












Portable Systems Group
Win32 Networking API Specification

Revision 0.9 (March 15, 1994)

�� TOC \o �1. Introduction	� GOTOBUTTON _Toc294081498  � PAGEREF _Toc294081498 �1��
1.1.  Document Overview	� GOTOBUTTON _Toc294081499  � PAGEREF _Toc294081499 �1��
1.2.  References	� GOTOBUTTON _Toc294081500  � PAGEREF _Toc294081500 �1��
1.3.  History	� GOTOBUTTON _Toc294081501  � PAGEREF _Toc294081501 �1��
1.4.  Goals	� GOTOBUTTON _Toc294081502  � PAGEREF _Toc294081502 �2��
2. Win32 API Specification	� GOTOBUTTON _Toc294081503  � PAGEREF _Toc294081503 �2��
2.1.  General Guidelines	� GOTOBUTTON _Toc294081504  � PAGEREF _Toc294081504 �2��
2.2.  Enumeration of Network Resources	� GOTOBUTTON _Toc294081505  � PAGEREF _Toc294081505 �2��
2.3.  Enumeration of Connected/Remembered Resources	� GOTOBUTTON _Toc294081506  � PAGEREF _Toc294081506 �3��
2.4.  Functions	� GOTOBUTTON _Toc294081507  � PAGEREF _Toc294081507 �4��
2.4.1. WNetAddConnection	� GOTOBUTTON _Toc294081508  � PAGEREF _Toc294081508 �4��
2.4.2. WNetAddConnection2	� GOTOBUTTON _Toc294081509  � PAGEREF _Toc294081509 �5��
2.4.3. WNetAddConnection3	� GOTOBUTTON _Toc294081510  � PAGEREF _Toc294081510 �7��
2.4.4. WNetCancelConnection	� GOTOBUTTON _Toc294081511  � PAGEREF _Toc294081511 �9��
2.4.5. WNetCancelConnection2	� GOTOBUTTON _Toc294081512  � PAGEREF _Toc294081512 �10��
2.4.6. WNetGetConnection	� GOTOBUTTON _Toc294081513  � PAGEREF _Toc294081513 �11��
2.4.7. WNetGetUniversalName	� GOTOBUTTON _Toc294081514  � PAGEREF _Toc294081514 �11��
Structures	� GOTOBUTTON _Toc294081515  � PAGEREF _Toc294081515 �12��
2.4.7. WNetGetUser	� GOTOBUTTON _Toc294081516  � PAGEREF _Toc294081516 �13��
2.4.8. WNetConnectionDialog	� GOTOBUTTON _Toc294081517  � PAGEREF _Toc294081517 �14��
2.4.9. WNetDisconnectDialog	� GOTOBUTTON _Toc294081518  � PAGEREF _Toc294081518 �15��
2.4.10. WNetOpenEnum	� GOTOBUTTON _Toc294081519  � PAGEREF _Toc294081519 �15��
2.4.11. WNetEnumResource	� GOTOBUTTON _Toc294081520  � PAGEREF _Toc294081520 �17��
2.4.12. WNetCloseEnum	� GOTOBUTTON _Toc294081521  � PAGEREF _Toc294081521 �18��
2.4.13. WNetGetLastError	� GOTOBUTTON _Toc294081522  � PAGEREF _Toc294081522 �19��
2.5.  Structures	� GOTOBUTTON _Toc294081523  � PAGEREF _Toc294081523 �19��
2.6.  Errors	� GOTOBUTTON _Toc294081524  � PAGEREF _Toc294081524 �21��
3. Internal Interfaces between Shell and MPR	� GOTOBUTTON _Toc294081525  � PAGEREF _Toc294081525 �22��
3.1.  WNetRestoreConnection	� GOTOBUTTON _Toc294081526  � PAGEREF _Toc294081526 �22��
3.2.  WNetPropertyText	� GOTOBUTTON _Toc294081527  � PAGEREF _Toc294081527 �23��
3.3.  WNetPropertyDialog	� GOTOBUTTON _Toc294081528  � PAGEREF _Toc294081528 �24��
3.4.  WNetGetDirectoryType	� GOTOBUTTON _Toc294081529  � PAGEREF _Toc294081529 �25��
3.5.  WNetDirectoryNotify	� GOTOBUTTON _Toc294081530  � PAGEREF _Toc294081530 �26��
3.6.  WNetFormatNetworkName	� GOTOBUTTON _Toc294081531  � PAGEREF _Toc294081531 �27��
3.7.  WNetGetConnection2	� GOTOBUTTON _Toc294081532  � PAGEREF _Toc294081532 �29��
3.8. Credential Manager Functions	� GOTOBUTTON _Toc294081533  � PAGEREF _Toc294081533 �30��
3.8.1. WNetLogonNotify	� GOTOBUTTON _Toc294081534  � PAGEREF _Toc294081534 �30��
3.8.2. WNetPasswordChangeNotify	� GOTOBUTTON _Toc294081535  � PAGEREF _Toc294081535 �33��
3.9.  Permission Editor Functions	� GOTOBUTTON _Toc294081536  � PAGEREF _Toc294081536 �34��
3.9.1. WNetFMXGetPermCaps	� GOTOBUTTON _Toc294081537  � PAGEREF _Toc294081537 �34��
3.9.2. WNetFMXEditPerm	� GOTOBUTTON _Toc294081538  � PAGEREF _Toc294081538 �35��
3.9.3. WNetFMXGetPermHelp	� GOTOBUTTON _Toc294081539  � PAGEREF _Toc294081539 �36��
4. User Interface	� GOTOBUTTON _Toc294081540  � PAGEREF _Toc294081540 �37��
4.1.  Network Browsing	� GOTOBUTTON _Toc294081541  � PAGEREF _Toc294081541 �37��
4.1.1.  Making Connections	� GOTOBUTTON _Toc294081542  � PAGEREF _Toc294081542 �37��
4.1.2.  Disconnecting a resource	� GOTOBUTTON _Toc294081543  � PAGEREF _Toc294081543 �38��
4.1.3.  Network specific Dialogs	� GOTOBUTTON _Toc294081544  � PAGEREF _Toc294081544 �39��
4.2.  Restoring Connections	� GOTOBUTTON _Toc294081545  � PAGEREF _Toc294081545 �39��
4.3.  Network Specific UI	� GOTOBUTTON _Toc294081546  � PAGEREF _Toc294081546 �39��
4.4.  File Manager Property Dialog Extensions	� GOTOBUTTON _Toc294081547  � PAGEREF _Toc294081547 �39��
4.5.  File Manager Directory Operation hooks	� GOTOBUTTON _Toc294081548  � PAGEREF _Toc294081548 �39��
4.6.  File Manager Directory Icon Display Hooks	� GOTOBUTTON _Toc294081549  � PAGEREF _Toc294081549 �39��
5. Implementation Hints/Issues	� GOTOBUTTON _Toc294081550  � PAGEREF _Toc294081550 �39��
5.1.  Network Provider	� GOTOBUTTON _Toc294081551  � PAGEREF _Toc294081551 �39��
5.2.  Multiple Provider Router	� GOTOBUTTON _Toc294081552  � PAGEREF _Toc294081552 �40��
5.2.1.  Error Codes	� GOTOBUTTON _Toc294081553  � PAGEREF _Toc294081553 �40��
5.3.  Validation	� GOTOBUTTON _Toc294081554  � PAGEREF _Toc294081554 �40��
6. Installation Issues	� GOTOBUTTON _Toc294081555  � PAGEREF _Toc294081555 �Error! Bookmark not defined.��
7. Open Issues	� GOTOBUTTON _Toc294081556  � PAGEREF _Toc294081556 �40��
8. Revision History	� GOTOBUTTON _Toc294081557  � PAGEREF _Toc294081557 �40��
�.End Table C.
�1.	Introduction
This document describes the general networking APIs in Win32, and how they interact with the underlying Network Providers. The User Interface presented to the user will also be detailed here.
There are two API interfaces involved here, namely the interface between applications and Windows and that between Windows and the Network Providers. We refer to the former as Win32 APIs, and the latter as Network Provider Interface (Winnet API in Win3.x terminology). Only the first is described here. See "NT/Win32 Network Provider API Interface" for the latter.
The reader is assumed to be familiar with the document "Multiple Network Support in NT/Win32", and the Winnet interface in Win3.0 and Win3.1.
This document does NOT cover NETBIOS, NamePipe, and Mailslot APIs. General networking APIs in this document refer to the functions needed to browse, make and break network connections.
1.1. 	Document Overview
A brief summary of the history, followed by clarification of goals and constraints. Next, the  API specification is described. For design overview, see "NT/Win32 Multiple Network Design Document".
1.2. 	References
	1.2.1.	Multiple Network Support in NT/Win32
	1.2.2.	Windows 3.0 DDK, Network Drivers Section
	1.2.3.	Windows 3.1 Network Driver Enhancements
	1.2.4.	Windows 3.1 File Manager Extensions
	1.2.5.	Lan Manager 2.1 - Dual Lan Manager and Netware Network Driver (Win3.1 Network Driver Design)
	1.2.6.	Windows 4 Networking - Base Funtional Specification
	1.2.7.	Win32 Printing Specification
	1.2.8.	Lan Manager 2.1 - Winnet Enhancements
1.2.9.	NT/Win32 Multiple Network Design Document
1.2.10.	NT/Win32 Network Provider API Interface
1.3. 	History
There is already a Windows Networking API set defined today, introduced in Win3.0 and enhanced in Win3.1. The Win3.x Winnet Interface is set of network independent APIs (detailed in [2] and [3]) where a network vendor supplies a DLL which implements the interface, and Windows will interact with exactly one such DLL to extend itself to be network aware. Applications are not allowed use these APIs. The APIs are relatively high level, often requiring the network provider DLL to bring up dialogs to perform operation resulting in a variety of UIs for the some functionality.
1.4. 	Goals
The main goals of the multiple provider design are: allow the user seamless access to more than one Network at a time, and to expose a set of networking APIs callable by applications. This set, together with the other Win32 APIs should be able to provide all the commonly used capabilities required by applications.
2. Win32 API Specification
APIs are provided to browse, connect and disconnect from network resources, and to provide information on current connections.
2.1. 	General Guidelines
A number of the APIs take the address and size of a buffer, into which the function will place a variable-sized data structure. In each case, the mechanism used is the same.  The caller allocates a buffer, and passes its address to the function in lpBuffer, and the address of a word containing the buffer size in bytes via lpBufferSize.  The function then copies as much of the requested data structure as it can into the buffer.  If it all fits, the function returns success, but if it does not the data may be left incomplete, and the function sets the WN_MORE_DATA error.  In both cases, lpBufferSize is filled with the number of bytes actually required by the data structure.  This way, if the buffer passed in was too small and the function failed, the caller may allocate a new buffer of the required size, and call the function again.
When the data structure returned includes variable-length strings, the individual data structures will usually contain a pointer to the string.  The strings themselves should also be placed within the buffer, at the end, so that they will not throw off the ability to index to the Nth structure, ie. all structures are located contiguously at the start of the buffer. Pointers to strings or variable length data must be actual pointers, not offsets into the buffer.
When a buffer is used to pass in and return strings, lpBufferSize will should specify the number of  characters that will fit, not the number of bytes.
2.2. 	Enumeration of Network Resources
The view presented to the application is a hierarchical one. There is a logical root of the network, and containers are located under this root. Each container may contain more containers and/or objects. An enumeration may be opened on any node which is a container, and the objects (or subcontainers) therein returned. Each container or object will have a flag to indicate if it is connectable. If it is, a network connection may be made to it.
The following may be a typical scenario:
NETWORK_ROOT
	NT_NETWORK
		DOMAIN_0
			SERVER_00
				SHARE_A (*)
				SHARE_B (*)
			SERVER_01
				SHARE_A (*)
				SHARE_B
		DOMAIN_1
			SERVER_10
				SHARE_A (*)
				SHARE_B (*)
			SERVER_11
				SHARE_A (*)
				SHARE_B (*)
	VENDOR_X
		X_SERVER_0 (*)
		X_SERVER_1 (*)


The names displayed are the network names returned by the providers, and the nodes marked (*) are connectable. Note that the browsing UI does not need to expand the entire tree. It can show just one level initially. As the user opens more branches, each node is enumerated. At the top level of the hierarchy, the names are returned by the MPR, which knows what providers are available. At lower levels, each provider is responsible for its own subtree. It should make sure that it returns unique names, and that objects/sub-containers returned from any one container have unique names.
As an example, the Lan Manager provider may return domains at the top level, servers at the next level, shares last. The first two are non-connectable containers, whereas shares are connectable objects.
In Netware servers appear at the top level, and a connection to a server (or an 'attach' in Netware terminology) must be made before a server node can be expanded further. Once expanded, the volumes under each server are connectable, and may be either containers or objects.
From the application's standpoint, nodes that are returned by the enumeration are either containers or objects, which may or may not be connectable. If they are containers, they may be enumerated further; if they are connectable, the network name returned may then be used in WNetAddConnection() to make a connection. The application does not need to have any knowledge of servers vs shares.
2.3. 	Enumeration of Connected/Remembered Resources
These are performed in a similar fashion to enumerating network resources, ie. we have the Open/Enum/Close model. However, this enumeration results in a flat list of connected resources, and not a hierarchy.
Remembered or persistent connections are the same as in Win3.1. Instead of each network maintaining its own list, the multiple provider router does it all. Deviceless connections are never remembered.
2.4. 	Functions
2.4.1.	WNetAddConnection
This function allows the caller to redirect (connect) a local device to a network resource. The connection will be remembered.
DWORD
WNetAddConnection(
	IN LPTSTR lpRemoteName,
	IN LPTSTR lpPassword,
	IN LPTSTR lpLocalName
	);

Parameters:

lpRemoteName __Specifies the network resource to connect to. This is limited to MAX_PATH.
lpPassword __Specifies the password to be used in making the connection, normally the password associated with lpUserName. The NULL value may be passed in to indicate use 'default' password. An empty string may be used to indicate no password.
lpLocalName __This should contain the name of a local device to be redirected, such as "F:" or "LPT1". The string is treated in a case insensitive manner, and may be the empty string (or NULL) to indicate the connection to the network resource is to be made without a device redirection (ie, deviceless connection).
Return Value:

WN_SUCCESS if the call is successful. Otherwise, GetLastError should be called for extended error information. Extended error codes include:
ERROR_BAD_DEV_TYPE - The device type and the resource type do not match.
ERROR_DEVICE_ALREADY_REMEMBERED - An entry for the device specified in lpLocalName is already in the user profile.
WN_BAD_NETNAME - lpRemoteName is not acceptable to any provider
WN_BAD_LOCALNAME - lpLocalName is invalid
WN_BAD_PASSWORD - invalid password
WN_ALREADY_CONNECTED - lpLocalName already connected
WN_ACCESS_DENIED - access denied
WN_NO_NETWORK - network is not present
WN_CANNOT_OPEN_PROFILE - Unable to open the user profile to process persistent connections.
WN_BAD_PROFILE - The user profile is in an incorrect format.
WN_FUNCTION_BUSY - The router or provider is busy (possibly initializing). The caller should retry.
WN_NO_NET_OR_BAD_PATH - the operation could not be handled either because a network component is not started or the specified name could not be handled.
WN_EXTENDED_ERROR - a network specific error occured. WNetGetLastError should be called to obtain a description of the error.
2.4.2.	WNetAddConnection2
This function allows the caller to redirect (connect) a local device to a network resource. It is similar to WNetAddConnection, except that it takes a pointer to a NETRESOURCE structure to describe the network resource to connect to. It also takes the addition parameters lpUserName and dwFlags.
DWORD
WNetAddConnection2(
	IN LPNETRESOURCE lpNetResource,
	IN LPTSTR lpPassword,
	IN LPTSTR lpUserName,
	IN DWORD dwFlags
	);

Parameters:

lpNetResource __Specifies the network resource to connect to. This structure is defined the section describing Enumeration APIs. The following fields must be set when making a connection, the others are ignored.
		lpRemoteName __Specifies the network resource to connect to. This is limited to MAX_PATH.
		lpLocalName __This specifies the name of a local device to be redirected, such as "F:" or "LPT1". The string is treated in a case insensitive manner, and may be the empty string (or NULL) in which case a connection to the network resource is made without making a redirection.
		lpProvider __Specifies the network provider to connect to. If NULL or empty string, Windows will try to determine the right provider by parsing lpRemoteName. The caller should set this only if it knows for sure which network it wants. Otherwise, it is preferable to let Windows determine which provider the network name maps to. If this is non NULL, Windows will try the named provider and no other.
		dwType __Specifies the type of resource to connect to. It may be RESOURCETYPE_DISK, RESOURCETYPE_PRINT, or RESOURCETYPE_ANY.  The value RESOURCETYPE_ANY is used if the caller does not care or does not know the correct type.
lpPassword __Specifies the password to be used in making the connection, normally the password associated with lpUserName. The NULL value may be passed in to indicate to the function to use the current default password. An empty string may be used to indicate no password.
lpUserName __This specifies the username used to make the connection. If NULL, the default username (the user context for the process) will be applied. This is used when the user wishes to connect to a resource, but has a different user name or account assigned to him for that resource. This name represents a security context, and may be provider specific.
dwFlags __This is a bitmask which may have any of the following bits set:
		CONNECT_UPDATE_PROFILE __if the connection should be remembered. If set, Windows will automatically restore this connection when the user logs on. A connection is only remembered if the connection was successful. Deviceless connections are never remembered.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, GetLastError should be called for extended error information. Extended error codes include:
ERROR_BAD_DEV_TYPE - The device type and the resource type do not match.
ERROR_DEVICE_ALREADY_REMEMBERED - An entry for the device specified in lpLocalName is already in the user profile.
WN_BAD_PROVIDER - lpProvider does not match any provider
WN_BAD_NETNAME - lpRemoteName is not acceptable to any provider
WN_BAD_LOCALNAME - lpLocalName is invalid
WN_BAD_PASSWORD - bad password
WN_ALREADY_CONNECTED - lpLocalName already connected
WN_ACCESS_DENIED - access denied
WN_CANNOT_OPEN_PROFILE - Unable to open the user profile to process persistent connections.
WN_BAD_PROFILE - The user profile is in an incorrect format.
WN_FUNCTION_BUSY - The router or provider is busy (possibly initializing). The caller should retry.
WN_NO_NETWORK - network is not present
WN_NO_NET_OR_BAD_PATH - the operation could not be handled either because a network component is not started or the specified name could not be handled.
WN_EXTENDED_ERROR - a network specific error occured. WNetGetLastError should be called to obtain a description of the error.
2.4.3.	WNetAddConnection3
This function allows the caller to redirect (connect) a local device to a network resource. It is similar to WNetAddConnection2, except that also includes an optional windows handle for the callers window.
DWORD
WNetAddConnection3(
	IN HWND	hwndOwner,
	IN LPNETRESOURCE lpNetResource,
	IN LPTSTR lpUserName,
	IN LPTSTR lpPassword,
	IN DWORD dwFlags
	);

Parameters:

hwndOwner __This is a windows handle that can be used by providers for displaying dialog boxes.  If a windows handle is not available, this parameter may be set to NULL.
lpNetResource __Specifies the network resource to connect to. This structure is defined the section describing Enumeration APIs. The following fields must be set when making a connection, the others are ignored.
		lpRemoteName __Specifies the network resource to connect to. This is limited to MAX_PATH.
		lpLocalName __This specifies the name of a local device to be redirected, such as "F:" or "LPT1". The string is treated in a case insensitive manner, and may be the empty string (or NULL) in which case a connection to the network resource is made without making a redirection.
		lpProvider __Specifies the network provider to connect to. If NULL or empty string, Windows will try to determine the right provider by parsing lpRemoteName. The caller should set this only if it knows for sure which network it wants. Otherwise, it is preferable to let Windows determine which provider the network name maps to. If this is non NULL, Windows will try the named provider and no other.
		dwType __ Specifies the type of resource to connect to. It may be RESOURCETYPE_DISK, RESOURCETYPE_PRINT, or RESOURCETYPE_ANY.  The value RESOURCETYPE_ANY is used if the caller does not care or does not know the correct type.
lpUserName __This specifies the username used to make the connection. If NULL, the default username (the user context for the process) will be applied. This is used when the user wishes to connect to a resource, but has a different user name or account assigned to him for that resource. This name represents a security context, and may be provider specific.
lpPassword __Specifies the password to be used in making the connection, normally the password associated with lpUserName. The NULL value may be passed in to indicate to the function to use the current default password. An empty string may be used to indicate no password.
dwFlags __This is a bitmask which may have any of the following bits set:
		CONNECT_UPDATE_PROFILE __if the connection should be remembered. If set, Windows will automatically restore this connection when the user logs on. A connection is only remembered if the connection was successful. Deviceless connections are never remembered.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, GetLastError should be called for extended error information. Extended error codes include:
ERROR_BAD_DEV_TYPE - The device type and the resource type do not match.
ERROR_DEVICE_ALREADY_REMEMBERED - An entry for the device specified in lpLocalName is already in the user profile.
WN_BAD_PROVIDER - lpProvider does not match any provider
WN_BAD_NETNAME - lpRemoteName is not acceptable to any provider
WN_BAD_LOCALNAME - lpLocalName is invalid
WN_BAD_PASSWORD - bad password
WN_CANCEL - The attempt to make the connection was cancelled by the user via a dialog box from one of the providers, or a connection notifyee.
WN_ALREADY_CONNECTED - lpLocalName already connected
WN_ACCESS_DENIED - access denied
WN_CANNOT_OPEN_PROFILE - Unable to open the user profile to process persistent connections.
WN_BAD_PROFILE - The user profile is in an incorrect format.
WN_FUNCTION_BUSY - The router or provider is busy (possibly initializing). The caller should retry.
WN_NO_NETWORK - network is not present
WN_NO_NET_OR_BAD_PATH - the operation could not be handled either because a network component is not started or the specified name could not be handled.
WN_EXTENDED_ERROR - a network specific error occured. WNetGetLastError should be called to obtain a description of the error.

2.4.4.	WNetCancelConnection
This function breaks an existing network connection. This function is equivalent to WNetCancelConnection2 with CONNECT_UPDATE_PROFILE set for dwFlags, ie. the list of remembered connections will be updated so that Windows will no longer restore this connection.
DWORD
WNetCancelConnection(
	IN LPTSTR lpName,
	IN BOOL fForce
	);

Parameters:

lpName __The name of either the redirected local device or the remote network resource to disconnect from.
fForce __Used to indicate if the disconnect should be done forcefully in the event of open files or jobs on the connection. If FALSE is specified, the call will fail if there are open files or jobs.
Return Value:

WN_SUCCESS if the call is successful. If the connection does not exist for any of the providers but is remembered but the router successfully deleted the remembered connection, this is treated as a successful call. Otherwise, GetLastError should be called for extended error information. Extended error codes include:
WN_NOT_CONNECTED - lpName not a redirected (nor remembered) device, or not currently connected to lpName
WN_CANNOT_OPEN_PROFILE - Unable to open the user profile to process persistent connections.
WN_DEVICE_IN_USE - The device is in use by am active process and cannot be disconnected.
WN_BAD_PROFILE - The user profile is in an incorrect format.
WN_OPEN_FILES - there are open files and fForce was FALSE.
WN_FUNCTION_BUSY - The router or provider is busy (possibly initializing). The caller should retry.
WN_EXTENDED_ERROR - a network specific error occured. WNetGetLastError should be called to obtain a description of the error.
2.4.5.	WNetCancelConnection2
This function breaks an existing network connection. It may also be used to remove a remembered connection for which there is no existing network connection..
DWORD
WNetCancelConnection2(
	IN LPTSTR lpName,
	IN DWORD dwFlags,
	IN BOOL fForce
	);

Parameters:

lpName __The name of either the redirected local device or the remote network resource to disconnect from.
dwFlags __This is a bitmask which may have any of the following bits set:
		CONNECT_UPDATE_PROFILE __if the disconnection should be remembered. If set, Windows will no longer restore this connection when the user logs on. Disconnecting resources using remote names has no impact on remembered connections.
fForce __Used to indicate if the disconnect should be done forcefully in the event of open files or jobs on the connection. If FALSE is specified, the call will fail if there are open files or jobs.
Return Value:

WN_SUCCESS if the call is successful. If the connection does not exist for any of the providers but is remembered but the router successfully deleted the remembered connection, this is treated as a successful call. Otherwise, GetLastError should be called for extended error information. Extended error codes include:
WN_NOT_CONNECTED - lpName not a redirected (nor remembered) device, or not currently connected to lpName.
WN_CANNOT_OPEN_PROFILE - Unable to open the user profile to process persistent connections.
WN_DEVICE_IN_USE - The device is in use by am active process and cannot be disconnected.
WN_BAD_PROFILE - The user profile is in an incorrect format.
WN_OPEN_FILES - there are open files and fForce was FALSE.
WN_FUNCTION_BUSY - The router or provider is busy (possibly initializing). The caller should retry.
WN_EXTENDED_ERROR - a network specific error occured. WNetGetLastError should be called to obtain a description of the error.
2.4.6.	WNetGetConnection
This function is used to determine the name of the network resource associated with a local device.
DWORD
WNetGetConnection(
	IN LPTSTR lpLocalName,
	OUT LPTSTR lpRemoteName,
	IN OUT LPDWORD lpBufferSize
	);

Parameters:

lpLocalName __Contains the name of the local device the caller is interested in.
lpRemoteName __Points to a buffer to receive the remote name used to make the connection.
lpBufferSize __This is used to specify the size, in characters, of the buffer passed in. If the call fails because the buffer is not big enough, this location will be used to return the required buffer size.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, GetLastError should be called for extended error information. Extended error codes include:
WN_BAD_LOCALNAME - lpLocalName is invalid
WN_NOT_CONNECTED - lpLocalName not a redirected device
WN_MORE_DATA - the buffer is too small
WN_CONNECTION_CLOSED - the device is not currently connected, but it is a remembered (persistent) connection.  When this status is returned, the RemoteName associated with the remembered connection also returned.
WN_FUNCTION_BUSY - The router or provider is busy (possibly initializing). The caller should retry.
WN_NO_NETWORK - network is not present
WN_EXTENDED_ERROR - a network specific error occured. WNetGetLastError should be called to obtain a description of the error.
2.4.7. WNetGetUniversalName
This function is used to get Universal information about a network name which is referred to using a local device name. The following levels of information can be obtained about a network name.

Structures
#define UNIVERSAL_NAME_INFO_LEVEL	1
#define REMOTE_NAME_INFO_LEVEL		2

typedef struct _UNIVERSAL_NAME_INFO {
	LPTSTR lpszUniversalName;
} UNIVERSAL_NAME_INFO, *LPUNIVERSAL_NAME_INFO;

UNIVERSAL_NAME_INFO Structure:

lpszUniversalName __If  the provider supports a Universal Name then it will return that here.
typedef struct _REMOTE _NAME_INFO {
	LPTSTR lpszUniversalName;
	LPTSTR lpszConnectionName
	LPTSTR lpszRemainingPath;
} REMOTE_NAME_INFO, *LPREMOTE_NAME_INFO;

REMOTE_NAME_INFO Structure:

lpszUniversalName __Points to the Universal Name if  the provider supports that.  Otherwise this element will be  a NULL pointer.
lpszConnectionName _Points to the remote name used to make the connection. This does not have a backslash at the end of the name.
lpszRemainingPath __The remaining path that needs to be concatenated to drive letter once a connection is established using above ConnectionInfo, to refer to the same object again. This path starts with a backslash.
DWORD
WNetGetUniversalName (
	LPTSTR lpLocalPath,
	DWORD dwInfoLevel,
	LPVOID lpBuffer,
	LPDWORD lpBufferSize
	);

Parameters:

lpLocalPath __Contains the local path to an object on a network resource. This path is drive based path.
dwInfoLevel __ The level of detail of information the caller is interested in as described above.
lpBuffer __Points to a buffer to receive the info the user has requested. The specific structure returned is one of those described above..
lpBufferSize __This is used to specify the size, in bytes, of the buffer passed in. If the call fails because the buffer is not big enough, this location will be used to return the required buffer size.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, GetLastError should be called for extended error information. Extended error codes include:
WN_BAD_LOCALNAME - lpLocalName is invalid
WN_NOT_CONNECTED - lpLocalName not a redirected device
WN_MORE_DATA - the buffer is too small
WN_CONNECTION_CLOSED - the device is not currently connected, but it is a remembered (persistent) connection.
WN_FUNCTION_BUSY - The router or provider is busy (possibly initializing). The caller should retry.
WN_NO_NETWORK - network is not present.
WN_NOT_SUPPORTED -  This function is not supported by any of the providers.
WN_EXTENDED_ERROR - a network specific error occured. WNetGetLastError should be called to obtain a description of the error.
2.4.7.	WNetGetUser
This is used to determine either the current default username, or the username used to establish a network connection.
DWORD
WNetGetUser(
	IN LPTSTR lpName,
	OUT LPTSTR lpUserName,
	IN OUT LPDWORD lpBufferSize
	);

Parameters:

lpName __Contains the name of the local device the caller is interested in, or a network name that the user has made a connection to. This may be NULL or the empty string if the caller is interested in the name of the user currently logged on to the system. If a network name is passed in, and the user is connected to that resource using different names, it is possible that a provider cannot resolve which username to return. In this case the provider may make an arbitrary choice amongst the possible usernames.
lpUserName __Points to a buffer to receive the user name.
lpBufferSize __This is used to specify the size of the buffer passed in. If the call fails because the buffer is not big enough, this location will be used to return the required buffer size.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, GetLastError should be called for extended error information.
WN_NOT_CONNECTED - lpName not a redirected device nor a connected network name.
WN_MORE_DATA - the buffer is too small
WN_FUNCTION_BUSY - The router or provider is busy (possibly initializing). The caller should retry.
WN_NO_NETWORK - network is not present.
WN_EXTENDED_ERROR - a network specific error occured. WNetGetLastError should be called to obtain a description of the error.
2.4.8.	WNetConnectionDialog
This function brings up a general browsing dialog for connecting to network resources. On exit, if the user chose <OK>, the necessary connections would have been performed. When the dialog attempts to make a connection and the provider returns WN_BAD_PASSWORD, it will bring up a password prompt that will allow the user to enter a password to retry with (see WNetAddConnection2).
DWORD
WNetConnectionDialog (
	IN HWND hwnd,
	IN DWORD dwType
	);

Parameters:

hwnd __This specifies the HWND of the owning window.
dwType __Used to specify the type of resources of interest. Currently, this may be one of:
RESOURCETYPE_DISK __ connect to disk resources.
Return Value:

WN_SUCCESS if the call is successful in bringing up the dialog. Otherwise, GetLastError should be called for extended error information. Extended error codes include the below. Typically this dialog will only return an error if the dialog could not be brought up since errors that occur thereafter are reported to the user directly.
WN_FUNCTION_BUSY - The router or provider is busy (possibly initializing). The caller should retry.
WN_NO_NETWORK - network is not present.
WN_OUT_OF_MEMORY - insufficient memory to bring up the dialog.
WN_EXTENDED_ERROR - a network specific error occured. WNetGetLastError should be called to obtain a description of the error.

2.4.9.	WNetDisconnectDialog
This function brings up a general dialog for disconnecting from network resources. On exit, if the user chose <OK>, the necessary disconnections would have been performed. When the dialog attempts to disconnect and the provider returns WN_OPEN_FILES, it will prompt the user for confirmation.
DWORD
WNetDisconnectDialog (
	IN HWND hwnd,
	IN DWORD dwType
	);

Parameters:

hwnd __This specifies the HWND of the owning window.
dwType __Used to specify the type of resources of interest. Currently, this may be one of:
RESOURCETYPE_DISK __ connect to disk resources.
Return Value:

WN_SUCCESS if the call is successful in bringing up the dialog. Otherwise, GetLastError should be called for extended error information. Extended error codes include the below. Typically this dialog will only return an error if the dialog could not be brought up since errors that occur thereafter are reported to the user directly.
WN_FUNCTION_BUSY - The router or provider is busy (possibly initializing). The caller should retry.
WN_NO_NETWORK - network is not present.
WN_OUT_OF_MEMORY - insufficient memory to bring up the dialog.
WN_EXTENDED_ERROR - a network specific error occured. WNetGetLastError should be called to obtain a description of the error.
2.4.10.	WNetOpenEnum
This API is used to open an enumeration of network resources or existing connections. It must be called to obtain a valid handle for enumeration.
DWORD
WNetOpenEnum (
	IN DWORD dwScope,
	IN DWORD dwType,
	IN DWORD dwUsage,
	IN LPNETRESOURCE lpNetResource,
	OUT LPHANDLE lphEnum
	);

Parameters:

dwScope __Determines the scope of the enumeration. This can be one of:
RESOURCE_CONNECTED __ all currently connected resources.
RESOURCE_GLOBALNET __ all resources on the network.
RESOURCE_REMEMBERED __ all remembered connections.
dwType __Used to specify the type of resources of interest. This is a bitmask which may be any combination of:
RESOURCETYPE_DISK __ all disk resources.
RESOURCETYPE_PRINT __ all print resources.
If dwType is RESOURCETYPE_ANY, all types of resources are returned. RESOURCETYPE_ANY must not be bitwise OR-ed with other fields if it is used. If a provider does not have the capability to distinguish between print and disk resources at a level, it may return all resources.
dwUsage __Used to specify the usage of resources of interested. This is a bitmask which may be any combination of:
RESOURCEUSAGE_CONNECTABLE __ all connectable resources.
RESOURCEUSAGE_CONTAINER __ all container resources.
The bitmask may be 0 to match all. This field is ignored if dwScope is not RESOURCE_GLOBALNET.
lpNetResource __This specifies the container to perform the enumeration. The NETRESOURCE could have been obtained via WNetEnumResource, or constructed by the caller or NULL. If it is NULL, the logical root of the network is assumed. An application would normally start off by calling WNetOpenEnum with this parameter set to NULL, and then use the returned results for further enumeration. If the calling program  knows exactly the provider and remote path to enumerate from, it may build its own NETRESOURCE structure to pass in, filling in the lpProvider and lpRemoteName fields.. Note that if dwScope is RESOURCE_CONNECTED or RESOURCE_REMEMBERED, this parameter must be NULL.
lphEnum __If function call is successful, this will contain a handle that can then be used for WNetEnumResource.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, GetLastError should be called for extended error information. Extended error codes include:
WN_NOT_CONTAINER - lpNetResource does not point to a container
WN_BAD_VALUE - Invalid dwScope or dwUsage or dwType, or bad combination of parameters is specified.
WN_FUNCTION_BUSY - The router or provider is busy (possibly initializing). The caller should retry.
WN_NO_NETWORK - network is not present
WN_EXTENDED_ERROR - a network specific error occured. WNetGetLastError should be called to obtain a description of the error.
2.4.11.	WNetEnumResource
Perform an enumeration based on handle returned by WNetOpenEnum.
DWORD
WNetEnumResource (
	IN HANDLE hEnum,
	IN OUT LPDWORD lpcCount,
	OUT LPVOID lpBuffer,
	IN LPDWORD lpBufferSize
	);

Parameters:

hEnum __This must be a handle obtained from WNetOpenEnum call.
lpcCount __Specifies the number of entries requested. It may be 0xFFFFFFFF to request as many as possible. On successful call, this location will receive the number of entries actually read.
lpBuffer __A pointer to the buffer to receive the enumeration result, which are returned as an array of NETRESOURCE entries. The buffer is valid until the next call using hEnum.
lpBufferSize __This specifies the size of the buffer passed to the function call on entry. On exit, this is set only if the return value is WN_MORE_DATA (ie. the buffer is not big enough for even one entry), in which case it is set to the number bytes needed.
Return Value:

WN_SUCCESS if the call is successful, the caller should continue to call WNetEnumResource to continue the enumeration..
WN_NO_MORE_ENTRIES - no more entries found, the enumeration completed successfully (the contents of the return buffer is undefined). Otherwise, GetLastError should be called for extended error information. Extended error codes include:
WN_MORE_DATA - the buffer is too small even for one entry
WN_BAD_HANDLE - hEnum is not a valid handle.
WN_FUNCTION_BUSY - The router or provider is busy (possibly initializing). The caller should retry.
WN_NO_NETWORK - network is not present. This condition is checked for before hEnum is tested for validity.
WN_EXTENDED_ERROR - a network specific error occured. WNetGetLastError should be called to obtain a description of the error.
2.4.12.	WNetCloseEnum
Closes an enumeration.
DWORD
WNetCloseEnum (
	IN HANDLE hEnum
	);

Parameters:

hEnum __This must be a handle obtained from WNetOpenEnum call.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, GetLastError should be called for extended error information. Extended error codes include:
WN_FUNCTION_BUSY - The router or provider is busy (possibly initializing). The caller should retry.
WN_NO_NETWORK - network is not present. This condition is checked for before hEnum is tested for validity.
WN_BAD_HANDLE - hEnum is not a valid handle.
WN_EXTENDED_ERROR - a network specific error occured. WNetGetLastError should be called to obtain a description of the error.
2.4.13.	WNetGetLastError
Like GetLastError, this returns extended error information, which is maintained on a per-thread basis. Unlike GetLastError, this function can also return a string for reporting errors that are not described by any existing error code. It is primarily used for returning network vendor specific errors, and should be called when GetLastError returns WN_EXTENDED_ERROR.
DWORD
WNetGetLastError (
	OUT LPDWORD lpError,
	OUT LPTSTR lpErrorBuf,
	IN  DWORD nErrorBufSize
	OUT LPTSTR lpNameBuf,
	IN  DWORD nNameBufSize
	);

Parameters:

lpError __ Pointer to DWORD that will receive the error reported by the provider.
lpErrorBuf __ Pointer to buffer that will receive a null terminated string describing the error.
nErrorBufSize __ DWORD indicating the size of lpErrorBuf. If the buffer is too small to receive an error string, the string will simply be truncated (it is still guaranteed to be null terminated). A buffer of at least 256 characters is recommended.
lpNameBuf __ Pointer to buffer that will receive a null terminated string identifying the Provider that raised the error.
nNameBufSize __ DWORD indicating the size of lpNameBuf. If the buffer is too small to receive an error string, the string will simply be truncated (it is still guaranteed to be null terminated).
Return Value:

This function returns WN_SUCCESS on successfully obtaining the last error reported by the provider. It may also return WN_BAD_POINTER if the caller supplies an invalid buffer.
2.5. 	Structures
The following structure is returned during enumeration of resources on the network, and during enumeration of currently connected resources.
typedef struct _NETRESOURCE {
	DWORD dwScope;
	DWORD dwType;
	DWORD dwDisplayType;
	DWORD dwUsage;
	LPTSTR lpLocalName;
	LPTSTR lpRemoteName;
	LPTSTR lpComment;
	LPTSTR lpProvider;
} NETRESOURCE, *LPNETRESOURCE;

NETRESOURCE Structure:

dwScope __This will be either RESOURCE_CONNECTED or RESOURCE_GLOBALNET or RESOURCE_REMEMBERED to indicate that the entry is either a current connection or a network resource, respectively.
dwType __This can be RESOURCETYPE_DISK or RESOURCETYPE_PRINT, or RESOURCETYPE_ANY. The value RESOURCETYPE_ANY is used if the resource matches more than one (eg. a container of both print and disk resources), or a resource which is neither print or disk.
dwDisplayType __This field is set by a provider to indicate what display type a User Interface uses to represent this resource. Currently defined types are RESOURCEDISPLAYTYPE_GENERIC (for providers that dont know or dont care), RESOURCEDISPLAYTYPE_DOMAIN (collection of servers), RESOURCEDISPLAYTYPE_SERVER (server) and RESOURCEDISPLAYTYPE_SHARE (a share point).
dwUsage __This is a bitmask which may contain any of RESOURCEUSAGE_CONNECTABLE or RESOURCEUSAGE_CONTAINER. Only defined if the dwScope is RESOURCE_GLOBALNET.
lpLocalName __If dwScope is RESOURCE_CONNECTED or RESOURCE_REMEMBERED, this will contain the name of a local device (NULL if the connection is a deviceless connection). It is undefined otherwise.
lpRemoteName __This contains a remote network name if the entry is a network resource. This name may be then passed to WNetAddConnection to make a network connection if dwUsage has RESOURCEUSAGE_CONNECTABLE. If the entry is a current or remembered connection, this field will refer to the network name associated with lpLocalName.
lpComment __This may be any provider supplied comment.
lpProvider __Specifies the name of the provider owning this resource. It may be NULL if it is not known.
2.6. 	Errors
To be consistent with Win3.1, the functions will continue to return error codes. However, they also set the last error so GetLastError can also be used when the return code is not WN_SUCCESS.
In addition, the old style WN_ xxx error names have been retained. However, their values have been mapped to the corresponding error in the Win32 error range. The mappings are as follows:
#define WN_SUCCESS		         NO_ERROR
#define WN_NOT_SUPPORTED	         ERROR_NOT_SUPPORTED
#define WN_NET_ERROR		         ERROR_UNEXP_NET_ERR
#define WN_MORE_DATA		         ERROR_MORE_DATA
#define WN_BAD_POINTER		         ERROR_INVALID_ADDRESS
#define WN_BAD_VALUE		         ERROR_INVALID_PARAMETER
#define WN_BAD_PASSWORD 	         ERROR_INVALID_PASSWORD
#define WN_ACCESS_DENIED	         ERROR_ACCESS_DENIED
#define WN_FUNCTION_BUSY	         ERROR_BUSY
#define WN_WINDOWS_ERROR	         ERROR_UNEXP_NET_ERR
#define WN_BAD_USER		         ERROR_BAD_USERNAME
#define WN_OUT_OF_MEMORY	         ERROR_NOT_ENOUGH_MEMORY
#define WN_NO_NETWORK		         ERROR_NO_NETWORK
#define WN_EXTENDED_ERROR	        ERROR_EXTENDED_ERROR

#define WN_NOT_CONNECTED	         ERROR_NOT_CONNECTED
#define WN_OPEN_FILES		         ERROR_OPEN_FILES
#define WN_DEVICE_IN_USE	         ERROR_DEVICE_IN_USE
#define WN_BAD_NETNAME		         ERROR_BAD_NET_NAME
#define WN_BAD_LOCALNAME	         ERROR_BAD_DEVICE
#define WN_ALREADY_CONNECTED	     ERROR_ALREADY_ASSIGNED
#define WN_DEVICE_ERROR 	         ERROR_GEN_FAILURE
#define WN_CONNECTION_CLOSED	     ERROR_CONNECTION_UNAVAIL
#define WN_NO_NET_OR_BAD_PATH	    ERROR_NO_NET_OR_BAD_PATH
#define WN_BAD_PROVIDER 	         ERROR_BAD_PROVIDER
#define WN_CANNOT_OPEN_PROFILE	   ERROR_CANNOT_OPEN_PROFILE
#define WN_BAD_PROFILE		         ERROR_BAD_PROFILE

#define WN_BAD_HANDLE		         ERROR_INVALID_HANDLE
#define WN_NO_MORE_ENTRIES	       ERROR_NO_MORE_ITEMS
#define WN_NOT_CONTAINER	         ERROR_NOT_CONTAINER

�3. Internal Interfaces between Shell and MPR
This section describes the internal interface between the Windows NT Shell and the Multiple Provider Router. They are NOT intended for use by applications other than the Shell.
3.1. 	WNetRestoreConnection
This function is used to restore remembered connections. When the user logs on, it is called with NULL for lpDevice to restore all connections. Thereafter, it is called as needed to restore individual devices.
In Windows NT, all reconnections are done by the system. The individual network providers need not provide this functionality.
DWORD
WNetRestoreConnection (
	IN HWND hwndParent,
	IN LPTSTR lpDevice
	);

Parameters:

hwndParent __ window handle that may be used as owner of any dialog brought up by MPR (eg. password prompt).
lpDevice __ This may be NULL or may contain a device name, such as "X:". If NULL, all remembered connections are restored, otherwise the remembered connection for the specified device, if any is restored.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, GetLastError should be called for extended error information. Extended error codes include:
WN_NO_NETWORK - network is not present.
WN_BAD_PROFILE - error in reading the remembered connections information.
WN_BAD_PASSWORD - The user supplied a bad password.
WN_OUT_OF_MEMORY - Out of memory.
WN_CANCEL - the user cancelled the operation when prompted
WN_ALREADY_CONNECTED - The device is already connected.
WN_CONTINUE - An error occurred, but MPR has already reported the error, so the Shell/File Manager should not report it. The connection was not restored.
It may be possible that during a boot, WNetRestoreConnection gets called before all the auto-start services are running.  In this case the underlying network piece is not yet available to the providers.  MPR will ask the providers for an estimate of how long it should wait.  If the providers cannot provide a clue, MPR will wait for a default time-out period of 30 seconds.  This default time-out can be changed by adding a value to the \HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\NetworkProviders key called "RestoreTimeout".  This DWORD value will indicate the number of milliseconds MPR should wait for the provider's to restore connections.  This value allows Administrators to tune the system in order to compensate for special situations where the default time-out  and provider hints do not work.
3.2. 	WNetPropertyText
This function is used to determine the names of buttons added to a property dialog for some particular resources.  It is called every time such a dialog is brought up, and prior to displaying the dialog. If the user clicks a button added through this API by a provider, WNetPropertyDialog will be called with the appropriate parameters.
Currently, only File Manager calls this API, and uses it for files and directories only. When MPR receives this call, it looks at the drive of the path passed in and based on that, it will route the call to the provider maintaining that redirection. If the drive is not redirected, the call is routed to the NT Lanman provider.
DWORD
WNetGetPropertyText(
	DWORD iButtonDlg,
	DWORD nPropSel,
	LPTSTR lpFileName,
	LPTSTR lpButtonName,
	DWORD cbButtonName,
	DWORD nType
	)

Parameters:

iButtonDlg - Indicates the index (starting at 0) of the button. The File Manager will support at most 6 buttons. The parameter is numbered 1-6 for each of the possible buttons if only one file is selected, or 11-16 if multiple files are selected.
nPropSel - Specifies what items the property dialog focuses on. It can be one of the following values:�	WNPS_FILE (0)	single file�	WNPS_DIR (1)	single directory�	WNPS_MULT (2)	multiple selection of files and/or directories
lpFileName - Specifies the names of the item or items to be viewed or edited by the dialog. Currently, the items are files (and directories), so the item names are file names.  These will be unambiguous, contain no wildcard characters and will be fully qualified (e.g., C:\LOCAL\FOO.BAR).  Multiple filenames will be separated with spaces.  Any filename may be quoted (e.g., "C:\My File") in which case it will be treated as a single name.  The caret character '^' may also be used as the quotation mechanism for single characters (e.g., C:\My^"File, "C:\My^"File" both refer to the file C:\My"File).
lpButtonName - Points to a buffer where the Winnet provider should copy the name of the property button. On success, the buffer pointed to by lpButtonName will contain the name of the property button.  If this buffer, on exit, contains the empty string, then the corresponding button and all succeeding buttons will be removed from the dialog box.  The network provider cannot "skip" a button.
cbButtonName - Specifies the size of the lpButtonName buffer.
nType - Specifies the item type. Currently, only WNTYPE_FILE will be used.
Return Value:

WN_SUCCESS if the call is successful and lpButtonName can be used. If it points to the empty string, no button corresponds to an index as high as iButton. If the return value is other than WN_SUCCESS, GetLastError should be called to determine the extended error information. Extended error codes include:
WN_OUT_OF_MEMORY - Couldn't load string from resources
WN_MORE_DATA - The given buffer is too small to fit the text of the button.
WN_BAD_VALUE - The lpFileName parameter takes an unexpected form.
WN_NOT_SUPPORTED - Property dialogs are not supported for the given object type (nType).
3.3. 	WNetPropertyDialog
This function is called out to when the user clicks a button added through the WNetGetPropertyText API. Currently, this will only be called for file and directory network properties. The routing mechanisms is as WNetGetPropertyText.
DWORD
WNetPropertyDialog(
	HWND hwndParent,
	DWORD iButtonDlg,
	DWORD nPropSel,
	LPTSTR lpFileName,
	DWORD nType
)
Parameters:

hwndParent - Specifies the parent window which should own the file property dialog.
iButtonDlg - Indicates the index (starting at 0) of the button that was pressed.
nPropSel - Specifies what items the property dialog should act on. It can be one of the following values:�	WNPS_FILE (0)	single file�	WNPS_DIR (1)	single directory�	WNPS_MULT (2)	multiple selection of files and/or directories
lpFileName - Points to the names of the items that the property dialog should act on. See the NPGetPropertyText API for a description of the format of what lpFileName points to.
nType - Specifies the item type. Currently, only WNTYPE_FILE will be used.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, GetLastError should be called to determine the extended error information, which may include:
WN_BAD_VALUE	Some parameter takes an unexpected form or value
WN_OUT_OF_MEMORY	Not enough memory to display the dialog
WN_NET_ERROR	Some other network error occurred
Note, this function is only called on sets of properties for which WNetGetPropertyText has assigned a button name.
This function is used in the File Manager to view and modify the network properties (for example, permissions) for files on a network device.  The hwndParent parameter specifies the parent window which should own the file property dialog.  The iDlg parameter specifies which property dialog was requested, starting with 1 for the first button returned from WNetGetPropertyText, and 10 will be added if there are multiple filenames selected (that is, if there is more than one file selected and the user presses the first provider defined property button, iDlg will be 11.  If there is only one file selected, and the user presses the second network property button, iDlg will be 2).  The lpFileName parameter points to the filenames whose properties to are to be viewed or editted, as in WNetPropertyText.  If this function is not supported, the File Manager does not provide any default behaviour.  The iType parameter specifies the device type.  For current the release, only WNTYPE_FILE will be used.
In future versions of the Network provider interface, lpFileName may point to the name of a character device name or other networked resource; however, in this version only filenames will be passed.  The network provider should return WN_BAD_VALUE if it sees an inappropriate device.
3.4. 	WNetGetDirectoryType
This function is used by the file manager to determine the type of a network directory. MPR will route the call in the same way as WNetGetPropertyText.
DWORD
WNetGetDirectoryType(
	LPTSTR lpName,
	LPINT lpType,
	BOOL bFlushCache,
)
Parameters:

lpName - This parameter points to the fully qualified name of the directory. The network provider returns the type to the word pointed to by lpType. If the value returned in lpType is 0 or if the network provider returns an error, the File Manager displays the directory as a "normal" directory.
lpType - This is defined by the network provider and is used to modify the display of the drive tree in the File Manager.  In this way, the network provider can show special directories to the user.
bFlushCache - This is set to TRUE when the File Manager call MPR to get the directory type for the first time while repainting a window on Refresh. Subsequently, it will be FALSE. This gives a provider the opportunity to optimize performance if it wishes to just read the data for a drive once and cache it until the next Refresh.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, GetLastError should be called to determine the extended error information, which may include:
WN_NOT_SUPPORTED	this function is not supported
The file manager will supply it's own icon for all special network directories; that is, when lpType is set to a non-zero value, the File Manager will display a special folder icon.
3.5. 	WNetDirectoryNotify
This function is intended for use by the File Manager to notify the network provider of certain directory operations.  This function can be used to perform special behaviour for certain directories. It routed in the same manner as WNetGetPropertyText.
In the curent release, this function is NOT used.  
DWORD
WNetDirectoryNotify(
	HWND hwnd,
	LPTSTR lpDir,
	DWORD dwOper
)
Parameters:

hwnd - specifies an owner window handle in the event the network provider needs to interact with the user.
lpDir - this points to the fully qualified name of the directory.
dwOper - indicates the operation. If dwOper is WNDN_MKDIR (1), then the File Manager is about to create a directory with the given name. If dwOper WNDN_RMDIR (2), the File Manager is about the remove the directory. dwOper may also be WNDN_MVDIR (3) to indicate that the directory is about to be renamed.
Return Value:

WN_SUCCESS if the call is successful. This indicates to the caller that it should continue and perform the operation. Otherwise, SetLastError should be called by the provider to set extended error information, which may include:
WN_CANCELLED - the provider would have handled the operation, but the user cancelled it. The caller should NOT perform the operation.
WN_CONTINUE - the network provider handled the operation, the caller should proceed normally but do not perform the operation.
WN_NOT_SUPPORTED - the network does not have special directory handling, this is treated as WN_SUCCESS.
3.6. 	WNetFormatNetworkName
This function is used by various shell components when presenting a remote network name in a limited amount of space, such as the "Drive" combo in the common dialogs.
DWORD
WNetFormatNetworkName(
	LPTSTR lpProvider,
	LPTSTR lpRemoteName,
	LPTSTR lpFormattedName,
	LPDWORD lpnLength,
	DWORD dwFlags,
	DWORD dwAveCharPerLine
	);

Parameters:

lpProvider  Network provider name this remote network name came from
lpRemoteName  Network name to be formatted
lpFormattedName  Pointer to string buffer that will receive the formatted name
lpnLength  Pointer to DWORD that specifies the size of the buffer (in characters) passed in.  If the result is WN_MORE_DATA, this will contain the buffer size required (in characters).
dwFlags  Bitfield indicating the type of format being requested.  Can be one of:
		WNFMT_MULTILINE (0x01) - The provider should place the '\n' character where line breaks should appear in the name.  The full name should be expressed.�WNFMT_ABBREVIATED (0x02) - The provider should ellipsize or otherwise shorten the network name such that the most useful information will be available to the user in the space provided.
In addition, the following flags may be 'or'ed in and act as modifiers to the above flags:
		WNFMT_INENUM (0x10) - The network name is being presented in the context of an enumeration where the "container" of this object is presented immediately prior to this object.  This may allow network providers to remove redundant information from the formatted name, providing a less cluttered display for the user.
dwAveCharPerLine  This is the average number of characters that will fit on a single line where the network name is being presented.  Specifically, this value is defined as the width of the control divided by the tmAveCharWidth of the TEXTMETRIC structure from the font used for display in the control.
Return Value:

WN_SUCCESS if the call is successful.
WN_MORE_DATA if input buffer is too small.
All other errors will be ignored and the unformatted network name will be used.
This API allows network vendors to trim or modify network names before they are presented to the user.  For example, in the File Open common dialog, the "Drives" combobox presents all connected resources and the associated network name.  Before each item is displayed, WNetFormatNetworkName will be called and the network provider will have the option of editing the name so it will fit in the combobox and more importantly, present the most significant portion of the network name to the user.
Note that WNetFormatNetworkName is not routed to each network provider as most of the other NP APIs are.  Each network vendor only need worry about formatting their own network name and can assume that only names produced by their network provider driver will be passed to WNetFormatNetworkName.
The following table is a general guide of how the WNFMT_ flags are passed at various places in the Windows NT's user interface.  No assumptions should be made about what flags are passed where, this table is provided solely to help in deciding the best method for modifying the network name for each particular nework vendor.
�WNFMT_MULTILINE�WNFMT_ABBREVIATED�WNFMT_INENUM��WinFile Connection Dialog Drive Combo Selection���X���WinFile Connection Dialog Drive Combo List��X����WinFile "Shared Directories" Listbox��X�X��WinFile Disconnect  Network Drive Listbox�X����WinFile Toolbar Combo Selection��X���WinFile Toolbar Combo List�X����Common File Open/Save dialogs Drive Combo Selection��X���Common File Open/Save dialogs Drive Combo List��X���
3.7. 	WNetGetConnection2
This function provides the same functionality as WNetGetConnection except it returns the provider name the connection is associated with.
DWORD
WNetGetConnection2(
	LPTSTR lpLocalName,
	LPVOID lpBuffer,
	LPDWORD lpBufferSize	// In Bytes
	);

Parameters:

lpLocalName  The redirected device to get the remote connection for
lpBuffer  Buffer to return the remote name and network provider in
lpBufferSize  Pointer to count of bytes of  lpBuffer.  If WN_MORE_DATA is returned, this will contained the required buffer size
Return Value:

WN_SUCCESS if the call is successful.
WN_MORE_DATA if input buffer is too small.
The buffer will contain a WNET_CONNECTION_INFO structure that looks like:
typedef struct _WNET_CONNECTION_INFO
{
	LPTSTR lpRemoteName ;
	LPTSTR lpProvider ;
}  WNET_CONNECTION_INFO, *LPWNET_CONNECTIONINFO ;

3.8. Credential Manager Functions
Network Providers that desire to participate in common logon and password change operations, will support the credential manager functions.  These functions should only be called by processes that provide logon services such as Winlogon or the Service Controller.
Because these functions should not be called twice for the same operation, they should not be allowed to fail due to return buffer sizes being too small.  Therefore, the WNetLogonNotify function does not follow the guidelines set down for the rest of the WNet functions.  The WNetLogonNotify function allocates the return buffer for the caller.  The caller is then expected to free the buffer using the windows LocalFree function.
3.8.1. WNetLogonNotify
This function provides logon notification to providers that must handle logon events..
DWORD
WNetLogonNotify(
	LPCWSTR lpPrimaryAuthenticator,
    	PLUID lpLogonId,
    	LPCWSTR lpAuthentInfoType,
    	LPVOID lpAuthentInfo,
    	LPCWSTR lpPreviousAuthentInfoType, 	// may be NULL
    	LPVOID lpPreviousAuthentInfo,		// may be NULL
    	LPWSTR lpStationName,
    	LPVOID StationHandle,
    	LPWSTR *lpLogonScripts
	);

Parameters:

lpPrimaryAuthenticator  This is a pointer to a string that identifies the primary authenticator.  The router uses this information to skip the credential manager identified by this string.  Since it is the primary, it has already handled the logon.  This string is obtained from the "\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\ Services\*(keyname)\NetworkProvider\Name" registry value.
lpLogonId  The logon ID of the session currently being logged on.
lpAuthenticationInfoType  This points to a string that identifies the AuthentInfo structure type.  When Microsoft is the primary authenticator, this will be "MSV1_0:Interactive".
lpAuthentInfo This points to a structure that contains the credentials used to successfully log the user on via the primary authenticator.  The structures that may be specified when using Microsoft's primary authenticator are:
		lpAuthentInfoType  == "MSV1_0:Interactive"

		This value will always be returned for either interactive logon (via WinLogon) or service controller logons when using Microsoft's provider as the primary authenticator.
		Corresponding data structure:
		typedef struct _MSV1_0_INTERACTIVE_LOGON { 
			MSV1_0_LOGON_SUBMIT_TYPE	MessageType, //An enumerated type
			UNICODE_STRING           		LogonDomainName,
			UNICODE_STRING           		UserName,
			UNICODE_STRING           		Password,
		} MSV1_0_INTERACTIVE_LOGON;

		where:
MessageType - is an enumerated type for use by Microsoft. Effectively, the lpAuthentInfoType this field is used by other Microsoft components to determine the format of the remainder of the structure.  Since this information is provided by lpAuthentInfoType parameter, there is no need to utilize this field here.
LogonDomainName - is the as-typed name of the domain the user wishes to logon to.
UserName - is the as-typed user account name the user wishes to logon to.
Password - is the as-typed password for use in authenticating the user.
lpPreviousAuthentInfoType This is pointer to a string that identifies the PreviousAuthentInfo structure.  If this pointer is NULL, then no PreviousAuthentInfo is available.  The values that may be expected here are the same as the values that may be expected for the lpAuthentInfoType parameter.
lpPreviousAuthentInfo - If the user was forced to change the password prior to logging on, this points to a AuthentInfo structure that will contain the credential information used prior to the password change.  If the user was not forced to change the password prior to logging on, then this pointer is NULL.  The structures that may be expected here are the same as the structures that may be expected for the lpAuthentInfo parameter.
lpStationName - This parameter contains the name of the station the user has logged onto.  This may be used to determine whether or not interaction with the user to obtain additional (provider-specific) credentials is possible.  This information will also have a bearing on the meaning and use of the StationHandle parameter.
Microsoft primary authenticators will pass one of the following values for this string:
	"WinSta_0" - Implies this is an interactive logon via the window station.  The StationHandle parameter value is an hwnd to the parent dialog.
"SvcCtl" - Implies this is a logon initiated by the Service controller.  The StationHandle parameter is not used in this case.
StationHandle  Is a 32-bit value whose meaning is dependent upon the name (and consequently, the type) of station being logged onto.The meaning and use of this parameter for the Microsoft defined station names are:
"WinSta_0" - This parameter contains a handle to the owner dialog (hwndOwner) currently displayed on the screen.
"SvcCtl" - This parameter is not used and contains random data.
	lpLogonScripts - This is a pointer to a location where a pointer to a MULTI_SZ string may be returned.  Each null terminated string in the MULTI_SZ string is assumed to contain the name of a program to execute and parameters to pass to the program. The memory allocated to hold the returned string must be de-allocable by the calling routine.  The caller of this routine is responsible for freeing the memory used to house this string when it is no longer needed.
Return Value:

WN_SUCCESS - if the call is successful.  Otherwise, GetLastError should be called for extended error information.  Extended error codes include:
WN_NOT_SUPPORTED -  This function is not supported by any of the providers.
WN_NO_NETWORK - network is not present.
Each Credential Manager Provider is allowed to return a single command line string which will execute a logon script. WNetLogonNotify gathers these strings into a MULTI_SZ string buffer. (Meaning each string is NULL terminated, and the set of strings is NULL terminated - thus making the last string doubly NULL terminated).
!! IMPORTANT !!  -  The caller of this function is responsible for freeing the buffer pointed to by *lpLogonScripts.  The windows API function LocalFree() should be used to do this.
3.8.2. WNetPasswordChangeNotify
This function is used to notify credential managers of a password change for an account.

DWORD APIENTRY
WNetPasswordChangeNotify(
	LPCWSTR lpPrimaryAuthenticator,
	LPCWSTR lpAuthentInfoType,
	LPVOID lpAuthentInfo,
	LPCWSTR lpPreviousAuthentInfoType,
	LPVOID lpPreviousAuthentInfo,
	LPWSTR lpStationName,
	LPVOID StationHandle,
	DWORD dwChangeInfo
	);


Parameters:

lpPrimaryAuthenticator  This is a pointer to a string that identifies the primary authenticator.  Credential Manager does not need the password notification since it already handled the change.
		This string is obtained from the "\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\*(keyname)\NetworkProvider\Name" registry value.
lpAuthentInfoType  This points to a string that identifies the AuthentInfo structure type.  
		When Microsoft is the primary authenticator, the values that may be expected here are the ones described for the lpAuthentInfoType parameter to WNetLogonNotify().
lpAuthentInfo  This points to a structure that contains the new credentials.  
		When Microsoft is the primary authenticator, the structures that may be expected here are the ones described for the lpAuthentInfo parameter to WNetLogonNotify(). This pointer may be NULL if this function is called as a result of the user trying to change his password for the other networks without changing his NT password.
lpPreviousAuthentInfoType  This points to the string that identifies the PreviousAuthentInfo structure type.  The values that may be expected here are the same as the values that may be expected for the lpAuthentInfoType parameter.
lpPreviousAuthentInfo  This points to an AuthentInfo structure that contains the previous credential information. (old password and such).  The structures that may be expected here are the same as the structures that may be expected for the lpAuthentInfo parameter. This pointer may be NULL if this function is called as a result of the user trying to change his password for the other networks without changing his NT password.
lpStationName  This parameter contains the name of the station the user performed the authentication information change from.  This may be used to determine whether or not interaction with the user to obtain additional (provider-specific) information is possible. This information will also have a bearing on the meaning and use of the StationHandle parameter.
		When Microsoft is the primary authenticator, the values that may be expected here are the ones described for the lpStationName parameter to WNetLogonNotify().
StationHandle  Is a 32-bit value whose meaning is dependent upon the name (and consequently, the type) of station being logged onto.
		When Microsoft is the primary authenticator, the values that may be expected here are the ones described for the lpStationHandle parameter to WNetLogonNotify().
dwChangeInfo  This is a set of flags that provide information about the change.  Currently the following possible values are defined:
	WN_VALID_LOGON_ACCOUNT - If this flag is set, then the password (or, more accurately, the authentication information) that was changed will affect future logons.  Some authentication information changes will only affect connections made in untrusted domains.  These are accounts that the user cannot use to logon to this machine anyway.  In these cases, this flag will not be set.
Return Value:

WN_SUCCESS - if the call is successful.  Otherwise, GetLastError should be called for extended error information.  Extended error codes include:
WN_NOT_SUPPORTED -  This function is not supported by any of the providers.
WN_NO_NETWORK - network is not present.

3.9.  Permission Editor Functions
These functions allow the individual providers to display their own permission dialogs when the current drive selection in the file manager belongs to them.  These APIs should only be called by the file manager and depends on the File Manager Extensions. When MPR receives these calls, it looks at the drive passed in and based on that, it will route the call to the provider maintaining that redirection. 
3.9.1. WNetFMXGetPermCaps
This function is used to get the capabilities bits of the permission editor. The return value determines whether the security menu items in the file manager are to be enabled or not.

DWORD
WNetFMXGetPermCaps(
	IN LPTSTR lpDriveName
          );

Parameters:

lpDriveName - Points to  the current drive name selected in the File Manager.
Return Value:

	A bitmask indicating what permission capability the user has on the selected drive. The bitmask is a combination of the bits below:
		WNPERM_PERM	0x00000001
		WNPERM_AUDIT	0x00000002	
		WNPERM_OWNER	0x00000004
	
This function is used in the File Manager to determine whether the security menu items are to be enabled or not. There are currently three menu items in the security menu: Permissions, Auditing and Owner.  If the bitmask returned by WNetFMXGetPermCaps has the bit WNPERM_PERM set, then the permissions menu item is enabled. The individual provider should only return with bit WNPERM_PERM set if the provider supports its own permission editor dialogs and the user has the rights to modify permissions on the given drive. The same applies to the WNPERM_AUDIT and WNPERM_OWNER bits.
3.9.2. WNetFMXEditPerm
This function allows network vendor  to supply their own permission editor dialogs.
DWORD
WNetFMXEditPerm(
	IN LPTSTR lpDriveName,
	IN HWND hwndFMX,
 	IN DWORD nType
          );

Parameters:

lpDriveName - Points to  the current drive name selected in the File Manager.
hwndFMX - Specifies the FMX window which can be used to query selections.
nType - Specify the type of permission dialog to bring up. It can be one of the following values:
				WNPERM_DLG_PERM(0)		Brings up the permission dialog
				WNPERM_DLG_AUDIT(1) 		Brings up the auditing dialog
 				WNPERM_DLG_OWNER(2)	Brings up the take ownership dialog
Return Value:

WN_SUCCESS if the call is successful. Otherwise, GetLastError should be called to determine the extended error information, which may include:
WN_NOT_SUPPORTED  Not supported in the provider
WN_BAD_VALUE	Some parameter takes an unexpected form or value
WN_OUT_OF_MEMORY	Not enough memory to display the dialog
WN_NET_ERROR	Some other network error occurred
This function is used in the File Manager to view and modify the permissions which may include permissions on files/directories, auditing on files/directories and take ownership on file/directories. The hwndFMX parameter specifies the handle of the current File Manager window and File Manager Extension messages can be sent to hwndFMX to query current file selections in File Manager.
3.9.3. WNetFMXGetPermHelp
This function is used to get the help file and help context of the permission editor dialogs when a menu item in the security menu of File Manager is selected and F1 is pressed. 

DWORD
WNetFMXGetPermHelp(
	IN LPTSTR lpDriveName,
 	IN DWORD nType, 	
	IN BOOL fDirectory,
	IN OUT LPVOID lpBuffer,
	IN OUT LPDWORD lpBufferSize,
 	OUT LPDWORD lpnHelpContext
          );

Parameters:

lpDriveName - Points to the current drive name selected in the File Manager.
nType - Specifies the menu item in the Security menu of File Manager to bring up help on.
				WNPERM_DLG_PERM(0)		“Permissions...” menu item
				WNPERM_DLG_AUDIT(1) 		“Auditing...” menu item
				WNPERM_DLG_OWNER(2)	“Owner...” menu item
fDirectory - TRUE if the selected item is a directory, FALSE otherwise.
lpBuffer - Pointer to buffer that will receive the help file name.
lpBufferSize - DWORD that specify size of buffer passed in. If  lpBuffer is not large enough, on return, this would contain the size of buffer needed. 
lpnHelpContext - Points to a DWORD that will receive the help context for the given nType.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, GetLastError should be called to determine the extended error information, which may include:
WN_NOT_SUPPORTED  Not supported in the provider
WN_BAD_VALUE	Some parameter takes an unexpected form or value
WN_MORE_DATA	The input buffer is too small
This function is called by the File Manager to get the help file name and help context  when F1 is pressed on a selected item in its Security menu. There are currently three menu items in the Security menu: Permissions, Auditing and Owner. File Manager bring up Help based on the help file name and the help context returned by the provider.


4. User Interface
4.1.	 Network Browsing
A hierarchical browser will be presented from the WNetConnectionDialog that is used for making connections.
4.1.1. 	Making Connections
The listbox will contain at its top level a list of all providers. Below that it will display the logical network tree as returned by the individual providers. Each entry can be expanded by double clicking on it. If a container has no subcontainers, double clicking on it will not cause it to expand any further. An expanded entry can be collapsed by double clicking again. There will be visual indication by means of icon (not shown above). Initially, the listbox will be expanded to show the top two levels. There is no initial selection.
The Network Path SLE will initially be blank. Whenever a selection is made the SLE will echo that selection as long as it is connectable. This SLE has the initial focus in the dialog.
When the "OK" button is hit, the MPR will try to connect to the network path as specified in the SLE. If successful, the dialog is dismissed. Otherwise, the appropriate error is displayed. The dialog will check before making the connection if the currently selected local device is a permanant connection. If it is, it will ask the user if he wishes to overwrite the permanent connection.
The connect as SLE defines the user context used to establish the connection. Initially, it will be the logged on user name.
The search button is enabled if the selection in Network: listbox supports 'searching'. It is up to each provider to determine whether it supports this. The button will not appear if there are no providers that support searching.
      
    +---+--------------------------------------------------+
    | - |    Connect Network Drive                         |
    +---+--------------------------------------------------+
    |                                                      |
    |  Drive:      [D:                ][V]     (OK)        |
    |  Path:       [\\SERVER\PUBLIC   ][V]     (Cancel)    |
    |  Connect As: [username          ]        (Help)      |
    |                                                      |
    |  [x] Reconnect at Logon                  (Search)    |�    |                                                      |�    |  Shared directories       [ ] Expand Logon Domain    |
    |     +---------------------------------+              |
    |     | NT Lan Manager                  |              |
    |     |    NT Domain                    |              |
    |     |       \\XSERVER                 |              |
    |     | SomeNet                         |              |
    |     |                                 |              |
    |     +---------------------------------+              |
    |                                                      |
    +------------------------------------------------------+

    
4.1.2. 	Disconnecting a resource
    +---+--------------------------------------------------+
    | - |    Disconnet Network Drive                       |
    +---+--------------------------------------------------+
    |                                                      |
    |  Network Drive:                            (OK)      |
    |     +---------------------------------+    (Cancel)  |
    |     |H: \\foo\bar                     |    (Help)    |
    |     |J: !some!other!connection        |              |
    |     |                                 |              |
    |     |                                 |              |
    |     +---------------------------------+              |
    |                                                      |
    +------------------------------------------------------+

The list box will contain all existing drive connections as returned by all providers. The list will be sorted by drive letter and the rightmost column will display the network name as returned by the provider. Initial selection will be on the first item of the listbox, which is a single-select listbox.
Hitting "OK" will disconnect selected items in the listbox & dismiss the dialog.
The remembered but unavailable drives will appear in the listbox with a different icon (icons not shown in diagram above). Removing an unavailable drive will remove the remembered connection. All deletions are attempted with no force, if that fails a warning is put up and user may proceed with force if so desired.
4.1.3.	 Network specific Dialogs
Network vendors can supply their own form of browsing and search beyond the hierarchical view presented in the Connection Dialog. If supported, the Connection Dialog will enable the 'Search' button when the selected item belongs to that provider, and when the button is hit, a vendor specific dialog is brought up. Moreover, if that provider does NOT support enumeration, then the action associated with double clicking on the provider's entry will be to invoke its Search Dialog.
When the provider specific dialog is dismisssed as a result of the user choosing OK, a string describing the network name that is the result of the search is placed in the 'Path:' SLE. 
4.2. 	Restoring Connections
On Windows startup WinLogon will call MPR to restore network connections. At startup, it will be to restore all connections. Subsequently, restore connection may be called on specific drives from within the File Manager.
4.3.	 Network Specific UI
It is up to the vendor to add appropriate CPL files to the Control Panel.
4.4. 	File Manager Property Dialog Extensions
There is no additional UI for this from MPR standpoint. When the dialog is brought up, the information passed by the File Manager to the provider includes the full path name of the current selection. Based on the drive, the MPR can figure out which provider should be asked to supply the buttons.
4.5. 	File Manager Directory Operation hooks
This refers to the ability for a network provider to perform its own operations on special network directories, rather than letting the File Manager do it (WNetDirectoryNotify in Win3.1).
As in the property dialog extensions, the MPR does not add to this functionality. It will key off the drive of the directory in question and pass it directly to the provider owning the drive.
4.6. 	File Manager Directory Icon Display Hooks
The File Manager also allows network providers to distinguish special network directories via this hook (WNetGetDirectoryType).
As in the property dialog extensions, the MPR does not add to this functionality. It will key off the drive of the directory in question and pass it directly to the provider owning the drive.
5. Implementation Hints/Issues
5.1. 	Network Provider
See the Provider API specification.
5.2. 	Multiple Provider Router
5.2.1. 	Error Codes
Note that MPR routines will continue to return error codes like the Win3.x winnet. Even though GetLastError() is recommended, if the return value is not WN_SUCCESS, it will be the same error as the old Winnet would return. If error is WN_EXTENDED_ERROR, WNetGetLastError is absolutely required. This is purely for supporting old code. New code should always use the GetLastError/WNetGetLastError functions if the return value is not WN_SUCCESS.
The Shell should rewrite its internal WNetErrorText() to use the new WNetGetLastError() instead of the WNetGetError() and WNetGetErrorText().
5.3. 	Validation
MPR will validate only the parameters that are non-provider specific. For example, if a parameter may contain flags defined by MPR, then MPR makes sure that only valid flags are defined. Similarly, if a parameter is only allowed to be a device name, MPR will check that it is indeed a device name.
�The Selection section of the combobox is the upper rectangle above the List section that the current selection appears in.
�The List section of the combobox is the listbox that appears below the Selection portion of the combobox.

Microsoft Corporation Company Confidential

Win32 Multiple Network Provider Specification	�page�ii�

Win32 Multiple Network Provider Specification	�page�i�





Win32 Multiple Network Provider Specification	�page�32�

Win32 Multiple Network Provider Specification	�page�33�








