
The Implementation of a High Performance ORB over Multiple
Network Transports

Sai-Lai Lo, Steve Pope
Olivetti & Oracle Research Laboratory

24a Trumpington Street
Cambridge CB2 1QA

England
(email: s.lo@orl.co.uk)

16 March, 1998

Abstract

This paper describes the implementation of a high performance Object Request Broker (ORB)– omniORB2. The
discussion focuses on the experience in achieving high performance by exploiting the protocol and other characteristics of

the CORBA 2.0 specification. The design is also highly adaptable to a variety of network transports. The results of
running the ORB over TCP/IP, shared memory, Scalable Coherent Interface (SCI) and ATM Adaptation Layer 5

(AAL5) are presented. In both null calls and bulk data transfers, the performance of omniORB2 is significantly better
than other commercial ORBs.

1 Introduction

In this paper, we describe the implementation of a
high performance Object Request Broker (ORB)-
omniORB2. OmniORB2 is the second generation
ORB developed at ORL (hence the name “om-
niORB two”). The initial goal was to produce
a standard conforming ORB that can deliver the
performance required by the applications devel-
oped in-house.

In the past, we have used different RPC-style
communication systems in various projects. For
instance, the Active Badge system [6] was built
on top of the Ansaware. Our experience have
shown that while a good programming paradigm
for building distributed system is important, it is
of little practical use if the implementation cannot
deliver adequate performance. For instance, the
Medusa system [7] was developed with its own
message-passing system partly because the RPC

systems at the time were found not to be able to
deliver the performance required.

The ability to reuse a distributed system infra-
structure over a new network transport is also an
important consideration. Medusa was designed
to run directly on top of ATM transports. Existing
RPC systems at the time were usually designed to
run on top of UDP or TCP. The effort required to
add the ATM support is almost the same as writ-
ing a message-passing system from scratch. The
need to support a new transport is not an one-off
requirement. The laboratory has always been in-
terested in new networking technologies. ATM
is extended into the wireless domain by Radio
ATM [3]; a low-power and short range radio net-
working system (Piconet) [2] is being developed;
and the potential of high performance intercon-
nects is being explored. Clearly, it is important to
design the ORB so that a new network transport
can be added without changing the majority of

1



the code base.
It is becoming technically and economically

feasible to connect a cluster of (inexpensive)
computers by very fast interconnects to create
a high performance distributed computing plat-
form. These interconnect technologies, such as
SCI and fiber channel, offer very high bandwidth
and, more importantly, very low latency user-
space to user-space data transfer. This has the
effect of removing the dominant part of a RPC
round-trip time, i.e. the delay introduced by the
kernel and the network protocol stack. In this en-
vironment, the overhead incurred by the so called
“middleware” will become the dominant factor
in deciding the performance of remote invoca-
tions. Although omniORB2 is primarily used
with conventional networking, we try to min-
imise the call overhead as much as possible and at
the same time stay compliant with the CORBA [4]
specification. We hope that in future the design
will prove to be useful in low-latency computer
clusters. The initial results of running omniORB2
over SCI are encouraging.

OmniORB2 has been deployed for lab-wide
use since Mar 1997. It implements the specifi-
cation 2.0 of CORBA. The IDL to C++ language
mapping is provided. It is fully multi-threaded.
In May 1997, the ORB was released externally
as free software under the GNU public licences1.
Since then, two more public releases have been
made. The development of the ORB is continu-
ing. Its user base is growing steadily.

In this paper, we present the considerations
and choices made in the design of omniORB2.
The discussion will focus on the experience in
achieving high performance by exploiting the
protocol and other characteristics of the CORBA
specification. The results of several performance
tests are included. The data show that in both
null calls and bulk data transfers, the perfor-
mance of omniORB2 is significantly better than
other commercial ORBs. The results of running
omniORB2 over several transports: ATM/AAL5,
shared memory and SCI, are presented. The data

1More information is available at
http://www.orl.co.uk/omniORB2/omniORB2.html

show that omniORB2 is highly adaptable to the
characteristics of these transports and can achieve
a significant improvement in performance over
the TCP/IP.

2 Internal Architecture

CORBA provides a standard framework for
building distributed applications. Application
components interact via user-defined interfaces
specified in an Interface Definition Language
(IDL). The ORB is the “middleware” that allows a
client to invoke an operation on an object without
regard to its implementation or location.

In order to invoke an operation on an object, a
client must first acquire a reference to the object.
Such a reference may be obtained as the result of
an operation on another object (such as a nam-
ing service or a factory) or by conversion from
a “stringified” representation previously gener-
ated by the same ORB. If the object is remote (i.e.
in a different address space), the ORB has to cre-
ate a local representation of the object- a “proxy”
in the client’s address space. From the client’s
view point, the proxy object is indistinguishable
from the object itself. When the client invokes
an operation on the proxy object, the ORB de-
livers the invocation to the remote object. Ex-
actly how the ORB arranges to deliver the invo-
cation is not specified by CORBA. Nevertheless,
in order to permit interoperability, CORBA man-
dates that IIOP (Internet Inter-ORB Protocol), a
RPC protocol layered over TCP/IP, be supported
by all ORBs. However, the standard does not
preclude the use of other transport mechanisms
when available.

Figure 1 outlines the main components that are
involved in the delivery of remote invocations.
The functions of the components are as follows:

2.1 Proxy and Implementation Skeleton

For each IDL interface, the IDL compiler gener-
ates a proxy object class and an implementation
skeleton class. The proxy object provides a local
represent of the remote object. The application

2



Proxy Object

GIOP_C

NetBufferedStream

Strand(TCP/IP)

Object
Implementation

Implementation
Skeleton

GIOP_S

NetBufferedStream

Strand(TCP/IP)

Network
Kernel Kernel

Runtime

Stubs

Operating
System

Application

Figure 1: Internal Architecture

provides the object implementation and connects
to the ORB upcall structure via the implementa-
tion skeleton class.

2.2 GIOP C and GIOP S

GIOP C and GIOP S together drive the General
Inter-ORB Protocol (GIOP). IIOP is a mapping of
GIOP over TCP/IP. We choose to layer GIOP, not
just on top of TCP/IP, but on all the network
transports available to the ORB. Of course it is
possible to use an entirely different protocol for
a non-TCP/IP transport. While we think GIOP is
hardly the most optimised protocol and a more
efficient Environment Specific Inter-ORB Proto-
col (ESIOP) (a term used in CORBA to refer to
other non-GIOP protocol) could be designed, the
overhead incurred by the increased complexity to
accommodate two protocols may outweigh any
performance benefit. For instance, the overhead
in multiplexing incoming requests via different
protocol paths to the same upcall structure on the

server side could be substantial.
Using GIOP-only allows us to tightly integrate

the run time and the IDL interface specific stubs.
One benefit of the tight integration is that some
of the more complex and less performance critical
functions in driving the GIOP protocol can be del-
egated to the stubs. One example is in handling
location forwarding. In response to an invoca-
tion, the server could response with a location-
forward message to point the client to the new
location of the object. The client is expected to
retry the invocation, without any application in-
tervention, at the new location. If the runtime is
to retry the invocation, it must keep the complete
request in its own buffer until a reply comes back
from the server. For calls with very large argu-
ments, this will result in excessive buffer alloca-
tion. In omniORB2, GIOP C does not perform
the retry, control is passed back to the stub code
and the call arguments are re-marshalled. There
is no need for the runtime to buffer the whole re-
quest message. As a matter of fact, the runtime
handles large call arguments by sending it off to
the network while the rest of the request is being
marshalled by the stubs; only a small amount of
buffer space is needed.

2.3 NetBufferedStream

NetBufferedStream performs data marshalling
from call arguments to a bidirection data con-
nection. Marshalling functions for all IDL primi-
tive types and for a vector of bytes are provided.
Ideally, we would like to generate optimal mar-
shalling code from an IDL interface. In practice,
we found that the scope to speed up data mar-
shalling is somewhat limited by the coding rules
of GIOP.

GIOP specifies that all primitive data types
must be aligned on its native boundaries. Align-
ment is defined as being relative to the beginning
of a GIOP message. For instance, a double which is
8 bytes in size must start at an index that is a mul-
tiple of 8 from the beginning of the GIOP mes-
sage. Where necessary, padding bytes must be in-
serted to maintain the correct alignment. Unfor-
tunately, a GIOP request or reply message starts

3



with a variable size header. The size of the header
is only known during the invocation because it
contains fields that are variable length and con-
text dependent. It is therefore not possible to pre-
compute at compile time whether padding bytes
have to be inserted to make a call argument cor-
rectly aligned. Also, fixed size struct and union
constructor types cannot be marshalled in bulk
and has to be done for each field member indi-
vidually2.

Despite of these limitations imposed by the
GIOP specification, there is still scope for fur-
ther optimisation in the marshalling code. Future
omniORB2 releases will further improve the stub
code to speed up data marshalling. Techniques
used in previous work such as Flick [1] may be
useful.

3 Threading Model

OmniORB2 uses the thread-per-connection
model. The model is selected to achieve two
objectives. Firstly, the degree of concurrency is
to be maximised while any thread overhead is
kept to a minimum. Secondly, the interference by
the activities of other threads on the progress of
a remote invocation is to be minimised. In other
words, thread “cross-talk” should be minimised
within the ORB. The thread-per-connection
model helps to achieve these objectives because
the degree of multiplexing at every level is kept
to a minimum.

Figure 2 shows the call-chain of a remote in-
vocation. On the client side of a connection, the
thread that invokes on a proxy object drives the
GIOP protocol directly and blocks on the connec-
tion to receive the reply. On the server side, a
dedicated thread is spawned per connection (this
is why the threading model is called thread-per-
connection). The server thread blocks on the con-
nection until a request arrives. On receiving a re-

2This is because the memory layout of constructor types
is both compiler and processor dependent. Even if the mem-
ory layout agrees with the GIOP alignment rules, the in-
ternal alignment between field members will be affected by
what precedes the structure in the GIOP message.

Invoke Proxy Unlock And Start Receiving

Acquire A Strand

Marshal Request

Block Waiting For Reply

Unblock And Start
Receiving

Unmarshal Reply

Release Strand

Locate Target Object

Unmarshal Request

Upcall To Object

Marshal Reply

Return to Application

Block Waiting For A New
Request

Client Application
Thread

Server Upcall
Thread

Execute
Implementation

Figure 2: Call-chain of a Remote Invocation

4



quest, it performs the upcall to the object imple-
mentation and sends the reply when the upcall
returns. There is no thread switching along the
call chain.

Note that there is at most one call “in-flight”
at any time in a connection. The GIOP speci-
fication allows the client to have multiple out-
standing requests down the same connection at
the same time; the replies can be returned in any
order. To use this call multiplexing scheme, both
ends must implement two levels of thread dis-
patch. In the lower level, each end must have a
dedicated thread to (de)multiplex the call. Once
demultiplexed, the call has to be dispatched to
the upper level: the application threads on the
client side and the upcall threads on the server
side. To process a call, this involves four thread
switchings (two on each side). The overhead
is simply too high and there is little/no advan-
tage over the “one-call-per-connection” scheme
used in omniORB2. Worst, the two-level thread
dispatch structure introduces undesirable “cross-
talk” among different threads because all the re-
mote invocations are multiplexed down to a sin-
gle thread at both ends.

If there is only one connection, concurrent
invocations to the same remote address space
would have to be serialized (because at most one
call is “in-flight” per connection). This severely
limits the degree of concurrency. Also, a dead-
lock can occur3. To eliminate this limitation,
omniORB2 creates multiple connections to the
same remote address space on-demand. In other
words, if two concurrent calls are made to the
same remote address space, the ORB would es-
tablish two connections to handle the call.

Instead of one thread per connection, some
ORBs use a fixed pool of “worker” threads on
the server side to dispatch upcalls. The idea is

3Consider the case where object A is in address space 1
and object B and C are in address space 2. In address space
1, a thread invokes on object B; B then performs a nested in-
vocation on A; A in turn performs a nested invocation on
C. At this point, there are two calls originating from address
space 1. The first call can only be completed after the sec-
ond call returns. If the second call is serialised, a deadlock
situation occurs.

to limit the degree of concurrency or to put an
upper bound on the resources (in this case the
thread objects) used by the applications. Like
the multiplexing of multiple calls onto the same
connection, this model incurs a significant thread
switching overhead. Furthermore, it is unclear
whether the number of threads used by an ap-
plication is more likely to be a limiting factor
than other resources, such as the number of net-
work connections it is allowed to open. For these
reasons, we think thread-per-connection is more
suitable as the default threading model.

4 Dynamic Connection Manage-
ment

In order to invoke an operation on an object, the
ORB arranges for invocations on the proxy object
to be transparently mapped to equivalent invoca-
tions on the implementation object. In CORBA,
as in most distributed systems, remote bindings
are established implicitly without application in-
tervention. CORBA does not specify when such
bindings should result in a connection being es-
tablished between the two address spaces. In-
stead, the ORBs are free to implement implicit
binding in a variety of ways.

In omniORB2, connections are established only
when invocations have to be passed on to other
address spaces. It is obviously a better approach
than, for instance, to always open a connection to
the remote object whenever the ORB is building
a proxy object in the client’s address space4.

As discussed in the previous section, multi-
ple connections to the same remote address space
may be established when there are multiple calls
in progress concurrently. These connections are
managed collectively by a “Rope”. The Rope
abstraction provides an association between two
address spaces. The connection point of each ad-
dress space is identified by an Endpoint. On de-

4Consider a server, such as a naming service, which acts
only as a repository of object references for other clients; the
server would not invoke on these objects. The naive ap-
proach of connecting to all the remote objects would quickly
overwhelm the server with unnecessary connections.

5



Rope

Strand
#1

Strand
#2

Strand
#3

Proxy Objects

Figure 3: Dynamic Connection Management

mand, a Rope creates a “Strand” to connect the
two Endpoints. The Strand abstraction is a bidi-
rectional data connection. Each Strand is mapped
directly onto a network connection. In the later
part of this paper, we’ll discuss the implementa-
tion of the Strand abstraction over multiple net-
work transports.

Just as a real rope often consists of multiple
strands, a Rope may be composed of one or more
Strands. The relationship between the entities are
further illustrated in figure 3. As indicated in the
figure, every pair of address space is always asso-
ciated by one Rope. This association is shared by
multiple proxy objects that bind to the implemen-
tation objects in the other address space. When
the client invokes an operation via a proxy object,
exclusive access to a Strand is acquired from the
Rope. At this point, the Rope may have to cre-
ate a new Strand in order to satisfy the demand.

When the invocation is completed, the Strand is
returned to the Rope.

Once created, a Strand is left opened in case
it might be reused again by other invocations
shortly afterwards. However, it is wasteful to
leave a Strand opened when it has been left un-
used for a considerable time. It is particularly
bad on the server side because too many idle net-
work connections could block out new connec-
tions when the server process runs out of spare
channels. For example, most unix platforms has a
limit on the number of file handles a process can
open; 64 is the usual default limit although this
can be increased to about 1000. For this reason,
the Strands are scanned periodically. A Strand
found to be unused for a period of time would
be closed. To decouple this housekeeping ac-
tion from the critical path of executing an oper-
ation on a remote object, the task is dedicated to
two separate threads running in the background.
One thread is responsible for outgoing connec-
tions and the other looks after incoming ones. All
opened connections are scanned every “scan pe-
riod”. If a connection is found to be idle for two
consecutive periods, it will be closed. The threads
use mark-and-swipe to detect if a connection is
idle. The details are as follows. When a connec-
tion is checked, a status flag attached to the con-
nection is set. Every remote invocation using that
connection would clear the flag. So if a connec-
tion’s status flag is found to be set in two consec-
utive scans, the connection has been idled during
the scan period.

To support a large number of clients, it is im-
portant for the server to be able to shutdown
idle connections unilaterally. However, this func-
tion is only useful when the client is able to dis-
tinguish such an orderly shutdown from those
caused by abnormal conditions such as server
crashes. When omniORB2 is about to close a con-
nection on the server side, it uses the GIOP closeC-
onnection message to inform the client this is an
orderly shutdown. The client should recognise
this condition and retry an invocation transpar-
ently if necessary. This is in fact the compliant be-
haviour. What it should not do is to treat this as a
hard failure and raise a COMM FAILURE system

6



exception. Unfortunately, very few of the ORBs
we have tested for interoperability are able to re-
sponse correctly.

As illustrated in figure 3, the default behaviour
of omniORB2 is to multiplex proxy objects to the
same remote address space onto a common pool
of connections. Some applications may prefer a
dedicated connection per proxy object. For in-
stance, a proxy object may be used to push live
video to the other address space. The problem
with implicit binding, i.e. the default behaviour
of omniORB2, is that it provides no opportunity
for the application to influence the ORB’s bind-
ing policy on a per-binding basis. This makes it
impossible for applications with specific perfor-
mance requirements to control, for instance, the
timing of binding establishment; the multiplex-
ing of bindings over network connections; and
the selection of the type of network connection it-
self. This is an issue that has not been addressed
by existing CORBA standards. We believe one
solution is to augment the binding model with
explicit binding. In other words, the application
is given direct control on setting up bindings via
proxy objects. This is work in progress and the
details are beyond the scope of this paper.

5 The Strand

The Strand abstraction provides a bidirectional
data connection. We will discuss the implementa-
tion of this abstraction on top of several network
transports. But first, we describe the distinct fea-
tures of its interface.

In this section, the term “client” refers to the
entity that invokes on the interface.

5.1 Receive

To receive data, the client invokes the receive
method:

struct sbuf {
void* buffer;
size_t size;

};

Client Access

receive() or
reserve()

Have Valid Access To

Buffers (conceptually
distinct)

Figure 4: Buffer Management Scheme

sbuf
receive(size_t size,

CORBA::Boolean exactly,
int alignment,
CORBA::Boolean startMTU);

Apart from the buffer management scheme,
the semantics of the method is quite straightfor-
ward. The client specifies how many bytes it ex-
pects to receive, whether the strand should re-
turn when it has less in its buffer and whether
the returned buffer should be 8, 16, 32 or 64 bits
aligned. The method returns a structure which
contains a pointer to the data area and the num-
ber of bytes in that area.

The buffer management scheme is special. The
buffers are allocated and deallocated inside the
Strand. Furthermore, the buffer returned by
receive is only guaranteed to contain valid data
until the next receive call. In other words, the
next receive call automatically invalidates the
data pointer returned by this call. Figure 4 pro-
vides an illustration of how buffers are managed.
There are two reasons for adopting this scheme.

Firstly, because buffer allocation is hidden
behind the interface, a Strand implementation
could be optimised for a network interface that

7



provides memory-mapped network buffers and
zero-copy receive semantics. The clients could
unmarshal data directly from the network buffers
returned by the Strand.

Secondly, the interface inherently puts a limit
on the buffer space that the Strand has to commit
to the clients. At any time, there is only one buffer
the client can access. Any buffers that have previ-
ously been given out to the client are released im-
plicitly and can be recycled immediately. Further-
more, the size of each buffer is limited to a maxi-
mum fixed by the Strand. To unmarshal large call
arguments, the client will have to call receive
repeatedly to fetch all the data. There is no need
for the Strand to allocate extra buffers to handle
the call. Instead the unmarshalling of data by the
client can be pipelined with the fetching of more
data from the network by the strand.

We believe the buffer management scheme has
a direct impact on performance. It is possible
to take advantage of zero-copy network buffers
to improve data marshalling efficiency. Because
there is no need to cater for special cases, such
as calls with very large data arguments, the pro-
gram logic is simple and can be implemented ef-
ficiently. It also helps to avoid the contention
for buffer resources among different strands. For
instance, in all the strand implementations we
have done so far, we are able to avoid dynamic
buffer allocation completely. Each connection is
allocated one or two fixed size buffer statically5.
From the point of view of minimising the interfer-
ence among different thread of executions, the ab-
sence of dynamic buffer allocation helps by elim-
inating an obvious point of resource contention.

5.2 Send

To send data, the client first requests for a buffer
with the reserve method:

sbuf
reserve(size_t size,

CORBA::Boolean exactly,

5To avoid unnecessary fragmentation in the operating
system, the size of each buffer is set to accommodate the
maximum PDU size of the network interface.

int alignment,
CORBA::Boolean transmit,
CORBA::Boolean endMTU);

Roughly speaking, reserve is the converse of
receive . The client specifies how much space is
needed, whether the strand should return when
it has less than required and whether the returned
buffer should be 8, 16, 32, or 64 bits aligned. The
method returns a buffer for the client to write
data into.

The buffers are managed in the same way as
receive . The client can write to the buffer re-
turned by reserve until the next reserve call.
In other words, the next reserve call automati-
cally invalidates the data pointer returned by this
call (figure 4). Moreover, the strand is free to
transmit the implicitly relinquished buffers any
time hereafter. The client can also cause the trans-
mission to be done synchronously by setting the
<transmit> flag to true.

The discussion on buffer management in the
previous section is also valid in this case. How-
ever, the performance gain by avoiding excessive
buffer allocation is partly offseted by the need to
walk through the marshalling arguments twice!
This is necessary because GIOP version 1.0 does
not permit data fragmentation. In other words, a
request or a reply must be sent as a single GIOP
message. To transmit a call with large arguments,
it is possible that the first part is transmitted by
the strand while the client is still marshalling the
rest of the arguments. Unfortunately, the first
part of a GIOP message– the header – contains
the size of the message body. It is therefore nec-
essary to walk through all the arguments to cal-
culate the total size and put the value into the
message header. After this pass, the arguments
have to be accessed again to perform the actual
data marshalling. The performance penalty due
to the size calculation varies with the type of ar-
guments. It can be substantial in cases such as a
long sequence of strings. Having said that, this
performance penalty will soon be history with
the newly revised GIOP specification. It now al-
lows a request or a reply to be sent in multiple
and consecutive GIOP messages. With the new

8



specification, there is no need to process the ar-
guments in two passes as the total argument size
does not have to be pre-calculated.

5.3 Bulk Data Send/Receive

Two methods are provided for bulk data transfer.

void
receive_and_copy(sbuf b,

CORBA::Boolean startMTU);

void
reserve_and_copy(sbuf b,

CORBA::Boolean transmit,
CORBA::Boolean endMTU);

receive and copy is equivalent to
a receive and a memory copy to the
buffer provided by the client. Similarly,
reserve and copy is equivalent to a reserve
and a memory copy from the buffer provided
by the client. A naive implementation may
have to copy the client data to/from its internal
buffer. Depending on the network interface,
this copy action may be optimised away. For
instance, with a BSD-style TCP socket interface,
the reserve and copy can be collapsed into
a single send system call directly from the
client’s buffer; the receive and copy can be
collapsed into a single recv system call. Using
this optimisation, the ORB is able to handle bulk
data, such as sequence of octets, with very little
overhead (zero copy within the ORB).

5.4 Exactly-Once and At-Most-Once Se-
mantics

The strand abstraction is not intended to be a gen-
eral purpose bidirectional data connection. In-
stead, the goal is to specialise the interface and
encapsulate sufficient functionalities to support
request-reply and oneway interactions efficiently.

When implemented on top of a reliable stream
transport (such as TCP/IP), both request-reply
and oneway calls are exactly-once by default. On
the otherhand, invocations implemented on top
of an unreliable transport (such as ATM/AAL 5)

are by nature at-most-once because data packets
could be dropped in transit. Exactly-once seman-
tics can be obtained if the sender is able to retrans-
mit lost-packets and the receiver is able to remove
duplicates. We believe that while exactly-once
semantics is desirable for request-reply interac-
tions, at-most-once semantics is more suitable
for oneway calls. This is particularly true when
oneway calls are used to transmit isochronous
data. With this data type, retransmission should
be avoided because undesirable jitters will be in-
troduced otherwise.

For this reason, the strand allows the client
to specify whether a call should be invoked as
exactly-once or at-most-once. Using this informa-
tion6, the strand decides whether lost-packets are
retransmitted internally.

6 TCP transport

The implementation of the tcp transport is quite
straightforward. The noteworthy features are:

� Each connection is allocated a fixed size
buffer (8Kbytes). Once the buffer is filled up,
the data are transmitted.

� The transfer of sequence and ar-
ray of primitive types are optimised.
The stub code marshals these data
types with receive and copy and
reserve and copy . If the data size is
bigger that the buffer space available, the
data in the buffer are flushed to the network
and the sequence/array is then sent directly
from the application buffer.

6The method: reserve and startMTU is provided.
This method is the same as reserve except that the for-
mer takes an extra boolean argument to indicate if the call
semantics should be exactly-once. Also, the startMTU and
endMTUboolean arguments in the receive and reserve
methods are used to indicate the beginning and the end of
an invocation. This is necessary because exactly-once calls
may be interleaved with at-most-once calls, the strand must
be able to distinguish the packets that can be dropped, i.e.
those from at-most-once calls, from those that have to be re-
transmitted. Of course, none of these arguments have any
effect when the strand is implemented on top of a reliable
stream transport.

9



ORBs Performance Comparison
Round Trip Times For Echoing A NULL String

0

500

1000

1500

2000

2500

Solaris (IP/Intra Machine) Solaris (IP/Ethernet)

Platform (Sun Ultra1/170 Solaris 2.5.1)

T
im

e 
P

er
 C

al
l (

in
 

m
ic

ro
se

co
n

d
s) OmniOrb2

Orbix2.1 (IIOP)

Orbix2.1 (Own)

Orbeline2.0 (IIOP)

HP ORB Plus (IIOP)

Figure 5:

6.1 Performance

6.1.1 Null Echo

The time to echo a zero length (null) string is mea-
sured . This is a measure of the overhead incurred
by the ORB and the operating system. The fol-
lowing IDL interface is used:

interface echo {
string echoString(string mesg);

};

The measurements taken from a number of
platforms are shown in table 1. The data are the
average of 5000 invocations.

To put the measurements into context, the same
test is used to measure the performance of several
commercially available ORBs. All the tests were
conducted on a pair of Sun Ultra 1 running So-
laris 2.5.1. The results are shown in figure 5. Om-
niORB2 takes 540�sec intra-machine and 710�sec
inter-machine. Compare to omniORB2, other
ORBs take 70% to 214% longer for intra-machine
and 58% to 172% longer for inter-machine calls.

6.2 Bulk Data Transfer

The performance in bulk data transfer is mea-
sured by sending multiple sequence of octets us-
ing oneway operations. The following IDL inter-
face is used:

1

5

10

20

40

80
100

130

64 256 1024 4096 16384 65536 262144 1048580

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
on

d)

Send Sequence Size (bytes)

TTCP throughputFri Apr 11 10:26:59 1997

Direct socket programming
HP ORBplus
Orbeline 2.0

omniORB 2.2

Figure 6: ORBs Bulk Data Throughput Compari-
son

interface ttcp {
typedef sequence<char> Buffer;
oneway void receive(in Buffer data);

};

The test is conducted using two Ultra 1
that are connected via 155Mbits ATM. The ma-
chines are connected via three ATM switches in
this order: ATML Virata VM1000 !Fore ASX-
200WG !ATML Virata VM1000. Classical IP
over ATM is used to provide TCP/IP connectiv-
ity. The MTU size of the ATM interfaces is 9180
bytes. The default socket send and receive buffer
size is used. The socket option TCP NODELAYis
not set. The time to send 100Mbytes of data in
multiple sequences of octets was measured. Dif-
ferent sequence sizes were used. Figure 6 plots
the throughput against the send data size in each
test run. The throughput from using direct socket
programming is also shown. This curve repre-
sents the performance envelope obtainable from
the test platform.

At small send data size, the throughput is
CPU-bound. As the send data size increases,
the throughput changes from CPU-bound to link-
bandwidth-bound. The yield point where the
throughput changes from CPU-bound to link-
bandwidth-bound is directly proportional to the
ORB’s overhead, i.e. the higher the yield point,
the higher the ORB’s overhead.

10



Platform Transport Time per call(�sec)
Linux Pentium Pro 200MHz TCP/intra-machine 340
(gcc-2.7.2 no compiler TCP/ethernet(ISA card) 1000
optimisation) TCP/ATM 440
Windows NT 4.0 Pentinum Pro TCP/intra-machine 360
(MS Visual C++ -O2) TCP/ethernet(ISA card) 1000
Digital Unix 3.2 DEC 3000/600 TCP/intra-machine 750
(DEC C++ -O2) TCP/ethernet 1050
Windows 96 Pentium 166MHz TCP/intra-machine 1000
(MS Visual C++ -O2) TCP/ethernet(PCI card) 1250
Solaris 2.5.1 Ultra 1 167MHz TCP/intra-machine 540
(Sunpro C++ -fast) TCP/ethernet 710

Table 1: The Null Echo Round Trip Time of omniORB2 on Various Platforms

With 64 bytes data size, the throughput of om-
niORB2 is 39% of the direct socket throughput.
The figure rises to 63% at 2048 bytes where the
throughput is still CPU-bound. This is an indica-
tion that the ORB overhead does not increase lin-
early with the size of the call arguments. In other
words, the ORB’s overhead has quickly become
insignificant at moderate data size, the operating
system overhead is the dominant factor.

The throughput of other ORBs are also shown
in figure 67. All the ORBs remain CPU-bound
well beyond the point when omniORB2 is al-
ready able to saturate the link. Before the yield
point, the CPU-bound throughput of other ORBs
are 52% to 67% less than that of omniORB2.

7 Shared Memory Transport

A shared memory transport was designed as a
complementary transport, useful where two ad-
dress spaces may communicate through a seg-
ment of shared memory. While this usually cor-
responds to the client and server being located
on the same machine, we have also used the
transport over a high performance interconnect
which presents an abstraction of shared memory
for inter-machine communication.

7The test cannot be performed using Orbix 2.1MT be-
cause of a memory leakage problem in its runtime.

A server instance of the transport creates a
large shared memory segment which is carved up
into a number of communication channels, each
channel with a semaphore set to allow for syn-
chronisation. One channel is reserved for new
clients to rendezvous with the server. During the
rendezvous, the server allocates a channel for the
client and passes a key to the allocated channel
back to the client through the rendezvous chan-
nel. All subsequent communication between the
client and server takes place through the allo-
cated channel.

7.1 System V shared memory

The shared memory transport is implemented us-
ing the standard System V primitives for shared
memory and semaphores. These are now widely
accepted and are supported on all our Unix plat-
forms. The round trip times of null echo using the
shared memory transport are shown in table 2.

The results of the bulk data transfer test using
the shared memory transport is shown in figure 7.
The results are obtained on the Linux Pentium
Pro platform.

These results show that the shared memory
transport yields a performance improvement in
the region of 20% over all platforms for intra-
machine communication.

11



Platform Time per call (�sec)
Shared Memory Local TCP/IP loopback

175 Mhz Digital Unix Alpha Uniprocessor 510 750
167 Mhz Solaris UltraSparc Uniprocessor 510 540
168 Mhz Solaris UltraSparc Multiprocessor 370 480
200 Mhz Linux Pentium Pro Uniprocessor 270 340

Table 2: Shared Memory Null Echo Round Trip Time

1

10

100

1000

64 256 1024 4096 16384 65536 262144 1.04858e+06

T
hr

ou
gh

pu
t (

M
bp

s)

Sequence Size (Bytes)

Shared Memory
TCP

Figure 7: Intra-machine oneway throughput
comparison

7.2 SCI

The shared memory transport was ported over
the SCI interconnect from Dolphin Interconnect
Solutions. SCI presents an abstraction of shared
memory for inter-machine communication. The
interconnect will write a single dword to a re-
mote memory location in 2.5 �sec and has a raw-
write performance on our Pentium-Pro 200Mhz
platforms of 220 Mbps.

The null echo test was performed on two Linux
Pentium Pro machines connected via SCI. The
round trip times are shown in table 3. Also in-
cluded is the inter-machine time for Linux TCP
over a 155 Mbps ATM network.

These results illustrate a significant improve-
ment in latency when using the SCI transport.
It has been estimated that for the Linux plat-
form, 110us is spent in the ORB with protocol and

marshalling overhead, the remainder being spent
in performing transmission and synchronisation
through the shared buffer. It is interesting to note
that the inter-machine time using SCI is signifi-
cantly faster than intra-machine using standard
shared memory primitives. This is due to the par-
allelisation of the GIOP and the avoidance of a
context switch between the client and server.

1

10

100

1000

64 256 1024 4096 16384 65536 262144 1.04858e+06

T
hr

ou
gh

pu
t (

M
bp

s)

Sequence Size (Bytes)

Intra machine SHM
SCI

SCI Write Gather

Figure 8: SCI v Shared Memory Bulk Data
Throughput Comparison

The results of the bulk data transfer test using
the System V shared memory and the SCI trans-
port are shown in figure 8. The System V shared
memory trace SHM shows the throughput drop-
ping as the transfer size approaches 256 Kbytes.
This is probably due to the effect of cache trash-
ing as the Pentium Pro secondary cache is only
256 Kbytes in size. The two SCI traces– SCI and
SCI write gather– show that the throughput peaks
at around 32 Kbytes, which is the size of the
shared memory buffer. This would have been im-

12



Platform Transport Latency(us)
Intra 200 Mhz Linux Pentium Pro SYS V Shared Memory 270
Inter 200 Mhz Linux Pentium Pro SCI Shared Memory 156
Inter 200 Mhz Linux Pentium Pro TCP/ATM 440

Table 3: SCI Null Echo Round Trip Time Comparison

proved had circular buffering been used. Using
SCI with write-gathering (SCI write gather)8, the
throughput is higher that SHM probably because
of the avoidance of context switching. However,
we were unable to use the write-gathering op-
tion for block sizes of less than a page without
throughput being significantly reduced. Without
using write-gathering, the throughput is signif-
icantly less. We believe the throughput is cur-
rently limited by the PCI implementation of our
test machine.

8 ATM AAL5 Transport

The ATM AAL5 transport is intended to run di-
rectly on top of the native ATM API of the host
platform. For the moment, the transport has been
implemented over the Linux ATM API. It should
be straight forward to port the implementation to
another platform API. Unlike the transports de-
scribed so far, the underlying transport– AAL5–
is unreliable although the packets are guaranteed
to arrive in-order.

As discussed in section 5.4, we would like to
provide exactly-once semantics for request-reply
and at-most-once semantics for oneway calls. As
the size of each packet is limited to 9180 bytes9, a
GIOP request or reply message that exceeds this
limit would have to be transmitted as multiple
packets. To support exactly-once semantics, the
transport must be able to retransmit any packets
that are lost in transit. The retransmission is only
done for the request-reply calls and not for the

8Where successive discontiguous writes are amalga-
mated by the host PCI bridge into a contiguous block of
given size before bursting the writes to the SCI card.

9This is the MTU size of the Linux ATM network inter-
face.

oneway calls. In general, request-reply calls may
be interleaved with oneway calls, the transport
must be able to adapt and alter the retransmis-
sion policy on the fly.

To satisfy these requirements, a very light-
weight protocol– omniTransport– is designed to
layer on top of the ATM API. A detail discussion
of omniTransport and its implementation can be
found in [5]. Unlike other transport protocols
designed to run in the user address space, om-
niTransport is not a general purpose design but
is targeted to support asymmetric interactions
where one end always plays the role of the client
and the other the server. This greatly simplify the
design because the number of possible protocol
states is much smaller than a more general pur-
pose protocol.

Although omniTransport is first implemented
on top of an ATM API, the design is well suited
for use over any network which offers in-order
packet delivery semantics. By inference, one
should be able to port omniORB2 to run on top
of these networks.

8.1 Performance

The performance of omniTransport is discussed
in detail in [5]. For completeness, the round trip
times of null Echo are shown in table 4.

The measurements were taken from two Pen-
tium Pro 200Mhz Linux machines interconnected
using the Efficient Networks 155Mbps adaptor
and an ATML Virata VM1000 switch.

The timing of raw/ATM is the round trip time
for running the test without the exactly-once
guarantee. This represents the performance up-
per bound achievable on this platform. The tim-
ing of TCP/ATM is the round trip time using Clas-
sic IP (CIP) over ATM. The timing of omniTrans-

13



Transport Time per call (�sec)
TCP/ATM 440
omniTransport/ATM 380
raw ATM 360

Table 4: omniTransport/ATM Null Echo Round Trip Time Comparison

port/ATM is the round trip time with exactly-once
semantics. The protocol adds an extra 20 �sec
overhead which is well below the overhead of the
kernel-based CIP.

9 Conclusion

Our experience with omniORB2 has confirmed
that it is possible to design a high performance
and compliant Object Request Broker. Good per-
formance is achievable by tailoring the design to
the protocol and other characteristics of CORBA.
At ORL, omniORB2 has been in use for over a
year. It is the software backbone for controlling
the Virtual Network Computer (VNC) via the Ac-
tive Badge and for building the distributed infras-
tructure of a fine-grain 3D location system– Ac-
tive Bat. It is also an integral component of Ouija–
a CORBA-database integration toolkit that pro-
vides seamless integration of an object-oriented
frontend, developed in CORBA, with the Oracle
7 relational database server. Given the experience
we have with its deployment, we are confident in
the robustness and scalability of omniORB2.

We are interested in enhancing omniORB2 to
include some notion of “quality of service”. This
would allow applications with specific perfor-
mance requirements to influence the way the
ORB performs some actions that are necessar-
ily transparent to the applications. For instance,
the applications may specify the performance re-
quirements for streaming real-time audio and the
ORB should select the suitable network transport
and binding model with the appropriate perfor-
mance guarantee.

We have demonstrated that omniORB2 is
adaptable to a variety of transport mechanisms.
There is currently an interest at ORL in high

bandwidth and low latency interconnect tech-
nologies. OmniORB2 has been ported to run on
top of one of these technologies– SCI. We believe
a software backbone based on CORBA has a lot
of potential in passing on the performance im-
provement provided by the underlying intercon-
nect technology to many distributed applications.
We’ll continue to explore new improvements to
omniORB2 for running on top of fast intercon-
nects.

References

[1] Flick idl compiler, 1998.
http://www.cs.utah.edu/projects/flux/.

[2] The piconet project, 1998.
http://www.orl.co.uk/piconet/.

[3] The radio atm project, 1998.
http://www.orl.co.uk/radio/.

[4] OMG. Common Object Request Broker
Architecture and Specification, July 1996.
Revision 2.0, Available electronically via
http://www.omg.org .

[5] S Pope and S. L. Lo. The Implementation of
a Native ATM Transport for a High Perfor-
mance ORB. In Submitted to Middleware 98,
1998.

[6] R. Want and A. Hopper. Active badges and
personal interactive computing objects. IEEE
Transactions on Consumer Electronics, February
1992.

[7] S. Wray, T. Glauert, and A. Hopper. The
medusa applications environment. In Interna-
tional Conference on Multimedia Computing and
Systems, May 1994.

14


