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Abstract

We describe Bro, a stand-alone system for detecting net-
work intruders in real-time by passively monitoring a net-
work link over which the intruder's traffic transits. We give
an overview of the system's design, which emphasizes high-
speed (FDDI-rate) monitoring, real-time notification, clear
separation between mechanism and policy, and extensibility.
To achieve these ends, Bro is divided into an “event engine”
that reduces a kernel-filtered network traffic stream into a se-
ries of higher-level events, and a “policy script interpreter”
that interprets event handlers written in a specialized lan-
guage used to express a site's security policy. Event handlers
can update state information, synthesize new events, record
information to disk, and generate real-time notifications via
syslog. We also discuss a number of attacks that attempt
to subvert passive monitoring systems and defenses against
these, and give particulars of how Bro analyzes the four ap-
plications integrated into it so far: Finger, FTP, Portmapper
and Telnet. The system is publicly available in source code
form.

1 Introduction

With growing Internet connectivity comes growing oppor-
tunities for attackers to illicitly access computers over the
network. The problem of detecting such attacks is termed
network intrusion detection, a relatively new area of security
research [MHL94]. We can divide these systems into two
types, those that rely on audit information gathered by the
hosts in the network they are trying to protect, and those that
operate “stand-alone” by observing network traffic directly,
and passively, using a packet filter. In this paper we focus on
the problem of building stand-alone systems, which we will
term “monitors.” Though monitors necessarily face the diffi-
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culties of more limited information than systems with access
to audit trails, monitors also gain the major benefit that they
can be added to a network without requiring any changes to
the hosts. For our purposes—monitoring a collection of sev-
eral thousand heterogeneous, diversely-administeredhosts—
this advantage is immense.

Our monitoring system is called Bro (an Orwellian re-
minder that monitoring comes hand in hand with the po-
tential for privacy violations). A number of commer-
cial products exist that do what Bro does, generally with
much more sophisticated interfaces and management soft-
ware [In97, To97, Wh97],1 and larger “attack signature” li-
braries. To our knowledge, however, there are no detailed
accounts in the network security literature of how monitors
can be built. Furthermore, monitors can be susceptible to a
number of attacks aimed at subverting the monitoring; we
believe the attacks we discuss here have not been previously
described in the literature. Thus, the contribution of this pa-
per is not at heart a novel idea (though we believed it novel
when we undertook the project, in 1995), but rather a de-
tailed overview of some experiences with building such a
system.

Prior to developing Bro, we had significant operational ex-
perience with a simpler system based on off-line analysis of
tcpdump trace files. Out of this experience we formulated
a number of design goals and requirements:

High-speed, large volume monitoringFor our environ-
ment, we view the greatest source of threats as external
hosts connecting to our hosts over the Internet. Since
the network we want to protect has a single link con-
necting it to the remainder of the Internet (a “DMZ”),
we can economically monitor our greatest potential
source of attacks by passively watching the DMZ link.
However, the link is an FDDI ring, so to monitor it re-
quires a system that can capture traffic at speeds of up
to 100 Mbps. In addition, the volume of traffic over the
link is fairly hefty, about 20 GB/day.

1Or at least appear, according to their product literature, to do the same
things—we do not have direct experience with any of these products.

A somewhat different sort of product, the “Network Flight Recorder,” is
described in [RLSSLW97, Ne97].
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No packet filter drops If an application using a packet fil-
ter cannot consume packets as quickly as they arrive
on the monitored link, then the filter buffers the pack-
ets for later consumption. However, eventually the fil-
ter will run out of buffer, at which point itdropsany
further packets that arrive. From a security monitor-
ing perspective, drops can completely defeat the mon-
itoring, since the missing packets might contain ex-
actly the interesting traffic that identifies a network in-
truder. Given our first design requirement—high-speed
monitoring—then avoiding packet filter drops becomes
another strong requirement.

It is sometimes tempting to dismiss a problem such as
packet filter drops with an argument that it is unlikely
a traffic spike will occur at the same time as an attack
happens to be underway. This argument, however, is
completely undermined if we assume that an attacker
might, in parallel with a break-in attempt,attack the
monitor itself (see below).

Real-time notification One of our main dissatisfactions
with our initial off-line system was the lengthy delay
incurred before detecting an attack. If an attack, or
an attempted attack, is detected quickly, then it can be
much easier to trace back the attacker (for example, by
telephoning the site from which they are coming), min-
imize damage, prevent further break-ins, and initiate
full recording of all of the attacker's network activity.
Therefore, one of our requirements for Bro was that it
detect attacks in real-time. This is not to discount the
enormous utility of keeping extensive, permanent logs
of network activity for later analysis. Invariably, when
we have suffered a break-in, we turn to these logs for
retrospective damage assessment, sometimes searching
back a number of months.

Mechanism separate from policySound software design
often stresses constructing a clear separation between
mechanism and policy; done properly, this buys both
simplicity and flexibility. The problems faced by our
system particularly benefit from separating the two: be-
cause we have a fairly high volume of traffic to deal
with, we need to be able to easily trade-off at differ-
ent times how we filter, inspect and respond to different
types of traffic. If we hardwired these responses into the
system, then these changes would be cumbersome (and
error-prone) to make.

Extensible Because there are an enormous number of dif-
ferent network attacks, with who knows how many
waiting to be discovered, the system clearly must be
designed in order to make it easy to add to it knowledge
of new types of attacks. In addition, while our system
is a research project, it is at the same time a production
system that plays a significant role in our daily secu-
rity operations. Consequently, we need to be able to
upgrade it in small, easily debugged increments.

Avoid simple mistakes Of course, we always want to avoid
mistakes. However, here we mean that we particularly
desire that the way that a site defines its security pol-
icy be both clear and as error-free as possible. (For ex-
ample, we would not consider expressing the policy in
C code as meeting these goals.)

The monitor will be attacked We must assume that attack-
ers will (eventually) have full knowledge of the tech-
niques used by the monitor, and access to its source
code, and will use this knowledge in attempts to sub-
vert or overwhelm the monitor so that it fails to detect
the attacker's break-in activity. This assumption signifi-
cantly complicates the design of the monitor; but failing
to address it is to build a house of cards.

We do, however, allow one further assumption, namely
that the monitor will only be attacked from one end.
That is, given a network connection between hostsA

andB, we assume that at most one ofA orB has been
compromised and might try to attack the monitor, but
not both. This assumption greatly aids in dealing with
the problem of attacks on the monitor, since it means
that we can trust one of the endpoints(though we do
not know which).

In addition, we note that this second assumption costs
us virtually nothing. If, indeed, bothA andB have been
compromised, then the attacker can establish intricate
covert channels between the two. These can be immea-
surably hard to detect, depending on how devious the
channel is; that our system fails to do so only means we
give up on something extremely difficult anyway.

A final important point concerns the broader context for
our monitoring system. Our site is engaged in basic, unclas-
sified research. The consequences of a break-in are usually
limited to (potentially significant) expenditure in lost time
and re-securing the compromised machines, and perhaps a
tarnished public image depending on the subsequent actions
of the attackers. Thus, while we very much aim to minimize
break-in activity, we do not try to achieve “airtight” security.
We instead emphasize monitoring over blocking when possi-
ble. Obviously, other sites may have quite different security
priorities, which we do not claim to address.

In the remainder of this paper we discuss how the design
of Bro attempts to meet these goals and constraints. First, in
x 2 we give an overview of the structure of the whole system.
x 3 presents the specializedBro language used to express a
site's security policy. We turn inx 4 to the details of how the
system is currently implemented.x 5 discusses attacks on the
monitoring system.x 6 looks at the specialized analysis Bro
does for four Internet applications: FTP, Finger, Portmapper,
and Telnet.x 7 gives the status of the implementation, a brief
assessment of its performance, its availability, and thoughts
on future directions. Finally, an Appendix illustrates how the
different elements of the system come together for monitor-
ing Finger traffic.
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Figure 1: Structure of the Bro system

2 Structure of the system

Bro is conceptually divided into an “event engine” that re-
duces a stream of (filtered) packets to a stream of higher-level
network events, and an interpreter for a specialized language
that is used to express a site's security policy. More gener-
ally, the system is structured in layers, as shown in Figure 1.
The lower-most layers process the greatest volume of data,
and hence must limit the work performed to a minimum. As
we go higher up through the layers, the data stream dimin-
ishes, allowing for more processing per data item. This ba-
sic design reflects the need to conserve processing as much
as possible, in order to meet the goals of monitoring high-
speed, large volume traffic flows without dropping packets.

2.1 libpcap

From the perspective of the rest of the system, just above the
network itself islibpcap [MLJ94], the packet-capture li-
brary used bytcpdump [JLM89]. Using libpcap gains
significant advantages: it isolates Bro from details of the
network link technology (Ethernet, FDDI, SLIP, etc.); it
greatly aids in porting Bro to different Unix variants (which
also makes it easier to upgrade to faster hardware as it be-
comes available); and it means that Bro can also operate on
tcpdump save files, making off-line development and anal-
ysis easy.

Another major advantage oflibpcap is that if the host

operating system provides a sufficiently powerful kernel
packet filter, such as BPF [MJ93], thenlibpcap down-
loads the filter used to reduce the traffic into the kernel. Con-
sequently, rather than having to haul every packet up to user-
level merely so the majority can be discarded (if the filter
accepts only a small proportion of the traffic), the rejected
packets can instead be discarded in the kernel, without suf-
fering a context switch or data copying. Winnowing down
the packet stream as soon as possible greatly abets monitor-
ing at high speeds without losing packets.

The key to packet filtering is, of course, judicious selec-
tion of which packets to keep and which to discard. For the
application protocols that Bro knows about, it captures every
packet, so it can analyze how the application is being used.
In tcpdump 's filtering language, this looks like:

tcp port finger or tcp port ftp or
tcp port telnet or port 111

That is, the filter accepts any TCP packets with a source or
destination port of 79 (Finger), 21 (FTP), or 23 (Telnet), and
any TCP or UDP packets with a source or destination port of
111 (Portmapper). In addition, Bro uses:

tcp[13] & 7 != 0

to capture any TCP packets with the SYN, FIN, or RST con-
trol bits set. These packets delimit the beginning (SYN) and
end (FIN or RST) of each TCP connection. Because TCP/IP
packet headers contain considerable information about each
TCP connection, from just these control packets one can
extract connection start time, duration, participating hosts,
ports (and hence, generally, the name of the application), and
the number of bytes sent in each direction. Thus, by captur-
ing on the order of only 4 packets (the two initial SYN pack-
ets exchanged, and the final two FIN packets exchanged), we
can determine a great deal about a connection even though
we filter out all of its data packets.

When using a packet filter, one must also choose asnap-
shot length, which determines how much of each packet
should be captured. For example, by defaulttcpdump uses
a snapshot length of 68 bytes, which suffices to capture link-
layer and TCP/IP headers, but generally discards most of the
data in the packet. The smaller the snapshot length, the less
data per accepted packet needs to copied up to the user-level
by the packet filter, which aids in accelerating packet pro-
cessing and avoiding loss. On the other hand, to analyze
connections at the application level, Bro requires the full data
contents of each packet. Consequently, it sets the snapshot
length to capture entire packets.

2.2 Event engine

The resulting filtered packet stream is then handed up to the
next layer, the Bro “event engine.” This layer first performs
several integrity checks to assure that the packet headers are
well-formed. If these checks fail, then Bro generates an event
indicating the problem and discards the packet.
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If the checks succeed, then the event engine looks up
the connection state associated with the tuple of the two
IP addresses and the two TCP or UDP port numbers, cre-
ating new state if none already exists. It then dispatches the
packet to a handler for the corresponding connection (de-
scribed shortly). Bro maintains atcpdump trace file asso-
ciated with the traffic it sees. The connection handler indi-
cates upon return whether the engine should record the entire
packet to the trace file, just its header, or nothing at all. This
triage trades off the completeness of the traffic trace versus
its size and time spent generating the trace. Generally, Bro
records full packets if it analyzed the entire packet; just the
header if it only analyzed the packet for SYN/FIN/RST com-
putations; and skips recording the packet if it did not do any
processing on it.

We now give an overview of general processing done for
TCP and UDP packets. In both cases, the processing ends
with invoking a handler to process the data payload of the
packet. For applications known to Bro, this results in further
analysis, as discussed inx 6. For other applications, analysis
ends at this point.

TCP processing. For each TCP packet, the connec-
tion handler (a C++ virtual function) verifies that the entire
TCP header is present and validates the TCP checksum over
the packet header and payload. If successful, it then tests
whether the TCP header includes any of the SYN/FIN/RST
control flags, and if so adjusts the connection's state ac-
cordingly. Finally, it processes any data acknowledgement
present in the header, and then invokes a handler to process
the payload data, if any.

Different changes in the connection's state generate dif-
ferent events. When the initial SYN packet requesting
a connection is seen, the event engine schedules a timer
for T seconds in the future (presently, five minutes); if
the timer expires and the connection has not changed
state, then the engine generates aconnection attempt
event. If before that time, however, the other con-
nection endpoint replies with a correct SYN acknow-
ledgement packet, then the engine immediately generates
a connection established event, and cancels the
connection attempt timer. On the other hand, if the
endpoint replies with a RST packet, then the connec-
tion attempt has been rejected, and the engine generates
connection rejected . Similarly, if a connection ter-
minates via a normal FIN exchange, then the engine gen-
eratesconnection finished . It also generates several
other events reflecting more unusual ways in which connec-
tions can terminate.

UDP processing.UDP processing is similar but simpler,
since there is no connection state, except in one regard. If
hostA sends a UDP packet to hostB with a source port ofpA
and a destination port ofpB , then Bro considersA as having
initiated a “request” toB, and establishes pseudo-connection
state associated with that request. IfB subsequently sends
a UDP packet toA with a source port ofpB and destina-
tion pA, then Bro considers this packet to reflect a “reply”

to the request. The handlers (virtual functions) for the UDP
payload data can then readily distinguish between requests
and replies for the usual case when UDP traffic follows that
pattern. The default handlers for UDP requests and replies
simply generateudp request andudp reply events.

2.3 Policy script interpreter

After the event engine has finished processing a packet, it
then checks whether the processing generated any events.
(These are kept on a FIFO queue.) If so, it processes each
event until the queue is empty, as described below. It also
checks whether any timer events have expired, and if so pro-
cesses them, too.2

A key facet of Bro's design is the clear distinction between
the generation of events versus what to do in response to
the events. These are shown as separate boxes in Figure 1,
and this structure reflects the separation between mechanism
and policy discussed inx 1. The “policy script interpreter”
executes scripts written in the specializedBro language (de-
tailed inx 3). These scripts specify event handlers, which are
essentially identical to Bro functions except that they don' t
return a value. For each event passed to the interpreter, it re-
trieves the (semi-)compiled code for the corresponding han-
dler, binds the values of the events to the arguments of the
handler, and interprets the code. This code in turn can exe-
cute arbitrary Bro scripting commands, including generating
new events, logging real-time notifications (using the Unix
syslogfunction), recording data to disk, or modifying inter-
nal state for access by subsequently invoked event handlers
(or by the event engine itself).

Finally, along with separating mechanism from policy,
Bro's emphasis on asynchronous events as the link between
the event engine and the policy script interpreter buys a great
deal in terms of extensibility. Adding new functionality to
Bro generally consists of adding a new protocol analyzer to
the event engine and then writing new event handlers for the
events generated by the analyzer. Neither the analyzer nor
the event handlers tend to have much overlap with existing
functionality, so for the most part we can avoid the subtle in-
teractions between loosely coupled modules that can easily
lead to maintenance headaches and buggy programs.

2There is a subtle design decision involved with processing all of the
generated events before proceeding to read the next packet. We might be
tempted to defer event processing until a period of relatively light activity,
to aid the engine with keeping up during periods of heavy load. However,
doing so can lead to races: the “event control” arrow in Figure 1 reflects
the fact that the policy script can, to a limited degree, manipulate the con-
nection state maintained inside the engine. If event processing is deferred,
then such control may happen after the connection state has already been
changed due to more recently-received traffic. So, to ensure that event pro-
cessing always reflects fresh data, and does not inadvertently lead to incon-
sistent connection state, we process events immediately, before moving on
to newly-arrived network traffic.
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3 The Bro language

As discussed above, we express security policies in terms of
scripts written in the specializedBro language. In this sec-
tion we give an overview of the language's features. The aim
is to convey the flavor of the language, rather than describe
it precisely.

Our goal of “avoid simple mistakes” (x 1), while perhaps
sounding trite, in fact heavily influenced the design of the
Bro language. Because intrusion detection can form a cor-
nerstone of the security measures available to a site, we very
much want our policy scripts to behave as expected. From
our own experience, a big step towards avoiding surprises is
to use a strongly typed language that detects typing inconsis-
tencies at compile-time, and that guarantees that all variable
references at run-time will be to valid values. Furthermore,
we have come to appreciate the benefits of domain-specific
languages, that is, languages tailored for a particular task.
Having cobbled together our first monitoring system out of
tcpdump , awk, and shell scripts, we thirsted for ways to
deal directly with hostnames, IP addresses, port numbers,
and the like, rather than devising ASCII pseudo-equivalents.
By making these sorts of entities first-class values inBro , we
both increase the ease of expression offered by the language
and, due to strong typing, catch errors (such as comparing a
port to an IP address) that might otherwise slip by.

3.1 Data types and constants

Atomic types. Bro supports several types familiar to users
of traditional languages:bool for booleans,int for in-
tegers,count for non-negative integers (“unsigned” in C),
double for double-precision floating point, andstring
for a series of bytes. The first four of these (all butstring )
are termedarithmetictypes, and mixing them in expressions
promotesbool to count , count to int , and int to
double .

Bro providesT and F as bool constants for true and
false; a series of digits forcount constants; and C-style
constants fordouble andstring .

Unlike in C, however,Bro strings are represented inter-
nally as a count and a vector of bytes, rather than a NUL-
terminated series of bytes. This difference is important be-
cause NULs can easily be introduced into strings derived
from network traffic, either by the nature of the application,
inadvertently, or maliciously by an attacker attempting to
subvert the monitor. An example of the latter is sending the
following to an FTP server:

USER nice\0USER root

where “\0 ” represents a NUL. Depending on how it is writ-
ten, the FTP application receiving this text might well in-
terpret it as two separate commands, “USER nice ” fol-
lowed by “USER root ”. But if the monitoring program
uses NUL-terminated strings, then it will effectively see only

“USER nice ” and have no opportunity to detect the sub-
versive action.

Similarly, it is important that when Bro logs such strings,
or prints them as text to a file, that it expands embedded
NULs into visible escape sequences to flag their appearance.

Bro also includes a number of non-traditional types,
geared towards its specific problem domain. A value of
type time reflects an absolute time, andinterval a dif-
ference in time. Subtracting twotime values yields an
interval ; adding or subtracting aninterval to atime
yields atime ; adding twotime values is an error. There
are presently notime constants, butinterval constants
can be specified using a numeric (possibly floating-point)
value followed by a unit of time, such as “30 min ” for
thirty minutes.

Theport type corresponds to a TCP or UDP port num-
ber. TCP and UDP ports are distinct (internally, Bro distin-
guishes between the two, both of which are 16-bit quantities,
by storingport values in a 32-bit integer and setting bit 17
for UDP ports). Thus, a variable of typeport can hold ei-
ther a TCP or a UDP port, but at any given time it is holding
exactly one of these.

There are two forms ofport constants. The first con-
sists of an unsigned integer followed by either “/tcp ” or
“ /udp .” So, for example, “80/tcp ” corresponds to TCP
port 80 (the HTTP protocol used by the World Wide Web).
The second form of constant is specified using an identifier
that matches one of the services known to thegetservbyname
library routine. (Probably these service names should instead
be built directly into Bro, to avoid problems when porting
Bro scripts between operating systems.) So, for example,
“ telnet ” is a Bro constant equivalent to “23/tcp .”

This second form ofport constant, while highly conve-
nient and readable, brings with it a subtle problem. Some
names, such as “domain ,” on many systems correspond
to two different ports; in this example, to53/tcp and
53/udp . Therefore, the type of “domain ” is not a sim-
ple port value, but instead alist of port values. Ac-
cordingly, a constant like “domain ” cannot be used inBro
expressions (such as “dst port == domain ”), because
it is ambiguous which value is intended. We return to this
point shortly.

Values of typeport may be compared for equality or or-
dering (for example, “20/tcp < telnet ” yields true),
but otherwise cannot be operated on.

Another networking type provided byBro is addr , cor-
responding to an IP address. These are represented inter-
nally as unsigned, 32-bit integers, but inBro scripts the only
operations that can be performed on them are comparisons
for equality or inequality (also, a built-in function provides
masking, as discussed below). Constants of typeaddr have
the familiar “dotted quad” format,A1:A2:A3:A4, where the
Ai all lie between 0 and 255.

More interesting arehostnameconstants. There is no
Bro type corresponding to Internet hostnames, because
hostnames can correspond to multiple IP addresses, so one

5



quickly runs into ambiguities if comparing one hostname
with another. Bro does, however, support hostnames as
constants. Any series of two or more identifiers delim-
ited by dots forms a hostname constant, so, for example,
“ lbl.gov ” and “www.microsoft.com ” are both host-
name constants (the latter, as of this writing, corresponds to
13 distinct IP addresses). The value of a hostname constant
is a list of addr containing one or more elements. These
lists (as with the lists associated with certainport con-
stants, discussed above) cannot be used inBro expressions;
but they play a central role in initializingBro table 's and
set 's, discussed inx 3.3 below.

Aggregate types.Bro also supports a number of aggre-
gate types. Arecord is a collection of elements of arbi-
trary type. For example, the predefinedconn id type, used
to hold connection identifiers, is defined in theBro run-time
initialization file as:

type conn_id: record {
orig_h: addr;
orig_p: port;
resp_h: addr;
resp_p: port;

};

The orig h and resp h elements (or “fields”) have type
addr and hold the connection originator's and responder's
IP addresses. Similarly,orig p andresp p hold the orig-
inator and responder ports. Record fields are accessed using
the “$” operator.

For specifying security policies, a particularly usefulBro
type is table . Bro tables have two components, a set of
indicesand ayield type. The indices may be of any atomic
(non-aggregate) type, and/or anyrecord types that, when
(recursively) expanded into all of their elements, are com-
prised of only atomic types. (Thus,Bro tables provide a
form of associative array.) So, for example,

table[port] of string

can be indexed by aport value, yielding astring , and:

table[conn_id] of ftp_session_info

is indexed by aconn id record—or, equivalently, by an
addr , a port , anotheraddr , and anotherport —and
yields anftp session info record as a result.

Closely related totable types areset types. These are
simply table types that do not yield a value. Their purpose
is to maintain collections of tuples, expressed in terms of the
set's indices. The examples inx 3.3 clarify how this is useful.

Another aggregate type supported isfile . Support for
files is presently crude: a script can open files for writing or
appending, and can pass the resultingfile variable to the
print command to specify where it should write, but that
is all. Also, these files are simple ASCII. In the future, we
plan to extend files to support reading, ASCII parsing, and
binary (typed) reading and writing.

We also note that a key type missing fromBro is that
of pattern , for supporting regular expression matching
against text. We plan to add patterns in the near future.

Finally, above we alluded to thelist type, which holds
zero or more instances of a value. Currently, this type is
not directly available to theBro script writer, other than
implicitly when usingport or hostnameconstants. Since
its present use is primarily internal to the script interpreter
(when initializing variables, perx 3.3), we do not describe it
further.

3.2 Operators

Bro provides a number of C-like operators (+, - , * , / , %,
! , &&, || , ?: , relationals like<=) with which we assume
the reader is familiar, and will not detail here. Assignment
is done using=, table and set indexing with[] , and func-
tion invocation and event generation with() . Numeric vari-
ables can be incremented and decremented using++ and-- .
Record fields are accessed using$, to avoid ambiguity with
hostnameconstants. Assignment of aggregate values isshal-
low—the newly-assigned variable refers to the same aggre-
gate value as the right-hand side of the assignment expres-
sion. This choice was made to facilitate performance; we
have not yet been bitten by the semantics (which differ from
C). We may in the future add acopy operator to construct
“deep” copies.

From the perspective of C, the only novel operators are
in and !in . These infix operators yieldbool values de-
pending on whether or not a given index is in a giventable
or set . For example, ifsensitive services is aset
indexed by a singleport , then

23/tcp in sensitive_services

returns true if the set has an element corresponding to an in-
dex of TCP port 23, false if it does not have such an element.
Similarly, if RPCokay is aset (or table ) indexed by a
source address, a destination address, and an RPC service
number (acount ), then

[src_addr, dst_addr, serv] in RPC_okay

yields true if the given ordered triple is present as an in-
dex intoRPCokay . The !in operator simply returns the
boolean negation of thein operator.

Presently, indexing a table or set with a value that does not
correspond to one of its elements leads to a run-time error,
so such operations need to be preceded byin tests. We find
this not entirely satisfying, and plan to add a mechanism for
optionally specifying the action to take in such cases on a
per-table basis.

Finally, Bro includes a number of predefined func-
tions to perform operations not directly available in the
language. Some of the more interesting:fmt pro-
vides sprintf-style formatting for use in printing or ma-
nipulating strings;edit returns a copy of a string that
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has been edited using the given editing characters (cur-
rently it only knows about single-character deletions);
mask addr takes anaddr and returns anotheraddr cor-
responding to its topn bits; open and close manipu-
late file s; network time returns the timestamp of the
most recently received packet;getenv provides access
to environment variables;skip further processing
marks a connection as not requiring any further analy-
sis; set record packets instructs the event engine
whether or not to record any of a connection's future
packets (though SYN/FIN/RST are always recorded); and
parse ftp port takes an FTP “PORT” command and re-
turns arecord with the correspondingaddr andport .

3.3 Variables

Bro supports two levels of scoping: local to a function or
event handler, and global to the entireBro script. Expe-
rience has already shown that we would benefit by adding
a third, intermediate level of scoping, perhaps as part of
a “module” or “object” facility, or even as simple as C's
static scoping. Local variables are declared using the
keywork local , and the declarations must come inside the
body of a function or event handler. There is no requirement
to declare variables at the beginning of the function. The
scope of the variable ranges from the point of declaration to
the end of the body. Global variables are declared using the
keywordglobal and the declarations must come outside
of any function bodies. For either type of declaration, the
keyword can be replaced instead byconst , which indicates
that the variable's value is constant and cannot be changed.

Syntactically, a variable declaration looks like:

{class} {identifier} [':' {type}] ['=' {init}]

That is, a class (local or global scope, or theconst
qualifier), the name of the variable, an optional type, and an
optional initialization value. One of the latter two must be
specified. If both are, then naturally the type of the initial-
ization much agree with the specified type. If only a type is
given, then the variable is marked as not having a value yet;
attempting to access its value before first setting it results in
a run-time error.

If only an initializer is specified, then Bro infers the vari-
able's type from the form of the initializer. This proves quite
convenient, as does the ease with which complex tables and
sets can be initialized. For example,

const IRC = { 6666/tcp, 6667/tcp, 6668/tcp };

infers a type ofset[port] for IRC, while:

const ftp_serv = { ftp.lbl.gov, www.lbl.gov };

infers a type ofset[addr] for ftp serv , and initial-
izes it to consist of the IP addresses forftp.lbl.gov
and www.lbl.gov , which, as noted above, may encom-
pass more than two addresses. Bro infers compound indices
by use of[] notation:

const allowed_services = {
[ftp.lbl.gov, ftp], [ftp.lbl.gov, smtp],
[ftp.lbl.gov, auth], [ftp.lbl.gov, 20/tcp],
[www.lbl.gov, ftp], [www.lbl.gov, smtp],
[www.lbl.gov, auth], [www.lbl.gov, 20/tcp],
[nntp.lbl.gov, nntp]

};

results inallowed services having typeset[addr,
port] . Here again, thehostnameconstants may result in
more than one IP address. Any time Bro encounters alist
of values in an initialization, it replicates the correspond-
ing index. Furthermore, one can explicitly introduce lists in
initializers by enclosing a series of values (with compatible
types) in[] 's, so the above could be written:

const allowed_services: set[addr, port] = {
[ftp.lbl.gov, [ftp, smtp, auth, 20/tcp]],
[www.lbl.gov, [ftp, smtp, auth, 20/tcp]],
[nntp.lbl.gov, nntp]

};

The only cost of such an initialization is that Bro's algorithm
for inferring the variable's type from its initializer currently
gets confused by these embedded lists, so the type now needs
to be explicitly supplied, as shown.

In addition, any previously-defined global variable can be
used in the initialization of a subsequent global variable. If
the variable used in this fashion is aset , then its indices are
expanded as if enclosed in their own list. So the above could
be further simplified to:

const allowed_services: set[addr, port] = {
[ftp_serv, [ftp, smtp, auth, 20/tcp]],
[nntp.lbl.gov, nntp]

};

Initializing table values looks very similar, with the differ-
ence that atable initializer includes ayield value, too. For
example:

global port_names = {
[7/tcp] = "echo",
[9/tcp] = "discard",
[11/tcp] = "systat",
...

};

which infers a type oftable[port] of string .
We find that these forms of initialization shorthand are

much more than syntactic sugar. Because they allow us
to define large tables in a succinct fashion, by referring to
previously-defined objects and by concisely capturing forms
of replication in the table, we can specify intricate policy re-
lationships in a fashion that's both easy to write and easy
to verify. Certainly, we would prefer the final definition of
allowed services above to any of its predecessors, in
terms of knowing exactly what the set consists of.

Along with clarity and conciseness, another important
advantage ofBro 's emphasis on tables and sets is speed.
Consider the common problem of attempting to determine
whether access is allowed to serviceS of hostH. Rather than
using (conceptually):
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if ( H == ftp.lbl.gov || H == www.lbl.gov )
if ( S == ftp || S == smtp || ... )

else if ( H == nntp.lbl.gov )
if ( S == nntp )

...

we can simply use:

if ( [S, H] in allowed_services )
... it's okay ...

The in operation translates into a single hash table lookup,
avoiding the cascadedif 's and clearly showing the intent of
the test.

3.4 Statements

Bro currently supports only a modest group of statements,
which we have so far found sufficient. Along with C-style
if andreturn and expression evaluation, other statements
are: print a list of expressions to afile (stdoutby de-
fault); log a list of expressions;add an element to aset ;
delete an element from aset or a table ; andevent ,
which generates a new event.

In particular, the language does not support looping using
a for -style construct. We are wary of loops in event han-
dlers because they can lead to arbitrarily large processing
delays, which in turn could lead to packet filter drops. We
wanted to see whether we could still adequately express se-
curity policies inBro without resorting to loops; if so, then
we have some confidence that every event is handled quickly.
So far, this experiment has been successful. Looping is still
possible via recursion (either functions calling themselves,
or event handlers generating their own events), but we have
not found a need to resort to it.

Like in C, we can group sets of statements intoblocksby
enclosing them withinfg's. Function definitions look like:

function endpoint_id(h: addr, p: port): string
{
if ( p in port_names )

return fmt("%s/%s", h, port_names[p]);
else

return fmt("%s/%d", h, p);
}

Event handler definitions look the same except that
function is replaced byevent and they cannot specify a
return type. See Appendix A for an example.

Functions are invoked the usual way, as expressions spec-
ified by the function's name followed by its arguments en-
closed within parentheses. Events are generated in a similar
fashion, except using the keywordevent before the han-
dler's name and argument list. Since events do not return
values (they can' t, since they are processed asynchronously),
event generation is a statement inBro and not an expression.

Bro also allows “global” statements that are not part of a
function or event handler definition. These are executed after
parsing the full script, and can of course invoke functions
or generate events. The event engine also generates events

during different phases of its operation:bro init when it
is about to begin operation,bro done when it is about to
terminate, andbro signal when it receives a Unix signal.

One difference between defining functions and defining
event handlers is thatBro allows multiple, different defini-
tions for a given event handler. Whenever an event is gen-
erated, each instance of a handler is invoked in turn (in the
order they appear in the script). So, for example, different
(conceptual) modules can each definebro init handlers
to take care of their initialization. We find this considerably
simplifies the task of creating modular sets of event handlers,
but we anticipate requiring greater control in the future over
the exact order in whichBro invokes multiple handlers.

4 Implementation issues

We implemented the Bro event engine and script interpreter
in C++, currently about 22,000 lines. In this section we
discuss some of the significant implementation decisions
and tradeoffs. We defer tox 5 discussion of how Bro de-
fends against attacks on the monitoring system, and post-
pone application-specific issues untilx 6, as that discussion
benefits from notions developed inx 5.

Single-threaded design.Since event handling lies at the
heart of the system, it is natural to consider a multi-threaded
design, with one thread per active event handler. We have so
far resisted this approach, because of concerns that it could
lead to subtle race conditions inBro scripts.

An important consequence of a single-threaded design is
that the system must be careful before initiating any activ-
ity that may potentially block waiting for a resource, lead-
ing to packet filter drops as the engine fails to consume in-
coming traffic. A particular concern is performing Domain
Name System (DNS) lookups, which can take many seconds
to complete or time out. Currently, Bro only performs such
lookups when parsing its input file, but we want in the fu-
ture to be able to make address and hostname translations on
the fly, both to generate clearer messages, and to detect cer-
tain types of attacks. Consequently, Bro includes customized
non-blocking DNS routines that perform DNS lookups asyn-
chronously.

We may yet adopt a multi-threaded design. A more
likely possibility is evolving Bro towards a distributed de-
sign, in which loosely-coupled, multiple Bro's on separate
processors monitor the same network link. Each Bro would
watch a different type of traffic (e.g., HTTP or NFS) and
communicate only at a high level, to convey current threat
information.3

Managing timers. Bro uses numerous timers internally
for operations such as timing out a connection establishment
attempt. It sometimes has thousands of timers pending at

3Some systems, such as DIDS and CSM, orchestrate multiple monitors
watching multiple network links, in order to track users as they move from
machine to machine [MHL94, WFP96]. These differ from what we envision
for Bro in that they require each host in the network to run a monitor.
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a given moment. Consequently, it is important that timers
be very lightweight: quick to set and to expire. Our ini-
tial implementation used a single priority heap, which we
found attractive since insert and delete operations both re-
quire onlyO(log(N)) time if the heap containsN elements.
However, we found that when the heap grows quite large—
such as during a hostile port scan that creates hundreds of
new connections each second—then this overhead becomes
significant. Consequently, we perceived a need to redesign
timers to bring the overhead closer toO(1). To achieve this,
Bro is now in the process of being converted to using “cal-
endar queues” instead [Br88].

A related issue with managing timers concerns exactly
when to expire timers. Bro derives its notion of time from the
timestamps provided bylibpcap with each packet it de-
livers. Whenever this clock advances to a time later than the
first element on the timer queue, Bro begins removing timers
from the queue and processing their expiration, continuing
until the queue is empty or its first element has a timestamp
later than the current time. This approach is flawed, how-
ever, because in some situations—such as port scans—the
event engine may find it needs to expire hundreds of timers
that have suddenly become due, because the clock has ad-
vanced by a large amount due to a lull in incoming traffic.
Clearly, what we should do instead is (again) sacrifice exact-
ness as to when timers are expired, and (1) expire at mostk

for any single advance of the clock, and (2) also expire timers
when there has been a processing lull (as this is precisely the
time when we have excess CPU cycles available), without
waiting for a packet to finally arrive and end the lull. These
changes are also part of our current revisions to Bro's timer
management.

Interpreting vs. compiling. Presently, Bro interprets the
policy script: that is, it parses the script into a tree of C++
objects that reflect an abstract syntax tree (AST), and then
executes portions of the tree as needed by invoking a vir-
tual evaluation method at the root of a given subtree. This
method in turn recursively invokes evaluation methods on its
children.

Such a design has the virtues of simplicity and ease of
debugging, but comes at the cost of considerable overhead.
From its inception, we intendedBro to readily admit com-
pilation to a low-level virtual machine. Execution profiles
of the current implementation indicate that the interpretive
overhead is indeed significant, so we anticipate developing a
compiler and optimizer. (The current interpreter does some
simple constant folding and peephole optimization when
building the AST, but no more.)

Using an interpreter also inadvertantly introduced an im-
plementation problem. By structuring the interpreter such
that it recursively invokes virtual evaluation methods on the
AST, we wind up intricately tying theBro evaluation stack
with the C++ run-time stack. Consequently, we cannot eas-
ily bundle up aBro function's execution state into a closure
to execute at some later point in time. Yet we would like to
have this functionality, soBro scripts have timers available

to them; the semantics of these timers are to execute a block
of statements when a timer expires, including access to the
local variables of the function or event handler scheduling
the timer. Therefore, adding timers toBro will require at a
minimum implementing an execution stack forBro scripts
separate from that of the interpreter.

Checkpointing. We run Bro continuously to monitor our
DMZ network. However, we need to periodically checkpoint
its operation, both to reclaim memory tied up in remember-
ing state for long-dormant connections (because we don' t yet
have timers in the scripting language; see above), and to col-
lect a snapshot for archiving and off-line analysis (discussed
below).

Checkpointing is currently a three-stage process. First, we
run a new instance of Bro that parses the policy script and
resolves all of the DNS names in it. Because we have non-
blocking DNS routines, Bro can perform a large number of
lookups in parallel, as well as timing out lookup attempts
whenever it chooses. For each lookup, it compares the re-
sults with any it may have previously cached and generates
corresponding events (mapping valid, mapping unverified if
it had to time out the lookup, or mapping changed). It then
updates the DNS cache file and exits.

In the second stage, we run another instance of Bro, this
time specifying that it should only consult the DNS cache
and not perform lookups. Because it works directly out of the
cache, it starts very quickly. After waiting a short interval,
we then send a signal to the long-running Bro telling it to
terminate. When it exits, the checkpointing is complete.

We find the checkpointing deficient in two ways. First,
it would be simpler to coordinate a checkpoint if a new in-
stance of Bro could directly signal an old instance to an-
nounce that it is ready to take over monitoring. Second, and
more important, currently no state survives the checkpoint-
ing. In particular, if the older Bro has identified some sus-
pect activity and is watching it particularly closely (say, by
recording all of its packets), this information is lost when the
new Bro takes over. Clearly, we need to fix this.

Off-line analysis. As mentioned above, one reason for
checkpointing the system is to facilitate off-line analysis.
The first step of this analysis is to copy thelibpcap save
file and any files generated by the policy script to an anal-
ysis machine. Our policy script generates six such files: a
summary of all connection activity, including starting time,
duration, size in each direction, protocol, endpoints (IP ad-
dresses), connection state, and any additional information
(such as username, when identified); a summary of the net-
work interface and packet filter statistics; a list of all gener-
ated log messages; summaries of Finger and FTP commands;
and a list of all unusual networking events.

Regarding this last, the event engine identifies more than
50 different types of unusual behavior, such as incorrect con-
nection initiations and terminations, checksum errors, packet
length mismatches, and protocol violations. For each, it gen-
erates aconn weird or net weird event, identifying the
behavior with a predefined string. Our policy script uses
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a table[string] of count to map these strings to
three different values, “ignore,” “file,” and “log,” meaning
ignore the behavior entirely, record it to the anomaly file, or
log it (real-time notification) and record it to the file. Some
anomalies prove surprisingly common, and on a typical day
the anomaly file contains on the order of 1,000 entries, even
though our script suppresses duplicate messages.

All of the copied files thus form an archival record of the
day's traffic. We keep these files indefinitely. They can prove
invaluable when we discover a break-in that first occurred
weeks or months in the past. In addition, once we have iden-
tified an attacking site, we can run it through the archive to
find any other hosts it may have attacked that the monitor-
ing failed to detect (quite common, for example, when the
attacker has obtained a list of passwords using a password-
sniffer).

In addition, after each checkpoint the analysis machine
further studies the traffic logs, looking for possible attacks,
the most significant being port scans and address sweeps.
We intend to eventually move this analysis into the real-time
portion of the system; for now, it waits upon adding timers to
Bro so we can time out connection state and avoiding con-
suming huge amounts of memory trying to remember every
distinct port and address to which each host has connected.

Finally, the off-line analysis generates a traffic summary
highlighting the busiest hosts and giving the volume (num-
ber of connections and bytes transferred) due to different ap-
plications. As of this writing, on a typical day our site en-
gages in about 600,000 connections transferring 20 GB of
data. The great majority (75–80%) of the connections are
HTTP; the highest byte volume comes from HTTP, FTP data,
NNTP (network news), and, sometimes, X11, with the order-
ing among them variable.

5 Attacks on the monitor

In this section we discuss the difficult problem of defending
the monitor against attacks upon itself. We defer discussion
of Bro's application-specific processing until after this sec-
tion, because elements of that processing reflect attempts to
defeat the types of attacks we describe here.

As discussed inx 1, we assume that such attackers have
full access to the monitor's algorithms and source code; but
also that they have control over only one of the two connec-
tion endpoints. In addition, we assume that the cracker does
nothave access to theBro policy script, which each site will
have customized, and should keep well protected.

While previous work has addressed the general prob-
lem of testing intrusion detection systems [PZCMO96], this
work has focussed on correctness of the system in terms of
whether it does indeed recognize the attacks claimed. To our
knowledge, the literature does not contain any discussion of
attacks specifically aimed at subverting a network intrusion
detection system, other than the discussion in [PZCMO96]
of the general problem of the monitor failing to keep up due

to high load.
For our purposes, we classify network monitor attacks into

three categories:overload, crash, andsubterfuge. The re-
mainder of this section defines each category and briefly dis-
cusses the degree to which Bro meets that class of threat.

5.1 Overload attacks

We term an attack as anoverloadif the goal of the attack is
to overburden the monitor to the point where it fails to keep
up with the data stream it must process. The attack has two
phases, the first in which the attacker drives the monitor to
the point of overload, and the second in which the attacker
attempts a network intrusion. The monitor would ordinarily
detect this second phase, but fails to do so—or at least fails
to do so with some non-negligible probability—because it is
no longer tracking all of the data necessary to detect every
current threat.

It is this last consideration, that the attack might still
be detected because the monitor was not sufficiently over-
whelmed, that complicates the use of overload attacks; so, in
turn, this provides a defensive strategy, namely to leave some
doubt as to the exact power and typical load of the monitor.

Another defensive strategy is for the monitor toshed load
when it becomes unduly stressed (see [CT94] for a discus-
sion of shedding load in a different context). For example,
the monitor might decide to cease to capture HTTP packets,
as these form a high proportion of the traffic. Of course, if
the attacker knows the form of load-shedding used by the
monitor, then they can exploit its consequent blindness and
launch a now-undetected attack.

For Bro in particular, to develop an overload attack one
might begin by inspecting Figure 1 to see how to increase the
data flow. One step is to send packets that match the packet
filter; another, packet streams that in turn generate events;
and a third, events that lead to logging or recording to disk.

The first of these is particularly easy, because the
libpcap filter used by Bro is fixed. One defense against
it is to use a hardware platform with sufficient processing
power to keep up with a high volume of filtered traffic, and
it was this consideration that lead to our elaborating the goal
of “no packet filter drops” inx 1. The second level of attack,
causing the engine to generate a large volume of events, is a
bit more difficult to achieve because Bro events are designed
to be lightweight. It is only the events for which the pol-
icy specifies quite a bit of work that provide much leverage
for an attack at this level, and we donot assume that the
attacker has access to the policy scripts. This same consid-
eration makes an attack at the final level—elevating the log-
ging or recording rate—difficult, because the attacker does
not necessarily know which events lead to logging.

Finally, to help defend against overload attacks, the event
engine generates anet stats update event everyT sec-
onds. The value of this event gives the number of packets re-
ceived, the number dropped by the packet filter due to insuffi-
cient buffer, and the number reported dropped by the network
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interface because the kernel failed to consume them quickly
enough. Thus,Bro scripts at least have some basic informa-
tion available to them to determine whether the monitor is
becoming overloaded.

5.2 Crash attacks

Crash attacks aim to knock the monitor completely out of
action by causing it to either fault or run out of resources. As
with an overload attack, the crash attack has two phases, the
first during which the attacker crashes the monitor, and the
second during which they then proceed with an intrusion.

Crash attacks can be much more subtle than overload at-
tacks, though. By careful source code analysis, it may be
possible to find a series of packets, or even just one, that,
when received by the monitor, causes it to fault due to a cod-
ing error. The effect can be immediate and violent.

We can perhaps defend against this form of crash attack
by careful coding and testing. Another type of crash attack,
harder to defend against, is one that causes the monitor to ex-
haust its available resources: dynamic memory or disk space.
Even if the monitor has no memory leaks, it still needs to
maintain state for any active traffic. Therefore, one attack is
to create traffic that consumes a large amount of state. When
Bro supports timers for policy scripts, this attack will be-
come more difficult, because it will be harder to predict the
necessary level of bogus traffic. Attacks on disk space are
likewise difficult, unless one knows the available disk ca-
pacity. In addition, the monitor might continue to run even
with no disk space available, sacrificing an archival record
but still producing real-time notifications, so a disk space at-
tack might fail to mask a follow-on attack.

Bro provides two features to aid with defending against
crash attacks. First, the event engine maintains a “watch-
dog” timer that expires everyT seconds. (This timer is not
a Bro internal timer, but rather a Unix “alarm.”) Upon expi-
ration, the watchdog handler checks to see whether the event
engine has failed to finish processing the packet (and sub-
sequent events) it was working onT seconds before. If so,
then the watchdog presumes that the engine is in some sort of
processing jam (perhaps due to a coding error, perhaps due
to excessive time spent managing overburdened resources),
and terminates the monitor process (first logging this fact, of
course, and generating a core image for later analysis).

This feature might not seem particularly useful, except for
the fact that it is coupled with a second feature: the script that
runs Bro also detects if it ever unduly exits, and, if so, logs
this fact and then executes a copy oftcpdump that records
the same traffic that the monitor would have captured. Thus,
crash attacks are (1) logged, and (2) do not allow a subse-
quent intrusion attempt to go unrecorded, only to evade real-
time detection. However, there is a window of opportunity
between the time when the Bro monitor crashes and when
tcpdump runs. If an attacker can predict exactly when this
window occurs, then they can still evade detection. But de-
termining the window is difficult without knowledge of the

exact configuration of the monitoring system.

5.3 Subterfuge attacks

In a subterfugeattack, an attacker attempts to mislead the
monitor as to the meaning of the traffic it analyzes. These
attacks are particularly difficult to defend against, because
(1) unlike overload and crash attacks, if successful they do
not leave any traces that they have occurred, and (2) the at-
tacks can be quite subtle. Access to the monitor's source
code particularly aids with devising subterfuge attacks.

We briefly discussed an example of a subterfuge attack
in x 3.1, in which the attacker sends text with an embedded
NUL in the hope that the monitor will miss the text after the
NUL. Another form of subterfuge attack is using fragmented
IP datagrams in an attempt to elude monitors that fail to re-
assemble IP fragments (an attack well-known to the firewall
community). The key principle is to find a traffic pattern in-
terpreted by the monitor in a different fashion than by the
receiving endpoint.

To thwart subterfuge attacks, as we developed Bro we at-
tempted at each stage to analyze the explicit and implicit as-
sumptions made by the system, and how, by violating them,
an attack might successfully elude detection. This can be
a difficult process, though, and we make no claims to have
found them all! In the remainder of this section, we focus on
subterfuge attacks on the integrity of the byte stream moni-
tored for a TCP connection. Then, inx 6.4, we look at sub-
terfuge attacks aimed at hiding keywords in interactive text.

To analyze a TCP connection at the application level re-
quires extracting the payload data from each TCP packet and
reassembling it into its proper sequence. We now consider a
spectrum of approaches to this problem, ranging from sim-
plest and easiest to defeat, to increasingly resilient.

Scanning the data in individual packets without remem-
bering any connection state, while easiest, obviously suffers
from major problems: any time the text of interest happens
to straddle the boundary between the end of one packet and
the beginning of the next, the text will go unobserved. Such
a split can happen simply by accident, and certainly by ma-
licious intent.

Some systems address this problem by remembering
previously-seen text up to a certain degree (perhaps from the
beginning of the current line). This approach fails as soon
as a sequence “hole” appears: that is, any time a packet is
missing—due to loss or out-of-order delivery—then the re-
sulting discontinuity in the data stream again can mask the
presence of key text only partially present.

The next step is to fully reassemble the TCP data stream,
based on the sequence numbers associated with each packet.
Doing so requires maintaining a list of contiguous data
blocks received so far, and fitting the data from new pack-
ets into the blocks, merging now-adjacent blocks when pos-
sible. At any given moment, one can then scan the text from
the beginning of the connection to the highest in-sequence
byte received.
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Unless we are careful, even keeping track of non-
contiguous data blocks does not suffice to prevent a TCP
subterfuge attack. The key observation is that an attacker
can manipulate the packets their TCP sends so that the mon-
itor sees a particular packet, but the endpoint does not. One
way of doing so is to transmit the packet with an invalid
TCP checksum. (This particular attack can be dealt with by
checksumming every packet, and discarding those that fail;
a monitor needs to do this anyway so that it correctly tracks
the endpoint's state in the presence of honest data corrup-
tion errors, which are not particularly rare [Pa97].) Another
way is to launch the packet with an IP “Time To Live” (TTL)
field sufficient to carry the packet past the monitoring point,
but insufficient to carry it all the way to the endpoint. (If
the site has a complex topology, it may be difficult for the
monitor to detect this attack.) A third way becomes possible
if the final path to the attacked endpoint happens to have a
smaller Maximum Transmission Unit (MTU) than the Inter-
net path from the attacker's host to the monitoring point. The
attacker then sends a packet with a size exceeding this MTU
and with the IP “Don' t Fragment” header bit set. This packet
will then transit past the monitoring point, but be discarded
by the router at the point where the MTU narrows.

By manipulating packets in this fashion, an attacker can
send innocuous text for the benefit of the monitor, such
as “USER nice ”, and then retransmit (using the same se-
quence numbers) attack text (“USER root ”), this time al-
lowing the packets to traverse all the way to the endpoint.
If the monitor simply discards retransmitted data without in-
specting it, then it will mistakenly believe that the endpoint
received the innocuous text, and fail to detect the attack.

A defense against this attack is that when we observe a
retransmitted packet (one with data that wholly or partially
overlaps previously-seen data), we compare it with any data
it overlaps, and sound an alarm (or, for Bro, generate an
event) if they disagree. A properly-functioning TCP will
always retransmit the same data as originally sent, so any
disagreement is either due to a broken TCP (unfortunately,
we have observed some of these), undetected data corruption
(i.e., corruption the checksum fails to catch), or an attack.

We have argued that the monitor must retain a record of
previously transmitted data, both in-sequence and out-of-
sequence. The question now arises as to how long the mon-
itor must keep this data around. If it keeps it for the lifetime
of the connection, then it may require prodigious amounts of
memory any time it happens upon a particularly large con-
nection; these are not infrequent [Pa94]. We instead would
like to discard data blocks as soon as possible, to reclaim
the associated memory. Clearly, we cannot safely discard
blocks above a sequencing hole, as we then lose the opportu-
nity to scan the text that crosses from the sequence hole into
the block. But we would like to determine when it is safe to
discard in-sequence data.

Here we can make use of our assumption that the attacker
controls only one of the connection endpoints. Suppose the
stream of interest flows from hostA to hostB. If the at-

tacker controlsB, then they are unable to manipulate the
data packets in a subterfuge attack, so we can safely discard
the data once it is in-sequence and we have had an opportu-
nity to analyze it. On the other hand, if they controlA, then,
from our assumption, any traffic we see fromB reflects the
correct functioning of its TCP (this assumes that we use anti-
spoofing filters so that the attacker cannot forge bogus traffic
purportedly coming fromB). In particular, we can trust that
if we see an acknowledgement fromB for sequence number
n, then indeedB has received all data in sequence up ton.
At this point,B's TCP will deliver, or has already delivered,
this data to the application running onB. In particular,B's
TCP cannot accept any retransmitted data below sequence
n, as it has already indicated it has no more interest in such
data. Therefore, when the monitor sees an acknowledgement
for n, it can safely release any memory associated with data
up to sequencen.

6 Application-specific processing

We finish our overview of Bro with a discussion of the ad-
ditional processing it does for the four applications it cur-
rently knows about: Finger, FTP, Portmapper, and Telnet.
Admittedly these are just a small portion of the different In-
ternet applications used in attacks, and Bro's effectiveness
will benefit greatly as more are added. Fortunately, we have
in general found that the system meets our goal of extensibil-
ity (x 1), and adding new applications to Bro is—other than
the sometimes major headache of robustly interpreting the
application protocol itself—quite straight-forward, a matter
of deriving a C++ class to analyze each connection's traf-
fic, and devising a set of events corresponding to significant
elements of the application.

6.1 Finger

The first of the applications is the Finger “User Informa-
tion” service [Zi91]. Structurally, Finger is very simple: the
connection originator sends a single line, terminated by a
carriage-return line-feed, specifying the user for which they
request information. An optional flag requests “full” (ver-
bose) output. The responder returns whatever information
it deems appropriate in multiple lines of text, after which it
closes the connection.

Bro generates afinger request event whenever it
monitors a complete Finger request. A handler for this event
looks like:

event finger_request(c: connection,
user: string, full: bool)

Our site's policy for Finger requests includes testing for pos-
sible buffer-overflow attacks and checking the user against a
list of sensitive user ID's, such as privileged accounts. See
Appendix A for a discussion of how the Finger analysis is
integrated into Bro.
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Bro currently does not generate an analogous
finger reply event. Two reasons for this are (1) we
view the primary threat of Finger to come from the orig-
inator and not the responder, so addingfinger reply
has had a lower priority, and (2) manipulating multi-line
strings in Bro is clumsy at present, becauseBro does
not have an iteration operator for easily moving through a
table[count] of string .

A final note: if the event engine finds that the policy script
does not define afinger request handler, then it does
not bother creating Finger-specific analyzers for new Finger
connections. In general, the event engine tries to determine
as early as possible whether the user has defined a particular
handler, and, if not, avoids undertaking the work associated
with generating the corresponding event.

6.2 FTP

The File Transfer Protocol [PR85] is much more complex
than the Finger protocol; it also, however, is highly struc-
tured and easy to parse, so interpreting an FTP dialog is
straight-forward.

For FTP requests, Bro parses each line sent by the con-
nection originator into a command (first word) and an argu-
ment (the remainder), splitting the two at the first instance
of whitespace it finds, and converting the command to up-
percase (to circumvent problems such as a policy script test-
ing for “store file” commands asSTORor stor , and an at-
tacker instead sendingstOR , which the remote FTP server
will happily accept). It then generates anftp request
event with these and the corresponding connection as argu-
ments.

FTP replies begin with a status code (a number), followed
by any accompanying text. Replies also can indicate whether
they continue to another line. Accordingly, for each line of
reply the event engine generates anftp reply with the
code, the text, a flag indicating continuation, and the corre-
sponding connection as arguments.

As far as the event engine is concerned, that's it—100
lines of straight-forward C++. What is interesting about FTP
is that all the remaining work can be done inBro (about
300 lines for our site). Theftp request handler keeps
track of distinct FTP sessions, pulls out usernames to test
against a list of sensitive ID's (and to annotate the connec-
tion's general summary), and, for any FTP request that ma-
nipulates a file, checks for access to sensitive files. Some
of these checks depend on context; for example, a guest (or
“anonymous”) user should not attempt to manipulate user-
configuration files, while for other users doing so is fine.

A final analysis step forftp request events is to parse
anyPORTrequest to extract the hostname and TCP port as-
sociated with an upcoming transfer. (The FTP protocol uses
multiple TCP connections, one for the control information
such as user requests, and others, dynamically created, for
each data transfer.) This is an important step, because it
enables the script to tell which subsequent connections be-

long to this FTP session and which do not. A site's policy
might allow FTP access to particular servers, but any other
access to those servers merits an alarm; but without parsing
thePORTrequest, it can be impossible to distinguish a legit-
imate FTP data transfer connection from an illicit, non-FTP
connection. Consequently, the script keeps track of pend-
ing data transfer connections, and when it encounters them,
marks them asftp-data applications, even if they do not
use the well-known port associated with such transfers (the
standard does not require them to do so).

We also note that, in addition to correctly identifying FTP-
related traffic, parsingPORTrequests makes it possible to
detect “FTP bounce” attacks. In these attacks, a malicious
FTP client instructs an FTP server to open a data transfer
connection not back to it, but to a third, victim site. The
client can thus manipulate the server into uploading data to
an arbitrary service on the victim site, or to effectively port-
scan the victim site (which the client does by using multiple
bogusPORTrequests and observing the completion status
of subsequent data-transfer requests). Our script flagsPORT
requests that attempt any redirection of the data transfer con-
nection. Interestingly, we added this check mostly because
it was easy to do so; months later, we monitored the first of
several subsequent FTP bounce attacks.

For ftp reply events, most of the work is simply for-
matting a succinct one-line summary of the request and its
result for recording in the FTP activity log. In addition, an
FTPPASVrequest has a structure similar to aPORTrequest,
except that the FTP server instead of the client determines the
specifics of the subsequent data transfer connection. Conse-
quently our script subjectsPASVreplies to the same analysis
asPORTrequests. Finally, there is nothing to prevent adif-
ferentremote host from connecting to the data transfer port
offered by a server via aPASVreply. It is hard to see why this
might actually occur, but putting in a test for it is simple (un-
fortunately, there are some false alarms due to multi-homed
clients; we use heuristics to reduce these); and, indeed, sev-
eral months after adding it, it triggered, due to an attacker
using 3-way FTP as (evidently) a way to disguise their trail.

6.3 Portmapper

Many services based on Remote Procedure Call (RPC; de-
fined in [Sr95a]) do not listen for requests on a “well-known”
port, but rather pick an arbitrary port when initialized. They
then register this port with a Portmapper service running on
the same machine. Only the Portmapper needs to run on
a well-known port; when clients want access to the service,
they first contact the Portmapper, and it tells them which port
they should then contact in order to reach the service. This
second port may be for TCP or UDP access (depending on
which the client requests from the Portmapper).

Thus, by monitoring Portmapper traffic, we can detect any
attempted access to a number of sensitive RPC services, such
as NFS and YP, except in cases where the attacker learns the
port for those services some other way (e.g., port-scanning).
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The Portmapper service is itself built on top of RPC,
which in turn uses the XDR External Data Representation
Standard [Sr95b]. Furthermore, one can use RPC on top of
either TCP or UDP, and typically the Portmapper listens on
both a well-known TCP port and a well-known UDP port
(both are port 111). Consequently, adding Portmapper anal-
ysis to Bro required adding a generic RPC analyzer, TCP-
and UDP-specific analyzers to unwrap the different ways in
which RPCs are embedded in TCP and UDP packets, an
XDR analyzer, and a Portmapper-specific analyzer.

This last generates six pairs of events, one for each re-
quest and reply for the six actions the Portmapper supports:
a null call; add a binding between a service and a port; re-
move a binding; look up a binding; dump the entire table of
bindings; and both look up a service and call it directly with-
out requiring a second connection. (This last is a monitoring
headache because it means any RPC service can potentially
be accessed directly through a Portmapper connection.)

Our policy script for Portmapper traffic again is fairly
large, more than 200 lines. Most of this concerns what
Portmapper requests we allow between which pairs of hosts,
particularly for NFS access.

6.4 Telnet

The final application currently built into Bro is Telnet, a ser-
vice for remote interactive access [PR83a]. There are several
significant difficulties with monitoring Telnet traffic. The
first is that, unlike FTP, Telnet traffic is virtually unstruc-
tured. There are no nice “USER xyz” directives that make
it trivial to identify the account associated with the activity;
instead, one must employ a series of heuristics and hope for
the best. This problem makes Telnet particularly susceptible
to subterfuge attacks, since if the heuristics have holes, an
attacker can slip through them undetected.

Our present goal is to determine Telnet usernames in a
robust fashion, which we discuss in the remainder of this
section. Scanning Telnet sessions for strings reflecting ques-
tionable activity is of course also highly interesting, but must
wait for us to first add regular expression matching to Bro.

Recognizing the authentication dialog. The first facet
of analyzing Telnet activity is to accurately track the initial
authentication dialog and extract from it the usernames as-
sociated with both login failures and successes. Initially we
attempted to build a state machine that would track the vari-
ous authentication steps: waiting for the username, scanning
the login prompt (this comes after the username, since the
processing is line-oriented, and the full, newline-terminated
prompt line does not appear until after the username has been
entered), waiting for the password, scanning the password
prompt, and then looking for an indication that the pass-
word was accepted or rejected (in which case the process
repeats). This approach, though, founders on the great va-
riety of authentication dialogs used by different operating
systems, some of which sometimes do not prompt for pass-
words, or re-prompt for passwords rather than login names

after a password failure, or utilize two steps of password
authentication, or extract usernames from environment vari-
ables, and so on. We now are working on a simpler approach,
based on associating particular strings (such as “Password:”)
with particular information, and not attempting to track the
authentication states explicitly. It appears to work better, and
its workings are certainly easier to follow.

The Telnet analyzer generatestelnet logged in
upon determining that a user has successfully authenticated,
telnet failure when a user has failed to authenticate,
authentication skipped if it recognizes the authen-
tication dialog as one specified by the policy script as not
requiring further analysis, andtelnet confused if the
analyzer becomes confused regarding the authentication dia-
log. (This last could, for example, trigger full-packet record-
ing of the subsequent session, for later manual analysis.)

Type-ahead.A basic difficulty that complicates the anal-
ysis is type-ahead. We cannot rely on the most-recently en-
tered string as corresponding to the current prompt line. In-
stead, we keep track of user input lines separately, and con-
sume them as we observe different prompts. For example,
if the analyzer scans “Password:”, then it associates with the
prompt the first unread line in the user type-ahead buffer, and
consumes that line. The hazard of this approach is if the Tel-
net server ever flushes the type-ahead buffer (due to part of
its authentication dialog, or upon an explicit signal from the
user), then if the monitor misses this fact it will become out
of sync. This opens the monitor to a subterfuge attack, in
which an attacker passes off an innocuous string as a user-
name, and the policy script in turn fails to recognize that the
attacker in fact has authenticated as a privileged user. One fix
to this problem—reflecting a strategy we adopt for the more
general “keystroke editing” problem discussed below—is to
testbothusernames and passwords against any list of sensi-
tive usernames.

Unless we are careful, type-ahead also opens the door
to another subterfuge attack. For example, an attacker can
type-ahead the string “Password:”, which, when echoed
by the Telnet server, would be interpreted by the ana-
lyzer as corresponding to a password prompt, when in fact
the dialog is in a different state. The analyzer defends
against these attacks by checking each typed-ahead string
against the different dialog strings it knows about, generating
possible telnet ploy upon a match.

Keystroke editing. Usernames can also become disguised
due to use of keystroke editing. For example, we would like
to recognize that “rb< DEL>oot ” does indeed correspond
to a username ofroot , assuming that<DEL> is the single-
character deletion operator. We find this assumption, how-
ever, problematic, since some systems use<DEL> and oth-
ers use<BS>. We address this problem by applying both
forms of editing to usernames, yielding possibly three dif-
ferent strings, each of which the script then assesses in turn.
So, for example, the string “rob< DEL><BS><BS>ot ” is
tested both directly, as “ro< BS><BS>ot ”, and as “root ”.

Editing is not limited to deleting individual characters,
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however. Some systems support deleting entire words or
lines; others allow access to previously-typed lines using an
escape sequence. Word and line deletion do not allow an at-
tacker to hide their username, if tests for sensitive usernames
check for any embedded occurrence of the username within
the input text. “History” access to previous text is more prob-
lematic; presently, the analyzer recognizes the operating sys-
tem that supports this (VMS) and, for it only, expands the
escape sequence into the text of the previous line.

Telnet options. The Telnet protocol supports a rich,
complex mechanism for exchanging options between the
client and server [PR83b] (there are more than 50 RFCs
discussing different Telnet options). Unhappily, we cannot
ignore the possible presence of these options in our anal-
ysis, because an attacker can embed one in the middle of
text they transmit in order to disguise their intent—for ex-
ample, “ro< option>ot ”. The Telnet server will dutifully
strip out the option before passing along the remaining text
to the authentication system. We must do the same. On the
other hand, parsing options also yields some benefits: we
can detect connections that successfully negotiate to encrypt
the data session, and skip subsequent analysis (rather than
generatingtelnet confused events), as well as analyz-
ing options used for authentication (for example, Kerberos)
and to transmit the user's environment variables (some sys-
tems use$USERas the default username during subsequent
authentication).

7 Status, performance, and future
directions

Bro has operated continuously since April 1996 as an inte-
gral part of our site's security system. It initially included
only general TCP/IP analysis; as time permitted, we added
the additional modules discussed inx 6, and we plan to add
many more.

Presently, the implementation is about 22,000 lines of
C++ and another 1,900 lines ofBro (about 1,650 lines of
which are “boilerplate” not specific to our site). It runs under
Digital Unix, FreeBSD, IRIX, SunOS, and Solaris operating
systems. It generates about 40 MB of connection summaries
each day, and an average of 20 real-time notifications, though
this figure varies greatly. While most of the notifications are
innocuous (and if we were not also developers of the system,
we would suppress these), we not infrequently also detect
break-in attempts. Operation of the system has resulted so
far in 4,000 email messages, 85 incident reports filed with
CIAC and CERT, a number of accounts deactivated by other
sites, and a couple incidents involving law enforcement.

The system generally operates without incurring any
packet drops. The FDDI ring it runs on is heavily used:
a recent trace of a 2-3PM busy hour reflects a traffic level
of over 17,000 packets/sec (50 Mbps) sustained for the full
hour, with peaks exceeding 30,000 packets/sec. However,
the packet filter discards a great deal of this, both due to fil-

tering primarily on SYN, FIN, or RST control bits, and be-
cause only about 20% of the traffic belongs to networks that
we routinely monitor (the link is shared with a large neigh-
bor institution). During a busy hour, the monitor may receive
300,000 packets matching the filter, with peaks of 200/sec.

In order to make a preliminary assessment of the system
under stress, we ran it for a thirty-minute period without
the “interesting networks” filter, resulting in a much higher
fraction of traffic accepted by the packet filter. During this
period, the filter accepted an average of 640 packets/sec,
with peaks over 800/sec. However, the filter also reported
364 dropped packets. (We note that the hardware platform
used is no longer state-of-the-art.)

In addition to developing more application analysis
modules, we see a number of avenues for future work. As
discussed above, compilingBro scripts and devising mech-
anisms to distribute monitoring across multiple CPUs have
high priority. We are also very interested in extending BPF
to better support monitoring, such as adding lookup tables
and variable-length snapshots. Another interesting direction
is to add some “teeth” to the monitoring in the form of ac-
tively terminating misbehaving connections by sending RST
packets to their endpoints, or communicating with interme-
diary routers. This form of “reactive firewall” might fit par-
ticularly well to environments like ours that need to strike a
balance between security and openness.

Finally, Bro is publicly available in source-code form (see
http://www-nrg.ee.lbl.gov/bro-info.htmlfor release informa-
tion). We hope that it will both benefit the community and in
turn benefit from community efforts to enhance it.
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A Example: tracking Finger traffic

In this appendix we give an overview of how the different
elements of Bro come together for monitoring Finger traffic.
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For the event engine, we have a C++ classFingerConn ,
derived from the general-purposeTCP Connection class.
When Bro encounters a new connection with service port 79,
it instantiates a correspondingFingerConn object, instead
of a TCP Connection object as it would for an unrecog-
nized port.

FingerConn redefines the virtual function
BuildEndpoints , which is invoked when a connection
object is first created:

void FingerConn::BuildEndpoints()
{
resp = new TCP_Endpoint(this, 0);
orig = new TCP_EndpointLine(this, 1, 1, 0);
}

Here, resp , corresponding to the responder (Finger
server) side of the connection, is initialized to an ordinary
TCP Endpoint object, because Bro does not (presently)
look inside Finger replies. Butorig , the Finger client
side, is initialized to aTCP EndpointLine object, which
means Bro will track the contents of that side of the connec-
tion, and, furthermore, deliver the contents in a line-oriented
fashion toFingerConn 's virtualNewLine function:

int FingerConn::NewLine(TCP_Endpoint* /* s */,
double /* t */, char* line)

{
line = skip_whitespace(line);

// Check for /W.
int is_long = (line[0] == '/' &&

toupper(line[1]) == 'W');
if ( is_long )

line = skip_whitespace(line+2);

val_list* vl = new val_list;
vl->append(BuildConnVal());
vl->append(new StringVal(line));
vl->append(new Val(is_long, TYPE_BOOL));

mgr.QueueEvent(finger_request, vl);
return 0;
}

NewLine skips whitespace in the request, scans it for the
“ /W” indicator (which requests verbose Finger output), and
moves past it if present. It then creates aval list ob-
ject, which holds a list of generic BroVal objects. The first
of these is assigned to a generic connection-identifier value
(see below); the second, to a Brostring containing the
Finger request, and the third to abool indicating whether
the request was verbose or not. The penultimate line queues
a newfinger request event with the corresponding list
of values as arguments; finally,return 0 indicates that the
FingerConn is all done with the memory associated with
line (sincenew StringVal(line) made a copy of it),
so that memory can be reclaimed by the caller.

The connection identifier discussed above is defined in
Bro as a “connection ” record:

type endpoint: record {

size: count; state: count;
};
type connection: record {

id: conn_id;
orig: endpoint; resp: endpoint;
start_time: time;
duration: interval;
service: string;

# if empty, service not yet determined
addl: string;
hot: count;

# how hot; 0 = don't know or not hot
};

Theid field is aconn id record, discussed inx 3.1.orig
and resp correspond to the connection originator and re-
sponder, each a Broendpoint record consisting ofsize
(the number of bytes transferred by that endpoint so far) and
state , the endpoint's TCP state (e.g., SYN sent, estab-
lished, closed). This latter would be better expressed using
an enumerated type (rather than acount ), which we may
add to Bro in the future.

The start time field reflects when the connection's
first packet was seen, andduration how long the connec-
tion has existed.service corresponds to the name of the
service, or an empty string if it has not been identified. By
convention,addl holds additional information associated
with the connection; better than astring here would be
some sort of union or generic type, if Bro supported such. Fi-
nally, by convention the policy script incrementshot when-
ever it finds something potentially suspicious about the con-
nection.

Here is the corresponding policy script:

global hot_names = { "root", "lp", "uucp" };
global finger_log =

open(getenv("BRO_ID") == "" ?
"finger.log" :
fmt("finger.%s", getenv("BRO_ID")));

event finger_request(c:connection,
request: string,
full: bool)

{
if ( byte_len(request) > 80 ) {

request = fmt("%s...",
sub_bytes(request, 1, 80));

++c$hot;
}
if ( request in hot_names )

++c$hot;

local req = request == "" ?
"ANY" : fmt("\"%s\"", request);

if ( c$addl != "" )
# This is an additional request.
req = fmt("(%s)", req);

if ( full )
req = fmt("%s (/W)", req);

local msg = fmt("%s > %s %s",
c$id$orig_h,
c$id$resp_h,
req);

if ( c$hot > 0 )
log fmt("finger: %s", msg);
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print finger_log,
fmt("%.6f %s", c$start_time, msg);

c$addl = c$addl == "" ?
req : fmt("*%s, %s", c$addl, req);

}

The globalhot names is a Broset of string . In the
next line,finger log is initialized to a Brofile , either
named “finger.log”, or, if theBROID environment variable
is set, to a name derived from it using the built-infmt func-
tion.

The finger request event handler follows. It takes
three arguments, corresponding to the values added to the
val list above. It first checks whether the request is ex-
cessively long, and, if so, truncates it and increments thehot
field of the connection's information record. (The Bro built-
in functions used here are named in terms of “bytes” rather
than “string” because they make no assumptions about NUL-
termination of their arguments; in particular,byte len re-
turns the length of its argument including a final NUL byte,
if present.)

Next, the script checks whether the request corresponds
to any of the entries in thehot names set. If so, it again
marks the connection as “hot.”

We then initialize the local variablereq to a quoted ver-
sion of the request; or, if the request was empty (which in the
Finger protocol indicates a request type of “ANY”), then it
is changed to “ANY”.

The event handler stores the Finger request in the connec-
tion record'saddl field (see below), so the next line checks
to see whether this field already contains a request. If so,
then we are seeing multiple requests for a single Finger con-
nection. This is not allowed by the Finger protocol, but that
doesn' t mean we won' t see them! In particular, we might
imagine a subterfuge attack in which an attacker queries an
innocuous name in their first request, and a sensitive name
in their second, and depending on how the finger server is
written, it may well respond to both.4 This script will still
catch such use, since it fully processes each request; but it
needs to be careful to keep the global state corresponding to
the connection (in theaddl field) complete. To do so, it
marks additional requests by enclosing them in parentheses,
and also prepends an asterisk to the entireaddl field for
each additional request, so that in later visual inspection of
the Finger logs these requests immediately stand out.

Themsg local variable holds the basic description of the
Finger request. Thefmt function knows to format the IP
addressesc$id$orig h and c$id$resp h as “dotted
quads.”

Next, if the connection has been marked as “hot” (either
just previously, or perhaps by a completely different event
handler), then the script generates a real-time notification. In
any case, it also records the request to thefinger log file.

4We do indeed see occasional multiple requests. So far, they have all
appeared fully innocuous.

Finally, it updates theaddl field to reflect the request (and
to flag multiple requests, as discussed above).

Entries in the log file look like:

880988813.752829 171.64.15.68 >
128.3.253.104 "feng"

880991121.364126 131.243.168.28 >
130.132.143.23 "anlin"

880997120.932007 192.84.144.6 >
128.3.32.16 ALL

881000846.603872 128.3.9.45 >
146.165.7.14 ALL (/W)

881001601.958411 152.66.83.11 >
128.3.13.76 "davfor"

(though without the lines split after the “>”).
The real-time notifications look quite similar, with the

keyword “finger: ” added to avoid ambiguity with other
types of real-time notification.
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