
, — Page 1

PDF Info

Users Guide

, — Page 2

Copyright © 2000 ImageMagick Studio, a non-profit organization dedicated to making software imaging solutions
freely available.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (“ImageMagick”), to deal in ImageMagick without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of ImageMagick, and to permit persons to whom
the ImageMagick is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of
ImageMagick. The software is provided “as is”, without warranty of any kind, express or implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall
ImageMagick Studio be liable for any claim, damages, or other liability, whether in an action of contract, tort or
otherwise, arising from, out of, or in connection with ImageMagick or the use or other dealings in ImageMagick.

Except as contained in this notice, the name of the ImageMagick Studio shall not be used in advertising or otherwise to
promote the sale, use, or other dealings in ImageMagick without prior written authorization from the ImageMagick
Studio.

Table of Contents — Page iii

Table of
Contents

Chapter 1, Welcome to ImageMagick . 1
Overview . 1
ImageMagick’s Core Features . 2
ImageMagick Studio . 5
It’s Free . 5

Chapter 2, Installing ImageMagick . 6
Getting ImageMagick . 6

External Image Viewer . 6
Mailing List . 6
Memory Requirements . 7
Unix Compilation . 7

Creating makefiles . 7
GNU Configure . 8
X11 Imake . 15

Delegates . 18
Background Texture . 18
RALCGM . 19
TransFig . 19
GET . 19
FPX . 19
FreeType . 20
HDF . 20
HTML2PS . 20
JBIG . 20
JPEG . 20

Iterative JPEG Compression . 21

Table of Contents— Page iv

MPEG . 21
PNG . 21
PostScript . 22
RA_PPM . 22
RAWTORLE . 22
SANE . 22
TIFF . 23
WMF . 23
ZLIB . 23

Compiling ImageMagick . 23
HDF . 24
JBIG . 24
JPEG . 25
PNG . 25
TIFF . 25
TTF . 26
ZLIB . 26
Support for Shared Libraries . 26

VMS Compilation . 27
NT Compilation . 28
Macintosh Compilation . 30
Animation . 31
16-bit Imaging . 32
64-bit Machines . 33
MIFF Image Format . 33

Chapter 3, The ImageMagick Interface . 36

Table of Contents— Page v

Overview . 36
Using Options . 36
Using Filenames . 38
Mouse Buttons . 38

Mouse Button 1 . 39
Mouse Button 2 . 39
Mouse Button 3 . 39

Command Widget . 40
Selecting a Submenu Command . 41

Keyboard Short Cuts . 42
Environment . 43

Chapter 4, Display . 44
Overview . 44
Syntax . 48
Examples . 48
Display Options . 50

Loading Images . 80
Creating a Visual Image Directory . 81
Cutting Images . 82
Copying Images . 83
Pasting Images . 84

Composite Operator Behavior . 85
Cropping Images . 86
Chopping Images . 87
Rotating Images . 88
Segmenting Images . 89

Table of Contents— Page vi

Annotating Images . 90
Creating Composite Images . 93

Composite Operator Behavior . 95
Editing Color Images . 96
Editing Matte Images . 98
Drawing Images . 100
Transforming a Region of Interest . 102
Panning Images . 103

User Preferences . 103

Chapter 5, Import . 105
Overview . 105
Syntax . 105
Examples . 105
Import Options . 106

Chapter 6, Animate . 129
Overview . 129
Syntax . 130
Examples . 130
Animate Options . 131

Chapter 7, Montage. 145
Overview . 145
Syntax . 146
Examples . 146
Montage Options . 147

Table of Contents— Page vii

Chapter 8, Convert . 177
Overview . 177
Syntax . 177
Examples . 178
Convert Options . 179

Chapter 9, Mogrify . 219
Overview . 219
Syntax . 219
Examples . 219
Mogrify Options . 220

Chapter 10, Identify . 260
Overview . 260
Syntax . 261
Identify Options . 261

Chapter 11, Combine . 266
Combine. 266
Overview . 266
Syntax . 266
Examples . 266
Combine Options . 267

Chapter 12, PerlMagick . 289
Overview . 289
Installing PerlMagick . 290

Table of Contents— Page viii

Installing for Unix . 290
Installing for Windows NT/95/98 . 291
Running the Regression Tests . 291

Using PerlMagick within PerlScripts . 292
Destroying PerlMagick Objects . 293

Examples . 294
Reading and Writing an Image . 296

Examples . 297
Manipulating an Image . 297
Setting an Image Attribute . 310
Getting an Image Attribute . 316
Creating an Image Montage . 319
Miscellaneous Methods . 322

Append . 322
Average . 323
Morph . 323
Mogrify . 324
MogrifyRegion . 324
Clone . 324
Ping . 325
RemoteCommand . 326
QueryColor . 326

Troubleshooting . 326

Chapter 13, Magick++ . 330
Overview . 330
Enumerations . 332

Table of Contents— Page ix

ClassType . 332
ColorspaceType . 332
CompositeOperator . 334
CompressionType . 337
FilterType . 339
GravityType . 341
ImageType . 342
InterlaceType . 342
LayerType . 343
NoiseType . 345
PaintMethod . 345
RenderingIntent . 346
ResolutionType . 348

Exception . 349
Color . 353

Color Class . 354
ColorGray . 356
ColorMono . 356
ColorHSL . 357
ColorYUV . 357

Geometry . 359
X11 Geometry Specifications . 359
ImageMagick Geometry Extensions . 361
Postscript Page Size Geometry Extension . 361

Drawable . 368
Special Format Characters . 375
Montage . 377

Table of Contents— Page x

Plain Montages . 378
Framed Montages . 382

Image . 384
Image Manipulation Methods . 388
Image Attributes . 399

Image Data Structures . 414
STL Support . 416

Magick++ Unary Function Objects . 421
Installing Magick++ . 423

General . 423
UNIX . 424
Windows ‘9X and Windows NT . 426

Visual C++ . 426
Cygwin & EGCS . 427

Appendix A, Supported Image Formats . 428
Overview . 428

Appendix B, X Resources . 438
Overview . 438

Appendix C, MIFF . 445
Overview . 445

Appendix D, Quantize . 453
Overview . 453
Classification . 454

Table of Contents— Page xi

Reduction . 456
Assignment . 457
Measuring Color Reduction Error . 458

Appendix E, XTP. 460
Overview . 460
Syntax . 460
Examples . 460
XTP Options . 461

Using XTP Options . 464
Regular Expressions . 465
Files . 466
Environment . 466

Appendix F, Acknowledgments . 468
Author . 468
Contributors . 468
Manual Design and Compilation . 469
Index . i

Chapter 1, Welcome to ImageMagick — Page 1

Chapter 1

Welcome to
ImageMag-
ick

Overview

ImageMagick is a robust collection of tools and libraries to read, write, and manip-
ulate an image in any of the more popular image formats including GIF, JPEG,
PNG, PDF, and Photo CD. With ImageMagick you can create GIFs dynamically
making it suitable for Web applications.

ImageMagick can read and write over sixty of the more popular image formats
including JPEG, TIFF, PNM, GIF, Photo CD, and PostScript. ImageMagick lets you
interactively resize, rotate, sharpen, color reduce, and add special effects to an
image, and save your completed work in the same or a different image format.

While ImageMagick has a simple point-and-click interface, its power lies in its
command line abilities. Today’s popular image manipulation software packages
require you to work with individual images. With ImageMagick, you can manip-
ulate entire directories of images with one simple script. For example, on Unix, you
can convert all your JPEG images to GIF with this C-shell script:

foreach file (*.jpg)
convert $file $file:r.gif

end

ImageMagick lets you perform any of the following functions:

• convert from one image format to another (e.g. TIFF to JPEG)

• resize, rotate, sharpen, color reduce, and add special effects to an image

ImageMagick’s Core Features

Chapter 1, Welcome to ImageMagick — Page 2

• create a framed thumbnail of an image

• create a transparent image for use on the World Wide Web

• create a GIF animation sequence from a group of images

• combine several images to create a composite image

• draw shapes or text on an image

• describe the format and characteristics of an image

• decorate an image with a border or frame

ImageMagick is written in the portable C programming language and interfaces with the X11 Window library. It will
compile with any modern C compiler—no proprietary toolkits are required!

ImageMagick’s Core Features

ImageMagick’s core features include the following.

Display. Display is a machine architecture-independent image and display program. It can display an image on any
workstation display running an X server.

For detailed information, see Chapter4, Display.

ImageMagick’s Core Features

Chapter 1, Welcome to ImageMagick — Page 3

Import. Import reads an image from any visible window on an X server and outputs it as an image file. You can capture
a single window, the entire screen, or any rectangular portion of the screen. You can use Display for redisplay, printing,
editing, formatting, archiving, and image processing of the captured image.

For detailed information, see Chapter5, Import.

Animate. Animate displays a sequence of images on any workstation display running an X server. Animate first deter-
mines the hardware capabilities of the workstation. If the number of unique colors in an image is fewer than or equal to
the number the workstation can support, the image is displayed in an X window. Otherwise the number of colors in the
image is first reduced to match the color resolution of the workstation.

In other words, a continuous-tone 24-bit image can display on an 8-bit pseudo-color device or monochrome device. In
most instances the reduced color image closely resembles the original. In turn, a monochrome or pseudo-color image
sequence can display on a continuous-tone 24-bit device.

For detailed information, see Chapter6, Animate.

Montage. Montage creates a composite image by combining several separate images. The images are tiled on the
composite image with the name of the image optionally appearing just below the individual tile.

For detailed information, see Chapter7, Montage.

Convert. Convert converts an input file in one format to an output file in another format. By default, the image format
is determined by its magic number. To specify a particular image format, you can precede the filename with an image
format name and a colon (e.g., ps:image) or specify the image type as the filename suffix (e.g., image.ps). For detailed
information, see Chapter8, Convert.

ImageMagick’s Core Features

Chapter 1, Welcome to ImageMagick — Page 4

Mogrify. Mogrify transforms an image or a sequence of images. These transformations include image scaling, image
rotation, color reduction, and others. The transmogrified image overwrites the original image.

For detailed information, see Chapter9, Mogrify.

Identify. Identify describes the format and characteristics of one or more image files. It also reports if an image is
incomplete or corrupt. The information displayed includes the scene number, file name, width and height of the image,
whether the image is colormapped, the number of colors in the image, the number of bytes in the image, its format (i.e.,
jpeg, pnm, etc.), and finally the number of seconds it takes to read and process the image.

For detailed information, see Chapter10, Identify.

Combine. Combine combines images to create new images.

For detailed information, see Chapter11, Combine.

PerlMagick. PerlMagick is an objected-oriented Perl interface to ImageMagick. You can use it to read, manipulate, or
write an image or image sequence from within a Perl script. This makes it very suitable for web CGI scripts. For
examples of what you can do with PerlMagick, see http://www.sympatico.org/cristy/MogrifyMagick/scripts/Mogri-
fyMagick.cgi.

For detailed information, see Chapter12, PerlMagick.

ImageMagick Studio

Chapter 1, Welcome to ImageMagick — Page 5

ImageMagick Studio

You can visit the ImageMagick Studio web site at http://www.sympatico.org/cristy/MogrifyMagick/scripts/Mogri-
fyMagick.cgi/ to try out any of the ImageMagick functions. A sample image is just a click away.

It’s Free

ImageMagick is free! You can do anything with the software you want, including selling it. The software is copyrighted,
however, you can redistribute it without fee. For detailed information, see the copyright notice at the beginning of the
guide.

Chapter 2, Installing ImageMagick — Page 6

Chapter 2

Installing
ImageMag-
ick

Getting ImageMagick

You can download ImageMagick from
ftp://ftp.wizards.dupont.com/pub/ImageMagick. ImageMagick client exectuables
are available for some platforms. Macintosh, NT, VMS, and Linux source and
binaries are also available.

External Image Viewer

To use Display as your external image viewer, edit the global mailcap file or your
personal mailcap file—.mailcap located in your home directory—and add this entry:

image/*; display %s

Mailing List

There is a mailing list for discussions and bug reports about ImageMagick. To
subscribe send the message

subscribe magick

to majordomo@wizards.dupont.com. You’ll receive a welcome message telling you
how to post messages to the list magick@wizards.dupont.com.

web page
www.wizards.dupont.com

Memory Requirements

Chapter 2, Installing ImageMagick — Page 7

Memory Requirements

You should allocate sufficient swap space on your system before running ImageMagick; otherwise, you may experience
random server or application crashes. Anything less than 80 MB of swap space is likely to cause random crashes.

On many systems, you will find that 80 MB is insufficient and you’ll have to allocate more swap space. You should also
have at least 32 MB of real memory although 64 MB or more is recommended.

Unix Compilation

Type

gunzip ImageMagick-5.1.0.tar.gz
tar xvf ImageMagick-5.1.0.tar
cd ImageMagick

Note: If you don’t have gunzip, you can download it from ftp://ftp.gnu.org/pub/gnu.

Creating makefiles

There are currently two mechanisms for creating makefiles to build ImageMagick: GNU Configure (see GNU
Configure) and X11 Imake (see X11 Imake).

Unix Compilation

Chapter 2, Installing ImageMagick — Page 8

GNU Configure

GNU Configure is easiest to use and is recommended when you want to install ImageMagick outside of the X11 distri-
bution or working imake configuration files are not available. Using configure enables automated configuration,
building, and installation of PerlMagick. If you’re willing to accept configure’s default options, type

./configure

Watch the configure script output to verify that it finds everything you think it should. If it doesn’t, adjust your
environment so it does.

If you’re unhappy with configure’s choice of compiler, compilation flags, or libraries, you can give configure initial
values for variables by setting them in the environment. Using a Bourne-compatible shell, you can do that on the
command line like this

CC=c89 CFLAGS=-O2 LIBS=-lposix ./configure

Or on systems that have the env program, you can do it like this

env CPPFLAGS=-I/usr/local/include LDFLAGS=-s ./configure

The configure variables you should be aware of are

Configure Environment Variables

Variable Definition

CC Name of C compiler (e.g., 'cc -Xa') to use

Unix Compilation

Chapter 2, Installing ImageMagick — Page 9

You must specify an absolute path rather than a relative path for any variable that requires a directory path (e.g.,
CPPFLAGS or LDFLAGS).

By default, make install will install the package’s files in /usr/local/bin, /usr/local/man, etc. You can specify an instal-
lation prefix other than /usr/local by giving configure the option --prefix=PATH.

Configure can usually find the X include and library files automatically, but if it doesn’t, you can use the configure
options --x-includes=DIR and --x-libraries=DIR to specify their locations.

The configure script provides a number of ImageMagick-specific options. When you disable an option,

• --disable-something is the same as --enable-something=no

CFLAGS Compiler flags (e.g., '-g -O2') to compile with

CPPFLAGS Include paths (-I/somedir) to look for header files

LDFLAGS Library paths (-L/somedir) to look for libraries

Note: Systems that support the notion of a library run-path may additionally
require -R/somedir or '-rpath /somedir' in order to find shared libraries
at run time.

LIBS Extra libraries (-lsomelib) required to link

Configure Environment Variables

Variable (Cont.) Definition

Unix Compilation

Chapter 2, Installing ImageMagick — Page 10

• --without-something is the same as --with-something=no

The configure options are as follows (execute configure --help to see all options).

Configure Options

This… Does this

--enable-16bit-pixel enables 16 bit pixels (default is no)

--enable-gcov enables gcov source profiling support (default is no)

--enable-gprof enables gprof source profiling support (default is no)

--enable-lzw enables LZW support (default is no)

--enable-prof enables prof source profiling support (default is no)

--enable-sfio enable sfio-based stdio support (default is no)

--enable-shared builds shared libraries (default is no)

--enable-static builds static libraries (default is yes)

--enable-socks enables use of SOCKS v5 library and 'rftp'

--enable-socks enables SOCKS v5 proxy support (default is no)

--with-bzlib enables BZLIB (default is yes)

--with-dmalloc use dmalloc, as in ftp://ftp.letters.com/src/dmalloc/dmalloc.tar.gz

Unix Compilation

Chapter 2, Installing ImageMagick — Page 11

ImageMagick options represent one of the following:

• features to be enabled

--with-dps enables Display Postscript (default is yes)

--with-fpx enables FlashPIX (default is yes)

--with-frozenpaths enables frozen delegate paths (default is yes)

--with-hdf enables HDF (default is yes)

--with-jbig enables JBIG (default is yes)

--with-jpeg enables JPEG (default is yes)

--with-perl enables build/install of PerlMagick (default is no)

--with-png enables PNG (default is yes)

--with-tiff enables TIFF (default is yes)

--with-ttf enables TrueType (default is yes)

--with-x uses the X Window System

--with-zlib enables Zlib (default is yes)

Configure Options

This… (Cont.) Does this

Unix Compilation

Chapter 2, Installing ImageMagick — Page 12

• packages to be included in the build

When you enable a feature (via --enable-something), it enables code already present in ImageMagick. When you
enable a package (via --with-something), the configure script will search for it. If it’s properly installed and ready
to use (i.e., headers and built libraries are found by the compiler) it will be included in the build.

Note: The configure script is delivered with all features disabled and all packages enabled. In general, the only reason
to disable a package is if a package exists but it is unsuitable for the build—perhaps it’s an old version or it’s compiled
with the wrong compilation flags.

Special Configure Options Considerations

--disable-shared

• The shared libraries are not built. Shared libraries are valuable because they are shared across more than one
invocation of an ImageMagick or PerlMagick client. In addition, the clients take much less disk space and
shared libraries are required in order for PERL to dynamically load the PerlMagick extension.

• ImageMagick built with plug-ins (see Delegates below) can pose the following additional challenges:

o You can build all the plug-ins statically and link them into the ImageMagick shared library (i.e.,
libMagick.so) or

o you can build the plug-ins as shared libraries. (Note: Some systems already have plug-ins installed as
shared libraries.)

Unix Compilation

Chapter 2, Installing ImageMagick — Page 13

• Shared library’s compilation flags differ from vendor to vendor (gcc’s is -fPIC). However, you must compile
all shared library source with the same flag. (Note: For gcc use -fPIC rather than -fpic.)

--disable-static

• Static archive libraries (with extension .a) are not built. If you are building shared libraries, there is little value
to building static libraries. Reasons to build static libraries include:

o they can be easier to debug

o the clients do not have external dependencies (i.e., libMagick.so)

o building PIC versions of the plug-in libraries may take additional expertise and effort

o you are unable to build shared libraries

--with-perl

• Conveniently compile and install PerlMagick in one step. Without this option you must first install
ImageMagick, change to the PerlMagick subdirectory, build, and finally, install PerlMagick.

Note: PerlMagick is configured even if you don’t specify --with-perl. If you don’t specify
--enable-shared, a new PERL interpreter (i.e., PerlMagick) is built and statically linked against the
PerlMagick extension. This new interpreter is installed alongside your existing PERL interpreter. If you
specify --enable-shared, the PerlMagick extension is built as a dynamically loadable object that’s

Unix Compilation

Chapter 2, Installing ImageMagick — Page 14

loaded into your current PERL interpreter at run-time. Use of dynamically-loaded extensions is preferable over
statically linked extensions so --enable-shared should be specified if possible. If the argument
--with-perl=/path/to/perl is supplied, then /path/to/perl is taken as the PERL interpreter to use.

--with-x=no

• Build and use the X11 stubs library (i.e., ImageMagick/xlib) instead of the core X11 libraries. This may be
necessary on systems where X11 is not installed (e.g., a web server).

Note: Display, animate, and import will not work with this library. The remaining programs have reduced
functionality.

Dealing with Configuration Failures

While configure is designed to ease the installation of ImageMagick, it often discovers problems that would otherwise
be encountered later when you compile ImageMagick. The configure script tests for headers and libraries by executing
the compiler (CC) with the specified compilation flags (CFLAGS), pre-processor flags (CPPFLAGS), and linker flags
(LDFLAGS). Any errors are logged to the file config.log. If configure fails to discover a header or library, review the
log file to determine why. After you correct the problem, be sure to remove the 'config.cache' file before you run
configure so it will re-inspect the environment rather than using the cached values.

Common causes of configuration failures are

• a plug-in header is not in the header include path (CPPFLAGS -I option)

• a plug-in library is not in the linker search/run path (LDFLAGS -L/-R option)

Unix Compilation

Chapter 2, Installing ImageMagick — Page 15

• a plug-in library is missing a function (old version?)

• the compilation environment is faulty

Reporting Bugs

If you’ve tried all reasonable corrective actions and the problem appears to be due to a flaw in the configure script, email
a bug report to the configure script maintainer at bfriesen@simple.dallas.tx.us.

Bug reports should contain the following:

• operating system type (as reported by 'uname -a')

• the compiler/compiler-version

A copy of the configure script output and/or the config.log file may be valuable in order to find the problem.

X11 Imake

Use this option if working imake configuration files are available and you don't mind editing a configuration file. Install
the package using the imake default installation directory (i.e., usually the X11 distribution directory). Use of this
scheme requires a separate step to install PerlMagick. See the ReadMe file in the PerlMagick subdirectory.

Review the defines in magick/magick.h and magick/delegates.h and make sure they meet the requirements of your local
system.

Unix Compilation

Chapter 2, Installing ImageMagick — Page 16

Edit magick.tmpl and set the variables to suit your local environment.

Now type

xmkmf
make Makefiles

or just

xmkmf -a

Using X11R6 Imake

ImageMagick requires an ANSI compiler. If the compile fails, first check to ensure your compile is ANSI compatible.
If it fails for some other reason, try

cd magick
make -k
cd ..
make -k

To confirm your build of the ImageMagick distribution was successful, type

display

If the program faults, verify you didn’t inadvertently link to an older version of the libMagick library. In this case type

cd ImageMagick/magick
make install

Unix Compilation

Chapter 2, Installing ImageMagick — Page 17

cd ..
make

If the image colors are not correct use

display -visual default

You can find other sample images in the images directory.

For additional information, see the following ImageMagick chapters.

• Chapter4, Display

• Chapter8, Convert

• Chapter7, Montage

• Chapter10, Identify

• Chapter6, Animate

• Chapter5, Import

• Chapter9, Mogrify

• Chapter11, Combine

Delegates

Chapter 2, Installing ImageMagick — Page 18

Also read the ImageMagick Frequently Asked Questions web page at
http://www.wizards.dupont.com/cristy/www/Magick.html. This is “required reading.” Most ImageMagick questions
received via email are answered in this document.

Place display X application defaults in /usr/lib/X11/app-defaults/Display. Use the appropriate name for other clients
(e.g., Animate, Montage, etc). To execute display as a menu item of any window manager (e.g., olwm, mwm, twm, etc),
use

display logo:Untitled

Delegates

To further enhance the capabilities of ImageMagick, you may want to get the following programs or libraries. Many of
these delegates can be found at ftp://ftp.wizards.dupont.com/pub/ImageMagick/delegates .

Background Texture

ImageMagick requires a background texture for the Tile format and for the -texture option of Montage. You can use
your own or get samples from KPT.

Delegates

Chapter 2, Installing ImageMagick — Page 19

RALCGM

ImageMagick requires ralcgm to read Computer Graphic Metafile images (may not compile under linux). You also need
Ghostscript (see below).

TransFig

ImageMagick requires fig2dev to read TransFig images.

GET

ImageMagick requires Get to read images specified with a world wide web (WWW) uniform resource locator (URL).
Get must be in /usr/local/bin. See WWW command in magick/magick.h to change its location.

Note: Don’t confuse this Get program with the SCCS Get program. If you don’t have an http server, you can use xtp,
available in the ImageMagick distribution, for URLs whose protocol is ftp.

FPX

ImageMagick requires the FlashPix SDK to read and write the FPX image format.

Delegates

Chapter 2, Installing ImageMagick — Page 20

FreeType

ImageMagick requires the FreeType software, version 1.1 or later, to annotate with TrueType fonts.

HDF

ImageMagick requires the NCSA HDF library to read and write the HDF image format.

HTML2PS

ImageMagick requires HTML2PS to read HyperText Markup Language (HTML) documents.

JBIG

ImageMagick requires the JBIG-Kit software to read and write the JBIG image format.

JPEG

ImageMagick requires the Independent JPEG Group’s software to read and write the JPEG image format.

Delegates

Chapter 2, Installing ImageMagick — Page 21

Iterative JPEG Compression

See Kinoshita and Yamamuro, Journal of Imaging Science and Technology, Image Quality with Reiterative JPEG
Compression, Volume 39, Number 4, July 1995, 306–312, who claim that

• the iterative factor of the repetitive JPEG operation had no influence on image quality, and

• the first compression determined base image quality.

MPEG

ImageMagick requires the MPEG encoder/decoder to read or write the MPEG image format.

PNG

ImageMagick requires the PNG library to read the PNG image format.

Delegates

Chapter 2, Installing ImageMagick — Page 22

PostScript

ImageMagick requires Ghostscript software to read PostScript (PS) and Portable Document Format (PDF) images. It is
used to annotate an image when an X server is not available. See FreeType, above for another means to annotate an
image.

Note: Ghostscript must support the ppmraw device (type gs -h to verify). If Ghostscript is unavailable, the Display
Postscript extension is used to rasterize a Postscript document (assuming you define HasDPS). The DPS extension is
less robust than Ghostscript in that it will only rasterize one page of a multi-page document.

RA_PPM

ImageMagick requires ra_ppm from Greg Ward’s Radiance software to read the Radiance image format (which may
not compile under Linux).

RAWTORLE

ImageMagick requires rawtorle from the Utah Raster Toolkit to write the RLE image format (which may not compile
under Linux).

SANE

ImageMagick requires scanimage to import images from a scanner device.

Compiling ImageMagick

Chapter 2, Installing ImageMagick — Page 23

TIFF

ImageMagick requires Sam Leffler's TIFF software to read and write the TIFF image format. It optionally requires the
JPEG and ZLIB libraries.

WMF

ImageMagick requires wmftogif to read Windows Meta File images.

ZLIB

ImageMagick requires the ZLIB library to read the PNG image format or read or write ZLIB compressed MIFF images.

Compiling ImageMagick

The following procedure describes how to build ImageMagick extension libraries in subdirectories of the ImageMagick
directory. An alternative to these procedures is to install one or more of these under your system’s regular include/lib
directory (e.g., the directory specified by --prefix to configure or /usr/local). This allows the libraries to be shared
by other packages. When you use the configure script, the two schemes may be mixed.

Compiling ImageMagick

Chapter 2, Installing ImageMagick — Page 24

Also, please note that when the configure option --enable-shared is enabled, these procedures must be supple-
mented with the compilation flags that are required on your system to generate PIC code. In the case of gcc, this usually
means that -fPIC must be added to the compiler options (i.e., CFLAGS) when you build each plug-in library.

To display images in the HDF, JPEG, MPEG, PNG, TIFF or TTF format, get the appropriate archives and build
ImageMagick as follows:

HDF

cd ImageMagick
unzip -c HDF4.2r2.tar.gz | tar xvf -
mv HDF4.2r2 hdf
cd hdf
configure
make -k hdf-libnofortran
cd ..

JBIG

cd ImageMagick
unzip -c jbigkit-1.0.tar.gz | tar xvof -
mv jbig-kit jbig
cd jbig
make
cd ..

Compiling ImageMagick

Chapter 2, Installing ImageMagick — Page 25

JPEG

cd ImageMagick
gunzip -c jpegsrc.v6b.tar.gz | tar xvof -
mv jpeg-6b jpeg
cd jpeg
configure
make
cd ..

PNG

cd ImageMagick
unzip -c libpng-1.0.3.tar.gz | tar xvf -
mv libpng-1.0.3 png
cd png
make
cd ..

TIFF

cd ImageMagick
gunzip -c tiff-v3.4beta037.tar.Z | tar xvof -
mv tiff-v3.4beta037 tiff
cd tiff
./configure
make
cd ..

Compiling ImageMagick

Chapter 2, Installing ImageMagick — Page 26

TTF

cd ImageMagick
gunzip -c freetype-1.2.tar.gz | tar xvof -
mv freetype-1.2 ttf
cd ttf
./configure -disable-shared
make
cd ..

ZLIB

cd ImageMagick
gunzip -c zlib-1.1.3.tar.gz | tar xvf -
mv zlib-1.1.3.tar.gz zlib
cd zlib
make
cd ..

Support for Shared Libraries

If your computer system supports shared libraries you must type

make install

Finally, perform the following:

cd ImageMagick

VMS Compilation

Chapter 2, Installing ImageMagick — Page 27

edit Magick.tmpl and define Has???? as instructed
xmkmf
make Makefiles
make clean
make

If you prefer to use GNU Configure rather than Imake, type

configure
make clean
make -k

If the compile fails due to a function redefinition it may be that either jpeg/jconfig.h or mpeg/mpeg.h is redefining const.
Fix this problem and try again.

You can now convert or display images in the JPEG, TIFF, PNG, etc. image formats.

If you have HDF, JBIG, JPEG, MPEG, PNG, and TIFF sources installed as directed above, you can also type

Install sun

Substitute the appropriate machine type (i.e., aix, hpux, sgi, etc.).

VMS Compilation

You might want to check the values of certain program definitions before you compile. Verify the defininitions in
delegates.mgk suit your local requirements. Next, type

NT Compilation

Chapter 2, Installing ImageMagick — Page 28

@make
set display/create/node=node_name::

where node_name is the DECNET X server to contact.

Finally type

display

Alternatively, download a zipped distribution (with JPEG, PNG, TIFF, and TTF) from
ftp://ftp.wizards.dupont.com/pub/ImageMagick/vms.

The VMS JPEG, PNG, and TIFF source libraries are available from axp.psl.ku.dk in [anonymous.decwindows.lib].

Thanks to pmoreau@cenaath.cena.dgac.fr for supplying invaluable help as well as the VMS versions of the JPEG,
PNG, TIFF, and TTF libraries.

NT Compilation

The Visual C++ distribution targeted at Windows NT or Windows 95 is provided in the "VisualMagick" subdirectory of
the distribution. There are two workspaces (DSW files) that can be used to do the complete build:

VisualMagick.dsw

VisualMagickStatic.dsw

NT Compilation

Chapter 2, Installing ImageMagick — Page 29

Use the first to build DLL’s otherwise it builds a static version. A complete build can be accomplished by simply doing:

Build: Batch Build: Clean

Build: Batch Build: Build

The Clean step is needed in order to make sure that all of the target support libraries are updated with any patches needed
to get them to compile properly on Windows.

All of the required files that are needed to run any of the command line tools will be found in the "bin" subdirectory of
the VisualMagick subdirectory. This includes EXE, and DLL files. You should be able to test the build directly from this
directory without having to move anything to any of the global SYSTEM or SYSTEM32 areas in the operating system
installation.

NOTE: The two utilities display and animate will compile and link but not function in the default build environment.
This is due to the fact that the default build environment uses the X11 stubs to supply non-functional stubs for X-
Window functionality. This is due to the lack of a high need for this on a Windows NT or Win95 only system. Work is
underway to add X11 libraries to the standard distribution in the neat future.

To view any image in a Microsoft window, type

convert image.ext win:

Import works if you have at least one X window open. Alternatively, type

convert x:root image.gif

Macintosh Compilation

Chapter 2, Installing ImageMagick — Page 30

Make sure gswin32 (Ghostscript) is in your execution path (see Autoexec.bat), otherwise, you will be unable to convert
or view a Postscript document.

Make sure iexplore (Internet Explorer) is in your execution path (see Autoexec.bat), otherwise, you will be unable to
browse the ImageMagick documentation.

To compile the source with Codewarrior, start with Magick/Magick.mcp, then animate.mcp, convert.mcp, etc. The
Visual C++ workspace is ImageMagick.dsw.

Tip! The NT executables will work under Windows 95 and Windows 98.

Macintosh Compilation

The Macintosh Macintosh distribution contains MetroWerks Codewarrior Professional projects for compilation. For
those who do not have access to CodeWarrior, the binaries for the command line utilities are enclosed.

Note: The inline intrinsic functions are commented in math.h in order to compile.

Note: Display, animate, and import currently do not work on the Macintosh.

Animation

Chapter 2, Installing ImageMagick — Page 31

Animation

To prevent color flashing on visuals that have colormaps, animate creates a single colormap from the image sequence.
This can be rather time consuming. You can speed up this operation by reducing the colors in an image before you
animate it. Use mogrify to color reduce images.

mogrify +map -colors 256 scenes/dna.[0-9]*

Alternatively, you can use a Standard Colormap, or a static, direct, or true color visual. You can define a Standard
Colormap with xstdcmap. For example, to use the “best” Standard Colormap, type

xstdcmap -best
animate -map best scenes/dna.[0-9]*

or to use a true color visual

animate -visual truecolor scenes/dna.[0-9]*

Image filenames can appear in any order on the command line if the scene keyword is specified in the MIFF image.
Otherwise the images display in the order they appear on the command line. A scene is specified when converting from
another image format to MIFF by using the “scene” option with any filter. Be sure to choose a scene number other than
zero. For example, to convert a TIFF image to a MIFF image as scene #2, type

convert -scene 2 image.tiff image.miff

16-bit Imaging

Chapter 2, Installing ImageMagick — Page 32

16-bit Imaging

By default, ImageMagick uses a color depth of 8 bits (e.g., [0..255] for each of red, green, blue, and transparency compo-
nents). Any 16-bit image is scaled immediately to 8-bits before any image viewing or processing occurs. If you want to
work directly with 16-bit images (e.g., [0..65535]), edit Magick.tmpl and define QuantumLeap or use

-enable-16bit

with configure.

Next, type

make clean
make

In 16-bit mode expect to use about 33% more memory on the average. Also expect some processing to be slower than
in 8-bit mode (e.g., Oil Painting, Segment, etc.).

In general, 16-bit mode is useful only if you have 16-bit images you want to manipulate, then save the transformed image
back to a 16-bit image format (e.g., PNG, VIFF).

64-bit Machines

Chapter 2, Installing ImageMagick — Page 33

64-bit Machines

Each pixel, within ImageMagick, is represented by the PixelPacket structure found in magick/image.h. Only 8 bits are
required for each color component and 16 bits for the colormap index for a total of 6 bytes. If QuantumLeap is defined
(see 16-bit Imaging), the color component size increases to 16 bits for a total of 10 bytes. Some 64-bit machines pad the
structure, which can cause a significant waste of memory. For the cray, change the RunlengthPacket structure to the
following before you compile.

typedef struct _PixelPacket
{
unsigned char
red : QuantumDepth,
green : QuantumDepth,
blue : QuantumDepth,
opacity : QuantumDepth;

unsigned short
index : 16;

} PixelPacket;

Note: This may not work on other 64-bit machines that pad. The Dec Alpha, Solaris, and Irix apparently do not pad the
structure so ImageMagick should be fine on this particular 64-bit machine.

MIFF Image Format

MIFF is an image format that

MIFF Image Format

Chapter 2, Installing ImageMagick — Page 34

• is machine independent. It can be read on virtually any computer. No byte swapping is necessary.

• has a text header. Most image formats are coded in binary and you cannot easily tell attributes about the image.
Use more on MIFF image files and the attributes are displayed in text form.

• can handle runlength-encoded images. Although most scanned images do not benefit from runlength-
encoding, most computer-generated images do. Images of mostly uniform colors have a high compression
ratio and therefore take up less memory and disk space.

• allows a scene number to be specified. This allows you to specify an animation sequence out-of-order on the
command line. The correct order is determined by the scene number of each image.

• computes a digital signature for images. This is useful for comparing images. If two image files have the same
signature, they are identical images.

There is a montage keyword that allows an image to act as a visual image directory. See Chapter4, Display for details.

To get an image into MIFF format, use convert or read it from an X window using the import program.

Alternatively, type the necessary header information in a file with a text editor. Next, dump the binary bytes into another
file. Finally, type

cat header binary_image | display -write image.miff -

For example, suppose you have a raw red, green, blue image file on disk that is 640 by 480. The header file would look
like this

id=ImageMagick columns=640 rows=480 :

MIFF Image Format

Chapter 2, Installing ImageMagick — Page 35

The image file would have red, green, blue tuples (rgbrgbrgb...). See Chapter4, Display for details.

Chapter 3, The ImageMagick Interface — Page 36

Chapter 3

The
ImageMag-
ick Interface

Overview

Several components—use of options, the Command Widget, using the mouse, and
the ImageMagick environment—are common to all areas of ImageMagick. They’re
described in this chapter.

Using Options

Options are processed in command-line order. Any option you specify on the
command line remains in effect until you change it.

By default, the image format is determined by its magic number. To specify a
particular image format, precede the filename with an image format name and a
colon, for example,

ps:image

or specify the image type as the filename suffix

image.ps

See Appendix A, Supported Image Formats for a list of valid image formats.

Using Options

Chapter 3, The ImageMagick Interface — Page 37

When you specify X as your image type, the filename has special meaning. It specifies an X window by ID, name, or
root. If you specify no filename, you can select the window by clicking the mouse in it.

Specify the image filename as - for standard input or standard output. If the filename has the extension .Z or .gz, the
file is uncompressed with uncompress or gunzip, respectively. If it has the extension .Z or .gz, the file size is compressed
using with compress or gzip, respectively. Finally, precede the image file name with | to pipe to or from a system
command.

Use an optional index enclosed in brackets after a file name to specify a desired subimage of a multiresolution image
format like Photo CD, for example,

img0001.pcd[4]

or a range for MPEG images, for example,

video.mpg[50-75]

A subimage specification can be disjoint, for example,

image.tiff[2,7,4]

For raw images, specify a subimage with a geometry, for example

-size 640x512 image.rgb[320x256+50+50]

Using Filenames

Chapter 3, The ImageMagick Interface — Page 38

Using Filenames

Single images are read with the filename you specify. Alternatively, you can affect an image sequence with a single
filename. Define the range of the image sequence with -scene. Each image in the range is read with the filename
followed by a period (.) and the scene number. You can change this behavior by embedding a printf format specification
in the filename. For example,

-scene 0-9 image%02d.miff

animates the files image00.miff, image01.miff, through image09.miff.

Image filenames may appear in any order on the command line if the image format is MIFF and the -scene keyword
is specified in the image. Otherwise the images will be affected in the order you enter them on the command line. See
Appendix C, MIFF.

Mouse Buttons

ImageMagick requires a three-button mouse. The effects of each mouse button for the display program are described
below.

Tip! If you have a two-button mouse, the left button corresponds to button 1 and the right button corresponds to
button 3. To simulate button 2, hold down the Alt key on your keyboard and press the right mouse button.

Mouse Buttons

Chapter 3, The ImageMagick Interface — Page 39

Mouse Button 1

Press button 1 to map or unmap the Command Widget. See the next section for more information about the Command
Widget.

Mouse Button 2

Press button 2 and drag the mouse to define a region of an image to magnify.

Mouse Button 3

Press button 3 and drag the mouse to choose from a select set of Display commands. This button behaves differently if
the image is a visual image directory. Choose a directory tile, press this button and drag the mouse to select a command
from a popup menu.

Popup Menu Options

This menu
item…

Does this…

Open Displays the image represented by the tile.

Next Returns from an image to the visual image directory, or moves to the next image.

Former Moves to the previous image.

Command Widget

Chapter 3, The ImageMagick Interface — Page 40

Command Widget

The Command Widget has a number of menu commands. Those menu commands followed by a right-pointing triangle
have submenu commands. The animate program, for example, has this menu of commands:

Note: Menu commands are indicated in the following list with a bullet (n). Submenu commands are indicated with a >
character.

• Animate

> Open

> Play

> Step

> Repeat

> Auto Reverse

Delete Deletes an image tile.

Update Synchronizes all image tiles with their respective images.

Popup Menu Options

This menu
item… (Cont.)

Does this…

Command Widget

Chapter 3, The ImageMagick Interface — Page 41

• Speed

> Faster

> Slower

• Direction

> Forward

> Reverse

• Image Info

• Help

• Quit

Selecting a Submenu Command

1 To select a submenu command, move the pointer to the appropriate menu.

2 Press the mouse button and hold it down as you drag through the menu to a command, then its submenu
command.

3 Release the mouse button to execute the submenu command under the pointer.

Note: If you decide not to execute a command, drag the pointer away from the menu.

Keyboard Short Cuts

Chapter 3, The ImageMagick Interface — Page 42

Keyboard Short Cuts

The following table shows keyboard short cuts you can use with the animate program.

Keyboard Short Cuts

Press this… to do this…

Ctl+o load an image from a file

space display the next image in the sequence

< speed up the display of the images (See -delay for more information.)

> slow the display of the images (See -delay for more information.)

? display information about the image; press any key or button to erase the information;
the following information is printed: image name, image size, the total number of
unique colors in the image

F1 display helpful information about an ImageMagick tool

Ctl+q discard all images and exit ImageMagick

Environment

Chapter 3, The ImageMagick Interface — Page 43

Environment

DISPLAY

Lets you get the default host, display number, and screen.

Chapter 4, Display — Page 44

Chapter 4

Display

Overview

Display is an image processing and display program. It can display an image on any
workstation screen running an X server. Display can read and write many of the
more popular image formats—JPEG, TIFF, PNM, Photo CD, to name a few.

With display you can do the following with an image:

• load an image from a file

• display the next or previous image

• display a sequence of images as a slide show

• write an image to a file

• print an image to a PostScript printer

• delete an image file

• create a visual image directory

• select an image to display by its thumbnail rather than its name

• undo last image transformation

• copy and paste a region of an image

Overview

Chapter 4, Display — Page 45

• refresh an image

• restore an image to its original size

• decrease an image’s size by half

• double an image’s size

• resize an image

• crop an image

• cut an image

• flop an image in the horizontal direction

• flip an image in the vertical direction

• rotate an image 90 degrees clockwise

• rotate an image 90 degrees counter-clockwise

• rotate an image

• shear an image

• roll an image

• trim an image’s edges

Overview

Chapter 4, Display — Page 46

• invert the colors of an image

• vary an image’s color brightness

• vary and image’s color saturation

• vary an image’s hue

• gamma correct an image

• sharpen an image’s contrast

• dull an image’s contrast

• perform histogram equalization on an image

• perform histogram normalization on an image

• negate an image’s colors

• convert an image to grayscale

• set the maximum number of unique colors in an image

• reduce the speckles within an image

• eliminate peak noise from an image

• detect edges within an image

Overview

Chapter 4, Display — Page 47

• emboss an image

• segment an image by color

• simulate an oil painting

• simulate a charcoal drawing

• annotate an image with text

• draw on an image

• edit an image pixel color

• edit an image’s matte information

• composite an image with another

• add a border to an image

• add a border to an image

• surround image with an ornamental border

• apply image processing techniques to a region of interest

• display information about an image

• zoom a portion of an image

Syntax

Chapter 4, Display — Page 48

• show a histogram of an image

• display image to background of a window

• set user preferences

• display information about this program

• discard all images and exit program

• change the level of magnification

• display images specified by a World Wide Web (WWW) uniform resource locator (URL)

Syntax
display [options ...] file [options ...] file

Examples

• To scale an image of a cockatoo to exactly 640 pixels in width and 480 pixels in height and position the
window at location (200,200), use

display -geometry 640x480+200+200! cockatoo.miff

Examples

Chapter 4, Display — Page 49

• To display an image of a cockatoo without a border centered on a backdrop, use

display +borderwidth -backdrop cockatoo.miff

• To tile a slate texture onto the root window, use

display -size 1280x1024 -window root slate.png

• To display a visual image directory of all your JPEG images, use

display 'vid:*.jpg'

• To display a MAP image that is 640 pixels in width and 480 pixels in height with 256 colors, use

display -size 640x480+256 cockatoo.map

• To display an image of a cockatoo specified with a World Wide Web (WWW) uniform resource locator
(URL), use

display ftp://wizards.dupont.com/images/cockatoo.jpg

• To display histogram of an image, use

convert file.jpg HISTOGRAM:- | display -

Examples

Chapter 4, Display — Page 50

Display Options

-backdrop

Lets you center an image on a backdrop.

This backdrop covers the entire workstation screen and is useful for hiding other X window activity while viewing the
image. The color of the backdrop is specified as the background color. See Appendix B, X Resources for details.

-border <width>x<height>

Lets you surround an image with a colored border.

The color of the border is obtained from the X server and is defined as borderColor (class BorderColor). See the X
Windows system manual at http://www.x.org for details about the specification.

-cache_threshold value

number of megabytes available to the pixel cache.

Image pixels are stored in memory until 80 megabytes of memory have been consumed. Subsequent pixel operations
are cached on disk. Operations to memory are significantly faster but if your computer does not have a sufficient amount
of free memory you may want to adjust this threshold value.

Examples

Chapter 4, Display — Page 51

-colormap type

Lets you specify a type of colormap:

• Shared

• Private

This option applies only when the default X server visual is PseudoColor or GrayScale. See -visual for more details.

By default, a Shared colormap is allocated. The image shares colors with other X clients. Some image colors may be
approximated and your image may not look the way you intended.

Choose Private and the image colors appear exactly as they are defined. However, other clients may go technicolor when
the image colormap is installed.

-colormap type

Lets you specify a type of colormap:

• Shared

• Private

This option applies only when the default X server visual is PseudoColor or GrayScale. See -visual for more details.

Examples

Chapter 4, Display — Page 52

By default, a Shared colormap is allocated. The image shares colors with other X clients. Some image colors may be
approximated and your image may not look the way you intended.

Choose Private and the image colors appear exactly as they are defined. However, other clients may go technicolor when
the image colormap is installed.

-colors value

Lets you specify the preferred number of colors in an image.

The actual number of colors in the image may be fewer than you specify, but will never be more.

Note: This is a color reduction option. Duplicate and unused colors will be removed if an image has fewer unique colors
than you specify. See Appendix D, Quantize for more details. The options -dither, -colorspace, and
-treedepth affect the color reduction algorithm.

 -colorspace value

Lets you specify the type of colorspace.

• GRAY

• OHTA

• RGB

• Transparent

Examples

Chapter 4, Display — Page 53

• XYZ

• YCbCr

• YIQ

• YPbPr

• YUV

• CMYK

Color reduction by default, takes place in the RGB color space. Empirical evidence suggests that distances in color
spaces such as YUV or YIQ correspond to perceptual color differences more closely than distances in RGB space. These
color spaces may give better results when color reducing an image. See Appendix D, Quantize for details.

Note: The transparent colorspace is unique. It preserves the matte channel of the image if it exists.

Tip! The -colors or -monochrome option is required for the transparent option to take effect.

 -comment string

Lets you annotate an image with a comment.

By default, each image is commented with its file name. Use this option to assign a specific comment to the image.

Examples

Chapter 4, Display — Page 54

Optionally you can include the image filename, type, width, height, or scene number in the label by embedding special
format characters. The following table shows these characters and their values.

Special Format Characters

Special
Character

Value

%b file size

%d directory

%e filename extention

%f filename

%h height

%i input filename

%l label

%m magick

%n number of scenes

%o output filename

%p page number

%q quantum depth

Examples

Chapter 4, Display — Page 55

For example,

-comment “%m:%f %wx%h”

produces for an image—titled bird.miff whose width is 512 and height is 480—the comment

%s scene number

%t top of filename

%u unique temporary filename

%w width

%x x resolution

%y y resolution

\n newline

\r carriage return

Special Format Characters

Special
Character (Cont.)

Value

Examples

Chapter 4, Display — Page 56

MIFF:bird.miff 512x480

Note: If the first character of string is @, the image comment is read from a file titled by the remaining characters in the
string.

-compress type

Lets you specify one of the following types of image compression:

• None

• Bip

• Fax

• Group 4

• JPEG

• LZW

• RunlengthEncoded

• Zip

Specify

+compress

Examples

Chapter 4, Display — Page 57

to store the binary image in an uncompressed format. The default is the compression type of the specified image file.

-contrast

Lets you enhance or reduce the intensity differences between the lighter and darker elements of an image.

Use

-contrast

to enhance the image or

+contrast

to reduce the image contrast.

-crop <width>x<height>{+-}<x offset>{+-}<y offset>{%}

Lets you specify the size and location of a cropped image. See the X Windows system manual at http://www.x.org for
details about the geometry specification.

To specify the width or height as a percentage, append %. For example to crop an image by 10% on all sides, use

-crop 10%

Use cropping to apply image processing options to, or display, a particular area of an image. Omit the x offset and y offset
to generate one or more subimages of a uniform size.

Examples

Chapter 4, Display — Page 58

Use cropping to crop an area of an image. Use

-crop 0x0

to trim edges that are the background color. Add an x offset and y offset to leave a portion of the trimmed edges with the
image. The equivalent X resource for this option is cropGeometry (class CropGeometry). See Appendix B, X Resources
for details.

-delay <1/100ths of a second>x<seconds>

Displays the next image after pausing.

This option is useful for regulating the display of the sequence of GIF images in Netscape. 1/100ths of a second must
pass before the image sequence can be displayed again.

The default is no delay between each showing of the image sequence. The maximum delay is 65535.

The seconds value is optional. It lets you specify the number of seconds to pause before repeating the animation
sequence.

-density <width>x<height>

Lets you specify in pixels the vertical and horizontal resolution of an image.

This option lets you specify an image density when decoding a PostScript or Portable Document page. The default is 72
pixels per inch in the horizontal and vertical direction.

Examples

Chapter 4, Display — Page 59

-despeckle

Lets you reduce the speckles in an image.

-display host:display[.screen]

Specifies the X server to contact. See the X Windows system manual at http://www.x.org for details about the specifi-
cation.

-dispose

Lets you specify one of the following GIF disposal methods:

GIF Disposal Methods

This method… Specifies…

0 no disposal specified

1 do not dispose between frames

2 overwrite frame with background color from header

3 overwrite with previous frame

Examples

Chapter 4, Display — Page 60

-dither

Lets you apply Floyd/Steinberg error diffusion to an image.

Dithering trades intensity resolution for spatial resolution by averaging the intensities of several neighboring pixels. You
can use this option to improve images that suffer from severe contouring when reducing colors.

Note: The -colors or -monochrome option is required for dithering to take effect.

Tip! Use +dither to render PostScript without text or graphic aliasing.

 -edge factor

Lets you detect edges within an image. Specify factor as a percentage of the enhancement from 0.0–99.9%.

 -enhance

Lets you apply a digital filter to enhance a noisy image.

 -filter type

Lets you specify one of the following filters to use when you resize an image:

• Point

• Box

Examples

Chapter 4, Display — Page 61

• Triangle

• Hermite

• Hanning

• Hamming

• Blackman

• Gaussian

• Quadratic

• Cubic

• Catrom

• Mitchell (default)

• Lanczos

• Bessel

• Sinc

See -geometry.

Examples

Chapter 4, Display — Page 62

-flip

Lets you create a mirror image by reflecting the scanlines in the vertical direction.

-flop

Lets you create a mirror image by reflecting the image scanlines in the horizontal direction.

 -frame <width>x<height>+<outer bevel width>+<inner bevel width>

Lets you surround an image with an ornamental border. See the X Windows system manual at http://www.x.org for
details about the specification.

Note: The color of the border is specified with the -mattecolor command line option.

 -gamma value

Lets you specify the level of gamma correction for an image.

The same color image displayed on different workstations may look different because of differences in the display
monitor. Use gamma correction to adjust for this color difference. Reasonable values range from 0.8–2.3.

You can apply separate gamma values to the red, green, and blue channels of an image with a gamma value list delin-
eated with slashes, for example,

1.7/2.3/1.2

Examples

Chapter 4, Display — Page 63

Use +gamma to set the image gamma level without actually adjusting the image pixels. This option is useful if the
imagehas a known gamma that isn’t set as an image attribute, such as PNG images.

-geometry <width>x<height>{!}{<}{>}{%}

Lets you specify the size and location of an image window. See the X Windows system manual at http://www.x.org for
details about the geometry specification. By default, the window size is the image size. You specify its location when
you map it.

The width and height, by default, are maximum values. That is, the image is expanded or contracted to fit the width and
height value while maintaining the aspect ratio of the image.

Append an exclamation mark to the geometry to force the image size to exactly the size you specify. For example,

640x480!

sets the image width to 640 pixels and height to 480. If you specify one factor only, both the width and height assume
that value.

To specify a percentage width or height instead, append %. The image size is multiplied by the width and height
percentages to obtain the final image dimensions. To increase the size of an image, use a value greater than 100 (e.g.,
125%). To decrease an image’s size, use a percentage less than 100.

Use > to change the dimensions of the image only if its size exceeds the geometry specification. If the image dimension
is smaller than the geometry you specify, < resizes the image. For example, if you specify

640x480>

Examples

Chapter 4, Display — Page 64

and the image size is 512x512, the image size does not change. However, if the image is 1024x1024, it’s resized to
640x480.

Tip! There are 72 pixels per inch in PostScript coordinates.

The equivalent X resource for this option is geometry (class Geometry). See Appendix B, X Resources for details.

-interlace type

Lets you specify one of the following interlacing schemes:

• none (default)

• line

• plane

• partition

Interlace also lets you specify the type of interlacing scheme for raw image formats such as RGB or YUV.

Interlace Types

Scheme Description

none does not interlace (e.g., RGBRGBRGBRGBRGBRGB...)

Examples

Chapter 4, Display — Page 65

Tip! Use line, or plane to create an interlaced GIF or progressive JPEG image.

 -immutable

Lets you indicate the displayed image cannot be modified.

 -label name

Lets you assign a label to an image.

-map type

Lets you display an image using one of the following standard colormap types:

• best

line uses scanline interlacing (e.g., RRR...GGG...BBB...RRR...GGG...BBB...)

plane uses plane interlacing (e.g., RRRRRR...GGGGGG...BBBBBB...)

partition similar to plane except that different planes are saved to individual files (e.g.,
image.R, image.G, and image.B)

Interlace Types

Scheme (Cont.) Description

Examples

Chapter 4, Display — Page 66

• default

• gray

• red

• green

• blue

The X server must support the colormap you choose, otherwise an error occurs. For type specify list and display
searches the list of colormap types in top-to-bottom order until one is located. For one way of creating standard
colormaps see xstdcmap, an X11 client program that’s available with an X11 distribution.

 -matte

Lets you store the matte channel (i.e., the transparent channel) if an image has one.

-monochrome

Lets you transform an image to black and white.

 -negate

Lets you apply color inversion to an image.

Examples

Chapter 4, Display — Page 67

The red, green, and blue intensities of an image are negated. Use +negate to negate only the grayscale pixels of the
image.

 -page <width>x<height>{+-}<x offset>{+-}<y offset>{!}{<}{>}{%}

Lets you set the size and location of an image canvas. Use this option to specify the dimensions of a

• PostScript page in dots per inch (dpi) or a

• TEXT page in pixels

This option is used in concert with -density.

The choices for a PostScript page are

Postscript Page Sizes

Media Size (pixel width by pixel height)

11x17 792 1224

Ledger 1224 792

Legal 612 1008

Letter 612 792

LetterSmall 612 792

Examples

Chapter 4, Display — Page 68

ArchE 2592 3456

ArchD 1728 2592

ArchC 1296 1728

ArchB 864 1296

ArchA 648 864

A0 2380 3368

A1 1684 2380

A2 1190 1684

A3 842 1190

A4 595 842

A4Small 595 842

A5 421 595

A6 297 421

A7 210 297

Postscript Page Sizes

Media (Cont.) Size (pixel width by pixel height)

Examples

Chapter 4, Display — Page 69

A8 148 210

A9 105 148

A10 74 105

B0 2836 4008

B1 2004 2836

B2 1418 2004

B3 1002 1418

B4 709 1002

B5 501 709

C0 2600 3677

C1 1837 2600

C2 1298 1837

C3 918 1298

C4 649 918

Postscript Page Sizes

Media (Cont.) Size (pixel width by pixel height)

Examples

Chapter 4, Display — Page 70

You can specify the page size by media (e.g. , A4, Ledger, etc.). Otherwise, -page behaves much like -geometry
(e.g., -page letter+43+43>).

• To position a GIF image, use

-page {+-}<x offset>{+-}<y offset>

for example,

-page +100+200

For a PostScript page, the image is sized as in -geometry and positioned relative to the lower-left hand corner of the
page by {+-}<x offset>{+-}<y offset>. The default page dimension for a TEXT image is 612x792.

• To position a TEXT page, use

C5 459 649

C6 323 459

Flsa 612 936

Flse 612 936

HalfLetter 396 612

Postscript Page Sizes

Media (Cont.) Size (pixel width by pixel height)

Examples

Chapter 4, Display — Page 71

-page 612x792>

to center the image within the page.

Tip! If the image size exceeds the PostScript page, it’s reduced to fit the page.

 -quality value

Lets you specify one of the following compression levels:

• JPEG with a value from 0–100 (i.e., worst to best); the default is 75

• MIFF with a value from 0–100 (i.e., worst to best); sets the amount of image compression (quality/10) and
filter-type (quality % 10)

• PNG with a value from 0–100 (i.e., worst to best); sets the amount of image compression (quality/10) and filter-
type (quality % 10)

The following are valid filter types:

• 0 for none; used for all scanlines

• 1 for sub; used for all scanlines

• 2 for up; used for all scanlines

• 3 for average; used for all scanlines

Examples

Chapter 4, Display — Page 72

• 4 for Paeth; used for all scanlines

• 5 for adaptive filter; used when quality is greater than 50 and the image doesn’t have a colormap; otherwise
no filtering is used

• 6 or higher for adaptive filtering; used with minimum-sum-of-absolute-values

Note: The default is quality is 75—nearly the best compression with adaptive filtering.

For more information, see the PNG specification (RFC 2083) at http://www.w3.org/pub/WWW/TR.

-raise <width>x<height>

Lets you lighten or darken image edges to create a 3-D effect. See the X Windows system manual at http://www.x.org
for details about the geometry specification.

Use -raise to create a raised effect; otherwise use +raise.

-remote string

Lets you execute a command in a remote display process.

Note: The only command recognized at this time is the name of an image file to load.

Examples

Chapter 4, Display — Page 73

-roll {+-}<x offset>{+-}<y offset>

Lets you roll an image vertically or horizontally. See the X Windows system manual at http://www.x.org for details
about the geometry specification.

A negative x offset rolls the image left to right. A negative y offset rolls the image top to bottom.

-rotate degrees{<}{>}

Applies Paeth image rotation to the image.

Use > to rotate the image only if its width exceeds the height. If the image width is less than its height, < rotates the
image.

For example, if you have an image size of 480x640 and you specify

-90>

the image is not rotated by the specified angle. However, if the image is 640x480, it’s rotated by -90 degrees.

Note: Empty triangles left over from rotating the image are filled with the color defined as bordercolor (class
BorderColor). See the X Windows system manual at http://www.x.org for details.

 -sample geometry

Lets you scale an image with pixel sampling. See -geometry for details about the geometry specification.

Examples

Chapter 4, Display — Page 74

-scene value

Lets you specify the image scene number.

 -segment value

Lets you eliminate insignificant clusters.

The number of pixels in each cluster must exceed the cluster threshold to be considered valid.

-sharpen factor

Lets you sharpen an image. Specify factor as a percentage of enhancement from 0.0–99.9%.

-size <width>x<height>{+offset}{!}{%}

Lets you specify the width and height of a raw image whose dimensions are unknown, such as GRAY, RGB, or CMYK.

In addition to width and height, use -size to skip any header information in the image or tell the number of colors in a
MAP image file, for example,

-size 640x512+256

 -texture filename

Lets you specify a file, which contains a texture, to tile onto an image’s background.

Examples

Chapter 4, Display — Page 75

-title string

Lets you assign a title to the displayed image. The title is typically displayed in the window title bar.

 -treedepth value

Lets you choose an optimal tree depth for the color reduction algorithm. Normally, value is 0 or 1.

An optimal depth generally provides the best representation of the source image with the fastest computational speed
and the least amount of memory. However, the default depth is inappropriate for some images. To assure the best repre-
sentation try values between 2 and 8. See Appendix D, Quantize for details.

Note: The -colors or -monochrome option is required for treedepth to take effect.

-update seconds

Lets you specify how often to determin an image has been updated and redisplay it.

For example, if an image you are displaying is overwritten, display will automatically detect the input file has been
changed and update the displayed image accordingly.

-verbose

Lets you print the following detailed information about an image:

• image name

Examples

Chapter 4, Display — Page 76

• image size

• image depth

• image format

• image comment

• image scene number

• image class (DirectClass or PseudoClass)

• total unique colors

• number of seconds to read and transform the image

• whether a matte is associated with the image

• the number of runlength packets

-visual type

Lets you display an image using one of the following visual types:

• StaticGray

• GrayScale

Examples

Chapter 4, Display — Page 77

• StaticColor

• PseudoColor

• TrueColor

• DirectColor

• default

• visual ID

Note: The X server must support the visual you choose, otherwise an error occurs. If you don’t specify a visual, the
visual class that can display the most simultaneous colors on the default X server screen is used.

-window ID

Lets you set the background pixmap of this window to the image.

ID can be a window ID or name. Specify root to select X’s root window as the target window. By default the image
is tiled onto the background of the target window. If -backdrop or -geometry is specified, the image is surrounded
by the background color. See Appendix B, X Resources for details.

Note: The image will not display on the root window if the image has more unique colors than the target window
colormap allows.

Examples

Chapter 4, Display — Page 78

Use -colors to reduce the number of colors. You can also specify the following standard X resources as command
line options:

• -background

• -bordercolor

• -borderwidth

• -font

• -foreground

• -iconGeometry

• -iconic

• -mattecolor

• -name

• -title

-window_group ID

Lets you exit the program when this window ID is destroyed.

ID can be a window ID or name.

Examples

Chapter 4, Display — Page 79

Working with Images

The following sections provide procedures for displaying images using the Command Widget. For details about using
the Command Widget, see Chapter 3, The ImageMagick Interface.

• Loading Images

• Creating a Visual Image Directory

• Cutting Images

• Copying Images

• Pasting Images

• Cropping Images

• Chopping Images

• Rotating Images

• Segmenting Images

• Annotating Images

• Creating Composite Images

• Editing Color Images

Examples

Chapter 4, Display — Page 80

• Editing Matte Images

• Drawing Images

• Transforming a Region of Interest

• Panning Images

Loading Images

1 To select an image to display, choose File/Open in the Command Widget.

A file browser is displayed.

2 To choose an image file, move the pointer to the filename click.

3 Click Open or press the Return key.

o Alternatively, you can type the image file name directly into the Filename box.

4 To descend directories, double-click a directory name.

A scrollbar lets you move through a list of filenames that exceeds the size of the list area.

5 To shorten the list of file names, use shell globbing characters. For example, to list only files that end with
.jpg, type

Examples

Chapter 4, Display — Page 81

*.jpg

6 To select your image from the X server screen instead of from a file, choose Grab in the Open Widget.

Creating a Visual Image Directory

1 To create a visual image directory, choose File/Visual Directory in the Command Widget.

A file browser is displayed.

2 To create a visual image directory from all the images in the current directory, click Directory or press the
Return key.

o Alternatively, you can select a set of image names by using shell globbing characters. For example, to list
only files that end with .jpg, type

*.jpg

3 To descend directories, dobule-click a directory name.

A scrollbar lets you move through a list of filenames that exceeds the size of the list area.

After you select a set of files, they are turned into thumbnails and tiled onto a single image.

4 Move the pointer to a thumbnail, press button 3, and drag.

5 Select Open.

Examples

Chapter 4, Display — Page 82

The image represented by the thumbnail is displayed at its full size.

6 Choose File/Next in the Command Widget to return to the visual image directory.

Cutting Images

Note: Cut information for an image window is not retained for colormapped X server visuals (e.g., StaticColor,
GrayScale, PseudoColor). Correct cutting behavior may require a TrueColor or DirectColor visual or a Standard
Colormap.

1 To begin, choose Edit/Cut in the Command Widget.

o Alternatively, press F3 in the image window.

A small window appears showing the location of the cursor in the image window. You are now in Cut mode.

2 To define a cut region, press button 1 and drag.

The cut region is defined by a highlighted rectangle that expands or contracts as it follows the pointer.

3 Once you are satisfied with the cut region, release the button.

You are now in Rectify mode.

4 To make adjustments, move the pointer to one of the cut rectangle corners, press a button, and drag.

5 Click Cut to commit your copy region.

Examples

Chapter 4, Display — Page 83

o To exit without cutting the image, click Dismiss.

Copying Images

1 To begin, choose Edit/Copy in the Command Widget.

o Alternatively, press F4 in the image window.

A small window appears showing the location of the cursor in the image window. You are now in Copy mode.

2 To define a copy region, press button 1 and drag.

The copy region is defined by a highlighted rectangle that expands or contracts as it follows the pointer.

3 Once you are satisfied with the copy region, release the button.

You are now in Rectify mode.

4 To make adjustments, move the pointer to one of the copy rectangle corners, press a button, and drag.

5 Click Copy to commit your copy region.

o To exit without copying the image, click Dismiss.

Examples

Chapter 4, Display — Page 84

Pasting Images

1 To begin, choose Edit/Paste in the Command Widget.

o Alternatively, press F5 in the image window.

A small window appears showing the location of the cursor in the image window. You are now in Paste mode.

o To exit immediately, press Dismiss.

2 Choose a composite operation from the Operators submenu.

o Optionally choose a composite operator. The default operator is replace.

3 Choose a location to composite your image and press button 1.

o Press and hold the button before releasing and an outline of the image will appear to help you identify your
location.

o To force a PseudoClass image to remain PseudoClass, use -colors.

The actual colors of the pasted image are saved. However, the color that appears in the image window may
be different. For example, on a monochrome screen, the image window will appear black or white even
though your pasted image may have many colors. If you save the image to a file, it is written with the correct
colors. To assure the correct colors are saved in the final image, any PseudoClass image is promoted to
DirectClass.

Examples

Chapter 4, Display — Page 85

Composite Operator Behavior

The following describe how each operator behaves. Image Window is the image currently displayed on your X server
and image is the image obtained with the File Browser Widget.

over. The result is the union of the two image shapes, with image obscuring image window in the region of overlap.

in. The result is simply image cut by the shape of image window. None of the image data of image window is in the result.

out. The resulting image is image with the shape of image window cut out.

atop. The result is the same shape as image window, with image obscuring image window where the image shapes
overlap. Note this differs from over because the portion of image outside image window's shape does not appear in the
result.

xor. The result is the image data from both image and image window that is outside the overlap region. The overlap
region is blank.

plus. The result is just the sum of the image data. Output values are cropped to 255 (no overflow). This operation is
independent of the matte channels.

minus. The result of image - image window, with underflow cropped to zero. The matte channel is ignored (set to 255,
full coverage).

add. The result of image + image window, with overflow wrapping around (mod 256).

subtract. The result of image - image window, with underflow wrapping around (mod 256). The add and subtract
operators can be used to perform reversible transformations.

Examples

Chapter 4, Display — Page 86

difference. The result of abs(image - image window). This is useful for comparing two very similar images.

bumpmap. The result of image window shaded by image.

replace. The resulting image is image window replaced with image. Here the matte information is ignored.

The image compositor requires a matte, or alpha channel in the image for some operations. This extra channel usually
defines a mask that represents a cookie-cutter for the image. This is the case when matte is 255 (full coverage) for pixels
inside the shape, zero outside, and between zero and 255 on the boundary. If image does not have a matte channel, it is
initialized with 0 for any pixel matching in color to pixel location (0,0), otherwise 255. See Editing Matte Images for a
method of defining a matte channel.

Note: Matte information for image window is not retained for colormapped X server visuals (e.g., StaticColor,
GrayScale, PseudoColor). Correct compositing behavior may require a TrueColor or DirectColor visual or a Standard
Colormap.

Cropping Images

1 To begin, press choose Transform/Crop in the Command Widget.

o Alternatively, press the [key in the image window.

A small window appears showing the location of the cursor in the image window. You are now in Crop mode.

2 To define a cropping region, press button 1 and drag.

The cropping region is defined by a highlighted rectangle that expands or contracts as it follows the pointer.

Examples

Chapter 4, Display — Page 87

3 Once you are satisfied with the cropping region, release the button.

You are now in Rectify mode.

4 To make adjustments, move the pointer to one of the cropping rectangle corners, press a button, and drag.

5 Click Crop to commit your cropping region.

o To exit without cropping the image, click Dismiss.

Chopping Images

You can chop an image interactively—there is no command line argument to chop an image.

1 To begin, choose Transform/Chop in the Command Widget.

o Alternatively, press the] key in the Image window.

You are now in Chop mode.

o To exit immediately, click Dismiss

2 Select a location in the image window to begin your chop, and press and hold any button.

3 Move the pointer to another location in the image.

As you move a line will connect the initial location and the pointer.

Examples

Chapter 4, Display — Page 88

4 Release the button.

o To cancel the image chopping, move the pointer back to the starting point of the line and release the button.

5 The area within the image that’s chopped is determined by the direction you choose from the Command
Widget.

o To chop the image between the two horizontal endpoints of the chop line, choose Direction/Horizontal. (This
is the default.)

o To chop the image between the two vertical endpoints of the chop line, choose Direction/Vertical.

Rotating Images

1 Press the / key to rotate the image 90 degrees or \ to rotate -90 degrees.

2 To interactively choose the degree of rotation, choose Transform/Rotate.

o Alternatively, press the * key in the image window.

A small horizontal line is drawn next to the pointer. You are now in Rotate mode.

o To exit immediately, click Dismiss.

3 Choose a background color from the Pixel Color submenu.

Examples

Chapter 4, Display — Page 89

o Choose Browser to specify additional background colors and set the X resources pen1 thorough pen9 to change
the menu colors.

o To select the background color using a color on the screen, choose Browser and click Grab. Move the pointer
to the desired color on the screen and press any button.

4 Choose a point in the image window, and press and hold this button.

5 Move the pointer to another location in the image and release the button.

As you move a line connects the initial location and the pointer. When you release the button, the degree of
image rotation is determined by the slope of the line you just drew.

o To cancel the image rotation, move the pointer back to the starting point of the line and release the button.

6 From the Direction submenu of the Command Widget, choose Horizontal or Vertical.

The slope of the line you just drew is relative to the direction you choose.

Segmenting Images

Choose Effects/Segment to segment an image by analyzing the histograms of the color components and identifying units
that are homogeneous with the fuzzy c-means technique. The scale-space filter analyzes the histograms of the three color
components of the image and identifies a set of classes. The extents of each class is used to coarsely segment the image
with thresholding. The color associated with each class is determined by the mean color of all pixels within the extents
of a particular class. Finally, any unclassified pixels are assigned to the closest class with the fuzzy c-means technique.

Examples

Chapter 4, Display — Page 90

The fuzzy c-Means algorithm can be summarized as follows:

• Build a histogram, one for each color component of the image.

• For each histogram, successively apply the scale-space filter and build an interval tree of zero crossings in the
second derivative at each scale. Analyze this scale-space “fingerprint” to determine which peaks or valleys in
the histogram are most predominant.

• The fingerprint defines intervals on the axis of the histogram. Each interval contains either a minima or a
maxima in the original signal. If each color component lies within the maxima interval, that pixel is considered
“classified” and is assigned a unique class number.

• Any pixel that fails to be classified in the above thresholding pass is classified using the fuzzy c-Means
technique. It is assigned to one of the classes discovered in the histogram analysis phase.

The fuzzy c-Means technique attempts to cluster a pixel by finding the local minima of the generalized within group
sum of squared error objective function. A pixel is assigned to the closest class of which the fuzzy membership has a
maximum value.

For additional information see Young Won Lim, Sang Uk Lee, “On The Color Image Segmentation Algorithm Based
on the Thresholding and the Fuzzy c-Means Techniques,” Pattern Recognition, Volume 23, Number 9, pages 935-952,
1990.

Annotating Images

You can annotate an image interactively—there is no command line argument to annotate an image.

Examples

Chapter 4, Display — Page 91

1 To begin, choose Image Edit/Annotate in the Command Widget.

o Alternatively, press the a key in the image window.

A small window appears showing the location of the cursor in the image window. You are now in Annotate
mode.

o To exit immediately, click Dismiss.

2 Optionally choose a font name from the Font Name submenu. The default is fixed.

o Choose Browser from the Font Name submenu to specify additional font names. You can change the menu
names by setting the X resources font1 through font9.

3 Optionally choose a font color from the Font Color submenu. The default is black.

o Choose Browser from the Font Color submenu to specify additional font colors. You can change the menu
colors by setting the X resources pen1 through pen9. If you select the color browser and press Grab, you can
choose the font color by moving the pointer to a color on the screen and pressing any button.

4 To rotate text, choose Rotate Text from the menu and select an angle.

Tip: Typically you will only want to rotate one line of text at a time. Depending on the angle you choose,
subsequent lines may end up overwriting each other.

5 Choose a location to begin entering text and press a button.

Examples

Chapter 4, Display — Page 92

An underscore character will appear at the location of the pointer. The pointer changes to a pencil to indicate
you are in Text mode.

o To exit immediately, click Dismiss.

In Text mode, any key you press will display the character at the location of the underscore and advance the
underscore cursor.

6 Enter your text.

7 When you’re finished, click Apply to finish your image annotation.

o To correct errors, press Backspace.

o To delete an entire line of text, press Delete.

o Any text that exceeds the boundaries of the image window is automatically wrapped to the next line.

The actual color you request for the font is saved in the image. However, the color that appears in your Image window
may be different. For example, on a monochrome screen the text will appear black or white even if you choose the color
red as the font color. However, the image saved to a file with -write is written with red lettering. To assure the correct
color text in the final image, any PseudoClass image is promoted to DirectClass (Appendix C, MIFF). To force a
PseudoClass image to remain PseudoClass, use -colors.

Examples

Chapter 4, Display — Page 93

Creating Composite Images

You can create an image composite interactively—there is no command line argument to composite an image.

1 To begin, choose Image Edit/Composite in the Command Widget.

o Alternatively, press x in the Image window.

2 In the popup window that appears, enter an image name, do one of the following:

o Type a file name.

Click Composite. If the composite image has no matte information, you are informed and the file browser is
displayed again. Enter the name of a mask image. The image is typically grayscale and the same size as the
composite image. If the image is not grayscale, it is converted to grayscale and the resulting intensities are
used as matte information.

o Click Grab and move the pointer to an image window and press any button.

o Click Cancel if you choose not to create a composite image.

A small window appears showing the location of the cursor in the image window. You are now in Composite
mode.

o To exit immediately, click Dismiss.

3 Choose a composite operation from the Operators submenu of the Command Widget.

Examples

Chapter 4, Display — Page 94

o Optionally choose a compsite operator. The default operator is replace. (See Composite Operator Behavior for
details about composite operators.)

4 Choose a location to composite your image an press button 1. Press andhold thebutton before releasing and
an outline of the image appears to help you identify your location.

The actual colors of the composite image are saved. However, the color that appears in the image window
may be different. For example, on a monochrome screen, image window will appear black or white even though
your pasted image may have many colors. If you save the image to a file, it is written with the correct colors.
To assure the correct colors are saved in the final image, any PseudoClass image is promoted to DirectClass.

5 Optionally choose Blend. The composite operator becomes over.

The image matte channel percent transparency is intialized to factor. The image window is intialized to (100-
factor) where factor is the value you specify in the Dialog Widget.

6 To optionally shift the image pixels as defined by a displacement map, choose Displace.

With this option, image is used as a displacement map.

o Black, within the displacement map, is a maximum positive displacement.

o White is a maximum negative displacment and middle gray is neutral. the displacement is scaled to determine
the pixel shift. By default the displacement applies in both the horizontal and vertical directions. However, if
you specify a mask, image is the horizontal X displacement and mask is the vertical Y displacement.

Examples

Chapter 4, Display — Page 95

Composite Operator Behavior

The following describe how each operator behaves. Image Window is the image currently displayed on your X server
and image is the image obtained with the File Browser Widget.

over. The result is the union of the two image shapes, with image obscuring image window in the region of overlap.

in. The result is simply image cut by the shape of image window. None of the image data of image window is in the result.

out. The resulting image is image with the shape of image window cut out.

atop. The result is the same shape as image window, with image obscuring image window where the image shapes
overlap. Note this differs from over because the portion of image outside image window's shape does not appear in the
result.

xor. The result is the image data from both image and image window that is outside the overlap region. The overlap
region is blank.

plus. The result is just the sum of the image data. Output values are cropped to 255 (no overflow). This operation is
independent of the matte channels.

minus. The result of image - image window, with underflow cropped to zero. The matte channel is ignored (set to 255,
full coverage).

add. The result of image + image window, with overflow wrapping around (mod 256).

subtract. The result of image - image window, with underflow wrapping around (mod 256). The add and subtract
operators can be used to perform reversible transformations.

Examples

Chapter 4, Display — Page 96

difference. The result of abs(image - image window). This is useful for comparing two very similar images.

bumpmap. The result of image window shaded by image.

replace. The resulting image is image window replaced with image. Here the matte information is ignored.

The image compositor requires a matte, or alpha channel in the image for some operations. This extra channel usually
defines a mask that represents a cookie-cutter for the image. This is the case when matte is 255 (full coverage) for pixels
inside the shape, zero outside, and between zero and 255 on the boundary. If image does not have a matte channel, it is
initialized with 0 for any pixel matching in color to pixel location (0,0), otherwise 255. See Editing Matte Images for a
method of defining a matte channel.

Note: Matte information for image window is not retained for colormapped X server visuals (e.g., StaticColor,
GrayScale, PseudoColor). Correct compositing behavior may require a TrueColor or DirectColor visual or a Standard
Colormap.

Editing Color Images

Changing the the color of a set of pixels is performed interactively. There is no command line argument to edit a pixel.

1 To begin, choose Image Image Edit/Color in the Command Widget.

o Alternatively, press c in the image window.

A small window appears showing the location of the cursor in the image window. You are now in Color Edit
mode.

Examples

Chapter 4, Display — Page 97

o To exit immediately, press Dismiss.

2 Choose a color editing method from the Method submenu in the Command Widget.

o The point method recolors any pixel selected with the pointer unless the button is released.

o The replace method recolors any pixel that matches the color of the pixel you select with a button press.
Floodfill recolors any pixel that matches the color of the pixel you select with a button press and is a neighbor.

o Filltoborder changes the matte valueof any neighbor pixel that is not the border color.

o Reset changes the entire image to the designated color.

3 Choose a pixel color from the Pixel Color submenu.

o Additional pixel colors can be specified with the color browser by setting the X resources pen1 through pen9.
(See Appendix B, X Resources.)

4 Press button 1 to select a pixel within the Image window to change its color.

o You can recolor additional pixels as prescribed by the method you choose. you can recolor additional pixels
by increasing the Delta value.

o If the Magnify Widget is mapped, it can be helpful in positioning your pointer within the image (see Mouse
Button 2).

Examples

Chapter 4, Display — Page 98

o Alternatively you can select a pixel to recolor from within the Magnify Widget. Move the pointer to the
Magnify Widget and position the pixel with the cursor control keys. Finally, press a button to recolor the
selected pixel (or pixels).

Note: The actual color you request for the pixels is saved in the image. However, the color that appears in your Image
window may be different. For example, on a monochrome screen the pixel will appear black or white even if you choose
the color red as the pixel color. However, the image saved to a file with -write is written with red pixels. To assure
the correct color text in the final image, any PseudoClass image is promoted to DirectClass. To force a PseudoClass
image to remain PseudoClass, use -colors.

Editing Matte Images

Matte information within an image is useful for some operations such as image compositing. This extra channel usually
defines a mask that represents a sort of a cookie-cutter for the image. This is the case when matte is 255 (full coverage)
for pixels inside the shape, zero outside, and between zero and 255 on the boundary.

Setting the matte information in an image is done interactively. There is no command line argument to edit a pixel.

1 To begin, choose Image Edit/Matte in the Command Widget.

o Alternatively, click m in the image window.

A small window appears showing the location of the cursor in the image window. You are now in Matte Edit mode.

o To exit immediately, press Dismiss.

Examples

Chapter 4, Display — Page 99

2 Choose a matte editing method from the Method submenu of the Command Widget.

o The point method changes the matte value of the any pixel selected with the pointer until the button is released.

o The replace method changes the matte value of any pixel that matches the color of the pixel you select with a
button press.

o Floodfill changes the matte value of any pixel that matches the color of the pixel you select with a button press
and is a neighbor.

o Filltoborder recolors any neighbor pixel that is not the border color.

o Reset changes the entire image to the designated matte value.

3 Choose Matte Value. A dialog prompts you for a matte value.

4 Enter a value between 0 and 255. This value is assigned as the matte value of the selected pixel or pixels.

5 Press any button to select a pixel within the Image window to change its matte value.

o Optionally, you can change the matte value of additional pixels by increasing the Delta value. The Delta value
is first added then subtracted from the red, green, and blue of the target color. Any pixels within the range also
have their matte value updated. If the Magnify Widget is mapped, it can be helpful in positioning your pointer
within the image (see Mouse Button 2).

o Alternatively you can select a pixel to change the matte value from within the Magnify Widget. Move the
pointer to the Magnify Widget and position the pixel with the cursor control keys.

Examples

Chapter 4, Display — Page 100

6 Press a button to change the matte value of the selected pixel (or pixels).

Note: Matte information is only valid in a DirectClass image. Therefore, any PseudoClass image is promoted to
DirectClass. Note that matte information for PseudoClass is not retained for colormapped X server visuals (e.g.,
StaticColor, StaticColor, GrayScale, PseudoColor) unless you immediately save your image to a file (refer to Write).
Correct matte editing behavior may require a TrueColor or DirectColor visual or a Standard Colormap.

Drawing Images

You can interactively draw on an image—there is no command line argument to draw on an image.

1 To begin, choose Image Edit/Draw in the Command Widget.

o Alternatively, press d in the image window.

The cursor changes to a crosshair to indicate you’re in Draw mode.

o To exit immediately, press Dismiss.

2 Choose a drawing primitive from the Primitive submenu.

3 Choose a color from the Color submenu.

o To specify additional colors, choose Browser and set the X resources pen1 through pen9. (See Appendix B, X
Resources for details.)

o Choose Transparent to update the image matte channel, which is useful for image compositing.

Examples

Chapter 4, Display — Page 101

o If you Choose Browser and click Grab, you can select a primitive color by moving the pointer to the desired
color on the screen and press any button.

4 Optionally choose a stipple from the Stipple submenu.

o Choose Browser to specify additional stipples. Stipples obtained from the file browser must be on disk in the
X11 bitmap format.

5 Optionally choose a line width from the Width submenu.

o To choose a specific width select the Dialog Widget.

6 Choose a point in the image window and press and hold button 1.

7 Move the pointer to another location in the image.

As you move, a line connects the initial location and the pointer.

o To cancel image drawing, move the pointer back to the starting point of the line and release the button.

8 Release the button.

The image is updated with the primitive you just drew.

Note: For polygons, the image is updated when you press and release the button without moving the pointer.

Examples

Chapter 4, Display — Page 102

Transforming a Region of Interest

1 To begin, choose Pixel Transform/Region of Interest in the Command Widget.

o Alternatively, press R in the image window.

A small window appears showing the location of the cursor in the image window. You are now in Region of
Interest mode.

2 To define a region of interest, press button 1 and drag.

The region of interest is defined by a highlighted rectangle that expands or contracts as it follows the pointer.

3 Once you are satisfied with the region of interest, release the button. You are now in Apply mode.

4 You can make adjustments to the region of interest by moving the pointer to one of the rectangle corners,
pressing a button, and dragging.

5 Choose an image processing technique from the Command Widget.

Tip: You can choose more than one image processing technique to apply to an area. Alternatively, you can move
the region of interest before applying another image processing technique.

o To exit, press Dismiss.

Examples

Chapter 4, Display — Page 103

Panning Images

When an image exceeds the width or height of the X server screen, Display maps a small panning icon. The rectangle
within the panning icon shows the area that is currently displayed in the the image window.

1 To pan about the image, press any button and drag the pointer within the panning icon. The pan rectangle
moves with the pointer and the image window is updated to reflect the location of the rectangle within the
panning icon.

o Use the arrow keys to pan the image one pixel at a time in any direction within the image window.

2 When you have selected the area of the image you want to view, release the button.

Note: The panning icon is withdrawn if the image becomes smaller than the dimensions of the X server screen.

User Preferences

Preferences affect the default behavior of Display. Preferences can be either true or false and are stored in your home
directory as .displayrc.

display image centered on a backdrop. This backdrop covers the entire workstation screen and is useful for hiding
other X window activity while you view an image. The color of the backdrop is specified as the background color. (See
Appendix B, X Resources for details.)

confirm on program exit. Prompts for a confirmation before exiting the Display.

Examples

Chapter 4, Display — Page 104

correct image for display gamma. If the image has a known gamma, the gamma is corrected to match that of the X
server. (See the X resource displayGamma (class DisplayGamma)).

apply Floyd/Steinberg error diffusion to image. The basic strategy of dithering is to trade intensity resolution for
spatial resolution by averaging the intensities of several neighboring pixels. Images that suffer from severe contouring
when you reduce colors can be improved with this perference.

use a shared colormap for colormapped X visuals . This option applies only when the default X server visual is
PseudoColor or GrayScale. See -visual for more details. By default, a shared colormap is allocated. The image shares
colors with other X clients. Some image colors could be approximated, therefore your image may look very different
fromwhat you expect. Otherwise, the image colors appear exactly as they are defined. However, other clients may go
technicolor when the image colormap is installed.

display images as an X server pixmap. Images are maintained as an XImage by default. Set this resource to True to
utilize a server Pixmap instead. This option is useful if your image exceeds the dimensions of your server screen and
you intend to pan the image. Panning is much faster with Pixmaps than with an XImage. Pixmaps are considered a
precious resource, use them with discretion.

Chapter 5, Import — Page 105

Chapter 5

Import

Overview

Import reads an image from any visible window on an X server and outputs it as an
image file. You can capture a single window, the entire screen, or any rectangular
portion of the screen. Use display for redisplay, printing, editing, formatting,
archiving, image processing, etc. of the captured image.

 The target window can be specified by id, name, or may be selected by clicking the
mouse in the desired window. If you press a button and then drag, a rectangle will
form which expands and contracts as the mouse moves. To save the portion of the
screen defined by the rectangle, just release the button. The keyboard bell is rung
once at the beginning of the screen capture and twice when it completes.

Syntax
import [options ...] file

Examples

• To select an X window with the mouse and save it in the MIFF image
format to a file titled window.miff, use:

import window.miff

Import Options

Chapter 5, Import — Page 106

• To select an X window and save it in the Encapsulated Postscript format to include in another document, use:

import figure.eps

• To capture the entire X server screen in the JPEG image format in a file titled root.jpeg, use:

import -window root root.jpeg

Import Options

Import options can appear on the command line or in your X resources file. See the X Windows system manual at
http://www.x.org for details about the specification.

Options on the command line supersede values specified in your X resources file.

-adjoin

Lets you join images into a single multi-image file.

Note: By default, all images in an image sequence are stored in the same file. However, some formats, such as JPEG,
do not support more than one image and are saved to separate files. Use +adjoin to force this behavior.

-border <width>x<height>

Lets you surround an image with a colored border.

Import Options

Chapter 5, Import — Page 107

The color of the border is obtained from the X server and is defined as borderColor (class BorderColor). See the X
Windows system manual at http://www.x.org for details about the specification.

-cache_threshold value

number of megabytes available to the pixel cache.

Image pixels are stored in memory until 80 megabytes of memory have been consumed. Subsequent pixel operations
are cached on disk. Operations to memory are significantly faster but if your computer does not have a sufficient amount
of free memory you may want to adjust this threshold value.

 -colors value

Lets you specify the preferred number of colors in an image.

The actual number of colors in the image may be fewer than you specify, but will never be more.

Note: This is a color reduction option. Duplicate and unused colors will be removed if an image has fewer unique colors
than you specify. See Appendix D, Quantize for more details. The options -dither, -colorspace, and
-treedepth affect the color reduction algorithm.

 -colorspace value

Lets you specify the type of colorspace.

• GRAY

Import Options

Chapter 5, Import — Page 108

• OHTA

• RGB

• Transparent

• XYZ

• YCbCr

• YIQ

• YPbPr

• YUV

• CMYK

Color reduction by default, takes place in the RGB color space. Empirical evidence suggests that distances in color
spaces such as YUV or YIQ correspond to perceptual color differences more closely than distances in RGB space. These
color spaces may give better results when color reducing an image. See Appendix D, Quantize for details.

Note: The transparent colorspace is unique. It preserves the matte channel of the image if it exists.

Tip! The -colors or -monochrome option is required for the transparent option to take effect.

Import Options

Chapter 5, Import — Page 109

 -comment string

Lets you annotate an image with a comment.

By default, each image is commented with its file name. Use this option to assign a specific comment to the image.

Optionally you can include the image filename, type, width, height, or scene number in the label by embedding special
format characters. The following table shows these characters and their values.

Special Format Characters

Special
Character

Value

%b file size

%d directory

%e filename extention

%f filename

%h height

%i input filename

%l label

%m magick

Import Options

Chapter 5, Import — Page 110

For example,

%n number of scenes

%o output filename

%p page number

%q quantum depth

%s scene number

%t top of filename

%u unique temporary filename

%w width

%x x resolution

%y y resolution

\n newline

\r carriage return

Special Format Characters

Special
Character (Cont.)

Value

Import Options

Chapter 5, Import — Page 111

-comment “%m:%f %wx%h”

produces for an image—titled bird.miff whose width is 512 and height is 480—the comment

MIFF:bird.miff 512x480

Note: If the first character of string is @, the image comment is read from a file titled by the remaining characters in the
string.

-compress type

Lets you specify one of the following types of image compression:

• None

• Bip

• Fax

• Group 4

• JPEG

• LZW

• RunlengthEncoded

• Zip

Import Options

Chapter 5, Import — Page 112

Specify

+compress

to store the binary image in an uncompressed format. The default is the compression type of the specified image file.

 -crop <width>x<height>{+-}<x offset>{+-}<y offset>{%}

Lets you specify the size and location of a cropped image. See the X Windows system manual at http://www.x.org for
details about the geometry specification.

To specify the width or height as a percentage, append %. For example to crop an image by 10% on all sides, use

-crop 10%

Use cropping to apply image processing options to, or display, a particular area of an image. Omit the x offset and y offset
to generate one or more subimages of a uniform size.

Use cropping to crop an area of an image. Use

-crop 0x0

to trim edges that are the background color. Add an x offset and y offset to leave a portion of the trimmed edges with the
image. The equivalent X resource for this option is cropGeometry (class CropGeometry). See Appendix B, X Resources
for details.

Import Options

Chapter 5, Import — Page 113

-delay <1/100ths of a second>x<seconds>

Displays the next image after pausing.

This option is useful for regulating the display of the sequence of GIF images in Netscape. 1/100ths of a second must
pass before the image sequence can be displayed again.

The default is no delay between each showing of the image sequence. The maximum delay is 65535.

The seconds value is optional. It lets you specify the number of seconds to pause before repeating the animation
sequence.

 -density <width>x<height>

Lets you specify in pixels the vertical and horizontal resolution of an image.

This option lets you specify an image density when decoding a PostScript or Portable Document page. The default is 72
pixels per inch in the horizontal and vertical direction.

-descend

Lets you obtain an image by descending window hierarchy.

Import Options

Chapter 5, Import — Page 114

-display host:display[.screen]

Specifies the X server to contact. See the X Windows system manual at http://www.x.org for details about the specifi-
cation.

-dispose

Lets you specify one of the following GIF disposal methods:

-dither

Lets you apply Floyd/Steinberg error diffusion to an image.

GIF Disposal Methods

This method… Specifies…

0 no disposal specified

1 do not dispose between frames

2 overwrite frame with background color from header

3 overwrite with previous frame

Import Options

Chapter 5, Import — Page 115

Dithering trades intensity resolution for spatial resolution by averaging the intensities of several neighboring pixels. You
can use this option to improve images that suffer from severe contouring when reducing colors.

Note: The -colors or -monochrome option is required for dithering to take effect.

Tip! Use +dither to render PostScript without text or graphic aliasing.

 -frame <width>x<height>+<outer bevel width>+<inner bevel width>

Lets you surround an image with an ornamental border. See the X Windows system manual at http://www.x.org for
details about the specification.

Note: The color of the border is specified with the -mattecolor command line option.

-geometry <width>x<height>{!}{<}{>}{%}

Lets you specify the size and location of an image window. See the X Windows system manual at http://www.x.org for
details about the geometry specification. By default, the window size is the image size. You specify its location when
you map it.

The width and height, by default, are maximum values. That is, the image is expanded or contracted to fit the width and
height value while maintaining the aspect ratio of the image.

Append an exclamation mark to the geometry to force the image size to exactly the size you specify. For example,

640x480!

Import Options

Chapter 5, Import — Page 116

sets the image width to 640 pixels and height to 480. If you specify one factor only, both the width and height assume
that value.

To specify a percentage width or height instead, append %. The image size is multiplied by the width and height
percentages to obtain the final image dimensions. To increase the size of an image, use a value greater than 100 (e.g.,
125%). To decrease an image’s size, use a percentage less than 100.

Use > to change the dimensions of the image only if its size exceeds the geometry specification. If the image dimension
is smaller than the geometry you specify, < resizes the image. For example, if you specify

640x480>

and the image size is 512x512, the image size does not change. However, if the image is 1024x1024, it’s resized to
640x480.

Tip! There are 72 pixels per inch in PostScript coordinates.

-interlace type

Lets you specify one of the following interlacing schemes:

• none (default)

• line

• plane

• partition

Import Options

Chapter 5, Import — Page 117

Interlace also lets you specify the type of interlacing scheme for raw image formats such as RGB or YUV.

Tip! Use line, or plane to create an interlaced GIF or progressive JPEG image.

 -label name

Lets you assign a label to an image.

-monochrome

Lets you transform an image to black and white.

Interlace Types

Scheme Description

none does not interlace (e.g., RGBRGBRGBRGBRGBRGB...)

line uses scanline interlacing (e.g., RRR...GGG...BBB...RRR...GGG...BBB...)

plane uses plane interlacing (e.g., RRRRRR...GGGGGG...BBBBBB...)

partition similar to plane except that different planes are saved to individual files (e.g.,
image.R, image.G, and image.B)

Import Options

Chapter 5, Import — Page 118

 -negate

Lets you apply color inversion to an image.

The red, green, and blue intensities of an image are negated. Use +negate to negate only the grayscale pixels of the
image.

 -page <width>x<height>{+-}<x offset>{+-}<y offset>{!}{<}{>}{%}

Lets you set the size and location of an image canvas. Use this option to specify the dimensions of a

• PostScript page in dots per inch (dpi) or a

• TEXT page in pixels

This option is used in concert with -density.

The choices for a PostScript page are

Postscript Page Sizes

Media Size (pixel width by pixel height)

11x17 792 1224

Ledger 1224 792

Import Options

Chapter 5, Import — Page 119

Legal 612 1008

Letter 612 792

LetterSmall 612 792

ArchE 2592 3456

ArchD 1728 2592

ArchC 1296 1728

ArchB 864 1296

ArchA 648 864

A0 2380 3368

A1 1684 2380

A2 1190 1684

A3 842 1190

A4 595 842

A4Small 595 842

Postscript Page Sizes

Media (Cont.) Size (pixel width by pixel height)

Import Options

Chapter 5, Import — Page 120

A5 421 595

A6 297 421

A7 210 297

A8 148 210

A9 105 148

A10 74 105

B0 2836 4008

B1 2004 2836

B2 1418 2004

B3 1002 1418

B4 709 1002

B5 501 709

C0 2600 3677

C1 1837 2600

Postscript Page Sizes

Media (Cont.) Size (pixel width by pixel height)

Import Options

Chapter 5, Import — Page 121

You can specify the page size by media (e.g. , A4, Ledger, etc.). Otherwise, -page behaves much like -geometry
(e.g., -page letter+43+43>).

• To position a GIF image, use

-page {+-}<x offset>{+-}<y offset>

for example,

-page +100+200

C2 1298 1837

C3 918 1298

C4 649 918

C5 459 649

C6 323 459

Flsa 612 936

Flse 612 936

HalfLetter 396 612

Postscript Page Sizes

Media (Cont.) Size (pixel width by pixel height)

Import Options

Chapter 5, Import — Page 122

For a PostScript page, the image is sized as in -geometry and positioned relative to the lower-left hand corner of the
page by {+-}<x offset>{+-}<y offset>. The default page dimension for a TEXT image is 612x792.

• To position a TEXT page, use

-page 612x792>

to center the image within the page.

Tip! If the image size exceeds the PostScript page, it’s reduced to fit the page.

 -pointsize value

Lets you specify the point size of a PostScript font.

 -quality value

Lets you specify one of the following compression levels:

• JPEG with a value from 0–100 (i.e., worst to best); the default is 75

• MIFF with a value from 0–100 (i.e., worst to best); sets the amount of image compression (quality/10) and
filter-type (quality % 10)

• PNG with a value from 0–100 (i.e., worst to best); sets the amount of image compression (quality/10) and filter-
type (quality % 10)

The following are valid filter types:

Import Options

Chapter 5, Import — Page 123

• 0 for none; used for all scanlines

• 1 for sub; used for all scanlines

• 2 for up; used for all scanlines

• 3 for average; used for all scanlines

• 4 for Paeth; used for all scanlines

• 5 for adaptive filter; used when quality is greater than 50 and the image doesn’t have a colormap; otherwise
no filtering is used

• 6 or higher for adaptive filtering; used with minimum-sum-of-absolute-values

Note: The default is quality is 75—nearly the best compression with adaptive filtering.

For more information, see the PNG specification (RFC 2083) at http://www.w3.org/pub/WWW/TR.

-rotate degrees{<}{>}

Applies Paeth image rotation to the image.

Use > to rotate the image only if its width exceeds the height. If the image width is less than its height, < rotates the
image.

For example, if you have an image size of 480x640 and you specify

Import Options

Chapter 5, Import — Page 124

-90>

the image is not rotated by the specified angle. However, if the image is 640x480, it’s rotated by -90 degrees.

Note: Empty triangles left over from rotating the image are filled with the color defined as bordercolor (class
BorderColor). See the X Windows system manual at http://www.x.org for details.

-scene value

Lets you specify the image scene number.

-screen

Lets you indicate that the GetImage request used to obtain an image should be done on the root window, rather than
directly on the specified window. In this way, you can obtain pieces of other windows that overlap the specified window
and more importantly, you can capture menus or other popups that are independent windows, which appear over the
specified window.

-silent

Lets you operate silently, i.e., without any bells.

-transparency color

Lets you make a specified color in an image transparent.

Import Options

Chapter 5, Import — Page 125

 -treedepth value

Lets you choose an optimal tree depth for the color reduction algorithm. Normally, value is 0 or 1.

An optimal depth generally provides the best representation of the source image with the fastest computational speed
and the least amount of memory. However, the default depth is inappropriate for some images. To assure the best repre-
sentation try values between 2 and 8. See Appendix D, Quantize for details.

Note: The -colors or -monochrome option is required for treedepth to take effect.

-verbose

Lets you print the following detailed information about an image:

• image name

• image size

• image depth

• image format

• image comment

• image scene number

• image class (DirectClass or PseudoClass)

Import Options

Chapter 5, Import — Page 126

• total unique colors

• number of seconds to read and transform the image

• whether a matte is associated with the image

• the number of runlength packets

-window ID

Lets you set the background pixmap of this window to the image.

ID can be a window ID or name. Specify root to select X’s root window as the target window. By default the image
is tiled onto the background of the target window. If -backdrop or -geometry is specified, the image is surrounded
by the background color. See Appendix B, X Resources for details.

Note: The image will not display on the root window if the image has more unique colors than the target window
colormap allows.

Use -colors to reduce the number of colors. You can also specify the following standard X resources as command
line options:

• -background

• -bordercolor

• -borderwidth

Import Options

Chapter 5, Import — Page 127

• -font

• -foreground

• -iconGeometry

• -iconic

• -mattecolor

• -name

• -title

Import Options

Chapter 5, Import — Page 128

Chapter 6, Animate — Page 129

Chapter 6

Animate

Overview

Animate displays a sequence of images on any workstation running an X server.
Animate first determines the hardware capabilities of the workstation. If the number
of unique colors in an image is fewer than or equal to the number the workstation
can support, the image is displayed in an X window. Otherwise the number of colors
in the image is first reduced to match the color resolution of the workstation.

For example, a continuous-tone 24 bits/pixel image candisplay on an 8-bit pseudo-
color device or a monochrome device. In most cases the reduced color image closely
resembles the original. Alternatively, a monochrome or pseudo-color image
sequence can display on a continuous-tone 24 bits/pixels device.

To prevent color flashing on X server visuals that have colormaps, animate creates
a single colormap from the image sequence, which can be time consuming. You can
speed up this operation by reducing the colors in the image before you animate
them.

• Use mogrify to color reduce the images to a single colormap. See
Chapter9, Mogrify for details.

• Alternatively, you can use a standard colormap, or a static, direct, or true
color visual. You can define a standard colormap with xstdcmap. See
xstdcmap, an X11 client program that’s available with an X11 distribution.

Syntax

Chapter 6, Animate — Page 130

This method is recommended for colormapped X server because it eliminates the need to compute a global
colormap.

Syntax
animate [options ...] file [[options ...] file ...]

Examples

• To animate a set of images of a cockatoo, use

animate cockatoo.*

• To animate a cockatoo image sequence using the Standard Colormap best, use

xstdcmap -best
animate -map best cockatoo.*

• To animate an image of a cockatoo without a border centered on a backdrop, use

animate +borderwidth -backdrop cockatoo.*

Animate Options

Chapter 6, Animate — Page 131

Animate Options

-backdrop

Lets you center an image on a backdrop.

This backdrop covers the entire workstation screen and is useful for hiding other X window activity while viewing the
image. The color of the backdrop is specified as the background color. See Appendix B, X Resources for details.

-cache_threshold value

number of megabytes available to the pixel cache.

Image pixels are stored in memory until 80 megabytes of memory have been consumed. Subsequent pixel operations
are cached on disk. Operations to memory are significantly faster but if your computer does not have a sufficient amount
of free memory you may want to adjust this threshold value.

-colormap type

Lets you specify a type of colormap:

• Shared

• Private

Animate Options

Chapter 6, Animate — Page 132

This option applies only when the default X server visual is PseudoColor or GrayScale. See -visual for more details.

By default, a Shared colormap is allocated. The image shares colors with other X clients. Some image colors may be
approximated and your image may not look the way you intended.

Choose Private and the image colors appear exactly as they are defined. However, other clients may go technicolor when
the image colormap is installed.

-colors value

Lets you specify the preferred number of colors in an image.

The actual number of colors in the image may be fewer than you specify, but will never be more.

Note: This is a color reduction option. Duplicate and unused colors will be removed if an image has fewer unique colors
than you specify. See Appendix D, Quantize for more details. The options -dither, -colorspace, and
-treedepth affect the color reduction algorithm.

 -colorspace value

Lets you specify the type of colorspace.

• GRAY

• OHTA

Animate Options

Chapter 6, Animate — Page 133

• RGB

• Transparent

• XYZ

• YCbCr

• YIQ

• YPbPr

• YUV

• CMYK

Color reduction by default, takes place in the RGB color space. Empirical evidence suggests that distances in color
spaces such as YUV or YIQ correspond to perceptual color differences more closely than distances in RGB space. These
color spaces may give better results when color reducing an image. See Appendix D, Quantize for details.

Note: The transparent colorspace is unique. It preserves the matte channel of the image if it exists.

Tip! The -colors or -monochrome option is required for the transparent option to take effect.

-crop <width>x<height>{+-}<x offset>{+-}<y offset>{%}

Lets you specify the size and location of a cropped image. See the X Windows system manual at http://www.x.org for
details about the geometry specification.

Animate Options

Chapter 6, Animate — Page 134

To specify the width or height as a percentage, append %. For example to crop an image by 10% on all sides, use

-crop 10%

Use cropping to apply image processing options to, or display, a particular area of an image. Omit the x offset and y offset
to generate one or more subimages of a uniform size.

Use cropping to crop an area of an image. Use

-crop 0x0

to trim edges that are the background color. Add an x offset and y offset to leave a portion of the trimmed edges with the
image. The equivalent X resource for this option is cropGeometry (class CropGeometry). See Appendix B, X Resources
for details.

-delay <1/100ths of a second>x<seconds>

Displays the next image after pausing.

This option is useful for regulating the display of the sequence of GIF images in Netscape. 1/100ths of a second must
pass before the image sequence can be displayed again.

The default is no delay between each showing of the image sequence. The maximum delay is 65535.

The seconds value is optional. It lets you specify the number of seconds to pause before repeating the animation
sequence.

Animate Options

Chapter 6, Animate — Page 135

-density <width>x<height>

Lets you specify in pixels the vertical and horizontal resolution of an image.

This option lets you specify an image density when decoding a PostScript or Portable Document page. The default is 72
pixels per inch in the horizontal and vertical direction.

-display host:display[.screen]

Specifies the X server to contact. See the X Windows system manual at http://www.x.org for details about the specifi-
cation.

-dither

Lets you apply Floyd/Steinberg error diffusion to an image.

Dithering trades intensity resolution for spatial resolution by averaging the intensities of several neighboring pixels. You
can use this option to improve images that suffer from severe contouring when reducing colors.

Note: The -colors or -monochrome option is required for dithering to take effect.

Tip! Use +dither to render PostScript without text or graphic aliasing.

 -gamma value

Lets you specify the level of gamma correction for an image.

Animate Options

Chapter 6, Animate — Page 136

The same color image displayed on different workstations may look different because of differences in the display
monitor. Use gamma correction to adjust for this color difference. Reasonable values range from 0.8–2.3.

You can apply separate gamma values to the red, green, and blue channels of an image with a gamma value list delin-
eated with slashes, for example,

1.7/2.3/1.2

Use +gamma to set the image gamma level without actually adjusting the image pixels. This option is useful if the
imagehas a known gamma that isn’t set as an image attribute, such as PNG images.

-geometry <width>x<height>{!}{<}{>}{%}

Lets you specify the size and location of an image window. See the X Windows system manual at http://www.x.org for
details about the geometry specification. By default, the window size is the image size. You specify its location when
you map it.

The width and height, by default, are maximum values. That is, the image is expanded or contracted to fit the width and
height value while maintaining the aspect ratio of the image.

Append an exclamation mark to the geometry to force the image size to exactly the size you specify. For example,

640x480!

sets the image width to 640 pixels and height to 480. If you specify one factor only, both the width and height assume
that value.

Animate Options

Chapter 6, Animate — Page 137

To specify a percentage width or height instead, append %. The image size is multiplied by the width and height
percentages to obtain the final image dimensions. To increase the size of an image, use a value greater than 100 (e.g.,
125%). To decrease an image’s size, use a percentage less than 100.

Use > to change the dimensions of the image only if its size exceeds the geometry specification. If the image dimension
is smaller than the geometry you specify, < resizes the image. For example, if you specify

640x480>

and the image size is 512x512, the image size does not change. However, if the image is 1024x1024, it’s resized to
640x480.

Tip! There are 72 pixels per inch in PostScript coordinates.

-map type

Lets you display an image using one of the following standard colormap types:

• best

• default

• gray

• red

• green

Animate Options

Chapter 6, Animate — Page 138

• blue

The X server must support the colormap you choose, otherwise an error occurs. For type specify list and display
searches the list of colormap types in top-to-bottom order until one is located. For one way of creating standard
colormaps see xstdcmap, an X11 client program that’s available with an X11 distribution.

-monochrome

Lets you transform an image to black and white.

-remote string

Lets you execute a command in a remote display process.

Note: The only command recognized at this time is the name of an image file to load.

-rotate degrees{<}{>}

Applies Paeth image rotation to the image.

Use > to rotate the image only if its width exceeds the height. If the image width is less than its height, < rotates the
image.

For example, if you have an image size of 480x640 and you specify

-90>

Animate Options

Chapter 6, Animate — Page 139

the image is not rotated by the specified angle. However, if the image is 640x480, it’s rotated by -90 degrees.

Note: Empty triangles left over from rotating the image are filled with the color defined as bordercolor (class
BorderColor). See the X Windows system manual at http://www.x.org for details.

-scene value

Lets you specify the image scene number.

-size <width>x<height>{+offset}{!}{%}

Lets you specify the width and height of a raw image whose dimensions are unknown, such as GRAY, RGB, or CMYK.

In addition to width and height, use -size to skip any header information in the image or tell the number of colors in a
MAP image file, for example,

-size 640x512+256

-title string

Lets you assign a title to the displayed image. The title is typically displayed in the window title bar.

 -treedepth value

Lets you choose an optimal tree depth for the color reduction algorithm. Normally, value is 0 or 1.

Animate Options

Chapter 6, Animate — Page 140

An optimal depth generally provides the best representation of the source image with the fastest computational speed
and the least amount of memory. However, the default depth is inappropriate for some images. To assure the best repre-
sentation try values between 2 and 8. See Appendix D, Quantize for details.

Note: The -colors or -monochrome option is required for treedepth to take effect.

-verbose

Lets you print the following detailed information about an image:

• image name

• image size

• image depth

• image format

• image comment

• image scene number

• image class (DirectClass or PseudoClass)

• total unique colors

• number of seconds to read and transform the image

Animate Options

Chapter 6, Animate — Page 141

• whether a matte is associated with the image

• the number of runlength packets

-visual type

Lets you display an image using one of the following visual types:

• StaticGray

• GrayScale

• StaticColor

• PseudoColor

• TrueColor

• DirectColor

• default

• visual ID

Note: The X server must support the visual you choose, otherwise an error occurs. If you don’t specify a visual, the
visual class that can display the most simultaneous colors on the default X server screen is used.

Animate Options

Chapter 6, Animate — Page 142

-window ID

Lets you set the background pixmap of this window to the image.

ID can be a window ID or name. Specify root to select X’s root window as the target window. By default the image
is tiled onto the background of the target window. If -backdrop or -geometry is specified, the image is surrounded
by the background color. See Appendix B, X Resources for details.

Note: The image will not display on the root window if the image has more unique colors than the target window
colormap allows.

Use -colors to reduce the number of colors. You can also specify the following standard X resources as command
line options:

• -background

• -bordercolor

• -borderwidth

• -font

• -foreground

• -iconGeometry

• -iconic

Animate Options

Chapter 6, Animate — Page 143

• -mattecolor

• -name

• -title

X Resources for Animate

Animate options can appear on the command line or in your X resource file. Options on the command line supersede
values specified in your X resource file. See the X Windows system manual at http://www.x.org for details about the
specification.

All animate options have a corresponding X resource. In addition, the animate program uses the following X resources:

• borderColor (class BorderColor)

• borderWidth (class BorderWidth)

• font (class Font or FontList)

• foreground (class Foreground)

• geometry (class geometry)

• iconGeometry (class IconGeometry)

• iconic (class Iconic)

Animate Options

Chapter 6, Animate — Page 144

• matteColor (class MatteColor)

• name (class Name)

• sharedMemory (class SharedMemory)

• text_font (class textFont)

• title (class Title)

For detailed information about these X Resources, see Appendix B, X Resources.

Chapter 7, Montage — Page 145

Chapter 7

Montage

Overview

Montage creates a composite by combining several separate images. The images are
tiled on the composite image. The name of each image can be displayed below its
tile.

The composite image is constructed in the following manner. First, each image specified on
the command line, except for the last, is scaled to fit the maximum tile size. The maximum

tile size by default is 120x120. It can be modified with the -geometry command line argument
or X resource. See Options for more information on command line arguments. See X(1) for
more information on X resources. Note that the maximum tile size need not be a square. To

respect the aspect ratio of each image append ~ to the geometry specification.

Next the composite image is initialized with the color specified by the -background command
line argument or X resource. The width and height of the composite image is determined by

the title specified, the maximum tile size, the number of tiles per row, the tile border width
and height, the image border width, and the label height. The number of tiles per row specifies
how many images are to appear in each row of the composite image. The default is to have 5

tiles in each row and 4 tiles in each column of the composite. A specific value is specified
with -tile. The tile border width and height, and the image border width defaults to the value

of the X resource -borderwidth. It can be changed with the -borderwidth or -geometry
command line argument or X resource. The label height is determined by the font you specify

with the -font command line argument or X resource. If you do not specify a font, a font is
chosen that allows the name of the image to fit the maximum width of a tiled area. The label

colors is determined by the -background and -pen command line argument or X resource.
Note, that if the background and pen colors are the same, labels will not appear.Finally, to

create one or more empty spaces in the sequence of tiles, use the NULL image format.

Syntax

Chapter 7, Montage — Page 146

Syntax
montage [options ...] file [[options ...] file ...] output_file

Examples

• To create a montage of a cockatoo, a parrot, and a hummingbird and write it to a file called birds, use

montage cockatoo.miff parrot.miff hummingbird.miff birds.miff

• To tile several bird images so that they are at most 256 pixels in width and 192 pixels in height, surrounded by
a red border, and separated by 10 pixels of background color, use

montage -geometry 256x192+10+10 -bordercolor red birds.*montage.miff

• To create an unlabeled parrot image, 640 by 480 pixels, and surrounded by a border of black, use

montage -geometry 640x480 -bordercolor black -label "" parrot.miff bird.miff

• To create an image of an eagle with a textured background, use

montage -texture bumps.jpg eagle.jpg eagle.png

• To join several GIF images together without any extraneous graphics (e.g. no label, no shadowing, no
surrounding tile frame), use

montage +frame +shadow +label -tile 5x1 -geometry 50x50+0+0 *.gif joined.gif

Montage Options

Chapter 7, Montage — Page 147

Montage Options

-adjoin

Lets you join images into a single multi-image file.

Note: By default, all images in an image sequence are stored in the same file. However, some formats, such as JPEG,
do not support more than one image and are saved to separate files. Use +adjoin to force this behavior.

 -blur factor

Lets you blur an image. Specify factor as a percentage of enhancement from 0.0–99.9%.

-cache_threshold value

number of megabytes available to the pixel cache.

Image pixels are stored in memory until 80 megabytes of memory have been consumed. Subsequent pixel operations
are cached on disk. Operations to memory are significantly faster but if your computer does not have a sufficient amount
of free memory you may want to adjust this threshold value.

-colors value

Lets you specify the preferred number of colors in an image.

Montage Options

Chapter 7, Montage — Page 148

The actual number of colors in the image may be fewer than you specify, but will never be more.

Note: This is a color reduction option. Duplicate and unused colors will be removed if an image has fewer unique colors
than you specify. See Appendix D, Quantize for more details. The options -dither, -colorspace, and
-treedepth affect the color reduction algorithm.

 -colorspace value

Lets you specify the type of colorspace.

• GRAY

• OHTA

• RGB

• Transparent

• XYZ

• YCbCr

• YIQ

• YPbPr

• YUV

Montage Options

Chapter 7, Montage — Page 149

• CMYK

Color reduction by default, takes place in the RGB color space. Empirical evidence suggests that distances in color
spaces such as YUV or YIQ correspond to perceptual color differences more closely than distances in RGB space. These
color spaces may give better results when color reducing an image. See Appendix D, Quantize for details.

Note: The transparent colorspace is unique. It preserves the matte channel of the image if it exists.

Tip! The -colors or -monochrome option is required for the transparent option to take effect.

-comment string

Lets you annotate an image with a comment.

By default, each image is commented with its file name. Use this option to assign a specific comment to the image.

Optionally you can include the image filename, type, width, height, or scene number in the label by embedding special
format characters. The following table shows these characters and their values.

Special Format Characters

Special
Character

Value

%b file size

%d directory

Montage Options

Chapter 7, Montage — Page 150

%e filename extention

%f filename

%h height

%i input filename

%l label

%m magick

%n number of scenes

%o output filename

%p page number

%q quantum depth

%s scene number

%t top of filename

%u unique temporary filename

%w width

Special Format Characters

Special
Character (Cont.)

Value

Montage Options

Chapter 7, Montage — Page 151

For example,

-comment “%m:%f %wx%h”

produces for an image—titled bird.miff whose width is 512 and height is 480—the comment

MIFF:bird.miff 512x480

Note: If the first character of string is @, the image comment is read from a file titled by the remaining characters in the
string.

-compose operator

Lets you specify the type of image composition.

%x x resolution

%y y resolution

\n newline

\r carriage return

Special Format Characters

Special
Character (Cont.)

Value

Montage Options

Chapter 7, Montage — Page 152

By default, each of the composite image pixels are replaced by the corresponding image tile pixel. You can choose an
alternate composite operation. Each operator’s behavior is described below.

Composition Operators

This opera-
tor… Results in…

over the union of the two image shapes, with the composite image obscuring the image in the region of
overlap

in composite image cut by the shape of the image; none of the image data of image will be in the result

out composite image with the shape of the image cut out

atop the same shape as image image, with composite image obscuring image where the image shapes
overlap; (Note: This differs from over because the portion of composite image outside image’s shape
does not appear in the result.)

xor the image data from both composite image and image that is outside the overlap region; the overlap
region will be blank

plus just the sum of the image data; output values are cropped to 255 (no overflow); this operation is
independent of the matte channels

minus composite image minus image, with underflow cropped to 0; the matte channel is ignored (set to 255,
full coverage)

add composite image plus image, with overflow wrapping around (mod 256)

Montage Options

Chapter 7, Montage — Page 153

The image compositor requires a matte or alpha channel in the image for some operations. This extra channel usually
defines a mask that represents a sort of a cookie-cutter for the image.

This is the case when matte is 255 (full coverage) for pixels inside the shape, 0 outside, and between 0 and 255 on the
boundary. For certain operations, if image does not have a matte channel, it’s initialized with 0 for any pixel matching
in color to pixel location (0,0). Otherwise it’s 255.

Note: To work properly, borderwidth must be 0.

 -compress type

Lets you specify one of the following types of image compression:

subtract composite image minus image, with underflow wrapping around (mod 256); the add and subtract
operators can be used to perform reversible transformations

difference The result of abs (composite image minus image); this is useful for comparing two very similar images

bumpmap image shaded by composite image

replace image replaced with composite image; here the matte information is ignored

Composition Operators

This opera-
tor…
 (Cont.)

Results in…

Montage Options

Chapter 7, Montage — Page 154

• None

• Bip

• Fax

• Group 4

• JPEG

• LZW

• RunlengthEncoded

• Zip

Specify

+compress

to store the binary image in an uncompressed format. The default is the compression type of the specified image file.

-crop <width>x<height>{+-}<x offset>{+-}<y offset>{%}

Lets you specify the size and location of a cropped image. See the X Windows system manual at http://www.x.org for
details about the geometry specification.

To specify the width or height as a percentage, append %. For example to crop an image by 10% on all sides, use

Montage Options

Chapter 7, Montage — Page 155

-crop 10%

Use cropping to apply image processing options to, or display, a particular area of an image. Omit the x offset and y offset
to generate one or more subimages of a uniform size.

Use cropping to crop an area of an image. Use

-crop 0x0

to trim edges that are the background color. Add an x offset and y offset to leave a portion of the trimmed edges with the
image. The equivalent X resource for this option is cropGeometry (class CropGeometry). See Appendix B, X Resources
for details.

-density <width>x<height>

Lets you specify in pixels the vertical and horizontal resolution of an image.

This option lets you specify an image density when decoding a PostScript or Portable Document page. The default is 72
pixels per inch in the horizontal and vertical direction.

Montage Options

Chapter 7, Montage — Page 156

-dispose

Lets you specify one of the following GIF disposal methods:

-dither

Lets you apply Floyd/Steinberg error diffusion to an image.

Dithering trades intensity resolution for spatial resolution by averaging the intensities of several neighboring pixels. You
can use this option to improve images that suffer from severe contouring when reducing colors.

Note: The -colors or -monochrome option is required for dithering to take effect.

Tip! Use +dither to render PostScript without text or graphic aliasing.

GIF Disposal Methods

This method… Specifies…

0 no disposal specified

1 do not dispose between frames

2 overwrite frame with background color from header

3 overwrite with previous frame

Montage Options

Chapter 7, Montage — Page 157

 -draw string

Lets you annotate an image with one or more of the followinggraphic primitives:

Graphic Primitives

This… Requires…

point a single coordinate

line a single coordinate, start and end coordinates,

rectangle upper-left and lower-right coordinates

fillRectangle upper-left and lower-right coordinates

circle center and an outer edge coordinates

fillCircle center and an outer edge coordinates

polygon three or more coordinates to define its boundaries

fillPolygon three or more coordinates to define its boundaries

color a single coordinate

matte a single coordinate

text a single coordinate

image a single coordinate

Montage Options

Chapter 7, Montage — Page 158

Coordinates are integers separated by an optional comma. For example, to define a circle centered at 100,100 that
extends to 150,150 use

-draw ‘circle 100,100 150,150’

Consider the target pixel as that specified by your coordinate. Use color to change the color of a pixel. Follow the pixel
coordinate with one of the following methods:

• point recolors the target pixel

• replace recolors any pixel that matches the color of the target pixel

• floodfill recolors any pixel that matches the color of the target pixel and its neighbor pixel

• reset recolors all pixels

Use matte to the change the pixel matte value to transparent. Follow the pixel coordinate with one of the following
methods:

• point changes the matte value of the target pixel

• replace changes the matte value of any pixel that matches the color of the target pixel

• floodfill changes the matte value of any pixel that matches the color of the target pixel and its neighbor.

• reset changes the matte value of all pixels

Use text to annotate an image with text. Follow the text coordinates with a string.

Montage Options

Chapter 7, Montage — Page 159

Tip! If the string has embedded spaces, enclose it in double quotes.

Optionally you can include the image filename, type, width, height, or scene number in the label by embedding special
format characters. The following table shows these characters and their values.

Special Format Characters

Special
Character

Value

%b file size

%d directory

%e filename extention

%f filename

%h height

%i input filename

%l label

%m magick

%n number of scenes

%o output filename

%p page number

Montage Options

Chapter 7, Montage — Page 160

For example,

-draw 'text 100,100 "%m:%f %wx%h"'

annotates an image—titled bird.miff whose width is 512 and height is 480—with

MIFF:bird.miff 512x480

%q quantum depth

%s scene number

%t top of filename

%u unique temporary filename

%w width

%x x resolution

%y y resolution

\n newline

\r carriage return

Special Format Characters

Special
Character (Cont.)

Value

Montage Options

Chapter 7, Montage — Page 161

To generate a Unicode character (TrueType fonts only), embed the code as an escaped hex string, for example,

\\0x30a3

Use -image to composite an image with another image. Follow the image coordinates with the filename of an image.
If the first character of the string is @, the text is read from a file titled by the remaining characters in the string.

You can set the primitive color, font color, and font bounding box color with -pen, -font, and -box, respectively.
Options are processed in command-line order so be sure to use -pen before the -draw option.

 -font name

Font lets you specify the font to use when annotating an image with text.

If the font is a fully-qualified X server font name, the font is obtained from an X server, for example,

-*-helvetica-medium-r-*-*-12-*-*-*-*-*-iso8859-*

To use a TrueType font, precede the TrueType filename with @, for example,

@times.ttf

Otherwise, specify a PostScript font, for example,

helvetica

Montage Options

Chapter 7, Montage — Page 162

 -frame <width>x<height>+<outer bevel width>+<inner bevel width>

Lets you surround an image with an ornamental border. See the X Windows system manual at http://www.x.org for
details about the specification.

Note: The color of the border is specified with the -mattecolor command line option.

 -gamma value

Lets you specify the level of gamma correction for an image.

The same color image displayed on different workstations may look different because of differences in the display
monitor. Use gamma correction to adjust for this color difference. Reasonable values range from 0.8–2.3.

You can apply separate gamma values to the red, green, and blue channels of an image with a gamma value list delin-
eated with slashes, for example,

1.7/2.3/1.2

Use +gamma to set the image gamma level without actually adjusting the image pixels. This option is useful if the
imagehas a known gamma that isn’t set as an image attribute, such as PNG images.

Montage Options

Chapter 7, Montage — Page 163

-geometry <width>x<height>{!}{<}{>}{%}

Lets you specify the size and location of an image window. See the X Windows system manual at http://www.x.org for
details about the geometry specification. By default, the window size is the image size. You specify its location when
you map it.

The width and height, by default, are maximum values. That is, the image is expanded or contracted to fit the width and
height value while maintaining the aspect ratio of the image.

Append an exclamation mark to the geometry to force the image size to exactly the size you specify. For example,

640x480!

sets the image width to 640 pixels and height to 480. If you specify one factor only, both the width and height assume
that value.

To specify a percentage width or height instead, append %. The image size is multiplied by the width and height
percentages to obtain the final image dimensions. To increase the size of an image, use a value greater than 100 (e.g.,
125%). To decrease an image’s size, use a percentage less than 100.

Use > to change the dimensions of the image only if its size exceeds the geometry specification. If the image dimension
is smaller than the geometry you specify, < resizes the image. For example, if you specify

640x480>

and the image size is 512x512, the image size does not change. However, if the image is 1024x1024, it’s resized to
640x480.

Montage Options

Chapter 7, Montage — Page 164

Tip! There are 72 pixels per inch in PostScript coordinates.

 -gravity direction

Lets you specify the direction an image gravitates within a tile. See the X Windows system manual at http://www.x.org
for details about the gravity specification.

A tile of a composite image is a fixed width and height. However, the image within the tile may not fill it completely (see -geometry).

The direction you choose specifies where to position the image within the tile. For example, center gravity forces the image to be
centered within the tile. By default, the image gravity is center.

-interlace type

Lets you specify one of the following interlacing schemes:

• none (default)

• line

• plane

• partition

Montage Options

Chapter 7, Montage — Page 165

Interlace also lets you specify the type of interlacing scheme for raw image formats such as RGB or YUV.

Tip! Use line, or plane to create an interlaced GIF or progressive JPEG image.

 -label name

Lets you assign a label to an image.

 -matte

Lets you store the matte channel (i.e., the transparent channel) if an image has one.

Interlace Types

Scheme Description

none does not interlace (e.g., RGBRGBRGBRGBRGBRGB...)

line uses scanline interlacing (e.g., RRR...GGG...BBB...RRR...GGG...BBB...)

plane uses plane interlacing (e.g., RRRRRR...GGGGGG...BBBBBB...)

partition similar to plane except that different planes are saved to individual files (e.g.,
image.R, image.G, and image.B)

Montage Options

Chapter 7, Montage — Page 166

 -mode type

Lets you specify one of the following the montage types:

• frame

• unframe (default)

• concatenate

This option is for convenience. You can obtain the same results by setting individual options. For example, unframe is equivalent to

+frame +shadow +borderwidth

-monochrome

Lets you transform an image to black and white.

 -page <width>x<height>{+-}<x offset>{+-}<y offset>{!}{<}{>}{%}

Lets you set the size and location of an image canvas. Use this option to specify the dimensions of a

• PostScript page in dots per inch (dpi) or a

• TEXT page in pixels

This option is used in concert with -density.

Montage Options

Chapter 7, Montage — Page 167

The choices for a PostScript page are

Postscript Page Sizes

Media Size (pixel width by pixel height)

11x17 792 1224

Ledger 1224 792

Legal 612 1008

Letter 612 792

LetterSmall 612 792

ArchE 2592 3456

ArchD 1728 2592

ArchC 1296 1728

ArchB 864 1296

ArchA 648 864

A0 2380 3368

A1 1684 2380

A2 1190 1684

Montage Options

Chapter 7, Montage — Page 168

A3 842 1190

A4 595 842

A4Small 595 842

A5 421 595

A6 297 421

A7 210 297

A8 148 210

A9 105 148

A10 74 105

B0 2836 4008

B1 2004 2836

B2 1418 2004

B3 1002 1418

B4 709 1002

Postscript Page Sizes

Media (Cont.) Size (pixel width by pixel height)

Montage Options

Chapter 7, Montage — Page 169

You can specify the page size by media (e.g. , A4, Ledger, etc.). Otherwise, -page behaves much like -geometry
(e.g., -page letter+43+43>).

• To position a GIF image, use

B5 501 709

C0 2600 3677

C1 1837 2600

C2 1298 1837

C3 918 1298

C4 649 918

C5 459 649

C6 323 459

Flsa 612 936

Flse 612 936

HalfLetter 396 612

Postscript Page Sizes

Media (Cont.) Size (pixel width by pixel height)

Montage Options

Chapter 7, Montage — Page 170

-page {+-}<x offset>{+-}<y offset>

for example,

-page +100+200

For a PostScript page, the image is sized as in -geometry and positioned relative to the lower-left hand corner of the
page by {+-}<x offset>{+-}<y offset>. The default page dimension for a TEXT image is 612x792.

• To position a TEXT page, use

-page 612x792>

to center the image within the page.

Tip! If the image size exceeds the PostScript page, it’s reduced to fit the page.

 -pen color

Lets you set the color of the font or opaque color. See -draw for details. See the X Windows system manual at
http://www.x.org for details about the color specification.

-pointsize value

Lets you specify the point size of a PostScript font.

Montage Options

Chapter 7, Montage — Page 171

 -quality value

Lets you specify one of the following compression levels:

• JPEG with a value from 0–100 (i.e., worst to best); the default is 75

• MIFF with a value from 0–100 (i.e., worst to best); sets the amount of image compression (quality/10) and
filter-type (quality % 10)

• PNG with a value from 0–100 (i.e., worst to best); sets the amount of image compression (quality/10) and filter-
type (quality % 10)

The following are valid filter types:

• 0 for none; used for all scanlines

• 1 for sub; used for all scanlines

• 2 for up; used for all scanlines

• 3 for average; used for all scanlines

• 4 for Paeth; used for all scanlines

• 5 for adaptive filter; used when quality is greater than 50 and the image doesn’t have a colormap; otherwise
no filtering is used

Montage Options

Chapter 7, Montage — Page 172

• 6 or higher for adaptive filtering; used with minimum-sum-of-absolute-values

Note: The default is quality is 75—nearly the best compression with adaptive filtering.

For more information, see the PNG specification (RFC 2083) at http://www.w3.org/pub/WWW/TR.

-rotate degrees{<}{>}

Applies Paeth image rotation to the image.

Use > to rotate the image only if its width exceeds the height. If the image width is less than its height, < rotates the
image.

For example, if you have an image size of 480x640 and you specify

-90>

the image is not rotated by the specified angle. However, if the image is 640x480, it’s rotated by -90 degrees.

Note: Empty triangles left over from rotating the image are filled with the color defined as bordercolor (class
BorderColor). See the X Windows system manual at http://www.x.org for details.

-scene value

Lets you specify the image scene number.

Montage Options

Chapter 7, Montage — Page 173

 -shadow

Lets you add a shadow to a tile to simulate depth.

-sharpen factor

Lets you sharpen an image. Specify factor as a percentage of enhancement from 0.0–99.9%.

-size <width>x<height>{+offset}{!}{%}

Lets you specify the width and height of a raw image whose dimensions are unknown, such as GRAY, RGB, or CMYK.

In addition to width and height, use -size to skip any header information in the image or tell the number of colors in a
MAP image file, for example,

-size 640x512+256

 -texture filename

Lets you specify a file, which contains a texture, to tile onto an image’s background.

-tile <width>x<height>

Lets you specify the number of tiles to appear in each row and column of a composite image.

Montage Options

Chapter 7, Montage — Page 174

Specify the numbr of tiles per row with width and the number of tiles per column with height. For example, if you want
one tile in each row and up to 10 tiles in the composite image, use

-tile 1x10

The default is five tiles in each row and four tiles in each column of the composite.

-transparency color

Lets you make a specified color in an image transparent.

 -treedepth value

Lets you choose an optimal tree depth for the color reduction algorithm. Normally, value is 0 or 1.

An optimal depth generally provides the best representation of the source image with the fastest computational speed
and the least amount of memory. However, the default depth is inappropriate for some images. To assure the best repre-
sentation try values between 2 and 8. See Appendix D, Quantize for details.

Note: The -colors or -monochrome option is required for treedepth to take effect.

-verbose

Lets you print the following detailed information about an image:

• image name

Montage Options

Chapter 7, Montage — Page 175

• image size

• image depth

• image format

• image comment

• image scene number

• image class (DirectClass or PseudoClass)

• total unique colors

• number of seconds to read and transform the image

• whether a matte is associated with the image

• the number of runlength packets

Additional Montage Options

In addition to the options listed, you can specify these standard X resources as command line options:

• -background

• -bordercolor

Montage Options

Chapter 7, Montage — Page 176

• -borderwidth

• -font

• -foreground

• -mattecolor

• -title

See Appendix B, X Resources for details.

Chapter 8, Convert — Page 177

Chapter 8

Convert

Overview

Convert changes an input file of one image format to an output file of a different
image format. In addition, various types of image processing can be performed on
the converted image during the conversion process.

For a comprehensive list of the formats Convert recognizes, see Appendix A,
Supported Image Formats. Support for some of these formats require additional
programs or libraries; this informationis also provided in the appendix. See the
Readme file for informaton about where to find the additional software.

Note: A format delineated with + means that if more than one image is specified,
they are combined into a single multi-image file. Use +adjoin if you want to
produce a single image for each frame.

Raw images are expected to have one byte per pixel unless ImageMagick is
compiled in 16-bit mode. Here, the raw data is expected to be stored two bytes per
pixel in most-significant-byte-first order.

Syntax
convert [options …] file [file …] file

Examples

Chapter 8, Convert — Page 178

Examples

• To convert a MIFF image of a cockatoo to a SUN raster image, use

 convert cockatoo.miff sun:cockatoo.ras

• To convert a multi-page PostScript document to individual FAX pages, use

 convert -monochrome document.ps fax:page

• To convert a TIFF image to a PostScript A4 page with the image in the lower left-hand corner, use

 convert -page A4+0+0 image.tiff document.ps

• To convert a raw Gray image with a 128 byte header to a portable graymap, use

 convert -size 768x512+128 gray:raw image.pgm

• To convert a Photo CD image to a TIFF image, use

convert -size 1536x1024 img0009.pcd image.tiff convert img0009.pcd[4] image.tiff

• To create a visual image directory of all your JPEG images, use

convert ‘vid:*.jpg’ directory.miff

• To annotate an image with blue text using font 12x24 at position (100,100), use

convert -font helvetica -pen blue -draw “text 100,100 Cockatoo” bird.jpg bird.miff

Convert Options

Chapter 8, Convert — Page 179

• To tile a 640x480 image with a JPEG texture with bumps use

convert -size 640x480 tile:bumps.jpg tiled.png

• To surround an icon with an ornamental border to use with Mosaic(1), use

convert -mattecolor #697B8F -frame 6x6 bird.jpg icon.png

• To create a GIF animation from a DNA molecule sequence, use

convert -delay 20 dna.* dna.gif

Convert Options

-adjoin

Lets you join images into a single multi-image file.

Note: By default, all images in an image sequence are stored in the same file. However, some formats, such as JPEG,
do not support more than one image and are saved to separate files. Use +adjoin to force this behavior.

-align type

Lets you specify how to align text.

• Left (default)

Convert Options

Chapter 8, Convert — Page 180

• Center

• Right

See -draw for details.

-average

Lets you average a set of images.

 -blur factor

Lets you blur an image. Specify factor as a percentage of enhancement from 0.0–99.9%.

-border <width>x<height>

Lets you surround an image with a colored border.

The color of the border is obtained from the X server and is defined as borderColor (class BorderColor). See the X
Windows system manual at http://www.x.org for details about the specification.

 -box color

Lets you set the color of an annotation bounding box. See -draw for details.

Convert Options

Chapter 8, Convert — Page 181

-cache_threshold value

number of megabytes available to the pixel cache.

Image pixels are stored in memory until 80 megabytes of memory have been consumed. Subsequent pixel operations
are cached on disk. Operations to memory are significantly faster but if your computer does not have a sufficient amount
of free memory you may want to adjust this threshold value.

-charcoal factor

Lets you simulate a charcoal drawing. See the X Windows system manual at http://www.x.org for details about the
specification.

-coalesce

Lets you merge a sequence of images.

-colorize value

Lets you colorize an image with a pen color.

Specify the value of colorization as a percentage. You can apply separate colorization values to the red, green, and blue channels of
the image with a colorization value list delineated with slashes, for example,

0/0/50

Convert Options

Chapter 8, Convert — Page 182

-colors value

Lets you specify the preferred number of colors in an image.

The actual number of colors in the image may be fewer than you specify, but will never be more.

Note: This is a color reduction option. Duplicate and unused colors will be removed if an image has fewer unique colors
than you specify. See Appendix D, Quantize for more details. The options -dither, -colorspace, and
-treedepth affect the color reduction algorithm.

 -colorspace value

Lets you specify the type of colorspace.

• GRAY

• OHTA

• RGB

• Transparent

• XYZ

• YCbCr

• YIQ

Convert Options

Chapter 8, Convert — Page 183

• YPbPr

• YUV

• CMYK

Color reduction by default, takes place in the RGB color space. Empirical evidence suggests that distances in color
spaces such as YUV or YIQ correspond to perceptual color differences more closely than distances in RGB space. These
color spaces may give better results when color reducing an image. See Appendix D, Quantize for details.

Note: The transparent colorspace is unique. It preserves the matte channel of the image if it exists.

Tip! The -colors or -monochrome option is required for the transparent option to take effect.

-comment string

Lets you annotate an image with a comment.

By default, each image is commented with its file name. Use this option to assign a specific comment to the image.

Convert Options

Chapter 8, Convert — Page 184

Optionally you can include the image filename, type, width, height, or scene number in the label by embedding special
format characters. The following table shows these characters and their values.

Special Format Characters

Special
Character

Value

%b file size

%d directory

%e filename extention

%f filename

%h height

%i input filename

%l label

%m magick

%n number of scenes

%o output filename

%p page number

%q quantum depth

Convert Options

Chapter 8, Convert — Page 185

For example,

-comment “%m:%f %wx%h”

produces for an image—titled bird.miff whose width is 512 and height is 480—the comment

%s scene number

%t top of filename

%u unique temporary filename

%w width

%x x resolution

%y y resolution

\n newline

\r carriage return

Special Format Characters

Special
Character (Cont.)

Value

Convert Options

Chapter 8, Convert — Page 186

MIFF:bird.miff 512x480

Note: If the first character of string is @, the image comment is read from a file titled by the remaining characters in the
string.

-compress type

Lets you specify one of the following types of image compression:

• None

• Bip

• Fax

• Group 4

• JPEG

• LZW

• RunlengthEncoded

• Zip

Specify

+compress

Convert Options

Chapter 8, Convert — Page 187

to store the binary image in an uncompressed format. The default is the compression type of the specified image file.

-contrast

Lets you enhance or reduce the intensity differences between the lighter and darker elements of an image.

Use

-contrast

to enhance the image or

+contrast

to reduce the image contrast.

-cycle amount

Lets you displace an image colormap by a specified amount.

Amount defines the number of positions each colormap entry is shifted.

-deconstruct

Break down an image sequence into constituent parts.

Convert Options

Chapter 8, Convert — Page 188

-delay <1/100ths of a second>x<seconds>

Displays the next image after pausing.

This option is useful for regulating the display of the sequence of GIF images in Netscape. 1/100ths of a second must
pass before the image sequence can be displayed again.

The default is no delay between each showing of the image sequence. The maximum delay is 65535.

The seconds value is optional. It lets you specify the number of seconds to pause before repeating the animation
sequence.

-density <width>x<height>

Lets you specify in pixels the vertical and horizontal resolution of an image.

This option lets you specify an image density when decoding a PostScript or Portable Document page. The default is 72
pixels per inch in the horizontal and vertical direction.

-despeckle

Lets you reduce the speckles in an image.

Convert Options

Chapter 8, Convert — Page 189

-display host:display[.screen]

Specifies the X server to contact. See the X Windows system manual at http://www.x.org for details about the specifi-
cation.

-dispose

Lets you specify one of the following GIF disposal methods:

-dither

Lets you apply Floyd/Steinberg error diffusion to an image.

GIF Disposal Methods

This method… Specifies…

0 no disposal specified

1 do not dispose between frames

2 overwrite frame with background color from header

3 overwrite with previous frame

Convert Options

Chapter 8, Convert — Page 190

Dithering trades intensity resolution for spatial resolution by averaging the intensities of several neighboring pixels. You
can use this option to improve images that suffer from severe contouring when reducing colors.

Note: The -colors or -monochrome option is required for dithering to take effect.

Tip! Use +dither to render PostScript without text or graphic aliasing.

 -draw string

Lets you annotate an image with one or more of the followinggraphic primitives:

Graphic Primitives

This… Requires…

point a single coordinate

line a single coordinate, start and end coordinates,

rectangle upper-left and lower-right coordinates

fillRectangle upper-left and lower-right coordinates

circle center and an outer edge coordinates

fillCircle center and an outer edge coordinates

polygon three or more coordinates to define its boundaries

Convert Options

Chapter 8, Convert — Page 191

Coordinates are integers separated by an optional comma. For example, to define a circle centered at 100,100 that
extends to 150,150 use

-draw ‘circle 100,100 150,150’

Consider the target pixel as that specified by your coordinate. Use color to change the color of a pixel. Follow the pixel
coordinate with one of the following methods:

• point recolors the target pixel

• replace recolors any pixel that matches the color of the target pixel

• floodfill recolors any pixel that matches the color of the target pixel and its neighbor pixel

fillPolygon three or more coordinates to define its boundaries

color a single coordinate

matte a single coordinate

text a single coordinate

image a single coordinate

Graphic Primitives

This… (Cont.) Requires…

Convert Options

Chapter 8, Convert — Page 192

• reset recolors all pixels

Use matte to the change the pixel matte value to transparent. Follow the pixel coordinate with one of the following
methods:

• point changes the matte value of the target pixel

• replace changes the matte value of any pixel that matches the color of the target pixel

• floodfill changes the matte value of any pixel that matches the color of the target pixel and its neighbor.

• reset changes the matte value of all pixels

Use text to annotate an image with text. Follow the text coordinates with a string.

Tip! If the string has embedded spaces, enclose it in double quotes.

Optionally you can include the image filename, type, width, height, or scene number in the label by embedding special
format characters. The following table shows these characters and their values.

Special Format Characters

Special
Character

Value

%b file size

%d directory

Convert Options

Chapter 8, Convert — Page 193

%e filename extention

%f filename

%h height

%i input filename

%l label

%m magick

%n number of scenes

%o output filename

%p page number

%q quantum depth

%s scene number

%t top of filename

%u unique temporary filename

%w width

Special Format Characters

Special
Character (Cont.)

Value

Convert Options

Chapter 8, Convert — Page 194

For example,

-draw 'text 100,100 "%m:%f %wx%h"'

annotates an image—titled bird.miff whose width is 512 and height is 480—with

MIFF:bird.miff 512x480

To generate a Unicode character (TrueType fonts only), embed the code as an escaped hex string, for example,

\\0x30a3

Use -image to composite an image with another image. Follow the image coordinates with the filename of an image.
If the first character of the string is @, the text is read from a file titled by the remaining characters in the string.

%x x resolution

%y y resolution

\n newline

\r carriage return

Special Format Characters

Special
Character (Cont.)

Value

Convert Options

Chapter 8, Convert — Page 195

You can set the primitive color, font color, and font bounding box color with -pen, -font, and -box, respectively.
Options are processed in command-line order so be sure to use -pen before the -draw option.

 -edge factor

Lets you detect edges within an image. Specify factor as a percentage of the enhancement from 0.0–99.9%.

 -enhance

Lets you apply a digital filter to enhance a noisy image.

 -equalize

Lets you perform histogram equalization on an image.

 -filter type

Lets you specify one of the following filters to use when you resize an image:

• Point

• Box

• Triangle

• Hermite

Convert Options

Chapter 8, Convert — Page 196

• Hanning

• Hamming

• Blackman

• Gaussian

• Quadratic

• Cubic

• Catrom

• Mitchell (default)

• Lanczos

• Bessel

• Sinc

See -geometry.

-flip

Lets you create a mirror image by reflecting the scanlines in the vertical direction.

Convert Options

Chapter 8, Convert — Page 197

-flop

Lets you create a mirror image by reflecting the image scanlines in the horizontal direction.

 -font name

Font lets you specify the font to use when annotating an image with text.

If the font is a fully-qualified X server font name, the font is obtained from an X server, for example,

-*-helvetica-medium-r-*-*-12-*-*-*-*-*-iso8859-*

To use a TrueType font, precede the TrueType filename with @, for example,

@times.ttf

Otherwise, specify a PostScript font, for example,

helvetica

 -frame <width>x<height>+<outer bevel width>+<inner bevel width>

Lets you surround an image with an ornamental border. See the X Windows system manual at http://www.x.org for
details about the specification.

Note: The color of the border is specified with the -mattecolor command line option.

Convert Options

Chapter 8, Convert — Page 198

 -gamma value

Lets you specify the level of gamma correction for an image.

The same color image displayed on different workstations may look different because of differences in the display
monitor. Use gamma correction to adjust for this color difference. Reasonable values range from 0.8–2.3.

You can apply separate gamma values to the red, green, and blue channels of an image with a gamma value list delin-
eated with slashes, for example,

1.7/2.3/1.2

Use +gamma to set the image gamma level without actually adjusting the image pixels. This option is useful if the
imagehas a known gamma that isn’t set as an image attribute, such as PNG images.

-geometry <width>x<height>{!}{<}{>}{%}

Lets you specify the size and location of an image window. See the X Windows system manual at http://www.x.org for
details about the geometry specification. By default, the window size is the image size. You specify its location when
you map it.

The width and height, by default, are maximum values. That is, the image is expanded or contracted to fit the width and
height value while maintaining the aspect ratio of the image.

Append an exclamation mark to the geometry to force the image size to exactly the size you specify. For example,

640x480!

Convert Options

Chapter 8, Convert — Page 199

sets the image width to 640 pixels and height to 480. If you specify one factor only, both the width and height assume
that value.

To specify a percentage width or height instead, append %. The image size is multiplied by the width and height
percentages to obtain the final image dimensions. To increase the size of an image, use a value greater than 100 (e.g.,
125%). To decrease an image’s size, use a percentage less than 100.

Use > to change the dimensions of the image only if its size exceeds the geometry specification. If the image dimension
is smaller than the geometry you specify, < resizes the image. For example, if you specify

640x480>

and the image size is 512x512, the image size does not change. However, if the image is 1024x1024, it’s resized to
640x480.

Tip! There are 72 pixels per inch in PostScript coordinates.

-implode amount

Lets you implode image pixels around the image’s center. Specify amount as a percentage of implosion from 0–99.9% or explosion
from -99.9–0%.

-interlace type

Lets you specify one of the following interlacing schemes:

• none (default)

Convert Options

Chapter 8, Convert — Page 200

• line

• plane

• partition

Interlace also lets you specify the type of interlacing scheme for raw image formats such as RGB or YUV.

Tip! Use line, or plane to create an interlaced GIF or progressive JPEG image.

 -label name

Lets you assign a label to an image.

Interlace Types

Scheme Description

none does not interlace (e.g., RGBRGBRGBRGBRGBRGB...)

line uses scanline interlacing (e.g., RRR...GGG...BBB...RRR...GGG...BBB...)

plane uses plane interlacing (e.g., RRRRRR...GGGGGG...BBBBBB...)

partition similar to plane except that different planes are saved to individual files (e.g.,
image.R, image.G, and image.B)

Convert Options

Chapter 8, Convert — Page 201

 -layer type

Lets you specify the type of layer to extract from an image:

• red

• green

• blue

• matte

Matte for example, is useful for extracting the opacity values from an image.

 -linewidth value

Lets you set the width of a line. See -draw for details.

 -loop iterations

Lets you add a Netscape loop extension to your GIF animation.

A value other than zero forces the animation to repeat itself up to the number of times you specify for iterations.

-map type

Lets you display an image using one of the following standard colormap types:

Convert Options

Chapter 8, Convert — Page 202

• best

• default

• gray

• red

• green

• blue

The X server must support the colormap you choose, otherwise an error occurs. For type specify list and display
searches the list of colormap types in top-to-bottom order until one is located. For one way of creating standard
colormaps see xstdcmap, an X11 client program that’s available with an X11 distribution.

 -matte

Lets you store the matte channel (i.e., the transparent channel) if an image has one.

-median radius

apply a median filter to the image.

Each pixel is replaced by the median color in a circular neighborhood whose radius you specify.

Convert Options

Chapter 8, Convert — Page 203

 -modulate value

Lets you vary the brightness, saturation, and hue of an image.

Specify the percentage of change in brightness, the color saturation, and the hue separated by commas. For example, to increase the
color brightness by 20%, decrease the color saturation by 10%, and leave the hue unchanged, use

-modulate 20/-10

-monochrome

Lets you transform an image to black and white.

 -negate

Lets you apply color inversion to an image.

The red, green, and blue intensities of an image are negated. Use +negate to negate only the grayscale pixels of the
image.

 -noise

Lets you add noise to or reduce noise in an image.

The principal function of the noise peak elimination filter is to smooth the objects within an image without losing edge
information and without creating undesired structures.

Convert Options

Chapter 8, Convert — Page 204

The algorithm replaces a pixel with its next neighbor in value within a 3 x 3 window, if this pixel is noise. A pixel is
defined as noise if and only if the pixel is a maximum or minimum within the 3 x 3 window.

Use +noise followed by a noise type to add noise to an image. Choose from the following noise types:

• Uniform

• Gaussian

• Multiplicative

• Impulse

• Laplacian

• Poisson

 -normalize

Lets you transform an image to span the full range of color values using this contrast enhancement technique.

-opaque color

Lets you change the color you specify to the pen color in the image. See -pen for details.

Convert Options

Chapter 8, Convert — Page 205

 -page <width>x<height>{+-}<x offset>{+-}<y offset>{!}{<}{>}{%}

Lets you set the size and location of an image canvas. Use this option to specify the dimensions of a

• PostScript page in dots per inch (dpi) or a

• TEXT page in pixels

This option is used in concert with -density.

The choices for a PostScript page are

Postscript Page Sizes

Media Size (pixel width by pixel height)

11x17 792 1224

Ledger 1224 792

Legal 612 1008

Letter 612 792

LetterSmall 612 792

ArchE 2592 3456

ArchD 1728 2592

Convert Options

Chapter 8, Convert — Page 206

ArchC 1296 1728

ArchB 864 1296

ArchA 648 864

A0 2380 3368

A1 1684 2380

A2 1190 1684

A3 842 1190

A4 595 842

A4Small 595 842

A5 421 595

A6 297 421

A7 210 297

A8 148 210

A9 105 148

Postscript Page Sizes

Media (Cont.) Size (pixel width by pixel height)

Convert Options

Chapter 8, Convert — Page 207

A10 74 105

B0 2836 4008

B1 2004 2836

B2 1418 2004

B3 1002 1418

B4 709 1002

B5 501 709

C0 2600 3677

C1 1837 2600

C2 1298 1837

C3 918 1298

C4 649 918

C5 459 649

C6 323 459

Postscript Page Sizes

Media (Cont.) Size (pixel width by pixel height)

Convert Options

Chapter 8, Convert — Page 208

You can specify the page size by media (e.g. , A4, Ledger, etc.). Otherwise, -page behaves much like -geometry
(e.g., -page letter+43+43>).

• To position a GIF image, use

-page {+-}<x offset>{+-}<y offset>

for example,

-page +100+200

For a PostScript page, the image is sized as in -geometry and positioned relative to the lower-left hand corner of the
page by {+-}<x offset>{+-}<y offset>. The default page dimension for a TEXT image is 612x792.

• To position a TEXT page, use

-page 612x792>

to center the image within the page.

Flsa 612 936

Flse 612 936

HalfLetter 396 612

Postscript Page Sizes

Media (Cont.) Size (pixel width by pixel height)

Convert Options

Chapter 8, Convert — Page 209

Tip! If the image size exceeds the PostScript page, it’s reduced to fit the page.

-paint radius

Lets you simulate an oil painting.

Each pixel is replaced by the most frequently used color in a circular neighborhood whose radius you specify.

 -pen color

Lets you set the color of the font or opaque color. See -draw for details. See the X Windows system manual at
http://www.x.org for details about the color specification.

-pointsize value

Lets you specify the point size of a PostScript font.

 -quality value

Lets you specify one of the following compression levels:

• JPEG with a value from 0–100 (i.e., worst to best); the default is 75

• MIFF with a value from 0–100 (i.e., worst to best); sets the amount of image compression (quality/10) and
filter-type (quality % 10)

Convert Options

Chapter 8, Convert — Page 210

• PNG with a value from 0–100 (i.e., worst to best); sets the amount of image compression (quality/10) and filter-
type (quality % 10)

The following are valid filter types:

• 0 for none; used for all scanlines

• 1 for sub; used for all scanlines

• 2 for up; used for all scanlines

• 3 for average; used for all scanlines

• 4 for Paeth; used for all scanlines

• 5 for adaptive filter; used when quality is greater than 50 and the image doesn’t have a colormap; otherwise
no filtering is used

• 6 or higher for adaptive filtering; used with minimum-sum-of-absolute-values

Note: The default is quality is 75—nearly the best compression with adaptive filtering.

For more information, see the PNG specification (RFC 2083) at http://www.w3.org/pub/WWW/TR.

Convert Options

Chapter 8, Convert — Page 211

-raise <width>x<height>

Lets you lighten or darken image edges to create a 3-D effect. See the X Windows system manual at http://www.x.org
for details about the geometry specification.

Use -raise to create a raised effect; otherwise use +raise.

 -region <width>x<height>{+-}<x offset>{+-}<y offset>

Lets you apply options to a portion of an image.

By default, command line options you specify are applied to an entire image. Use -region to restrict operations to a particular area
of the image.

-roll {+-}<x offset>{+-}<y offset>

Lets you roll an image vertically or horizontally. See the X Windows system manual at http://www.x.org for details
about the geometry specification.

A negative x offset rolls the image left to right. A negative y offset rolls the image top to bottom.

-rotate degrees{<}{>}

Applies Paeth image rotation to the image.

Convert Options

Chapter 8, Convert — Page 212

Use > to rotate the image only if its width exceeds the height. If the image width is less than its height, < rotates the
image.

For example, if you have an image size of 480x640 and you specify

-90>

the image is not rotated by the specified angle. However, if the image is 640x480, it’s rotated by -90 degrees.

Note: Empty triangles left over from rotating the image are filled with the color defined as bordercolor (class
BorderColor). See the X Windows system manual at http://www.x.org for details.

 -sample geometry

Lets you scale an image with pixel sampling. See -geometry for details about the geometry specification.

-scene value

Lets you specify the image scene number.

 -seed value

Lets you generate a seed value using a pseudo-random number generator.

Convert Options

Chapter 8, Convert — Page 213

-segment value

Lets you eliminate insignificant clusters.

The number of pixels in each cluster must exceed the cluster threshold to be considered valid.

 -shade <azimuth>x<elevation>

Lets you shade an image using a distant light source.

Specify azimuth and elevation as the position of the light source. Use +shade to return the shading results as a grayscale image.

-sharpen factor

Lets you sharpen an image. Specify factor as a percentage of enhancement from 0.0–99.9%.

-size <width>x<height>{+offset}{!}{%}

Lets you specify the width and height of a raw image whose dimensions are unknown, such as GRAY, RGB, or CMYK.

In addition to width and height, use -size to skip any header information in the image or tell the number of colors in a
MAP image file, for example,

-size 640x512+256

Convert Options

Chapter 8, Convert — Page 214

 -solarize factor

Lets you negate all pixels above a threshold level. Specify factor as a percentage of the intensity threshold from 0 -
99.9%.

Note: This option produces a solarization effect seen when exposing a photographic film to light during the
development process.

 -spread amount

Lets you displace image pixels by a random amount.

Amount defines the size of the neighborhood around each pixel from which to choose a candidate pixel to swap.

 -swirl degrees

Lets you swirl image pixels about the center of an image.

 Degrees defines the tightness of the swirl.

-transparency color

Lets you make a specified color in an image transparent.

Convert Options

Chapter 8, Convert — Page 215

 -texture filename

Lets you specify a file, which contains a texture, to tile onto an image’s background.

 -threshold value

Threshold lets you create a bi-level image such that any pixel intensity that is equal to or exceeds the threshold value
you specify is reassigned the maximum intensity. Otherwise, it’s reassigned the the minimum intensity.

 -treedepth value

Lets you choose an optimal tree depth for the color reduction algorithm. Normally, value is 0 or 1.

An optimal depth generally provides the best representation of the source image with the fastest computational speed
and the least amount of memory. However, the default depth is inappropriate for some images. To assure the best repre-
sentation try values between 2 and 8. See Appendix D, Quantize for details.

Note: The -colors or -monochrome option is required for treedepth to take effect.

-undercolor <undercolor factor>x<black-generation factor>

Lets you control undercolor removal and black generation on CMYK images (i.e., images to be printed on a four-color
printing system).

Convert Options

Chapter 8, Convert — Page 216

You can control the amount of cyan, magenta, and yellow to remove from your image and the amount of black to add
to it. The standard undercolor removal is 1.0x1.0. You’ll frequently get better results though if the percentage of black
you add to your image is slightly higher than the percentage of C, M, and Y you remove from it. For example, you might
try 0.5x0.7.

-verbose

Lets you print the following detailed information about an image:

• image name

• image size

• image depth

• image format

• image comment

• image scene number

• image class (DirectClass or PseudoClass)

• total unique colors

• number of seconds to read and transform the image

• whether a matte is associated with the image

Convert Options

Chapter 8, Convert — Page 217

• the number of runlength packets

 -view string

Lets you specify FlashPix viewing parameters.

 -wave <amplitude>x<wavelength>

Lets you alter an image along a sine wave.

Specify amplitude and wavelength to affect the characteristics of the wave.

Segmenting Images

 Use -segment to segment an image by analyzing the histograms of the color components and identifying units that
are homogeneous with the fuzzy c-means technique. The scale-space filter analyzes the histograms of the three color
components of the image and identifies a set of classes. The extents of each class are used to coarsely segment the image
with thresholding. The color associated with each class is determined by the mean color of all pixels within the extents
of a particular class. Finally, any unclassified pixels are assigned to the closest class with the fuzzy c-means technique.

The fuzzy c-Means algorithm can be summarized as follows:

• Build a histogram, one for each color component of the image.

Convert Options

Chapter 8, Convert — Page 218

• For each histogram, successively apply the scale-space filter and build an interval tree of 0 crossings in the
second derivative at each scale. Analyze this scale-space “fingerprint’’ to determine which peaks or valleys in
the histogram are most predominant.

• The fingerprint defines intervals on the axis of the histogram. Each interval contains either a minima or a
maxima in the original signal. If each color component lies within the maxima interval, that pixel is considered
‘‘classified’’ and is assigned an unique class number.

• Any pixel that fails to be classified in the above thresholding pass is classified using the fuzzy c-Means
technique. It is assigned to one of the classes discovered in the histogram analysis phase.

The fuzzy c-Means technique attempts to cluster a pixel by finding the local minima of the generalized within group
sum of squared error objective function. A pixel is assigned to the closest class of which the fuzzy membership has a
maximum value.

 For additional information see Young Won Lim, Sang Uk Lee. “On the Color Image Segmentation Algorithm Based on
the Thresholding and the Fuzzy c-Means Techniques,” Pattern Recognition, Volume 23, Number 9, pages 935–952, 1990.

Chapter 9, Mogrify — Page 219

Chapter 9

Mogrify

Overview

Mogrify transforms an image or a sequence of images. These transformations
include image scaling, image rotation, color reduction, and others. The transmo-
grified image overwrites the original image.

Syntax
mogrify [options ...] file [[options ...] file ...]

Examples

• To convert all the TIFF files in a particular directory to JPEG, use

mogrify -format jpeg *.tiff

• To scale an image of a cockatoo to exactly 640 pixels in width and 480
pixels in height, use

mogrify -geometry 640x480! cockatoo.miff

Mogrify Options

Chapter 9, Mogrify — Page 220

Mogrify Options

-align type

Lets you specify how to align text.

• Left (default)

• Center

• Right

See -draw for details.

 -blur factor

Lets you blur an image. Specify factor as a percentage of enhancement from 0.0–99.9%.

 -border <width>x<height>

Lets you surround an image with a colored border.

The color of the border is obtained from the X server and is defined as borderColor (class BorderColor). See the X
Windows system manual at http://www.x.org for details about the specification.

Mogrify Options

Chapter 9, Mogrify — Page 221

 -box color

Lets you set the color of an annotation bounding box. See -draw for details.

-cache_threshold value

number of megabytes available to the pixel cache.

Image pixels are stored in memory until 80 megabytes of memory have been consumed. Subsequent pixel operations
are cached on disk. Operations to memory are significantly faster but if your computer does not have a sufficient amount
of free memory you may want to adjust this threshold value.

-charcoal factor

Lets you simulate a charcoal drawing. See the X Windows system manual at http://www.x.org for details about the
specification.

-colorize value

Lets you colorize an image with a pen color.

Specify the value of colorization as a percentage. You can apply separate colorization values to the red, green, and blue channels of
the image with a colorization value list delineated with slashes, for example,

0/0/50

Mogrify Options

Chapter 9, Mogrify — Page 222

-colors value

Lets you specify the preferred number of colors in an image.

The actual number of colors in the image may be fewer than you specify, but will never be more.

Note: This is a color reduction option. Duplicate and unused colors will be removed if an image has fewer unique colors
than you specify. See Appendix D, Quantize for more details. The options -dither, -colorspace, and
-treedepth affect the color reduction algorithm.

 -colorspace value

Lets you specify the type of colorspace.

• GRAY

• OHTA

• RGB

• Transparent

• XYZ

• YCbCr

• YIQ

Mogrify Options

Chapter 9, Mogrify — Page 223

• YPbPr

• YUV

• CMYK

Color reduction by default, takes place in the RGB color space. Empirical evidence suggests that distances in color
spaces such as YUV or YIQ correspond to perceptual color differences more closely than distances in RGB space. These
color spaces may give better results when color reducing an image. See Appendix D, Quantize for details.

Note: The transparent colorspace is unique. It preserves the matte channel of the image if it exists.

Tip! The -colors or -monochrome option is required for the transparent option to take effect.

-comment string

Lets you annotate an image with a comment.

By default, each image is commented with its file name. Use this option to assign a specific comment to the image.

Mogrify Options

Chapter 9, Mogrify — Page 224

Optionally you can include the image filename, type, width, height, or scene number in the label by embedding special
format characters. The following table shows these characters and their values.

Special Format Characters

Special
Character

Value

%b file size

%d directory

%e filename extention

%f filename

%h height

%i input filename

%l label

%m magick

%n number of scenes

%o output filename

%p page number

%q quantum depth

Mogrify Options

Chapter 9, Mogrify — Page 225

For example,

-comment “%m:%f %wx%h”

produces for an image—titled bird.miff whose width is 512 and height is 480—the comment

%s scene number

%t top of filename

%u unique temporary filename

%w width

%x x resolution

%y y resolution

\n newline

\r carriage return

Special Format Characters

Special
Character (Cont.)

Value

Mogrify Options

Chapter 9, Mogrify — Page 226

MIFF:bird.miff 512x480

Note: If the first character of string is @, the image comment is read from a file titled by the remaining characters in the
string.

-compress type

Lets you specify one of the following types of image compression:

• None

• Bip

• Fax

• Group 4

• JPEG

• LZW

• RunlengthEncoded

• Zip

Specify

+compress

Mogrify Options

Chapter 9, Mogrify — Page 227

to store the binary image in an uncompressed format. The default is the compression type of the specified image file.

-contrast

Lets you enhance or reduce the intensity differences between the lighter and darker elements of an image.

Use

-contrast

to enhance the image or

+contrast

to reduce the image contrast.

-crop <width>x<height>{+-}<x offset>{+-}<y offset>{%}

Lets you specify the size and location of a cropped image. See the X Windows system manual at http://www.x.org for
details about the geometry specification.

To specify the width or height as a percentage, append %. For example to crop an image by 10% on all sides, use

-crop 10%

Use cropping to apply image processing options to, or display, a particular area of an image. Omit the x offset and y offset
to generate one or more subimages of a uniform size.

Mogrify Options

Chapter 9, Mogrify — Page 228

Use cropping to crop an area of an image. Use

-crop 0x0

to trim edges that are the background color. Add an x offset and y offset to leave a portion of the trimmed edges with the
image. The equivalent X resource for this option is cropGeometry (class CropGeometry). See Appendix B, X Resources
for details.

 -cycle amount

Lets you displace an image colormap by a specified amount.

Amount defines the number of positions each colormap entry is shifted.

-delay <1/100ths of a second>x<seconds>

Displays the next image after pausing.

This option is useful for regulating the display of the sequence of GIF images in Netscape. 1/100ths of a second must
pass before the image sequence can be displayed again.

The default is no delay between each showing of the image sequence. The maximum delay is 65535.

The seconds value is optional. It lets you specify the number of seconds to pause before repeating the animation
sequence.

Mogrify Options

Chapter 9, Mogrify — Page 229

-density <width>x<height>

Lets you specify in pixels the vertical and horizontal resolution of an image.

This option lets you specify an image density when decoding a PostScript or Portable Document page. The default is 72
pixels per inch in the horizontal and vertical direction.

-despeckle

Lets you reduce the speckles in an image.

-display host:display[.screen]

Specifies the X server to contact. See the X Windows system manual at http://www.x.org for details about the specifi-
cation.

-dispose

Lets you specify one of the following GIF disposal methods:

GIF Disposal Methods

This method… Specifies…

0 no disposal specified

Mogrify Options

Chapter 9, Mogrify — Page 230

-dither

Lets you apply Floyd/Steinberg error diffusion to an image.

Dithering trades intensity resolution for spatial resolution by averaging the intensities of several neighboring pixels. You
can use this option to improve images that suffer from severe contouring when reducing colors.

Note: The -colors or -monochrome option is required for dithering to take effect.

Tip! Use +dither to render PostScript without text or graphic aliasing.

1 do not dispose between frames

2 overwrite frame with background color from header

3 overwrite with previous frame

GIF Disposal Methods

This method… Specifies…

Mogrify Options

Chapter 9, Mogrify — Page 231

 -draw string

Lets you annotate an image with one or more of the followinggraphic primitives:

Graphic Primitives

This… Requires…

point a single coordinate

line a single coordinate, start and end coordinates,

rectangle upper-left and lower-right coordinates

fillRectangle upper-left and lower-right coordinates

circle center and an outer edge coordinates

fillCircle center and an outer edge coordinates

polygon three or more coordinates to define its boundaries

fillPolygon three or more coordinates to define its boundaries

color a single coordinate

matte a single coordinate

text a single coordinate

image a single coordinate

Mogrify Options

Chapter 9, Mogrify — Page 232

Coordinates are integers separated by an optional comma. For example, to define a circle centered at 100,100 that
extends to 150,150 use

-draw ‘circle 100,100 150,150’

Consider the target pixel as that specified by your coordinate. Use color to change the color of a pixel. Follow the pixel
coordinate with one of the following methods:

• point recolors the target pixel

• replace recolors any pixel that matches the color of the target pixel

• floodfill recolors any pixel that matches the color of the target pixel and its neighbor pixel

• reset recolors all pixels

Use matte to the change the pixel matte value to transparent. Follow the pixel coordinate with one of the following
methods:

• point changes the matte value of the target pixel

• replace changes the matte value of any pixel that matches the color of the target pixel

• floodfill changes the matte value of any pixel that matches the color of the target pixel and its neighbor.

• reset changes the matte value of all pixels

Use text to annotate an image with text. Follow the text coordinates with a string.

Mogrify Options

Chapter 9, Mogrify — Page 233

Tip! If the string has embedded spaces, enclose it in double quotes.

Optionally you can include the image filename, type, width, height, or scene number in the label by embedding special
format characters. The following table shows these characters and their values.

Special Format Characters

Special
Character

Value

%b file size

%d directory

%e filename extention

%f filename

%h height

%i input filename

%l label

%m magick

%n number of scenes

%o output filename

%p page number

Mogrify Options

Chapter 9, Mogrify — Page 234

For example,

-draw 'text 100,100 "%m:%f %wx%h"'

annotates an image—titled bird.miff whose width is 512 and height is 480—with

MIFF:bird.miff 512x480

%q quantum depth

%s scene number

%t top of filename

%u unique temporary filename

%w width

%x x resolution

%y y resolution

\n newline

\r carriage return

Special Format Characters

Special
Character (Cont.)

Value

Mogrify Options

Chapter 9, Mogrify — Page 235

To generate a Unicode character (TrueType fonts only), embed the code as an escaped hex string, for example,

\\0x30a3

Use -image to composite an image with another image. Follow the image coordinates with the filename of an image.
If the first character of the string is @, the text is read from a file titled by the remaining characters in the string.

You can set the primitive color, font color, and font bounding box color with -pen, -font, and -box, respectively.
Options are processed in command-line order so be sure to use -pen before the -draw option.

 -edge factor

Lets you detect edges within an image. Specify factor as a percentage of the enhancement from 0.0–99.9%.

-emboss

Lets you emboss an image.

 -enhance

Lets you apply a digital filter to enhance a noisy image.

 -equalize

Lets you perform histogram equalization on an image.

Mogrify Options

Chapter 9, Mogrify — Page 236

 -filter type

Lets you specify one of the following filters to use when you resize an image:

• Point

• Box

• Triangle

• Hermite

• Hanning

• Hamming

• Blackman

• Gaussian

• Quadratic

• Cubic

• Catrom

• Mitchell (default)

Mogrify Options

Chapter 9, Mogrify — Page 237

• Lanczos

• Bessel

• Sinc

See -geometry.

-flip

Lets you create a mirror image by reflecting the scanlines in the vertical direction.

-flop

Lets you create a mirror image by reflecting the image scanlines in the horizontal direction.

-format type

Lets you convert an image to a format you specify.

By default, the image is written to its original name. However, if the filename extension matches a supported format, the extension
is replaced with the image format type you specify. For example, if you specify tiff as the format type and the input image filename is

image.gif

the output image filename becomes

Mogrify Options

Chapter 9, Mogrify — Page 238

image.tiff

See Appendix A, Supported Image Formats for the format types ImageMagick supports.

 -font name

Font lets you specify the font to use when annotating an image with text.

If the font is a fully-qualified X server font name, the font is obtained from an X server, for example,

-*-helvetica-medium-r-*-*-12-*-*-*-*-*-iso8859-*

To use a TrueType font, precede the TrueType filename with @, for example,

@times.ttf

Otherwise, specify a PostScript font, for example,

helvetica

 -frame <width>x<height>+<outer bevel width>+<inner bevel width>

Lets you surround an image with an ornamental border. See the X Windows system manual at http://www.x.org for
details about the specification.

Note: The color of the border is specified with the -mattecolor command line option.

Mogrify Options

Chapter 9, Mogrify — Page 239

 -gamma value

Lets you specify the level of gamma correction for an image.

The same color image displayed on different workstations may look different because of differences in the display
monitor. Use gamma correction to adjust for this color difference. Reasonable values range from 0.8–2.3.

You can apply separate gamma values to the red, green, and blue channels of an image with a gamma value list delin-
eated with slashes, for example,

1.7/2.3/1.2

Use +gamma to set the image gamma level without actually adjusting the image pixels. This option is useful if the
imagehas a known gamma that isn’t set as an image attribute, such as PNG images.

-geometry <width>x<height>{!}{<}{>}{%}

Lets you specify the size and location of an image window. See the X Windows system manual at http://www.x.org for
details about the geometry specification. By default, the window size is the image size. You specify its location when
you map it.

The width and height, by default, are maximum values. That is, the image is expanded or contracted to fit the width and
height value while maintaining the aspect ratio of the image.

Append an exclamation mark to the geometry to force the image size to exactly the size you specify. For example,

640x480!

Mogrify Options

Chapter 9, Mogrify — Page 240

sets the image width to 640 pixels and height to 480. If you specify one factor only, both the width and height assume
that value.

To specify a percentage width or height instead, append %. The image size is multiplied by the width and height
percentages to obtain the final image dimensions. To increase the size of an image, use a value greater than 100 (e.g.,
125%). To decrease an image’s size, use a percentage less than 100.

Use > to change the dimensions of the image only if its size exceeds the geometry specification. If the image dimension
is smaller than the geometry you specify, < resizes the image. For example, if you specify

640x480>

and the image size is 512x512, the image size does not change. However, if the image is 1024x1024, it’s resized to
640x480.

Tip! There are 72 pixels per inch in PostScript coordinates.

-implode amount

Lets you implode image pixels around the image’s center. Specify amount as a percentage of implosion from 0–99.9% or explosion
from -99.9–0%.

-interlace type

Lets you specify one of the following interlacing schemes:

• none (default)

Mogrify Options

Chapter 9, Mogrify — Page 241

• line

• plane

• partition

Interlace also lets you specify the type of interlacing scheme for raw image formats such as RGB or YUV.

Tip! Use line, or plane to create an interlaced GIF or progressive JPEG image.

 -label name

Lets you assign a label to an image.

Interlace Types

Scheme Description

none does not interlace (e.g., RGBRGBRGBRGBRGBRGB...)

line uses scanline interlacing (e.g., RRR...GGG...BBB...RRR...GGG...BBB...)

plane uses plane interlacing (e.g., RRRRRR...GGGGGG...BBBBBB...)

partition similar to plane except that different planes are saved to individual files (e.g.,
image.R, image.G, and image.B)

Mogrify Options

Chapter 9, Mogrify — Page 242

 -layer type

Lets you specify the type of layer to extract from an image:

• red

• green

• blue

• matte

Matte for example, is useful for extracting the opacity values from an image.

 -linewidth value

Lets you set the width of a line. See -draw for details.

 -loop iterations

Lets you add a Netscape loop extension to your GIF animation.

A value other than zero forces the animation to repeat itself up to the number of times you specify for iterations.

-map type

Lets you display an image using one of the following standard colormap types:

Mogrify Options

Chapter 9, Mogrify — Page 243

• best

• default

• gray

• red

• green

• blue

The X server must support the colormap you choose, otherwise an error occurs. For type specify list and display
searches the list of colormap types in top-to-bottom order until one is located. For one way of creating standard
colormaps see xstdcmap, an X11 client program that’s available with an X11 distribution.

 -matte

Lets you store the matte channel (i.e., the transparent channel) if an image has one.

-median radius

apply a median filter to the image.

Each pixel is replaced by the median color in a circular neighborhood whose radius you specify.

Mogrify Options

Chapter 9, Mogrify — Page 244

 -modulate value

Lets you vary the brightness, saturation, and hue of an image.

Specify the percentage of change in brightness, the color saturation, and the hue separated by commas. For example, to increase the
color brightness by 20%, decrease the color saturation by 10%, and leave the hue unchanged, use

-modulate 20/-10

-monochrome

Lets you transform an image to black and white.

 -negate

Lets you apply color inversion to an image.

The red, green, and blue intensities of an image are negated. Use +negate to negate only the grayscale pixels of the
image.

 -noise

Lets you add noise to or reduce noise in an image.

The principal function of the noise peak elimination filter is to smooth the objects within an image without losing edge
information and without creating undesired structures.

Mogrify Options

Chapter 9, Mogrify — Page 245

The algorithm replaces a pixel with its next neighbor in value within a 3 x 3 window, if this pixel is noise. A pixel is
defined as noise if and only if the pixel is a maximum or minimum within the 3 x 3 window.

Use +noise followed by a noise type to add noise to an image. Choose from the following noise types:

• Uniform

• Gaussian

• Multiplicative

• Impulse

• Laplacian

• Poisson

 -normalize

Lets you transform an image to span the full range of color values using this contrast enhancement technique.

-opaque color

Lets you change the color you specify to the pen color in the image. See -pen for details.

Mogrify Options

Chapter 9, Mogrify — Page 246

 -page <width>x<height>{+-}<x offset>{+-}<y offset>{!}{<}{>}{%}

Lets you set the size and location of an image canvas. Use this option to specify the dimensions of a

• PostScript page in dots per inch (dpi) or a

• TEXT page in pixels

This option is used in concert with -density.

The choices for a PostScript page are

Postscript Page Sizes

Media Size (pixel width by pixel height)

11x17 792 1224

Ledger 1224 792

Legal 612 1008

Letter 612 792

LetterSmall 612 792

ArchE 2592 3456

ArchD 1728 2592

Mogrify Options

Chapter 9, Mogrify — Page 247

ArchC 1296 1728

ArchB 864 1296

ArchA 648 864

A0 2380 3368

A1 1684 2380

A2 1190 1684

A3 842 1190

A4 595 842

A4Small 595 842

A5 421 595

A6 297 421

A7 210 297

A8 148 210

A9 105 148

Postscript Page Sizes

Media (Cont.) Size (pixel width by pixel height)

Mogrify Options

Chapter 9, Mogrify — Page 248

A10 74 105

B0 2836 4008

B1 2004 2836

B2 1418 2004

B3 1002 1418

B4 709 1002

B5 501 709

C0 2600 3677

C1 1837 2600

C2 1298 1837

C3 918 1298

C4 649 918

C5 459 649

C6 323 459

Postscript Page Sizes

Media (Cont.) Size (pixel width by pixel height)

Mogrify Options

Chapter 9, Mogrify — Page 249

You can specify the page size by media (e.g. , A4, Ledger, etc.). Otherwise, -page behaves much like -geometry
(e.g., -page letter+43+43>).

• To position a GIF image, use

-page {+-}<x offset>{+-}<y offset>

for example,

-page +100+200

For a PostScript page, the image is sized as in -geometry and positioned relative to the lower-left hand corner of the
page by {+-}<x offset>{+-}<y offset>. The default page dimension for a TEXT image is 612x792.

• To position a TEXT page, use

-page 612x792>

to center the image within the page.

Flsa 612 936

Flse 612 936

HalfLetter 396 612

Postscript Page Sizes

Media (Cont.) Size (pixel width by pixel height)

Mogrify Options

Chapter 9, Mogrify — Page 250

Tip! If the image size exceeds the PostScript page, it’s reduced to fit the page.

-paint radius

Lets you simulate an oil painting.

Each pixel is replaced by the most frequently used color in a circular neighborhood whose radius you specify.

 -pen color

Lets you set the color of the font or opaque color. See -draw for details. See the X Windows system manual at
http://www.x.org for details about the color specification.

-pointsize value

Lets you specify the point size of a PostScript font.

 -quality value

Lets you specify one of the following compression levels:

• JPEG with a value from 0–100 (i.e., worst to best); the default is 75

• MIFF with a value from 0–100 (i.e., worst to best); sets the amount of image compression (quality/10) and
filter-type (quality % 10)

Mogrify Options

Chapter 9, Mogrify — Page 251

• PNG with a value from 0–100 (i.e., worst to best); sets the amount of image compression (quality/10) and filter-
type (quality % 10)

The following are valid filter types:

• 0 for none; used for all scanlines

• 1 for sub; used for all scanlines

• 2 for up; used for all scanlines

• 3 for average; used for all scanlines

• 4 for Paeth; used for all scanlines

• 5 for adaptive filter; used when quality is greater than 50 and the image doesn’t have a colormap; otherwise
no filtering is used

• 6 or higher for adaptive filtering; used with minimum-sum-of-absolute-values

Note: The default is quality is 75—nearly the best compression with adaptive filtering.

For more information, see the PNG specification (RFC 2083) at http://www.w3.org/pub/WWW/TR.

 -region <width>x<height>{+-}<x offset>{+-}<y offset>

Lets you apply options to a portion of an image.

Mogrify Options

Chapter 9, Mogrify — Page 252

By default, command line options you specify are applied to an entire image. Use -region to restrict operations to a particular area
of the image.

 -rotate degrees{<}{>}

Applies Paeth image rotation to the image.

Use > to rotate the image only if its width exceeds the height. If the image width is less than its height, < rotates the
image.

For example, if you have an image size of 480x640 and you specify

-90>

the image is not rotated by the specified angle. However, if the image is 640x480, it’s rotated by -90 degrees.

Note: Empty triangles left over from rotating the image are filled with the color defined as bordercolor (class
BorderColor). See the X Windows system manual at http://www.x.org for details.

-roll {+-}<x offset>{+-}<y offset>

Lets you roll an image vertically or horizontally. See the X Windows system manual at http://www.x.org for details
about the geometry specification.

A negative x offset rolls the image left to right. A negative y offset rolls the image top to bottom.

Mogrify Options

Chapter 9, Mogrify — Page 253

 -sample geometry

Lets you scale an image with pixel sampling. See -geometry for details about the geometry specification.

-scene value

Lets you specify the image scene number.

-seed value

Lets you generate a seed value using a pseudo-random number generator.

-segment value

Lets you eliminate insignificant clusters.

The number of pixels in each cluster must exceed the cluster threshold to be considered valid.

 -shade <azimuth>x<elevation>

Lets you shade an image using a distant light source.

Specify azimuth and elevation as the position of the light source. Use +shade to return the shading results as a grayscale image.

Mogrify Options

Chapter 9, Mogrify — Page 254

-sharpen factor

Lets you sharpen an image. Specify factor as a percentage of enhancement from 0.0–99.9%.

 -shear <x degrees>x<y degrees>

Lets you create a parallelogram by shearing (i.e., sliding) an image along its x or y axis by a positive or negative shear
angle.

An x-direction shear slides an edge along the x axis, while a y-direction shear slides an edge along the yaxis. The amount
of the shear is controlled by the shear angle. For x-direction shears, x degrees is measured relative to the yaxis. For y-
direction shears, y degrees is measured relative to the x axis.

Empty triangles left over from shearing the image are filled with the color defined as bordercolor (class BorderColor).
See the X Windows system manual at http://www.x.org for details.

-size <width>x<height>{+offset}{!}{%}

Lets you specify the width and height of a raw image whose dimensions are unknown, such as GRAY, RGB, or CMYK.

In addition to width and height, use -size to skip any header information in the image or tell the number of colors in a
MAP image file, for example,

-size 640x512+256

Mogrify Options

Chapter 9, Mogrify — Page 255

 -solarize factor

Lets you negate all pixels above a threshold level. Specify factor as a percentage of the intensity threshold from 0 -
99.9%.

Note: This option produces a solarization effect seen when exposing a photographic film to light during the
development process.

 -spread amount

Lets you displace image pixels by a random amount.

Amount defines the size of the neighborhood around each pixel from which to choose a candidate pixel to swap.

 -swirl degrees

Lets you swirl image pixels about the center of an image.

 Degrees defines the tightness of the swirl.

-transparency color

Lets you make a specified color in an image transparent.

Mogrify Options

Chapter 9, Mogrify — Page 256

 -texture filename

Lets you specify a file, which contains a texture, to tile onto an image’s background.

 -threshold value

Lets you create a bi-level image such that any pixel whose intensity is equal to or greater than the threshold value you
specify is reassigned the maximum intensity. Otherwise, it’s reassigned the the minimum intensity.

 -treedepth value

Lets you choose an optimal tree depth for the color reduction algorithm. Normally, value is 0 or 1.

An optimal depth generally provides the best representation of the source image with the fastest computational speed
and the least amount of memory. However, the default depth is inappropriate for some images. To assure the best repre-
sentation try values between 2 and 8. See Appendix D, Quantize for details.

Note: The -colors or -monochrome option is required for treedepth to take effect.

-undercolor <undercolor factor>x<black-generation factor>

Lets you control undercolor removal and black generation on CMYK images (i.e., images to be printed on a four-color
printing system).

Mogrify Options

Chapter 9, Mogrify — Page 257

You can control the amount of cyan, magenta, and yellow to remove from your image and the amount of black to add
to it. The standard undercolor removal is 1.0x1.0. You’ll frequently get better results though if the percentage of black
you add to your image is slightly higher than the percentage of C, M, and Y you remove from it. For example, you might
try 0.5x0.7.

-verbose

Lets you print the following detailed information about an image:

• image name

• image size

• image depth

• image format

• image comment

• image scene number

• image class (DirectClass or PseudoClass)

• total unique colors

• number of seconds to read and transform the image

• whether a matte is associated with the image

Mogrify Options

Chapter 9, Mogrify — Page 258

• the number of runlength packets

 -view string

Lets you specify FlashPix viewing parameters.

 -wave <amplitude>x<wavelength>

Lets you alter an image along a sine wave.

Specify amplitude and wavelength to affect the characteristics of the wave.

Segmenting Images

Use -segment to segment an image by analyzing the histograms of the color components and identifying units that are homoge-
neous with the fuzzy c-means technique. The scale-space filter analyzes the histograms of the three color components of the image

and identifies a set of classes. The extents of each class is used to coarsely segment the image with thresholding. The color associated
with each class is determined by the mean color of all pixels within the extents of a particular class. Finally, any unclassified pixels

are assigned to the closest class with the fuzzy c-means technique.

The fuzzy c-Means algorithm can be summarized as follows:

• Build a histogram, one for each color component of the image.

• For each histogram, successively apply the scale- space filter and build an interval tree of zero crossings in the
second derivative at each scale. Analyze this scale-space ``fingerprint'' to determine which peaks or valleys in
the histogram are most predominant.

Mogrify Options

Chapter 9, Mogrify — Page 259

• The fingerprint defines intervals on the axis of the histogram. Each interval contains either a minima or a
maxima in the original signal. If each color component lies within the maxima interval, that pixel is considered
``classified'' and is assigned an unique class number.

• Any pixel that fails to be classified in the above thresholding pass is classified using the fuzzy c-Means
technique. It is assigned to one of the classes discovered in the histogram analysis phase. The fuzzy c-Means
technique attempts to cluster a pixel by finding the local minima of the generalized within group sum of
squared error objective function. A pixel is assigned to the closest class of which the fuzzy membership has a
maximum value.

For additional information see Young Won Lim, Sang Uk Lee, "On the Color Image Segmentation Algorithm Based on the Thresh-
olding and the Fuzzy c-Means Techniques", Pattern Recognition, Volume 23, Number 9, pages 935–952, 1990.

Chapter 10, Identify — Page 260

Chapter 10

Identify

Overview

Identify describes the format and characteristics of one or more image files. It will
also report whether an image is incomplete or corrupt. The information displayed
for an image includes the following:

• the scene number

• file name

• image width and height

• whether the image is colormapped

• the number of colors in the image

• the number of bytes in the image

• the image format (JPEG, PNM, etc.)

• the number of seconds it took to read and process the image

The following is a sample line output from identify.

images/aquarium.miff 640x480 PseudoClass 256c 308135b MIFF 1s

If -verbose is set, expect additional output including any image comment, such as,

Syntax

Chapter 10, Identify — Page 261

Image: images/aquarium.miff
class: PseudoClass
colors: 256
signature: eb5dca81dd93ae7e6ffae99a5275a53e
matte: False
geometry: 640x480
depth: 8
bytes: 308135
format: MIFF
comments:

Imported from MTV raster image: aquarium.mtv

Syntax
identify file [file ...]

Identify Options

-cache_threshold value

number of megabytes available to the pixel cache.

Image pixels are stored in memory until 80 megabytes of memory have been consumed. Subsequent pixel operations
are cached on disk. Operations to memory are significantly faster but if your computer does not have a sufficient amount
of free memory you may want to adjust this threshold value.

Identify Options

Chapter 10, Identify — Page 262

-ping

Lets you determine image characteristics efficiently.

This is a less memory-intensive way to query whether an image exists and what its size is.

Note: Only the size of the first image in a multiframe image file is returned.

-size <width>x<height>{+offset}{!}{%}

Lets you specify the width and height of a raw image whose dimensions are unknown, such as GRAY, RGB, or CMYK.

In addition to width and height, use -size to skip any header information in the image or tell the number of colors in a
MAP image file, for example,

-size 640x512+256

-verbose

Lets you print the following detailed information about an image:

• image name

• image size

• image depth

Identify Options

Chapter 10, Identify — Page 263

• image format

• image comment

• image scene number

• image class (DirectClass or PseudoClass)

• total unique colors

• number of seconds to read and transform the image

• whether a matte is associated with the image

• the number of runlength packets

Identify Options

Chapter 10, Identify — Page 264

Identify Options

Chapter 10, Identify — Page 265

Chapter 11, Combine — Page 266

Chapter 11

Combine

Combine

Overview

Combine lets you combine two or more images into a new image.

Syntax
combine [options…] image composite [mask] combined

Examples

• To combine a image of a cockatoo with a perch, use

combine cockatoo.miff perch.ras composite.miff

• To compute the difference between images in a series, use

combine -compose difference series.1 series.2
åÂdifference.miff

Combine Options

Chapter 11, Combine — Page 267

• To combine a image of a cockatoo with a perch starting at location (100,150), use

combine -geometry +100+150 cockatoo.miff perch.ras
åÂcomposite.miff

• To tile a logo across your image of a cockatoo, use

convert +shade 30x60 cockatoo.miff mask.miff
combine -compose bumpmap -tile logo.gif cockatoo.miff mask.miff composite.miff

• To combine a red, green, and blue color plane into a single composite image, try

combine -compose ReplaceGreen red.png green.png red-green.png
combine -compose ReplaceBlue red-green.png blue.png cmposite.png

Combine Options

-blend value

Blend lets you blend two images a given percentage.

-cache_threshold value

number of megabytes available to the pixel cache.

Combine Options

Chapter 11, Combine — Page 268

Image pixels are stored in memory until 80 megabytes of memory have been consumed. Subsequent pixel operations
are cached on disk. Operations to memory are significantly faster but if your computer does not have a sufficient amount
of free memory you may want to adjust this threshold value.

-colors value

Lets you specify the preferred number of colors in an image.

The actual number of colors in the image may be fewer than you specify, but will never be more.

Note: This is a color reduction option. Duplicate and unused colors will be removed if an image has fewer unique colors
than you specify. See Appendix D, Quantize for more details. The options -dither, -colorspace, and
-treedepth affect the color reduction algorithm.

 -colorspace value

Lets you specify the type of colorspace.

• GRAY

• OHTA

• RGB

• Transparent

• XYZ

Combine Options

Chapter 11, Combine — Page 269

• YCbCr

• YIQ

• YPbPr

• YUV

• CMYK

Color reduction by default, takes place in the RGB color space. Empirical evidence suggests that distances in color
spaces such as YUV or YIQ correspond to perceptual color differences more closely than distances in RGB space. These
color spaces may give better results when color reducing an image. See Appendix D, Quantize for details.

Note: The transparent colorspace is unique. It preserves the matte channel of the image if it exists.

Tip! The -colors or -monochrome option is required for the transparent option to take effect.

-comment string

Lets you annotate an image with a comment.

By default, each image is commented with its file name. Use this option to assign a specific comment to the image.

Combine Options

Chapter 11, Combine — Page 270

Optionally you can include the image filename, type, width, height, or scene number in the label by embedding special
format characters. The following table shows these characters and their values.

Special Format Characters

Special
Character

Value

%b file size

%d directory

%e filename extention

%f filename

%h height

%i input filename

%l label

%m magick

%n number of scenes

%o output filename

%p page number

%q quantum depth

Combine Options

Chapter 11, Combine — Page 271

For example,

-comment “%m:%f %wx%h”

produces for an image—titled bird.miff whose width is 512 and height is 480—the comment

%s scene number

%t top of filename

%u unique temporary filename

%w width

%x x resolution

%y y resolution

\n newline

\r carriage return

Special Format Characters

Special
Character (Cont.)

Value

Combine Options

Chapter 11, Combine — Page 272

MIFF:bird.miff 512x480

Note: If the first character of string is @, the image comment is read from a file titled by the remaining characters in the
string.

-compose operator

Lets you specify the type of image composition.

By default, each of the composite image pixels are replaced by the corresponding image tile pixel. You can choose an
alternate composite operation. Each operator’s behavior is described below.

Composition Operators

This opera-
tor… Results in…

over the union of the two image shapes, with the composite image obscuring the image in the region of
overlap

in composite image cut by the shape of the image; none of the image data of image will be in the result

out composite image with the shape of the image cut out

atop the same shape as image image, with composite image obscuring image where the image shapes
overlap; (Note: This differs from over because the portion of composite image outside image’s shape
does not appear in the result.)

Combine Options

Chapter 11, Combine — Page 273

The image compositor requires a matte or alpha channel in the image for some operations. This extra channel usually
defines a mask that represents a sort of a cookie-cutter for the image.

xor the image data from both composite image and image that is outside the overlap region; the overlap
region will be blank

plus just the sum of the image data; output values are cropped to 255 (no overflow); this operation is
independent of the matte channels

minus composite image minus image, with underflow cropped to 0; the matte channel is ignored (set to 255,
full coverage)

add composite image plus image, with overflow wrapping around (mod 256)

subtract composite image minus image, with underflow wrapping around (mod 256); the add and subtract
operators can be used to perform reversible transformations

difference The result of abs (composite image minus image); this is useful for comparing two very similar images

bumpmap image shaded by composite image

replace image replaced with composite image; here the matte information is ignored

Composition Operators

This opera-
tor…
 (Cont.)

Results in…

Combine Options

Chapter 11, Combine — Page 274

This is the case when matte is 255 (full coverage) for pixels inside the shape, 0 outside, and between 0 and 255 on the
boundary. For certain operations, if image does not have a matte channel, it’s initialized with 0 for any pixel matching
in color to pixel location (0,0). Otherwise it’s 255.

Note: To work properly, borderwidth must be 0.

-compress type

Lets you specify one of the following types of image compression:

• None

• Bip

• Fax

• Group 4

• JPEG

• LZW

• RunlengthEncoded

• Zip

Specify

Combine Options

Chapter 11, Combine — Page 275

+compress

to store the binary image in an uncompressed format. The default is the compression type of the specified image file.

-density <width>x<height>

Lets you specify in pixels the vertical and horizontal resolution of an image.

This option lets you specify an image density when decoding a PostScript or Portable Document page. The default is 72
pixels per inch in the horizontal and vertical direction.

-display host:display[.screen]

Specifies the X server to contact. See the X Windows system manual at http://www.x.org for details about the specifi-
cation.

-displace <horizontal scale>x<vertical scale>

Lets you shift image pixels as defined by a displacement map. With this option, a composite image is used as a
displacement map.

In the displacement map

• black is a maximum positive displacement

• white is a maximum negative displacement

Combine Options

Chapter 11, Combine — Page 276

• middle gray is neutral

The displacement is scaled to determine the pixel shift. By default, the displacement applies to both the horizontal and
vertical directions. However, if you specify mask, the composite image is the horizontal X displacement and mask is
the vertical Y displacement.

-display host:display[.screen]

Specifies the X server to contact. See the X Windows system manual at http://www.x.org for details about the specifi-
cation.

-dispose

Lets you specify one of the following GIF disposal methods:

GIF Disposal Methods

This method… Specifies…

0 no disposal specified

1 do not dispose between frames

2 overwrite frame with background color from header

3 overwrite with previous frame

Combine Options

Chapter 11, Combine — Page 277

-dither

Lets you apply Floyd/Steinberg error diffusion to an image.

Dithering trades intensity resolution for spatial resolution by averaging the intensities of several neighboring pixels. You
can use this option to improve images that suffer from severe contouring when reducing colors.

Note: The -colors or -monochrome option is required for dithering to take effect.

Tip! Use +dither to render PostScript without text or graphic aliasing.

 -font name

Font lets you specify the font to use when annotating an image with text.

If the font is a fully-qualified X server font name, the font is obtained from an X server, for example,

-*-helvetica-medium-r-*-*-12-*-*-*-*-*-iso8859-*

To use a TrueType font, precede the TrueType filename with @, for example,

@times.ttf

Otherwise, specify a PostScript font, for example,

helvetica

Combine Options

Chapter 11, Combine — Page 278

-geometry <width>x<height>{!}{<}{>}{%}

Lets you specify the size and location of an image window. See the X Windows system manual at http://www.x.org for
details about the geometry specification. By default, the window size is the image size. You specify its location when
you map it.

The width and height, by default, are maximum values. That is, the image is expanded or contracted to fit the width and
height value while maintaining the aspect ratio of the image.

Append an exclamation mark to the geometry to force the image size to exactly the size you specify. For example,

640x480!

sets the image width to 640 pixels and height to 480. If you specify one factor only, both the width and height assume
that value.

To specify a percentage width or height instead, append %. The image size is multiplied by the width and height
percentages to obtain the final image dimensions. To increase the size of an image, use a value greater than 100 (e.g.,
125%). To decrease an image’s size, use a percentage less than 100.

Use > to change the dimensions of the image only if its size exceeds the geometry specification. If the image dimension
is smaller than the geometry you specify, < resizes the image. For example, if you specify

640x480>

and the image size is 512x512, the image size does not change. However, if the image is 1024x1024, it’s resized to
640x480.

Combine Options

Chapter 11, Combine — Page 279

Tip! There are 72 pixels per inch in PostScript coordinates.

 -gravity direction

Lets you specify the direction an image gravitates within a tile. See the X Windows system manual at http://www.x.org
for details about the gravity specification.

A tile of a composite image is a fixed width and height. However, the image within the tile may not fill it completely (see -geometry).

The direction you choose specifies where to position the image within the tile. For example, center gravity forces the image to be
centered within the tile. By default, the image gravity is center.

 -interlace type

Lets you specify one of the following interlacing schemes:

• none (default)

• line

• plane

• partition

Combine Options

Chapter 11, Combine — Page 280

Interlace also lets you specify the type of interlacing scheme for raw image formats such as RGB or YUV.

Tip! Use line, or plane to create an interlaced GIF or progressive JPEG image.

 -matte

Lets you store the matte channel (i.e., the transparent channel) if an image has one.

-monochrome

Lets you transform an image to black and white.

Interlace Types

Scheme Description

none does not interlace (e.g., RGBRGBRGBRGBRGBRGB...)

line uses scanline interlacing (e.g., RRR...GGG...BBB...RRR...GGG...BBB...)

plane uses plane interlacing (e.g., RRRRRR...GGGGGG...BBBBBB...)

partition similar to plane except that different planes are saved to individual files (e.g.,
image.R, image.G, and image.B)

Combine Options

Chapter 11, Combine — Page 281

 -negate

Lets you apply color inversion to an image.

The red, green, and blue intensities of an image are negated. Use +negate to negate only the grayscale pixels of the
image.

 -page <width>x<height>{+-}<x offset>{+-}<y offset>{!}{<}{>}{%}

Lets you set the size and location of an image canvas. Use this option to specify the dimensions of a

• PostScript page in dots per inch (dpi) or a

• TEXT page in pixels

This option is used in concert with -density.

The choices for a PostScript page are

Postscript Page Sizes

Media Size (pixel width by pixel height)

11x17 792 1224

Ledger 1224 792

Combine Options

Chapter 11, Combine — Page 282

Legal 612 1008

Letter 612 792

LetterSmall 612 792

ArchE 2592 3456

ArchD 1728 2592

ArchC 1296 1728

ArchB 864 1296

ArchA 648 864

A0 2380 3368

A1 1684 2380

A2 1190 1684

A3 842 1190

A4 595 842

A4Small 595 842

Postscript Page Sizes

Media (Cont.) Size (pixel width by pixel height)

Combine Options

Chapter 11, Combine — Page 283

A5 421 595

A6 297 421

A7 210 297

A8 148 210

A9 105 148

A10 74 105

B0 2836 4008

B1 2004 2836

B2 1418 2004

B3 1002 1418

B4 709 1002

B5 501 709

C0 2600 3677

C1 1837 2600

Postscript Page Sizes

Media (Cont.) Size (pixel width by pixel height)

Combine Options

Chapter 11, Combine — Page 284

You can specify the page size by media (e.g. , A4, Ledger, etc.). Otherwise, -page behaves much like -geometry
(e.g., -page letter+43+43>).

• To position a GIF image, use

-page {+-}<x offset>{+-}<y offset>

for example,

-page +100+200

C2 1298 1837

C3 918 1298

C4 649 918

C5 459 649

C6 323 459

Flsa 612 936

Flse 612 936

HalfLetter 396 612

Postscript Page Sizes

Media (Cont.) Size (pixel width by pixel height)

Combine Options

Chapter 11, Combine — Page 285

For a PostScript page, the image is sized as in -geometry and positioned relative to the lower-left hand corner of the
page by {+-}<x offset>{+-}<y offset>. The default page dimension for a TEXT image is 612x792.

• To position a TEXT page, use

-page 612x792>

to center the image within the page.

Tip! If the image size exceeds the PostScript page, it’s reduced to fit the page.

 -quality value

Lets you specify one of the following compression levels:

• JPEG with a value from 0–100 (i.e., worst to best); the default is 75

• MIFF with a value from 0–100 (i.e., worst to best); sets the amount of image compression (quality/10) and
filter-type (quality % 10)

• PNG with a value from 0–100 (i.e., worst to best); sets the amount of image compression (quality/10) and filter-
type (quality % 10)

The following are valid filter types:

• 0 for none; used for all scanlines

• 1 for sub; used for all scanlines

Combine Options

Chapter 11, Combine — Page 286

• 2 for up; used for all scanlines

• 3 for average; used for all scanlines

• 4 for Paeth; used for all scanlines

• 5 for adaptive filter; used when quality is greater than 50 and the image doesn’t have a colormap; otherwise
no filtering is used

• 6 or higher for adaptive filtering; used with minimum-sum-of-absolute-values

Note: The default is quality is 75—nearly the best compression with adaptive filtering.

For more information, see the PNG specification (RFC 2083) at http://www.w3.org/pub/WWW/TR.

-scene value

Lets you specify the image scene number.

-size <width>x<height>{+offset}{!}{%}

Lets you specify the width and height of a raw image whose dimensions are unknown, such as GRAY, RGB, or CMYK.

In addition to width and height, use -size to skip any header information in the image or tell the number of colors in a
MAP image file, for example,

-size 640x512+256

Combine Options

Chapter 11, Combine — Page 287

-stereo

Lets you combine two images to create a stereo anaglyph.

The left side of the stereo pair is saved as the red channel of the output image. The right side is saved as the green
channel.

Note: You need red-blue stereo glasses to properly view the stereo image.

 -tile <width>x<height>

Lets you specify the number of tiles to appear in each row and column of a composite image.

Specify the numbr of tiles per row with width and the number of tiles per column with height. For example, if you want
one tile in each row and up to 10 tiles in the composite image, use

-tile 1x10

The default is five tiles in each row and four tiles in each column of the composite.

 -treedepth value

Lets you choose an optimal tree depth for the color reduction algorithm. Normally, value is 0 or 1.

Combine Options

Chapter 11, Combine — Page 288

An optimal depth generally provides the best representation of the source image with the fastest computational speed
and the least amount of memory. However, the default depth is inappropriate for some images. To assure the best repre-
sentation try values between 2 and 8. See Appendix D, Quantize for details.

Note: The -colors or -monochrome option is required for treedepth to take effect.

Using Mask

The optional mask can be used to provide matte information for composite when it has none or if you want a different mask. a mask
image is typically grayscale and the same size as composite. if the image is not grayscale, it is converted to grayscale and the resulting

intensities are used as matte information.

If combined already exists, you will be prompted to overwrite it.

Chapter 12, PerlMagick — Page 289

Chapter 12

PerlMagick

Overview

PerlMagick is an objected-oriented Perl interface to ImageMagick. You can use it to
read, manipulate, or write an image or image sequence from within a Perl script.
This makes it very suitable for web CGI scripts.

For either Perl script or CGI scripts to work, you must have the following installed
on your system:

• ImageMagick 5.1.0 or later

• Perl 5.002 or later

Note: Perl version 5.005_02 or later is required for PerlMagick to work on an NT
system.

There are a number of useful scripts available to show you the value of PerlMagick.
You can do web-based image manipulation and conversion with MogrifyMagick, or
use L-systems to create images of plants using mathematical constructs. Finally ,
you can navigate through collections of thumbnail images and select an image to
view with the WebMagick Image Navigator.

An object-oriented Python interface to ImageMagick is also available, see
PythonMagick at http://starship.skyport.net/crew/zack/pymagick/.

Installing PerlMagick

Chapter 12, PerlMagick — Page 290

Installing PerlMagick

Instructions for installing PerlMagick are organized by platform in the following sections.

Installing for Unix

ImageMagick must already be installed on your system.

Note: For Unix, you typically need to be root to install the software. There are ways around this. Consult the Perl
manual pages for more information.

1 Download the PerlMagick distribution from ftp://ftp.wizards.dupont.com/pub/ImageMagick/perl.

2 Unpack the distribution by typing the following at the system prompt:

gunzip -c PerlMagick-5.10.tar.gz | tar -xvf - cd PerlMagick

3 Edit Makefile.PL and change LIBS and INC to include the appropriate path information to the required
libMagick library.

Note: You will also need paths to the JPEG, PNG, TIFF, etc. delegates if they were included with your installed
version of ImageMagick.

4 Type the following to build and install PerlMagick:

perl Makefile.PL make make install

Installing PerlMagick

Chapter 12, PerlMagick — Page 291

Installing for Windows NT/95/98

ImageMagick must already be installed on your system. The ImageMagick source distribution for Windows NT is also
required and you must have the nmake from the Visual C++ or J++ development environment.

1 Copy \bin\IMagick.dll and \bin\X11.dll to a directory in your dynamic load path, such as c:\perl\site\5.00502.

2 Type

cd PerlMagick
copy Makefile.nt Makefile.PL
perl Makefile.PL
nmake
nmake install

Running the Regression Tests

1 To verify a correct installation, type

make test

Use nmake test under Windows. A few demonstration scripts are available to exercise many of the
functions PerlMagick can perform.

2 Type

cd demo
make

Using PerlMagick within PerlScripts

Chapter 12, PerlMagick — Page 292

You are now ready to use the PerlMagick methods from within your Perl scripts.

Using PerlMagick within PerlScripts

Any script that uses PerlMagick methods must first define the methods within its namespace and instantiate an image
object. Do this with:

use Image::Magick;
$image=Image::Magick->new;

The new method takes the same parameters as SetAttribute. For example,

$image=Image::Magick->new(size=>’384x256’);

Next you’ll want to

• read an image or image sequence,

• manipulate it, then

• display or write it.

The remainder of this chapter is divided into the following sections:

• Reading and Writing an Image defines the input and output methods for PerlMagick.

Using PerlMagick within PerlScripts

Chapter 12, PerlMagick — Page 293

• Setting an Image Attribute identifies methods that affect the way an image is read or written.

• Manipulating an Image provides a list of methods you can use to transform an image.

• Getting an Image Attribute describes how to retrieve an attribute for an image.

• Creating an Image Montage provides details about tiling your images as thumbnails on a background.

• Miscellaneous Methods describes methods that don’t neatly fit into any of the above categories.

Destroying PerlMagick Objects

Once you’re finished with a PerlMagick object you should consider destroying it. Each image in an image sequence is
stored in virtual memory. This can potentially add up to mega-bytes of memory. After you destroy a PerlMagick object,
memory is returned for use by other Perl methods. The recommended way to destroy an object is with undef.

undef $image

To delete all the images but retain the Image::Magick object use

undef @$image

To delete a single image from a multi-image sequence, use

undef $image->[x];

The next section illustrates how to use various PerlMagick methods to manipulate an image sequence.

Using PerlMagick within PerlScripts

Chapter 12, PerlMagick — Page 294

Some of the PerlMagick methods require external programs such as Ghostscript. This may require an explicit path in
your PATH environment variable to work properly. For example,

$ENV{PATH}=’/bin:/usr/bin:/usr/local/bin’;

Examples

The following are an examples of scripts to get you started.

• The following script reads three images, crops them, and writes a single image as a GIF animation sequence.

#!/usr/local/bin/perl
use Image::Magick;

my($image, $x);

$image = Image::Magick->new;
$x = $image->Read(‘girl.gif’, ‘logo.gif’, ‘rose.gif’); warn “$x” if “$x”;

$x = $image->Crop(geometry=>’100x100+100+100’);
warn “$x” if “$x”;

$x = $image->Write(‘x.gif’);
warn “$x” if “$x”;

• In many cases you may want to access individual images of a sequence. The next example illustrates how this
is done:

#!/usr/local/bin/perl
use Image::Magick;

Using PerlMagick within PerlScripts

Chapter 12, PerlMagick — Page 295

my($image, $p, $q);

$image = new Image::Magick;
$image->Read(‘x1.gif’);
$image->Read(‘j*.jpg’);
$image->Read(‘k.miff[1, 5, 3]’);
$image->Contrast;
for ($x = 0; $image->[x]; $x++)
{
 $image->[x]->Frame(‘100x200’) if $image->[x]->Get(‘magick’) eq ‘GIF’;
 undef $image->[x] if $image->[x]->Get(‘columns’) < 100;
}
$p = $image->[1];
$p->Draw(pen=>’red’, primitive=>’rectangle’, points=>20, 20 100, 100’);
$q = $p->Montage();
undef $image;
$q->Write(‘x.miff’);

• Suppose you want to start out with a 100 x100 pixel black canvas with a red pixel in the center. Try

$image = Image::Magick->new;
$image->Set(size=>’100x100’);
$image->ReadImage(‘xc:white’);
$image->Set(‘pixel[49, 49]’=>’red’);

• Perhaps you want to convert your color image to grayscale. Try

$image->Quantize(colorspace=>’gray’);

• Other clever things you can do with PerlMagick objects include

$i = $#$p+1;# return the number of images associated with object p

Reading and Writing an Image

Chapter 12, PerlMagick — Page 296

push(@$q, @$p);# push the images from object p onto object q
undef @$p;# delete the images but not the object p

Reading and Writing an Image

Use the methods listed below to read, write, or display an image or image sequence.

For convenience, the Write, Display, and Animate methods can take any parameter SetAttribute recognizes. For example,

$image->Write(filename=>’image.png’, compress=>’None’);

Read, write, and display methods

Read/Write Meth-
ods/Description

Parameters Return Value

Read reads an image or image
sequence.

one or more filenames the number of images read

Write writes an image or image
sequence.

filename the number of images written

Display displays an image or
image sequence to an X server.

server name the number of images displayed

Animate animates an image
sequence to an X server.

server name the number of images animated

Manipulating an Image

Chapter 12, PerlMagick — Page 297

Use - as the filename to method Read to read from standard in or to method Write to write to standard out, for example,

binmode STDOUT; $image->Write(‘gif:-’);

Examples

• To read an image in the GIF format from a PERL filehandle, use

$image = Image::Magick->new(magick=>’GIF’);
open(DATA, ‘image.gif’);
$image->Read(file=>DATA);
close(DATA);

• To write an image in the PNG format to a PERL filehandle, use

$filename = “image.png”;
open(DATA, “>$filename”);
$image->Write(file=>DATA, filename=>$filename); c
lose(DATA);

• You can optionally add Image to any method name. For example, ReadImage is an alias for method Read.

Manipulating an Image

Once you create an image with method ReadImage, for example, you may want to operate on it. The following is an
example of a call to an image manipulation method:

$image->Crop(geometry=>’100x100+10+20’);

Manipulating an Image

Chapter 12, PerlMagick — Page 298

$image->[x]->Frame(“100x200”);

Manipulating an Image

Chapter 12, PerlMagick — Page 299

The following table shows additional image manipulation methods you can call.

Image Manipulation Methods

Image Manipulation
Method/Description

Parameters

AddNoise adds noise to an image. noise=>{Uniform, Gaussian, Multiplicative, Impulse,
Laplacian, Poisson}

Annotate annotates an image with text. text=>string, font=>string, pointsize=>integer,
density=>geometry, box=>colorname, pen=>colorname ,
geometry=>geometry, server=>{string, @filename},
gravity=>{NorthWest, North, NorthEast, West, Center,
East, SouthWest, South, SouthEast}, x=>integer,
y=>integer,degrees=>double

Blur blurs an image. factor=>percentage

Border surrounds an image with a
colored border.

geometry=>geometry, width=>integer, height=>integer,
x=>integer, y=>integer

Charcoal simulates a charcoal
drawing.

factor=>percentage

Chop chops an image. geometry=>geometry, width=>integer, height=>integer,
x=>integer, y=>integer

Clone makes a copy of an image. n/a

Manipulating an Image

Chapter 12, PerlMagick — Page 300

Coalesce merges a sequence of
images.

n/a

ColorFloodfill changes the color value
of any neighboring pixel that matches
the color of the target pixel. If you
specify a border color, the color value
is changed for any neighboring pixel
that isn’t that color.

geometry=>geometry, x=>integer, y=>integer,
pen=>colorname, bordercolor=>colorname

Colorize colorizes an image with the
pen’s color.

color=>colorname, pen=>colorname

Comment adds a comment to an
image.

string

Composite composites one image onto
another.

compose=>{Over, In, Out, Atop, Xor, Plus, Minus, Add,
Subtract, Difference, Bumpmap, Replace, ReplaceRed,
ReplaceGreen, ReplaceBlue, ReplaceMatte, Blend,
Displace}, image=>image-handle, geometry=>geometry,
x=>integer, y=>integer, gravity=>{NorthWest, North,
NorthEast, West, Center, East, SouthWest, South,
SouthEast}

Image Manipulation Methods

Image Manipulation
Method/Description (Cont.)

Parameters

Manipulating an Image

Chapter 12, PerlMagick — Page 301

Condense compresses an image to take
up the least amount of memory.

n/a

Contrast enhances or reduces the
image contrast.

sharpen=>{True, False}

Crop crops an image. geometry=>geometry, width=>integer, height=>integer,
x=>integer, y=>integer

Deconstruct break down an image
sequence into constituent parts.

n/a

Despeckle displaces the image
colormap by an amount.

amount=>integer

Draw annotates an image with one or
more graphic primitives.

primitive=>{point, Line, Rectangle, FillRectangle, Circle,
FillCircle, Ellipse, FillEllipse, Polygon, FillPolygon,
Color, Matte, Text, Image, @filename}, points=>string,
method=>{Point, Replace, Floodfill, FillToBorder,
Reset}, pen=>colorname, bordercolor=>colorname,
linewidth=>integer, server=>string

Edge detects edges in an image. factor=>percentage

Emboss embosses an image. n/a

Image Manipulation Methods

Image Manipulation
Method/Description (Cont.)

Parameters

Manipulating an Image

Chapter 12, PerlMagick — Page 302

Enhance applies a digital filter to
enhance a noisy image.

n/a

Equalize performs a histogram
equalization to an image.

n/a

Flip creates a mirror image by
reflecting the image scanlines
vertically.

n/a

Flop creates a mirror image by
reflecting the image scanlines
horizontally.

n/a

Frame surrounds an image with an
ornamental border.

geometry=>geometry, width=>integer, height=>integer,
inner=>integer, outer=>integer, color=>colorname

Gamma gamma corrects an image. gamma=>double, red=>double, green=>double,
bue=>double

Implode implodes image pixels about
the image center.

factor=>percentage

Label assigns a label to an image. string

Image Manipulation Methods

Image Manipulation
Method/Description (Cont.)

Parameters

Manipulating an Image

Chapter 12, PerlMagick — Page 303

Layer extracts a layer from an image. layer={Red, Green, Blue, Matte}

Magnify doubles the size of an image. n/a

Map chooses a particular set of colors
from an image.

image=>image-handle, dither={True, False}

MatteFloodfill change the matte value
of any pixel that matches the color of
the target pixel and is a neighbor. If
you specify a border color, the matte
value is changed for any neighbor
pixel that’s not that color.

geometry=>geometry, width=>integer, height=>integer,
matte=>integer, border=>colorname

MedianFilter replace each pixel with
the median color in the neighborhood.

radius=>integer

Minify reduces the size of an image by
half.

n/a

Modulate varies the brightness,
saturation, and hue of an image.

brightnes=>double, saturation=>double, hue=>double

Negate applies color inversion to an
image.

gray=>{True, False}

Image Manipulation Methods

Image Manipulation
Method/Description (Cont.)

Parameters

Manipulating an Image

Chapter 12, PerlMagick — Page 304

Normalize transforms an image to
span the full range of color values.

n/a

OilPaint simulates an oil painting. color=>colorname, pen=>colorname

Opaque changes the color to the pen
color in the image.

color=>colorname, pen=>colorname

Quantize is the preferred number of
colors in an image.

colors=>integer, colorspace=>{RGB, Gray, Transparent,
OHTA, XYZ, YCbCr, YIQ, YPbPr, YUV, CMYK},
treedepth=>integer, dither=>{True, False},
measure_error=>{True, False}, global_colormap=>{True,
False}

Raise lightens or darkens image edges
to create a 3D effect.

geometry=>geometry, width=>integer, height=>integer,
x=>integer, y=>integer, raise=>{True, False}

ReduceNoise adds or reduces the noise
in an image.

n/a

Roll rolls an image vertically or
horizontally.

geometry=>geometry, x=>integer, y=>integer

Rotate rolls an imag vertically or
horizontally.

degrees=>double, crop=>{True, False}, sharpen=>{True,
False}

Image Manipulation Methods

Image Manipulation
Method/Description (Cont.)

Parameters

Manipulating an Image

Chapter 12, PerlMagick — Page 305

Sample scales an image with pixel
sampling.

geometry=>geometry, width=>integer, height=>integer

Scale scales an image to a specified
size.

geometry=>geometry, width=>integer, height=>integer

Segment segments an image by
analyzing the histograms of color
components adn identifying units that
are homogeneous.

colors=>integer, colorspace=>{RGB, Gray, Transparent,
OHTA, XYZ, YCbCr, YIQ, YPbPr, YUV, CMYK},
verbose=>{True, False}, cluster=>double,
smooth=>double

Shade shades an image using a distant
light source.

geometry=>geometry, azimuth=>double,
elevation=>double, color=>{True, False}

Sharpen sharpens an image. factor=>percentage

Shear shears an image along the X or
Y axis by a positive or negative shear
angle.

geometry=geometry, x=>double, y=>double,
crop=>{True, False}

Signature generates an MD5 signature
for an image.

n/a

Solarize negates all pixels above a
threshold level.

factor=>percentage

Image Manipulation Methods

Image Manipulation
Method/Description (Cont.)

Parameters

Manipulating an Image

Chapter 12, PerlMagick — Page 306

Spread displaces image pixels by a
random amount.

amount=>integer

Stereo combines two images and
produces a simgle image that’s the
composite of a left and right image of
a stereo pair.

image=>image-handle

Stegano hides a digital watermark in
an image.

image=>image-handle, offset=>integer

Swirl swirls image pixels about the
center.

degrees=>double

Texture specifies name of a texture to
tile onto an image background.

filename=>string

Threshold thresholds an image. threshold=>integer

Transform crops or resizes an image
with a fully-qualified geometry
specification.

crop=>geometry, geometry=>geometry, filter->{Point,
Box, Triangle, Hermite, Hanning, Hamming, Blackman,
Gaussian, Quadratic, Cubic, Catrom, Mitchell, Lanczos,
Bessel, Sinc}

Image Manipulation Methods

Image Manipulation
Method/Description (Cont.)

Parameters

Manipulating an Image

Chapter 12, PerlMagick — Page 307

Note: A geometry parameter is a short cut for the width and height parameters, for example,

geometry=>’106x80’

is equivalent to width=>106, height=>80).

You can specify @filename in both Annotate and Draw. This reads the text or graphic primitive instructions
from a file on disk. For example,

Transparent makes the specified color
transparent in an image.

color=>colorname

Trim removes from an image edges
that are the background color.

n/a

Wave alters an image along a sine
wave.

geometry=>geometry., amplitude=>double,
wavelength=>double

Zoom scales an image to a specified
size. Use blur > 1 for blurry or < 1 for
sharp.

geometry=>geometry, width=>integer, height=>integer,
filter=>{Point, Box, Triangle, Hermite, Hanning,
Hamming, Blackman, Gaussian, Quadratic, Cubic,
Catrom, Mitchell, Lanczos, Bessel, Sinc}, blur=>double

Image Manipulation Methods

Image Manipulation
Method/Description (Cont.)

Parameters

Manipulating an Image

Chapter 12, PerlMagick — Page 308

$image->Draw(pen=>’red’, primitive=>’rectangle’, points=>’20, 20 100, 100 40, 40 200,
Â200 60, 60 300, 300’);

is eqivalent to

$image->Draw(pen=>’red’, primitive=>’@draw.txt’);

where draw.txt is a file on disk that contains

rectangle 20, 20 100, 100
rectangle 40, 40 200, 200
rectangle 60, 60 300, 300

The text parameter for methods Annotate, Comment, Draw, and Label can include the image filename, type, width, height,
or other image attribute by embedding the following special format characters:

Special Format Characters

Special
Character

Value

%b file size

%d directory

%e filename extention

%f filename

%h height

Manipulating an Image

Chapter 12, PerlMagick — Page 309

%i input filename

%l label

%m magick

%n number of scenes

%o output filename

%p page number

%q quantum depth

%s scene number

%t top of filename

%u unique temporary filename

%w width

%x x resolution

%y y resolution

\n newline

Special Format Characters

Special
Character (Cont.)

Value

Setting an Image Attribute

Chapter 12, PerlMagick — Page 310

Optionally you can add Image to any method name. For example, TrimImage is an alias for method Trim.

Most of the attributes listed above have an analog in convert. See Chapter 8, Convert for a detailed description of
these attributes.

Setting an Image Attribute

 Use method Set to set an image attribute. For example,

$image->Set(dither=>’True’);
$image->[$x]->Set(delay=>3);

\r carriage return

Special Format Characters

Special
Character (Cont.)

Value

Setting an Image Attribute

Chapter 12, PerlMagick — Page 311

The following are image attributes you can set.

Read/Write Image Attributes

Attribute/Description Values

adjoin joins images into a single mult-image file True, False

antialias removes pixel aliasing True, False

background is the image’s background color string

blue_primary is the chromaticity of the blue primary
point (e.g., 0.15, 0.06)

x-value, y-value

bordercolor sets the images border color string

cache_threshold is the amount of memory that
must be consumed by image pixels before they are
cached to disk. The default is 80 megabytes. If your
computer has limited memory resources, consider
lowering this value.

integer

colormap[i] is the color name (e.g., red) or hex value
(e.g., #ccc) at position i

string

colorspace is the type of colorspace RGB, CMYK

compress is the type of image compression none, BZip, Fax, JPEG, LZW,
Runlength, Zip

Setting an Image Attribute

Chapter 12, PerlMagick — Page 312

delay is the number of 1/100ths of a second that must
expire before displaying thenext image in a sequence

integer

density is te vertical and horizontal resolution of an
image in pixels

geometry

depth is the image depth integer

dispose is the GIF disposal method 1, 2, 3, 4

dither applies the Floyd/Steinberg error diffusion to
an image

True, False

display specifies an X server to contact string

file sets the image filehandle filehandle

filename sets the image file name string

font is used when annotating an image with text string

fuzz specifies the distance within which colors are
considered equal

integer

green_primary is the chromaticity of the green
primary point (e.g., 0.3, 0.6)

x-value, y-value

Read/Write Image Attributes

Attribute/Description (Cont.) Values

Setting an Image Attribute

Chapter 12, PerlMagick — Page 313

interlace is the type of interlacing scheme None, Line, Plan, Partition

iterations adds a Netscape loop to a GIF animation integer

loop adds a Netscape loop to a GIF animation integer

magick sets theimage format string

mattecolor sets the image matte color string

monochrome transforms an image to black and white string

page is the preferred size and location of an image
canvas

Letter, Tabloid, Ledger, Legal,
Statement, Executrive, A32, A4, A5,
B4, B5, Folio, Quarto, 10x14, or
geometry

pen is the color name (e.g., red) or hex value (e.g., #ccc)
for annotating or changing an opaque color

color

pixel[x,y] is the color name (e.g., red) or hex value
(e.g., #ccc) at poisition (x,y)

string

pointsize is te size of the PostScript of TrueType font integer

Read/Write Image Attributes

Attribute/Description (Cont.) Values

Setting an Image Attribute

Chapter 12, PerlMagick — Page 314

preview is the type of preview for the Preview image
format

Rotate, Shear, Roll, Hue, Saturation,
Brightness, Gamma, Spiff, Dull,
Grayscale, Quantize, Despeckle,
ReduceNoise, AddNoise, Sharpen,
Blue, Threshold, EdgeDetect, Spread,
Solarize, Shade, Raise, Segment,
Swirl, Implode, Wave, OilPaint,
CharcoalDrawing, JPEG

quality is the JPEG/MIFF/PNG compression level integer

red_primary is the chromaticity of the red primary
point (e.g., 0.64, 0.33)

x-value, y-value

rendering_intent is the type ofrendering intent Undefined, Saturation, Percetual,
Absolute, Relative

scene is the image scene number integer

subimage is part of an image sequence integer

subrange is the number of images relative to the base
image

integer

Read/Write Image Attributes

Attribute/Description (Cont.) Values

Setting an Image Attribute

Chapter 12, PerlMagick — Page 315

Note: The geometry parameter is a short cut for the width and height parameters, for example,

geometry=>’106x80’

is equivalent to

width=>106, height=>80).

SetAttribute is an alias for method Set.

Most of the attributes listed in the table above have an analog in convert. See Chapter 8, Convert for a detailed
description of these attributes.

server specifies an X server to contact string

size is the width and height of a raw image string

tile is the tile name of an image string

texture is the name of the texture totile ontoan image
background

string

verbose prints detailed information about an image True, False

white_primary is the chromaticity of the white
primary point (e.g., 0.3127, 0.329)

x-value, y-value

Read/Write Image Attributes

Attribute/Description (Cont.) Values

Getting an Image Attribute

Chapter 12, PerlMagick — Page 316

Getting an Image Attribute

Use method Get to get an image attribute. For example,

($a, $b, $c) = $image->Get(‘colorspace’, ‘magick’, ‘adjoin’);
$width = $image->[3]->Get(‘columns’);

In addition to all the attributes listed in Setting an Image Attribute, you can get these additional attributes:

Read-Only Image Attributes

Attribute/Description Values

base_columns is the base image width (before
transformations)

integer

base_filename is the base image file name (before
transformations)

string

base_rows is the base image height (before
transformations)

integer

class is the image class Direct, Pseudo

colors is the number of unique colors in an image integer

comment is the image comment string

columns is the image width integer

Getting an Image Attribute

Chapter 12, PerlMagick — Page 317

directory is the tile names from within an image montage string

filesize is the number of bytes of an image on disk integer

format gets the descriptive image format string

gamma is the gamma level of an image double

geometry is the image geometry string

height is the number of row or heith of an image integer

label is the image label string

matte is the image transparency (true means an image has
tranparency)

True, False

mean is the mean error per pixel computed whn animage is
color reduced

double

montage is the tile size and offset within an image montagw geometry

normalized_max is the nomralized max error per pixel
computed when an image is color reduced

double

normalized_mean is the normalized mean error per pixel
coputed when an image is color reduced

double

Read-Only Image Attributes

Attribute/Description (Cont.) Values

Getting an Image Attribute

Chapter 12, PerlMagick — Page 318

GetAttribute is an alias for method Get.

pakcketsize is the numbe rof byptes in each pixel packet integer

packets is the number of runlength-encoded packets in an
image

integer

rows is the number of rows or height of an image integer

signature is the MD5 signature associated with an image string

text is any text associated with an image string

type is the image type bilevel, greyscale, palette, true
color, true color with transparency,
color separation

units is the units of resolution string

view is the FlashPix viewing parameters string

width is the number of columns or width of an image integer

x-resolution is the x resolution of an image integer

y-resolution is they resolution of an image integer

Read-Only Image Attributes

Attribute/Description (Cont.) Values

Creating an Image Montage

Chapter 12, PerlMagick — Page 319

Most of the attributes listed above have an analog in convert. See Chapter 8, Convert for a detailed description of these
attributes.

Creating an Image Montage

Use method Montage to create a composite image by combining several separate images. The images are tiled on the
composite image with the name of the image optionally appearing just below the individual tile. For example,

 $image->Montage(geometry=>’160x160’, tile=>’2x2’, texture=>’granite:’);

Creating an Image Montage

Chapter 12, PerlMagick — Page 320

Montage parameters you can set are:

Montage Options

Parameter/Description Values

background is the X11 color name color

borderwidth is the image border
width

integer

compose is the composite operator Over, In, Out, Atop, Xor, Plus, Minus,
Add, Subtract, Difference, Bumpmap,
Replace, MatteReplace, Mask, Blend,
Displace

filename is the name of a montage
image

string

font is the X11 font name string

frame surrounds an image with an
ornamental border

geometry

geometry is the preferred tile and
border size of each tile of a composit
image

geometry

Creating an Image Montage

Chapter 12, PerlMagick — Page 321

gravity is the direction an image
gravitates within a tile

NorthWest, North, NorthEast, West,
Center, East, SouthWest, South,
SouthEast

label assigns a label to an image string

mode specifies thumbnail framing
options

Frame, Unframe, Concatenate

pen is the color for annotation text string

pointsize is the size of a PostScript
or TrueType font

integer

shadow adds a shadow beneath a tile to
simulate depth

True, False

texture is the name of a texture to tile
onto an image background

string

tile is the number of tiles per row and
column

geometry

title assigns a title to an image
montage

string

Montage Options

Parameter/Description (Cont.) Values

Miscellaneous Methods

Chapter 12, PerlMagick — Page 322

Note: The geometry parameter is a short cut for the width and height parameters, for example,

geometry=>’106x80’

is equivalent to

width=>106, height=>80)

MontageImage is an alias for method Montage.

Most of the attributes listed in the table above have an analog in montage. See Chapter 7, Montage for a detailed
description of these attributes.

Miscellaneous Methods

Append

The Append method appends a set of images. For example,

transparent specifies the color to
make transparent within an image

string

Montage Options

Parameter/Description (Cont.) Values

Miscellaneous Methods

Chapter 12, PerlMagick — Page 323

$x = $image->Append(stack=>{true,false});

appends all the images associated with object $image. All the specified images must have the same width or height.
Same-width images are stacked top to bottom. Same-height images are stacked left to right. Rectangular images are
stacked left to right when the stack parameter is False. When the parameter is True, rectangular images are stacked
top to bottom.

Average

The Average method averages a set of images. For example,

$x = $image->Average();

averages all the images associated with object $image.

Morph

The Morph method morphs a set of images. Both the image pixels and size are linearly interpolated to give the
appearance of a metamorphosis from one image to the next, for example,

$x = $image->Morph(frames=>integer);

where frames is the number ofintermediate images to generate. The default is 1.

Miscellaneous Methods

Chapter 12, PerlMagick — Page 324

Mogrify

The Mogrify method is a single entry point for the image manipulation methods (see Manipulating an Image). The
parameters are the name of a method followed by any parameters the method may require. For example, these calls are
equivalent:

$image->Crop(‘340x256+0+0’);
$image->Mogrify(‘crop’, ‘340x256+0+0’);

MogrifyRegion

The MogrifyRegion method applies a transformation to a region of an image. It’s similiar to Mogrify but it begins with a
region’s geometry. For example, suppose you want to brighten a 100x100 region of an image at location (40, 50):

 $image->MogrifyRegion(‘100x100+40+50’, ‘modulate’, brightness=>50);

Clone

The Clone method copies a set of images. For example,

$p = $image->Clone();

copies all the images from object $q to $p.

Miscellaneous Methods

Chapter 12, PerlMagick — Page 325

Use this method for multi-image sequences. PerlMagick transparently creates a linked list from an image array. If two
locations in the array point to the same object, the linked list goes into an infinite loop and your script will run continu-
ously until it’s interrupted. Instead of

push(@$images, $image);
push(@$images, $image); # warning duplicate object

use cloning to prevent an infinite loop, such as,

push(@$images, $image);
$clone=$image->Clone();
push(@$images, $clone); # same image but different object

Ping

Ping accepts one or more image file names and returns their respective width, height, size in bytes, and format (e.g. GIF,
JPEG, etc.). For example,

($width, $height, $size, $format) = split(‘,’, $image->Ping(‘logo.gif’));

This is a more efficient and less memory-intensive way to query whether an image exists and what its characteristics are.

Note: Information about the first image only in a multi-frame image file is returned.

You can optionally add Image to any method name above. For example, PingImage is an alias for method Ping.

Troubleshooting

Chapter 12, PerlMagick — Page 326

RemoteCommand

Use RemoteCommand to send a command to an already running Display or Animate application. The only parameter
required is the name of the image file you want to display or animate.

QueryColor

The QueryColor method accepts one or more color names or hex values and returns their respective red, green, and blue
color values:

($red, $green, $blue) = split(‘, ‘, $image->QueryColor(‘cyan’));
($red, $green, $blue) = split(‘, ‘, $image->QueryColor(‘#716bae’));

Troubleshooting

All successful PerlMagick methods return an undefined string context. If a problem occurs, an error is returned as a
string with an embedded numeric status code.

• A status code of less than 400 is a warning. This means that the operation did not complete but was recoverable
to some degree.

• A numeric code equal to or greater than 400 is an error and indicates the operation failed completely.

Errors are returned for the different methods as follows:

Troubleshooting

Chapter 12, PerlMagick — Page 327

• Methods that return a number (e.g., Read, Write)

$x = $image->Read(...);
warn “$x” if “$x”; # print the error message
$x =~ /(\d+)/;
print $1; # print the error number
print 0+$x; # print the number of images read

• Methods that operate on an image (e.g., Zoom, Crop)

$x = $image->Crop(...);
warn “$x” if “$x”; # print the error message
$x =~ /(\d+)/;
print $1; # print the error number

• Methods that return images (e.g., Average, Montage, Clone) should be checked for errors this way:

$x = $image->Montage(...);
warn “$x” if !ref($x); # print the error message
$x =~ /(\d+)/;
print $1; # print the error number

Error messages look similar to

Error 400: Memory allocation failed

Troubleshooting

Chapter 12, PerlMagick — Page 328

The following is a table of of errors and warning codes:

Errors And Warning Codes

Code Mnemonic Description

0 Success method completed without error or warning

300 ResourceLimitWarning a program resource is exhaused (e.g., not enough
memory)

305 XSwerverWarning an X resource is unavailable

310 OptionWarning a command-line option was malformed

315 DelegateWarning an ImageMagick delegate returned a warning

320 MissingDelegateWarning the image type can’t be read or written because the
appropriate delegate is missing

325 CorruptImageWarning the image file nay be corrupt

330 FileOpenWarning the image file could not be opened

335 BlobWarning a binary large object could not be allocated

340 CacheWarning pixels could not be saved to the pixel cache

400 ResourceLimitError a program resource is exhaused (e.g., not enough
memory)

Troubleshooting

Chapter 12, PerlMagick — Page 329

You can use a numeric status code as follows:

$x = $image->Read(‘rose.gif’);
$x =~ /(\d+)/;
die “unable to continue” if ($1 == ResourceLimitError);

405 XServerError an X resource is unavailable

410 OptionError a command-line option was malformed

415 DelegateError an ImageMagick delegate returned an error

420 MissingDelegateError the image type can’t be read or written because the
appropriate delegate is missing

425 CorruptImageError the image file may be corrupt

430 FileOpenError the image file could not be opened

435 BlobError a binary large object could not be allocated

440 CacheError pixels could not be saved to the pixel cache

Errors And Warning Codes

Code Mnemonic Description

Chapter 13, Magick++ — Page 330

Chapter 13

Magick++

Overview

Magick++ provides a simple C++ API to the ImageMagick image processing
librarywhich supports reading and writing a huge number of image formats as well
as supporting a broad spectrum of traditional image processing operations. The
ImageMagick C API is complex and the data structures are currently not
documented. Magick++ provides access to most of the features available from the
C API but in a simple object-oriented and well-documented framework.

Magick++ is intended to support commercial-grade application development. In
order to avoid possible conflicts with the user's application, all symbols contained
in Magick++ (included by the header <Magick++.h>) are scoped to the namespace
Magick. Symbols from the ImageMagick C library are imported under the
MagickLib namespace to avoid possible conflicts and ImageMagick macros are
only included within the Magick++ implementation so they won't impact the user's
application.

The core class in Magick++ is the Image class. The Image class provides methods
to manipulate a single image frame (e.g. a JPEG image). Standard Template Library
(STL) compatable algorithms and function objects are provided in order to manip-
ulate multiple image frames or to read and write file formats which support multiple
image frames (e.g. GIF animations, MPEG animations, and Postscript files).

The Image class supports reference-counted memory management which supports
the semantics of an intrinsic variable type (e.g. 'int') with an extremely efficient
operator = and copy constructor (only a pointer is assigned) while ensuring that the

Overview

Chapter 13, Magick++ — Page 331

image data is replicated as required so that it the image may be modified without impacting earlier generations. Since
the Image class manages heap memory internally, images are best allocated via C++ automatic (stack-based) memory
allocation. This support allows most programs using Magick++ to be written without using any pointers, simplifying
the implementation and avoiding the risks of using pointers.

The image class uses a number of supportive classes in order to specify arguments. Colors are specified via the Color
class. Colors specified in X11-style string form are implicitly converted to the Color class. Geometry arguments (those
specifying width, height, and/or x and y offset) are specified via the Geometry class. Similar to the Color class, geome-
tries specified as an X11-style string are implicitly converted to the Geometry class. Two dimensional drawable objects
are specified via the Drawable class. Drawable objects may be provided as a single object or as a list of objects to be
rendered using the current image options. Montage options (a montage is a rendered grid of thumbnails in one image)
are specified via the Montage class.

Errors are reported using C++ exceptions derived from the Exception class, which is itself derived from the standard
C++ exception class. Exceptions are reported synchronous with the operation and are caught by the first matching try
block as the stack is unraveled. This allows a clean coding style in which multiple related Magick++ commands may be
executed with errors handled as a unit rather than line-by-line. Since the Image object provides reference-counted
memory management, unreferenced images on the stack are automatically cleaned up, avoiding the potential for
memory leaks.

, — Page 332

Enumerations

Magick++ uses enumerations to specify method options or to return image format information. The available enumer-
ations are shown in the following tables:

ClassType

ClassType specifies the image storage class.

ColorspaceType

The ColorspaceType enumeration is used to specify the colorspace that quantization (color reduction and mapping) is
done under or to specify the colorspace when encoding an output image. Colorspaces are ways of describing colors to
fit the requirements of a particular application (e.g. Television, offset printing, color monitors). Color reduction, by

ClassType

Enumeration Description

UndefinedClass Unset value.

DirectClass Image is composed of pixels which represent literal color values.

PseudoClass Image is composed of pixels which specify an index in a color palette.

, — Page 333

default, takes place in the RGBColorspace. Empirical evidence suggests that distances in color spaces such as YUVCol-
orspace or YIQColorspace correspond to perceptual color differences more closely han do distances in RGB space.
These color spaces may give better results when color reducing an image. Refer to quantize for more details.

When encoding an output image, the colorspaces RGBColorspace, CMYKColorspace, and GRAYColorspace may be
specified. The CMYKColorspace option is only applicable when writing TIFF, JPEG, and Adobe Photoshop bitmap
(PSD) files.

ColorspaceType

Enumeration Description

UndefinedColorspace Unset value.

RGBColorspace Red-Green-Blue colorspace.

GRAYColorspace

TransparentColorspace The Transparent color space behaves uniquely in that it preserves the matte channel of the
image if it exists.

OHTAColorspace

XYZColorspace

YCbCrColorspace

YCCColorspace

YIQColorspace

, — Page 334

CompositeOperator

CompositeOperator is used to select the image composition algorithm used to compose a composite image with an
image. By default, each of the composite image pixels are replaced by the corresponding image tile pixel. Specify
CompositeOperator to select a different algorithm.

YPbPrColorspace

YUVColorspace Y-signal, U-signal, and V-signal colorspace. YUV is most widely used to encode color for
use in television transmission.

CMYKColorspace Cyan-Magenta-Yellow-Black colorspace. CYMK is a subtractive color system used by
printers and photographers for the rendering of colors with ink or emulsion, normally on a
white surface.

sRGBColorspace

CompositeOperator

Enumeration Description

UndefinedCompositeOp Unset value.

ColorspaceType

Enumeration Description

, — Page 335

OverCompositeOp The result is the union of the the two image shapes with the composite image obscuring
image in the region of overlap.

InCompositeOp The result is a simply composite image cut by the shape of image. None of the image
data of image is included in the result.

OutCompositeOp The resulting image is composite image with the shape of image cut out.

AtopCompositeOp The result is the same shape as image image, with composite image obscuring image
there the image shapes overlap. Note that this differs from OverCompositeOp because
the portion of composite image outside of image's shape does not appear in the result.

XorCompositeOp The result is the image data from both composite image and image that is outside the
overlap region. The overlap region will be blank.

PlusCompositeOp The result is just the sum of the image data. Output values are cropped to 255 (no
overflow). This operation is independent of the matte channels.

MinusCompositeOp The result of composite image - image, with overflow cropped to zero. The matte
chanel is ignored (set to 255, full coverage).

AddCompositeOp The result of composite image + image, with overflow wrapping around (mod 256).

SubtractCompositeOp The result of composite image - image, with underflow wrapping around (mod 256).
The add and subtract operators can be used to perform reverible transformations.

CompositeOperator

Enumeration Description

, — Page 336

DifferenceCompositeOp The result of abs(composite image - image). This is useful for comparing two very
similar images.

BumpmapCompositeOp The result image shaded by composite image.

ReplaceCompositeOp The resulting image is image replaced with composite image. Here the matte
information is ignored.

ReplaceRedCompositeOp The resulting image is the red layer in image replaced with the red layer in composite
image. The other layers are copied untouched.

ReplaceGreenCompositeOp The resulting image is the green layer in image replaced with the green layer in
composite image. The other layers are copied untouched.

ReplaceBlueCompositeOp The resulting image is the blue layer in image replaced with the blue layer in composite
image. The other layers are copied untouched.

CompositeOperator

Enumeration Description

, — Page 337

CompressionType

CompressionType is used to express the desired compression type when encoding an image. Be aware that most image
types only support a sub-set of the available compression types. If the compression type specified is incompatable with
the image, ImageMagick selects a compression type compatable with the image type.

ReplaceMatteCompositeOp The resulting image is the matte layer in image replaced with the matte layer in
composite image. The other layers are copied untouched.

The image compositor requires a matte, or alpha channel in the image for some
operations. This extra channel usually defines a mask which represents a sort of a
cookie-cutter for the image. This is the case when matte is 255 (full coverage) for pixels
inside the shape, zero outside, and between zero and 255 on the boundary. For certain
operations, if image does not have a matte channel, it is initialized with 0 for any pixel
matching in color to pixel location (0,0), otherwise 255 (to work properly borderWidth
must be 0).

CompressionType

Enumeration Description

UndefinedCompression Unset value.

CompositeOperator

Enumeration Description

, — Page 338

NoCompression No compression

BZipCompression BZip (Burrows-Wheeler block-sorting text compression algorithm and Huffman
coding) as used by bzip2 utilities

FaxCompression CCITT Group 3 FAX compression

Group4Compression CCITT Group 4 FAX compression (used only for TIFF)

JPEGCompression JPEG compression

LZWCompression Lempel-Ziv-Welch (LZW) compression (caution, patented by Unisys)

RunlengthEncodedCompression Run-Length encoded (RLE) compression

ZipCompression Lempel-Ziv compression (LZ77) as used in PKZIP and GNU gzip.

CompressionType

Enumeration Description

, — Page 339

FilterType

FilterType is used to adjust the filter algorithm used when resizing images. Different filters experience varying degrees
of success with various images and can take sigificantly different amounts of processing time. ImageMagick uses the
LanczosFilter by default since this filter has been shown to provide the best results for most images in a reasonable
amount of time. Other filter types (e.g. TriangleFilter) may execute much faster but may show artifacts when the image
is re-sized or around diagonal lines. The only way to be sure is to test the filter with sample images.

FilterType

Enumeration Enumeration

UndefinedFilter Unset value.

PointFilter Point Filter

BoxFilter Box Filter

TriangleFilter Triangle Filter

HermiteFilter Hermite Filter

HanningFilter Hanning Filter

HammingFilter Hamming Filter

BlackmanFilter Blackman Filter

GaussianFilter Gaussian Filter

, — Page 340

QuadraticFilter Quadratic Filter

CubicFilter Cubic Filter

CatromFilter Catrom Filter

MitchellFilter Mitchell Filter

LanczosFilter Lanczos Filter

BesselFilter Bessel Filter

SincFilter Sinc Filter

FilterType

Enumeration Enumeration

, — Page 341

GravityType

GravityType specifies positioning of an object (e.g. text or image) within a bounding region (e.g. an image). Gravity
provides a convenient way to locate objects irrespective of the size of the bounding region, in other words, you don't
need to provide absolute coordinates in order to position an object. A common default for gravity is NorthWestGravity
(top -left corner of region).

GravityType

Enumeration Description

ForgetGravity Don't use gravity.

NorthWestGravity Position object at top-left of region.

NorthGravity Postiion object at top-center of region

NorthEastGravity Position object at top-right of region

WestGravity Position object at left-center of region

CenterGravity Position object at center of region

EastGravity Position object at right-center of region

SouthWestGravity Position object at left-bottom of region

SouthGravity Position object at bottom-center of region

SouthEastGravity Position object at bottom-right of region

, — Page 342

ImageType

The ImageType enumeration indicates the type classification of the image.

InterlaceType

InterlaceType specifies the ordering of the red, green, and blue pixel information in the image. Interlacing is usually
used to make image information available to the user faster by taking advantage of the space vs time tradeoff. For
example, interlacing allows images on the Web to be recognizable sooner and satellite images to render with image
resolution increasing over time.

ImageType

Enumeration Description

UndefinedType Unset value.

BilevelType Monochrome image

GrayscaleType Grayscale image

PaletteType Indexed color (palette) image

TrueColorType Truecolor image

MatteType Truecolor with opacity image

ColorSeparationType Cyan/Yellow/Magenta/Black (CYMK) image

, — Page 343

Use LineInterlace or PlaneInterlace to create an interlaced GIF or progressive JPEG image.

LayerType

LayerType is used as an argument when doing color separations. Use LayerType when extracting a layer from an image.
MatteLayer is useful for extracting the opacity values from an image.

InterlaceType

Enumeration Description

UndefinedInterlace Unset value.

NoInterlace Don't interlace image (RGBRGBRGBRGBRGBRGB...)

LineInterlace Use scanline interlacing (RRR...GGG...BBB...RRR...GGG...BBB...)

PlaneInterlace Use plane interlacing (RRRRRR...GGGGGG...BBBBBB...)

PartitionInterlace Similar to plane interlaing except that the different planes are saved to individual files (e.g.
image.R, image.G, and image.B)

LayerType

Enumeration Description

UndefinedLayer Unset value.

, — Page 344

RedLayer Select red layer

GreenLayer Select green layer

BlueLayer Select blue layer

MatteLayer Select matte (opacity values) layer

LayerType

Enumeration Description

, — Page 345

NoiseType

NoiseType is used as an argument to select the type of noise to be added to the image.

PaintMethod

PaintMethod specifies how pixel colors are to be replaced in the image. It is used to select the pixel-filling algorithm

NoiseType

Enumeration Description

UniformNoise Uniform noise

GaussianNoise Gaussian noise

MultiplicativeGaussianNoise Multiplicative Gaussian noise

ImpulseNoise Impulse noise

LaplacianNoise Laplacian noise

PoissonNoise Poisson noise

, — Page 346

employed.

RenderingIntent

Rendering intent is a concept defined by ICC Spec ICC.1:1998-09, "File Format for Color Profiles". ImageMagick uses
RenderingIntent in order to support ICC Color Profiles.

PaintMethod

Enumeration Description

PointMethod Replace pixel color at point.

ReplaceMethod Replace color for all image pixels matching color at point.

FloodfillMethod Replace color for pixels surrounding point until encountering pixel that fails to match color at
point.

FillToBorderMethod Replace color for pixels surrounding point until encountering pixels matching border color.

ResetMethod Replace colors for all pixels in image with pen color.

, — Page 347

From the specification: "Rendering intent specifies the style of reproduction to be used during the evaluation of this
profile in a sequence of profiles. It applies specifically to that profile in the sequence and not to the entire sequence.
Typically, the user or application will set the rendering intent dynamically at runtime or embedding time."

RenderingIntent

Enumeration Description

UndefinedIntent Unset value.

SaturationIntent A rendering intent that specifies the saturation of the pixels in the image is preserved perhaps at
the expense of accuracy in hue and lightness.

PerceptualIntent A rendering intent that specifies the full gamut of the image is compressed or expanded to fill the
gamut of the destination device. Gray balance is preserved but colorimetric accuracy might not
be preserved.

AbsoluteIntent Absolute colorimetric

RelativeIntent Relative colorimetric

, — Page 348

ResolutionType

By default, ImageMagick defines resolutions in pixels per inch. ResolutionType provides a means to adjust this.

ResolutionType

Enumeration Description

UndefinedResolution Unset value.

PixelsPerInchResolution Density specifications are specified in units of pixels per inch (english units).

PixelsPerCentimeterResolution Density specifications are specified in units of pixels per centimeter (metric units).

, — Page 349

Exception

Exception represents the base class of objects thrown when ImageMagick reports an error. Magick++ throws C++
exceptions synchronous with the operation when an error is detected. This allows errors to be trapped within the
enclosing code (perhaps the code to process a single image) while allowing the code to be written simply.

A try/catch block should be placed around any sequence of operations which can be considered a unit of work. For
example, if your program processes lists of images and some of these images may be defective, by placing the try/catch
block around the entire sequence of code that processes one image (including instantiating the image object), you can
minimize the overhead of error checking while ensuring that all objects created to deal with that object are safely
destroyed (C++ exceptions unroll the stack until the enclosing try block, destroying any created objects).

The pseudocode for the main loop of your program may look like:
for each image in list
 try {
 create image object
 read image
 process image
 save result
 }
 catch(ErrorFileOpen error)
 {
 process Magick++ file open error
 }
 catch(Exception error)
 {
 process any Magick++ error
}

, — Page 350

 catch(exception error)
 {
 process any other exceptions derived from standard C++ exception
 }
 catch(...)
 {
 process *any* exception (last-ditch effort)
 }

This catches errors opening a file first, followed by any Magick++ exception if the exception was not caught previously.

The Exception class is derived from the C++ standard exception class. This means that it contains a C++ string
containing additional information about the error (e.g to display to the user). Obtain access to this string via the what()
method. For example:

catch(Exception error_)
 {
 cout << "Caught exception: " << error_.what() << endl;
 }

The classes Warning and Error derive from the Exception class. Exceptions derived from Warning are thrown to
represent non-fatal errors which may effect the completeness or quality of the result (e.g. one image provided as an
argument to montage is defective). In most cases, a Warning exception may be ignored by catching it immediately,
processing it (e.g. printing a diagnostic) and continuing on. Exceptions derived from Error are thrown to represent fatal
errors that can not produce a valid result (e.g. attempting to read a file which does not exist).

, — Page 351

The specific derived exception classes are shown in the following tables:

Warning Exception Classes

Warning Warning Description

WarningUndefined Unspecified warning type.

WarningResourceLimit A program resource is exhausted (e.g. not enough memory)

WarningXServer An X resource is unavailable

WarningOption An option was malformed or out of range

WarningDelegate An ImageMagick delegate returned an error

WarningMissingDelegate The image type can not be read or written because the appropriate Delegate is missing

WarningCorruptImage The image file is corrupt (or otherwise can't be read)

WarningFileOpen The image file could not be opened (permission problem, wrong file type, or does not
exist).

Error Exception Classes

Error Error Description

ErrorUndefined Unspecified error type.

, — Page 352

ErrorResourceLimit A program resource is exhausted (e.g. not enough memory)

ErrorXServer An X resource is unavailable

ErrorOption An option was malformed or out of range

ErrorDelegate An ImageMagick delegate returned an error

ErrorMissingDelegate The image type can not be read or written because the appropriate Delegate is missing

ErrorCorruptImage The image file is corrupt (or otherwise can't be read)

ErrorFileOpen The image file could not be opened (permission problem, wrong file type, or does not
exist).

Error Exception Classes

Error Error Description

, — Page 353

Color

Color is the base color class in Magick++. It is a simple container class for the raw red, green, blue, and alpha values
scaled appropriately. Normally users will instantiate a class derived from Magick::Color which supports the color model
that fits the needs of the application. The Magick::Color class may be constructed directly from an X11-style color
string.

Available derived color specification classes are shown in the following table:

Derived Color Classes

Class Representation

ColorRGB Representation of RGB color with red, green, and blue specified as ratios (0 to 1)

ColorGray Representation of grayscale RGB color (equal parts red, green, and blue) specified
as a ratio (0 to 1)

ColorMono Representation of grayscale RGB color (equal parts red, green, and blue) specified
as a ratio (0 to 1)

ColorYUV Representation of a color in the YUV colorspace

, — Page 354

Color Class

The Color base class is not intended to be used directly. Normally a user will construct a derived class or inherit from
this class. Color arguments must be scaled to the Quantum size (8 or16 bits depending on how ImageMagick was
configured). The ScaleDoubleToQuantum and ScaleQuantumToDouble macros can aid with this task.

An alternate way to contruct the class is via an X11-compatable color specification string.
class Color
{
 friend class Image;
public:
 Color (Quantum red_, Quantum green_, Quantum blue_);
 Color (const std::string x11color_);
 Color (const char * x11color_);
 Color (void);
 virtual ~Color (void);

 // Does object contain valid color?
 void isValid (bool valid_);
 bool isValid (void) const;

 // Set color via X11 color specification string
 const Color&operator = (std::string x11color_);
 const Color&operator = (const char * x11color_);

 // Return X11 color specification string
 /* virtual */operator std::string() const;

protected:

, — Page 355

 void redQuantum (Quantum red_);
 Quantum redQuantum (void) const;

 void greenQuantum (Quantum green_);
 Quantum greenQuantum (void) const;

 void blueQuantum (Quantum blue_);
 QuantumblueQuantum (void) const;

};
ColorRGB
Representation of an RGB color. All color arguments have a valid range of 0.0 - 1.0.
class ColorRGB : public Color
{
public:
 ColorRGB (double red_, double green_, double blue_);
 ColorRGB (const string x11color_);
 ColorRGB (void);
 /* virtual */ ~ColorRGB (void);

 void red (double red_);
 doublered (void) const;

 void green (double green_);
 doublegreen (void) const;

 void blue (double blue_);
 doubleblue (void) const;
};

, — Page 356

ColorGray

Representation of a grayscale color (in RGB colorspace). Grayscale is simply RGB with equal parts of red, green, and
blue. All double arguments have a valid range of 0.0 - 1.0.

class ColorGray : public Color
{
public:
 ColorGray (double shade_);
 ColorGray (void);
 /* virtual */ ~ColorGray ();

 void shade (double shade_);
 double shade (void) const;
};

ColorMono

Representation of a black/white pixel (in RGB colorspace). Color arguments are constrained to 'false' (black pixel) and
'true' (white pixel).

class ColorMono : public Color
{
public:
 ColorMono (bool mono_);
 ColorMono (void);
 /* virtual */ ~ColorMono ();

 void mono (bool mono_);
 bool mono (void) const;

, — Page 357

};

ColorHSL

Representation of a color in Hue/Saturation/Luminosity (HSL) colorspace.
class ColorHSL : public Color
{
public:
 ColorHSL (double hue_, double saturation_, double luminosity_);
 ColorHSL ();
 /* virtual */ ~ColorHSL ();

 void hue (double hue_);
 double hue (void) const;

 void saturation (double saturation_);
 double saturation (void) const;

 void luminosity (double luminosity_);
 double luminosity (void) const;
};

ColorYUV

Representation of a color in YUV colorspace (commonly used to encode color for television transmission).

 Argument ranges:

, — Page 358

 Y: 0.0 through 1.0

 U: -0.5 through 0.5

 V: -0.5 through 0.5

class ColorYUV : public Color
{
public:
 ColorYUV (double y_, double u_, double v_);
 ColorYUV (void);
 /* virtual */ ~ColorYUV (void);

 void u (double u_);
 double u (void) const;

 void v (double v_);
 double v (void) const;

 void y (double y_);
 double y (void) const;
};

, — Page 359

Geometry

Geometry provides a convenient means to specify a geometry argument. The object may be initialized from a C string
or C++ string containing a geometry specification. It may also be initialized by more efficient parameterized
constructors.

X11 Geometry Specifications

X11 geometry specifications are in the form "<width>x<height>{+-}<xoffset>{+-}<yoffset>" (where width, height, xoffset,
and yoffset are numbers) for specifying the size and placement location for an object.

The width and height parts of the geometry specification are measured in pixels. The xoffset and yoffset parts are also
measured in pixels and are used to specify the distance of the placement coordinate from the left or right and top and
bottom edges of the image, respectively. Both types of offsets are measured from the indicated edge of the object to the
corresponding edge of the image. The X offset may be specified in the following ways:

X Offset

Xoffset Placement

+xoffset The left edge of the object is to be placed xoffset pixels in from the left edge of the image.

-xoffset The right edge of the window is to be placed xoffset pixels in from the right edge of the image.

, — Page 360

The Y offset has similar meanings:

Offsets must be given as pairs; in other words, in order to specify either xoffset or yoffset both must be present. Objects
can be placed in the four corners of the image using the following specifications:

Y Offset

Yoffset Placement

+yoffset The top edge of the object is to be yoffset pixels below the top edge of the image.

-yoffset The bottom edge of the object is to be yoffset pixels above the bottom edge of the image.

Offset Pairs

Offset Placement

+0+0 upper left hand corner.

-0+0 upper right hand corner.

-0-0 lower right hand corner.

+0-0 lower left hand corner.

, — Page 361

ImageMagick Geometry Extensions

ImageMagick has added a number of qualifiers to the standard geometry string for use when resizing images. The form
of an extended geometry string is "<width>x<height>{+-}<xoffset>{+-}<yoffset>{%}{!}{<}{>}". Extended geometry
strings should only be used when resizing an image. Using an extended geometry string for other applications may
cause the API call to fail. The available qualifiers are shown in the following table:

Postscript Page Size Geometry Extension

Any geometry string specification supplied to the Geometry contructor is considered to be a Postscript page size
nickname if the first character is not numeric. The Geometry constructor converts these page size specifications into the
equivalent numeric geometry string specification (preserving any offset component) prior to conversion to the internal

Geometry Exensions

Qualifier Description

% Interpret width and height as a percentage of the current size.

! Resize to width and height exactly, loosing original aspect ratio.

< Resize only if the image is smaller than the geometry specification.

> Resize only if the image is greater than the geometry specification.

, — Page 362

object format. Postscript page size specifications are short-hand for the pixel geometry required to fill a page of that size.
Since the 11x17 inch page size used in the US starts with a digit, it is not supported as a Postscript page size nickname.
Instead, substitute the geometry specification "792x1224>" when 11x17 output is desired.

An example of a Postscript page size specification is "letter+43+43>"

The following table shows the available postscript page size nicknames and their equivalents..

Page Size Specifications

Nickname Equivalent Geometry Specification

Ledger 1224x792>

Legal 612x1008>

Letter 612x792>

LetterSmall 612x792>

ArchE 2592x3456>

ArchD 1728x2592>

ArchC 1296x1728>

ArchB 864x1296>

ArchA 648x864>

, — Page 363

A0 2380x3368>

A1 1684x2380>

A2 1190x1684>

A3 842x1190>

A4 595x842>

A4Small 595x842>

A5 421x595>

A6 297x421>

A7 210x297>

A8 148x210>

A9 105x148>

A10 74x105>

B0 2836x4008>

B1 2004x2836>

Page Size Specifications

Nickname Equivalent Geometry Specification

, — Page 364

B2 1418x2004>

B3 1002x1418>

B4 709x1002>

B5 501x709>

C0 2600x3677>

C1 1837x2600>

C2 1298x1837>

C3 918x1298>

C4 649x918>

C5 459x649>

C6 323x459>

Flsa 612x936>

Flse 612x936>

HalfLetter 396x612>

Page Size Specifications

Nickname Equivalent Geometry Specification

, — Page 365

Geometry provides methods to initialize its value from strings, from a set of parameters, or via attributes. The methods
available for use in Geometry are shown in the following table:

Geometry Methods

Method Return Type Signature(s) Description

Geometry

unsigned int width_,
unsigned int height_,
unsigned int xOff_ = 0,
unsigned int yOff_ = 0,
bool xNegative_ = false,
bool yNegative_ = false

Construct X11 geometry via explicit parameters.

const string geometry_ Construct geometry from C++ string

const char * geometry_ Construct geometry from C string

width
void unsigned int width_

Width
unsigned int void

height
void unsigned int height_

Height
unsigned int void

xOff
void unsigned int xOff_

X offset from origin
unsigned int void

, — Page 366

yOff
void unsigned int yOff_

Y offset from origin
unsigned int void

xNegative
void bool xNegative_

Sign of X offset negative? (X origin at right)
bool void

yNegative
void bool yNegative_

Sign of Y offset negative? (Y origin at bottom)
bool void

percent
void bool percent_

Width and height are expressed as percentages (%)
bool void

aspect
void bool aspect_

Resize without preserving aspect ratio (!)
bool bool

greater
void bool greater_

Resize if image is greater than size (>)
bool void

less
void bool

Resize if image is less than size (<)
bool bool

Geometry Methods

Method Return Type Signature(s) Description

, — Page 367

isValid
void bool isValid_

Object contains valid geometry.
bool void

operator =
const
Geometry&

const std::string
geometry_

Set geometry via C++ string

const char * geometry_ Set geometry via C string

operator
string

std::string Geometry& Obtain C++ string representation of geometry

operator<< std::ostream&
ostream& stream_, const
Geometry& geometry_

Stream onto std::ostream

Geometry Methods

Method Return Type Signature(s) Description

, — Page 368

Drawable

Drawable provides a convenient interface for preparing vector, image, or text arguments for the Image::draw() method.
Each instance of Drawable represents a single drawable object.

The following is an example of how Drawable might be used:

#include <Magick++.h>

using namespace std;
using namespace Magick;

int main(int argc,char **argv)
{
 // Create base image (white image of 600 by 400 pixels)
 Image image("600x400", "xc:white")

 // Set draw options
 image.penColor("red");
 image.lineWidth(5) ;

 // Draw a circle
 Drawable drawable;
 drawable.circle(100,100, 150,150);
 image.draw(drawable);

 // Draw a rectangle (re-use drawable object)
 drawable.rectangle(200,200 300,300);

, — Page 369

 image.draw(drawable);

 // Display the result
 image.display();
}

Since Drawable is an object it may be saved in an array or a list for later (perhaps repeated) use. Drawable depends on
the simple Coordinate class which represents a pair of x,y coodinates. The methods provided by the Coordinateclass
are shown in the following table:

Coordinate Class Methods

Method Signature Description

Coordinate
void Default Constructor

double x_, double y_ Constructor, setting x & y

x
double x_ Set x coordinate

void Get x coordinate

y
double y_ Set y coordinate

void Get y coordinate

, — Page 370

The methods available in the Drawable class are shown in the following table:

Drawable Class Methods

Method Signature Description

point
double x_, double y_

Draw a point using current pen color and thickness at coordinate
Coordinate coordinate

line

double startX_, double
startY_, double endX_,
double endY_ Draw a line using current pen color and thickness using starting and

ending coordinatesCoordinate
startCoordinate_,
Coordinate endCoordinate_

rectangle

double upperLeftX_, double
upperLeftY_, double
lowerRightX_, double
lowerRightY Draw a rectangle using current pen color and thickness from upper-left

coordinates to lower-right coordinatesCoordinate
upperLeftCoordinate_,
Coordinate
lowerRightCoordinate_

, — Page 371

fillRectangle

double upperLeftX_, double
upperLeftY_, double
lowerRightX_, double
lowerRightY Draw a filled rectangle using current pen color from upper-left

coordinates to lower-right coordinatesCoordinate
upperLeftCoordinate_,
Coordinate
lowerRightCoordinate_

circle

double originX_, double
originY_, double perimX_,
double perimY_

Draw a circle using current pen color and thicknews using specified
origin and perimeter coordinatesCoordinate

originCoordinate_,
Coordinate
perimCoordinate_

Drawable Class Methods

Method Signature Description

, — Page 372

fillCircle

double originX_, double
originY_, double perimX_,
double perimY_

Draw a filled circle using current pen color, origin and perimeter
coordinatesCoordinate

originCoordinate_,
Coordinate
perimCoordinate_

ellipse

double originX_, double
originY_, double width_,
double height_, double
arcStart_, double arcEnd_

Draw an ellipse using current pen color, pen thickness, specified origin,
width & height, as well as specified start and end of arc in degrees.Coordinate

originCoordinate_, double
width_, double height_,
double arcStart_, double
arcEnd_

Drawable Class Methods

Method Signature Description

, — Page 373

fillEllipse

double originX_, double
originY_, double width_,
double height_, double
arcStart_, double arcEnd_

Draw a filled ellipse using current pen color, specified origin, width &
height, as well as specified start and end of arc in degrees.Coordinate

originCoordinate_, double
width_, double height_,
double arcStart_, double
arcEnd_

polygon
const std::list<Coordinate>
&coordinates_

Draw an arbitrary polygon using current pen color and pen thickness
consisting of three or more coordinates contained in an STL list

fillPolygon
const std::list<Coordinate>
&coordinates_

Draw an arbitrary filled polygon using current pen color and pen
thickness consisting of three or more coordinates contained in an STL
list

color

double x_, double y_,
PaintMethod paintMethod_

Color image according to paintMethod. The point method recolors the
target pixel. The replace method recolors any pixel that matches the
color of the target pixel. Floodfill recolors any pixel that matches the
color of the target pixel and is a neighbor, whereas filltoborder recolors
any neighbor pixel that is not the border color. Finally, reset recolors all
pixels.

Coordinate coordinate_,
PaintMethod paintMethod_

Drawable Class Methods

Method Signature Description

, — Page 374

matte

double x_, double y_,
PaintMethod paintMethod_

Change the pixel matte value to transparent. The point method changes
the matte value of the target pixel. The replace method changes the
matte value of any pixel that matches the color of the target pixel.
Floodfill changes the matte value of any pixel that matches the color of
the target pixel and is a neighbor, whereas filltoborder changes the
matte value of any neighbor pixel that is not the border color, Finally
reset changes the matte value of all pixels.

Coordinate coordinate_,
PaintMethod paintMethod_

text

double x_, double y_,
std::string text_

Annotate image with text using current pen color, font, font pointsize,
and box color (text background color), at specified coordinates. If text
contains special format characters the image filename, type, width,
height, or other image attributes may be incorporated in the text (see
label()).

Coordinate coordinate_,
std::string text_

image

double x_, double y_, const
string &image_

Composite image (file) with image file at specified coordinates.
Coordinate coordinate_,
const std::string &image_

Drawable Class Methods

Method Signature Description

, — Page 375

Special Format Characters

The Magick::Image methods annotate, draw, label, and the template function montageImages support special format
characters contained in the argument text. These format characters work similar to C's printf. Whenever a format
character appears in the text, it is replaced with the equivalent attribute text. The available format characters are shown
in the following table:

Special Format Characters

Format Character Description

%b file size

%d directory

%e filename extension

%f filename

%h height

%m magick (e.g GIF)

%p page number

%s scene number

%t top of filename

, — Page 376

%w width

%x x resolution

%y y resolution

\n newline

\r carriage return

Special Format Characters

Format Character Description

, — Page 377

Montage

A montage is a single image which is composed of thumbnail images composed in a uniform grid. The size of the
montage image is determined by the size of the individual thumbnails and the number of rows and columns in the grid.

The illustration shows a montage consisting of three columns and two rows of thumbnails rendered on a gray
background.

Montages may be either "plain" (undecorated thumbnails) or "framed" (decorated thumbnails). In order to more easily
understand the options supplied to MontageImages(), montage options are supplied by two different classes: Montage
and MontageFramed.

, — Page 378

Plain Montages

Montage is the base class to provide montage options and provides methods to set all options required to render simple
(un-framed) montages. See MontageFramed if you would like to create a framed montage.

Un-framed (plain) thumbnails consist of four components: the thumbnail image, the thumbnail border, an optional
thumbnail shadow, and an optional thumbnail label area as shown in the illustration.

, — Page 379

Montage Methods

Method Return Type Signature(s) Description

Montage void Default constructor

backgroundColor
void

const Color
&backgroundColor_ Specifies the background color that thumbnails are

imaged upon.
 Color void

compose

void
CompositeOperator
compose_

Specifies the image composition algorithm for
thumbnails. This controls the algorithm by which
the thumbnail image is placed on the background.
Use of OverCompositeOp is recommended for use
with images that have transparency. This option
may have negative side-effects for images without
transparency.

CompositeOperator
compose_

void

fileName

void std::string fileName_ Specifies the image filename to be used for the
generated montage images. To handle the case
were multiple montage images are generated, a
printf-style format may be embedded within the
filename. For example, a filename specification of
image%02d.miff names the montage images as
image00.miff, image01.miff, etc.

std::string void

, — Page 380

font
void std::string font_

Specifies the thumbnail label font.
std::string void

geometry
void

const Geometry
&geometry_ Specifies the size of the generated thumbnail.

Geometry void

gravity

void GravityType gravity_ Specifies the thumbnail positioning within the
specified geometry area. If the thumbnail is smaller
in any dimension than the geometry, then it is
placed according to this specification.

GravityType void

label

void std::string label_ Specifies the format used for the image label.
Special format characters may be embedded in the
format string to include information about the
image.

std::string void

penColor
void const Color &pen_

Specifies the pen color to use for the label text.
Color void

pointSize
void unsigned int pointSize_

Specifies the thumbnail label font size.
unsigned int void

Montage Methods

Method Return Type Signature(s) Description

, — Page 381

shadow
void bool shadow_

Enable/disable drop-shadow on thumbnails.
bool void

texture

void std::string texture_ Specifies a texture image to use as montage
background. The built-in textures "granite:" and
"plasma:" are available. A texture is the same as a
background image.

std::string void

tile

void const Geometry &tile_ Specifies the maximum number of montage
columns and rows in the montage. The montage is
built by filling out all cells in a row before
advancing to the next row. Once the montage has
reached the maximum number of columns and
rows, a new montage image is started.

 Geometry void

transparentColor

void
const Color
&transparentColor_

Specifies a montage color to set transparent. This
option can be set the same as the background color
in order for the thumbnails to appear without a
background when rendered on an HTML page. For
best effect, ensure that the transparent color
selected does not occur in the rendered thumbnail
colors.

Color void

Montage Methods

Method Return Type Signature(s) Description

, — Page 382

Framed Montages

MontageFramed provides the means to specify montage options when it is desired to have decorative frames around the
image thumbnails. MontageFramed inherits from Montage and therefore provides all the methods of Montage as well
as those shown in the table "MontageFramed Methods".

Framed thumbnails consist of four components: the thumbnail image, the thumbnail frame, the thumbnail border, an
optional thumbnail shadow, and an optional thumbnail label area as shown in the illustration.

, — Page 383

MontageFramed Methods

Method Return Type Signature(s) Description

MontageFramed void
Default constructor (enable frame via
frameGeometry).

borderColor
void

const Color
&borderColor_ Specifies the background color within the

thumbnail frame.
 Color void

borderWidth

void
unsigned int
borderWidth_

Specifies the border (in pixels) to place between a
thumbnail and its surrounding frame. This option
only takes effect if thumbnail frames are enabled
(via frameGeometry) and the thumbnail geometry
specification doesn't also specify the thumbnail
border width.

unsigned int void

frameGeometry
void

const Geometry
&frame_

Specifies the geometry specification for frame to
place around thumbnail. If this parameter is not
specified, then the montage is un-framed. Geometry void

matteColor
void

const Color
&matteColor_ Specifies the thumbnail frame color.

 Color void

, — Page 384

Image

Image is the primary object in Magick++ and represents a single image frame (see design). The STL interface must be
used to operate on image sequences or image formats which are comprized of multiple image frames. Various image
manipulation operations may be applied to the image. Attributes may be set on the image to influence the operation of
the manipulation operations. As a convenience, including <Magick++.h> is sufficient in order to use the complete
Magick++ API. The Magick++ API is enclosed within the Magick namespace so you must either add the prefix
"Magick::" to each class/enumeration name or add the statement "using namespace Magick;" after including
the Magick++.h header.

Image is very easy to use. For example, here is a the source to a program which reads an image, crops it, and writes it
to a new file (the exception handling is optional):

#include <Magick++.h>
#include <iostream>
using namespace std;
using namespace Magick;
int main(int argc,char **argv)
{
 try {
 // Create an image object and read an image
 Image image("girl.gif");

 // Crop the image to specified size
 image.crop("100x100+100+100"); // Geometry implicitly initialized by char *

 // Write the image to a file
 image.write("x.gif");
 }

, — Page 385

 catch(Exception error_)
 {
 cout << "Caught exception: " << error_.what() << endl;
 return 1;
 }
 return 0;
}

The following is the source to a program which illustrates the use of Magick++'s efficient reference-counted assignment
and copy-constructor operation which minimizes use of memory and eliminates unncessary copy operations. The
program accomplishes the following:

1 Read master image.

2 Assign master image to second image.

3 Zoom second image to the size 640x480.

4 Assign master image to a third image.

5 Zoom third image to the size 800x600.

6 Write the second image to a file.

7 Write the third image to a file.
#include <Magick++.h>
#include <iostream>
using namespace std;
using namespace Magick;

, — Page 386

int main(int argc,char **argv)
{
 Magick::Image master("horse.jpg");
 Magick::Image second = master;
 second.zoom("640x480");
 Magick::Image third = master;
 third.zoom("800x600");
 second.write("horse640x480.jpg");
 third.write("horse800x600.jpg");
 return 0;
}

During the entire operation, a maximum of three images exists in memory and the image data is never copied.

The following is the source for another simple program which creates a 100 by 100 pixel white image with a red pixel
in the center and writes it to a file:

#include <Magick++.h>
using namespace std;
using namespace Magick;
int main(int argc,char **argv)
{
 Image image("100x100", "xc:white");
 image.pixelColor(49, 49, "red");
 image.write("red_pixel.png");
 return 0;
}

If you wanted to change the color image to grayscale, you could simply add the lines:
image.quantizeColorSpace(GRAYColorspace);
image.quantize(options);

, — Page 387

prior to writing the image.

, — Page 388

Image Manipulation Methods

Image supports access to all the single-image (versus image-list) manipulation operations provided by the ImageMagick
library. These operations are shown in the following table:

Image Manipulation Methods

Method Signature(s) Description

addNoise NoiseType noiseType_ Add noise to image with specified noise type.

annotate

const std::string &text_,
const Geometry &location_

Annotate image (render text on image) at specified location.

const std:string text_, const
Geometry &location_,
GravityType gravity_

Annotate image (render text on image) at specified location and
influenced by gravity.

const std::string &text_,
const Geometry&location_,
GravityType gravity_,
double degrees_

Annotate image (render text on image) starting at specified location,
influenced by gravity, and rendered at specified rotation angle.

const std::string &text_,
GravityType gravity_ =
NorthWestGravity

Annotate image (render text on image) at location implied by gravity.

blur double factor_ Blur image with specified blur factor

, — Page 389

border
const Geometry
&geometry_ = "6x6+0+0"

Border image (add border to image). The color of the border is
specified by the borderColor attribute.

charcoal double factor_ = 50 Charcoal effect image (looks like charcoal sketch)

chop
const Geometry
&geometry_

Chop image (remove vertical or horizontal subregion of image)

colorize
const Color
&opaqueColor_, const
Color &penColor_

Colorize opaque color in image using pen color

composite

const Image
&compositeImage_, int
xOffset_, int yOffset_,
CompositeOperator
compose_ =
InCompositeOp Compose an image onto another at specified offset and using specified

algorithmconst Image
&compositeImage_, const
Geometry &offset_,
CompositeOperator
compose_ =
InCompositeOp

Image Manipulation Methods

Method Signature(s) Description

, — Page 390

condense void Condense image (Re-run-length encode image in memory).

contrast unsigned int sharpen_ Contrast image (enhance intensity differences in image)

crop
const Geometry
&geometry_

Crop image (subregion of original image)

cycleColormap int amount_ Cycle image colormap

despeckle void Despeckle image (reduce speckle noise)

display void

Display image on screen.

Caution: if an image format is is not compatable with the display visual
(e.g. JPEG on a colormapped display) then the original image will be
altered. Use a copy of the original if this is a problem.

draw

const Drawable &drawable_ Draw shape or text on image.

Draw shapes or text on image using a set of Drawable objects contained
in an STL list. Use of this method improves drawing performance and
allows batching draw objects together in a list for repeated use.

const std::list< Drawable>
&drawable_

edge double factor_ Edge image (hilight edges in image)

emboss void Emboss image (hilight edges with 3D effect)

Image Manipulation Methods

Method Signature(s) Description

, — Page 391

enhance void Enhance image (minimize noise)

equalize void Equalize image (histogram equalization)

flip void Flip image (reflect each scanline in the vertical direction)

floodFillColor

int x_, int y_, const Color
&fillColor_ Flood-fill color across pixels that match the color of the target pixel and

are neighbors of the target pixel. Uses current fuzz setting when
determining color match.const Geometry &point_,

const Color &fillColor_

int x_, int y_, const Color
&fillColor_, const Color
&borderColor_ Flood-fill color across pixels starting at target-pixel and stopping at

pixels matching specified border color. Uses current fuzz setting when
determining color match.const Geometry &point_,

const Color &fillColor_,
const Color &borderColor_

Image Manipulation Methods

Method Signature(s) Description

, — Page 392

floodFill-
Texture

int x_, int y_, const Image
&texture_ Flood-fill texture across pixels that match the color of the target pixel

and are neighbors of the target pixel. Uses current fuzz setting when
determining color match.const Geometry &point_,

const Image &texture_

int x_, int y_, const Image
&texture_, const Color
&borderColor_ Flood-fill texture across pixels starting at target-pixel and stopping at

pixels matching specified border color. Uses current fuzz setting when
determining color match.const Geometry &point_,

const Image &texture_,
const Color &borderColor_

flop void Flop image (reflect each scanline in the horizontal direction)

frame

const Geometry
&geometry_ =
"25x25+6+6"

Add decorative frame around imageunsigned int width_,
unsigned int height_, int x_,
int y_, int innerBevel_ = 0,
int outerBevel_ = 0

Image Manipulation Methods

Method Signature(s) Description

, — Page 393

gamma

double gamma_ Gamma correct image (uniform red, green, and blue correction).

double gammaRed_, double
gammaGreen_, double
gammaBlue_

Gamma correct red, green, and blue channels of image.

implode double factor_ Implode image (special effect)

layer LayerType layer_
Extract layer from image. Use this option to extract a particular layer
from the image. MatteLayer, for example, is useful for extracting the
opacity values from an image.

magnify void Magnify image by integral size

map
const Image &mapImage_ ,
bool dither_ = false

Remap image colors with closest color from reference image. Set
dither_ to true in to apply Floyd/Steinberg error diffusion to the image.
By default, color reduction chooses an optimal set of colors that best
represent the original image. Alternatively, you can choose a
particular set of colors from an image file with this option.

matteFloodfill

const Color &target_,
unsigned int matte_, int x_,
int y_, PaintMethod
method_

Floodfill designated area with a matte value

minify void Reduce image by integral size

Image Manipulation Methods

Method Signature(s) Description

, — Page 394

modulate
double brightness_, double
saturation_, double hue_

Modulate percent hue, saturation, and brightness of an image

negate bool grayscale_ = false
Negate colors in image. Replace every pixel with its complementary
color (white becomes black, yellow becomes blue, etc.). Set grayscale
to only negate grayscale values in image.

normalize void
Normalize image (increase contrast by normalizing the pixel values to
span the full range of color values).

oilPaint unsigned int radius_ = 3 Oilpaint image (image looks like oil painting)

opaque
const Color
&opaqueColor_, const
Color &penColor_

Change color of pixels matching opaqueColor_ to specified penColor_.

ping
const std::string
&imageSpec_

Ping is similar to read except only enough of the image is read to
determine the image columns, rows, and filesize. The columns, rows,
and fileSize attributes are valid after invoking ping. The image data is
not valid after calling ping.

quantize bool measureError_ = false
Quantize image (reduce number of colors). Set measureError_ to true
in order to calculate error attributes.

Image Manipulation Methods

Method Signature(s) Description

, — Page 395

raise
const Geometry
&geometry_ = "6x6+0+0",
bool raisedFlag_ = false

Raise image (lighten or darken the edges of an image to give a 3-D
raised or lowered effect)

read

const std::string
&imageSpec_

Read image into current object

const Geometry &size_,
const std::string
&imageSpec_

Read image of specified size into current object. This form is useful for
images that do not specifiy their size or to specify a size hint for
decoding an image. For example, when reading a Photo CD, JBIG, or
JPEG image, a size request causes the library to return an image which
is the next resolution greater or equal to the specified size. This may
result in memory and time savings.

reduceNoise void Reduce noise in image using a noise peak elimination filter.

roll int columns_, int rows_
Roll image (rolls image vertically and horizontally) by specified
number of columnms and rows)

rotate
double degrees_, bool crop_
= false, unsigned int
sharpen_ = false

Rotate image counter-clockwise by specified number of degrees.
Optionally crop image to original size and sharpen image.

sample
const Geometry
&geometry_

Resize image by using pixel sampling algorithm

Image Manipulation Methods

Method Signature(s) Description

, — Page 396

scale
const Geometry
&geometry_

Resize image by using simple ratio algorithm

segment
double clusterThreshold_ =
1.0, double
smoothingThreshold_ = 1.5

Segment (coalesce similar image components) by analyzing the
histograms of the color components and identifying units that are
homogeneous with the fuzzy c-means technique. Also uses
quantizeColorSpace and verbose image attributes. Specify
clusterThreshold_, as the number of pixels each cluster must exceed
the the cluster threshold to be considered valid. SmoothingThreshold_
eliminates noise in the second derivative of the histogram. As the value
is increased, you can expect a smoother second derivative. The
default is 1.5.

shade
double azimuth_ = 30,
double elevation_ = 30, bool
colorShading_ = false

Shade image using distant light source. Specify azimuth_ and
elevation_ as the position of the light source. By default, the shading
results as a grayscale image.. Set colorShading_ to true to shade the red,
green, and blue components of the image.

sharpen double factor_
Sharpen pixels in image. Specify factor as the percent enhancement (0.0
- 99.9%).

Image Manipulation Methods

Method Signature(s) Description

, — Page 397

shear
double xShearAngle_,
double yShearAngle_, bool
crop_ = false

Shear image (create parallelogram by sliding image by X or Y axis).
Shearing slides one edge of an image along the X or Y axis, creating
a parallelogram. An X direction shear slides an edge along the X axis,
while a Y direction shear slides an edge along the Y axis. The amount
of the shear is controlled by a shear angle. For X direction shears, x
degrees is measured relative to the Y axis, and similarly, for Y direction
shears y degrees is measured relative to the X axis. Empty triangles left
over from shearing the image are filled with the color defined as
borderColor. Specify crop_ as true to crop the sheared image to the
original size.

solarize double factor_ = 50.0
Solarize image (similar to effect seen when exposing a photographic
film to light during the development process)

spread unsigned int amount_ = 3 Spread pixels randomly within image by specified amount

stegano const Image &watermark_ Add a digital watermark to the image (based on second image)

stereo const Image &rightImage_
Create an image which appears in stereo when viewed with red-blue
glasses (Red image on left, blue on right)

swirl double degrees_ Swirl image (image pixels are rotated by degrees)

texture const Image &texture_ Layer a texture on image background

threshold double threshold_ Threshold image

Image Manipulation Methods

Method Signature(s) Description

, — Page 398

transform

const Geometry
&imageGeometry_

Transform image based on image and crop geometries. Crop geometry
is optional.const Geometry

&imageGeometry_, const
Geometry &cropGeometry_

transform-
ColorSpace

ColorspaceType
colorSpace_

Transform the image representation to a different colorspace.

transparent const Color &color_ Add matte image to image, setting pixels matching color to transparent.

trim void Trim edges that are the background color from the image.

wave
double amplitude_ = 25.0,
double wavelength_ = 150.0

Alter an image along a sine wave.

write
const std::string
&imageSpec_

Write image to a file using filename imageSpec_.

Caution: if an image format is selected which is capable of supporting
fewer colors than the original image or quantization has been requested,
the original image will be quantized to fewer colors. Use a copy of the
original if this is a problem.

zoom
const Geometry
&geometry_

Zoom image to specified size.

Image Manipulation Methods

Method Signature(s) Description

, — Page 399

Image Attributes

Image attributes are set and obtained via methods in Image. Except for methods which accept pointer arguments (e.g.
chromaBluePrimary) all methods return attributes by value. Within the image object, attributes may be properties of the
image, the user-options, or both. In the case where the attribute is a property of both the image and the user-options, the
attribute associated with the image is returned if operations on the image can usefully update it, or the user-options if
not. In all cases, the value set is equivalent to the next returned value. It is an error (an exception will be thrown) to
attempt to set an attribute which is only a property of the image if no image is contained within the object. In the case
of setting an attribute which is both a property of the image and the user-options and no image is present, the user-options
are set and no error is reported.

The supported image attributes and the method arguments required to obtain them are shown in the following table:

Image Attributes

Method Return Type Signature(s) Description

adjoin
bool void

Join images into a single multi-image file.
void bool flag_

antiAlias
bool void Control antialiasing of rendered Postscript and

Postscript or TrueType fonts. Enabled by default.void bool flag_

, — Page 400

animationDelay

unsigned int void Time in 1/100ths of a second (0 to 65535) which
must expire before displaying the next image in an
animated sequence. This option is useful for
regulating the animation of a sequence of GIF
images within Netscape.

void unsigned int delay_

animation-
Iterations

unsigned int void Number of iterations to loop an animation (e.g.
Netscape loop extension) for.void unsigned int iterations_

background-
Color

 Color void
Image background color

void const Color &color_

background-
Texture

std::string void
Image to use as background texture.

void const string &texture_

baseColumns unsigned int void Base image width (before transformations)

baseFilename std::string void Base image filename (before transformations)

baseRows unsigned int void Base image height (before transformations)

borderColor
 Color void

Image border color
void const Color &color_

Image Attributes

Method Return Type Signature(s) Description

, — Page 401

boxColor

 Color void

Base color that annotation text is rendered on.
void

const Color
&boxColor_

chroma-
BluePrimary

void float *x_, float *y_ Get chromaticity blue primary point

void float x_, float y_
Set chromaticity blue primary point (e.g. x=0.15,
y=0.06)

chroma-
GreenPrimary

void float *x_, float *y_ Get chromaticity green primary point

void float x_, float y_
Set chromaticity green primary point (e.g. x=0.3,
y=0.6)

chroma-
RedPrimary

void float *x_, float *y_ Get chromaticity red primary point

void float x_, float y_
Set chromaticity red primary point (e.g. x=0.64,
y=0.33)

chroma-
WhitePoint

void float *x_, float *y_ Get chromaticity white point

void float x_, float y_
Set chromaticity white point (e.g. x=0.3127,
y=0.329)

classType ClassType void Image class

Image Attributes

Method Return Type Signature(s) Description

, — Page 402

colorFuzz

unsigned int void Colors within this distance are considered equal. A
number of algorithms search for a target color. By
default the color must be exact. Use this option to
match colors that are close to the target color in
RGB space.

void unsigned int fuzz_

colorMap

 Color unsigned int index_

Color at color-palette index.
void

unsigned int index_,
const Color &color_

columns unsigned int void Image width

comment

std::string void Comment image (add comment string to image).
By default, each image is commented with its file
name. Use this method to assign a specific
comment to the image. Optionally you can include
the image filename, type, width, height, or other
image attributes by embedding special format
characters.

void
const std::string
&comment_

compressType

CompressionType void
Image compresion type. The default is the
compression type of the specified image file.void

CompressionType
compressType_

Image Attributes

Method Return Type Signature(s) Description

, — Page 403

density

 Geometry void Vertical and horizontal resolution in pixels of the
image (default 72x72). This option specifies an
image density when decoding a Postscript or
Portable Document page. Often used with
psPageSize.

void
const Geometry
&density_

depth
unsigned int void Image depth (8 or 16). Used to specify the bit depth

when reading or writing raw images. Defaults to
the quantum depth that ImageMagick is built with.void unsigned int depth_

directory std::string void Tile names from within an image montage

fileName

std::string void

Image file name.
void

const string
&fileName_

fileSize unsigned int void Number of bytes of the image on disk

filterType

FilterType void Filter to use when resizing image. The reduction
filter employed has a sigificant effect on the time
required to resize an image and the resulting
quality. The default filter is Lanczos which has
been shown to produce high quality results when
reducing most images.

void FilterType filterType_

Image Attributes

Method Return Type Signature(s) Description

, — Page 404

font

std::string void Text rendering font. If the font is a fully qualified X
server font name, the font is obtained from an X
server. To use a TrueType font, precede the
TrueType filename with an @. Otherwise, specify
a Postscript font name (e.g. "helvetica").

void const string &font_

fontPointsize
unsigned int void

Text rendering font point size
void unsigned int pointSize_

format std::string void Long form image format description.

gamma double void

Gamma level of the image. The same color image
displayed on two different workstations may look
different due to differences in the display monitor.
Use gamma correction to adjust for this color
difference.

geometry
 Geometry void

Preferred size of the image when encoding.
void Geometry

Image Attributes

Method Return Type Signature(s) Description

, — Page 405

gifDispose-
Method

unsigned int void GIF disposal method. This option is used to control
how successive frames are rendered (how the
preceding frame is disposed of) when creating a
GIF animation.

{ 0 = Disposal not specified, 1 = Do not dispose of
graphic, 3 = Overwrite graphic with background
color, 4 = Overwrite graphic with previous graphic.
}

void
unsigned int
disposeMethod_

iccColorProfile

Blob void ICC color profile. Supplied via a Blob since
Magick++/ and ImageMagick do not currently
support formating this data structure directly.
Specifications are available from the International
Color Consortium for the format of ICC color
profiles.

void
const Blob
&colorProfile_

Image Attributes

Method Return Type Signature(s) Description

, — Page 406

interlaceType

InterlaceType void The type of interlacing scheme (default
NoInterlace). This option is used to specify the type
of interlacing scheme for raw image formats such
as RGB or YUV. NoInterlace means do not
interlace, LineInterlace uses scanline interlacing,
and PlaneInterlace uses plane interlacing.
PartitionInterlace is like PlaneInterlace except the
different planes are saved to individual files (e.g.
image.R, image.G, and image.B). Use
LineInterlace or PlaneInterlace to create an
interlaced GIF or progressive JPEG image.

void
InterlaceType
interlace_

iptcProfile

Blob void IPTC profile. Supplied via a Blob since Magick++
and ImageMagick do not currently support
formating this data structure directly.
Specifications are available from the International
Press Telecommunications Council for IPTC
profiles.

void
const Blob&
iptcProfile_

Image Attributes

Method Return Type Signature(s) Description

, — Page 407

label

std::string void Assign a label to an image. Use this option to
assign a specific label to the image. Optionally you
can include the image filename, type, width, height,
or scene number in the label by embedding special
format characters. If the first character of string is
@, the image label is read from a file titled by the
remaining characters in the string. When
converting to Postscript, use this option to specify
a header string to print above the image.

void
const std::string
&label_

lineWidth

unsigned int void
Line width for drawing lines, circles, ellipses, etc.
See Drawable.void

unsigned int
lineWidth_

magick

std::string void

Get image format (e.g. "GIF")
void

const std::string
&magick_

matte
bool void True if the image has transparency. If set True,

store matte channel if the image has one otherwise
create an opaque one.void bool matteFlag_

Image Attributes

Method Return Type Signature(s) Description

, — Page 408

matteColor

 Color void

Image matte (transparent) color
void

const Color
&matteColor_

meanError-
PerPixel

double void

The mean error per pixel computed when an image
is color reduced. This parameter is only valid if
verbose is set to true and the image has just been
quantized.

monochrome
bool void

Transform the image to black and white
void bool flag_

montage-
Geometry

 Geometry
void Tile size and offset within an image montage. Only

valid for montage images.

normalized-
MaxError

double void

The normalized max error per pixel computed
when an image is color reduced. This parameter is
only valid if verbose is set to true and the image has
just been quantized.

normalized-
MeanError

double void

The normalized mean error per pixel computed
when an image is color reduced. This parameter is
only valid if verbose is set to true and the image has
just been quantized.

Image Attributes

Method Return Type Signature(s) Description

, — Page 409

packets unsigned int void
The number of runlength-encoded packets in the
image

packetSize unsigned int void The number of bytes in each pixel packet

penColor

 Color void
Pen color to use when annotating on or drawing on
image.void

const Color
&penColor_

penTexture

 Image void

Texture image to paint with (similar to penColor).
void

const Image &
penTexture_

pixelColor

 Color
unsigned int x_,
unsigned int y_

Get/set pixel color at location x & y.

void
unsigned int x_,
unsigned int y_, const
Color &color_

psPageSize

 Geometry void Postscript page size. Use this option to specify the
dimensions of the Postscript page in dots per inch
or a TEXT page in pixels. This option is typically
used in concert with density.

void
const Geometry
&pageSize_

Image Attributes

Method Return Type Signature(s) Description

, — Page 410

quality
unsigned int void JPEG/MIFF/PNG compression level (Range 0 to

100 with default of 75).void unsigned int quality_

quantizeColors

unsigned int void Preferred number of colors in the image. The actual
number of colors in the image may be less than
your request, but never more. Images with less
unique colors than specified with this option will
have any duplicate or unused colors removed.

void unsigned int colors_

quantize-
ColorSpace

ColorspaceType void Colorspace to quantize colors in (default RGB).
Empirical evidence suggests that distances in color
spaces such as YUV or YIQ correspond to
perceptual color differences more closely than do
distances in RGB space. These color spaces may
give better results when color reducing an image.

void
ColorspaceType
colorSpace_

quantizeDither

bool void Apply Floyd/Steinberg error diffusion to the image.
The basic strategy of dithering is to trade intensity
resolution for spatial resolution by averaging the
intensities of several neighboring pixels. Images
which suffer from severe contouring when
reducing colors can be improved with this option.
The quantizeColors or monochrome option must be
set for this option to take effect.

void bool flag_

Image Attributes

Method Return Type Signature(s) Description

, — Page 411

quantizeError unsigned int void
Quantization error. Only valid if verbose is set to
true prior to executing quantize and the value is
read back immediately.

quantize-
TreeDepth

unsigned int void Depth of the quantization color classification tree.
Values of 0 or 1 allow selection of the optimal tree
depth for the color reduction algorithm. Values
between 2 and 8 may be used to manually adjust the
tree depth.

void
unsigned int
treeDepth_

renderingIntent

RenderingIntent void

The type of rendering intent
void

RenderingIntent
render_

resolutionUnits
ResolutionType void

Units of image resolution
void ResolutionType units_

rows unsigned int void The number of pixel rows in the image

scene
unsigned int void

Image scene number
void unsigned int scene_

signature std::string bool force_ = false
Image MD5 signature. Set force_ to true to force
re-computation of signature.

Image Attributes

Method Return Type Signature(s) Description

, — Page 412

size

 Geometry void Width and height of a raw image (an image which
does not support width and height information).
Size may also be used to affect the image size read
from a multi-resolution format (e.g. Photo CD,
JBIG, or JPEG.

void
const Geometry
&geometry_

subImage

unsigned int void

Subimage of an image sequence
void

unsigned int
subImage_

subRange

unsigned int void

Number of images relative to the base image
void

unsigned int
subRange_

text std::string void Any text associated with the image

tileName

std::string void

Tile name
void

const std::string
&tileName_

totalColors unsigned long void Number of colors in the image

type ImageType void Image type

Image Attributes

Method Return Type Signature(s) Description

, — Page 413

verbose
bool void

Print detailed information about the image
void bool verboseFlag_

view
std::string void

FlashPix viewing parameters.
void const string &view_

x11Display
std::string void X11 display to display to, obtain fonts from, or to

capture image from (e.g. "hostname:0.0")void const string &display_

xResolution double void x resolution of the image

yResolution double void y resolution of the image

Image Attributes

Method Return Type Signature(s) Description

, — Page 414

Image Data Structures

The class Magick::Image is a simple handle which points to a reference-counted image representation. This allows
multiple Magick::Image instances to share the same image and attributes. At the point in time that the image data, or
image attributes are modified and the current reference count is greater than one, the image data and attributes are copied
to create a new image with a reference count of one and the reference count on the old image is decremented. If the
reference count on the old image becomes zero, then the associated reference and data are deleted. This strategy repre-
sents a simple (but effective) form of garbage collection.

, — Page 415

, — Page 416

STL Support

Magick++ provides a set of STL algorithms for operating across ranges of image frames in a container. It also provides
a set of STL unary function objects to apply an operation on image frames in a container via an algorithm which uses
unary function objects. A good example of a standard algorithm which is useful for processing containers of image
frames is the STL for_each algorithm which invokes a unary function object on a range of container elements.

Magick++ uses a limited set of template argument types. The current template argument types are:

Container

A container having the properties of a Back Insertion Sequence. Sequences support forward iterators and Back
Insertion Sequences support the additional abilty to append an element via push_back(). Common compatable
container types are the STL <vector> and <list> template containers. This template argument is usually used to
represent an output container in which one or more image frames may be appended. Containers like STL <vector>
which have a given default capacity may need to have their capacity adjusted via reserve() to a larger capacity in
order to support the expected final size . Since Magick++ images are very small, it is likely that the default capacity
of STL <vector> is sufficient for most situations.

, — Page 417

InputIterator

An input iterator used to express a position in a container. These template arguments are typically used to represent
a range of elements with first_ representing the first element to be processed and last_ representing the element to
stop at. When processing the entire contents of a container, it is handy to know that STL containers usually provide
the begin() and end() methods to return input interators which correspond with the first and last elements, respec-
tively.

The following is an example of how frames from a GIF animation "test_image_anim.gif" may be appended
horizontally with the resulting image written to the file "appended_image.miff":

#include <list>
#include <Magick++.h>
using namespace std;
using namespace Magick;

int main(int /*argc*/,char **/*argv*/)
{
 list<Image> imageList;
 readImages(&imageList, "test_image_anim.gif");

 Image appended;
 appendImages(&appended, imageList.begin(), imageList.end());
 appended.write("appended_image.miff");
 return 0;
}

, — Page 418

The available Magick++ specific STL algorithms for operating on sequences of image frames are shown in the
following table

STL Algorithms

Algorithm Signature Description

animateImages inputIterator first_,
InputIterator last_

Animate a sequence of image frames. Image frames are displayed in
succession, creating an animated effect. The animation options are
taken from the first image frame. This feature is only supported under
X11 at the moment.

appendImages Image *appendedImage_,
InputIterator first_,
InputIterator last_, bool
stack_= false

Append a sequence of image frames, writing the result to
appendedImage_ . All the input image frames must have the same
width or height. Image frames of the same width are stacked top-to-
bottom. Image frames of the same height are stacked left-to-right. If
the stack_ parameter is false, rectangular image frames are stacked
left-to-right otherwise top-to-bottom.

averageImages Image *averagedImage_,
InputIterator first_,
InputIterator last_

Average a sequence of image frames, writing the result to
averagedImage_ . All the input image frames must be the same size
in pixels.

coalesceImages InputIterator first_,
InputIterator last_

Merge a sequence of images. This is useful for GIF animation
sequences that have page offsets and disposal methods. The input
images are modified in-place.

, — Page 419

displayImages inputIterator first_,
InputIterator last_

Display a sequence of image frames. Through use of a pop-up menu,
image frames may be selected in succession. This feature is fully
supported under X11 but may have only limited support in other
environments.

Caution: if an image format is is not compatable with the display
visual (e.g. JPEG on a colormapped display) then the original image
will be altered. Use a copy of the original if this is a problem.

mapImages InputIterator first_,
InputIterator last_, const
Image& mapImage_, bool
dither_, bool
measureError_ = false

Replace the colors of a sequence of images with the closest color
from a reference image. Set dither_ to true to enable dithering. Set
measureError_ to true in order to evaluate quantization error.

montageImages Container
*montageImages_,
InputIterator first_,
InputIterator last_, const
Montage &montageOpts_

Create a composite image by combining several separate image
frames. Multiple frames may be generated in the output container
montageImages_ depending on the tile setting and the number of
image frames montaged. Montage options are provided via the
parameter montageOpts_. Options set in the first image frame
(backgroundColor,borderColor, matteColor, penColor,font, and
fontPointsize) are also used as options by montageImages().

STL Algorithms

Algorithm Signature Description

, — Page 420

morphImages Container
*morphedImages_,
InputIterator first_,
InputIterator last_, unsigned
int frames_

Morph a seqence of image frames. This algorithm expands the
number of image frames (output to the container morphedImages_)
by adding the number of intervening frames specified by frames_
such that the original frames morph (blend) into each other when
played as an animation.

readImages Container *sequence_, const
std::string &imageSpec_

Read a sequence of image frames into existing container (appending
to container sequence_) with image names specified in the string
imageSpec_.

writeImages InputIterator first_,
InputIterator last_, const
std::string &imageSpec_,
bool adjoin_ = true

Write images in container to file specified by string imageSpec_. Set
adjoin_ to false to write a set of image frames via a wildcard
imageSpec_ (e.g. image%02d.miff).

Caution: if an image format is selected which is capable of supporting
fewer colors than the original image or quantization has been
requested, the original image will be quantized to fewer colors. Use
a copy of the original if this is a problem.

quantizeImages InputIterator first_,
InputIterator last_, bool
measureError_ = false

Quantize colors in images using current quantization settings. Set
measureError_ to true in order to measure quantization error.

STL Algorithms

Algorithm Signature Description

, — Page 421

Magick++ Unary Function Objects

Magick++ unary function objects inherit from the STL unary_function template class . The STL unary_function
template class is of the form

unary_function<Arg, Result>

and expects that derived classes implement a method of the form:
Result operator()(Arg argument_);

which is invoked by algorithms using the function object. In the case of unary function objects defined by Magick++,
the invoked function looks like:

void operator()(Image &image_);

with a typical implementation looking similar to:
void operator()(Image &image_)
 {
 image_.contrast(_sharpen);
 }

where contrast is an Image method and _sharpen is an argument stored within the function object by its contructor.
Since constructors may be polymorphic, a given function object may have several constructors and selects the appro-
priate Image method based on the arguments supplied.

, — Page 422

In essence, unary function objects (as provided by Magick++) simply provide the means to construct an object which
caches arguments for later use by an algorithm designed for use with unary function objects. There is a unary function
object corresponding each algorithm provided by the Image class and there is a contructor available compatable with
each synonymous method in the Image class. The class name is the same as the Image class method name with the string
“Image” appended. For example, read becomes readImage.

Function objects are available to set attributes on image frames which are equivalent to methods in the Image object.
These function objects allow setting an option across a range of image frames using for_each.

The following code is an example of how the color 'red' may be set to transparent in a GIF animation:
list<image> images;
readImages(&images, "animation.gif");
for_each (images.begin(), images.end(), transparentImage("red"));
writeImages(images.begin(), images.end(), "animation.gif");

, — Page 423

Installing Magick++

General

In order to compile Magic++ you must have access to a standard C++ implementation and have ImageMagick installed
(ftp://ftp.wizards.dupont.com/pub/ImageMagick/). Magick++ is co-packaged as a subdirectory of ImageMagick as of
ImageMagick version 4.2.2 and later. The author uses the egcs 1.1.2 version of GNU C++ which is available under
UNIX and under the Cygwin UNIX-emulation environment for Windows. Standards compliant commercial C++
compilers should also work fine. Most modern C++ compilers for PCs should also work (project files are provided for
Microsoft Visual C++ 6.0).

The compiler must support the following recent C++ standard features:

n bool type

n string class (<string>)

n exceptions (<exception>)

n namespaces

n C++ versions of standard C headers (e.g. <cstring>)

n Standard Template Library (STL) (e.g. <list>, <vector>)

, — Page 424

I have personally verified that Magick++ compiles and runs using the following compiler/platform combinations:

Please let me know if you have successfully built and executed Magick++ using a different configuration so that I can
add to the table of verified configurations.

UNIX

To install the package under Unix, installation should be similar to
./configure [--prefix=/prefix]
make
make install

The configure script uses the compiler/linker flags it obtains from the installed 'Magick-config' script when performing
the build. The library is currently named similar to 'libMagick++.a' and is installed under prefix/lib while the headers
are installed under prefix/include.

Tested Configurations

Operating System Architecture Compiler

Solaris 2.6 SPARC egcs 1.1.1

Solaris 2.6 SPARC egcs 1.1.2

FreeBSD 2.2.7 Intel Pentium II egcs 1.1.2

Windows NT 4.0 SP3 Intel Pentium II Visual C++ Standard Edition

, — Page 425

To influence the options the configure script chooses, you may specify environment variables when running the script.
For example, the command

CXX=CC CXXFLAGS=-O2 LIBS=-lposix./configure

specifies additional options to the configure script. The following table shows the available options:

Configuration Environment Variables

Environ-
ment Vari-
able

Description

CXX Name of C++ compiler (e.g. 'CC -Xa') to use compiler 'CC -Xa'

CXXFLAGS Compiler flags (e.g. '-g -O2') to compile with

CPPFLAGS Include paths (-I/somedir) to look for header files

LDFLAGS Library paths (-L/somedir) to look for libraries. Systems that support the notion of a
library run-path may additionally require -R/somedir or '-rpath /somedir' in order to
find shared libraries at run time.

LIBS Extra libraries (-lsomelib) required to link

, — Page 426

Windows ‘9X and Windows NT

Visual C++

To build using Visual C++, extract the contents of Magick++-version.zip (preserving sub-directories) in the
ImageMagick distribution directory. This will create the directory Magick++-version containing the sub-directories
'demo', 'doc', 'lib', and 'tests'. Open the workspace file Magick++.dsw and build the project Magick++ in order to build
the library. The library is output to the same directory as the ImageMagick libraries.

The available projects are:

Visual C++ Projects

Project Description

Magick++ the Magick++ library

attributes test setting image attributes

manipulate test manipulating images

button program to create a simple rectangular button with an annotation

flip program to invert and morph images in an existing GIF animation

demo program to demonstrate the image manipulation primitives

shapes program to demonstrate use of the drawing primitives

, — Page 427

Test and demonstration programs are built in the directory which contains their sources. The Magick++ library is placed
in the ImageMagick/lib directory alongside the ImageMagick library.

Cygwin & EGCS

It is possible to build both ImageMagick and Magick++ under the Cygwin Unix-emulation environment for Windows
NT. Obtain and install Cygwin from http://sourceware.cygnus.com/cygwin/ and update to the latest EGCS compiler
from http://www.xraylith.wisc.edu/~khan/software/gnu-win32/egcs.html. X11R6.4 libraries are available from
http://dao.gsfc.nasa.gov/software/grads/win32/X11R6.4/. To build using Cygwin and EGCS, follow the instructions for
building under Unix. ImageMagick and Magick++ do not yet include support for building Windows DLLs under
Cygwin so do not enable dynamic libraries when building ImageMagick.

Appendix A, Supported Image Formats — Page 428

Appendix A Supported Image Formats

Overview

ImageMagick™ supports over fifty image formats. Some of the image formats
require additional programs or libraries. See the ImageMagick ReadMe file for
information about where to find the related materials.

Image Formats

Format Description Notes

AVS AVS X image file

BMP Microsoft Windows bitmap image file

BMP24 Microsoft Windows 24-bit bitmap image
file

CGM Computer graphics metafile requires ralcgm; read
only

CMYK raw cyan, magenta, yellow, and black
bytes

user -size command
line option to specify
width and height

Overview

Appendix A, Supported Image Formats — Page 429

DCM Digital Imaging and Communications in
Medicine image format

read only

DCX ZSoft IBM PC multipage Paintbrush file

DIB Microsoft Windows bitmap image file

EPDF Encapsulated Portable Document Format
file

EPS Adobe Encapsulated PostScript file requires Ghostscript

EPS2 Adobe Level II Encapsulated PostScript
file

requires Ghostscript

EPSF Adobe Encapsulated PostScript
Interchange format

requires Ghostscript

EPSI Adobe Encapsulated PostScript
Interchange format

requires Ghostscript

FAX Group 3

FIG TransFig image format requires TransFig

FITS Flexible Image Transport System

Image Formats

Format (Cont.) Description Notes

Overview

Appendix A, Supported Image Formats — Page 430

FPX FlashPix format use -DHasFPX to
compile; requires
FlashPIX SDK

GIF CompuServer graphics interchange
format

8-bit color

GIF87 CompuServer graphics interchagne
format

8-bit color (version
87a)

GRADATION gradual passing from one shade to
another

specify the desired
shading as the
filename (e.g.,
gradation: red-blue)

GRANITE granite texture

GRAY raw gray bytes use -size command
line option to specify
width and height

HDF Hierarchical Data Format use -DHasHDF to
compile

HISTOGRAM histogram of an image

Image Formats

Format (Cont.) Description Notes

Overview

Appendix A, Supported Image Formats — Page 431

HTML Hypertext Markup Language with a
client-side image map

requires HTML2PS to
read this format

JBIG Joint Bi-level Image Experts Group file
interchange format

use -DHasJBIG to
compile

JPEG Joint Photographic Experts Group JFIF
format

use -DHasJPEG to
compile

ICO Microsoft icon read only

LABEL text image format specify label text as
the filename (e.g.,
label:This is a label)

MAP colormap intensities and indices

MIFF Magick Image File Format

MNG Multiple Image Network Graphics

MPEG Motion Picture Experts Group file
interchange format

use -DHasMPEG to
compile

MTV MTV Raytracing image format

NETSCAPE Netscape 216 color cube

Image Formats

Format (Cont.) Description Notes

Overview

Appendix A, Supported Image Formats — Page 432

NULL null image useful for creating
blank tiles with
montage

PBM portable bitmap format (black and white)

PCD Photo CD maximum resolution
written is 512 x 768
pixels

PCDS Photo CD decode with the sRGB
color tables

PCL Page Control Language write only

PCX ZSoft IBM PC Paintbrush file

PDF Portable Document Format requires Ghostscript

PGM portable graymap format (grayscale)

PICT Apple Macintosh QuickDraw/PICT file

PIX Alias/Wavefront RLE image format read only

Image Formats

Format (Cont.) Description Notes

Overview

Appendix A, Supported Image Formats — Page 433

PLASMA plasma fractal image specify the base color
as the filename (e.g.,
plasma:blue-yellow);
use fractal to initialize
randome value (e.g.,
plasma:fractal)

PNG Portable Network Graphics

PNM portable anymap use +compress to
produce ASCII
renditions

PPM portable pixmap format (color)

PWP Seattle Film Works read only

P7 Xv’s visual schnauzer format

PS Adobe PostScript file requires Ghostscript

PS2 Adobe Level II PostScript file requires Ghostscript

PSD Adobe Photoshop bitmap file

RAD Radiance image file

Image Formats

Format (Cont.) Description Notes

Overview

Appendix A, Supported Image Formats — Page 434

RGB raw red, green, and blue bytes use -size command
line option to specify
width and height

RGBA raw red, green, blue, and matte bytes use -size command
line option to specify
width and height

RLA Alias/Wavefront image file read only

RLE Utah run length encoded image file read only

SCAN Import image from a scanner device requires SANE;
specify device name
and path as the
filename (e.g.,
scan:mustek:/dev/scan
ner)

SFW Seattle Film Works read only

SGI Irix RGB image file

SHTML Hypertext Markup Language with a
client-side image map

write only

Image Formats

Format (Cont.) Description Notes

Overview

Appendix A, Supported Image Formats — Page 435

SUN SUN rasterfile

TEXT raw text file read only

TGA Truevision Targa image file

TIFF Tagged Image File Format use -DHasTIFF to
compile

TIFF24 24-bit Tagged Image File Format use -DHasTIFF to
compile

TILE tile image with a texture read only

TIM PSX TIM file read only

TTF TrueType font file read only

UIL X-Motif UIL table

UYVY 16-bit/pixel interleaved YUV use -size command
line option to specify
width and height

VICAR read only

VID Visual Image Directory

Image Formats

Format (Cont.) Description Notes

Overview

Appendix A, Supported Image Formats — Page 436

VIFF Khoros Visualization Image File Format

WIN select image from or display image to
your computer screen

WMF Windows Meta Format read only

X select image from or display image to
your X server screen

XC constant image of X server color use -size command
line option to specify
width and height

XBM X Windows system bitmap (black and
white only)

XPM X Windows system pixmap file (color)

XWD X Windows system window dump file
(color)

YUV CCIR 601 4:1:1 file use -size command
option to specify width
and height

Image Formats

Format (Cont.) Description Notes

Overview

Appendix A, Supported Image Formats — Page 437

On some platforms, ImageMagick processes the following extensions automatically:

• .gz for Zip compression

• .Z for Unix compression

• .bz2 for block compression

• .pgp for PGP encryption

For example, a PNM image called image.pnm.gz is decompressed and read with the gzip program automatically.

Appendix B, X Resources — Page 438

Appendix B

X Resources

Overview

Several of the ImageMagick features use X resources.

These resources are identified in the table in alphabetical order.

X Resources

X Resource Function

background (class Background) Specifies the preferred color to use for the
Image window background. The default is
#ccc.Used by animate, display, montage

borderColor (class BorderColor) Specifies the preferred color to use for the
Image window border. The default is #ccc.

Used by animate, display, montage

borderWidth (class BorderWidth) Specifies the width in pixels of the Image
window border. The default is 2.

Used by animate, display, montage

browseCommand (class
browseCommand

Specifies the name of the preferred browser
when displaying ImageMagick
documentation. The default is netscape %s.

Used by display

Overview

Appendix B, X Resources — Page 439

confirmExit (class ConfirmExit) Prompts the user to confirm exiting the
program when exiting ImageMagick. Set this
resource to False to exit without a
confirmation.

Used by display

displayGamma (class
DisplayGamma)

Specifies the gamma of your X server. You
can apply separate gamma values to the red,
green, and blue channels of an image with a
gamma value list delineated with slashes—
1.7/2.3/1.2.

Used by display

displayWarnings (class
DisplayWarnings)

Displays a warning message when
appropriate. Set this resource to False to
ignore warning messages.

Used by display

editorCommand (class
editorCommand)

Specifies the name of the preferred editor
when editing image comments. The default
is xterm -title “Edit Image Comment” -e vi
%s.Used by display

font (class Font or FontList) Specifies the name of the preferred font to
use in normal formatted text. The default is
14 point Helvetica .Used by animate, display, montage

X Resources

X Resource (Cont.) Function

Overview

Appendix B, X Resources — Page 440

font[1–9] (class Font[1–9]) Specifies the name of the preferred font to
use when annotating an image window with
text. The default fonts are fixed , variable,
5x8, 6x10, 7x13bold, 8x13bold, 9x15bold ,
10x20, and 12x24. See Image Annotation for
details.

Used by display

foreground (class Foreground) Specifies the preferred color to use for text
within the Image window. The default is
black.Used by animate, display, montage

gammaCorrect (class
gammaCorrect)

This resource, if true, will lighten or darken
an image of known gamma to match the
gamma of the display. See the resource
displayGamma. The default is True.Used by display

geometry (class geometry) Specifies the preferred size and position of
the image window. It is not necessarily
obeyed by all window managers.Used by animate, display

iconGeometry (class
IconGeometry)

Specifies the preferred size and position of
the application when iconified. It is not
necessarily obeyed by all window managers.

Used by animate, display, montage

X Resources

X Resource (Cont.) Function

Overview

Appendix B, X Resources — Page 441

iconic (class Iconic) Specifies you would prefer an application’s
windows not be visible initially, as if the
windows had been immediately iconified by
you. Window managers may choose not to
honor the application’s request.

Used by animate, display, montage

magnify (class Magnify) Specifies an integral factor by which an
image should be enlarged. The default is 3.

Used by display

matteColor (class MatteColor) The color of windows. It’s used for the
backgrounds of windows, menus, and
notices. A 3D effect is achieved by using
highlight and shadow colors derived from
this color. The default is #ddd.

Used by animate, display, montage

name (class Name) The name under which resources for the
application should be found. This resource is
useful in shell aliases to distinguish between
invocations of an application without
resorting to creating links to alter the
executable file name. The default is the
application name.

Used by animate, display, montage

X Resources

X Resource (Cont.) Function

Overview

Appendix B, X Resources — Page 442

pen[1–9] (class Pen[1–9]) Specifies the color of the preferred font to
use when annotating an image window with
text. The default colors are black, blue,
green, cyan, gray, red, magenta, yellow,
and white. See Image Annotation for details.

Used by display

printCommand (class
PrintCommand)

This command is executed when ever Print is
issued. See Buttons. In general, it’s the
command to print PostScript to your printer.
The default value is lpr -r %s.Used by display

sharedMemory (class
SharedMemory)

Whether animate should attempt to use
shared memory for pixmaps. ImageMagick
must be compiled with shared memory
support, and the display must support the
MIT-SHM extension. Otherwise, this
resource is ignored. The default is True.

Used by animate, display, montage

textfont (class textFont) The name of the preferred font to use in fixed
(typewriter style) formatted text. The default
is 14 point Courier.Used by animate, display, montage

X Resources

X Resource (Cont.) Function

Overview

Appendix B, X Resources — Page 443

title (class Title) The title to use for the Image window. This
information is sometimes used by a window
manager to provide some sort of header to
identify the window. The default is the image
file name.

Used by animate, display, montage

undoCache (class UndoCache) Specifies, in megabytes (Mb), the amount of
memory in the undo edit cache. Each time
you modify the image, it’s saved in the undo
edit cache as long as memory is available.
You can subsequently undo one or more of
these transformations. The default is 16Mb.

Used by display

X Resources

X Resource (Cont.) Function

Overview

Appendix B, X Resources — Page 444

usePixmap (class UsePixmap) Images are maintained as an ximage by
default. Set this resource to True to use a
server pixmap instead. This is useful if your
image exceeds the dimensions of your server
screen and you intend to pan the image.
Panning is much faster with pixmaps than
with ximages. Pixmaps are considered a
precious resource; use them with discretion.
To set the geometry of the Magnify or Pan
window, use the geometry resource. For
example, to set the pan window geometry to
256x256, use
display.pan.geometry: 256x256.

Used by display

X Resources

X Resource (Cont.) Function

, MIFF — Page 445

Appendix C

MIFF

Overview

Magick Image File Format (MIFF) is a platform-independent format for storing
bitmap images. MIFF is a part of the ImageMagick toolkit of image manipulation
utilities for the X Window System. ImageMagick is capable of converting many
different image file formats to and from MIFF (e.g., JPEG, XPM, TIFF, etc.).

A MIFF image file consist of two sections.

• a header composed of keywords describing the image in text form

• the binary image data

The header is separated from the image data by a colon (:) character immediately
followed by a ctrl-Z (^Z).

The MIFF header is composed entirely of LATIN-1 characters. The fields in the
header are a keyword and value combination in the keyword=value format. Each
keyword and value is separated by an equal sign (=). Each keyword=value combi-
nation is delimited by at least one control or whitespace character.

Comments may appear in the header section and are always delimited by braces.
The MIFF header always ends with a colon (:) character, followed by a ctrl-Z
character (^Z). It’s also common for a formfeed and a newline character to appear

Overview

, MIFF — Page 446

before the colon. You can then list the image keywords with the Unix more program, without printing the binary image
that follows the colon separator. The ctrl-Z character has the same effect with type from the Win32 command line.

The following is a list of keyword=value combinations that may be found in a MIFF file:

Keyword/Value Combinations

Keyword=value Definition

background-color=x,y border-
color=x,y matte-color=x,y

These optional keywords reflect the image background, border, and matte colors,
respectively.

class=DirectClass ,
class=PseudoClass

The type of binary image data stored in the MIFF file. If this keyword is not
present, DirectClass image data is assumed.

colors=value The number of colors in a DirectClass image. For a PseudoClass image, this
keyword specifies the size of the colormap. If this keyword is not specified in the
header, and the image is PseudoClass, a linear 256 color grayscale colormap is
used with the image data.

colorspace=RGB, colorspace=CMYK The colorspace of the pixel data. The default is RGB.

columns=value The width of the image in pixels. This is a required keyword and has no default.

color-profile=value The number of bytes in the International Color Consortium color profile. The
profile is defined by the ICC profile specification.

compression=RunlengthEncoded,
compression=Zip, compression=BZip

The type of algorithm used to compress the image data. If this keyword is not
present, the image data is assumed to be uncompressed.

Overview

, MIFF — Page 447

delay <1/100ths of a second> The interframe delay in an image sequence. The maximum delay is 65535.

depth=8, depth=16 The depth of a single color value representing values from 0 to 255 (depth 8) or
65535 (depth 16). If this keyword is absent, a depth of 8 is assumed.

dispose=value GIF disposal method. The valid methods are: 0, No disposal specified; 1, Do not
dispose; 2, Restore to background color; 3, Restore to previous.

gamma=value Gamma of the image. If it is not specified, a gamma of 1.0 (linear brightness
response) is assumed,

id=ImageMagick Identifies the file as a MIFF-format image file. This keyword is required and has
no default. Although this keyword can appear anywhere in the header, it should
start as the first keyword of the header in column 1. This will allow programs like
file(1) to easily identify the file as MIFF.

iterations=value The number of times an image sequence loops before stopping.

label=”value” This optional keyword defines a short title or caption for the image. If any
whitespace appears in the label, it must be enclosed within double quotes.

matte=True, matte=False Specifies whether a DirectClass image has matte data. Matte data is generally
useful for image compositing. This keyword has no meaning for pseudocolor
images.

Keyword/Value Combinations

Keyword=value (Cont.) Definition

Overview

, MIFF — Page 448

montage=<width>x
<height>{+-}<x offset>
{+-}<y offset>

Size and location of the individual tiles of a composite image. See X(1) for details
about the geometry specification.

Use this keyword when the image is a composite of a number of different tiles. A
tile consists of an image and optionally a border and a label. <width> is the size
in pixels of each individual tile in the horizontal direction and <height> is the size
in the vertical direction. Each tile must have an equal number of pixels in width
and equal in height. However, the width can differ from the height. <xoffset> is
the offset in number of pixels from the vertical edge of the composite image where
the first tile of a row begins and <y offset> is the offset from the horizontal edge
where the first tile of a column begins.

If this keyword is specified, a directory of tile names must follow the image
header. The format of the directory is explained below.

packets=value The number of compressed color packets in the image data section. This keyword
is optional for RunlengthEncoded images, mandatory for Zip or BZip compressed
images, and not used for uncompressed image.

page=value Preferred size and location of an image canvas.

red-primary=x,y, green-primary=x,,y
blue-primary=x,,y white-point=x,y

This optional keyword reflects the chromaticity primaries and white point.

Keyword/Value Combinations

Keyword=value (Cont.) Definition

Overview

, MIFF — Page 449

The following is a sample MIFF header. In this example, <FF> is a formfeed character:

id=ImageMagick class=PseudoClass colors=256
compression=RunlengthEncoded

rendering-intent=
saturation, rendering-
intent=perceptual,
rendering-intent=absolute, rendering-
intent=
relative

Rendering intent is the CSS-1 property that has been defined by the International
Color Consortium.

resolution=
<x-resolution>x
<y-resolution>

Vertical and horizontal resolution of the image. See units for the specific
resolution units (e.g., pixels per inch).

rows=value The height of the image in pixels. This is a required keyword and has no default.

scene=value The sequence number for this MIFF image file. This optional keyword is used
when a MIFF image file is one in a sequence of files used in an animation.

signature=value This optional keyword contains a string that uniquely identifies the image pixel
contents. RSA’s Data Security MD5 Digest Algorithm is recommended.

units=pixels-per-inch, units=pixels-
per-centimeter

Image resolution units.

Keyword/Value Combinations

Keyword=value (Cont.) Definition

Overview

, MIFF — Page 450

packets=27601 columns=1280 rows=1024
scene=1
signature=d79e1c308aa5bbcdeea8ed63df412da9
{
Rendered via Dore by Sandi Tennyson.
}
<FF>
:

Note that keyword=value combinations may be separated by newlines or spaces and may occur in any order within the
header. Comments (within braces) may appear anywhere before the colon.

If you specify the montage keyword in the header, follow the header with a directory of image tiles. This directory
consists of a name for each tile of the composite image separated by a newline character. The list is terminated with a
NULL character.

If you specify the color-profile keyword in the header, follow the header (or montage directory if the montage keyword
is in the header) with the binary color profile.

Next comes the binary image data itself. How the image data is formatted depends upon the class of the image as
specified (or not specified) by the value of the class keyword in the header.

DirectClass images (class=DirectClass) are continuous-tone, RGB images stored as intensity values in red-green-blue
order. Each color value is one byte in size for an image depth of 8 and there are three bytes per pixel (four with an
optional matte value). If the depth is 16, each color value is two bytes with the most significant byte being first. The total
number of pixels in a DirectClass image is calculates by multiplying the rows value by the column value in the header.

Overview

, MIFF — Page 451

PseudoClass images (class=PseudoClass) are colormapped RGB images. The colormap is stored as a series of red-green-
blue pixel values, each value being a byte in size. If the image depth is 16, each colormap entry is two bytes with the
most significant byte being first. The number of colormap entries is indicated by the colors keyword in the header, with
a maximum of 65,535 total entries allowed. The colormap data occurs immediately following the header (or image
directory if the montage keyword is in the header).

PseudoClass image data is an array of index values into the color map. If these are 256 or fewer colors in the image, each
byte of image data contains an index value. If the image contains more than 256 colors or the depth is 16, the index value
is stored as two contiguous bytes with the most significant byte being first. The total number of pixels in a PseudoClass
image is calculated by multiplying the rows value by the columns value in the header.

The image data in a MIFF file may be uncompressed or may be compressed using one of two algorithms. The
compression keyword in the header indicates how the image data is compressed. The run-length encoding (RLE)
algorithm may be used to encode image data into packets of compressed data. For DirectClass images, runs of identical
pixels values (not BYTE values) are encoded into a series of four-byte packets (five bytes if a matte value is included).
The first three bytes of the packet contain the red, green, and blue values of the pixel in the run. The fourth byte contains
the number of pixels in the run. This value is in the range of 0 to 255 and is one less than the actual number of pixels in
the run. For example, a value of 127 indicates that there are 128 pixels in the run.

For PseudoClass images, the same RLE algorithm is used. Runs of identical index values are encoded into packets. Each
packet contains the colormap index value followed by the number of index values in the run. The number of bytes n a
PseudoClass RLE packet will be either two or three, depending upon the size of the index values. The number of RLE
packets stored in the file is specified by the packets keyword in the header, but is not required.

Use Zip or BZip compression to achieve a greater compression ratio than run-length encoding. The number of
compressed packets stored in the file is specified by the packets keyword in the header.

Overview

, MIFF — Page 452

MIFF files may contain more than one image. Simply concatenate each individual image (composed of a header and
image data) into one file.

Appendix D, Quantize — Page 453

Appendix D

Quantize

Overview

This document describes how ImageMagick performs color reduction on an image.
To fully understand this chapter, you should have a knowledge of basic imaging
techniques and the tree data structure and terminology.

For purposes of color allocation, an image is a set of n pixels, where each pixel is a
point in RGB space. RGB space is a 3-dimensional vector space, and each pixel, pi,
is defined by an ordered triple of red, green, and blue coordinates, (ri,gi,bi).

Each primary color component (red, green, or blue) represents an intensity that
varies linearly from 0 to a maximum value, Cmax, which corresponds to full
saturation of that color. Color allocation is defined over a domain consisting of the
cube in RGB space with opposite vertices at (0,0,0) and (Cmax,Cmax,Cmax).
ImageMagick requires Cmax= 255.

The algorithm maps this domain onto a tree in which each node represents a cube
within that domain. In the following discussion, these cubes are defined by the
coordinate of two opposite vertices—the vertex nearest the origin in RGB space and
the vertex farthest from the origin.

The tree’s root node represents the the entire domain, (0,0,0) through
(Cmax,Cmax,Cmax). Each lower level in the tree is generated by subdividing one
node’s cube into eight smaller cubes of equal size. This corresponds to bisecting the
parent cube with planes passing through the midpoints of each edge.

Classification

Appendix D, Quantize — Page 454

The basic algorithm operates in three phases:

• Classification, which builds a color description tree for the image

• Reduction, which collapses the tree until the number it represents, at most, is the number of colors desired in
the output image

• Assignment, which defines the output image’s color map and sets each pixel’s color by reclassification in the
reduced tree

Our goal is to minimize the numerical discrepancies between the original colors and quantized colors. To learn more
about quantization error, see Measuring Color Reduction Error.

Classification

Classification begins by initializing a color description tree of sufficient depth to represent each possible input color in
a leaf. However, it’s impractical to generate a fully-formed color description tree in the classification phase for realistic
values of Cmax. If color components in the input image are quantized to k-bit precision, so that Cmax = 2k-1, the tree
would need k levels below the root node to allow representing each possible input color in a leaf. This becomes prohib-
itive because the tree’s total number of nodes = 1+Sum(8i), i=1,k

For k=8, Number of nodes= 1 + (81+82+....+88) 88 - 1 = 1 + 8.----------- 8 - 1 = 19,173,961

Therefore, to avoid building a fully populated tree, ImageMagick does the following:

Classification

Appendix D, Quantize — Page 455

• Initializes data structures for nodes only as they are needed

• Chooses a maximum depth for the tree as a function of the desired number of colors in the output image
(currently based-two logarithm of Cmax).

For Cmax=255,
Maximum tree depth = log (255) 2= log (255) / log (2) e e=7.99 ~= 8

A tree of this depth generally allows the best representation of the source image with the fastest computational speed
and the least amount of memory. However, the default depth is inappropriate for some images. Therefore, the caller can
request a specific tree depth.

For each pixel in the input image, classification scans downward from the root of the color description tree. At each level
of the tree, it identifies the single node which represents a cube in RGB space containing the pixel’s color. It updates the
following data for each such node:

Node Data

Node Data

n1 Number of pixels whose color is contained in the RGB cube which this node
represents

n2 Number of pixels whose color is not represented in a node at lower depth in the
tree; initially, n2=0 for all nodes except leaves of the tree.

Sr,Sg,Sb Sums of the red, green, and blue component values for all pixels not classified
at a lower depth. The combination of these sums and n2 will ultimately
characterize the mean color of a set of pixels represented by this node.

Reduction

Appendix D, Quantize — Page 456

Reduction

Reduction repeatedly prunes the tree until the number of nodes with n 2 > 0 is less than or equal to the maximum number
of colors allowed in the output image. On any given iteration over the tree, it selects those nodes whose E value is
minimal for pruning and merges their color statistics upward. It uses a pruning threshold, Ep , to govern node selection
as follows:

Ep = 0
while number of nodes with (n2 > 0) > required maximum number of colors
prune all nodes such that E <= Ep
Set Ep to minimum E in remaining nodes

This has the effect of minimizing any quantization error when merging two nodes together.

When a node to be pruned has offspring, the pruning procedure invokes itself recursively in order to prune the tree from
the leaves upward. The values of n 2,Sr, Sg, and Sb in a node being pruned are always added to the corresponding data in
that node’s parent. This retains the pruned node’s color characteristics for later averaging.

E The distance squared in RGB space between each pixel contained within a node
and the nodes’ center. This represents the quantization error for a node.

Node Data

Node Data

Assignment

Appendix D, Quantize — Page 457

For each node, n 2 pixels exist for which that node represents the smallest volume in RGB space containing those pixel’s
colors. When n2 > 0 the node will uniquely define a color in the output image. At the beginning of reduction, n2 = 0 for
all nodes except the leaves of the tree which represent colors present in the input image.

The other pixel count, n1, indicates the total number of colors within the cubic volume which the node represents. This
includes n1 - n2 pixels whose colors should be defined by nodes at a lower level in the tree.

Assignment

Assignment generates the output image from the pruned tree. The output image consists of two parts.

• A color map, which is an array of color descriptions (RGB triples) for each color present in the output image.

• A pixel array, which represents each pixel as an index into the color map array.

First, the assignment phase makes one pass over the pruned color description tree to establish the image’s color map.
For each node with n2 > 0, it divides Sr, Sg, and Sb by n2. This produces the mean color of all pixels that classify no
lower than this node. Each of these colors becomes an entry in the color map.

Finally, the assignment phase reclassifies each pixel in the pruned tree to identify the deepest node containing the pixel’s
color. The pixel’s value in the pixel array becomes the index of this node’s mean color in the color map.

Measuring Color Reduction Error

Appendix D, Quantize — Page 458

Empirical evidence suggests that the distances in color spaces such as YUV, or YIQ correspond to perceptual color
differences more closely than do distances in RGB space. These color spaces may give better results when color
reducing an image. Here the algorithm is as described except each pixel is a point in the alternate color space. For conve-
nience, the color components are normalized to the range 0 to a maximum value, Cmax. The color reduction can then
proceed as described.

Measuring Color Reduction Error

Depending on the image, the color reduction error may be obvious or invisible. Images with high spatial frequencies
(such as hair or grass) will show error much less than pictures with large smoothly shaded areas (such as faces). This is
because the high-frequency contour edges introduced by the color reduction process are masked by the high frequencies
in the image.

To measure the difference between the original and color reduced images (the total color reduction error), ImageMagick
sums over all pixels in an image the distance squared in RGB space between each original pixel value and its color
reduced value. ImageMagick prints several error measurements including the mean error per pixel, the normalized mean
error, and the normalized maximum error.

The normalized error measurement can be used to compare images. In general, the closer the mean error is to zero the
more the quantized image resembles the source image. Ideally, the error should be perceptually-based, since the human
eye is the final judge of quantization quality.

These errors are measured and printed when -verbose and -colors are specified on the command line:

• mean error per pixel is the mean error for any single pixel in the image

Measuring Color Reduction Error

Appendix D, Quantize — Page 459

• normalized mean square error is the normalized mean square quantization error for any single pixel in the image

This distance measure is normalized to a range between 0 and 1. It’s independent of the range of red, green,
and blue values in the image.

• normalized maximum square error is the largest normalized square quantization error for any single pixel in the
image.

This distance measure is normalized to a range between and blue values in the image.

Appendix E, XTP — Page 460

Appendix E

XTP

Overview

XTP is a utility for retrieving, listing, or printing files from a remote network site,
or sending files to a remote network site. XTP performs most of the same functions
as the FTP program, but it doesn’t require any interactive commands. You simply
specify the file transfer task on the command line and XTP performs the task
automatically.

Syntax
xtp [-options ...] <uniform resource locator>

Examples

• To retrieve the file bird.jpg in directory images from host
wizard.mystic.es.dupont.com, use

xtp ftp://wizard.mystic.es.dupont.com/images/bird.jpg

• To retrieve all the files from directory images from host
wizard.mystic.es.dupont.com, use

xtp -retrieve ftp://wizard.mystic.es.dupont.com/images/

XTP Options

Appendix E, XTP — Page 461

You will be prompted for a password.

• To retrieve all the files from directory images as user cristy and password magick from host
wizard.mystic.es.dupont.com, use

xtp -retrieve ftp://cristy:magick@wizard.mystic.es.dupont.com/images/

XTP Options

-account password

Supplies a supplemental password required by a remote system for access to resources.

-binary

Retrieves files as binary. This is the default. Use +binary to retrieve files as text.

-directory

Lists the names of files (and their attributes) that match the filename component of the Uniform Resource Locator (URL). The
filename component is processed as a regular expression.

-exclude expression

Excludses files that match the regular expression. This option applies to the -directory, -print, or -retrieve options.

XTP Options

Appendix E, XTP — Page 462

-file name

Stores the file with this name. Refer to the -get and -put options for details.

-get

Gets files that match the filename component of the URL. The filename component is expanded by passing it to csh(1).

This option is equivalent to using the ftp get command. However, if the filename contains globbing characters this option is equiv-
alent to the ftp mget command. Without globbing characters, you can store the file locally with a different name using the -file

option.

-ident password

Supplies a password required by a remote system. This defaults to your username and hostname.

-port number

If no port number is specified, xtp attempts to contact an FTP server at the default port. Otherwise, the specified port number is used.

-proxy hostname

Accesses the remote host via a proxy ftpd client running on this host.

The default value of this option can be set with the environment variable xtp_proxy. See Environment for details. Use
+proxy to prevent proxy connections.

XTP Options

Appendix E, XTP — Page 463

-print

Prints files that match the filename component of the URL. The filename component is processed as a regular expression.

-prune

Processes files in the remote directory specified by the directory component of the URL.

Note: This option does not recursively search for files.

-put

Puts files that match the filename component of the URL. The filename component is expanded by passing it to csh(1).

This option is equivalent to using the ftp put command. However, if the filename contains globbing characters, this option is
equivalent to the ftp mput command. Without globbing characters, you can store the file remotely with a different name by using

the -file option.

-retrieve

Retrieves files that match the filename component of the URL. The filename component is processed as a regular expression.

Retrieved files are stored on your local host directory as the full name of the retrieved file. For example, if the retrieved file is named
documents/xtp.man on the remote FTP server, it will appear in your remote directory as documents/xtp.man.

XTP Options

Appendix E, XTP — Page 464

-timeout seconds

Specifies the maximum number of seconds to complete your remote FTP server request. If this time expires, the program terminates.
The program also terminates if one tenth of this value is exceeded while logging onto the remote FTP server.

-type name

Identifies the remote system type: Unix, VMS, or other.

The system type is determined automatically, however, you can override the system type with this option.

-verbose

Shows all responses from the remote server.

Using XTP Options

If only the program name is specified on the command line, the program command syntax and options are listed. If -directory,
-print, -put, or -retrieve are specified on the command line, the file or files specified by the URL are retrieved from the

remote network host (as if -get was specified).

This option has the format

protocol://host/[directory/[filename]]

where protocol is ftp and host is [user[:password]]@hostname.

Regular Expressions

Appendix E, XTP — Page 465

User defaults to anonymous and password defaults to host.domain. Note that directory/[filename] is interpreted relative to the home
directory for user, thus an absolute pathname must be specified with the leading /;

ftp://host//tmp/anyfile

As an extension, the filename part of the locator is expanded by the shell for options -get or -put, otherwise it ‘s processed as a
regular expression. For convenience, the protocol component of the URL (ftp://) may be omitted.

Xtp retrieves files from the remote directory for -get and puts files in the remote directory for -put . Otherwise, xtp looks for a file
of the form ls-lls-l([Rt])+([Rt])* and assumes it contains a recursive directory listing. If none is found, xtp recursively descends the
directory hierarchy from the remote directory. Some remote hosts may have thousands of files causing a significant delay satisfying
your request. This can be wasteful if the files you’re interested in reside in a known directory. You can reduce the searching required
by specifying a remote directory on the command line. This limits the filename search to the specified directory and any of its subdi-

rectories. Alternatively, -prune restricts the search to the remote directory only.

Regular Expressions

A regular expression is zero or more branches, separated by |. It matches anything that matches one of the branches. A branch is
zero or more pieces, concatenated. It matches a match for the first, followed by a match for the second, etc.

A piece is an atom possibly followed by *, +, or ?. An atom followed by * matches a sequence of 0 or more matches of the atom.
An atom followed by + matches a sequence of 1 or more matches of the atom. An atom followed by ? matches a match of the atom,

or the null pattern.

Files

Appendix E, XTP — Page 466

An atom is a regular expression in parentheses (matching a match for the regular expression), a range (see below), . (matching any
single character), ̂ (matching the null pattern at the beginning of the input pattern), $ (matching the null pattern at the end of the input
pattern), a ' followed by a single character (matching that character), or a single character with no other significance (matchi ng that

character).

A range is a sequence of characters enclosed in []. It normally matches any single character from the sequence. If the sequence begins
with ^, it matches any single character not from the rest of the sequence. If two characters in the sequence are separated by -, this is

shorthand for the full list of ASCII characters between them (e.g., [0-9] matches any decimal digit). To include a literal] in the
sequence, make it the first character (following a possible ^). To include a literal -, make it the first or last character.

Files

~/.netrc

Environment

xtp_proxy

Specifies that the remote site should be contacted by proxy. See -proxy hostname.

Environment

Appendix E, XTP — Page 467

Appendix F, Acknowledgments — Page 468

Appendix F

Acknowledg-
ments

Author

John Cristy, magick@wizards.dupont.com, E.I. du Pont de Nemours and Company
Incorporated.

Contributors

Rod Bogart and John W. Peterson, University of Utah. Image compositing is
loosely based on rlecomp of the Utah Raster Toolkit.

Bob Friesenhahn contributed and maintains the Configure scripts. In addition, Bob
wrote a PERL script to format the ImageMagick C API documentation, wrote the
PerlMagick regression tests, proposed the Delegate subsystem, and wrote
Magick++, an ImageMagick C++ API wrapper.

Michael Halle, Spatial Imaging Group at MIT, contributed the initial implemen-
tation of Alan Paeth's image rotation algorithm.

Peder Langlo, Hewlett Packard, Norway, submitted hundreds of suggestions and
bug reports. Without Peder, ImageMagick would not be nearly as useful as it is
today.

Rick Mabry added tiled drawing pens to ImageMagick, as well as anti-aliased
drawing primitives.

Manual Design and Compilation

Appendix F, Acknowledgments — Page 469

The MIT X Consortium made network transparent graphics a reality.

David Pensak, E. I. du Pont de Nemours and Company, provided a computing environment that made this program
possible.

Bill Radcliffe, contributed the FlashPix and IPTC support.

Paul Raveling, USC Information Sciences Institute. The spacial subdivision color reduction algorithm is based on his
Img software.

Steve Singles, University of Delaware, contributed the initial implementation of xtp.

Henry Spencer, University of Toronto, contributed the implementation of the xtp regular expression interpreter and the
text in Regular Expressions on page 465.

Many thanks to the hundreds of people who have submitted email with bug reports and suggestions for improving
ImageMagick.

Manual Design and Compilation

Rebecca Richardson, technical writer, gathered the web resources, edited them, and formatted them into this guide.
Rebecca can be contacted at recbecca1@earthlink.net

Index — Page i

Index Numerics
16-bit images, working with 32
64-bit machines, changing the RunlengthPacket structure 33

A
about 105
animate

about 129
examples 130
options 131–143
syntax 130
using to reduce color flashing 31
X resources 143

annotating images (display) 91
append method for PerlMagick 322
assignment for quantize 457
automatic configuration, using GNU configure 8
average method for PerlMagick 323

B
background texture delegate 18
building

HDF extension library 24
JBIG extension library 24
JPEG extension library 25

Index — Page ii

PNG extension library 25
TIFF extension library 25
TTF extension library 26
ZLIB extension library 26

C
changing the RunlengthPacket structure for 64-bit

machines 33
chopping images 87
classification for quantize 454
clone method for PerlMagick 324
color flashing, preventing on colormapped visuals 31
color images, editing 96
color reduction, measuring error (quantize) 458
colormapped visuals, preventing color flashing 31
combine

about 266
examples 266
options 267–288
syntax 266
using mask 288

Command Widget, using 40
compiling

HDF extension library 24
ImageMagick extension libraries 23
JBIG extension library 24

JPEG extension library 25
PNG extension library 25
TIFF extension library 25
TTF extension library 26
ZLIB extension library 26

compiling ImageMagick for
Macintosh 30
Unix 7
VMS 27

composite images, creating 93
composite operator behavior

creating composite images 95
pasting 85

compression, JPEG iterative 21
configuration failures, dealing with 14
configuration files

using X11 imake for 15
configure

ImageMagick-specific options 9
options, special considerations 12

convert
about 177
examples 178
options 179–217
segmenting images 217
syntax 177

Index — Page iii

converting
an image to MIFF 34

copying images 83
creating

a visual image directory 81
composite images 93
makefiles 7

cropping images 86
cutting images 82

D
delegates

background texture 18
FPX 19
FreeType 20
GET 19
HDF 20
HTML2PS 20
JBIG 20
JPEG 20
MPEG 21
PNG 21
PostScript 22
RA_PPM 22
RALCGM 19
RAWTORLE 22

SANE 22
TIFF 23
TransFig 19
web address 18
ZLIB 23

display
about 44
annotating images 91
chopping images 87
composite operator behavior for

creating composite images 95
pasting 85

copying images 83
creating

a visual image directory 81
composite images 93

cropping images 86
cutting images 82
drawing images 100
editing

color images 96
matte images 98

envrionment 43
examples 48
loading images 80
options 50–79

Index — Page iv

panning images 103
pasting images 84
preferences 103
rotating images 88
segmenting images 89
syntax 48
transforming a region 102
user preferences 103
using as external viewer 6

downloading ImageMagick 6
drawing images 100

E
editing

color images 96
matte images 98

environment
display 43
xtp_proxy 466

errors for PerlMagick methods 326
examples for

animate 130
combine 266
convert 178
display 48
import 105

mogrify 219
montage 146
PerlMagick script 294
reading images with PerlMagick 297
writing images with PerlMagick 297
XTP 460

extension libraries, building 23
external viewer, using display as 6

F
files for XTP 466
formats supported by ImageMagick 428
FPX delegate 19
FreeType delegate 20
frequently asked questions, web address 18

G
GET delegate 19
GNU configure

installing ImageMagick 8
variables 8

H
HDF

delegate 20

Index — Page v

extension library, building 24
HTML2PS delegate 20

I
identify

about 260
options 261–263
syntax 261

image attributes, getting with PerlMagick 316
image format, about MIFF 33
ImageMagick 14

compiling extension libraries 23
compiling for

Macintosh 30
Unix 7
VMS 27

configure script options 9
delegates 18
downloading 6
formats, supported 428
mail list, subscribing to 6
memory requirements for 7
supported formats 428
X resource functions 438

images
annotating 91

chopping 87
copying 83
creating composite 93
cropping 86
cutting 82
drawing 100
editing

color 96
matte 98

loading 80
panning 103
pasting 84
PerlMagick

creating a montage 319
manipulating 297
reading 296
setting attributes 310
setting attributes for an image 310
writing 296

rotating 88
segmenting

convert 217
display 89
mogrify 258

working with 16-bit 32
import 105

Index — Page vi

examples 105
options 106–127
syntax 105

installing PerlMagick for
Unix 290
Windows NT/95/98 291

iterative JPEG compression 21

J
JBIG

delegate 20
extension library, building 24

JPEG
compression, iterative 21
delegate 20
extension library, building 25

K
keyboard short cuts 42
keywords found in MIFF files 446

L
libraries, support for shared 26
loading images 80

M
Macintosh, compiling ImageMagick for 30
Magick Image File Format, about 445
mail list for ImageMagick 6
makefiles

creating 7
GNU configure 8

manipulating an image with PerlMagick 297
mask, using with combine 288
matte images, editing 98
memory requiements for ImageMagick 7
MIFF

about 445
converting an image to 34
image format, about 33
keywords 446

mogrify
about 219
examples 219
method for PerlMagick 324
options 220–258
segmenting images 258
syntax 219

mogrify region method for PerlMagick 324
montage

about 145

Index — Page vii

creating with PerlMagick 319
examples 146
options 147–176
syntax 146

morph method for PerlMagick 323
mouse buttons, using 38
MPEG

delegate 21

O
options

ImageMagick-specific for configure script 9
special consideration for configure 12

options for
animate 131–143
combine 267–288
convert 179–217
display 50–79
identify 261–263
import 106–127
mogrify 220–258
montage 147–176
XTP 461–465

P
panning images 103
pasting images 84
PerlMagick

about 289
append method 322
average method 323
clone method 324
creating an image montage 319
image attributes, getting 316
installing for

Unix 290
Windows NT/95/98 291

mogrify method 324
mogrify region method 324
morph method 323
objects, maintaining 293
ping method 325
querycolor method 326
reading an image 296
remotecommand method 326
running

a sample script 294
regression tests 291

special characters for text parameter 308
using within PerlScripts 292

Index — Page viii

writing an image 296
PerlScripts, using PerlMagick within 292
ping method for PerlMagick 325
PNG

delegate 21
extension library, building 25

PostScript delegate 22
preferences for display 103

Q
qerycolor method for PerlMagick 326
quantize

about 453
assignment 457
classification 454
measuring color reduction error 458
reduction 456

R
RA_PPM delegate 22
RALCGM delegate 19
RAWTORLE delegate 22
reading an image

with PerlMagick 296
with PerlMagick, example 297

reduction for quantize 456
region of interest, transforming 102
regression tests, running for PerlMagick 291
regular expressions for XTP 465
remotecommand method for PerlMagick 326
rotating images 88
RunlengthPacket structure, changing for 64-bit

machines 33

S
SANE delegate 22
segmenting images

convert 217
display 89
mogrify 258

selecting a submenu command 41
setting attributes for an image with PerlMagick 310
shared libraries, support for 26
short cuts, keyboard 42
submenu command, selecting 41
syntax for

animate 130
combine 266
convert 177
display 48
identify 261

Index — Page ix

import 105
mogrify 219
montage 146
XTP 460

T
text parameter for PerlMagick, special characters 308
TIFF

delegate 23
extension library, building 25

TransFig delegate 19
transforming a region of interest 102
troubleshooting

dealing with configuration failures 14
FAQ web page 18
PerlMagick method errors 326

TTF extension library, building 26

U
Unix

compiling ImageMagick for 7
installing PerlMagick for 290

user preferences for display 103
using

the Command Widget 40

the mouse 38
X11R6 imake 16

V
variables for GNU configure 8
viewer, using display as external 6
visual image directory, creating 81
visuals, preventing color flashing on 31
VMS, compiling ImageMagick for 27

W
web addresses

FAQ 18
for delegates 18
ImageMagick 6
ImageMagick mailing list 6

Windows NT/95/98
installing PerlMagick for 291
running regression tests for PerlMagick 291

writing an image
with PerlMagick 296
with PerlMagick, example 297

X
X resources

Index — Page x

for animate 143
functions 438

X11
distribution, configuring ImageMagick outside of 8
imake, using for imake configuration

files 15
X11R6 imake, using 16
XTP

about 460
examples 460
files 466
options 461–465
regular expressions 465
syntax 460

xtp_proxy environment 466

Z
ZLIB

delegate 23
extension library, building 26

