

Portable Systems Group
Win32 Network Provider API Specification
�� TOC \o �1. Introduction	� GOTOBUTTON _Toc294081417 � PAGEREF _Toc294081417 �1��
2. Overview	� GOTOBUTTON _Toc294081418 � PAGEREF _Toc294081418 �1��
2.1. Document Overview	� GOTOBUTTON _Toc294081419 � PAGEREF _Toc294081419 �1��
2.2. Provider Realization	� GOTOBUTTON _Toc294081420 � PAGEREF _Toc294081420 �1��
2.3. Version Number	� GOTOBUTTON _Toc294081421 � PAGEREF _Toc294081421 �1��
2.4. Reserved Ordinals	� GOTOBUTTON _Toc294081422 � PAGEREF _Toc294081422 �2��
2.5. Reserving new contants	� GOTOBUTTON _Toc294081423 � PAGEREF _Toc294081423 �2��
2.6. Name Changes	� GOTOBUTTON _Toc294081424 � PAGEREF _Toc294081424 �2��
2.7. Return Values/Reporting Errors	� GOTOBUTTON _Toc294081425 � PAGEREF _Toc294081425 �2��
2.8. Network Browsing	� GOTOBUTTON _Toc294081426 � PAGEREF _Toc294081426 �2��
2.9. Provider Dialogs	� GOTOBUTTON _Toc294081427 � PAGEREF _Toc294081427 �3��
2.10. Passing Buffers	� GOTOBUTTON _Toc294081428 � PAGEREF _Toc294081428 �3��
2.11. Persistent Connections	� GOTOBUTTON _Toc294081429 � PAGEREF _Toc294081429 �3��
2.12. Obsolete Functionality	� GOTOBUTTON _Toc294081430 � PAGEREF _Toc294081430 �3��
2.13. New Functionality	� GOTOBUTTON _Toc294081431 � PAGEREF _Toc294081431 �3��
3. Capabilities Functions	� GOTOBUTTON _Toc294081432 � PAGEREF _Toc294081432 �3��
3.1. Determining Network Capabilities	� GOTOBUTTON _Toc294081433 � PAGEREF _Toc294081433 �4��
3.1.1. API Version	� GOTOBUTTON _Toc294081434 � PAGEREF _Toc294081434 �4��
3.1.2. Provider Type and Version	� GOTOBUTTON _Toc294081435 � PAGEREF _Toc294081435 �4��
3.1.3. User Information	� GOTOBUTTON _Toc294081436 � PAGEREF _Toc294081436 �5��
3.1.4. Connections	� GOTOBUTTON _Toc294081437 � PAGEREF _Toc294081437 �5��
3.1.5. Provider Specific Dialogs	� GOTOBUTTON _Toc294081438 � PAGEREF _Toc294081438 �6��
3.1.6. Adminstrative Functionality	� GOTOBUTTON _Toc294081439 � PAGEREF _Toc294081439 �6��
3.1.7. Enumeration	� GOTOBUTTON _Toc294081440 � PAGEREF _Toc294081440 �6��
3.1.8. Startup	� GOTOBUTTON _Toc294081441 � PAGEREF _Toc294081441 �7��
4. User Name Functions	� GOTOBUTTON _Toc294081442 � PAGEREF _Toc294081442 �8��
4.1. Getting the current Username	� GOTOBUTTON _Toc294081443 � PAGEREF _Toc294081443 �8��
5. Device Redirecting Functions	� GOTOBUTTON _Toc294081444 � PAGEREF _Toc294081444 �8��
5.1. Adding Network Connections	� GOTOBUTTON _Toc294081445 � PAGEREF _Toc294081445 �9��
5.1.1 NPAddConnection	� GOTOBUTTON _Toc294081446 � PAGEREF _Toc294081446 �9��
5.1.2 NPAddConnection3	� GOTOBUTTON _Toc294081447 � PAGEREF _Toc294081447 �10��
5.2. Removing network connections	� GOTOBUTTON _Toc294081448 � PAGEREF _Toc294081448 �11��
5.3. Obtaining information about a connection	� GOTOBUTTON _Toc294081449 � PAGEREF _Toc294081449 �12��
5.4. Obtaining information about a network name	� GOTOBUTTON _Toc294081450 � PAGEREF _Toc294081450 �12��
5.4.1 Structures	� GOTOBUTTON _Toc294081451 � PAGEREF _Toc294081451 �13��
5.4.1 Function	� GOTOBUTTON _Toc294081452 � PAGEREF _Toc294081452 �13��
6. Provider Specific Dialogs	� GOTOBUTTON _Toc294081453 � PAGEREF _Toc294081453 �14��
6.1. Extending File Manager's Properties Dialog	� GOTOBUTTON _Toc294081454 � PAGEREF _Toc294081454 �14��
6.1.1. Querying Buttons to be Added	� GOTOBUTTON _Toc294081455 � PAGEREF _Toc294081455 �14��
6.1.2. Action on Added Button	� GOTOBUTTON _Toc294081456 � PAGEREF _Toc294081456 �16��
6.2. Provider specific searching	� GOTOBUTTON _Toc294081457 � PAGEREF _Toc294081457 �17��
6.3. Provider specific network name formatting	� GOTOBUTTON _Toc294081458 � PAGEREF _Toc294081458 �18��
6.4. Provider specific permission editor dialogs	� GOTOBUTTON _Toc294081459 � PAGEREF _Toc294081459 �20��
6.4.1. Querying enabling/disabling of the menu items in Security menu of File Manager	� GOTOBUTTON _Toc294081460 � PAGEREF _Toc294081460 �20��
6.4.2. Showing provider-specific permission dialogs	� GOTOBUTTON _Toc294081461 � PAGEREF _Toc294081461 �20��
6.4.3. Querying help of the menu items in Security menu of File Manager	� GOTOBUTTON _Toc294081462 � PAGEREF _Toc294081462 �22��
7. Administrative Functions	� GOTOBUTTON _Toc294081463 � PAGEREF _Toc294081463 �23��
7.1. Displaying a different icon	� GOTOBUTTON _Toc294081464 � PAGEREF _Toc294081464 �23��
7.2. Replacing default operations	� GOTOBUTTON _Toc294081465 � PAGEREF _Toc294081465 �24��
8. Enumeration Functions	� GOTOBUTTON _Toc294081466 � PAGEREF _Toc294081466 �24��
8.1. Structures	� GOTOBUTTON _Toc294081467 � PAGEREF _Toc294081467 �24��
8.2. Opening an Enumeration	� GOTOBUTTON _Toc294081468 � PAGEREF _Toc294081468 �25��
8.3. Enumerating Network Resources	� GOTOBUTTON _Toc294081469 � PAGEREF _Toc294081469 �27��
8.4. Closing an Enumeration	� GOTOBUTTON _Toc294081470 � PAGEREF _Toc294081470 �28��
9. Credential Management Functions	� GOTOBUTTON _Toc294081471 � PAGEREF _Toc294081471 �28��
9.1. NPLogonNotify	� GOTOBUTTON _Toc294081472 � PAGEREF _Toc294081472 �29��
9.2. NPPasswordChangeNotify	� GOTOBUTTON _Toc294081473 � PAGEREF _Toc294081473 �31��
10. Connection Notification	� GOTOBUTTON _Toc294081474 � PAGEREF _Toc294081474 �33��
10.1 AddConnectionNotify	� GOTOBUTTON _Toc294081475 � PAGEREF _Toc294081475 �34��
10.2 CancelConnectionNotify	� GOTOBUTTON _Toc294081476 � PAGEREF _Toc294081476 �35��
11. Error Handling	� GOTOBUTTON _Toc294081477 � PAGEREF _Toc294081477 �36��
11.1. Reporting Errors	� GOTOBUTTON _Toc294081478 � PAGEREF _Toc294081478 �36��
11.2. Error Codes	� GOTOBUTTON _Toc294081479 � PAGEREF _Toc294081479 �36��
12. Implementation Guidelines	� GOTOBUTTON _Toc294081480 � PAGEREF _Toc294081480 �37��
12.1. Speed	� GOTOBUTTON _Toc294081481 � PAGEREF _Toc294081481 �37��
12.2. Validation	� GOTOBUTTON _Toc294081482 � PAGEREF _Toc294081482 �37��
12.3. Routing	� GOTOBUTTON _Toc294081483 � PAGEREF _Toc294081483 �37��
13. Function Summary	� GOTOBUTTON _Toc294081484 � PAGEREF _Toc294081484 �38��
14. Obsolete APIs	� GOTOBUTTON _Toc294081485 � PAGEREF _Toc294081485 �38��
15. Registry Layout/Installation	� GOTOBUTTON _Toc294081486 � PAGEREF _Toc294081486 �39��
15.1. Order Key	� GOTOBUTTON _Toc294081487 � PAGEREF _Toc294081487 �40��
15.2. NetworkProvider Key	� GOTOBUTTON _Toc294081488 � PAGEREF _Toc294081488 �40��
15.3. Example	� GOTOBUTTON _Toc294081489 � PAGEREF _Toc294081489 �41��
16. Revision History	� GOTOBUTTON _Toc294081490 � PAGEREF _Toc294081490 �Error! Bookmark not defined.��
�.End Table C.
�
1. Introduction
The WinNet API was introduced in Win3.0 to provide a generic network interface for the Windows shell and system utilities, providing an interface which is generally available across many networks. It was only used by Windows, and was not be documented for third party developers. Major categories of functionality included making and breaking network connections, printing, and data transfer.
The Windows NT version of Winnet is different in two main ways. There are now two interfaces instead of one. The first set represents the network independent APIs that are generally available to all application writers and is documented in the Win32 API Specification.
The second set of provider APIs, described in this document, is the set that network vendors use to interface to Windows. Applications will not call these APIs directly. Instead, the Win32 functions they call will be routed by Windows to the appropriate provider APIs.
The second main difference is the ability to handle multiple networks at the same time. In Win3.x, there can be at most one network provider present that Windows uses. In Windows NT, this is no longer the case. If more than one network is present, each network implements a provider, and Windows will handle communicating with all the providers to present an integrated network to the user. This will be handled by a component called the Multiple Provider Router (MPR) which is implemented as a DLL.
2. Overview
2.1. Document Overview
The document starts with an overview of the new/changed features introduced in this version of Winnet. Familiarity with the Win3.x Winnet specification would be helpful here.
Next, the Provider APIs are described and finally, guidelines for error handling, implementation issues are presented.
2.2. Provider Realization
Each WinNet provider should be implemented as a dynamic link library (DLL) which is specific to its underlying networking software. The Windows MPR will dynamically load the DLL and call its entry points if the network it represents is active.
It is not necessary to have stub routines for unimplemented functions. However, the NPGetCaps function must be supported, and if a provider supports resource enumeration, it must support all three Open/Enum/Close functions.
2.3. Version Number
Spec version 4.
2.4. Reserved Ordinals
The following manifests define a reserved ordinal range for the user. The shell is guaranteed never to use ordinals in this range.
�	WNNC_ORD_UserStart		500�	WNNC_ORD_UserEnd		599��
2.5. Reserving new contants
Net vendors wishing to define additional constants (for example, a new server type) should contact Microsoft, and new constants will be allocated and included in future versions of the Windows NT Software Development Kits.
2.6. Name Changes
All WNetXXX functions have been renamed NPXXX functions. This is done to avoid confusion with the Win32 functions which retain the WNet prefix. The NP (Network Provider) prefix identifies the API to be a provider API which should only be called by the MPR.
2.7. Return Values/Reporting Errors
In Win3.x most WinNet functions return WN_SUCCESS on success, and unique non-zero values for various error conditions. In Windows NT, the functions should continue to return error codes, but in addition they should also report errors using WNetSetLastError/SetLastError. See the section on Error Handling for details.
The only exception continues to be the 'get capabilities' function, NPGetCaps which returns a mask.
The WNetSetLastError function has been introduced for providers to set error information for Windows to report back to applications. This call will remember an error on a per thread basis (cf. SetLastError in Win32) and also allows the provider to set a string that describes the error in more detail. This API is defined by Windows for use by Network Providers only.
In general, function calls may return any errors like insufficient memory, even if the error is not specifically mentioned in the API description.
WNetGetError and WNetGetErrorText will no longer be used. Applications and the Shell will now call GetLastError and WNetGetLastError.
2.8. Network Browsing
Vendor specific network browsing dialogs will no longer be used. Instead, new enumeration APIs are introduced that allow Windows to put up general network browsing capabilities that are common to all networks. However, a provider may extend this capability via NPSearchDialog.
2.9. Provider Dialogs
Providers should not put up vendor specific dialogs except during NPSearchDialog and NpPropertyDialog.
2.10. Passing Buffers
A number of calls take the address and size of a buffer, into which the function will place a variable-sized data structure. In each case, the mechanism used is the same. The caller allocates a buffer, and passes its address to the function in lpBuffer, and the address of a word containing the buffer size in BYTES via lpBufferSize. The function then copies as much of the requested data structure as it can into the buffer. If it all fits, the function returns success, but if it does not the data may be left incomplete, and the function sets the WN_MORE_DATA error. In both cases, lpBufferSize is filled with the number of bytes actually required by the data structure. This way, if the buffer passed in was too small and the function failed, the caller may allocate a new buffer of the required size, and call the function again.
When the data structure returned includes variable-length strings, the individual data structures will usually contain a pointer to the string. The strings themselves should also be placed within the buffer, at the end, so that they will not throw off the ability to index to the Nth structure, ie. all structures are located contiguously at the start of the buffer. Pointers to strings or variable length data must be actual pointers, not offsets into the buffer.
When a buffer is used to pass in and return strings, lpBufferSize will should specify the number of characters that will fit, not the number of bytes.
2.11. Persistent Connections
Persistent Connections will be handled entirely by Windows to present a single consistent model to the user. Providers no longer need to remember or restore connections.
2.12. Obsolete Functionality
All Printing APIs and Long File Names APIs defined in Win3.x Winnet have no equivalent in the Windows NT Provider API set.
NPDeviceMode, the replacement for WNetDeviceMode is currently NOT called in any place. The vendor should create its on CPL file in the control panel to achive this.
2.13. New Functionality
The parameters to the Add Connection and Get User functions have been extended. A set of network resource enumeration functions have been added.
3. Capabilities Functions
This section describes the calls for determining which API are supported by the network provider.
3.1. Determining Network Capabilities
DWORD
NPGetCaps(
	IN DWORD nIndex
);

Parameters:

nIndex __Specifies the capabilty set that the caller is interested in.
Return Value:

A bitmask indicating what services are supported within the set queried.
Unlike all the other calls, this function does not return an error status. Instead, the nIndex parameters specifies a query, and that defines the type of value returned.
A few of the nIndex values cause a constant to be returned, but in most cases the nIndex parameter specifies which set of services are being queried, and the return value is a bitmask indicating which services in that set are supported. A zero value would indicate that none of the services in that set are supported.
Each value for nIndex is listed below, along with the constants defining the bits in the returned mask.
3.1.1. API Version
#define WNNC_SPEC_VERSION 		0x01

The high and low words of the return value contain the major and minor version numbers of the WinNet API specification to which the provider conforms.
For this version it should return 4.
3.1.2. Provider Type and Version
#define WNNC_NET_TYPE			0x02

Returns a DWORD value: the high word contains the network type, and the low word may contain a subtype. The following Net Type values are defined:

#define WNNC_NET_NONE			0x00000�#define WNNC_NET_MSNET			0x10000�#define WNNC_NET_LANMAN			0x20000�#define WNNC_NET_NETWARE		0x30000�#define WNNC_NET_VINES			0x40000

Developers working on new providers should register their subtype values with Microsoft.
#define WNNC_DRIVER_VERSION		x03

Returns the provider version number.
3.1.3. User Information
#define WNNC_USER				0x04

Returns a mask of:
#define WNNC_USR_GETUSER		x01

3.1.4. Connections
�#define WNNC_CONNECTION			0x06

Returns a mask of:

#define WNNC_CON_ADDCONNECTION	0x01
#define WNNC_CON_CANCELCONNECTION	0x02
#define WNNC_CON_GETCONNECTIONS	0x04
#define WNNC_CON_ADDCONNECTION3	0x08

3.1.5. Provider Specific Dialogs
#define WNNC_DIALOG				0x08

Returns a mask of:
#define WNNC_DLG_DEVICEMODE			0x01
#define WNNC_DLG_PROPERTYDIALOG		0x020 (PropertyText also implied)
#define WNNC_DLG_SEARCHDIALOG		0x40
#define WNNC_DLG_FORMATNETWORKNAME	0x80
#define WNNC_DLG_PERMISSIONEDITOR		0x100

3.1.6. Adminstrative Functionality
#define WNNC_ADMIN					0x09

Returns a mask of:
#define WNNC_ADM_GETDIRECTORYTYPE		0x01
#define WNNC_ADM_DIRECTORYNOTIFY		0x02

3.1.7. Enumeration
#define WNNC_ENUMERATION 		0x0B

Returns a mask of:

#define WNNC_ENUM_GLOBAL			0x01
#define WNNC_ENUM_LOCAL				0x02

3.1.8. Startup
#define WNNC_START				0x0C

This function call will return a value to indicate if the provider is likely to start. the MPR will call this function to determine the state of the provider. For example, when the MPR is trying to restore remembered connections or to notify of a logon event, and a provider is not responding, the MPR will use this to determine if it should retry and how long. A provider should return 0x0 if it knows it will not start (eg. if it is disabled) so the MPR will not retry. Otherwise, it should either return the estimated start time in number of milliseconds, or 0xFFFFFFFF to mean it doesn’t know. If 0xFFFFFFFF is returned, the MPR will used some default timeout. If it turns out the provider has started by the time this call is issued, it can return 0x1.
Providers should NOT return 0x0 unless they are really unavailable.
The MPR will wait for the longest timeout period specified by all of the providers. If one of the providers doesn’t know how long it will take, a default timeout of 60 seconds becomes the timeout for that provider.
If it is necessary, the administrator can change the default timeout by creating the following value in the registry:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\NetworkProvider
	RestoreTimeout = REG_DWORD n (where n is the timeout in milliseconds)

The complete logic flow for timeout handling by the MPR is as follows:
If there is a RegistryTimeout,
 the MaxTimeout = RegistryTimeout
Otherwise,
 the MaxTimeout = 0.

For Each Provider...
 If the provider doesn't supply a timeout,
 If there is a RegistryTimeout,
 ProviderTimeout is set to RegistryTimeout.
 Otherwise....
 ProviderTimeout is set to DefaultTimeout.
 If the ProviderTimeout is longer than MaxTimeout,
 MaxTimeout = ProviderTimeout.

4. User Name Functions
These are calls for registering the current user's network name and password.
4.1. Getting the current Username
This is used to determine either the current default username, or the username used to establish a network connection.
DWORD
NPGetUser(
	LPTSTR lpName,
	LPTSTR lpUserName,
	LPDWORD lpBufferSize
);

Parameters:

lpName __Contains the name of the local device the caller is interested in, or a network name that the user has made a connection to. This may be NULL or the empty string if the caller is interested in the name of the user currently logged on to the system. If a network name is passed in, and the user is connected to that resource using different names, it is possible that a provider cannot resolve which username to return. In this case the provider may make an arbitrary choice amongst the possible usernames.
lpUserName __Points to a buffer to receive the user name.
lpBufferSize __This is used to specify the size of the buffer passed in. If the call fails because the buffer is not big enough, this location will be used to return the required buffer size.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, the an error code is returned, and SetLastError should also be called by the provider to set this extended error code, which may include:
WN_NOT_CONNECTED - lpName not a redirected device nor a connected network name.
WN_MORE_DATA - the buffer is too small
WN_NO_NETWORK - network is not present
5. Device Redirecting Functions
These are calls that redirect standard DOS devices, drive letters and LPT ports, so that standard applications may use them, and so access the network in a totally transparent manner.
5.1. Adding Network Connections
5.1.1 NPAddConnection
This function is used to redirect (connect) a local device to a network resource.
DWORD
NPAddConnection(
	LPNETRESOURCE lpNetResource,
	LPTSTR lpPassword,
	LPTSTR lpUserName
);

Parameters:

lpNetResource __Specifies the network resource to connect to. This structure is defined the section describing Enumeration APIs. The following fields must be set when making a connection, the others are ignored.
		lpRemoteName __Specifies the network resource to connect to.
		lpLocalName __This specifies the name of a local device to be redirected, such as "F:" or "LPT1". The string is treated in a case insensitive manner, and may be the empty string (or NULL pointer) in which case a connection to the network resource is made without making a redirection.
		dwType __Specifies the type of resource to connect to. It can be ResourceType_DISK, ResourceType_PRINT, or ResourceType_ANY. The value ResourceType_ANY is used if the caller does not care or does not know.
lpPassword __Specifies the password to be used in making the connection, normally the password associated with lpUserName. The NULL value may be passed in to indicate to the function to use the default password. An empty string may be used to indicate no password.
lpUserName __This specifies the username used to make the connection. If NULL, the default username (currently logged on user) will be applied. This is used when the user wishes to connect to a resource, but has a different user name or account assigned to him for that resource.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, the an error code is returned, and SetLastError should also be called by the provider to set this extended error code, which may include:
WN_BAD_NETNAME - lpRemoteName in the lpNetResource structure is not acceptable to this provider
WN_BAD_LOCALNAME - lpLocalName in lpNetResource is invalid
WN_BAD_PASSWORD - invalid password
WN_ALREADY_CONNECTED - lpLocalName already connected
WN_ACCESS_DENIED - access denied
WN_NO_NETWORK - network is not present
5.1.2 NPAddConnection3
This function is used to redirect (connect) a local device to a network resource.
DWORD
NPAddConnection3(
	HWND hwndOwner,
	LPNETRESOURCE lpNetResource,
	LPTSTR lpPassword,
	LPTSTR lpUserName,
	DWORD dwFlags
);

Parameters:

hwndOwner __A handle to a window which should be the owner for any messages or dialogs. This is only valid if CONNECT_INTERACTIVE is set in dwFlags, and should only be used to produce dialogs needed for authentication.
lpNetResource __Specifies the network resource to connect to. This structure is defined the section describing Enumeration APIs. The following fields must be set when making a connection, the others are ignored.
		lpRemoteName __Specifies the network resource to connect to.
		lpLocalName __This specifies the name of a local device to be redirected, such as "F:" or "LPT1". The string is treated in a case insensitive manner, and may be the empty string (or NULL pointer) in which case a connection to the network resource is made without making a redirection.
		dwType __Specifies the type of resource to connect to. It can be ResourceType_DISK, ResourceType_PRINT, or ResourceType_ANY. The value ResourceType_ANY is used if the caller does not care or does not know.
lpPassword __Specifies the password to be used in making the connection, normally the password associated with lpUserName. The NULL value may be passed in to indicate to the function to use the default password. An empty string may be used to indicate no password.
lpUserName __This specifies the username used to make the connection. If NULL, the default username (currently logged on user) will be applied. This is used when the user wishes to connect to a resource, but has a different user name or account assigned to him for that resource.
dwFlags __Any combination of the following values:
CONNECT_TEMPORARY - The connection is being established for browsing purposes and will probably be released quickly.
CONNECT_INTERACTIVE - May have interaction with the user for authentication purposes.
CONNECT_PROMPT - Do no use any defaults for usernames or passwords without offering user the chance to supply an alternative. This flag is only valid if CONNECT_INTERACTIVE is set.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, the an error code is returned, and SetLastError should also be called by the provider to set this extended error code, which may include:
WN_BAD_NETNAME - lpRemoteName in the lpNetResource structure is not acceptable to this provider
WN_BAD_LOCALNAME - lpLocalName in lpNetResource is invalid
WN_BAD_PASSWORD - invalid password
WN_ALREADY_CONNECTED - lpLocalName already connected
WN_ACCESS_DENIED - access denied
WN_NO_NETWORK - network is not present

5.2. Removing network connections
Breaks a network connection. The changes are remembered if a device is disconnected, unless it is a deviceless disconnection (ie. the remote path rather than the local drive is named).
DWORD
NPCancelConnection(
	LPTSTR lpName,
	BOOL fForce
);

Parameters:

lpName __The name of either the redirected local device or the remote network resource to disconnect from.
fForce __Used to indicate if the disconnect should be done forcefully in the event of open files or jobs on the connection. If FALSE is specified, the call will fail if there are open files or jobs.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, the an error code is returned, and SetLastError should also be called by the provider to set this extended error code, which may include:
WN_NOT_CONNECTED - lpName not a redirected device, or not currently connected to lpName
WN_OPEN_FILES - there are open files and fForce was FALSE.
5.3. Obtaining information about a connection
DWORD
NPGetConnection(
	LPTSTR lpLocalName,
	LPTSTR lpRemoteName,
	LPDWORD lpBufferSize
);

Parameters:

lpLocalName __Contains the name of the local device the caller is interested in.
lpRemoteName __Points to a buffer to receive the remote name used to make the connection.
lpBufferSize __This is used to specify the size of the buffer passed in. If the call fails because the buffer is not big enough, this location will be used to return the required buffer size.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, the an error code is returned, and SetLastError should also be called by the provider to set this extended error code, which may include:
WN_BAD_LOCALNAME - lpLocalName is invalid
WN_NOT_CONNECTED - lpLocalName not a redirected device
WN_MORE_DATA - the buffer is too small
WN_NO_NETWORK - network is not present
5.4. Obtaining information about a network name
The following levels of information can be obtained about a network name.

5.4.1 Structures
#define UNIVERSAL_NAME_INFO_LEVEL	1
#define REMOTE_NAME_INFO_LEVEL		2

typedef struct _UNIVERSAL_NAME_INFO {
	LPTSTR lpszUniversalName;
} UNIVERSAL_NAME_INFO, *LPUNIVERSAL_NAME_INFO;

UNIVERSAL_NAME_INFO Structure:

lpszUniversalName __If the provider supports a Universal Name then it will return that here.
typedef struct _REMOTE _NAME_INFO {
	LPTSTR lpszUniversalName;
	LPTSTR lpszConnectionName;
	LPTSTR lpszRemainingPath;
} REMOTE_NAME_INFO, *LPREMOTE_NAME_INFO;

REMOTE_NAME_INFO Structure:

lpszUniversalName __Points to the Universal Name if the provider supports that. Otherwise this element will be a NULL pointer.
lpszConnectionName _Points to the remote name used to make the connection. This does not have a trailing backslash.
lpszRemainingPath __The remaining path that needs to be concatenated to drive letter once a connection is established using above ConnectionInfo, to refer to the same object again. This has a backslash at the start of path.
5.4.1 Function
DWORD
NPGetUniversalName (
	LPTSTR lpLocalPath,
	DWORD dwInfoLevel,
	LPVOID lpBuffer,
	LPDWORD lpBufferSize
);

Parameters:

lpLocalPath 	Contains the local path of an object on a network resource. This is a drive based path.
dwInfoLevel __ The level of detail of information the caller is interested in as described above.
lpBuffer __Points to a buffer to receive the info the user has requested. The specific structure returned is one of those described above..
lpBufferSize __This is used to specify the size, in bytes, of the buffer passed in. If the call fails because the buffer is not big enough, this location will be used to return the required buffer size.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, the an error code is returned, and SetLastError should also be called by the provider to set this extended error code, which may include:
WN_BAD_LOCALNAME - lpLocalName is invalid
WN_NOT_CONNECTED - lpLocalName not a redirected device
WN_MORE_DATA - the buffer is too small
WN_NO_NETWORK - network is not present.
6. Provider Specific Dialogs
These functions allow a provider to perform or display network specific information.

6.1. Extending File Manager's Properties Dialog
The following functions allow a provider to add to the File Manager's Properties dialog. Note that because there is a limit on the number of buttons that can be added, providers should use this capability sparingly. Also, a provider may find itself unable to add a button because they are all used up.
6.1.1. Querying Buttons to be Added
This function is used to determine the names of buttons added to a property dialog for some particular resources. It is called every time such a dialog is brought up, and prior to displaying the dialog. If the user clicks a button added through this API by the Winnet provider, NPPropertyDialog will be called with the appropriate parameters.
Currently, only File Manager calls this API, and uses it for files and directories only.
DWORD
NPGetPropertyText(
	DWORD iButtonDlg,
	DWORD nPropSel,
	LPTSTR lpFileName,
	LPTSTR lpButtonName,
	DWORD cbButtonName,
	DWORD nType
)

Parameters:

iButtonDlg - Indicates the index (starting at 0) of the button. The File Manager will support at most 6 buttons. The parameter is numbered 1-6 for each of the possible buttons if only one file is selected, or 11-16 if multiple files are selected.
nPropSel - Specifies what items the property dialog focuses on. It can be one of the following values:�	WNPS_FILE (0)	single file�	WNPS_DIR (1)	single directory�	WNPS_MULT (2)	multiple selection of files and/or directories
lpFileName - Specifies the names of the item or items to be viewed or edited by the dialog. Currently, the items are files (and directories), so the item names are file names. These will be unambiguous, contain no wildcard characters and will be fully qualified (e.g., C:\LOCAL\FOO.BAR). Multiple filenames will be separated with spaces. Any filename may be quoted (e.g., "C:\My File") in which case it will be treated as a single name. The caret character '^' may also be used as the quotation mechanism for single characters (e.g., C:\My^"File, "C:\My^"File" both refer to the file C:\My"File).
lpButtonName - Points to a buffer where the Winnet provider should copy the name of the property button. On success, the buffer pointed to by lpButtonName will contain the name of the property button. If this buffer, on exit, contains the empty string, then the corresponding button and all succeeding buttons will be removed from the dialog box. The network provider cannot "skip" a button.
cbButtonName - Specifies the size of the lpButtonName buffer.
nType - Specifies the item type. Currently, only WNTYPE_FILE will be used.
Return Value:

WN_SUCCESS if the call is successful and lpButtonName can be used. If it points to the empty string, no button corresponds to an index as high as iButton. If the return value is other than WN_SUCCESS, SetLastError should also be called by the provider to set extended error information. Extended error codes include:
WN_OUT_OF_MEMORY - Couldn't load string from resources
WN_MORE_DATA - The given buffer is too small to fit the text of the button.
WN_BAD_VALUE - The lpFileName parameter takes an unexpected form.
WN_NOT_SUPPORTED - Property dialogs are not supported for the given object type (nType).
6.1.2. Action on Added Button
This function is called out to when the user clicks a button added through the NPGetPropertyText API. Currently, this will only be called for file and directory network properties.
DWORD
NPPropertyDialog(
	HWND hwndParent,
	DWORD iButtonDlg,
	DWORD nPropSel,
	LPTSTR lpFileName,
	DWORD nType
)
Parameters:

hwndParent - Specifies the parent window which should own the file property dialog.
iButtonDlg - Indicates the index (starting at 0) of the button that was pressed.
nPropSel - Specifies what items the property dialog should act on. It can be one of the following values:�	WNPS_FILE (0)	single file�	WNPS_DIR (1)	single directory�	WNPS_MULT (2)	multiple selection of files and/or directories
lpFileName - Points to the names of the items that the property dialog should act on. See the NPGetPropertyText API for a description of the format of what lpFileName points to.
nType - Specifies the item type. Currently, only WNTYPE_FILE will be used.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, the an error code is returned, and SetLastError should also be called by the provider to set this extended error code, which may include:
WN_BAD_VALUE	Some parameter takes an unexpected form or value
WN_OUT_OF_MEMORY	Not enough memory to display the dialog
WN_NET_ERROR	Some other network error occurred
Note, this function is only called on sets of properties for which NPGetPropertyText has assigned a button name.
This function is used in the File Manager to view and modify the network properties (for example, permissions) for files on a network device. The hwndParent parameter specifies the parent window which should own the file property dialog. The iDlg parameter specifies which property dialog was requested, starting with 1 for the first button returned from NPGetPropertyText(), and 10 will be added if there are multiple filenames selected (that is, if there is more than one file selected and the user presses the first provider defined property button, iDlg will be 11. If there is only one file selected, and the user presses the second network property button, iDlg will be 2). The lpFileName parameter points to the filenames whose properties to are to be viewed or editted, as in NPPropertyText(). If this function is not supported, the File Manager does not provide any default behaviour. The iType parameter specifies the device type. For current the release, only WNTYPE_FILE will be used.
In future versions of the Network provider interface, lpFileName may point to the name of a character device name or other networked resource; however, in this version only filenames will be passed. The network provider should return WN_BAD_VALUE if it sees an inappropriate device.
6.2. Provider specific searching
DWORD
NPSearchDialog(
	HWND hParent,
	LPNETRESOURCE lpNetResource,
	LPVOID lpBuffer,
	DWORD cbBuffer,
	LPDWORD lpnFlags
);

Parameters:

hwnd __Specifies the handle of the window that will be used as the dialog box's parent.
lpNetResource __Specifies the currently selected item in the Network connections dialog. A provider may choose to ignore this field.
lpBuffer __Pointer to buffer that will receive the result of the search.
cbBuffer __DWORD that will specify size of buffer passed in.
lpnFlags Pointer to a DWORD of flags which the provider can set to force certain actions after the dialog is dismissed. It can be one of:�WNSRCH_REFRESH_FIRST_LEVEL - Forces MPR to collapse then expand (and refresh) the first level below this provider after the dialog is dismissed.
Return Value:

WN_SUCCESS if the call is successful.
WN_CANCEL if user cancelled the operation.
WN_MORE_DATA if input buffer is too small.
All other errors should be handled (ie. reported) directly by the provider's dialog.
This dialog allows network vendors to supply their own form of browsing and search beyond the hierarchical view presented in the Connection Dialog. If supported, the Connection Dialog will enable the 'Search' button when the selected item belongs to that provider, and when the button is hit, this function is called. Moreover, if the provider does NOT support enumeration, then the action associated with double clicking on the prover's entry will be to invoke its Search Dialog.
When the provider specific dialog is dismisssed as a result of the user choosing OK, the provider should return WN_SUCCESS with the buffer containing a string describing the network name that is the result of the search. If the user CANCELed, WN_CANCEL should be returned.
6.3. Provider specific network name formatting
DWORD
NPFormatNetworkName(
	LPTSTR lpRemoteName,
	LPTSTR lpFormattedName,
	LPDWORD lpnLength,
	DWORD dwFlags,
	DWORD dwAveCharPerLine
);

Parameters:

lpRemoteName Network name to be formatted
lpFormattedName Pointer to string buffer that will receive the formatted name
lpnLength Pointer to DWORD that specifies the size of the buffer (in characters) passed in. If the result is WN_MORE_DATA, this will contain the buffer size required (in characters).
dwFlags Bitfield indicating the type of format being requested. Can be one of:
		WNFMT_MULTILINE (0x01) - The provider should place the '\n' character where line breaks should appear in the name. The full name should be expressed.�WNFMT_ABBREVIATED (0x02) - The provider should ellipsize or otherwise shorten the network name such that the most useful information will be available to the user in the space provided.
In addition, the following flags may be 'or'ed in and act as modifiers to the above flags:
		WNFMT_INENUM (0x10) - The network name is being presented in the context of an enumeration where the "container" of this object is presented immediately prior to this object. This may allow network providers to remove redundant information from the formatted name, providing a less cluttered display for the user.
dwAveCharPerLine This is the average number of characters that will fit on a single line where the network name is being presented. Specifically, this value is defined as the width of the control divided by the tmAveCharWidth of the TEXTMETRIC structure from the font used for display in the control.
Return Value:

WN_SUCCESS if the call is successful.
WN_MORE_DATA if input buffer is too small.
All other errors will be ignored and the unformatted network name will be used.
This API allows network vendors to trim or modify network names before they are presented to the user. For example, in the File Open common dialog, the "Drives" combobox presents all connected resources and the associated network name. Before each item is displayed, NPFormatNetworkName will be called and the network provider will have the option of editing the name so it will fit in the combobox and more importantly, present the most significant portion of the network name to the user.
Note that NPFormatNetworkName is not routed to each network provider as most of the other NP APIs are. Each network vendor only need worry about formatting their own network name and can assume that only names produced by their network provider driver will be passed to NPFormatNetworkName.
The following table is a general guide of how the WNFMT_ flags are passed at various places in the Windows NT's user interface. No assumptions should be made about what flags are passed where, this table is provided solely to help in deciding the best method for modifying the network name for each particular nework vendor.
�WNFMT_MULTILINE�WNFMT_ABBREVIATED�WNFMT_INENUM��WinFile Connection Dialog Drive Combo Selection���X���WinFile Connection Dialog Drive Combo List��X����WinFile "Shared Directories" Listbox��X�X��WinFile Disconnect Network Drive Listbox�X����WinFile Toolbar Combo Selection��X���WinFile Toolbar Combo List�X����Common File Open/Save dialogs Drive Combo Selection��X���Common File Open/Save dialogs Drive Combo List��X���
6.4. Provider specific permission editor dialogs
These functions allow the individual providers to display their own permission dialogs in the File Manager when the current drive selection belongs to them. These APIs are only called by the File Manager and depends on the File Manager Extensions.
6.4.1. Querying enabling/disabling of the menu items in Security menu of File Manager
This function is used to get the capabilities bits of the permission editor. The return value determines whether the security menu items in the file manager are to be enabled or not.

DWORD
NPFMXGetPermCaps(
	IN LPTSTR lpDriveName
);

Parameters:

lpDriveName - Points to the current drive name selected in the File Manager.
Return Value:

	A bitmask indicating what permission capability the user has on the selected drive. The bitmask is a combination of the bits below:
		WNPERM_PERM	0x00000001
		WNPERM_AUDIT	0x00000002	
		WNPERM_OWNER	0x00000004
	
This function is used in the File Manager to determine whether the security menu items are to be enabled or not. There are currently three menu items in the security menu: Permissions, Auditing and Owner. If the bitmask returned by NPFMXGetPermCaps has the bit WNPERM_PERM set, then the permissions menu item is enabled. The individual provider should only return with bit WNPERM_PERM set if the provider supports its own permission editor dialogs and the user has the rights to modify permissions on the given drive. The same applies to the WNPERM_AUDIT and WNPERM_OWNER bits.
6.4.2. Showing provider-specific permission dialogs
This function allows network vendor to supply their own permission editor dialogs.
DWORD
NPFMXEditPerm(
	IN LPTSTR lpDriveName,
	IN HWND hwndFMX,
 	IN DWORD nType
);

Parameters:

lpDriveName - Points to the current drive name selected in the File Manager.
hwndFMX - Specifies the FMX window which can be used to query selections.
nType - Specify the type of permission dialog to bring up. It can be one of the following values:
				WNPERM_DLG_PERM(0)		Brings up the permission dialog
				WNPERM_DLG_AUDIT(1) 		Brings up the auditing dialog
 				WNPERM_DLG_OWNER(2)	Brings up the take ownership dialog
Return Value:

WN_SUCCESS if the call is successful. Otherwise, GetLastError should be called to determine the extended error information, which may include:
WN_NOT_SUPPORTED Not supported in the provider
WN_BAD_VALUE	Some parameter takes an unexpected form or value
WN_OUT_OF_MEMORY	Not enough memory to display the dialog
WN_NET_ERROR	Some other network error occurred
This function is used in the File Manager to view and modify the permissions which may include permissions on files/directories, auditing on files/directories and take ownership on file/directories. The hwndFMX parameter specifies the handle of the current File Manager window and File Manager Extension messages can be sent to hwndFMX to query current file selections in File Manager.
6.4.3. Querying help of the menu items in Security menu of File Manager
This function is used to get the help file and help context of the permission editor dialogs when a menu item in the security menu of File Manager is selected and F1 is pressed.

DWORD
NPFMXGetPermHelp(
	IN LPTSTR lpDriveName,
 	IN DWORD nType,
 	IN BOOL fDirectory,
	IN OUT LPVOID lpBuffer,
	IN LPDWORD lpBufferSize,
 	OUT LPDWORD lpnHelpContext
);

Parameters:

lpDriveName - Points to the current drive name selected in the File Manager.
nType - Specifies the menu item in the Security menu of File Manager to bring up help on.
				WNPERM_DLG_PERM(0)		“Permissions...” menu item
				WNPERM_DLG_AUDIT(1) 		“Auditing...” menu item
				WNPERM_DLG_OWNER(2)	“Owner...” menu item
fDirectory - TRUE if the selected item in File Manager is a directory, FALSE if it is a file.
lpBuffer - Pointer to buffer that will receive the help file name.
lpBufferSize - DWORD that specify size of buffer passed in. If lpBuffer is not large enough, on return, this would contain the size of buffer needed.
lpnHelpContext - Points to a DWORD that will receive the help context for the given nType.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, GetLastError should be called to determine the extended error information, which may include:
WN_NOT_SUPPORTED Not supported in the provider
WN_BAD_VALUE	Some parameter takes an unexpected form or value
WN_MORE_DATA	The input buffer is too small
This function is called by the File Manager to get the help file name and help context when F1 is pressed on a selected item in its Security menu. There are currently three menu items in the Security menu: Permissions, Auditing and Owner. File Manager bring up Help based on the help file name and the help context returned by the provider.

7. Administrative Functions
The following allow a network provider to take vendor specific action to display and manipulate 'special' network directories.
7.1. Displaying a different icon
This function is used by the file manager to determine the type of a network directory.
DWORD
NPGetDirectoryType(
	LPTSTR lpName,
	LPINT lpType,
	BOOL bFlushCache
)
Parameters:

lpName - This parameter points to the fully qualified name of the directory. The network provider returns the type to the word pointed to by lpType. If the value returned in lpType is 0 or if the network provider returns an error, the File Manager displays the directory as a "normal" directory.
lpType - This is defined by the network provider and is used to modify the display of the drive tree in the File Manager. In this way, the network provider can show special directories to the user.
bFlishCache - This is set to TRUE when the File Manager call MPR to get the directory type for the first time while repainting a window on Refresh. Subsequently, it will be FALSE. This gives a provider the opportunity to optimize performance if it wishes to just read the data for a drive once and cache it until the next Refresh.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, the an error code is returned, and SetLastError should also be called by the provider to set this extended error code, which may include:
WN_NOT_SUPPORTED	this function is not supported
The file manager will supply it's own icon for all special network directories; that is, when lpType is set to a non-zero value, the File Manager will display a special folder icon.
Important Note: The implementation of this should be speedy since the call occurs during WinFile's painting of its directory tree.
7.2. Replacing default operations
This function is used by the File Manager to notify the network provider of certain directory operations. This function can be used to perform special behaviour for certain directories.
DWORD
NPDirectoryNotify(
	HWND hwnd,
	LPTSTR lpDir,
	DWORD dwOper
)
Parameters:

hwnd - specifies an owner window handle in the event the network provider needs to interact with the user.
lpDir - this points to the fully qualified name of the directory.
dwOper - indicates the operation. If dwOper is WNDN_MKDIR (1), then the File Manager is about to create a directory with the given name. If dwOper WNDN_RMDIR (2), the File Manager is about the remove the directory. dwOper may also be WNDN_MVDIR (3) to indicate that the directory is about to be renamed.
Return Value:

WN_SUCCESS if the call is successful. This indicates to the caller that it should continue and perform the operation. Otherwise, the appropriate code is returned, and SetLastError should also be called by the provider to set extended error information, which may include:
WN_CANCELLED - the provider would have handled the operation, but the user cancelled it. The caller should NOT perform the operation.
WN_CONTINUE - the network provider handled the operation, the caller should proceed normally but do not perform the operation.
WN_NOT_SUPPORTED - the network does not have special directory handling, this is treated as WN_SUCCESS.

8. Enumeration Functions
A provider should support these functions if it is to allow a user to browse its network's resources. Refer to the Win32 API specification for the browsing model.
8.1. Structures
The following structure is returned during enumeration of resources on the network, and during enumeration of currently connected resources.
typedef struct _NETRESOURCE {
	DWORD dwScope;
	DWORD dwType;
	DWORD dwDisplayType;
	DWORD dwUsage;
	LPTSTR lpLocalName;
	LPTSTR lpRemoteName;
	LPTSTR lpComment;
	LPTSTR lpProvider;
} NETRESOURCE, *LPNETRESOURCE;

NETRESOURCE Structure:

dwScope __This will be either Resource_CONNECTED or Resource_GLOBALNET to indicate that the entry is either a current connection or a network resource, respectively.
dwType __This will can be ResourceType_DISK or ResourceType_PRINT, or 0. The value 0 is used if the resource is neither (eg. a container of both print and disk resources, or a resource which is neither print or disk).
dwDisplayType __This field is set by the provider to indicate what display type a User Interface uses to represent this resource. Currently defined types are RESOURCEDISPLAYTYPE_GENERIC (for providers that dont know or dont care), RESOURCEDISPLAYTYPE_DOMAIN (collection of servers), RESOURCEDISPLAYTYPE_SERVER (server) and RESOURCEDISPLAYTYPE_SHARE (a share point).
dwUsage __This is a bitmask which may contain any of ResourceUsage_Connectable or ResourceUsage_Container. Only defined if the dwScope is Resource_GLOBALNET.
lpLocalName __If dwScope is Resource_CONNECTED, this will contain the name of a redirected device (NULL if the connection is a deviceless connection). It is undefined otherwise.
lpRemoteName __This contains a remote network name if the entry is a network resource. This name may be then passed to WNetAddConnection to make a network connection if dwUsage has ResourceUsage_CONNECTABLE. If the entry is a current connection, this field will refer to the network name lpLocalName is connected to.
lpComment __This contains the comment associated with the network resource.
lpProvider __Specifies the name of the provider owning this resource.
8.2. Opening an Enumeration
This API is used to open an enumeration of network resources or existing connections. It must be called to obtain a valid handle for enumeration.
DWORD
NPOpenEnum (
	DWORD dwScope,
	DWORD dwType,
	DWORD dwUsage,
	LPNETRESOURCE lpNetResource,
	LPHANDLE lphEnum
);

Parameters:

dwScope __Determines the scope of the enumeration. This can be one of:
Resource_CONNECTED __ all currently connected resources.
Resource_GLOBALNET __ all resources on the network.
dwType __Used to specify the type of resources of interest. This is a bitmask which may be any combination of:
ResourceType_DISK __ all disk resources.
ResourceType_PRINT __ all print resources.
If this is 0, all types of resources are returned. If a provider does not have the capability to distinguish between print and disk resources at a level, it may return all resources.
dwUsage __Used to specify the usage of resources of interested. This is a bitmask which may be any combination of:
ResourceUsage_CONNECTABLE __ all connectable resources.
ResourceUsage_CONTAINER __ all container resources.
The bitmask may be 0 to match all.
lpNetResource __This specifies the container to perform the enumeration. The NETRESOURCE could have been obtained via a previous WNetEnumResource, or constructed by the caller or NULL. If it is NULL, the logical root of the network is assumed. An application would normally start off by calling WNetOpenEnum with this parameter set to NULL, and then use the returned results for further enumeration. If the calling program knows exactly the provider and remote path to enumerate from, it may build its own NETRESOURCE structure to pass in, filling in the lpProvider and lpRemoteName fields.. Note that if dwScope is RESOURCE_CONNECTED this parameter must be NULL.
lphEnum __If function call is successful, this will contain a handle that can then be used for enumeration.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, the an error code is returned, and SetLastError should also be called by the provider to set this extended error code, which may include:
WN_NOT_CONTAINER - lpNetResource does not point to a container
WN_BAD_VALUE - Invalid dwScope or dwUsage or dwType, or bad combination of parameters is specified.
WN_NO_NETWORK - network is not present
8.3. Enumerating Network Resources
Perform an enumeration based on handle returned by NPOpenEnum. On this call the provider should fill the buffer with the requested number of entries (or the maximum that can fit). The returned NETRESOURCE structures should be located contiguously at the head of the buffer passed in (ie. like an array of such structures), and the pointers in these structures must point to locations within the buffer. As such, data referenced by these pointers will be located towards the end of the buffer, after the array of structures. It is the provider's responsibility to package this information correctly.
DWORD
NPEnumResource (
	HANDLE hEnum,
	LPDWORD lpcCount,
	LPVOID lpBuffer,
	LPDWORD lpBufferSize
);

Parameters:

hEnum __This must be a handle obtained from NPOpenEnum call.
lpcCount __Specifies the number of entries requested. It may be 0xFFFFFFFF to request as many as possible. On successful call, this location will receive the number of entries actually read.
lpBuffer __A pointer to the buffer to receive the enumeration result, which are returned as an array of NETRESOURCE entries. The buffer is valid until the next call using hEnum.
lpBufferSize __This specifies the size in bytes of the buffer passed to the function call on entry. On exit, if the buffer is too small for even one entry, this will contain the number of bytes needed to read one entry. The value is only set if the return code is WN_MORE_DATA.
Return Value:

WN_SUCCESS if the call is successful, the caller may continue to call NPEnumResource to continue the enumeration. Otherwise, the provider should call SetLastError to set the error.
WN_NO_MORE_ENTRIES - no more entries found, the enumeration completed successfully (the contents of the return buffer is undefined). Otherwise, SetLastError should be called to set extended error information. Extended error codes include:
WN_MORE_DATA - the buffer is too small even for one entry
WN_BAD_HANDLE - hEnum is not a valid handle.
WN_NO_NETWORK - network is not present. This condition is checked for before hEnum is tested for validity.
8.4. Closing an Enumeration
Closes an enumeration.
DWORD
NPCloseEnum (
	HANDLE hEnum
);

Parameters:

hEnum __This must be a handle obtained from NPOpenEnum call.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, the an error code is returned, and SetLastError should also be called by the provider to set this extended error code, which may include:
WN_NO_NETWORK - network is not present. This condition is checked for before hEnum is tested for validity.
WN_BAD_HANDLE - hEnum is not a valid handle.
9. Credential Management Functions
A credential manager provider is similar to a network provider in that it provides entry points that are to be called when logon, or password or, more accurately, authentication information changes occur. In fact, some network providers will also be credential managers.
When a logon process such as winlogon, or the service controller is in the process of logging on, or changing the password for an account, it will call the appropriate MPR WNet function. MPR will then proceed to call the appropriate entry point for each Credential Manager. These credential management functions will always be called in the system context (LocalSystem) rather than user context.
Credential managers must be associated with a driver or service, or otherwise have an entry in the services section of the registry (\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services). The service entry must have an sub-key called "NetworkProvider" which must contain the following values:
	ProviderPath: The fully qualified path name for the provider dll.
	Name: The name of the provider for display purposes.
	Class: The class (or type) of provider
		(WN_NETWORK_CLASS and/or WN_CREDENTIAL_CLASS and/or WN_PRIMARY_AUTHENT_CLASS).
	AuthentProviderPath: The fully qualified path name for the credential manager DLL.

Providers that are NOT credential managers are not required to have a Class value or the AuthentProviderPath value. It is assumed that providers without the Class value are network providers only. The AuthentProviderPath value is only used if the credential manager functions are in a separate DLL from the network functions. The provider dll exports the NPxxx functions that the provider supports. Providers identified as credential managers are expected to export the following credential management functions:
	NPLogonNofity()
	NPChangePassword()

Network Providers identify the functions they support via the NPGetCaps() function. Credential Manager Providers should support the NPGetCaps(WNNC_Start) functionality. This function tells the multiple provider router if it needs to wait before calling the provider's credential management entry point. And if it knows, it can tell the provider how long to wait before timing out.
9.1. NPLogonNotify
Notifies credential manager providers of a logon event.
DWORD APIENTRY
NPLogonNotify
	PLUID lpLogonId,
	LPCWSTR lpAuthentInfoType,
	LPVOID lpAuthentInfo,
	LPCWSTR lpPreviousAuthentInfoType,
	LPVOID lpPreviousAuthentInfo,
	LPWSTR lpStationName,
	LPVOID StationHandle,
	LPWSTR *lpLogonScript
);
Parameters:

lpLogonId - The logon ID of the session just logged on.
lpAuthentInfoType - This points to a string that identifies the AuthentInfo structure type.
		When Microsoft is the primary authenticator, the values that may be expected here are the ones described for the lpAuthentInfoType parameter to WNetLogonNotify().
 lpAuthentInfo - This points to a structure that contains the credentials used to successfully log the user on via the primary authenticator. The structures that may be specified when using Microsoft's primary authenticator are:
		When Microsoft is the primary authenticator, the structures that may be expected here are the ones described for the lpAuthentInfo parameter to WNetLogonNotify().
lpPreviousAuthentInfoType - This is pointer to a string that identifies the PreviousAuthentInfo structure. If this pointer is NULL, then no PreviousAuthentInfo is available. The values that may be expected here are the same as the values that may be expected for the lpAuthentInfoType parameter.
lpPreviousAuthentInfo - If the user was forced to change the password (or other authentication info) prior to logging on, this parameter points to a structure that contains the credential information used prior to the authentication information change. If the user was not forced to change authentication information prior to logging on, then this pointer is NULL. The structures that may be expected here are the same as the structures that may be expected for the lpAuthentInfo parameter.
lpStationName - This parameter contains the name of the station the user has logged onto. This may be used to determine whether or not interaction with the user to obtain additional (provider-specific) credentials is possible. This information will also have a bearing on the meaning and use of the StationHandle parameter.
		When Microsoft is the primary authenticator, the values that may be expected here are the ones described for the lpStationName parameter to WNetLogonNotify().
StationHandle - Is a 32-bit value whose meaning is dependent upon the name (and consequently, the type) of station being logged onto.
		When Microsoft is the primary authenticator, the values that may be expected here are the ones described for the lpStationHandle parameter to WNetLogonNotify().
lpLogonScript - This is a pointer to a location where a pointer to a null terminated string may be returned. The null terminated string is assumed to contain the name of a program to execute and parameters to pass to the program. LocalAlloc() should be used to allocate the memory for the returned string. This memory will be freed by MPR when no longer needed.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, the an error code is returned, and SetLastError should also be called by the provider to set this extended error code, which may include:
WN_NOT_SUPPORTED - this function is not supported
WN_NO_NETWORK - network is not present
WN_FUNCTION_BUSY - the provider is still initializing and is not ready to be called yet.

This function provides notification to a particular provider that must handle log-on events.
Each Credential Manager is allowed to return a single command line string which will execute a logon script. The buffer for this string is allocated by the provider. MPR is responsible for freeing it. The string describing the logon script should contain all the information necessary to run that script as a command line passed to CreateProcess. If the string requires the command processor to process it as in the case of command or batch files, then the string should be prefixed with "cmd /C".
If MyFile is a command (or batch file),
	"cmd /C MyFile" - 	Will run as...
				MyFile.bat on DOS
				MyFile.cmd on OS/2
				MyFile.bat on NT

Logon scripts will be run in user context when the user profile is available. However, environment variables that are set will not be global and will not be available to the initial shell (e.g., program manager) or other programs run on the user's behalf.
9.2. NPPasswordChangeNotify
This function is used to notify a credential manager provider of a password change (or, more accurately, an authentication information change) for an account.
DWORD APIENTRY
NPPasswordChangeNotify(
	LPCWSTR		lpAuthentInfoType,
	LPVOID			lpAuthentInfo,
	LPCWSTR		lpPreviousAuthentInfoType,
	LPVOID			lpPreviousAuthentInfo,
	LPWSTR		lpStationName,
	LPVOID			StationHandle,
	DWORD			dwChangeInfo
);

Parameters:

lpAuthentInfoType - This points to a string that identifies the lpAuthentInfo structure type.
		When Microsoft is the primary authenticator, the values that may be expected here are the ones described for the lpAuthentInfoType parameter to WNetLogonNotify().
lpAuthentInfo - This points to a structure that contains the new credentials.
		When Microsoft is the primary authenticator, the structures that may be expected here are the ones described for the lpAuthentInfo parameter to WNetLogonNotify(). This pointer may be NULL if this function is called as a result of the user trying to change his password for the other networks without changing his NT password.
lpPreviousAuthentInfoType - This points to the string that identifies the PreviousAuthentInfo structure type.
		The values that may be expected here are the same as the values that may be expected for the lpAuthentInfoType parameter.
lpPreviousAuthentInfo - If the user was forced to change the password (or other authentication info) prior to logging on, this parameter points to a structure that contains the credential information used prior to the authentication information change. If the user was not forced to change authentication information prior to logging on, then this pointer is NULL. This pointer can also be NULL if this function is called as a result of the user trying to change his password for the other networks without changing his NT password.
		The structures that may be expected here are the same as the structures that may be expected for the lpAuthentInfo parameter.
lpStationName - This parameter contains the name of the station the user performed the authentication information change from.
		This may be used to determine whether or not interaction with the user to obtain additional (provider-specific) information is possible. This information will also have a bearing on the meaning and use of the StationHandle parameter.
		When Microsoft is the primary authenticator, the values that may be expected here are the ones described for the lpStationName parameter to WNetLogonNotify().
StationHandle - Is a 32-bit value whose meaning is dependent upon the name (and consequently, the type) of station being logged onto.
		When Microsoft is the primary authenticator, the values that may be expected here are the ones described for the lpStationHandle parameter to NPLogonNotify().
dwChangeInfo - This is a set of flags that provide information about the change. Currently the following possible values are defined:
		WN_VALID_LOGON_ACCOUNT - If this flag is set, then the password (or, more accurately, the authentication information) that was changed will affect future logons. Some authentication information changes will only affect connections made in untrusted domains. These are accounts that the user cannot use to log onto this machine anyway. In these cases, this flag will not be set.
Return Value:

WN_SUCCESS if the call is successful. Otherwise, the an error code is returned, and SetLastError should also be called by the provider to set this extended error code, which may include:
WN_NOT_SUPPORTED - this function is not supported
WN_NO_NETWORK - network is not present
WN_FUNCTION_BUSY - the provider is still initializing and is not ready to be called yet.

10. Connection Notification
Some system components find it useful to receive notification of connection events prior to the events actual occurrence. These components may require further information from the user in relation to the connection that is about to be established. An example if this is the Remote Access Service. It may be necessary for a modem connection to be established prior to making the connection. Likewise, these same components may need to clean up resources after the connection is made, therefore requiring a post connection notification.
Components interested in receiving pre- and post- notification of connection events must supply a Dynamic Link Library which exports two functions, AddConnectionNotify and CancelConnectionNotify . This DLL is "registered" by supplying a value containing the full path name for the dll under the following registry key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\NetworkProvider\Notifyees

The value can have any name. All values under the Notifyees key are assumed to be paths for DLLs that must be notified of connection events. It would be prudent to use a name that identifies your component to lessen the likelyhood that a name conflict will occur.
value = REG_EXPAND_SZ: <Dll Pathname>

Both notification structures require a pointer to the following structure to be passed in:
typedef struct _NOTIFYINFO {
DWORD	dwNotifyStatus;
DWORD	dwOperationStatus;
LPVOID	lpContext;
} NOTIFYINFO, *LPNOTIFYINFO;

NOTIFYINFO Structure:
dwNotifyStatus - This will be either NOTIFY_PRE or NOTIFY_POST to indicate if this notification is being done before or after the operation is performned.
dwOperationStatus - This us set to WN_SUCCESS when dwNotifyStatus is NOTIFY_PRE. It contains the return status code from the operation being performed (AddConnection or CancelConnection) when dwNotifyStatus is NOTIFY_POST.
lpContext - This parameter is used by the Notifyee to keep a context with respect to the operation between the pre-notification and the post-notification calls. lpContext is passed in as a NULL pointer when the notification function is called for pre-notification. The notification function can return with lpContext still NULL, indicating that it is not interested in further notification for this specific operation, in which case the notification function will not be called again with post-notification for this operation. If the pre-notification function returns a non-NULL value in lpContext, then this value is passed in when the notification function is called with the post-notification for the operation.
10.1	AddConnectionNotify
This function is called before and after each AddConnection operation (WNetAddConnection, WNetAddConnection2, WNetAddConnection3) is attempted by the Multiple Provider Router. This function is not called when MPR is automatically restoring Network Connections.
DWORD APIENTRY
AddConnectionNotify
	LPNOTIFYINFO lpNotifyInfo,
	LPNOTIFYADD lpAddInfo
);

Parameters:

lpNotifyInfo - This is a pointer to a NOTIFYINFO structure which contains information about the notification.
lpAddInfo - This is a pointer to a NOTIFYADD structure which contains information about the connection being added.
typedef struct _NOTIFYADD {
HWND hwndOwner;
NETRESOURCE NetResource;
DWORD dwAddFlags;
} NOTIFYADD, *LPNOTIFYADD;

NOTIFYADD Structure:
hwndOwner - A handle to a window which should be the owner for any messages or dialogs the notifyee might display.
NetResource - Specifies the network resource to connect to. The valid fields are the same as for the NPAddConnection function.
dwAddFlags - Any combination of the following values:
CONNECT_TEMPORARY - The connection is being established for browsing purposes and will probably be released quickly.
CONNECT_INTERACTIVE - May have interaction with the user.
CONNECT_PROMPT - Do not use any defaults without offering user the chance to supply an alternative. This flag is only valid if CONNECT_INTERACTIVE is set.
CONNECT_UPDATE_PROFILE - If the connection is being made persistent.
CONNECT_UPDATE_RECENT - If the connection is being put in the recent connection list.

10.2	CancelConnectionNotify
This function is called before and after each CancelConnection operation (WNetCancelConnection, WNetCancelConnection2) is attempted by the Multiple Provider Router.
DWORD APIENTRY
CancelConnectionNotify
	LPNOTIFYINFO lpNotifyInfo,
	LPNOTIFYCANCEL lpCancelInfo
);

Parameters:

lpNotifyInfo - This is a pointer to a NOTIFYINFO structure which contains information about the notification.
lpCancelInfo - This is a pointer to a NOTIFYCANCEL structure which contains the cancel connection specific information.
typedef struct _NOTIFYCANCEL {
LPTSTR lpName;
LPTSTR lpProvider;
DWORD dwFlags;
BOOL fForce;
} NOTIFYCANCEL, *LPNOTIFYCANCEL;

	NOTIFYCANCEL Structure:
lpName - The name of the local device or network resource whose connection is being cancelled.
lpProvider - On pre-notification, not defined (MPR will try all valid providers). On post-notification, if the cancel operation was successful, specifies the name of the network provider that cancelled the connection.
dwFlags - Any combination of the following values:
CONNECT_UPDATE_PROFILE - Indicates whether the disconnection should remain persistent. If set, Windows will no longer restore this connection when the user logs on.
fForce - Indicates if the disconnect should be done forcefully in the event of open files or jobs on the connection. If FALSE is specified, the cancel connection will not be done if there are open files or jobs.
	
11. Error Handling
11.1. Reporting Errors
This function is defined by Windows for use by Network Providers to set extended errors.
VOID
WNetSetLastError (
	DWORD err,
	LPTSTR lpError,
	LPTSTR lpProvider,
)

Parameters:

err __ The error that occurred. This may be a Windows defined error, in which case lpError is ignored, or it may be ERROR_EXTENDED_ERROR to indicate that the provider has a network specific error to report.
lpError __ String describing a network specific error.
lpProvider __ String naming a network provider raising the error.
Return Value:

There is no return value. If a string passed in is too long, it is simply truncated.
A provider should use this function to report errors that contain provider specific information. After a Provider calls this function, there is no need to call SetLastError as well. A provider may just call SetLastError to report general errors like insufficient memory.
The recommeneded way for a provider APIs to handle general errors is to:
		SetLastError(providerError) ;
		return(providerError) ;

For provider specific errors, a provider should do the following:
	... setup lpErrorString to be the error to be reported
	WNetSetLastError(ERROR_EXTENDED_ERROR,
					 lpErrorString,
					 lpProviderName) ;
	return(ERROR_EXTENDED_ERROR) ;

11.2. Error Codes
Status codes include:
#define WN_SUCCESS 00h /* success */
#define WN_NOT_SUPPORTED 01h /* function not supported */
#define WN_NET_ERROR 02h /* misc network error */
#define WN_MORE_DATA 03h /* warning: buffer too small */
#define WN_BAD_POINTER 04h /* invalid pointer specified */
#define WN_BAD_VALUE 05h /* invalid numeric value specified */
#define WN_BAD_PASSWORD 06h /* incorrect password specified */
#define WN_ACCESS_DENIED 07h /* security violation */
#define WN_FUNCTION_BUSY 08h /* this function cannot be reentered */
 /* and is currently being used, or */			� /* the provider is still initializing */	� /* and is not ready to be called yet */
#define WN_WINDOWS_ERROR 09h /* a required Windows function failed */
#define WN_BAD_USER 0Ah /* invalid username specified */
#define WN_OUT_OF_MEMORY 0Bh /* out of memory */
#define WN_NOT_CONNECTED 30h /* device is not redirected */
#define WN_OPEN_FILES 31h /* connection could not be cancelled */
 /* because files are still open */
#define WN_BAD_NETNAME 32h /* network name is invalid */

One notable change is that the WM_FUNCTION_BUSY is also used to indicate that the provider is initializing and is not ready to be called yet. The provider should only return this if it is going to be available, since this return code is passed by MPR back to its caller and is likely to cause an application to retry.

12. Implementation Guidelines
Providers should follow the guidelines below as far as possible.
12.1. Speed
Providers should be as quick as possible when determining if it recognizes a resource to be its own, since the MPR may have to cycle through the providers. If it does not own a resource, it should return WN_BAD_NETNAME.
It is also important that providers that support WNetGetDirectoryType return results for this quickly since it is called whileWinFile is painting its directory tree.
12.2. Validation
The order of validation is important. A provider should first check if its network is started, then check if it supports the operation. After these checks, if it receives any network resources it should check if it owns them, and then finally validate other parameters.
12.3. Routing
If MPR has to cycle through providers, it will try all providers until one accepts the call. This is different from Windows NT3.1 where MPR will only continue trying if the preceding non-accepting providers return specific error codes. In effect, MPR will now always continue trying. It does however take note of the first ‘significant error’ reported by a provider. Errors like ERROR_BAD_NETPATH, ERROR_BAD_NET_NAME, ERROR_INVALID_PARAMETER, ERROR_INVALID_LEVEL are considered insignificant, because the provider probably wasnt interested. However, if the provider failed with errors like ERROR_INVALID_PASSWORD or other ‘significant’ errors, MPR will try to report that error instead of the insignificant ones. In general, when routing and no provider accepted a call, the first significant error encountered (ie. in provider order) will be reported back.

13. Function Summary
Function Name�Ordinal��NPGetCaps�13��NPGetUser�16��NPAddConnection�17��NPDeviceMode�14��NPCancelConnection�18��NPGetConnection�12��NPPropertyDialog�29��NPGetDirectoryType�30 ��NPDirectoryNotify�31��NPGetPropertyText�32��NPOpenEnum�33��NPEnumResource�34 ��NPCloseEnum�35��NPSearchDialog�38��
14. Obsolete APIs
The following functions is Win3.x Winnet have no equivalent in Win32.
WNetGetError
WNetGetErrorText

WNetOpenJob
WNetCloseJob
WNetWriteJob
WNetAbortJob
WNetHoldJob
WNetReleaseJob
WNetCancelJob
WNetSetJobCopies
WNetWatchQueue
WNetUnwatchQueue
WNetLockQueueData
WNetUnlockQueueData
WNetViewQueueDialog

WNetPrintMgrChangeMenus
WNetPrintMgrExiting
WNetPrintMgrCommand
WNetPrintMgrMoveJob
WNetPrintMgrSelNotify
WNetPrintMgrPrinterEnum
WNetPrintMgrExtHelp

LFNFindFirst
LFNFindNext
LFNFindClose
LFNGetAttribute
LFNSetAttribute
LFNCopy
LFNMove
LFNDelete
LFNMKDir
LFNRMDir
LFNGetVolumeLabel
LFNSetVolumeLabel
LFNParse
LFNVolumeType

15. Registry Layout/Installation
The registry layout expected by MPR when it decides what Providers are present is as follows:
HKEY_LOCAL_MACHINE\� System\� CurrentControlSet\� Control\� 	 NetworkProvider\�		 order�
15.1. Order Key
The "order" key has a value called ProviderOrder which is a single string. This value defines both the providers present and the order in which providers are tried during operations that cycle through providers until an accepting provider is found.
The string is a comma separated list of key names. Each key name identifies a network provider by referring to the registry key associated with that provider. The key name (for example, "lanmanworkstation" for Lan Manager) is actually a relative path from HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\ that defines a node the network vendor would have created during its installation.
This vender created key in the services portion of the CurrentControlSet should contain a value that identifies this service\driver as being in the "NetworkProvider" group. Also, MPR expects to find a "NetworkProvider" subkey under this key.
The provider order information should be written out during the installation of the network.
15.2. NetworkProvider Key
The "NetworkProvider" Key is expected to contain the following values:
Name - contains the name of the Provider. This is what gets displayed to the user as the name of the network in the browse dialogs, and should match the lpProvider returned in NETRESOURCE structures. This name should be some variation of the product name, preferably with some indication of the company as well so that it is clear and unique. "MS-LanMan" for example is a good name whereas "The Net" would be a poor choice.
ProviderPath - contains the full path of the the DLL that implements the network provider. MPR will perform a LoadLibrary() on this path.
The following values are only necessary for providers that support the credential manager functions:
Class - This is a DWORD that identifies the class (or type) of provider functionality that this provider supports. Values may be OR'd together when appropriate. Valid values for this are:
			WN_NETWORK_CLASS
			WN_CREDENTIAL_CLASS
			WN_PRIMARY_AUTHENT_CLASS

		Although a provider may support the primary authenticator functionality, another means will be used to detemine which authenticator will be the primary. Windows NT does not currently support switching primary authenticators, so this value will be ignored. Providers that are not credential managers are not required to have the Class value.
AuthentProviderPath - This is the fully qualified file name for the dll which exports the winnet credential manager api functions. This value is only useful (but not required) when the provider is identified as being a CREDENTIAL_CLASS or PRIMARY_AUTHENT_CLASS provider. If this value is not present for a provider of this class, the credential management functions will be expected to be exported from the dll identified by the ProviderPath value. This value is only used if it is desirable to package the network functions and the credential manager functions in separate DLLs.
15.3. Example
HKEY_LOCAL_MACHINE\System\CurrentControlSet\�	Control\NetworkProvider\�		order
			ProviderOrder="LanmanWorkStation,FooNetSvc"�	Services\�		LanmanWorkStation\
			Group="NetworkProvider"�			NetworkProvider�				Name = "NT LanMan"�				ProviderPath = "ntlanman.dll"
				Class = 0x00000001 (WN_NETWORK_CLASS)�		FooNetSvc\
			Group="NetworkProvider"�			NetworkProvider�				Name = "Foo Network"�				ProviderPath = "c:\foo\bar.dll"
				Class = 0x00000003 (WN_NETWORK_CLASS | WN_CREDENTIAL_CLASS)
				AuthentProviderPath = "c:\foo\barCM.dll"

�The Selection section of the combobox is the upper rectangle above the List section that the current selection appears in.
�The List section of the combobox is the listbox that appears below the Selection portion of the combobox.

Microsoft Corporation

Microsoft Corporation

Win32 Network Provider API Specification	�page�ii�

NT/Win32 Network Provider API Specification	�page�i�

Win32 Multiple Network Provider Specification	�page�40�

Win32 Multiple Network Provider Specification	�page�41�

