required to write to the queue.

The message queue to modify must already exist on the hub and can not be a replicating message
queue. When making modifications, insure that you include all of the switches for all of the options
you want -- including those that may already be defined. If you do not define a switch, it will be
cleared or reset to its default value.

9.4.7 IQU /REMOVE
IQU_REMOVE marks an existing hub for deletion. When no more processes are connected to the hub,
it is removed.

The command used to start this routine and it parameter and qualifiers is:

IQU/REMOVE hub_name
where:

hub_name The name of the hub to remove. If not specified, it will default to the
logical IQRHUB.

After a hub is removed, it can again be installed by using IQU/INSTALL. If you wish to create a new,
empty hub, use the IQU/CREATE command.

Note: Using this command will stop all message queue activity. If any messages existed in the non-
journaled region, they will be deleted. All journaled messages will remain if you re-install the hub.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

IQU

Page 98

9.4.8 IQU /RESET
This command will reset the statistical counters for either a hub or a message queue. The command
format is:

IQU /RESET[=msg_que] [/loc=directory] hub_name

where:
msg_que The name of the message queue to reset (max 16 characters). If this

is not specified, the hub itslef will be reset.

hub_name The name of the hub (max 8 characters). If not specified, it will
default to the logical IQRHUB.

/loc Location of hub container file. Default is IQR$QQQQ

If the msg_que is specified, then that message queue will have it’s transaction counters reset to zero
along with all of its timers.

If the msg_que is not specified, then the transaction counters for the hub will be reset to zero.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

LSTRTR

Page 99

9.5 LSTRTR
This utility displays statistics about all message queues routed by a particular router. The format for
this utility is as follows:

LSTRTR [router]

where router is an optional name of a currently running router. If not given, then LSTRTR will default
to the name of the router defined by the GROUP or SYSTEM definition of RTRDEF.

A sample output is shown below:

$LSTRTR TEST_RTR

MESSAGE DESTINATION TIME
SENT NODE COUNTER DD HH:MM:SS STATUS
------- ----------- ------- ----------- ------
MSG_OUT MV3 42 30 09:50:30
ROUTE MV3 12 30 10:12:24 AP

MESSAGE SENDING TIME
RECVD NODE COUNTER DD HH:MM:SS STATUS
------- ------- ------- ----------- ------
MSG_IN IPCMV3 1 30 09:53:22
DATA IPACT 23 30 10:05:11

The first portion lists all message queues that are being routed out of this node. The information
displayed is as follows:

Message ID This is the name of the message queue.

Destination
Node

This is the name of the group of nodes defined in the routing database
where this message queue will be routed.

Counter The number of messages routed from this message queue.

Time The last time a message was sent from this message queue.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

LSTRTR

Page 100

Status Can be any of the following:
F Remote message id queue is full
U Remote message id is unknown
Q Message id not found in local hub
Z Unable to acknowledge message id
S Packet being sent
E Error reading message id from queue
A Message sent to remote, waiting for ack
X Abort transmission
W Error sending packet
P Sending message as a multipacket
W Multipacket wait
H Multipacket wait
N Destination node is unavailable
R RNA for this message id

The second part lists all the message queues that remote routers will connect to and write on this node.
The following information is given:

Message ID This is the name of the message queue.

Sending
Node

This is the name of the node that will write to this message queue.

Counter The number of messages routed to this message queue.

Time The last time a message was last received by this message queue.

Status Can be any of the following:
M Multipacket message in progress
A Ack being sent
Q Message id was not found in local hub
E Queue write error
F Message queue full error

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

QIT

Page 101

9.6 QIT
The QIT utility provides a simple method of sending messages to a particular message queue within a
specific hub. It also has the ability of re-populating messages onto multiple message queues from a
dump file created by DQIT. The command syntax is as follows:

$QIT /ID=message_id [/HUB=hub] [/TIME] [/DUMPFILE] [/DATAFILE] data

where:
/ID=message_id This will indicate the message queue to which the typed message data

is to be written. If the /DUMPFILE option is specified, then this
option is ignored.

/HUB=hub_name This allows the user to specify the name of the particular hub from
which the message_id is to be found. If not specified, the default
specified by the logical IQRHUB will be used.

/TIME This will convert the time specified by data into an 8 byte VMS time
and place it onto the indicated message queue.

/DUMPFILE This will re-populate the hub with messages dumped into the file of
file name data. The dump file is created with the DQIT utility. If the
/ID parameter is specified, all messages in the dump file will be
written to the message queue specified by message_id, regardless of
their actual origin.

/DATAFILE This will write the message given in the file named data to the
message queue.

data Provided without the switch /DATAFILE or /DUMPFILE, this is the
message to be written to the message queue.

A popular use of QIT is to restore a backup of messages onto a hub. Before restoring, the hub must
already contain the message queues that are in the dump file. To restore a backup, enter at the
command line:

QIT /HUB=hub /DUMPFILE filename

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

RTRDBS

Page 102

9.7 RTRDBS
The RTRDBS command will compile a router database so it may be used by the router. The router
database should normally exist in the IQR$RTR directory. The program will also create a command
procedure that can be executed that will start the router using this routing database. The format for the
command is as follows:

$RTRDBS database

where databse is the name of the routing database to be compiled. See the chapter on the Router for
more information about the router databse and use of the RTRDBS utility.

9.8 TCPIQRSTAT
The TCPIQRSTAT utility is similar in function to the DMPRTR utility except that it returns
information pertaining to the TCP/IP IQR Router rather than the DECnet Router. The information is
arranged in 4 logical area when output to the user. The first three sections relate directly to the three
sections described in the TCP/IP IQR Router Database discussion in the previous chapter.

The top section of the output pertains to the [GLOBAL] parameters for the router. The name of the hub
to which the designated router is attached, the port number to which the router is listening for incoming
connections, and current date and time.

The next section shows information related to the [INCOMING] section of the router. All incoming
queues are listed with the current sequence number for the messages as well as the time of the last write
to the queue by the router.

The next section shows information related to the output queues as defined for this router. It lists all the
queues which this router will be reading and forwarding to a remote router. Within this section, for
each queue, is the time of last read from the queue, the node to which the queue messages are being
forwarded, the sequence number of the last message, the state of the connection to the remote router,
the length of time that the connection has been established, and the time of the last packet transfer to
the remote router.

The last section of the output shows information related to connections which were made to the local
router from remote routers. It shows the node which initiated the connection, the sequence number of
the last transaction with that router on the connection, the length of time that the connection has been
established, and the time at which the last message packet was received from the remote router.

The utility is invoked from the OpenVMS DCL command line with the following syntax:

$ TCPIQRSTAT [hostname] [port]<cr>

If the hostname and port are omitted, it is assumed that the router is located on the local host and is
using port 3000 for listening. A connection is made with the router at the designated port for retrieval
of router statistics as shown in the following diagram.

IPACT Queuer and Router
©1996 by IPACT, Inc. Utilities

TCPIQRSTAT

Page 103

IPACT Queuer and Router
©1996 by IPACT, Inc. Appendix

IQR Glossary

Page 104

10. Appendix

10.1 IQR Glossary

Term Definition

Acknowledge When a user reads a message from a message queue, it will need to be
acknowledged. Acknowledging a message indicates that the caller has
read the message and is done with the message -- it can now be deleted
from the message queue.

Container File This is the actual disk location of the hub’s data files.

CMQ Connected Message Queue definition. This is a segment of memory
created by connection to a message queue. When connecting a
message queue, this value is returned to the caller. It is then passed on
to any routines that will use the connected message queue.

DMPQUE A utility that displays message queue information about a particular
hub.

DMPRTR A utility that displays information about a currently running router.

DQIT A utility that will allow the user to remove messages from a message
queue.

Hub This is a named location on a particular node in which actual message
queues are contained. Each hub can have a set number of message
queues, each holding a set number of messages.

Journaled A journaled message queue is stored in the disk container file. This
will allow for message recovery in the event of a shutdown or system
crash.

LSTRTR A utility that gives information about the routed message queues for a
particular router.

MAQ The Manufacturing Automation Queue and Routing software. The
IQR Software is compatible (using a patch library) with MAQ v5.3.

Message Header A portion of a message (of size HDR$K_SIZ) that contains
information about the message itself.

Message Queue A queue within a hub that contains actual messages. Each message
queue can contain a set number of messages.

MQD The Manufacturing Automation Disk Based Queuer and Router
Services. The IQR Software is compatible (using a patch library) with
MQD v4.0

Non-journaled A type of message queue. A non-journaled message queue only exists
within memory on a local node. Messages in a non-journaled message
queue can be lost after a system crash or shutdown.

PEX Process Expanded Region. An area mapped in memory when the user
attaches to a particular hub.

IPACT Queuer and Router
©1996 by IPACT, Inc. Appendix

IQR Glossary

Page 105

QIT A utility that will allow the user to place messages onto a message
queue.

queue_index A special argument used in many of the IQR System Service calls.
This value contains an index into the user’s PEX that holds
information about the currently connected message queue.

Replicate A message queue type that will replicate a message written to it onto
other defined local message queues. No messages are actually written
to a replicating message queue.

Router A program that will move messages to/from a message queue on the
current node to/from a remote node’s message queue. The remote
router can be of the IQR, MAQ, or MQD type.

Router Database A data file written by the user and compiled using the RTRDBS utility.
This file contains the information about the nodes and message queues
to be routed by the IQR Router.

RTRDBS A utility that compiles the Router Database.

Stale A message queue type that indicates that messages can become stale
after a certain amount of time. When a stale message is found (one
that has existed on the queue longer than its allotted time), it is deleted
from the queue. Deleted messages cannot be recovered.

Volatile A message queue type that indicates messages can be volatile. A
volatile message is one that may be deleted if no more room exists to
write a new message. Deleted messages cannot be recovered. If the
queue is not volatile and the message queue is full, then an error is
returned to the caller.

IPACT Queuer and Router Services
©1995 by IPACT, Inc. INDEX

INDEX

acknowledge5, 15, 17, 26, 45, 54, 68, 69, 87, 89, 92, 100
Acknowledge 104
API 1
AST 28, 36
C 70
CMQ14, 20, 25, 27, 30, 32, 37, 40, 47, 49, 51, 54, 60, 62,

64, 104
Code Generation 69
Command Procedures 9
Compatability 71
Compile 74, 76
container 5, 18, 67, 88, 95
Container File 104
CTRL-Y 36, 87
DEC C 69
DECnet 1, 4, 77, 78, 79, 90
DECUS 1, 80
DMPQUE 87, 104
DMPRTR 82, 90, 104
DQIT 6, 92, 93, 101, 104
Error Code 67
FORTRAN 7, 69, 70, 74, 76
HDR$K_SIZ 50, 59, 104
header file 70
Hub 104
HUB.TLB 70
HUB_FOR 70
INCLUDE 70
index value 71
Initialization file 82
INSTALL_TEST_HUB.COM 9
Installation 6
Introduction 1
IQR Logicals 8
IQR Router 4, 5, 48, 77, 78, 82
IQR System Service5, 14, 67, 69, 71, 74, 76
IQR$LIB 7, 8
IQR$PROD 7, 8, 9
IQR$QQQQ 7, 8
IQR$RTR 7, 8, 9
iqr_ack_read 14, 69
iqr_add_message_q16, 18, 21, 41, 61, 63, 66, 67, 68, 69
iqr_allocate_msgblks19, 32, 33, 40, 63, 69
iqr_attach_h14, 16, 19, 22, 23, 25, 27, 28, 30, 31, 32, 34,

36, 37, 39, 42, 44, 47, 49, 51, 53, 56, 57, 59, 62, 64, 68,
69

iqr_backup_rna 25
iqr_connect_read 27, 38, 68, 69
iqr_connect_write30, 38, 68, 69, 72, 75
iqr_deallocate_msgblks 20, 32
iqr_delete_q 34
iqr_disconnect_h 36
iqr_disconnect_q 37, 69

iqr_fill_msgblks 19, 20, 39, 63, 69
iqr_get_q_info 42
iqr_modify_q 44, 69, 72
iqr_read_hmb 47, 48, 69
iqr_read_q 15, 49, 52, 69
iqr_read_qw 15, 51, 69
iqr_read_segment 53, 56, 57, 67, 69
iqr_reset_stat_h 56
iqr_reset_stat_q 57
iqr_rtr_write_q 59, 69
IQR_START_xxxx.COM 9
IQR_STARTUP.COM 6, 7, 8, 9
IQR_TEST 9
iqr_thread_msgblks 19, 20, 62, 69
iqr_write_q 20, 39, 40, 60, 64, 69
IQRDEF 8, 72, 74, 75, 87, 92, 101
IQRSS 8
IQU /ADD 94
IQU /CREATE 9, 94, 95
IQU /DELETE 94, 95
IQU /INFO 94, 96
IQU /INSTALL 94, 96
IQU /MODIFY 94, 96
IQU /REMOVE 94, 97
IQU /RESET 98
IVP 6
Journal 104
journaled 5, 16, 17, 88, 94
LINK 70, 74, 76
LSTRTR 82, 99, 104
MAQ 7, 10, 77, 104
MAQ System Service 72, 74
Message Flow 5
message header 40, 49, 51, 60
Message Header 104
Message Queue 14, 104
MQD 7, 9, 104
MQD System Service 74
MQD_M_ACKREAD 15, 17, 45
Overview 2
Patch Library 72, 74, 76
PEX 104
privileges 10
QIT 92, 101, 102, 105
QUE_ADDED 67
QUE_ALLOCLOCK 67
QUE_BADCCTMQD 67
QUE_BADHNAME 67
QUE_BADPRCINF 67
QUE_CONTAINERFULL 67
QUE_DEFHNAME 67
QUE_INTERNALFAULT 67
QUE_INVALIDPEX 68

IPACT Queuer and Router Services
©1995 by IPACT, Inc. INDEX

QUE_INVALQIDX 68
QUE_INVALQNAME 68
QUE_INVALUSERBUF 68
QUE_INVARG 68
QUE_LASTSEG 67
QUE_MAXMSGQUEUES 68
QUE_MQDFULL 68
QUE_NOCACHE 68
QUE_NOMESS 68
QUE_NORNAMESS 68
QUE_NOTCONREAD 68
QUE_NOTCONWRITE 68
QUE_NOTFOUND 68
QUE_PRCLCKNM 68
QUE_PREATT 68
QUE_SUCCESS 67
QUE_TOOMANYRDR 68
QUE_USRBUFSML 68
queue_index 105
Replicate 105
Required Privileges 10
RNA 68, 71
Router 105

Router Database 105
routing database 102
Routing Database 82
Routing Utilities 82
RSX 80
RTRDBS 77, 78, 102, 105
RTRDEF 8, 90, 99
rundown 26, 33, 36, 72, 74, 75
Stale 105
stale_time 16, 17, 44, 45
Status Codes 67
SYS$UPDATE 6
TCP/IP 1, 4, 77
TCP/IP IQR Router 77
TCPIQRSTAT 102
Test Utilities 9
TEST_RTR_START.COM 9
Utilities 87
VMS$INSTAL 6
VMSINSTAL 6
volatile 17, 45, 65, 89, 94, 97
Volatile 105

	Introduction
	Introduction
	Supported Systems
	Audience
	Document Structure

	Overview
	General Information
	IQR Components
	Hub
	Message Queue
	IQR Router

	IQR System Service
	Message Flow

	Installation
	Command Procedure
	Sample Directory Structure
	IQR Logicals
	Command Procedures
	Test Utilities
	Required Privileges
	Sample Installation Procedure

	IQR System Service Library
	iqr_ack_read
	iqr_add_message_q
	iqr_allocate_msgblks
	iqr_attach_h
	iqr_backup_rna
	iqr_connect_read
	iqr_connect_write
	iqr_deallocate_msgblks
	iqr_delete_q
	iqr_disconnect_h
	iqr_disconnect_q
	iqr_fill_msgblks
	iqr_get_q_info
	iqr_modify_q
	iqr_read_hmb
	iqr_read_q
	iqr_read_qw
	iqr_read_segment
	iqr_reset_stat_h
	iqr_reset_stat_q
	iqr_rtr_write_q
	iqr_thread_msgblks
	iqr_write_q

	Return Status Codes
	Successful Status Codes
	Failure Status Codes

	Using the System Services
	Code Generation
	Using IQR with C
	Using IQR with FORTRAN

	Compatibility
	MAQ System Service Patch Library
	MQD System Service Patch Library

	IQR Router
	Introduction
	TCP/IP IQR Router
	DECnet Router Routing Database
	DECnet Routing Utilities
	TCP/IP Router Routing Database
	TCP/IP Router Database [GLOBAL] Section
	TCP/IP Router Database [INCOMING] Section
	TCP/IP Router Database [OUTGOING] Section

	Utilities
	DMPQUE
	DMPRTR
	DQIT
	IQU
	IQU /ADD
	IQU /CREATE
	IQU /DELETE
	IQU /INFO
	IQU /INSTALL
	IQU /MODIFY
	IQU /REMOVE
	IQU /RESET

	LSTRTR
	QIT
	RTRDBS
	TCPIQRSTAT

	Appendix
	IQR Glossary

