
Database Security in Oracle8i™

An Oracle Technical White Paper

November 1998

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

1

Database Security in Oracle8i

THE NEED FOR SYSTEMS SECURITY

The opening of mission-critical systems to partners and customers over the Internet poses new
challenges to traditional notions of enterprise security. Data access must now be controlled at a very
fine level of granularity, often to the level of individual customers or users. Organizations providing
"hosting" environments seek to deploy common applications which nonetheless can incorporate
customer-specific preferences, and operate on customer-specific data. Oracle8i addresses these
requirements by providing highly granular, server-enforced access control and flexible privilege
models. Users can be strongly authenticated, even remotely, and data is protected in transit by
network encryption. Oracle8i enforces the same strong security whether users access data directly, or
through middle tiers, such as application servers or transaction processing (TP) monitors.

Another challenge of system security is ease of management. Organizations spend significant time
and resources managing multiple user accounts and privileges. Additionally, they often must
implement security in multiple applications accessing the same data which is duplicative and often
leads to security vulnerabilities instead of building security once, in the data server. Security is
often complex and expensive to implement. Oracle8i addresses these needs by offering integrated
security and directory services, which enables Public Key Infrastructure (PKI)-based single sign-on.
Single Station Administration allows organizations to manage users and their privileges centrally, with
greater ease and lower cost. Flexible, granular security can be built once in the data server, instead of
in multiple applications, and business logic may be divorced from actual privileges and data, which
means that applications can be developed once, then reused and redeployed at significant cost savings.

Within the enterprise, information is stored on physically separate computers in different locations.
Therefore, it is essential that users be able to access all information easily and consistently.
Consequently, a database server must provide the technology to hide the complexity of data access
from users, allowing them to access distributed information as if it were all stored on the same
computer. Oracle8i addresses this requirement by providing a transparent interface to all data in the
system, improving access to information and simplifying application development.

Oracle8i addresses all these security and functionality needs by providing complete and robust
facilities for managing data and implementing a strong, yet flexible, security policy. This paper
describes these security facilities, and how an organization can use them to enforce an overall security
policy throughout Oracle8i.

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

2

SECURITY CONCEPTS

Basic computer security concepts require that an information system be able to identify and control
critical aspects such as:

• Who the authorized users are (identification and authentication).

• What they should have access to (object access controls).

• What types of operations they can perform on those objects (also part of object access control).

• What types of activities have occurred (e.g., the ability to maintain accountability via auditing).

• Extended security concepts further address issues such as data and system integrity, reliability
and availability, further conditional access controls (such as for special business rules), and
assurance that all the above are operating properly and consistently. The following sections
discuss these security concepts as supported by Oracle8i.

Strong User Authentication for Accountability

The basis for system security is strong user identification and authorization; if you cannot establish,
with certainty, who a user is, then it is impossible to hold users accountable for their actions, and to
ensure that users only have access to the data they need to do their jobs, but no more. Oracle8i
supports a number of choices for user authentication: Oracle-based (by password, or by industry-
standard X.509 certificates), host-based (by the underlying operating system), or third-party based
(network authentication services, smart cards and biometric devices).

Oracle Password-Based Authentication

In Oracle password-based authentication, each Oracle8™ user must have a username and password.
To connect to the database, a properly-authenticated operating system user must supply his database
username and password. However, password-based schemes, to be secure, must ensure that
passwords can be changed regularly, are of sufficient complexity, and are not easily guessed.

Oracle8 provides built-in, robust password management facilities to enable administrators to:

• Enforce minimal password length.

• Ensure password complexity (i.e., that passwords contain symbols or numbers as well as
alphabetic characters).

• Disallow passwords that are easily guessed words, such as a user’s last name or
company name .

Administrators can prevent password-guessing attempts by locking accounts automatically after a
number of incorrect password entries; an administrator can also lock an account “on the fly” if he
detects a security breach. Passwords can be forced to expire over any period (every ninety days, for
example) to ensure that users change their passwords regularly. Administrators can also prevent
passwords from being reused, either permanently, or for a specified period of time. Password
preferences may be assigned to an entire enterprise, groups of users, or individual users by
means of user profiles, providing complete flexibility for an organization to implement desired
security preferences.

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

3

In distributed systems, a password passing from a client to server may pose a security risk. If the
password is passed in clear text (unencrypted), any eavesdropper snooping for data can also read the
password. The Oracle password protocol provides security for client-server and server-server
password communication by encrypting passwords passed over a network. The Oracle password
protocol uses a session key valid for a single database connection attempt to encrypt the user’s
password. Each connection attempt uses a separate key for encryption, making the encryption more
difficult to decipher. After the key-encrypted password is passed to the server, the server decrypts it,
then re-encrypts it using a Data Encryption Standard (DES) based one-way encryption algorithm and
compares it with the password stored in the database. If they match, the user successfully connects to
the database. The Oracle password protocol is used to encrypt all passwords upon an attempted
connection — whether local connection, client to server, or server to server. Oracle8i also supports
secure remote administration protected by password, even when the database is not available. Users
connecting as SYSDBA and SYSOPER connect using user-specific passwords, providing individual
accountability for these privileged users.

Host-based Authentication

Oracle8i's identification and authentication facility also allows you to specify that users should be
authenticated by operating system mechanisms, consolidating username and password information
and allowing users to enter an application without having to specify a username and password.

Third Party-Based Authentication

The Advanced Security supports multiple third-party authentication technologies, such as Kerberos,
DCE, smart cards and biometric authentication (Identix), as well as integration with Bull’s ISM and
ICL’s Access Manager. These hardware and software technologies verify a user’s identity in a
stronger way than passwords. For example, SecurID cards provide two-factor authentication —
something you have (the card) and something you know (a personal identification number (PIN)).
Many of these network authentication services also provide single sign-on for users. Users
authenticate themselves once to a central service (e.g., Kerberos), and may then connect to multiple
applications or databases without providing additional credentials. In addition, any device compliant
with RADIUS (Remote Authentication Dial-In User Service) is capable of integrating with Oracle8i
to provide strong user authentication. Oracle8i’s integration with third-party security providers offers
customers a choice among a number of strong authentication and single sign-on services.

Public Key Infrastructure-Based Authentication

Oracle8 introduced single sign-on for Oracle users through X.509 (version 1) digital certificates and a
proprietary authentication protocol. The advantage of X.509 certificates is that they may be used to
uniquely identify an individual within an organization and thus enable strong authentication. Also,
instead of remembering multiple passwords, a user need only remember the password that unlocks his
Oracle wallet. The certificate and private key contained in the wallet are used to authenticate the user
to multiple services, including application servers and data servers, which need no longer store and
manage local passwords for users.

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

4

Oracle8i offers enhanced PKI-based single sign-on through use of interoperable X.509 (version 3)
certificates for authentication over Secure Sockets Layer (SSL), the standard for Internet authentication.
In addition to strong user authentication, SSL also provides network data confidentiality and data
integrity for multiple types of connections: LDAP (Lightweight Directory Access Protocol), IIOP
(Internet Intra-ORB Protocol), and Net8. PKI-based single sign-on features includes creation of X.509
certificates using Oracle Certificate Authority, management of certificates and certificate trust points (the
list of certificate authorities a user trusts) via Oracle Wallet Manager, and storage and retrieval of user
certificates in Internet Directory, or other directory accessible by LDAP.

Remote Authentication

Oracle8i supports remote authentication of users through RADIUS, a standard lightweight protocol used
for user authentication, authorization, and accounting. RADIUS, a proposed standard of the Internet
Engineering Task Force (IETF), is a popular means of enabling remote authentication of users. For
example, a user accessing his corporate network remotely first authenticates himself to RADIUS; after
successful authentication, the user is able to access applications within his corporate network.

RADIUS-based authentication to Oracle8i is available through the Advanced Security. The Advanced
Security provides an interface which can be used with any third-party authentication service that
supports the RADIUS protocol. The advantage to customers is that multiple authentication devices
(for example, tokens or smart cards) may be used for authentication to the Oracle8i database, as long
as the mechanism or device supports the RADIUS protocol.

Authentication Through a Middle Tier

In applications which use a heavy middle tier, such as a transaction processing monitor, it is important
to be able to preserve the identity of the client connecting to the middle tier. Yet, one advantage of a
middle tier is connection pooling, to allow multiple users to access a data server without each of them
needing a separate connection. In such environments, you need to be able to set up (and break down)
connections very quickly, without the overhead of establishing a separate, authenticated database
session for each connection. For these environments, Oracle8 offered “lightweight session” creation
via the Oracle® Call Interface; applications can have multiple user sessions within a single database
session. These “lightweight sessions” allow each user to be authenticated by a database password,
without the overhead of a separate database connection, as well as preserving the identity of the real
user through the middle tier.

Oracle8i extends the capabilities of organizations to deploy multi-tier applications with integrated,
well-formed security:

• Limit the ability of middle tiers to initiate connections on behalf of users. For example, the
‘HR’ application server is able to create a lightweight user session for Fred, but not create
sessions for Marie.

• Create lightweight user sessions without supplying passwords. Once a middle tier has
authenticated itself to the data server, it is able to create lightweight user sessions through Oracle
Call Interface without supplying a password. This removes the overhead of reauthenticating the
user to the data server after having been authenticated by the middle tier; Oracle8i ensures that
the middle tier is privileged to create connections on behalf of the user. Another benefit is that
middle tier applications no longer need to store and retrieve database passwords for users.

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

5

• Middle tiers are granted the ability to connect as a particular user by altering the user’s definition
as follows:

ALTER USER john GRANT CONNECT THROUGH appsrvr;

After successfully authenticating itself to the database, user appsrvr (an application server) is able to
create a lightweight user session on behalf of John.

Mutual Authentication for Secure Distributed Computing

While user authentication is important, it is equally important in distributed systems to ensure
that a number of network principals including application servers, web servers, and database
servers are who they say they are. For example, database A, attempting to connect to database B,
needs assurance that database B really is database B, just as database B needs to be sure of database
A’s identity.

Oracle8i enables secure distributed transactions without compromising user credentials by
means of mutual authentication of databases, and by strong user authentication without disclosure of
credentials. Mutual database authentication and strong user authentication are accomplished by
industry-standard X.509 (version 3) certificates, without using passwords or any other “hard-coded,”
potentially vulnerable means of authentication. Furthermore, administrators can configure their
systems so that databases are only trusted to connect as certain users. For example, an AP application
might need to retrieve information about employees from the HR database in order to perform expense
reporting processing. Not only could the AP and HR databases mutually authenticate, but the HR
database could grant access to only those users in AP who need to query the employee information in
order to process expense reports.

Privileges That Protect Data

To insure data security, Oracle8i implements "security by default." A user can only perform an
operation on a database object (such as a table or view) if that user has been authorized to perform
that operation. A privilege is an authorization to perform a particular operation; without privileges, a
user cannot access any information in the database. To ensure data security, a user should only be
granted those privileges that he needs to perform his job functions. This is known as the principle of
“least privilege.”

System Privileges

To allow you to grant users only those specific privileges they need to perform their jobs, and not any
more, Oracle8i provides a large number of very granular privileges. These privileges fall into two
categories: system privileges and object privileges. A system privilege authorizes a user to perform a
specific operation. One example of a system privilege is the CREATE USER privilege, which allows
a user to create a database username; another is SELECT ANY TABLE, which allows a user to query
any table in the database. Oracle8i provides over 100 different system privileges, such as permission
to connect to the database and permission to change a table's attributes. A privilege can be granted to
a user “with ADMIN option.” This allows the grantee authority to further grant and revoke privileges
from other users.

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

6

Object Privileges

An object privilege authorizes a user to perform a specific operation on a specific object. For
example, you can grant a user the ability to select from the EMP table by granting him the SELECT
privilege on that table. With this privilege, the user can query the EMP table but cannot query any
other tables in the database nor update the EMP table. You can also grant object privileges “with
GRANT option.” This allows the grantee authority to further grant the object privilege to other users.
Oracle8i provides a varying number of object privileges per object type, such as permission to insert
into a table and permission to select from a sequence.

By providing these two types of very granular privileges, Oracle8i allows you to implement separation
of function and to control access to information at a very fine level, ensuring that database users are
only authorized to perform those specific operations required by their job functions. In addition, other
Oracle8i features (like roles and stored procedures, described later in this paper) not only allow you to
control which privileges a user has, but under what conditions he can use those privileges.

Secure Metadata

Oracle8i also provides protection for the data dictionary, ensuring that only those individuals making a
database administrator-privileged connection can alter the data dictionary. In Oracle8i, users granted
ANY privilege (such as ALTER ANY TABLE, DROP ANY VIEW) can exercise these privileges on
any appropriate object in any schema, except the SYS schema, which includes the data dictionary.
This allows developers and others who need privileges on objects in multiple schemas (e.g., ALTER
ANY TABLE) to continue to have that access via ANY privileges, while ensuring that they do not
inadvertently alter the data dictionary. Users making SYS-privileged connections (that is, connecting
as SYSDBA or SYSOPER) are able to modify the data dictionary, as one would expect a DBA to be
able to do.

Views to Customize Access to Information

While privileges allow you to control which operations a user can perform on database objects, views
allow you to further limit the data that a user can access within these objects. A view is a content- or
context-dependent subset of one or more tables (or views). For example, you can define a view that
allows a manager to view only the information in the EMP table that is relevant to employees in his
own department. The view may contain only certain columns from the base table (or tables), such as
the example below, in which only the employee name and salary information are contained in a view.
Content may also be limited to a subset of the rows in the base table, such as a view of the employee
table which contains records for employees assigned to department 20.

Similarly, you can define a view that allows payroll clerks to update payroll information on certain
days of the month only. This flexibility allows you to restrict the data that a user can see or modify to
only that data that he truly needs to access, at only the times that access is appropriate. This allows
you to enforce your unique business rules within the database. View can be created with additional
business considerations in mind. For example, views may be created “with check option,” which
enforces that inserts and updates performed through the view must be accessible by the view query
itself. This helps ensure data consistency from the user’s viewpoint.

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

7

CREATE VIEW

emp_salaries AS

SELECT ename,

salary FROM emp

WHERE mgrname =

user;

SELECT, UPDATE privileges
EMP Table

Not Necessary

Figure 1: A view controlling salary access by manager

Stored Procedures to Customize Operations on Data

Oracle8i stored procedures offer another powerful and flexible way for you not only to limit those
privileges a user has and the data that he can access, but to define a limited set of related operations
that he can perform within the database. It is often desirable to encapsulate business rules into stored
procedures for several reasons. One of them is that, if security is written in the front-end application,
the user can bypass all the security of the application if the user has direct privileges in the database.
Another reason is that stored procedures help enforce least privilege as well as business integrity, by
ensuring that users have the minimum privileges they need to perform their job functions, and only
access data according to well-formed business rules.

A package is a group of one or more stored procedures that are stored and managed together.
Stored procedures and functions are sets of PL/SQL™ (Oracle’s procedural language) or Java™

statements stored in compiled form within the database. You can define a procedure so that it
performs a specific business function, then grant a user the ability to execute that procedure without
granting him any access to the objects and operations that the stored procedure uses. This prevents
users from exercising privileges to perform operations outside of the context of the pre-defined
authorized procedure.

For example, the INCREASE_PAY stored procedure illustrated in Figure 2 allows managers to
increase their employees’ salaries. By executing this stored procedure, managers are allowed to
increase employees’ salaries by no more than 15%.

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

8

While you could have just granted these managers the ability to update the EMP_SALARIES view,
the stored procedure allows you to enforce your business rules within the database by restricting
managers from giving their employees increases that violate these rules. Note that the managers need
not have access to the EMP_SALARIES view in order to execute this procedure; because a stored
procedure performs an explicitly defined operation, users only need permission to execute this
procedure, not permission to access the underlying objects. This prevents users from accessing the
procedure’s underlying objects outside the context of your business rules.

UPDATE privilege

Not Necessary

EXECUTE privilege

Create procedure INCREASE_PAY
(employee_no in number, increase_amount
In number)
as begin
 if increase_amount <= .15
 then
 update emp_salaries
 set salary = salary*(1+increase_amount)
 where empno= employee_no;
 else
 null;
 end if;
end;

EMP_SALARIES view

Figure 2. Stored procedure to update salary

Flexible Procedures to Lower Cost of Ownership

The type of procedure described above relies on a “definer’s rights” privilege model, e.g. users who
have EXECUTE permission on Chuck’s (the definer’s) procedure access Chuck’s data with Chuck’s
privilege set, for the duration of the transaction only. “Definer’s rights” procedures are useful for
encapsulation of privileges within a business context; that is, users need not have direct privilege on
objects, merely the privilege to execute a procedure which accesses objects according to well-defined
business rules.

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

9

However, object-oriented technology and the use of new programming languages such as Java require
a more flexible privilege model, in which business logic is separate from data and the privileges
required to access an object. For example, an Enterprise JavaBeans™ that updates a bank account
balance should update Jane’s account balance if Jane accesses the bean, but John’s account balance if
John accesses the bean. Furthermore, the Enterprise JavaBeans may be deployed in a bean store, and
the beans may actually act upon different databases, or different schemas within the same database.
Alternatively, developers of data cartridges wish to deploy application libraries, in which business
logic must remain independent of specific users’ privileges. To support these requirements, Oracle8i
extends its privilege model by offering “invoker’s rights” procedures, available in both PL/SQL and
Java, which execute with an invoker’s privilege set, on an invoker’s schema.

Invoker’s rights procedures enable organizations to lower their cost of deploying applications, since
business logic — for example, a procedure which updates account balances — is not tied to a
particular user’s privilege set or a particular schema, and thus can be used (and reused) by many
applications and users. For example, an organization may have a common set of applications which
multiple divisions use, but the data upon which the applications act are separated from one another.
Division 1 employees never access Division 2’s data, and vice versa. One approach to this problem
would be to physically separate data on different servers, which is expensive, and makes it difficult to
do necessary summaries at a corporate level. Another approach is to maintain the data of each
application in a separate schema, and have the application reside in an application-owned schema.
Invoker’s rights procedures enable users from each division to access the same application, while
acting upon their own data only. Invoker’s rights procedures thus enhance the ability of organizations
to deploy common applications which nonetheless “act” differently for different sets of users. The
result is stronger security at a lower cost of deployment.

The Virtual Private Database

Giving customers and partners direct access to mission-critical systems over the Internet may yield
reduced cost, better service, and more timely information, but it also offers new challenges.
Organizations must not only keep data safe from prying eyes, but they must segregate data
appropriately, often to the level of individual customers or users. Also, many companies are interested
in providing Internet “hosting” environments, with a well-designed and well-managed computing
infrastructure, but must keep the data of each “hosted” corporation separate and secure from each
other, while allowing customizations and data access methods which best meet their individual needs.

Within the Intranet, organizations continue to struggle with traditional access control problems, such
as the classic “application security problem”: when access control is embedded in an application,
users who have access to ad-hoc queries or reporting tools bypass the security mechanisms of the
application.

Oracle8i addresses these diverse security needs by introducing the Virtual Private Database server-
enforced, flexible, fine-grained access control, together with a secure application context, enabling
multiple customers and partners to have secure direct access to mission-critical data. The Virtual
Private Database enables, within a single database, per-user or per-customer data access with the
assurance of physical data separation. For Internet access, the Virtual Private Database can ensure that
online banking customers see only their own accounts, and that web storefront customers see their
own orders only. Web hosting companies can maintain multiple companies’ data in the same Oracle8i
database, while allowing each company to see only their own data.

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

10

The Virtual Private Database enables fine-grained access control by associating one or more security
policies with tables or views. Direct or indirect access to a table with an attached security policy
causes the data server to consult the policy function. The policy function returns an access condition
known as a predicate (a WHERE clause) which the data server appends to the SQL statements,
dynamically modifying the user’s data access. For example, if an organization’s security policy is that
customers can see their own orders, a user issuing the following query:

SELECT * FROM orders;

could have her query transparently and dynamically rewritten by Oracle8i as follows:

SELECT * FROM orders WHERE cust_num = (SELECT custnum FROM

customers WHERE cust_name = USERENV(‘user’));

Fine-grained access control enables dynamically modified data access, transparently to both users and
applications, based on any criteria; an organization can have different access conditions per user, per
group of users, or per application.

Flexible Implementation

Fine-grained access control offers flexible policy implementation, to allow customers to fine-tune their
security policies based on their specific needs:

• Attach security policies to tables or views. Many applications already use views for security
reasons, or to enforce business rules. Attaching security policies to either views or tables allows
organizations to add fine-grained access to their existing applications without completely
rewriting them.

• Add security policies to only those tables or views where it is needed. For example, to
implement the policy ‘customers can see only their own orders,’ one need only add security
policies to the ORDERS and ORDER_LINES table.

• Enable different policies for different types of access, e.g., select, insert, delete, and update. For
example, you could implement a policy on the EMP table that enables users to query name and
address information for any employee, but allows them to update only their own records.

• Add multiple policies per table. For example, a hosting application may allow different
companies’ HR systems to enable different access control conditions. Companies can add
additional security policies on top of the base HR application security policy (e.g., that data
access is limited by company), without affecting the base security enforcement and data
separation policies.

Context-based Security Enforcement

To make the Virtual Private Database easy to implement, Oracle8i offers application contexts:
secure, application-specific attributes on which you can base your fine-grained access control policies.
Application contexts are completely user-definable, as are their attributes. A human resources
application may base its security policy on ‘organization,’ ‘employee number,’ and ‘position.’ For
example, a user in the ‘manager’ position can see the employee records of all employees in his
‘organization,’ while a user in the ‘employee’ position can only see and update records matching his

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

11

own ‘employee number.’ Alternatively, a general ledger application may base its security policy on
‘set of books,’ and ‘cost center.’ You can use application contexts within policy functions to
determine the correct access condition (predicate) to return. You can also use application contexts
within a predicate. Oracle8i ensures that application contexts are secure, by enforcing that only trusted
packages implement them and can set context values.

Scaleable Security

Fine-grained access control is highly scaleable; rewritten statements are fully parsed, optimized and
available to be shared by other users. Use of application context with fine-grained access control
offers even greater performance benefits, because an application context functions as a secure data
cache. For example, if you were to rewrite a query to limit data access based on a user’s position,
organizational unit, and employee number, you could either use a subquery to retrieve all these values
from metadata tables (which may involve several full table scans), or you could retrieve these
values into an application context and reference the context within your security policy whenever
you need to access attributes. As a result, you can have highly granular access control, with
excellent performance.

Strong, Server-Enforced Security

The Virtual Private Database provides the following benefits:

• Lower cost of ownership. Organizations can reap huge cost savings by building security once, in
the data server, instead of implementing the same security in each application that accesses data.

• Eliminate the “application security problem.” Users can no longer bypass security policies
embedded in applications because security policies are associated directly with data. The same
security policy is automatically enforced by the data server, no matter how a user accesses data,
whether through a report-writing tool, a query, or through an application.

• Enable applications you could never build before. In the past, organizations could not give
customers and partners direct access to their production systems, because there was no way to
secure the data. Internet hosting companies could not have data for multiple companies reside in
the same data server, because they could not separate each company’s data. Now, all these
scenarios are possible, because the Virtual Private Database gives you server-enforced, fine-
grained access control with the assurance of physical data separation.

Triggers to Customize Functionality

Like stored procedures, database triggers are user-defined sets of PL/SQL or Java statements, also
stored in compiled form. While users explicitly execute stored procedures, database triggers are
automatically executed (or "fired") within the data server based on pre-specified events. A trigger is
defined to execute either before or after an insert, update, or delete, so that when that operation is
performed on that table, the trigger automatically fires. Four types of triggers are available for
definition on a table: BEFORE statement, BEFORE row, AFTER statement, and AFTER row.
Statement triggers are executed once regardless of the number of rows affected by the triggering
statement. Row triggers are fired once for each row affected by the triggering statement.

The security benefits of database triggers are similar to those of stored procedures: more granular
access control and consistent rule enforcement. In addition to those benefits, database triggers allow
you to perform behind-the-scenes operations based on user activity. For example, you could define a
BEFORE UPDATE trigger on the EMP table that automatically records the existing values in the

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

12

table before a user updates them. That way, you have a record of both the old and new values in any
updated rows. You can also define multiple triggers of each type (statement or row) on a single table,
to audit several different types of operations. Triggers can be used to apply security rules to the
database. For example, if employee salary information should only be updated on a weekday between
8 a.m. and 6 p.m., a trigger can be defined to implement this business rule:

CREATE TRIGGER check_salary_access

before delete or insert or update

ON scott.emp

BEGIN

/* If today is a Saturday or Sunday, then return an error.*/

IF(TO_CHAR(SYSDATE, ’DY’) = ’SAT’ OR

 TO_CHAR(SYSDATE, ’DY’) = ’SUN’)

 THEN raise_application_error(-20501,

 ’May not change employee table during the weekend’);

ENDIF;

/*If the current time is before 8:00AM or after 6:00PM, then

return an error. */

IF (TO_CHAR(SYSDATE, ’HH24’) < 8 OR

 TO_CHAR(SYSDATE, ’HH24’) >=18)

 THEN raise_application-error(-20502,’May only change

employee

 table during working hours’);

ENDIF;

END;

All actions and checks done as a result of the SQL statement in a trigger must succeed. If any step is
not successful, then all transactions are rolled back, ensuring data integrity.

While database triggers allow you to extend security based on actions involving specific database
tables, event triggers allow you to extend security (e.g., access control and auditing) on larger events
occurring within the database. Oracle8i provides event triggers on multiple database events, including
login, logoff, startup, shutdown, as well as create, alter, and drop. Event triggers may be defined at
the database level (e.g., startup), or for individual schemas (e.g., CREATE statements in the Order
Entry schema).

For example, you could enable security policies immediately on login, based on how a user logged in
or where he connected from. Or, you could use a login trigger to immediately set an application
context for a user, to limit his access to data. You could use a login trigger to automatically enable
more stringent auditing if a user connects to the database outside normal working hours, and disable
these auditing options with a logoff trigger. Event triggers can be used to extend the innate security
mechanisms of the Oracle8i data server, giving organizations more control over how and when users
access data.

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

13

Roles to Manage Privileges

While Oracle8i’s granular privileges let you closely restrict the types of operations a user can perform
in the database, managing these privileges may be complex. For example, if ten payroll clerks are
responsible for maintaining payroll information, you would be required to grant each of these ten
users the privileges necessary for him to perform his job. If their managers also must have access to
information, you must grant these privileges to the managers, as well. If you decide to reduce the
number of privileges these users require, you must revoke privileges from each of these users
individually, making privilege management time-consuming and complex.

To address the complexity of privilege management, Oracle7™ introduced roles. Roles are user-
defined collections of privileges that can be granted to and revoked from users, and even from other
roles. For example, you can create the PAYROLL_CLERK role, grant it all privileges necessary for
payroll clerks to perform their jobs, then simply grant this single role to all payroll clerks. In addition,
you can create the PAYROLL_MANAGER role, grant it the PAYROLL_CLERK role and any other
necessary privileges, then grant it to all payroll managers. To later grant an additional privilege to all
payroll clerks and their managers, you need only grant an additional privilege to the
PAYROLL_CLERK role; similarly, to revoke a privilege from all payroll clerks and managers, you
need only revoke the privilege from the role. A role can also be defined to prompt the user for a
password when that role is invoked, thus providing another layer of security for the system.

In addition to using roles to simplify privilege management, you can use roles to restrict the set of
privileges accessible to a user at any time. For example, you can specify "default" roles that are
enabled automatically for a user whenever he connects to the database, and specify additional roles
that can only be enabled explicitly (by the user or within an application). You can also explicitly
disable a role for a user to prevent him from using a certain collection of privileges when it is no
longer appropriate (such as when he changes jobs). In addition, a role can be dropped completely
from the database, making it no longer available to any user.

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

14

Clerk

Manager

Users Roles

Human
Resources

Clerk

Human
Resources
Manager

Default

Default

EMP Table

BONUS Table

Privileges

CREATE SESSION

SELECT

SELECT

UPDATE

UPDATE

INSERT

DELETE

Figure 3: Use roles to assign users groups of privileges

Roles to Manage Application Security

One beneficial use of the ability to dynamically enable and disable roles is to associate a role with an
application. You can specify that a certain role be enabled for authorized users at the beginning of the
application, then disabled at the end of the application. This restricts users from exercising the
privileges within the role outside of the application. For example, you can enable the

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

15

PAYROLL_CLERK role at the beginning of the payroll application, then automatically disable it
when a payroll clerk exits from the application. This ensures that payroll clerks do not use the
privileges of the role in any way other than that allowed by business rules defined within the payroll
application.

Roles can also be useful in managing privileges in an application development environment. For
example, certain privileges can be granted to developers to enable them to create their own objects.
These privileges are not required by users of an application but are needed by developers. You can
also associate a role with a database tool, allowing you to control which operations a user can perform
using that tool. For example, you can associate the database roles PAYROLL_CLERK and
PAYROLL_MANAGER with the menu roles in Oracle Developer so that the tool only displays those
menu entries that are accessible to clerks or managers, based on the enabled roles.

Oracle8i extends the role capabilities of Oracle8 by offering secure application roles; roles which can
be enabled only through an application. Secure application roles are implemented by trusted
packages; the trusted package validates the SET ROLE (using any desired criteria) prior to allowing
SET ROLE to succeed. Oracle8i ensures that it is the trusted package enabling the SET ROLE
command by checking the calling stack. For example, a trusted package could ensure that a user is
connected through an application server which is proxying the user’s identity to the data server, and is
not connected to the database directly (and thus invoking the role outside of the application).

Secure application roles are created as follows:

CREATE ROLE hr_clerk IDENTIFIED USING hr.admin

This syntax indicates that the role HR_CLERK, a secure application role, can only be enabled through
the trusted package HR.ADMIN.

Prior to secure application roles, system security officers who wanted to ensure that users only enabled
roles through applications (and not directly in the data server) had to rely on “security by obscurity” to
obtain this functionality. You could embed a role enabled by password within an application (for
which the users who are granted the role did not know the password), but the password needed to be
supplied by the application in some way, e.g., by burying the password within the application.

Enterprise Roles for Centralized Privilege Management

The challenge of managing user accounts and privileges is magnified in large enterprises, which often
have a number of employees dedicated to creating user accounts, assigning privileges to them, and
reassigning privileges as necessary. To address this need, Oracle8 introduced enterprise roles: a
container of one or more global roles (encompassing one or more data servers), centrally administered,
maintained in a proprietary data schema. Oracle8i extends the benefits of enterprise roles by storing
and retrieving them from Internet Directory (or other LDAP-compliant directory server) via LDAP, an
Internet standard for directory access.

Enterprise roles enable centralized authorization of users; for example, a user may be granted the
enterprise role “HR Clerk,” which contains the global role “HR User” on the Human Resources
database, and the “Employee” global role on the Corporate Information database. If a user changes
jobs, an administrator can simply change his enterprise role assignment, which alters his privileges in
multiple databases throughout the enterprise. Also, you can add capabilities to enterprise roles
(granted to multiple users) without having to update the authorizations of each user independently.

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

16

Single Station Administration

Managing thousands of user accounts is one of the largest administration challenges facing large
organizations. Creating user accounts and assigning privileges is often a multi-step process, requiring
multiple tools. Significant new functionality has been added in Oracle8i to address this need. Oracle
Enterprise Security Manager (an extension to Oracle’s traditional database security manager) provides
“single station administration;” from a single console, an administrator can perform the following:

• Create a User in Internet Directory

• Create a User in Multiple Oracle8i Databases

• Create Enterprise Roles That Span Multiple Databases

• Assign One Or More Enterprise Roles to a User

For example, an administrator can identify a group of data servers, then “drag” the user onto the
database icons to create the user in multiple locations.

Oracle Enterprise Security Manager provides one tool to centrally manage user definitions in the
directory itself, as well as in multiple databases resulting in a lower cost of user administration
throughout the enterprise. Another benefit of single station administration is that if security is easy to
administer, organizations are more likely to implement security well throughout the enterprise.

Single Enterprise User

Single sign-on solutions address the “too many passwords” problem, and generally results in both
stronger authentication and an improved user experience. However, users all too often still need to
have multiple accounts: one for each application, database, or network service which they access, and
organizations must still expend large amounts of time and money creating, administering, and deleting
these user accounts. Many organizations’ systems cannot react quickly enough to organizational
change. If a user changes jobs or leaves the company, it may be days or weeks before his privilege set
changes; users either can’t access what they need to access, or can access information they should no
longer be allowed to see. The inability to unify user accounts weakens organizational security.

To address these needs, Oracle8i introduces the Single Enterprise User: a user who is created once for
the enterprise along with his enterprise roles, privileges, and access rights — in a directory server
accessible over LDAP. Single Enterprise User offers the following benefits:

Fewer User Accounts

Oracle8i users no longer need to be database users nor have identified schemas.

Easily-Enforced Security

If a user changes jobs or leaves, an administrator can alter or remove all his privileges, everywhere,
merely by changing his user entry in Internet Directory; organizations need no longer worry about
“orphan” accounts or out-of-date privileges, which consume valuable system resources and are
targets for hackers.

Reduced Cost of Ownership

Organizations save significant resources by managing a single user account and assigning
enterprise roles once, instead of creating multiple user accounts with multiple passwords, having
multiple authorizations.

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

17

Auditing to Monitor Database Activity

A critical aspect of any security policy is maintaining a record of system activity to ensure that users
are held accountable for their actions. To address this requirement, Oracle8i provides an extensive
audit facility.

Granular Auditing

The Oracle8i audit facility allows you to audit database activity by statement, by use of system
privilege, by object, or by user. For example, you can audit activity as general as all user connections
to the database, and as specific as a particular user creating a table. You can also audit only successful
operations, or unsuccessful operations. For example, auditing unsuccessful SELECT statements may
catch users on ‘fishing expeditions’ for data they are not privileged to see. You can also set default
object auditing options so that new objects automatically have auditing enabled from object creation
(for example, any new tables are audited automatically for unsuccessful selects). Audit trail records
are stored in an Oracle8i table, making the information available for viewing through ad hoc queries
or any appropriate application or tool.

Efficient Auditing

Oracle8i implements auditing efficiently: statements are parsed once for both execution and
auditing, not separately. Also, auditing is implemented within the server itself, not in a separate,
add-on server which may be remotely situated from the statements which are being executed
(thereby incurring network overhead). The granularity and scope of these audit options allow
you to record and monitor specific database activity without incurring the performance overhead
that more general auditing entails. And, by setting just the options of interest to you, you avoid
the “catch-all, and throw away” audit methods which intercept and log all statements, and then
filter them to retrieve the ones of interest.

Extensible Auditing

To record customized information that is not automatically included in audit records, you can use
triggers (described in "Triggers to Customize Functionality") to further design your own audit auditing
conditions and audit record contents. For example, you could define a trigger on the EMP table to
generate an audit record whenever an employee's salary is increased by more than 10% and include
selected information, such as before and after values of SALARY:

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

18

CREATE TRIGGER audit_emp_salaries

AFTER INSERT OR DELETE OR UPDATE ON employee_salaries

for each row

begin

if (:new.salary> :old.salary * 1.10)

 then

 insert into emp_salary_audit values (

 :employee_no,

 :old.salary,

 :new.salary,

 user,

 sysdate);

 endif;

end;

Furthermore, you can use event triggers to enable auditing options for specific users on login, and
disable them on logoff.

Oracle8i also gives you the option of sending audit records to the database audit trail or your operating
system’s audit trail, when the operating system is capable of receiving them. This option, coupled with
the broad selection of audit options and the ability to customize auditing with triggers or stored
procedures, gives you the flexibility of implementing an auditing scheme that suits your specific
business needs.

Auditing for Three-Tier Applications

Many three-tier applications authenticate users to the middle tier, then the TP monitor or application
server connects as super-privileged user, and does all activity on behalf of all users. With Oracle8i,
you are not only able to preserve the identity of the real client over the middle tier and enforce “least
privilege” through a middle tier, but you can audit actions taken on behalf of the user by the middle
tier. Oracle8i’s audit records capture both the logged-in user (e.g., the TP monitor) who initiated the
connection, and the user on whose behalf an action is taken. For example, to capture all SELECTs on
the BONUS table done by a middle tier called ‘appsrv,’ you would enabled the following audit option:

AUDIT SELECT ON bonus BY appsrv ON BEHALF OF ANY;

Audit records capture both the user taking the action and the user on whose behalf the action was
taken. Auditing user activity, whether users are connected through a middle tier or directly to the data
server, enhances user accountability, and thus the overall security of multi-tier systems.

Active Auditing

While an auditing facility can record attempts to breach database security or actual breaches, they do
not alert administrators or security officers that the breach is happening. In fact, it can be hours, days,
or months before analysts detect a security breach by examining the audit trail. Consequently, if one
of the purposes of your auditing policy is to detect potential breaches of security, you need an alarm
facility to alert the appropriate administrator when the database or operating system detects suspicious
behavior.

When you use database triggers to perform customized auditing, Oracle8i can send an alarm to a
waiting process that a potential breach of security is occurring.

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

19

Objects for Rapid, Flexible Application Development

With each wave of technology, businesses find that their product cycles are shortened, competitive
pressures have increased, and they must continually reinvent themselves to match the pace of change.
Many design and development teams have concluded that developing applications in an object-
oriented manner can meet the challenges of this rapid technological change. Oracle8 marked the
metamorphosis of the industry-leading relational server into an object-relational server.

Oracle8i includes a set of features that enables the creation and manipulation of user-defined Object
Types in the database, allowing designers to model the structures of complex real-world entities, as
well as operations that might be performed on these entities. Oracle8i’s object constructs have a close
correspondence with the relational constructs that Oracle’s customers are familiar with. For example,
a REF is very similar to a foreign key, methods are really PL/SQL stored procedures and Oracle8i
provides the same transactional semantics and behavior on objects as it does on relational data.
Perhaps most importantly, the security model that operates on object types is exactly the same that
Oracle defined for relational tables.

Object Types

Oracle has extended SQL to allow users to define their own types (that represent their business
objects), store them as base or native types within the database, and query, insert, and update them.
Instances of object types may be stored as rows in tables (row objects), or specified as the data types
of columns (column objects). They can contain one business object inside of another, point from one
business object to another (using a pointer called a REF) and access and manipulate collections or sets
of these objects.

As with relational data, there are both system privileges and object privileges which apply to object
types. System privileges include the ability to create, alter, and drop types as well as the ability to
execute a type, i.e., to use and reference named types in a schema. The only object privilege that
applies to types is the execute privilege, which allows the grantee to use the type to define a table,
define a column in a relational table, or declare a variable of the named type.

For example, many applications use address information: an order entry application (customers), an
accounts payable application (vendors), and a human resources application (employees). Sam could
create the address type address_type (which contains street, city, state, and zip information), and grant
execute privilege on address_type to Jane. Jane can now use address_type as an embedded type in the
order entry application she is developing. Other developers could also use address_type in their
human resources and accounts payable applications.

Oracle8i prevents dropping or revoking a type if there are dependencies on it. For example, Sam is
prevented from dropping type address_type if Jane has used address_type in her order entry
application. (Sam can use the FORCE option to revoke execute privilege on a type even if there are
dependencies, but this is generally not recommended.)

Object Views

Object views are an extension to the basic relational view mechanism, to provide an object abstraction
over existing relational or object data. By using object views, relational data can be retrieved,
updated, inserted and deleted as if such data were stored as objects. Object views can be constructed
on both relational and object data, as well as other object views. Object views also enable the
coexistence of object applications with relational data, which facilitates a smooth migration from

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

20

relational applications to object-oriented applications. Using object views to group logically-related
data can also lead to better database performance; relational data that make up a row of an object
traverse the network as a unit, potentially saving many round trips.

A current limitation of views is that a view is not updateable if the view query contains joins, set
operators, group functions, GROUP BY or DISTINCT. Since object views often include joins,
Oracle8i provides a mechanism to overcome these obstacles: INSTEAD OF triggers. INSTEAD OF
triggers provide a transparent way to update object or relational views. You write the same SQL data
manipulation language (DML) (INSERT, DELETE and UPDATE) statement as for an object table.
Oracle8i invokes the appropriate trigger instead of the SQL statement, and the actions specified in the
trigger body take place. INSTEAD OF triggers can also be used to customize regular data
manipulation operations, such as insert, delete, and update.

Functionality to Integrate Your Security Policies

Most installations have an overall system security policy, of which database security is only a part. It
is critical that all components of your system, including operating systems, networks, and databases,
work together to enforce a cohesive and consistent policy. For example, Oracle8i relies upon
operating system security mechanisms to protect against unauthorized access to the operating system
files which contain database objects.

Oracle8i allows you to enforce your own unique security policy and business rules within the
database, and to integrate your database security policy with that of the rest of your system. Oracle8i’s
granular privileges and flexible roles allow you to customize privilege sets within the database. In
addition, you can tie database roles to operating system roles (such as UNIX groups and VMS process
rights identifiers) so that you can consolidate privilege and role management outside of the database.

Oracle8i also offers integrated security and directory services, which enables you to centrally manage
users and privileges, among other benefits. Integrated security and directory services are built using
many industry standards, such as LDAP for directory access, SSL for authentication and encryption,
and X.509 (version 3) certificates for user authentication and single sign-on. Consequently,
organizations using non-Oracle directory services and certificate authorities are able to incorporate
them into Oracle8i’s security and directory framework.

The Advanced Networking Option supports multiple third party authentication mechanisms, thereby
providing the benefits of customer choice and security integration. Many of these services also
provide single sign-on, which means that Oracle8i customers can participate in the resultant greater
ease of administration and centralization of user management. Users, of course, are happy to have
fewer passwords to remember.

Oracle8i provides the option of sending all database audit records to the operating system audit trail,
allowing you to consolidate audit information from all applications in one location. For additional
security, Oracle8i guarantees that data can not be accessed once it is deleted, also known as object
reuse. Oracle8i guarantees object reuse by allocating space for use by an object only after all traces of
remnant data are removed.

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

21

High Availability for Mission-Critical Applications

Availability is often thought of as continuity of service, ensuring that a database is available 24 hours
a day, 7 days a week. However, there are security aspects to availability. For example, if a user is
able to manipulate system resources in order to deny their availability to other users, he is breaching
security. This is referred to as "denial of service." Multiple Oracle8i mechanisms including
resource limits and user profiles, online backup and recovery, and advanced replication help
provide uninterrupted database processing and minimize denial of service in order to support today’s
on-line transaction processing and decision support environments.

User Profiles

Resource limitation and user profile mechanisms prevent "run-away" queries, or more deliberate and
malicious manipulation of system resources by a particular user. A user profile is a set of
administrator-defined resource limits assigned to a username; through the use of user profiles,
Oracle8i allows the database administrator to define and limit the amount of certain system resource
available to a user. System resources that can be limited include:

• Total Connect And Idle Time

• Total Amount Of Logical Input Or Output

• Number Of Concurrent, Multiple Sessions Per Username

• Amount Of Memory Used

• Composite System Usage, Based On a Site-Defined Weighting Of the Above.

Through user profiles, Oracle8i prevents resource hogs from denying service to other users, either
inadvertently or maliciously.

Online Backup and Recovery

Oracle8i also ensures high availability by providing robust online backup and recovery, so that
mission-critical applications are not inhibited by these necessary activities. Oracle8i provides an
integrated method for creating, managing, and restoring backups of a database, providing greater ease
of management and administration of the backup and recovery operations, while maintaining superior
performance and increased availability of the database. Oracle8i databases can be backed up on-line,
even during periods of peak transaction processing activity. Server-managed backup and recovery
improves database administrator productivity as well as simplifying the backup and recovery process.
Oracle8i backup and recovery allows backing up of the entire database, or a subset of the database, in
one operation, and minimizes time needed for backup and restore operations by performing automatic
parallelization of backups and restores. Oracle8i backup and recovery also supports sequential
input/output (I/O) devices for output during backup and for input during restore operations. Tape
backups are supported in conjunction with vendor-provided tape management systems.

Advanced Replication

Oracle8i’s advanced replication facilities can be used to increase the availability of systems by off-
loading large scale queries from transaction processing databases. For example, large tables of
customer purchasing data may be replicated to customer service databases, so that data-intensive
queries do not contend with transactions against the same tables. Advanced replication facilities can
also be useful in protecting the availability of a mission-critical database. For example, symmetric

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

22

replication can replicate an entire database to a failover site should the primary site be unavailable do
to a system or network outage. Advanced replication for both read and write access ensures data
consistency; refresh groups preserve referential integrity and transaction consistency and the table
snapshots of related master tables. For example, customers, orders, order lines are all related, so could
be refreshed as a group.

Data Partitioning

Data partitioning in Oracle8i is a powerful tool for dramatic improvements in the manageability,
performance, and scale of applications deployed using the Oracle8i data server. Oracle8i allows range
partitioning of tables and multiple partitioning strategies for indexes, providing very large database
support, and improves administrative operations. In the real world, media failure, access balancing for
performance, and table de-fragmentation are just a few of the areas where partitioning can reduce the
impact of a outage or increase availability under high loads.

Oracle8i with the partitioning option supports all DML operations in parallel today. In addition, scans
of indexes, export and import of table data, and estimating and calculating statistics can also be
performed in parallel on individual partitions. Partitions can be loaded individually and in parallel,
with or without index pre-creation. Loading, backup, recovery, computing statistics, and import and
export are all supported on a per partition basis. These can be performed individually without
interfering with operations underway on other partitions. With every operation available on a per-
partition basis, it is possible to have truly dramatic performance improvements.

Advanced Technology That Meets Standards

To give you confidence that your database provides all of the functionality and security you need, it
should meet all relevant standards. Oracle Corporation has designed Oracle8i to meet all relevant
standards; additionally, Oracle Corporation is at the forefront of creating new technology and
working with standards groups to extend current standards.

Oracle8i meets functionality and open systems standards as well as being designed to meet security
standards. Oracle8i is fully compliant with ANSI/ISO SQL standards. In addition, Oracle
Corporation proposed its roles facility to the ANSI/ISO X3H2 SQL standards committee, and it was
accepted into the SQL3 specifications.

Oracle has participated in multiple security evaluations since the advent of Oracle7. Oracle7 has
completed security evaluations at class C2 against the U.S. National Computer Security Center
(NCSC) Trusted Computer System Evaluation Criteria (TCSEC or "Orange Book"), and Oracle7 has
also been evaluated against the European Information Technology Security Evaluation Criteria
(ITSEC) at assurance E3 (with functionality F-C2 in conjunction with an F-C2 operating system). A
table of Oracle security evaluations’ status follows:

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

23

Type of Evaluation Server Release Level Status

TCSEC Oracle7 release 7.0.13.1 C2 Completed

ITSEC Oracle7 release 7.0.13.6 E3/F-C2 Completed

ITSEC Oracle7 release 7.2.2.4.13 E3/F-C2 Completed

ITSEC Oracle7 release 7.3.4 E3/F-C2 In evaluation

Common Criteria Oracle7 release 7.2.2.4.13 EAL-4 In evaluation

Common Criteria Oracle8 release 8.0.5 EAL-4 In evaluation

Oracle Corporation is also beginning a "Common Criteria" (CC) evaluation of Oracle8 at the EAL-4
assurance level, with a Government Database Management System Protection Profile, and has taken a
lead in developing multiple protection profiles. The benefit of a Common Criteria certificate is that it
will be recognized and accepted by multiple governments (US, UK, Germany, France, Netherlands,
Australia, to name a few).

Database Encryption

Given the limitations of discretionary access control and the ’superuser’ privileges typically enjoyed by
Database Administrators (DBAs) and System Administrators, many organizations feel a need to
safeguard data in the database via encryption. Database encryption can address threats to both the
confidentiality and integrity of online data and data stored off-line, although it may not be the optimal
solution to these threats. There are three broad categories of database encryption which this paper
addresses: encryption of all data in on-line, operational environments, encryption of data stored off-
line, and partial encryption of data in operational environments.

Full Database Encryption

Why might an organization consider encrypting an entire database? One reason is to limit the
readability of the database files in the operating system. Clearly, access to database files in the
operating system should be limited through groups or rights identifiers; however, an organization may
also wish to make these files unreadable to a person or persons who otherwise has legitimate access to
the database files, but has no database privileges, such as a System Administrator.

Encryption of an entire database is problematic. In an operational environment, encryption must not
interfere with other access controls; i.e., it must not prevent users from accessing an object they are
otherwise privileged to access. Otherwise, their ability to perform their jobs is impaired. For
example, a user who has SELECT privilege on EMP should not be limited by the encryption
mechanism from seeing all the data he is otherwise cleared to see. Consequently, there is little benefit
to encrypting, (for example) part of a table with one key and part of a table with another key if users
need to see all encrypted data in the table; it merely adds to the overhead of decrypting data before
users can read it. Therefore, provided that access controls are implemented well, there is little
additional security provided within the database itself from full database encryption; any user who has
privilege to access data within the database has no more nor less privilege as a result of encryption.

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

24

If data within database tables is encrypted to provide additional security for database files, then the
indexes which access those tables must also be encrypted, since they may also contain sensitive data.
The result of encrypting all data and all associated indexes is a drain on performance. For example, a
user querying the EMP table must wait while the indexes are decrypted, the data in table EMP is
decrypted, and the query is satisfied. The results of other operations which affect data — such as
UPDATEs or INSERTs — must also be encrypted. Consequently, most organizations would find any
additional security provided by full database encryption in an operational environment to be a poor
tradeoff for the performance degradation that they would experience. Consequently, Oracle8i does
not provide full database encryption.

Another drawback to full database encryption is the requirement to periodically change the encryption
key to mitigate the threat of a compromised key. Changing the key requires that the entire database be
decrypted and reencrypted using the new key or keys. This process is time-consuming and would
likely have to be done when the data is not being accessed.

Off-line Database Encryption

Some organizations who feel confident in the security of on-line data may wish to encrypt data stored
off-line. For example, an organization may store backups for a period of six months to a year off-line
in a remote location. Of course, the first line of protection is to secure the data in a facility to which
access is controlled, a physical measure. In addition, there may be a benefit to encrypting this data
before it is stored, and since it is not being accessed on-line, performance need not be a consideration.
While Oracle8i does not provide this facility, there are vendors who can provide such encryption
services. A note of caution: organizations considering this should thoroughly test that data which is
encrypted before storage off-line can be decrypted and re-imported successfully before embarking on
large-scale encryption of backup data.

Partial Database Encryption

In addition to using access controls to limit access to data, an organization may wish to limit access to
sensitive data via encryption to strengthen their separation of function measures. As discussed earlier,
a System Administrator or DBA typically has the most privileges in a system and must also generally
be cleared to the highest level. Therefore, an organization may wish to encrypt certain sensitive data
and only provide the ability to decrypt and read the data to select individuals who are not DBAs or
System Administrators. For example, a military FLIGHTS table might contain information about
Cargo which no one except an intelligence officer needs to see. This data could be encrypted, with
only the intelligence officer having access to the decryption key. As with the case of full database
encryption, the encryption should not limit access by users who are otherwise cleared to see the data.
Oracle8i does not currently support column-level or row-level encryption within the database, nor are
there immediate plans to provide this functionality. However, there are a number of strong encryption
algorithms which may be licensed from vendors such as RSA Data Security. These encryption
algorithms can be incorporated into an application such that only selected users can view and modify
the encrypted data. Note that certain encryption technologies are subject to export controls; one
reason why Oracle8i does not provide this facility within the database.

Database Security in Oracle 8i, An Oracle Technical White Paper
November 1998

25

Network Encryption

Organizations operating in a distributed environment may have particular concerns about security which
may necessitate encryption of data passing over a network. For these organizations, Oracle8i offers the
Advanced Networking Option, which provides high speed data encryption over a network using such
services as Secure Sockets Layer, the Internet standard for confidentiality of transmitted data.

To prevent modification or replay of data during transmission the Oracle8i Advanced Networking
Option can generate a cryptographically-secure message digest, which is included in each network
packet. An immediate integrity check on each packet performed at the destination by the recipient
makes it virtually impossible for an intruder to alter data without detection. To protect data from
unauthorized viewing, the Oracle8i Advanced Networking Option includes an encryption module
which uses the RSA Data Security RC4™ encryption algorithm as well as the Data Encryption
Standard (DES). Using a secret, randomly-generated key, the Advanced Networking Option encrypts
all data in a Net8 session — including all data values, SQL statements, and stored procedure calls and
results — to fully safeguard data. The Advanced Networking Option offers RC4 in 128-bit, 56-bit,
and 40-bit key lengths, and DES in 56-bit and 40-bit key lengths. Advanced Networking Option also
provides high-strength encryption with Triple DES (3DES) supported with Secure Sockets Layer.
The strength of encryption available to customers is limited by US export regulations.

SUMMARY

Whether enterprises employ client/server or multi-tier architectures, data will continue to be stored
and managed in database servers. With the expansion of the enterprise to customers and partners via
the Internet or extranets, database security becomes an increasingly critical component of information
systems. Oracle8i builds upon almost 20 years of Oracle client/server expertise, providing robust,
industry-standard security mechanisms to meet the challenges of securing the expanded enterprise.

RELATED TOPICS

Discussions of other aspects related to security such as integrity and availability are covered in other
Oracle8i collateral:

• Fine-grained Access Control (an Oracle Technical White Paper), November 1998

• Oracle8i Security and Directory Integration (Features Overview), November 1998

• Security Evaluation Criteria and Security Evaluations (an Oracle Technical White Paper),
November 1998

• Advanced Networking Option, November 1998

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
+1.650.506.7000
Fax +1.650.506.7200
http://www.oracle.com/

Copyright � Oracle Corporation 1998
All Rights Reserved

This document is provided for informational purposes
only, and the information herein is subject to change
without notice. Please report any errors herein to
Oracle Corporation. Oracle Corporation does not
provide any warranties covering and specifically
disclaims any liability in connection with this
document.

Oracle is a registered trademark, and Enabling the
Information Age, Oracle8i, Oracle8, PL/SQL and
Oracle7 are trademarks of Oracle Corporation.

All other company and product names mentioned are
used for identification purposes only and may be
trademarks of their respective owners.

