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Preface

Manual Objectives
The objective of this manual is to provide a complete description of the BLISS
programming language and tutorial information on its use. This manual
documents the three dialects of the language: BLISS–16, BLISS–32, and BLISS–
36. It is intended as a self-teaching manual for experienced high-level language
users, and as a reference tool. It does not describe the BLISS compilers (except
in overview fashion) or their operation; this is done in separate user manuals.

Intended Audience
This manual is primarily intended for system programmers, including
those whose programming tasks would traditionally imply the use of
assembly language. It is also addressed to other programmers for whom the
transportability of programs between several BLISS target systems is of prime
concern. Familiarity with the basic architecture of one or more of the target
systems is assumed; however, familiarity with the relevant assembly language is
not assumed. The BLISS target systems are the VAX, PDP–11, DECsystem–10,
and DECSYSTEM–20.

Document Structure
The manual begins with three chapters that lay the foundation for the definition
of BLISS. Chapter 1 discusses the BLISS dialects, introduces fundamental
concepts, and illustrates the main features of the language. Chapter 2 discusses
the organization of the language definition and describes the syntax notation used
in this manual. Chapter 3 is an introduction to the data and program structure
of BLISS.
The next seventeen chapters of the manual, Chapters 4 through 20, provide
a complete description of the language. This description includes not only the
rules for interpreting BLISS programs, but also examples, explanations, and
programming guidelines.

The manual has four appendixes. Appendix A is a list of the identifiers that have
predefined meanings in BLISS. Appendix B defines the several string encodings
available in BLISS. Appendix C describes the transportability checking that is
optionally provided by the BLISS compilers. Appendix D is a list of the built-in
machine-specific-functions associated with each BLISS dialect.

Associated Documents
The following documents relate specifically to BLISS and the use of its compilers:

• BLISS Pocket Guide (AV–H289D–TK)

A syntax and command summary for all dialects and host systems

• BLISS–16 User’s Guide (AA–H865C–TK)
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For BLISS–16 compiler usage on the VAX, DECsystem–10,
or DECSYSTEM–20
Target system—PDP–11

• BLISS–32 User Manual (AA–H322E–TE)

For BLISS–32 compiler usage on the VAX
Target system—VAX

• BLISS–36 User’s Guide (AA–H712D–TK)

For BLISS–36 compiler usage on the DECsystem–10 or DECSYSTEM–20
Target system—DECsystem–10 or DECSYSTEM–20

Each user manual provides machine-specific programming information as well
as basic information about linking and executing BLISS programs on the target
system.

For VAX users: The following documents provide additional information relating
to the linking, execution, and debugging of BLISS–32 programs under the
VAX/VMS operating system:

• VAX/VMS Linker Reference Manual (AA–Z420A–TE)

• VAX/VMS DCL Dictionary (AA–Z200C–TE)

• VAX/VMS Debugger Reference Manual (AA–Z412C–TE)

The VAX Information Directory (AA–D016E–TE) lists and describes all other
documents that you may need to refer to in the course of building and executing
a BLISS–32 program.
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1
Introduction

BLISS is a system implementation language for three DIGITAL computer
families:

• PDP–11 (16-bit)

• VAX (32-bit)

• DECsystem–10 and DECSYSTEM–20 (36-bit)

Because of the dissimilarities among these target systems, BLISS has three
dialects: BLISS–16, BLISS–32, and BLISS–36. The numeric suffix indicates the
word length, in bits, of the respective target system.

BLISS is classified as a system implementation language—rather than an
application-oriented language—because BLISS is primarily intended for building
system software, such as operating systems, compilers, utilities, and real-time
processors. Such software is often large and complicated, is often close to the
hardware, and is usually very sensitive to efficiency. In addition, most system
software is very frequently used by many individuals (in some cases with an
unpredictable variety of input data), and therefore must be highly dependable.

This chapter discusses BLISS concepts and introduces BLISS language features.

1.1 BLISS Dialects
Each BLISS dialect is supported by a separate compiler. The BLISS–16
compiler is a cross-compiler, that is, it executes on a VAX, a DECsystem–10, or
a DECSYSTEM–20 but compiles code for its target system, the PDP–11. The
BLISS–32 and BLISS–36 compilers are native: they execute on their own target
system. Each BLISS compiler is described in a separate user manual that is
dedicated to its dialect.

BLISS–16, BLISS–32, and BLISS–36 are dialects of a single language. Each
dialect consists of a body of identical language features called Common BLISS
(which forms the bulk of each dialect), plus a number of features either unique
to one dialect or shared by only two of the three. Common BLISS constitutes the
transportable language base. The dialect-specific features reflect architectural
characteristics of one target system that are not found in each of the others,
for instance byte-addressing capability, found in the 16- and 32-bit target
systems but not in the 36-bit systems. While it is possible to implement most
programs in Common BLISS only, without reference to system-specific functions
or characteristics, it is not always desirable to do so. This point is discussed
further in Section 1.5.
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1.2 Language Objectives and Characteristics
This section discusses BLISS design objectives, and provides an overview of the
language.

1.2.1 Design Objectives
Because of the system-software orientation of BLISS, a number of its primary
objectives differ from those of application-oriented languages such as COBOL,
FORTRAN, and PL/I. Foremost among those objectives are the following:

• Highly optimizable object code

• Simple and consistent facilities for operating on addresses

• Control constructs which encourage well-structured source code, in the
interests of program reliability, clarity, and maintainability

• Facilities for defining both the representation of a user-designed data
structure and the manner of accessing the data in that structure

• Optional access to specific features of the target-system hardware or operating
system

• Facilities for defining, at an appropriately high level, the linkage conventions
used in calling routines or procedures

Because the language supports three different computer systems, an additional
objective is program transportability across the target systems. BLISS,
therefore, includes many features specifically designed to facilitate transportable
programming. These features are discussed in Section 1.5.

1.2.2 Language Overview
BLISS has many of the features of other modern high-level languages. It
has block structure, an automatic stack, and mechanisms for defining and
calling recursive routines. It uses algebraic notation for calculations and has
operations for arithmetic, shifting, comparison, and logic. It provides a variety
of predefined data structures and permits the programmer to define additional
data structures. It has facilities for testing and iteration that support clear and
reliable programming. (These same facilities also allow the compiler to perform
extensive flow optimizations.)

On the other hand, BLISS omits certain features of other high-level languages.
It does not have built-in facilities for input/output, because a system-software
project usually develops its own input/output or builds on basic monitor I/O
or screen management services. It avoids certain kinds of automation of the
programming process that introduce inefficiency for the sake of convenience. It
is machine dependent to the extent that it permits access to machine-specific
features, because system software often requires this.

BLISS has characteristics that are unusual among high-level languages. A name
representing a data segment (that is, a storage location) is uniformly interpreted
as the address of that segment rather than the value of the segment, and the
language includes an explicit fetch operator that denotes ‘‘contents of’’.

Also, BLISS is an ‘‘expression language’’ rather than a ‘‘statement language’’.
This means that every construct of the language that is not a declaration is an
expression. Expressions produce a value as well as possibly causing an action
such as modification of storage, transfer of control, or execution of a program loop.
For example, the counterpart of an assignment ‘‘statement’’ in BLISS is, strictly
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speaking, an expression that itself has a value. The value of an expression
can be either used or discarded in BLISS. When the value of an expression is
discarded, the expression is said to be used in a ‘‘statement-like’’ way, that is,
used solely for the action or side effect that it produces. (See Section 1.4.5 for
further discussion.)

Finally, BLISS includes a macro facility that provides a level of capability usually
found only in macro-assemblers.

1.3 Program Development
The typical development of a BLISS program, from inception to successful
execution, is outlined below to introduce certain concepts and terms used later in
this manual:

1. Design. To provide a logical structure for the program, you organize it
into a set of routines and associated data structures. In general, each
routine corresponds to a clearly identified, relatively independent function or
subfunction of the program. One of the routines is the main routine. Later,
when the program is executed, this routine is called by the operating system.
The main routine controls the overall flow of the program, calling other
routines, which may in turn call yet other routines, and so on, until every
routine has done its assigned job.

2. Programming. Once the routines and data structures have been designed,
they are programmed in the BLISS language. The routines are grouped into
modules for the purposes of compilation. The routines grouped into a given
module might, for example, consist of those programmed by one member of
a project team. They might also reflect a logical grouping that aids overall
system understanding and facilitates structured testing. Each module is a
text file that is called a BLISS source file.

3. Compilation. Once the modules have been programmed, each module is
compiled. Each module can be compiled individually; this is one practical
advantage of dividing a large program into several modules. The result
of each compilation is an object file. An object file is a sequence of
encoded machine instructions and linker directives that is equivalent to
the corresponding source module.

4. Linking. When all the modules of a program have been compiled, they are
linked. The linker effectively ‘‘binds together’’ the various object modules,
supplies any routines requested from a common-routine library, and converts
the compiler-encoded relative addresses to actual machine addresses.
(Section 1.7.1 gives further details on the linker.) The result of linking is a
single file that contains the executable program image.

5. Execution. The program image is executed. The first executions are
normally done with the assistance of a debugger. As bugs are found, the
development process cycles back to compilation, programming, or, most
unfortunately, to design. Eventually, the program is ready for useful
execution.

This manual provides the information necessary for the second step in the
development process, programming. The BLISS user manuals (one for each
dialect) provide complete information about the third step, compilation, plus
guidelines for linking, executing, and debugging.
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The user manuals also contain detailed information about certain dialect-specific
features, such as machine-specific functions and module switches that describe
the target-system environment, and about transportable programming.

1.4 The Main Features of BLISS
This section contains a brief description of BLISS. Those aspects of BLISS that
are different from other high level programming languages are emphasized. The
description is informal and omits many details; its purpose is to provide you with
an intuitive understanding of BLISS that will be useful in further study of the
language.

1.4.1 Data
All BLISS calculations are performed on values that correspond, in size, to the
largest efficiently accessible unit of memory in each target system. This value,
called a BLISS fullword, is 16 bits long for BLISS–16 (PDP–11 word), 32 bits
long for BLISS–32 (longword), and 36 bits long for BLISS–36 (DECsystem–10/20
word). A fullword can be viewed as a sequence of single-bit logical values (true or
false), as a sequence of ASCII character codes, or as a unitary value. As a unitary
value, it can be interpreted as a signed integer, an unsigned integer, or a memory
address.

In many high-level languages, a specific interpretation or ‘‘type’’ is permanently
associated with each program variable. For example, one variable might be
declared as containing an address value while another contains an unsigned
integer. In BLISS, however, an interpretation is not associated with a variable.
Instead, the interpretation of the value is specified by the operator that is applied
to it. For example, BLISS has three operators for equality: EQL, EQLU, and
EQLA. These operators interpret their operands as signed integers, unsigned
integers, and memory addresses, respectively.

To conserve storage, data is often stored in fields, which are units of data that are
less than a fullword in length. One field of special importance in all three dialects
is the bit, which can be used to store a single logical value. In both BLISS–16
and BLISS–32, the 8-bit byte can be efficiently accessed and manipulated, and
used for instance to store an ASCII character. In BLISS–32, the 16-bit word
(which is the fullword of BLISS–16) can also be manipulated efficiently by the
target hardware. No matter what field size is involved, however, a field value is
always extended to a fullword value whenever it is fetched from memory.

1.4.2 Memory Addressing
Although calculations are always performed on fullwords, memory is addressed
in fullword units only in the case of BLISS–36, where the target system’s
addressable unit is the full machine word. In both BLISS–16 and BLISS–32,
the basic addressable unit is the byte. That is to say, if a memory address
is incremented by 1 in either of these dialects, the location pointed to by the
resulting address value is the next byte, not the next fullword.

Therefore, in order to precisely describe the interpretation of an address
expression such as X+8 in a dialect-specific fashion, several different formulations
would be required for the same expression. For example, assuming a fullword-
reference context, the interpretation of the expression X+8 for BLISS–16 or
BLISS–32 would be ‘‘Locate the fullword of memory that begins eight bytes after
the byte whose address is X’’; whereas the interpretation for BLISS–36 would be
‘‘Locate the fullword of memory that is eight fullwords after the fullword whose
address is X’’.
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In the interest of both generality and brevity, the nonspecific term ‘‘addressable
unit’’ is used instead of ‘‘byte’’ or ‘‘fullword’’ in such descriptions, so that the two
formulations given above reduce to the equivalent one: ‘‘Locate the fullword that
begins eight addressable units after the unit whose address is X’’.

1.4.3 Fetching Values
In many programming languages, the interpretation of the name of a storage
location depends on its context. For example, in FORTRAN, if the name appears
as the left-hand side of an assignment, it represents the address of the storage
location. If the name appears within an expression, it represents the contents of
the storage location.

In BLISS, however, the interpretation of the name of a storage location does not
depend on the context. Instead, the name always represents the address of the
storage location. For example:

X+3

This expression is evaluated by adding 3 to the address that is associated with X.
When the content of a storage location is needed, the fetch operator, a period ( . ),
is used. For example:

.X+3

This expression is evaluated by adding 3 to the contents of storage-unit X. More
exactly, the value of the expression is obtained as follows: Locate and fetch the
fullword of memory that begins with the addressable unit whose address is X,
and add 3 to the fetched value.

The fetch operator is an unusual feature of BLISS; it is not present in such
languages as ALGOL, COBOL, FORTRAN, and PL/I. The omission of a fetch
operator here and there is a frequent error among most beginning BLISS
programmers. On the other hand, because BLISS always interprets a name as
an address, it is easy to treat addresses as data, and address arithmetic can be
performed in a simple and consistent way.

1.4.4 Assigning Values
A value is assigned to storage by the assignment operator, an equal sign ( = ). An
example of an assignment is as follows:

X = 2

This assignment means ‘‘Form a fullword value that represents 2, and then store
that value in the fullword of memory whose address is X.’’

In BLISS, an assignment can be viewed as just another expression. Its first
operand (left-hand side) provides a value that is interpreted as the address of a
data segment. Its second operand (right-hand side) provides a value that is stored
at the given address. The assignment expression itself has a value, namely the
value of its second operand; more is said of this in Section 1.4.5.

Often the left-hand side of an assignment is just a name. However, in BLISS
there is no restriction on the expression that appears on the left-hand side of an
assignment. Whatever that expression is, it is evaluated and the resulting value
is interpreted as an address. For example:

X+6 = 2

This expression assigns 2 to the fullword of memory that begins six addressable
units after the unit whose address is X. The example just presented is valid and
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illustrates an important feature of BLISS. However, such an assignment would
not appear in a well-designed program, and especially not in a transportable
one. Instead, an address computation, such as X+6 in the example, would be
performed through a structure-reference (see Chapter 11).

1.4.5 Expressions
Many high-level programming languages classify each construct of the language
either as a statement, which performs an action without producing a value, or
as an expression, which calculates a value. For example, such languages classify
the assignment construct as a statement, and do not permit its use in a context
requiring a value.

In BLISS, any construct except a declaration can be used as an expression. For
constructs that are statement-like, BLISS defines a value. For example, the
value of an assignment is the value of the right-hand side of the assignment. The
following expression contains an assignment:

2*(B = .C + 1)

When the expression is evaluated, it calculates 2*(.C+1). At the same time,
without performing any additional calculation, it stores the value of .C+1 in
location B.

The absence of statements from BLISS does not require a new approach to
programming. Whenever a construct is used in a statement-like way, it is
terminated by a semicolon and its value is discarded. The following expression is
a terminated expression:

Q = 2*.R;

It assigns the value of 2*.R to Q and then, having no further use for the value,
discards it. Such constructs as this, ending with a semicolon, play the role of
statements in BLISS.

1.4.6 Blocks
A block is a syntactic feature of BLISS that is used to gather together a portion
of a program and make it into a single unit (in fact, into a form of expression).
In its most familiar form, a block is the keyword BEGIN followed by a sequence
of declarations followed by a sequence of terminated expressions followed by the
keyword END. For example:

BEGIN
LOCAL TEMP;
TEMP = .X;
X = .Y;
Y = .TEMP;
END

This block contains one declaration and three terminated expressions. The
declaration specifies that TEMP designates a storage location that will be used
only during execution of the block. Each of the three terminated expressions is
an assignment and, together, they exchange the contents of X and Y. The entire
block is, itself, a primary expression.

Sometimes it is useful to provide a value for a block. In that case, an expression
without the terminal semicolon is placed at the end of the block. For example:
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Z = BEGIN
LOCAL TEMP;
TEMP = .X;
X = .Y;
Y = .TEMP;
.X EQL .Y
END

This block exchanges the contents of X and Y just as the previous example of
a block did. In addition, the contents of X and Y are compared and the value
of the block is 1 or 0, depending on whether or not the values are equal. When
execution of the block is complete, its value is assigned to Z.

In the first example, if the semicolon following the final expression (Y =
.TEMP) were omitted, the block would have as its value the contents of location
TEMP, according to the evaluation rule given for assignments in Section 1.4.4.
(Chapter 8 gives a full description of the semantics and use of the semicolon in
the context of expressions and blocks.)

A block that does not contain declarations is called a compound expression. An
example that uses such a block is as follows:

IF .A NEQ 0
THEN

BEGIN
B = .P + .A;
C = .Q + .A;
END

In this example, the compound expression gathers two separate assignments into
a single construct. Both assignments are performed if the contents of A is not 0
and both are skipped otherwise.

In BLISS, a parenthesis pair and a BEGIN-END pair can be used
interchangeably. For example, the preceding example can be written equivalently
as follows:

IF .A NEQ 0
THEN

(
B = .P + .A;
C = .Q + .A;
)

Or it can be written more compactly, as follows:

IF .A NEQ 0 THEN (B = .P + .A; C = .Q + .A;)

A block that uses a parenthesis pair and contains just one expression is a
parenthesized expression; it is the ultimate specialization of a block. An example
of the use of parenthesized expressions is as follows:

.(A + 1)*(B - 1)

Because the parentheses are present, the addition is performed before the fetch
operation, and the multiplication is performed last of all. When the parentheses
are removed, the expression appears as follows:

.A + 1*B - 1
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This expression has a different meaning because the operators refer to different
operands. According to the priority rules given in Chapter 5, the fetch operation
is performed before the addition, and the multiplication is performed before the
addition or subtraction. Thus, parenthesized expressions are used to override the
priority rules.

1.4.7 Declarations
Every name in a BLISS program must be declared. The purpose of the
declaration is to provide the BLISS compiler with information about the name. A
simple example of a declaration is as follows:

OWN
X;

This declaration says that X designates a storage location that is permanently
allocated (in the OWN program section) before program execution begins.
(Note that, in the context of declarations, the semicolon is simply a mandatory
terminator.)

A more complicated example of a declaration is as follows:

OWN
ALPHA: VECTOR[100] INITIAL(REP 100 OF (0));

This declaration not only specifies that ALPHA is an OWN name, but also gives
two attributes, which begin with the keywords VECTOR and INITIAL. The
VECTOR attribute describes the structure of the storage designated by ALPHA.
The INITIAL attribute provides initial values for the storage.

The preceding examples are declarations of names of data addresses. An example
of the declaration of a name of a routine address is as follows:

ROUTINE EXCHANGE(A,B): NOVALUE =
BEGIN
LOCAL

TEMP;
TEMP = ..A;
.A = ..B;
.B = .TEMP;
END;

This routine exchanges the contents of the two locations that are given through
the formal names A and B. The extra fetch operator used with these formal
names reflects the fact that a formal name is the address of a storage location
that contains a parameter; it is not the parameter itself.

The attribute NOVALUE indicates that this routine does not return a value,
because the last expression within the routine body is a terminated expression.
Therefore, a call on this routine must appear in a context that does not require a
value. For example, the call could be used in a statement-like way. The semicolon
following the keyword END is simply the required declaration terminator, and as
such has nothing to do with whether or not the routine returns a value.

Some names do not represent addresses. For example:

MACRO
Q = 0,3 %;

This declares the name of a macro, Q. During compilation, every occurrence
of Q in the scope of this declaration is replaced by the text ‘‘0,3’’. Declarations
are scoped by the block structure of a program. The same name can be used
in different blocks for different purposes. Thus it is not necessary to use an
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awkward name because the appropriate name has been used in some other part
of the same program.

1.4.8 Structures
The most commonly used forms of data structures are defined as part of BLISS.
An example of such a structure follows:

OWN
ALPHA: VECTOR[100] INITIAL(REP 100 OF (0));

In this declaration, VECTOR[100] is the structure-attribute. It specifies that
ALPHA designates a data segment in storage that is not a single fullword, but
rather is a sequence of 100 fullwords. The first of the fullwords is referenced by
ALPHA[0], the second by ALPHA[1], and so on up to ALPHA[99]. An example of
a reference to this vector follows:

ALPHA[.I-1] = 5

Suppose that, for a given execution of this assignment, the content of I is 8. Then
the assignment is equivalent to the following:

ALPHA[7] = 5

Its effect is to set the eighth element of the vector to 5.

In addition to VECTOR, three other kinds of data structures (BITVECTOR,
BLOCK, and BLOCKVECTOR) are defined as part of BLISS. Beyond that,
however, is the capacity of BLISS to accept programmed definitions of data
structures. This feature permits you to define data structures that are designed
precisely for a given application. A part of the data-structure definition is
the ‘‘algorithm’’ for accessing the structure. For example, a structure can be
programmed to pack data in a way that saves storage or to include special checks
for illegal accesses.

1.4.9 Flow of Control
Alternative actions to be taken by a program can be controlled by a conditional-
expression. For example:

IF .X GTR 0
THEN

Y = .X
ELSE

Y = -.X;

This example sets Y to the absolute value of the contents of X. It ends with
a semicolon, and is therefore a statement-like use of a conditional-expression.
Another example follows:

Y = (IF .X GTR 0 THEN .X ELSE -.X);

This example also sets Y to the absolute value of the contents of X. However,
in this example the value of the conditional-expression is used. Its value is .X
or –.X, depending on whether or not the test is satisfied. Once the value of the
conditional-expression is calculated, it is assigned to Y.

A more specialized construct for alternative flow of control is the case-expression.
For example:
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CASE .X FROM 1 TO 8 OF
SET
[1]: REPORT1(.Z);
[2]: REPORT2(.Z);
[4,7]: Q = .Z+1;
[INRANGE]: ERROR1(.Z);
[OUTRANGE]: ERROR2(.Z);
TES;

The interpretation of this expression begins with the evaluation of .X; then,
depending on the value of .X, one of five actions is taken. If the value is 1, the
routine REPORT1 is called. If the value is 2, the routine REPORT2 is called. If
the value is 4 or 7, the assignment Q = .Z+1 is performed. If the value is in the
range from 1 to 8 but is none of the previous cases, then the routine ERROR1 is
called. If the value is outside of the range 1 to 8, then the routine ERROR2 is
called.

A third construct for alternative flow of control is the select-expression, which
lies between the conditional-expression and the case-expression in its degree of
specialization.

1.4.10 Loops
Iterative actions are controlled by loop-expressions. An example of the use of a
loop-expression follows:

OWN
SUM,
LIST: VECTOR[21];

...
SUM = 0;
INCR I FROM 0 TO 20 DO

SUM = .SUM + .LIST[.I];

The loop-expression in this example forms the sum of the 21 elements of the
vector LIST. It does so by executing the assignment 21 times, once each for .I
equal to 0, 1, 2, and so on through 20. In this example, the loop-expression is
followed by a semicolon and is therefore used in a statement-like way. Note that
the control parameters (0 and 20 in this case) can be any form of expression that
has a value.

A second example of the use of a loop-expression follows:

OWN
X,
LIST: VECTOR[21];

...
X = (INCR I FROM 0 TO 20 DO

IF .LIST[.I] EQL 0 THEN EXITLOOP .I);

The loop-expression in this example searches the vector LIST for an element that
is 0. If a 0 is found, the value of the loop-expression is .I; that is, a value between
0 and 20 that shows where the 0 was found. If a 0 is not found, the loop runs
to completion and the value of the loop-expression is (by definition) –1. In this
example, the value of the loop-expression is used to provide, in a convenient way,
for the case that there is no 0 in LIST.
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1.4.11 Binding of Names
Most of the names in a BLISS program represent addresses—either data
addresses or routine addresses. The operation of associating an address with
a name is called binding. Once the name is bound, the use of the name becomes
equivalent to the use of the address to which it is bound.

As an example of binding, consider the following use of the name BETA:

OWN
BETA;

...
BETA = 4;

Suppose that BETA is bound to the address 1203. Then the assignment in the
example is equivalent to the following:

1203 = 4;

In nearly all cases, you do not need to know the address to which a name is
bound. Storage is allocated by the compiler, the linker, and the operating system,
and you simply want references to storage to be consistent.

Occasionally, you may want to access a particular location. Suppose, for example,
that a fullword used for communication with a certain input/output device is in
location 80. Then that location can be set as follows:

BIND
IOW = 80;

...
IOW = 0;

In this case, the assignment is entirely equivalent to the following:

80 = 0;

The use of the BIND declaration makes your intentions clear, not only to the
reader but also to the compiler.

1.5 Program Transportability
Transportability of software is the use of the same source program in more than
one system environment. The basis for transportable programming in BLISS is
the extensive language base referred to as Common BLISS. In addition, BLISS
provides many specific facilities that aid in achieving transportability along with
efficiency, either through parameterization of Common BLISS constructs, or
conditional or compartmented use of dialect-specific code. The major facilities
that support transportable programming are the following:

• Predefined data structures (for example, VECTOR, BITVECTOR, and
BLOCK) that allow commonly used data structures to be allocated and
accessed efficiently in each target environment.

• Predefined literals that reflect the parameters of the target architectures in
terms of bits. These literals can be used, for example, to parameterize data
declarations and storage references for greatest efficiency on each intended
target system.

A listing of the predefined literals and their values for each target system
follows.

Introduction 1–11



Value in:

Name Meaning BLISS–16 BLISS–32 BLISS–36

%BPVAL Bits per BLISS value 16 32 36

%BPUNIT Bits per addressable
unit

8 8 36

%BPADDR Bits per address
value

16 32 18 or 301

%UPVAL Units per BLISS
value

2 4 1

1Depending on the target-system CPU.

• User-definable data structures and named fields. The structure definition
is a representation of the accessing algorithm, and it can make use of the
predefined literals to provide field packing that is optimal for each target
architecture.

• Character-string functions that permit efficient manipulation of string data
regardless of the representation on the target architecture. Examples:
CH$PTR creates a character-string pointer, CH$MOVE moves a character
string, and CH$COMPARE compares the value of two strings. There are 25
such functions.

• Compile-time conditionals that allow compiled code to be explicitly different
for different target architectures.

• A powerful macro facility that allows for different expansions for different
target systems; for example, %BLISS32(BYTE) expands to its parameters
(BYTE in this case) only if being compiled by the BLISS–32 compiler. Macros
can also be used to segregate code sequences that differ for each architecture.

• REQUIRE and library files. Sets of common definitions can be kept in files
that are selectively included in compilations through use of the REQUIRE or
library declarations. This is a simple and efficient method of sharing common
data structures and definitions between modules in a conditional fashion. It
also permits compile-time conditionals and parameterized definitions to be
maintained separately from the code in the modules.

1.6 Effects of Optimization
The semantic definitions of the BLISS language in this manual describe the
useful, perceptible results of program execution as if those results were achieved
without optimization of the object code. Wherever possible, then, the manual
avoids discussion of how the results are actually obtained. The only exceptions
are where a discussion of object code enables you to make a more efficient choice
between several alternative constructs, for example, between two types of control
expressions.

In particular, the optimization strategies employed by the compiler are not
described. The optimizations reduce the cost of program execution by eliminating
some of the actions defined by the language semantics, but they never affect the
final results.
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In some cases, however, the optimizations can be so extensive (global flow
optimizations) that the object code generated does not show any obvious
correlation to the corresponding sequence of source code. The degree of
optimization performed by the compiler can be controlled by optimization
switches, either in the module head (Chapter 19) or in the compiler command
line. The BLISS user’s guides describe the kinds of optimizations performed and
the effect of the various optimization switches.

1.7 The BLISS Programming System
The BLISS programming system is the collection of software programs that
supports the development of BLISS programs. Some of the components of the
BLISS system are used only for BLISS programs; the compiler is an example.
Other components are shared with other programming language systems; the
linker is shared in this way.

Operating instructions for the compiler or the linker are not given here. Such
instructions are essential (and are given in the appropriate BLISS user manual),
but they never, or almost never, affect the results of program execution as
described in this manual.

This section describes the components of the BLISS system and then discusses
the evaluation of constant expressions by two components of the system, the
compiler and the linker.

1.7.1 System Components
The BLISS system has five main components: the compiler, the linker, the
operating system, the debugger, and a set of utilities.

Compiler
The compiler is specially written for the BLISS system (one for each dialect).
It accepts a BLISS module as its input or source file. It produces an unlinked
target-system program as its object file (although the compiler used for a given
dialect may itself actually execute on another computer system, that is, it may
be a cross-compiler). Because the compiler performs complicated and large-
scale optimizations, the relationship between the source file and the object file
is sometimes difficult to perceive; that is, it can be difficult to find the specific
instructions that implement a particular BLISS expression. Therefore, a plan for
developing a BLISS program should involve as little reference to the object file as
possible.

The compiler takes only one module at a time as its input. Therefore, the
compiler cannot determine addresses that are used in the given module but
declared in other modules; such addresses are external and must be left blank
(unlinked in the object file). Furthermore, the compiler does not determine
the absolute addresses of routines and data. Instead, the compiler expresses
addresses as offsets relative to certain base addresses.

Linker
The linker is a target-system utility program that is shared by all of the
programming languages for the target system. It accepts an unlinked object
program, produced by the compiler, for each module of a program. It produces an
executable program image as its output.
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The linker finishes the job of preparing the program for execution. It has access
to all modules of the program and can therefore fill in the external addresses.
It can determine the required base addresses for routines and data and can
therefore replace static offset addresses with absolute addresses.

Operating System
The operating system is a collection of target-system utility programs that
are essential to any programming job. It includes a command that executes
a program. This command loads the program image and starts execution.
Thereafter, the operating system manages input/output, handles interrupts,
and generally oversees program execution.

Debugger
The debugger is a program that assists you in finding errors in a program. The
package includes features for dumping data in convenient representations and
formats, for tracing data through the execution of the program, for establishing
break points to halt program execution, and so on.

Utilities
The BLISS utilities are a collection of programs especially written to support
the BLISS programming process. One such utility, for example, is the BLISS
source-program formatter. The utilities are described in the BLISS user manual
and in online documentation files available with each BLISS system.

1.7.2 Constant Expressions
When the value of an expression cannot change throughout program execution,
it is a constant expression. Many important techniques for optimizing a program
depend on the recognition and evaluation of constant expressions.

Some constant expressions can be evaluated as soon as they are written. For
example, the value of the numeric-literal 52 is obviously fifty-two. Other constant
expressions depend on addresses that are determined either by the compiler or by
the linker. For example, the value of the expression X+6 depends on the address
that is associated with X.

When the value of a constant expression is determined, the expression is bound.
The process of associating values with constant expressions is a form of binding.
These terms are most often applied to names; however, in BLISS a name is just
a special case of an expression, and a bound name is just a special case of a
bound expression. The main activity of the linker is to bind the names used in a
program to appropriate addresses.

In certain contexts, BLISS requires a compile-time constant expression; that is,
an expression that can be bound by the compiler. For example, when a VECTOR
data segment is declared, its size must be given as a compile-time-constant-
expression; this restriction permits the compiler to allocate storage for the data
segment and thus avoid the expense of dynamic storage allocation.

Because the compiler does not determine absolute addresses, a compile-time
constant expression usually cannot depend on a name that represents an
address. The exception occurs in expressions such as X–Y or X EQLA Y; in
these expressions, the offset addresses for X and Y (which are determined by the
compiler) are sufficient to determine the values of the expressions.
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In certain other contexts, BLISS requires a link-time constant expression; that
is, an expression that can be bound by the linker. Since all addresses are
determined by the linker, a link-time-constant-expression can depend on a name
that represents an address. Further details about both compile- and link-time
constant expressions are given in Chapter 7.

Much of BLISS programming can be done without regard for the fact that a
program goes through compilation and linking before it can be executed. The
compile- and link-time constant expressions are important exceptions to this rule.

1.8 A Complete Program
An example of a complete program follows. The purpose of the example is
to illustrate the overall structure of a BLISS program. The example is not a
realistic program, although it is executable. A realistic program would require
many pages for its listing as well as many pages of explanation. Instead, the
example is a short program that reads a number from the terminal, adds 1 to it,
and prints out the result.

The program is composed of two modules, TIO and E1. The first module, TIO, is
assumed to be a general-purpose library module that performs input/output at
the user’s terminal. It includes an input routine, GETNUM, that reads a number
that has been entered at the terminal, and an output routine, PUTNUM, that
prints a given number at the terminal. The module TIO is not listed here. The
second module, E1, is the specialized portion of the example program. It controls
the entire process and performs the specified operation (the addition of 1) on the
given data. This module is presented here.

MODULE E1 (MAIN = CTRL) =
BEGIN

FORWARD ROUTINE
CTRL,
STEP;

ROUTINE CTRL =

!+
! This routine inputs a value, operates on it, and
! then outputs the result.
!-

BEGIN
EXTERNAL ROUTINE

GETNUM, ! Input a number from terminal
PUTNUM; ! Output a number to terminal

LOCAL
X, ! Storage for input value
Y; ! Storage for output value

GETNUM(X);
Y = STEP(.X);
PUTNUM(.Y)
END;

ROUTINE STEP(A) =

!+
! This routine adds 1 to the given value.
!-

(.A+1);

END
ELUDOM
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An informal discussion of this module follows. Only the main features are
mentioned, and some new terminology is introduced. The purpose is to give a
general idea of how a module is constructed and how it works.

The module includes comments, each of which begins with an exclamation mark.
Not included, however, is a long comment that normally appears at the beginning
of a module and provides information about copyright, authorship, revisions, and
so on.

The outer structure of the module is as follows:

MODULE E1 (MAIN = CTRL) =
BEGIN
...

END
ELUDOM

The first line gives the name of the module, E1. It also specifies that the main
routine for the entire program is CTRL; therefore, when the program is executed,
the operating system will call CTRL. The three dots represent the body of the
module.

The body of the module begins with a forward-routine-declaration, which lists
the names of the routines that are declared in the module. The remainder of the
body is devoted to the declarations of the routines.

The first routine-declaration begins with the following line:

ROUTINE CTRL =

This line gives the name of the routine, CTRL. Because CTRL is not followed
by a parenthesized list of names, the routine is not called with parameters. The
purpose of the routine is to control program execution and to call other routines.

The body of the routine CTRL is given after the comment that describes
the routine. It contains two declarations followed by three expressions. The
declarations do not cause actions directly; instead, they describe the names that
are used in the routine. The first declaration describes GETNUM and PUTNUM
as names of routines that are declared in another module. The second declaration
describes X and Y as the addresses of storage segments that are used during
execution of this routine.

The three expressions are as follows:

GETNUM(X);
Y = STEP(.X);
PUTNUM(.Y)

The first two expressions are terminated (followed by a semicolon); the third
is not. These expressions specify separate actions, and are executed (or more
precisely, evaluated) one after another, in the order written. The first expression
calls the routine GETNUM to read a number from the user’s terminal and
store it at address X. The second expression calls the routine STEP to add 1 to
the contents of X and then assigns the result to Y. (The values of the first two
expressions are discarded; thus, these expressions are used in a statement-like
way, solely for their side effects.)

The third, non-terminated expression calls the routine PUTNUM to print the
contents of location Y at the user’s terminal, but also to provide a value for the
routine as a whole. This is the value of the routine call, presumably a completion
code returned by PUTNUM. (One target operating system, VMS, requires such a
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value to be returned by the main routine. In the case of other target operating
systems, the main-routine return value, if provided, is ignored.)

The second routine-declaration begins with the following line:

ROUTINE STEP(A) =

This line gives the name of the routine STEP. It also gives a formal name, A,
that represents the parameter of the routine. Because there is no NOVALUE
attribute, this routine also returns a value. The body of the routine STEP is
given after the comment that describes the routine. It is a single line, as follows:

(.A+1) ;

This line specifies that when this routine is called, the value it returns is
calculated by adding 1 to the contents of formal location A, the value of the
parameter. Observe that the semicolon here is the terminator of the routine
declaration, and as such does not terminate the expression. It has no effect on
whether or not the routine returns a value.

The expression that constitutes the routine body is enclosed in parentheses for
added clarity; the effect would be exactly the same without the parentheses in
this case. An equivalent way of expressing this routine declaration, which shows
more clearly the role of the semicolon, is the following:

ROUTINE STEP(A) =

!+
! This routine adds 1 to the given value.
!-

BEGIN
.A+1
END;

Section 1.4.6 discusses the equivalence of the parenthesis pair and the BEGIN-
END pair as used in these examples.
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2
Lexical Definitions and Syntax Notation

This chapter defines lexemes (the basic syntactic elements of BLISS) and the
rules for the formation of valid BLISS source text. It also describes the syntax
notation used in later chapters to define the larger constructs of the BLISS
language.

The basic elements and rules of the language are as follows:

• Characters and linemarks. Characters are the indivisible units of program
text. Linemarks serve to divide a character sequence into separate lines of
source text. Together they constitute the lowest-level elements of syntactic
structure.

• Lexemes and spaces. The lexemes of BLISS are analogous to the words and
punctuation marks of ordinary English text. The spaces are used to separate
lexemes where necessary and, optionally, to arrange the program text in a
clear and attractive way. Together they constitute the next higher level of
syntactic structure.

Note that a comment in BLISS is simply a special form of a space from the
lexical viewpoint.

• The separation rules. These rules govern the mandatory and optional use of
spaces to separate lexemes.

Syntax notation, described in Section 2.4, is used to formulate the syntactic
rules that define the many constructs of the BLISS language. Each such
construct consists of one or more lexemes. Thus these higher-level syntactic rules
fundamentally depend on the separation rules for their formal interpretation,
although the separations required and allowed by the syntactic rules are usually
intuitively obvious without recourse to the separation rules.

2.1 Characters and Linemarks
At the lowest level of syntactic structure a BLISS module consists of a sequence
of characters and linemarks. They are the smallest recognizable elements of the
source text.

2.1.1 Characters
The characters that can appear in a module are listed and classified in the
following table:
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Category Characters

Printing

Letters A B C . . . Z a b c . . . z

Digits 0 1 2 . . . 9

Delimiters . ^ * / + – = , ; : ( ) [ ] < >

Special $ _ % ! ’

Free " & ? @ \ ` { | } ~

Nonprinting

blank tab vertical-tab form-feed

All the characters in this table are members of the ASCII character set. However,
the table does not include all the ASCII characters. Specifically, 30 of the 34
nonprinting ASCII characters do not appear in the table and must not be used in
a BLISS module.

Note that this table shows which characters can be used in a BLISS program, but
does not impose a restriction on data. BLISS data can use any ASCII characters.
(The characters that cannot be represented literally in the program text can
be entered indirectly with numeric codes, through the %CHAR lexical-function
described in Chapter 15.)

2.1.2 Linemarks
The linemark is the separation between the end of one source line and the
beginning of the next in a source file. On most terminals, you enter it into the file
by pressing the RETURN, CARRIAGE RETURN, or NEWLINE key.

The linemark is represented in different ways in different target systems. On
the PDP–11 and VAX systems, where a text file is a sequence of records, the
linemark is represented by the division between two successive records. On the
DECsystem–10/20, where a text file is a single character string, the linemark is
represented by a line-feed, vertical-tab, or form-feed character; if any of these
characters is immediately preceded by a carriage-return character, then that
character is also part of the linemark.

2.2 Lexemes and Spaces
At the next higher level of syntactic structure a BLISS module consists of a
sequence of lexemes and spaces. A lexeme is the smallest meaningful unit of
the source text. Spaces are used to separate certain kinds of lexemes according
to the separation rules, and are optionally used to separate other lexemes for
greater readability and general formatting purposes. The division of a module
into lexemes and spaces is especially important for the interpretation of macros,
as described in Chapter 16.
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2.2.1 Lexemes
The various types of lexemes that can appear in a module are listed and classified
in the following table, with examples for each type except delimiters (single
characters that are completely enumerated):

Category Examples

Keywords ROUTINE %ASCII AND

Names

Predeclared VECTOR MAX

Explicitly Declared X BETA26 INITIAL_SIZE

Decimal Literals 0 23000

Quoted Strings ’ ABC’ ’ He said, ’’ Go!’’’ ’ 77700’

Delimiters

Operators . ^ * / + – =

Punctuation Marks , ; : ( ) [ ] < >

A delimiter serves either as an operator or as a punctuation mark. They are
called delimiters because they separate neighboring lexemes without the use
of intervening blanks. For example, the plus sign ( + ) delimiter can form the
expression ALPHA+1 (consisting of three lexemes) without inserting blanks;
however, using the keyword AND in place of the plus sign, without adjacent
blanks, would form ALPHAAND1, which would be interpreted as a single lexeme.

2.2.2 Spaces and Comments
When two lexemes would otherwise run together to make a single lexeme, they
must be separated by a space. A description of spaces is given in the following
table:

Linemark

Nonprinting Characters blank tab vertical-tab form-feed

Comments

Trailing Comment ! This is a program for entomologists.

Embedded Comment %( Insert new routine here )%

The preceding table describes spaces informally, using two examples for the
comments. A more precise definition is as follows:

1. A space is a linemark, a nonprinting character (as listed in the table in
Section 2.1.1) or a comment.

2. A comment is a trailing comment or an embedded comment.

3. A trailing comment is an exclamation character followed by the remainder of
the line on which the comment begins.
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4. An embedded comment begins with the two characters ‘‘%(’’, followed by the
text of the comment, followed by the two characters ‘‘)%’’. The text must not
contain the sequence ‘‘)%’’, because that would prematurely end the comment;
see guidelines below. An embedded comment can begin after any lexeme of
a module and can extend to any later position in the module. However, an
embedded comment must end in the same source file in which it began.

Spaces are commonly used to arrange the module in a clear and attractive format
and to insert comments on the workings of the program. However, when a module
is translated by the compiler, the only role of spaces is to separate the lexemes
of the module. For example, from the point of view of the compiler, a lengthy
comment is equivalent to a single blank character.

Guidelines on the Use of Comments
Beginning with an exclamation point ( ! ), a trailing comment anywhere in a
source line is terminated by the next linemark (that is, by the end of the line in
which it occurs). Thus, it is a generally safe and unambiguous form of comment
and can be used, for example, to ‘‘comment out’’ a line of source text.

An embedded comment, beginning with the character sequence ‘‘%(’’, is
terminated by the very next occurrence of the sequence ‘‘)%’’. This means
that the embedded comment cannot be nested. Also, the sequence ‘‘)%’’ is a
valid though ill-advised form of ending of a macro definition (see Section 16.2).
Thus an extensive embedded comment could be inadvertently terminated by the
occurrence of ‘‘)%’’ in a macro declaration where the ‘‘%’’ character was intended
to terminate a macro definition. For these reasons the embedded comment should
be used with care. Also, avoid using it to comment out a body of code.

2.3 The Separation Rules
The use of spaces between the lexemes of a module is governed by the separation
rules. The rules are as follows:

1. One or more spaces must appear between two lexemes if each lexeme is any
one of the following:

• A name

• A keyword

• A decimal-literal

This rule requires the use of spaces wherever two lexemes would otherwise
merge to form a single, longer lexeme.

2. One or more spaces can appear between any two lexemes. This rule permits
the use of spaces to control format and provide comments.

3. A space must not be inserted into a lexeme. This rule prevents a lexeme from
being broken into two lexemes. Some apparent exceptions arise in the case of
a quoted-string lexeme, as described in Section 4.3.2.

2.4 The Syntax Notation
The syntax of BLISS is a collection of syntactic rules that describe the construction
of a module (the unit of compilation). The special notation used for the syntactic
rules is defined in this section.
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Each syntactic rule defines a syntactic name. The syntactic rules are
interdependent; that is, many of the rules define a syntactic name in terms
of other syntactic names. However, the rules do not form a vicious circle of
definitions because some of the rules define syntactic names directly in terms of
syntactic literals (that is, without reference to other syntactic names).

The ultimate syntactic name is module, which is defined in the syntactic rules
given in Chapter 19. The description of the language begins with the definition of
the syntactic name expression, in Chapter 4.

2.4.1 Syntactic Rules
A syntactic rule is divided into two parts by a vertical line. To the left of the
line is the syntactic name that is defined by the rule; to the right, a string
definition. In the simplest rules, the string definition is a single character or a
single syntactic name.

In more complicated rules, string definitions are combined to make larger string
definitions as follows: by concatenation (the joining of strings), by disjunction
(the choice between two strings), or by iteration (the joining of several copies of a
string).

An example of the simplest possible kind of rule is as follows:

dollar $

In English, this rule reads: ‘‘The syntactic name dollar designates the dollar sign
( $ ) character.’’ Note that the character is a syntactic literal, as defined in the
following section; thus this rule completely defines the syntactic name dollar,
without reference to any other rules. Sometimes it is useful to give the same
definition for several syntactic names. In such a case, the several names are
written one above another and are joined by a brace.n

position
size

o expression

In English, this rule reads: ‘‘The syntactic names position and size each designate
an expression.’’

2.4.2 Syntactic Names and Syntactic Literals
A syntactic name is one or more English words composed of lowercase letters and
connected by hyphens. Four examples of syntactic names are given in the two
syntactic rules above, namely: dollar, position, size, and expression.

Further examples of syntactic names are as follows:

module
own-item
forward-routine-declaration
compile-time-constant-expression

Every syntactic name has at least two characters.

A syntactic literal is a printing character that is interpreted as itself when it
occurs in a string definition. All printing characters are syntactic literals except
the following:

1. A character that is part of a syntactic name

2. A brace character, { or }, or a vertical bar, |
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3. A period or comma that is part of the sequence ‘‘ . . . ’’ or the sequence ‘‘, . . . ’’

In this manual syntactic names are always in lowercase and BLISS keywords are
in uppercase.

2.4.3 Concatenations
A concatenation is a string definition composed of a sequence of two or more string
definitions. If the definitions are adjacent (without intervening spaces), then the
strings they define must also be adjacent. If the definitions are separated
(by spaces), then the strings they define may or may not require separation,
depending on the separation rules given in Section 2.3.

An example of a syntactic rule that uses adjacent concatenations is as follows:

volatile-attribute VOLATILE

In English, this rule reads: ‘‘The syntactic name volatile-attribute designates the
following string: the keyword VOLATILE.’’ Because the eight letters VOLATILE
(each one a syntactic literal) are adjacent in the rule, they must also be adjacent
in the program.

An example of a rule that uses both adjacent and separated concatenations is as
follows:

exitloop-expression EXITLOOP exit-value

In English, this rule reads: ‘‘The syntactic name exitloop-expression designates
the following string: the keyword EXITLOOP, followed by an exit-value.’’

In the English reading of any syntactic rule, the phrase ‘‘followed by’’ is an
abbreviation for ‘‘followed by the spaces (if any) that are required by the
separation rules, followed by.’’

2.4.4 Disjunctions
A disjunction is a string definition that permits a choice of one string definition
from a set of several string definitions. The set of definitions is enclosed in braces.
Each definition is separated from the preceding one by being on a new line or by
a vertical-bar character.

The following is an example of a disjunction in which each choice is written on a
separate line:

case-label

8<
:

single-value
low-value TO high-value
INRANGE
OUTRANGE

9=
;

In English, this reads: ‘‘The syntactic name case-label designates one of the
following strings: ( 1 ) a single-value, ( 2 ) a low-value followed by the keyword
TO followed by a high-value, ( 3 ) the keyword INRANGE, ( 4 ) the keyword
OUTRANGE.’’

An example of a disjunction in which the choices are separated by vertical-bar
characters is as follows:

octal-digit { 0 | 1 | 2 | . . . | 7 }

2–6 Lexical Definitions and Syntax Notation



In English, this reads: ‘‘The syntactic name octal-digit designates one of the
following characters: 0, 1, 2, and so on to 7’’. Observe that once the set of choices
is clearly implied, the ellipsis symbol ( . . . ) is used to indicate other choices. In
some disjunctions, one of the choices may be the omission of a construct; in such
a case, the word ‘‘nothing’’ is included in the braces. An example of a disjunction
that uses the word ‘‘nothing’’ as one of the choices is as follows:

leave-expression
LEAVE label

n
WITH exit-value
nothing

o

2.4.5 Replications
A replication is a string definition that represents a sequence of one or more
copies of a given string definition. The replication is indicated by writing an
ellipsis symbol ( . . . ) after the given definition. The separation between the
defined strings is determined by the separation rules, just as for concatenation.

An example of a replication is as follows:

own-item
own-name

n
: own-attribute . . .
nothing

o

In English, this rule reads: ‘‘The syntactic name own-item designates the
following string: an own-name followed by an optional own-attribute-list. An
own-attribute-list is a colon followed by a sequence of one or more own-attributes’’.
(The extra syntactic name, own-attribute-list, is introduced only for the sake of
the English reading.)

A special kind of replication is indicated by writing a comma followed by an
ellipsis symbol (, . . . ) after the definition. The symbol means that each copy of
the given definition is separated from the preceding one by a comma.

An example of a replication that uses the symbol follows:

routine-call
routine-designator (

n
actual , . . .
nothing

o
)

In English, the rule reads: ‘‘The syntactic name routine-call designates the
following string: a routine-designator, followed by an open parenthesis followed
by an optional actual-list, followed by a close parenthesis. An actual-list is a
sequence of actuals that are separated from one another by commas’’. (The extra
syntactic name, actual-list, is introduced only for the sake of the English reading.)

Note that whether or not the comma is included with the ellipsis symbol,
the optional replication applies only to the string definition that immediately
precedes the replication symbol.

2.4.6 Dialectal Differences
Some of the syntactic rules given in this manual apply to only one or two of the
three BLISS dialects. That is, some of the rules are not part of Common BLISS.
Further, certain of the string definitions given within some rules are dialect
specific.

These dialect-specific features are indicated in the syntax diagrams by flags of the
following form, which precede a rule (or a group of rules):

nn Only ) or mm/nn Only )

Or a flag of the following form that follows a string definition:
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( nn Only or ( mm/nn

In each case, mm and nn identify the dialects to which the syntactic feature
applies (that is, 16, 32, or 36).

An example of an entire syntactic rule that is dialect specific follows:

16/32 Only )

extension-attribute n
SIGNED
UNSIGNED

o

In English, the dialect flag means: ‘‘The following syntactic rule applies to the
BLISS–16 and BLISS–32 dialects only’’.

An example of both a syntactic rule and a string definition within the rule that
are dialect-specific follows:

16/32 Only )

allocation-unit
(

LONG
WORD
BYTE

)
( 32 Only

In English, the left-pointing dialect flag ‘‘( 32 Only’’ means: ‘‘The string
definition LONG is valid only in BLISS–32 as an alternative within the rule
for allocation-unit (which itself applies only to the BLISS–16 and BLISS–32
dialects)’’.
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3
BLISS Values and Data Representations

The range of data values permitted and the kinds of data representations
available are important characteristics of a programming language. Because
the BLISS language is a systems implementation language, its value and data
representations are closely related to those directly provided or efficiently handled
by the machine architecture of each target system.

This chapter describes the values and data representations provided by each
BLISS dialect. Because the three BLISS target systems have substantially
different architectures (word sizes, addressable units, character string
representations, and so forth), portions of this chapter are, necessarily, system
specific.

3.1 BLISS Values
BLISS provides a variety of written (source program) representations for values
(binary, octal, hexadecimal, and so on). These are described in Chapter 4. The
normal representation is decimal; that is, any number in a BLISS program and
in this manual is interpreted as decimal notation unless otherwise indicated.

The values on which the object program operates, however, are represented as bit
strings. The maximum-length bit string that is efficiently accessible by a given
target system (that is, a ‘‘word’’ or ‘‘longword’’ depending on the system) is called
a fullword in BLISS terminology. The length of a fullword, in bits, for each target
system is indicated by the numeric portion of the name of the respective dialect:
16, 32, or 36.

A bit string that is shorter than a fullword is called a field value. Several field
value sizes are of particular importance in BLISS, depending on the dialect in
question:

• For all dialects—The bit, which is the smallest unit of storage.

• For BLISS–16—The byte (8 bits), which is the basic addressable unit in
PDP–11 and VAX systems.

• For BLISS–32—The byte, as above, and the word (16 bits), which is the
intermediate size addressable unit in VAX systems.

Fullword values and field values play contrasting roles in BLISS. Fullword values
are used as the basis for all calculations. Fields are used to achieve compact
storage for values that do not require the maximum-length bit string for their
representation. The two kinds of values are discussed separately in the following
sections.

BLISS Values and Data Representations 3–1



3.1.1 Fullword Values
The fullword value is the fundamental data type of BLISS. Specifically, the result
of evaluating any BLISS expression is a fullword value.

In some cases, a fullword value can be viewed as a bit string without a specific
interpretation, as when a value is moved from one storage location to another
without modification. In other contexts, the bits of a fullword value are given
a specific interpretation. A fullword value can be interpreted as any of the
following:

• A signed integer, represented in two’s complement notation

• An unsigned integer

• A sequence of character positions, each of which contains a code for an ASCII
character

• A sequence of logical values, each of which represents ‘‘true’’ or ‘‘false’’

• A memory address

Other interpretations for a fullword value can be devised, but these are the
interpretations that are built into the operations of BLISS.

The length of a fullword, in bits, is given in each BLISS dialect by the predeclared
literal %BPVAL (bits per value), that is, 16, 32, or 36 for BLISS–16, BLISS–32,
and BLISS–36, respectively. Using this literal, you can express the range of
a fullword value for each of the interpretations listed above for all dialects, as
follows:

• Signed integer, i:

–(2**%BPVAL–1) � i � (2**%BPVAL–1)–1

In BLISS–16, for instance:

–(2**15) � i � (2**15)–1

• Unsigned integer, i:

0 � i � (2**%BPVAL)–1

• ASCII character positions:

2 in BLISS–16
4 in BLISS–32
5 in BLISS–36

• Sequence of logical (Boolean) values:

%BPVAL

• Memory address:

Full address space of each target system

A fundamental rule of BLISS is the following: The interpretation of a fullword
value is supplied by the context in which the fullword value is used. A given
fullword value can have one interpretation in one context and a different
interpretation in another context.

In this respect, the BLISS language is similar to machine language and is
different from most high-level languages. Both BLISS and the target-system
hardware interpret a value according to the operation applied to it. In contrast,
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most high-level languages associate a specific interpretation (or ‘‘type’’) with each
value, independent of its context.

The BLISS rule for interpreting fullword values allows you to work closely with
the hardware and, accordingly, to write more efficient programs. At the same
time, however, this rule permits programming errors to arise as a result of the
misinterpretation of values.

As a basis for an example of the interpretation of a fullword value, consider the
following assignment:

X = -1

This assignment sets the contents of X to the two’s complement representation of
–1; that is, a sequence of %BPVAL 1’s. The two expressions that follow interpret
the contents of X in different ways:

.X LSS 4

.X LSSU 4

Both of these expressions use a less-than operator to compare the contents of X to
4. They yield 1 or 0 depending on whether or not the contents of X is less than 4.
However, according to the definitions given in Chapter 5, the operators interpret
their operands in different ways, as follows:

• The LSS operator interprets its operands as signed integer values. It finds
that the contents of X is –1 and is therefore less than 4. Accordingly, the
value of the expression is 1.

• The LSSU operator interprets its operands as unsigned integer values. It
finds that the contents of X is a large positive integer (namely, (2**%BPVAL)–
1) and is therefore not less than 4. Accordingly, the value of the expression is
0.

Because the negative number was assigned to X, it might be assumed that the
user of the LSSU operator is incorrect. In fact, however, both expressions are
valid. The question of which is correct depends entirely on the intentions of the
programmer.

3.1.2 Field Values
A field value is a bit string that is shorter than a fullword. Field values are used
in the following ways:

• Some stored values are ‘‘packed’’ and occupy only part of a fullword.

• Some BLISS operators and literals have values that can be represented in
less than %BPVAL bits.

Whenever a field value arises during program execution, it is extended to become
a fullword and then the appropriate interpretation is applied. The rules for the
extension of values follow.

3.1.3 Extending Values
A field value is extended to a fullword value by placing a sufficient number of bits
at the left end of the given value to provide a total of %BPVAL bits.

The following discussion of value extension is largely oriented toward BLISS–16
and BLISS–32, because the target systems for these two dialects allow allocation
of scalar data segments in smaller-than-fullword units. Hence, these dialects
have an allocation-unit and an extension-attribute that can be used in data
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declarations. As will be seen in Chapters 5 and 11, however, these syntactic
features are closely related to field-selectors, which are common to all three
dialects. To the extent, then, that field values can arise in BLISS–36 as well as
in BLISS–16 and BLISS–32, the following discussion is equally applicable to all
dialects.

A value can be extended in two ways, as follows:

• Unsigned extension uses a zero bit for each additional bit.

• Signed extension uses a copy of the sign bit (leftmost bit) of the given value
for each additional bit.

The kind of extension is determined in either of two ways. First, in BLISS–
16/32, an extension-attribute (UNSIGNED or SIGNED) can be included in the
declaration of a data segment name (see Section 9.2). Second, a sign-extension-
flag can be used in a field-selector (see Section 11.2). When the kind of extension
is not explicitly given by an extension-attribute or a sign-extension-flag, unsigned
extension is assumed as the default.

BLISS–16/32 ONLY
As the basis for some examples of value extension, consider the following
declaration, which is valid in BLISS–16 or BLISS–32:

OWN
X: BYTE SIGNED,
Y: BYTE;

Suppose the contents of both X and Y are as follows:

11111111 (binary)

The declaration of X as SIGNED implies that this value is –1, that is, the
two’s complement interpretation of the given bit string. On the other hand,
the declaration of Y as UNSIGNED (by default, since no extension-attribute is
given) implies that its contents is 255, that is, the unsigned interpretation of the
given bit string.

(These declarations are invalid for BLISS–36 because the target-system
architecture does not permit storage allocation in units of less than %BPVAL
bits, that is, less than a 36-bit machine word. Fetching and storing of field
values can be performed, however, through the use of explicit field-selectors, as
illustrated in a later example.)

The sign interpretations come into play when the contents of X and Y are fetched.
The evaluation of .X uses signed extension to produce the following bit string:

11111 . . . 1111111111 (binary)

This is the two’s complement representation of –1 represented in 16 bits for
BLISS–16 or 32 bits for BLISS–32. In contrast, the evaluation of .Y uses
unsigned extension to produce the following bit string:

00000 . . . 0011111111 (binary)

This is the unsigned representation of 255. Therefore, the two results are
different, and the following expression would be false (that is, the low bit would
have the value 0):

.X EQL .Y
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In BLISS–36 as well as BLISS–16 and BLISS–32, you would obtain identical
results using the following analogous set of declarations and fetch operations:

OWN
X,
Y;

This declares X and Y as the names of fullword, scalar data segments. Assume
that the low-order eight bits of both these fullwords are one-bits. Then the
following fetch operation specifies a fetch of the low-order eight bits of location X
with signed extension. Upon evaluation the expression produces the value –1, as
in the example above, represented in %BPVAL bits:

.X<0,8,1>

In contrast, the following fetch operation specifies a fetch of the low-order eight
bits of location Y with unsigned extension, which produces the value 255 in
%BPVAL bits:

.Y<0,8,0>

3.2 Data Segments
During the execution of a BLISS program, values are stored in data segments. A
data segment consists of one or more addressable units of memory. In its simplest
form, a data segment contains a single value. In its more complicated forms, a
data segment can contain many values of various lengths. The different kinds of
data segments can be classified as follows:

Data Segments
Scalars
Structures

Predeclared Structures
VECTOR Structures
BITVECTOR Structures
BLOCK Structures
BLOCKVECTOR Structures

Programmed Structures

A scalar segment contains a single value, whereas a structure may contain any
number of values. Each predeclared structure is a part of the definition of BLISS,
and it is invoked by using one of the predeclared structure names (VECTOR,
BITVECTOR, BLOCK, or BLOCKVECTOR) in the declaration of a data segment.
A programmed structure is defined by the programmer and can be used to
organize the contents of a data segment in any way.

3.2.1 Addressable Units and Units per BLISS Value
The three target-system families supported by BLISS differ in four respects
having to do with their storage organization that affect the source-language
syntax and semantics to some degree. These differences are as follows:

1. Maximum (or only) ‘‘word’’ size, already described as the BLISS fullword
consisting of %BPVAL bits.

2. Smallest directly addressable unit of storage.

3. Number of addressable units per BLISS value (that is, per fullword).

4. Size of an address value.
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The bit size of the smallest addressable unit is given by the predeclared literal
%BPUNIT (bits per unit). Its value is 8 for both BLISS–16 and BLISS–32
byte-oriented target systems; and 36 for BLISS–36 word-oriented target systems.

The number of addressable units per BLISS value is the quotient of %BPVAL
over %BPUNIT. This value is given by the predeclared literal %UPVAL (units per
value). Its value is 2 for BLISS–16 (two bytes per PDP–11 word), 4 for BLISS–32
(four bytes per VAX longword), and 1 for BLISS–36.

The final difference is the number of bits required for a maximum address
value, given by the predeclared literal %BPADDR. Its value is 16 for BLISS–16,
32 for BLISS–32, and 18 or 30 for BLISS–36, depending on the setting of the
EXTEND module-switch. (This value is usually less significant than the others,
as its utility is limited to certain kinds of operations on addresses that are not
commonly required.)

The literals just described are used in the subsequent discussions of data-segment
types.

3.2.2 Scalars
In BLISS–16 and BLISS–32, the storage occupied by a scalar segment depends
on the allocation-unit that is associated with the segment. The allocation-unit is
given in the declaration of the name of the segment and is one of the following
keywords:

LONG (for 32 bits) ( BLISS–32 only

WORD (for 16 bits) ( BLISS–16/32 only

BYTE (for 8 bits) ( BLISS–16/32 only

When no allocation-unit is given, WORD is assumed in BLISS–16 and LONG
is assumed in BLISS–32. In BLISS–36, only fullword scalar segments can be
allocated.

The kind of extension used when the value of a data segment is fetched depends
on the extension-attribute (BLISS–16/32 only) that is associated with the segment
or the field-selector associated with the fetch operation. The extension-attribute
is one of the following keywords:

UNSIGNED (for unsigned extension)

SIGNED (for signed extension)

When no extension-attribute or field-selector is given, unsigned extension is
assumed.

The extension-attribute does not affect the amount of storage used for a data
segment. Its only effect is on the way the value is extended to %BPVAL bits
when it is fetched. It is valid to give an extension-attribute with a fullword data
segment, but the attribute has no effect since the value is already %BPVAL bits
long.

The following is an example of the declaration of a scalar segment:

OWN X;

This declaration describes a segment that is allocated permanently before
execution begins (because it is OWN), that is named X, that is a scalar (because
no structure-attribute is given), that occupies a fullword (because no allocation-
unit is given), and that uses unsigned extension (because no extension-attribute
is given).
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The features of a data segment can be illustrated in a diagram. In the following,
the declaration of X is given together with the diagram for the corresponding data
segment:

Declaration Diagram

OWN X; 2360 X 15 (%BPVAL)

This diagram represents a data segment in a simple and abstract way; that is,
it does not show the specific layout of the data in terms of the byte boundaries
(where applicable), bit sequences, and addresses of storage. A more detailed
notation is introduced in Chapter 11. The diagram represents the data segment
as follows:

1. The address of the data segment is given in two forms. The first form is an
(arbitrarily chosen) integer, 2360, used by the hardware to locate the segment.
The second form is the name, X, that is used by the program to designate the
segment.

2. The storage is represented by a box followed by a parenthesized expression.
The expression shows how many bits of storage the box represents.

3. The contents of the data segment is given as a literal, 15, written inside
the box. It is this part of the diagram that changes as program execution
proceeds.

In this example, the value of X is 2360 (the address of the data segment), whereas
the value of X is 15 (the contents of the data segment).

BLISS–16/32 ONLY
The preceding example describes a scalar that occupies a fullword. Examples of
scalars that, in BLISS–16 or BLISS–32, occupy a word and a byte are as follows:

Declaration Diagram

OWN Y: WORD; 1000 Y 28 (16)

OWN Z: BYTE; 2440 Z 18 (8)

In these examples, each data segment has the UNSIGNED extension-attribute by
default. Thus the values fetched from Y are in the range from 0 to (2**16)–1, and
the values fetched from Z are in the range from 0 to (2**8)–1.

An example of a scalar that has the SIGNED extension-attribute follows:

Declaration Diagram

OWN R: SIGNED BYTE; 3002 R –5 (8)

The values fetched from R range from –(2**7) through (2**7)–1. Thus although R
and Z (in the preceding paragraph) both occupy eight bits of storage, their values
are interpreted differently when they are fetched.

For the purposes of the following discussions, in BLISS–36 scalar data-segment
declarations can be thought of as having an implicit allocation-unit of %UPVAL
value (that is, one addressable unit per segment), and an implicit UNSIGNED
extension attribute.
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3.2.3 VECTOR Structures
A vector structure is a sequence of scalar elements. The number of elements is
the extent of the vector, and is given as part of the declaration of the segment
name. The elements are numbered, with 0 for the first element, 1 for the second,
and so on.

Each element of a vector has the same allocation-unit and extension-attribute.
This information can be given as part of the declaration of the vector. If the
allocation-unit is not given, the default is the same as for scalar segments
(fullword allocation). If the extension-attribute is not given, unsigned extension is
assumed (where applicable).

An example of a vector follows:

Declaration Diagram

OWN A: VECTOR[3]; 5440 A[0] 28 (%BPVAL)

A[1] 5 (%BPVAL)

A[2] 133 (%BPVAL)

This declaration describes a segment that starts at address 5440 and is named
A. The declaration gives the extent of the vector as 3 and so the vector has three
elements. The declaration does not give an allocation-unit, so each element
occupies a fullword.

A particular element is selected by a bracketed subscript expression. Suppose
that the contents of a data segment named IND is 3, and consider the contrast
between the following expressions:

Expression Value

A[.IND-2] 5440+%UPVAL (the address of the second element)

.A[.IND-2] 5 (the contents of the second element)

BLISS–16/32 ONLY
An example of a declaration that gives both allocation-unit and extension-
attribute follows:

Declaration Diagram

OWN B: VECTOR[3,WORD,SIGNED]; 46046 B[0] 15 (16)

B[1] 3 (16)

B[2] 4 (16)

This declaration describes a segment that starts at address 46046 and is named
B. It is similar to the segment named A, described in the preceding paragraph.
However, the allocation-unit is given explicitly as WORD, and therefore each
element of the vector occupies 16 bits. It follows that the vector occupies only
six bytes of memory. Furthermore, the extension-attribute is given explicitly as
SIGNED, and therefore, the fetched contents of an element of B is subject to
signed extension.
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An example of a vector of bytes follows:

Declaration Diagram

OWN C: VECTOR[4,BYTE]; 221 C[0] 7 (8)

C[1] 7 (8)

C[2] 2 (8)

C[3] 4 (8)

This data segment is a vector of four elements and occupies four bytes of memory.
Since an extension-attribute is not given, UNSIGNED is assumed by default.

3.2.4 BITVECTOR Structures
A bitvector structure is similar to a vector structure. However, bitvector structures
are designed especially to handle bit strings, and each element of a bitvector
structure is a single bit.

An example of a bitvector structure follows:

Declaration Diagram

OWN STATUS: BITVECTOR[15]; 1604 STATUS[0] 1 (1)

STATUS[1] 1 (1)

. . . (and so on, until)

STATUS[14] 0 (1)

(not used) (n)

This declaration describes a segment that has 15 elements and thus makes use of
15 bits of memory. The number of unused bits, n, in the data segment allocated
for this structure would be one in BLISS–16 and BLISS–32 (byte allocation), and
21 in BLISS–36.

A bitvector starts at the low-order (rightmost) bit of its first addressable unit of
storage. Thus in BLISS–16 or BLISS–32, STATUS[0] designates the low-order
bit of the byte whose address is 1604, STATUS[7] designates the high-order bit of
that byte, STATUS[8] designates the low-order bit of byte 1605, and so on.

In BLISS–36, where the structure is entirely contained in one word, the
references STATUS[0] and STATUS[8] designate the low-order bit and the
ninth bit ‘‘from the right,’’ respectively, of word 1604. (Note that bit-position
numbering in BLISS is consistent across dialects: bit numbers increase from
low order to high order, ‘‘right to left,’’ regardless of the target-system hardware
convention.)

Neither an allocation-unit nor an extension-attribute can be used with
BITVECTOR. (The number of addressable units allocated is the smallest number
of units that can accommodate the given number of bits.) When the contents of
an element of a bit vector is fetched, unsigned extension is always used.
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3.2.5 BLOCK Structures
A block structure is a sequence of components. The block as a whole has a
name, which is declared using the BLOCK structure-attribute. In addition, each
component of a block has its own name. A block is declared with a size and, in
BLISS–16 and BLISS–32, an allocation-unit. The size specifies the amount of
storage required for the entire block. The allocation-unit determines the units in
which the size is measured. The default allocation-unit is the same as for a scalar
segment declaration (fullword allocation).

The individual components of a block can have different sizes. The way in which
the size of each component is specified is given in Chapter 11. For purposes of the
present discussion, it is sufficient to state that the size is determined when the
program is written and cannot change during program execution.

Observe that a block differs from a vector in two ways. A block is less flexible
than a vector because, in normal usage, the name of a block component is given
explicitly when the program is written, whereas the subscript of a vector element
can be calculated during program execution. On the other hand, a block is more
flexible than a vector because the components of a block can have various sizes,
whereas the elements of a vector must all have the same size.

An example of a BLOCK structure, using BLISS–32, follows:

Declaration Diagram

OWN ITEM: BLOCK[ITEMSIZE,BYTE]; 33300 ITEM[FLG] 0 (2)

ITEM[N1] 235 (14)

ITEM[LOC] 17 (32)

This declaration describes a segment that starts at address 33300 and is named
ITEM. The declaration gives the size of the block as ITEMSIZE. The diagram
shows that the individual components are FLG (two bits), N1 (fourteen bits), and
LOC (32 bits). Because ITEMSIZE must be the total number of bytes used, the
diagram implies that the value of ITEMSIZE should be 6.

The address of a component of the block is written exactly as it appears in the
diagram. Consider the contrast between the following expressions:

Expression Value

ITEM[LOC] 33302 (the address of the third component)

.ITEM[LOC] 17 (the contents of the third component)

3.2.6 BLOCKVECTOR Structures
A blockvector structure is a sequence of elements (as is a vector structure), but
each element consists of a block. The number of elements is the extent of the
blockvector, and is given as part of the declaration of the segment name. The
elements are numbered, with 0 for the first element, 1 for the second, and so on.

Each element of a blockvector is a sequence of components (as is a block). Each
component is a scalar and has its own name. Therefore, the combination of the
blockvector name, the subscript of an element, and the name of a component is
used to designate a single value.
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In addition to the extent, an element-size and, if BLISS–16 or BLISS–32, an
allocation-unit are given in the declaration of a blockvector. The element-size
specifies the amount of storage for each element (that is, the block size), and the
allocation-unit determines the units in which the element-size is measured.
The default allocation-unit is the same as for a scalar segment (fullword
allocation). The storage required for a blockvector is the product of its extent
and its element-size.

An example of a BLOCKVECTOR structure, using BLISS–36, follows:

Declaration Diagram

OWN Q: BLOCKVECTOR[2,QS]; 6000 Q[0,FLAG] 5 (8)

Q[0,VAL] 62 (28)

Q[0,PTR] 0 (36)

Q[1,FLAG] 25 (8)

Q[1,VAL] 78 (28)

Q[1,PTR] 23 (36)

The declaration of Q gives the extent as 2 and the element size as QS. According
to the diagram, each element has three components, FLAG, VAL, and PTR. Since
QS must be the total number of fullwords used by each element, the diagram
implies that the value of QS should be 2.

Suppose that the contents of a data segment named I is 0, and consider the
contrast between the following expressions:

Expressions Value

Q[.I+1,FLAG] 6002 (address of component)

.Q[.I+1,FLAG] 25 (contents of component)

3.2.7 Programmed Structures
The predeclared structures discussed in the preceding sections provide the data
structures usually required for system programming. To provide for other data
structures, BLISS has a feature, the STRUCTURE declaration, that permits you
to design and use your own data structures. This feature of BLISS is described in
Chapter 11 where, in addition, each predeclared structure is defined in terms of a
STRUCTURE declaration.

3.3 Character Sequence Data
The representation of character data differs among the three BLISS dialects due
to basic architectural differences. In spite of these differences, it is possible to
think about character data in a single, uniform way that applies to all BLISS
target systems and, more importantly, to write BLISS programs that behave
the same way and give the same results on all BLISS systems, even though the
results are achieved in significantly different ways at object level.

The BLISS features for handling character data in this common (that is,
transportable) way involve some new terminology and a set of special character-
handling functions; these features are described in detail in Chapter 20.
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The representation of character data and, in particular, sequences of characters is
described here in two ways. First, character sequences are described in a general
way that includes only the aspects that are common to all BLISS target systems.
Second, the representation of character sequences is described specifically for
each BLISS target system.

3.3.1 General Character Representation
Loosely speaking, a character sequence is like a vector of character data elements.
This analogy may be useful in understanding the following description of BLISS
character sequences. (Fuller detail is given in Chapter 20.)

A character code is a sequence of bits that represents a character. Usually the
ASCII encoding of characters is used in BLISS.

A character position is the storage for a single character code. For a given
implementation of BLISS, the size of a character position is determined by two
factors: the requirements of the character code and the organization of storage.

A character position sequence is a portion of storage that is used for one or more
character positions. Such a sequence has a first and last position. For each
position except the first, there is a previous position, and for each position except
the last, there is a next position.

A character data segment is a character position sequence that is allocated as a
single portion of storage. In the simpler applications of character handling, it is
possible to treat each character data segment as a separate unit, containing a
complete character position sequence and allocated in the same way as other data
segments.

A character pointer is a value that designates a character position. Sometimes a
character pointer is set to the first character position of a sequence and remains
there, providing access to the entire sequence. In other cases, a character pointer
is used to scan back and forth in a sequence, selecting one position after another.
A character pointer can be correctly interpreted only by a character-handling
function. It occupies a fullword.

The length of a character position sequence is the number of character positions
in the sequence. The length of a sequence is not included as part of the sequence
itself. To fully specify a character position sequence, both its length and a
pointer to its first position must be given. Typically, the parameters of the
character-handling functions occur in pairs, a length followed by a pointer.

3.3.2 Character Sequence Operations
The basic operations of character handling are the allocation of storage, creation
of a pointer, moving of a pointer, fetching or storing of a character code, and
comparison of character sequences. All these operations must be performed by
means of the specific character-handling functions provided for this purpose. For
example, the contents of a character position must always be fetched or stored by
means of a character pointer that designates the character position. In contrast,
a character pointer can be fetched or stored like any other fullword value (by
means of the fetch-operator ( . ) or the assignment operator ( = )).

Returning to the analogy with a vector of character data elements, the following
correspondences can be established:

• A character code corresponds to the contents of an element of the vector.

• A character position corresponds to the storage for an element of the vector.
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• A character position sequence corresponds to a contiguous sequence of
elements of a vector (possibly but not necessarily the entire vector).

• A character data segment is the complete vector.

• A character pointer corresponds to the address of an element of the vector.

This analogy is inexact in the following ways:

• A character position need not correspond to an addressable unit of storage.

• A character pointer is not simply an address value.

As described below, these considerations apply specifically to BLISS–36.

3.3.3 BLISS–16 Character Representation
In BLISS–16 there are two character positions per fullword. Characters are
allocated in storage with the leftmost character of the source string in the low-
order (or rightmost) character position of the first or only fullword. Additional
fullwords or bytes are allocated in ascending address order. For example, the
source character string ABCDEFGH would be allocated as follows:

Diagram

7000 /BA/ (16)

7002 /DC/ (16)

7004 /FE/ (16)

7006 /HG/ (16)

Note that the eight-character string ABCDEFGH can appear only in the context
of a PLIT (a type of primary expression) because a string literal itself, as a
primary expression, cannot exceed the capacity of a fullword: two character
positions in BLISS–16. (See Chapter 4.) The BLISS–16 representation is related
to the general BLISS representation of character sequences as follows:

• A character code consists of eight bits.

• A character position is a byte of storage.

• A character position sequence is a contiguous sequence of bytes of storage
with successive characters, considered from left to right, contained in
successive bytes from lower to higher addresses.

• A character data segment is also a contiguous sequence of bytes of storage.

• A character pointer is the address of a byte.

3.3.4 BLISS–32 Character Representation
In BLISS–32 there are four character positions per fullword. Characters are
allocated in storage with the leftmost character of the source string in the low-
order (or rightmost) character position of the first or only fullword. Additional
fullwords or bytes are allocated in ascending address order. For example, the
source character string ABCDEFGH would be allocated as follows:

Diagram

36014 /DCBA/ (32)
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Diagram

36018 /HGFE/ (32)

Note that the eight-character string ABCDEFGH can appear only in the context
of a PLIT (a type of primary expression) because a string literal itself, as a
primary expression, cannot exceed the capacity of a fullword: four character
positions in BLISS–32. (See Chapter 4.)

The BLISS–32 representation is related to the general BLISS representation in
the same way as in BLISS–16.

3.3.5 BLISS–36 Character Representation
In BLISS–36 there are five ASCII character positions per fullword or six SIXBIT
character positions. Characters are allocated in storage with the leftmost
character of the source string in the high-order (or leftmost) character position of
the first or only fullword. Additional fullwords are allocated in ascending address
order. For example, the ASCII string ABCDEFGH would be allocated as follows:

Diagram

21005 /ABCDE/ (36)

21006 /FGH / (36)

Note that the eight-character string ABCDEFGH can appear only in the context
of a PLIT (a type of primary expression) because a string literal itself, as a
primary expression, cannot exceed the capacity of a fullword: five character
positions in BLISS–36. (See Chapter 4.) The BLISS–36 representation is related
to the general BLISS representation of character sequences as follows:

• A character code consists of seven bits.

• A character position is a 7-bit field of a 36-bit word of memory.

• A character position sequence is a contiguous sequence of character positions
with successive character codes, considered from left to right, contained in
adjacent 7-bit fields beginning at any of the five character positions in a word
and continuing toward positions in the lower order part of the word and then
to the high order 7 bits of the next word, and so on.

• A character data segment is a contiguous sequence of 36-bit words.

• A character pointer is a special 36-bit value that consists of both address and
position and size information describing the character position.

(In DECsystem–10 terminology, a character pointer is a byte pointer that,
when used as the operand of an ILDB (increment and load byte) instruction,
will fetch the character code value from the indicated character position.)

3.4 Storage Organization
During the execution of a BLISS–compiled object program, storage consists of the
following:

Storage
Storage for the given program

The stack
The registers
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Storage for the first module
Storage for the second module
. . .

Storage for the last module
Other storage

The other storage includes the routines and data of the operating system, the
run-time routines for BLISS, and the storage for programs other than the given
program.

The stack, the registers, and the storage for each module are described in the
following sections.

3.4.1 The Stack
The stack is used to store temporary data associated with the execution of the
routines in a BLISS program. The stack is composed of frames. Upon entry
to a routine, a frame is pushed on the stack for use in executing that routine.
Upon return from the routine, the frame is popped from the stack. A stack frame
contains data segments of two kinds. Some of the data segments are declared
as LOCAL or STACKLOCAL. Such segments are directly accessible from the
program and are used for values that are needed only during the execution of the
routine in which they are declared. The other data segments are allocated by the
compiler and are not accessible from the program. These segments are used for
such values as the return address of the routine or the intermediate results that
are produced during the evaluation of an expression.

The declaration of LOCAL and STACKLOCAL names is described in Chapter 10.
The relation between a routine and the stack is further described in Chapter 12.

3.4.2 The Registers
The registers of BLISS correspond to the general registers of the target-system
hardware. Each register contains one fullword value. Each of the registers is
considered to be a single data segment.

The use of registers is normally determined by the compiler, not the program.
Access to a register uses less time than access to ordinary storage; therefore,
registers are often used to store the intermediate results and addressing indices
of a calculation. Under special circumstances, registers can be accessed by the
program.

The declaration of register names is described in Section 10.7.

3.4.3 Storage for a Program Module
A module uses four kinds of program sections. Each kind of program section has
a special purpose, as follows:

• An OWN program section contains a data segment for each name that is
declared OWN in the module. Such a data segment is permanently allocated.
It can be accessed only from the module in which it is declared.

• A GLOBAL program section contains a data segment for each name that
is declared GLOBAL in the module. Such a data segment is permanently
allocated. It can be accessed from the module in which it is declared and in
any module in which its name is declared EXTERNAL.

• A PLIT program section contains a data segment for each PLIT used in the
module.
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• A CODE program section contains a code segment for each routine that is
declared in the module.

You can leave the management of program sections to the compiler; and in that
case each module will have no more than one of each kind of program section.
On the other hand, you can specify several program sections of the same kind
for a module and can determine which data segments or routines are allocated
in which program sections. The division of storage for a module into sections
permits the operating system to manage storage effectively. For example, an
OWN section need be present only when its associated module is being executed,
whereas a GLOBAL section must be present more frequently. For another
example, the PLIT and CODE sections are not modified during program execution
and can therefore be regarded as read-only storage.

The declarations of OWN and GLOBAL segment names are described in Sections
10.1 and Section 10.2. The definition of PLITs is given in Section 4.4. The
declaration of routines is described in Section 12.3.
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4
Primary Expressions

In most high-level languages, the term expression refers to the kinds of construct
that perform calculation, such as the addition of two numbers or, perhaps, the
concatenation of two strings. Such expressions have values; in fact, their sole
purpose is to calculate values.

In BLISS, the term expression applies to all constructs of the language except
declarations. For example, the construct that assigns a value to a data segment
is an expression and has a value. As another example, the construct that controls
an execution loop is also an expression and has a value. Thus it is possible,
although unusual, to add the value of an assignment-expression to the value of a
loop-expression.

There are four kinds of expression, as shown in the following syntax diagram:

expression

8<
:

primary
operator-expression
executable-function
control-expression

9=
;

This chapter describes primary expressions. It is the first of four chapters that
describe the various kinds of expressions.

The first section of this chapter discusses primaries in a general way. Each of the
remaining sections of this chapter describes one kind of primary in more detail.

4.1 Primaries
Every expression is built up from one or more primaries. The simplest form of
expression is a single primary. More complicated expressions are constructed of
primaries in combination with operators.

There is considerable variety among the primaries. A primary can be simply
a numeric-literal, such as 4, or it can be a block of considerable length and
complexity. A primary can specify a very elementary operation, such as the
formation of a storage address, or it can call a long and complicated routine. The
following are examples of primary expressions:

5 !A numeric-literal whose value is 5

’Enter data:’ !A string-literal composed of 11 ASCII characters

PLIT (5,4) !A pointer to a pair of literals

TOP_OF_LIST !A name

F() !A call to routine F with no parameters

G(5, PLIT(5,4)) !A call to routine G with two parameters

X[ACCESS_LEVEL] !A structure-reference to a field of a data
!structure named X
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BETA<2,6> !A field-reference to the six high-order bits of
!the byte at BETA

(.X + .Y) !A simple kind of block, called a parenthesized
!expression

BEGIN !A more complicated block, which contains a
LOCAL T; !declaration and two expressions
T=0;
G(T,5);
END

4.1.1 Syntax

primary

8>>>>>>>><
>>>>>>>>:

numeric-literal
string-literal
plit
name
block
structure-reference
routine-call
field-reference
codecomment

9>>>>>>>>=
>>>>>>>>;

4.1.2 Semantics
The semantics of primaries is given in the following sections, where each kind of
primary is considered individually.

4.2 Numeric-Literals
A numeric-literal is used to represent a specific number. An integer value can
be written in any one of four radices: binary, octal, decimal, or hexadecimal.
A special-purpose way of representing an integer is the character-code literal,
which represents the ASCII code for a given character as a transportable,
fullword value. A floating-point value can be written in single or double precision.
Wherever the radix for a BLISS literal is not given, the radix is assumed to be
decimal. This manual follows the same convention; that is, wherever a number
appears in the text without an explicit radix, the number is assumed to be
decimal.

The following examples show five different ways to write a numeric literal for the
value 15.

15 !Standard decimal-literal
%B’1111’ !Binary integer-literal
%O’17’ !Octal integer-literal
%DECIMAL’15 !Decimal integer-literal
%X’F’ !Hexadecimal integer-literal

The character-code-literal is used to express, in a transportable way, the numeric
value of the ASCII code for a character. For example:

%C’A’

This has the decimal value 65, which is the ASCII code for character A.

Certain literal names are predeclared by the compilers and have specific numeric
values. The values reflect various aspects of the target system architecture.
For example, %BPADDR is predeclared with a value that is the number of bits
required for an address value, which varies for each target system. Therefore,
the predeclared name %BPADDR has a different value for each BLISS compiler:
16 in BLISS–16, 32 in BLISS–32, and 18 or 30 (depending on the target-system
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environment) in BLISS–36. The predeclared literal names are described in
Section 14.1.5.

4.2.1 Syntax

numeric-literal

8<
:

decimal-literal
integer-literal
character-code-literal
float-literal

9=
;

decimal-literal decimal-digit . . .

decimal-digit f 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 g

integer-literal

8<
:

%B
%O
%DECIMAL
%X

9=
;’ opt-sign integer-digit . . . ’

opt-sign { + | – | nothing }

integer-digit n
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
A | B | C | D | E | F

o

character-code-literal %C ’ quoted-character ’

quoted-character

8<
:

printing-character-except-apostrophe
blank
tab
’’

9=
;

float-literal

8<
:

single-precision-float-literal
double-precision-float-literal
extended-exponent-double-precision-float-literal
extended-exponent-extended-precision-float-literal

9=
;

single-precision-float-literal
%E ’ mantissa

n
E exponent
nothing

o
’

double-precision-float-literal
%D ’ mantissa

n
D exponent
nothing

o
’
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extended-exponent-double-
precision-float-literal %G ’ mantissa

(
G exponent
Q exponent
nothing

)
( 36 Only

’ ( 32 Only
’ ( 32/36

extended-exponent-extended-
precision-float-literal %H ’ mantissa

n
Q exponent
nothing

o
’ ( 32 Only

mantissa
opt-sign

8<
:

digits
digits .
. digits
digits . digits

9=
;

exponent opt-sign digits

digits decimal-digit . . .

opt-sign { + | – | nothing }

Some of the numeric-literals are composed of two lexemes. Specifically, in an
integer-literal, the radix indicator (%B, %O, %DECIMAL, or %X) is a lexeme and
the remainder is another; and in a float-literal, the precision indicator (%E, %D,
%G or %H) is a lexeme and the remainder is another. The quoted-string in a
numeric-literal can be supplied by certain lexical-functions (see Section 15.5).

A printing-character is any ASCII character whose code, i, is in the range 33
� i � 126 (decimal). A printing-character-except-apostrophe is any printing
character except an apostrophe. The apostrophe is the ASCII character with code
39 (decimal).

The blank is the ASCII character with code 32 (decimal). The tab is the ASCII
character with code 9 (decimal).

4.2.2 Restrictions
The digits in an integer-literal must conform to the radix specified by the keyword
at the beginning of the literal. Depending on whether the keyword is %B, %O,
%DECIMAL, or %X, the digits must be binary, octal, decimal, or hexadecimal.

A space must not appear in a numeric-literal except between the lexemes of a
two-lexeme numeric-literal (see Section 4.2.1).

When a numeric-literal (other than a float-literal) is evaluated, its value, i, must
fit in a fullword; that is, it must lie in the range

–(2**(%BPVAL–1)) � i � (2**(%BPVAL–1))–1

See Section 3.1.1 for the definition of %BPVAL for each target system.

When a float-literal is evaluated its value, x, must fit in the target system’s
machine representation of a floating-point value. The maximum approximate
value range of x for each target-system family is as follows:

• For BLISS–16: 0.29*(10**–38) � abs(x) � 1.7*(10**38)

• For BLISS–32: 0.84*(10**–4932) � abs(x) � 0.59(10**4932)
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• For BLISS–36: 0.56*(10**–308) � abs(x) � 0.9*(10**308)

The listed value ranges of x reflect %D for BLISS–16, %H for BLISS–32, and %G
for BLISS–36.

Depending on the compiler used, float-literals can produce values that occupy up
to four fullwords; therefore, float-literals producing values that occupy more than
one fullword must appear in either a PLIT (see Section 4.4) or an initial-attribute
(see Section 9.6).

The relationship, by compiler, of float-literals to fullwords is as follows:

Float-literal Size (fullwords)

keyword 32 36 16

%E 1 1 2

%D 2 2 4

%G 2 2 –

%H 4 – –

4.2.3 Defaults
The default for the sign of a numeric-literal is a plus sign ( + ). For example, the
numeric-literal %O’ 777’ is equivalent to %O’ +777’ .

The default radix is decimal; that is, when a sequence of digits appears without a
radix keyword and without quotes, it is assumed to be a decimal-literal.

4.2.4 Semantics
A decimal-literal is interpreted as the decimal representation of an integer value.

An integer-literal begins with a keyword that determines its interpretation by
giving the radix of the literal. Depending on whether the keyword is %B, %O,
%DECIMAL, or %X, the sequence of digits within the quotes is interpreted as a
binary, octal, decimal, or hexadecimal representation, respectively, of an integer
value.

The value of a character-code-literal is the integer that is the ASCII character
code for the quoted-character. When two apostrophes are used as the quoted-
character, the value of the literal is the character code for a single apostrophe;
that is, the character-code-literal %C’’’’ has the value 39 (decimal).

The evaluation of a numeric-literal produces an integer value. If the literal
has a minus sign, then its value is represented as a negative number in two’s
complement form. The evaluation of a %E float-literal in 32 and 36 produces a
dialect specific fullword value.

Limitations on Float-Literals
Note that values requiring more than %BPVAL bits for their representation
cannot be stored in a fullword and cannot be directly operated upon by any of the
BLISS operators or executable-functions.

Except for a few built-in machine-specific-functions, BLISS does not provide
facilities for operating upon any float-literal as such. Float-literals are provided
in BLISS in order to facilitate the development of special data segments and
special routines for performing high-precision arithmetic.
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4.3 String Literals
A string-literal contains a sequence of ASCII characters. The value of the
string-literal is obtained by encoding the sequence of characters in one of several
different ways, depending on the string-type of the literal (that is, %ASCII,
%ASCIZ, %RAD50_11, %P).

A string-literal whose value occupies one fullword or less can be used as a
primary, that is, can appear anywhere that a primary expression is allowed. The
number of characters that can be encoded in a fullword varies with both the
target system and the string-type (Section 4.3.2). Examples are:

%ASCII’AB’ !in any dialect
%ASCII’ABCD’ !in BLISS--32 or BLISS--36
%RAD50_11’ABC’ !in BLISS--16 or BLISS--32
%RAD50_11’ABCDEF’ !in BLISS--32 only
%RAD50_10’ABCDEF’ !in BLISS--36 only

In each of these examples, the quoted string is encoded into one fullword or less
in each of the dialects specified.

A string-literal whose value occupies more than a fullword is not a primary
expression and can be used only within a PLIT expression (see Section 4.4) or in
an initial-attribute (see Section 9.6). An example follows:

’ A complete list of errors follows:’

The encoded value of this string-literal, consisting of 34 character positions,
occupies much more than a fullword on any target system.

4.3.1 Syntax

string-literal n
string-type
nothing

o
quoted-string

string-type

8>>>>>><
>>>>>>:

%ASCII
%ASCIZ
%ASCIC
%ASCID
%RAD50_11
%RAD50_10
%SIXBIT
%P

9>>>>>>=
>>>>>>;

( 16/32

( 16/32
( 36 Only
( 36 Only
( 16/32

quoted-string
’
n

quoted-character . . .
nothing

o
’

quoted-character

8<
:

printing-character-except-apostrophe
blank
tab
’’

9=
;

A printing character is any ASCII character whose code, i, is in the range 33
� i � 126 (decimal). A printing-character-except-apostrophe is any printing
character except an apostrophe. The apostrophe is the ASCII character with code
39 (decimal).

4–6 Primary Expressions



The blank is the ASCII character with code 32 (decimal). The tab is the ASCII
character with code 9 (decimal).

Some of the string-literals are composed of two lexemes, the string-type and a
quoted-string. Spaces are permitted between the two lexemes.

The quoted-string in a string-literal can be constructed by certain lexical-
functions, which are described in Chapter 15. A quoted-string constructed in that
way can be composed of any sequence of ASCII characters and therefore is not
restricted to printing characters, blanks, and tabs.

The quoted-string in a string-literal can also be supplied by another string-
literal. This feature is mainly useful in the design of macros and is discussed in
Section 15.3.2.2.

4.3.2 Restrictions
A quoted-string is a single lexeme. As the syntax shows, the quoted-string can
contain blanks and tabs. These characters are interpreted as characters in the
string, not as characters that divide the quoted-string into several lexemes. Aside
from blanks and tabs, no other spaces (as defined in Section 2.2.2) can appear in
the source text for a quoted-string.

A string-literal that is not a plit-string in a PLIT or initial-attribute must fit in
one fullword. With %ASCID excepted, specific limitations on string length are
given in the following table, by dialect and string-type:

Dialect Maximum Number of Characters in Fullword

ASCII ASCIZ ASCIC RAD50_11 SIXBIT RAD50_10 P

BLISS–16 2 1 1 3 – – 31

BLISS–32 4 3 3 6 – – 71

BLISS–36 5 4 – – 6 6 –

1Plus optional sign character

BLISS–16/32 ONLY
A %ASCIC string-literal must contain no more than 255 quoted-characters.

A %RAD50_11 string-literal can contain only the characters A through Z, 0
through 9, blank, period ( . ), and dollar sign ( $ ) in the quoted-string. Lowercase
letters appearing in the quoted-string are encoded as the corresponding uppercase
letters.

A %P string-literal must contain only the decimal digits (0 through 9) except for
an optional initial sign (+ or –). There must not be more than 31 digits in the
quoted-string.

BLISS–36 ONLY
A %RAD50_10 string-literal can contain only the characters A through Z,
0 through 9, blank, period ( . ), dollar ( $ ), and percent ( % ) in the quoted-
string. Lowercase letters appearing in the quoted-string are encoded as the
corresponding uppercase letters.
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A %SIXBIT string-literal may contain any quoted-characters except the following:

Character Symbol ASCII Code

Tab 9

Accent grave ` 96

Open brace { 123

Vertical bar | 124

Close brace } 125

Tilde ~ 126

The parenthesized ASCII codes are in decimal. Lowercase letters appearing in
the quoted-string are encoded as the corresponding uppercase letters.

Other restrictions on the length of string-literals (if any) are given in the
appropriate BLISS user manual.

4.3.3 Defaults
The default for the string-type is %ASCII. For example, the string-literal ’ abc’ is
equivalent to %ASCII’ abc’ .

The default for the sign in a %P string-literal is ‘‘+’’. For example, the string-
literal %P’ 2’ is equivalent to %P’ +2’ .

4.3.4 Semantics
Each quoted-character in a string-literal represents one character code in the
value. A printing-character-except-apostrophe, a blank, or a tab represents itself.
A sequence of two apostrophes represents a single apostrophe.

A %ASCID string-type is similar to a %ASCII type; however, %ASCID differs
in that it creates a string descriptor for the quoted-string, and expands to the
address of the data segment that contains the descriptor. The string and its
descriptor are allocated in a PLIT program section (see Chapter 18), and just as
the value of a PLIT is the address of the plit-body, the value of %ASCID is the
address of the descriptor.

The %ASCID string creates the following descriptor formats:

For BLISS–32:

31 24 23 16 15 0

14

character pointer

1 string length

ZK−6018−GE

Note that only the BLISS–32 implementation of %ASCID is compatible with
XPORT strings.
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For BLISS–36:

0

character pointer

string length

ZK−6017−GE

35 18 17

For BLISS–16:

0

character pointer

string length

ZK−6016−GE

15

This format follows the PDP–11 Extended Instruction Set guidelines. Note that
the string length must be an unsigned 16-bit quantity in the range 0 to 65535
decimal.

The remaining semantic description uses the generalized terms character position
and character position sequence. The machine-specific equivalents of these terms
are given in Section 3.3. (See also Chapter 20.)

The value of a string-literal is determined in several steps, as follows:

1. For string-types %ASCIZ and %ASCIC, augment the string of quoted-
characters as follows:

a. If %ASCIZ, add a trailing null character (ASCII code 0) to the string.

b. If %ASCIC (16/32 only), count the characters in the quoted-string and use
this (8-bit integer) count as the initial character of the string, preceding
the first quoted-character.

2. Encode the character string, augmented as required by step 1, according to
the string-type and dialect, as follows:

a. For string types %ASCII, %ASCID, and %ASCIZ, form a character
position sequence that has one character position for each character
in the string. For BLISS–16 and –32, use the 8-bit ASCII code of the ith
character as the value of the ith character position. For BLISS–36, use
the corresponding 7-bit ASCII code. For rules governing the filling of the
last unit of storage refer to Section 4.4.4.

b. For string-type %ASCIC (16/32 only), form a character position sequence
as in step 2.a, but use the initial count character value as is for the first
character position.

c. For string-type %RAD50_11 (16/32 only), extend the original quoted-
string with enough trailing blank characters to make up a multiple of
three characters, if necessary. Then use Radix–50 encoding to form a
character position sequence that has two character positions for each
group of three characters in the string. If necessary, extend the resulting
character position sequence with enough trailing, zero-valued positions to
fill the final (or only) fullword occupied by the sequence.
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d. For string-type %RAD50_10 (36 only), use Radix–50 encoding to form a
fullword for each group of six (or fewer) quoted-characters in the string.
This encoding always produces one or more complete fullwords.

e. For string type %SIXBIT (36 only), form a character position sequence
that has one (6-bit) character position for each character in the string.
Use the SIXBIT code equivalent of the ASCII code of the ith character as
the value of the ith character position. If necessary, extend the resulting
character position sequence with enough trailing, zero-valued positions to
fill the final (or only) fullword occupied by the sequence.

f. For string-type %P (16/32 only), use the PDP–11/VAX packed decimal
string encoding to form a sequence that has one byte for each two
digits of the quoted-string, and that provides a position for the sign
in the last byte. Leading zero characters are not discarded in forming
this sequence. (The packed decimal encoding is described in the VAX
Architecture Handbook.)

Note

The ordering of character positions in storage is system dependent, and
is described in Chapter 3. The ASCII, Radix–50, and SIXBIT string
encodings are described in Appendix B.

3. Use the character position sequence obtained in step 2 as follows:

a. If the given literal appears in a plit or initial-attribute, use the sequence
as the value of the literal.

b. If the given literal does not appear in a plit or initial-attribute and the
sequence is contained in a single fullword, the fullword is the required
literal value.

c. Otherwise, the sequence is invalid as a string-literal and the literal value
is undefined.

The interpretation of a string-literal is performed entirely by the compiler. If
the string-literal is a plit-string, then the compiler uses the value in forming
a literal in PLIT storage, as described in Section 4.4. If the string-literal is an
initial-value, then the compiler uses the value to initialize the contents of a data
segment, as described in Section 9.6. Otherwise, the compiler incorporates the
value of the string-literal in the object code it is generating.

4.4 PLITs
A constant value that requires no more than a fullword of storage can be
represented by a numeric-literal or string-literal that stands alone (that is, is
not contained in a PLIT). A constant value that requires more storage must be
represented by a PLIT.

The value of a PLIT is not the value of the given constant but rather the address
of a data segment that contains the given constant. The data segment for a PLIT
is allocated in a PLIT program section, and it is initialized to the given constant
value before program execution begins.
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There are two kinds of PLITS. The counted PLIT begins with the keyword PLIT,
which stands for ‘‘Pointer to literal’’. The data segment for this kind of PLIT
begins with an extra fullword that contains the count for the PLIT. The count is
the number of fullwords in the PLIT excluding the fullword used for the count.
The second kind of PLIT, the uncounted PLIT, begins with the keyword UPLIT,
which stands for ‘‘uncounted pointer to literal.’’ The data segment for this kind of
PLIT does not include a fullword for the count.

4.4.1 Syntax
n

PLIT
UPLIT

o

plit

8<
:

allocation-unit
psect-allocation
psect-allocation allocation-unit
nothing

9=
;

( 16/32

( 16/32

(plit-item , . . . )

psect-allocation PSECT (psect-name)

psect-name name

plit-item

(
plit-group
plit-expression
plit-string

)

plit-group

(
allocation-unit
REP replicator OF
REP replicator OF allocation-unit

)
( 16/32

( 16/32

(plit-item , . . . )

16/32 Only )

allocation-unit

(
LONG
WORD
BYTE

)
( 32 Only

replicator compile-time-constant-expression

plit-expression link-time-constant-expression

plit-string string-literal
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4.4.2 Restrictions
An appropriate psect-declaration (see Section 18.1) must be made before a
psect-allocation attribute (see Section 9.8) can be used in a PLIT.

The value of a replicator must not be less than zero.

BLISS–16/32 ONLY
The value of a plit-expression allocated as BYTE must lie in the range –(2**7)
through (2**8)–1. The value of a plit-expression allocated as WORD must lie in
the range –(2**15) through (2**16)–1.

4.4.3 Defaults
When no ‘‘REP replicator OF’’ construct is given, a replicator value of 1 is
assumed.

4.4.4 Semantics
A PLIT causes constant data to be allocated. The value of the PLIT is the address
of the first addressable unit of the data specified by the plit-items. The compiler
determines an address offset for the PLIT, and the linker binds this offset to an
absolute address.

If the PLIT has the keyword PLIT and therefore is a counted PLIT, then the
count is located in the fullword preceding the data specified by the plit-items.
The count indicates the number of fullwords occupied by the PLIT data.

In the simplest case, a PLIT is just the keyword PLIT or UPLIT followed by a
parenthesized list of plit-expressions or plit-strings. In this case, values of the
items are laid out in storage, starting at the PLIT address and continuing in the
direction of increasing addresses. The value of each plit-expression occupies a
fullword. The value of each string-literal occupies as many character positions as
the string requires, with unused character positions added, if necessary, to fill out
the final fullword.

BLISS–16/32 ONLY
When an allocation-unit is present, it specifies explicitly the unit of storage to be
used. Depending on whether the allocation-unit is LONG, WORD, or BYTE, the
value of each plit-expression occupies a longword, a word, or a byte, respectively.
Similarly, the value of each string-literal occupies as many bytes as the string
requires, with unused bytes added, if necessary, to fill out the last unit of storage.
(The allocation-unit LONG and the longword storage unit apply to BLISS–32
only.)

When an allocation-unit is given, the item or items to which it applies are
enclosed in parentheses. Several allocation-units can be used in a single PLIT; for
any given item, the innermost allocation-unit is the one that applies.

When both a psect-allocation attribute and an allocation-unit of storage are used
in a PLIT, they can appear in any order. For example:

PLIT PSECT( $OWN$ ) BYTE(7)

The psect-name ( $OWN$ in the example) specified in the attribute must be either
predeclared, a default program-section name, or explicitly declared in a preceding
psect-declaration. The psect-allocation attribute provides a more convenient way
of making program-section assignments for a PLIT than is possible using the
psect-declaration alone (see Section 9.8).
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When a ‘‘replicator OF’’ construct is present, it specifies the repetition of the plit-
group that follows it. The plit-group is evaluated before it is repeated. Thus, if
the plit-group contains an embedded PLIT, the embedded PLIT is allocated once,
and its address is used in each repetition of the plit-group.

The evaluation of PLITs is performed by the compiler, the linker, and the
operating system before program execution. Thus during program execution,
a PLIT represents the constant address of a sequence of constant values.

When the values specified by a PLIT do not completely fill the last fullword of the
PLIT, the values of the unused character positions are undefined. A program that
attempts to access the unused character positions is invalid.

PLITs are not necessarily allocated in the order in which they are written, and
unused storage may be left between the storage for one PLIT and that for the
next. Therefore, the relative positions of two PLITs are undefined. A program
that depends on the relative positions of two PLITs is invalid.

4.4.5 Pragmatics
A plit-expression is not restricted to numeric-literals. It can be any link-time-
constant-expression, and can therefore include address-valued names whose value
is established at link time. Suppose the following declarations are given:

OWN
A: VECTOR[10],
B;

EXTERNAL
X;

Then, within the scope of these declarations, the following PLIT can be used:

UPLIT(A[4], B+2, X)

This PLIT occupies three fullwords. The first contains the address of the fifth
element of A. The second contains the address B plus 2. The third fullword
contains the address X.

4.5 Names
A name usually designates the address of a routine or a data segment. The
value of such a name is determined by the compiler, linker, and operating
system together. Within the scope of a given declaration of a name (as defined in
Section 8.2, the value of a name does not change during program execution.

4.5.1 Syntax

name (
letter
dollar
underscore

) 8>>><
>>>:

8<
:

letter
digit
dollar
underscore

9=
; . . .

nothing

9>>>=
>>>;

letter n
A | B | C | - - - | Z
a | b | c | - - - | z

o
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digit f 0 | 1 | 2 | - - - | 9 g

dollar $

underscore _

A name can be constructed by the %NAME lexical-function, described in
Section 15.5.4. A name constructed in this way can be composed of any sequence
of ASCII characters and therefore need not satisfy the syntax given above.

4.5.2 Restrictions
A name must not be more than 31 characters long in any case.

The reserved keywords, listed in Appendix A, must not be used as names.

A name is a single lexeme and must not contain a space.

The dollar character is reserved for use in software supplied by DIGITAL.

BLISS–16/36 ONLY
Names declared as global or external must be unique within their first six
characters (throughout a program), to assure correct linking.

4.5.3 Semantics
When two names are compared, the distinction between uppercase and lowercase
letters is ignored. Thus the following items are considered to be four instances of
the same name:

BETA beta Beta bEta

This equivalence also applies to keywords. The only place where an uppercase
letter is distinguished from a lowercase letter is in a quoted-string.

The interpretation of a name depends on its declaration. Declarations are
described in Chapter 8.

4.6 Blocks
In its simplest form, a block is a means to gather together one or more
expressions to form a single primary expression. In its more complicated forms,
a block contains declarations and determines the scope of those declarations. It
provides the fundamental large-scale unit of BLISS program structure.

For example:

5 * (.A + .B)

The block (.A + .B) serves to specify that the value of .A + .B is one of the
operands of the multiplication operator.

The following block contains a declaration of local data segment T, which is used
within the block as a temporary variable:

X = BEGIN
LOCAL T;
T = 2 + F();
T = .T * G(.T);
.T
END
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When the block is completed, the contents of T become the value of the block, and
are assigned to X.

A complete description of blocks is given in Chapter 8.

4.7 Structure-References
When a data segment consists of a structure of several values, a structure-
reference is used to fetch or store the individual values. A structure-reference can
also be used to designate the address of a contained value.

Examples of expressions containing structure-references follow:

X=.A[.I]

TABLE[Q(.X+2)+3] = 5

F(ALPHA[FIELDNAME,.J-1])

The complete description of structure-references is given in Chapter 11.

4.8 Routine-Calls
A routine-call causes the execution of a routine. The called routine can be a part
of the same module that calls it or it can be part of another module in the same
program. The routine can be written in BLISS or in some other language that is
supported by the target system.

The execution of a routine can have two kinds of effects. First, it can calculate a
value that is returned as the value of the routine-call. Second, it can have side
effects; that is, it can perform actions other than returning a calculated value,
such as modifying data, performing input/output, and so on. The expression ‘‘X
= F( )’’ calls the routine named F but does not pass any arguments. The value
returned by F is assigned to location X.

The following expression calls the routine named P and passes three arguments:
the value 5, the contents of location X, and the address of an ASCII string:

P(5, .X, UPLIT(’MESSAGE’));

The value returned by routine P, if any, is not used.

A complete description of routine-calls is given in Chapter 12.

4.9 Field-References
A field-reference can designate any portion of storage of up to %BPVAL bits in
length. That is, it designates a field value that can range in size from one bit to a
fullword. In BLISS–32, for example, the field can be a sequence of up to 32 bits.
Normally, a field-reference is used only within a structure-declaration.

The full description of field-references is given in Chapter 11.

4.10 Code Comments
A code comment places a comment in the object part of the compilation listing of
the module in which it appears. Thus code comments permit annotation of the
object code.

In addition, a code comment acts as a barrier to optimizations that are normally
performed by the compiler, in that such optimizations do not cross the code
comment. Thus it divides the source listing and the object listing into portions
that contain mutually corresponding source and object code.
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4.10.1 Syntax

code comment CODECOMMENT quoted-string , . . . : block

4.10.2 Semantics
The value of a code comment expression is the value of the block.

A code comment places the given quoted-string in the object code listing in the
form of an assembly language comment.

A code comment expression prevents code motion. That is, expressions in
the source that appear before the code comment expression are compiled
into instructions in the object code that precede the generated comment, and
source expressions that follow the code comment expression are compiled into
instructions that follow the generated comment. A code comment has other
effects on optimization. For example, the compiler will not place a value in
temporary storage (such as a register) before a code comment and then fetch the
value after the code comment. Instead, the compiler recalculates the value.

A general description of optimization is given in the user manual for each BLISS
compiler.
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5
Computational Expressions

The computational expressions of BLISS provide the operations of the language.
A single computational expression performs a single basic operation, like addition
or the fetching of a value. A combination of computational expressions, nested
one within another, can perform a long and complicated sequence of operations.

Computational expressions are classified as either operator-expressions or
executable-functions. A typical operator-expression is A=0; it assigns a value,
that is, places a value in storage. It is identified by the equal sign ( = ) operator
that appears between the two operands, A and 0. A typical executable-function
is MAX(.X,.Y,.Z); it selects the maximum of several values, and it is identified by
the keyword MAX that precedes the parameters .X, .Y, and .Z. All computational
expressions, regardless of their syntax, perform a predefined operation on given
values to produce a result value.

5.1 Operator-Expressions
The notation used for the operator-expressions of BLISS is similar to the notation
of mathematics. The terms ‘‘operator’’, ‘‘operand’’, and ‘‘associativity’’ that are
used in describing BLISS expressions are all drawn from the terminology of
mathematics.

5.1.1 Syntax
The following syntax diagram gives the many forms of the operator-expression.
The forms are divided by broken lines into priority levels, and an associativity is
given for each priority level. This information is used in Section 5.1.3.

Associates from

operator-
expression

. e2 right to left

n
+
–

o
e2

right to left

e1 ^ e2 left to right

decreasing
priority e1

(
MOD
*
/

)
e2 left to right
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e1
n

+
–

o
e2

left to right

e1

8>>><
>>>:

EQL | EQLU | EQLA
NEQ | NEQU | NEQA
LSS | LSSU | LSSA
LEQ | LEQU | LEQA
GTR | GTRU | GTRA
GEQ | GEQU | GEQA

9>>>=
>>>;

e2
left to right

NOT e2 right to left

e1 AND e2 left to right

e1 OR e2 left to right

e1
n

EQV
XOR

o
e2

left to right

e1 = e2 right to left

n
e1
e2

o � primary
operator-expression
executable-function

�

Every operator-expression has one of the following general forms:

prefix-operator right-operand

left-operand infix-operator right-operand

The operands must be expressions and the operator is either a keyword or a
single delimiter character.

5.1.2 Restrictions
An operator-expression must not have an operand that is a control-expression.
This restriction is expressed in the syntax (in the rule that defines e1 and e2), but
is repeated here for emphasis. For example, the following operator-expression is
not valid:

X = IF .ALPHA EQL 0 THEN .X1 ELSE .X2

Parentheses can be used to avoid this restriction, by converting the right-operand
to a compound-expression (see Sections 8.1 and 5.1.5.1).

A prefix-operator must not immediately follow an infix or prefix operator that has
a higher priority. For example, the following is not valid:

.A EQL NOT .B

Parentheses can be used to avoid this restriction, by converting the right-operand
to a compound-expression.
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The result of an arithmetic operation (*, /, MOD, +, and –) must not exceed the
capacity of a signed fullword; if it does so, the result is undefined.

The value of the right operand of a modulus (MOD) or division ( / ) operator must
not be zero.

5.1.3 Defaults
The default parenthesization for operator-expressions is determined by the
priority levels and associativities given in the syntax diagram for operator-
expressions. The following rules apply:

1. Parenthesize the operators of a given expression in order of descending
priority. That is, first parenthesize all fetch operators (highest priority), then
parenthesize all prefix ‘‘+’’ and ‘‘–’’ operators (second highest priority), then
continue in this manner through operators of decreasing priority, and finally
parenthesize all assignment operators (lowest priority).

2. If an expression contains several occurrences of operators that have a given
priority, then parenthesize those operators in the order indicated by the
associativity. If the associativity for a given priority level is ‘‘left to right’’,
then parenthesize operators with that priority from left to right; if the
associativity is ‘‘right to left’’, then parenthesize from right to left.

When an operator is parenthesized, the parentheses surround the operator and
the one or two operands required by the operator. For example:

3*R(B)-2*.A+12

This expression contains four operators, and there are many ways in which it
could be explicitly parenthesized. The default parenthesization is obtained as
follows:

1. The fetch operator has the highest priority and is parenthesized first, giving
the following:

3*R(B)-2*(.A)+12

2. Of the remaining operators in the expression, the two multiplication operators
( * ) have the highest priority and are parenthesized next, giving the following:

(3*R(B))-(2*(.A))+12

3. The remaining operators (– and +) are used as infix operators. These
operators have the same priority level and so associativity must be taken
into account. Since associativity is ‘‘left to right’’ for these operators, the
subtraction operator ( – ) is parenthesized first, giving the following:

((3*R(B))-(2*(.A)))+12

4. Finally, the remaining operator ( + ) is parenthesized, giving the following:

(((3*R(B))-(2*(.A)))+12)

This fully parenthesized expression is equivalent to the original, unparenthesized
expression.

Observe that, in the example just given, the routine-call is treated as a single
construct because it is a complete primary. That is, 3*R(B) is parenthesized
as (3*R(B)) rather than (3*R)(B). Structure-references and field-references are
treated as a single construct in a similar way.

Explicit parenthesization is discussed in Section 5.1.5.1.
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5.1.4 Semantics
An operator-expression is evaluated as follows:

1. Evaluate the operand(s) of the expression.

2. Calculate a value according to the specific rules for the given operator.

The value obtained in step 2 is the value of the expression.

In general, the order in which the operands of an operator-expression are
evaluated is not defined. (See Section 5.1.5.2.)

The order in which assignment expressions, routine-calls, and control-expressions
are evaluated is, however, defined as follows:

Every evaluation of an assignment expression, routine-call, or control-expression
in the left operand of an operator-expression is completed before any evaluation of
an assignment expression, routine-call, or control-expression in the right operand
of the operator-expression is begun. (The consequences of this ordering rule are
discussed in Section 5.1.5.2.)

The value of every BLISS expression is a fullword value. It follows that the value
of the operands of an operator-expression are fullword values and that the value
of the operator-expression itself is a fullword value.

In some cases, an operator-expression produces a value that cannot be
represented as a fullword value. In such cases, the value of the expression
is undefined and the program is invalid. There is no guarantee that such an
overflow is detected or signaled.

The remainder of this description of semantics is devoted to specific rules for the
various operator-expressions. The operator expressions are grouped according to
function, but they are nevertheless described in the order in which they appear in
the syntax diagram, that is, in order of decreasing priority.

5.1.4.1 Fetch Expressions
A fetch expression obtains the value that is stored at a given address. The
expression has the following form:

. e2

The operand of a fetch expression can be a field-reference that has a field-selector;
in that case the fetch expression has a special interpretation. However, the use
of a field-selector outside of a structure-declaration is not recommended. For
that reason, the effect of a field-selector on a fetch expression is described in
Section 11.2.

A fetch expression without a field-selector is evaluated as follows:

BLISS–16/32 ONLY

1. If e2 is the name of a data-segment, then determine its allocation-unit and
extension-attribute from its declaration. If e2 is any other expression, then
use the default allocation-unit (WORD for BLISS–16, LONG for BLISS–32)
and use UNSIGNED as its extension-attribute.

2. Interpret the value of e2 as an address. Depending on whether the allocation-
unit of e2 is LONG, WORD, or BYTE, fetch the contents of the longword,
word, or byte at that address. (LONG and longword apply to BLISS–32 only.)
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3. If the value fetched in step 2 is a field value (less than %BPVAL bits long),
interpret it as a signed or unsigned value depending on the extension-
attribute. If the attribute is UNSIGNED, then extend it to a fullword value
by placing 0’s at the left end. If the attribute is SIGNED, extend it to a
fullword value by placing copies of the left-most (sign) bit at the left end.

4. Use the fullword value obtained in step 3 as the value of the fetch expression.

BLISS–36 ONLY

1. Interpret the value of e2 as an address and fetch the contents of the fullword
at that address.

2. Use the fullword value obtained in step 1 as the value of the fetch expression.

5.1.4.2 Prefix Sign Expressions
A prefix sign supplies the algebraic sign for a given value. The expression has the
following forms:n

+
–

o e2

The expression is evaluated as follows:

• If the operator is addition ( + ), then the value of the expression is the value of
e2.

• If the operator is subtraction ( – ), then the value of the expression is the
negative (two’s complement) of the value of e2.

5.1.4.3 Shift Expression
This expression performs operations based on the arithmetic shift instruction of
the target system. The expression has the following form:

e1 ^ e2

This operation can be explained in terms of a hypothetical shift register that is
valid for all BLISS dialects. The register has n bit positions, where n is 16, 32,
or 36 depending upon the target system (%BPVAL). The positions are numbered
starting at the right with position 0 (the low-order position) and ending with
position n–1 (the sign position), referred to below as position m.

To evaluate an arithmetic shift expression, place the value of e1 in the shift
register and let the value of e2 be called v2. Proceed as follows:

1. If v2 is positive, move each bit v2 positions to the left. When a bit is moved
out of the sign position, m, discard it. When a bit is moved out of position 0,
put a zero-bit in position 0.

2. If v2 is zero, do not move any bits.

3. If v2 is negative, move each bit ABS(v2) positions to the right. However, do
not modify the bit in position m (the sign position). When a bit is moved out
of position m–1, put a copy of the sign bit in position m–1. When a bit is
moved out of position 0, discard it.

When the shift is complete, use the contents of the shift register as the value of
the shift expression.
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Sometimes an arithmetic shift is used for scaling; that is, to multiply a value by
a power of 2. For that application, the following interpretation of an arithmetic
shift is more appropriate:

1. Let v1 and v2 be the signed values of the operands and calculate the following
value:

v1 � (2 � �v2)

In this expression, 2**v2 means ‘‘2 to the power v2’’.

2. If the result of step 1 is not an integer, reduce it to the next smallest integer.
For example, reduce 2.5 to 2 and reduce –2.5 to –3.

3. Represent the result of step 2 as a signed, two’s complement binary integer.
If the result requires more than %BPVAL bits for its representation, some of
the high-order bits of the representation are lost.

This interpretation is entirely equivalent to the interpretation in terms of a shift
register; it is just another way of looking at the same operator.

Examples of arithmetic shift operations are given in the following table:

v1 v2 2**v2 v1*(2**v2) v1^v2

10 2 4 40 40

–10 2 4 –40 –40

10 –2 0.25 2.5 2

–10 –2 0.25 –2.5 –3

All the values in this table are decimal numbers. Observe that when v2 is
positive, the arithmetic shift performs multiplication by a power of 2. When v2 is
negative and v1 is positive, the shift performs division by a power of 2. When v2
and v1 are both negative, the shift performs something close to, but not quite the
same as, division by a power of 2.

5.1.4.4 Arithmetic Expressions
The multiplication, division, addition, and subtraction expressions perform the
operations of ordinary arithmetic. The modulus (MOD) expression obtains the
remainder of a division. The expression has the following form:

e1

8>><
>>:

*
/
MOD
+
–

9>>=
>>;e2

The values of the operands are interpreted as signed values, and the result is
represented as a signed value. If the result is outside the range provided by a
signed fullword, then the expression is invalid and the value of the expression is
undefined.

Let v1 and v2 be the values of the operands. The expression is evaluated as
follows:

• If the multiplication operator ( * ) is used, then multiply v1 by v2 and use the
result as the value of the expression.
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• If the division operator ( / ) is used, then proceed as follows:

a. If v2 is zero, the expression is invalid and the value of the expression is
undefined.

b. Otherwise, divide v1 by v2. If the result is not an integer, drop its
fractional part without rounding (so that 2.8 becomes 2 and –2.8 becomes
–2). Use the result as the value of the expression.

• If the modulus operator (MOD) is used, then proceed as follows:

a. If v2 is zero, the expression is invalid and the value of the expression is
undefined.

b. Otherwise, divide v1 by v2. Drop the fractional part of the value (so that
2.8 becomes 2.0 and –2.8 becomes –2.0).

c. Multiply the value obtained in step b by v2.

d. Subtract the value obtained in step c from v1 and use the result as the
value of the expression.

• If the addition operator ( + ) is used, then add v2 to v1 and use the result as
the value of the expression.

• If the subtraction operator ( – ) is used, then subtract v2 from v1 and use the
result as the value of the expression.

The MOD operator is the remainder of the division of v1 by v2. An aid to
understanding the MOD operator is the following identity:

(v1 MOD v2) EQL (v1-v2*(v1/v2))

Some examples of the division ( / ) and modulus (MOD) operations follow:

v1 v2 v1/v2 v1 MOD v2

10
10

–19
–19

3
–3

7
–7

3
–3
–2

2

1
1

–5
–5

13
13
13
13

2
8

10
16

6
1
1
0

1
5
3

13

The last four examples show how the MOD operator is used to obtain the last
digit of the binary, octal, decimal, and hexadecimal representations of 13.

5.1.4.5 Relational Expressions
A relational expression is used to compare two values. The expression has the
following form:

e1

8>>><
>>>:

EQL | EQLU | EQLA
NEQ | NEQU | NEQA
LSS | LSSU | LSSA
LEQ | LEQU | LEQA
GTR | GTRU | GTRA
GEQ | GEQU | GEQA

9>>>=
>>>;

e2
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The interpretation of the operator itself is determined by the first three letters of
the operator, as follows:

EQL is equal to

NEQ is not equal to

LSS is less than

LEQ is less than or equal to

GTR is greater than

GEQ is greater than or equal to

The interpretation of the operands is determined by the fourth letter of the
operator as follows:

No fourth letter: Interpret operand values as signed values.

Fourth letter is U: Interpret operand values as unsigned values.

Fourth letter is A: Interpret operand values as address values.

If the values of the operand satisfy the relation specified by the operator, then the
value of the relational expression is ‘‘1’’; otherwise, it is ‘‘0’’. In both cases, the
value is represented as a fullword value.

In both BLISS–16 and BLISS–32, the operators LSSU and LSSA are equivalent,
as are GTRU and GTRA, LEQU and LEQA, and GEQU and GEQA. That is,
the unsigned and address forms of the magnitude sensitive relational operators
are equivalent. In BLISS–36, however, the operators LSS (signed) and LSSA
are equivalent, as are GTR and GTRA, and so on. This reflects a difference in
the range of valid address values allowed by the corresponding systems. The
distinction between the signed/unsigned and the address forms of the operators is
provided so that programmers can specify the desired interpretation of the values
being operated on, in both an explicit and a transportable fashion.

Note that all forms of the EQL and NEQ operators are by nature equivalent in
all dialects; the unsigned and address forms are provided for symmetry with
the other relational operators discussed above. Use of the alternate forms is
encouraged for the sake of clarity.

Two examples of the use of relational expressions follow:

Expression Value

-1 LSS 0 1 (true)

-1 LSSU 0 0 (false)

As another example, consider the following program fragment:

OWN
X,
Y;

...
X LSSA Y

The value of the relational-expression in this example is 1 (true) because X is
allocated at a smaller address than Y.
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5.1.4.6 Boolean Expressions
A Boolean expression is used to apply a Boolean operation to given values. The
expression has the following forms:

NOT e2

e1

8<
:

AND
OR
XOR
EQV

9=
;e2

Each of these expressions operates on the individual bits of the operands to
produce the individual bits of the result. The specific rules are as follows:

• If the operator is NOT, then the ith bit of the result is obtained from the ith
bit of the value of e2 according to the following table:

e2 NOT

0 1

1 0

• If the expression has two operands, then the ith bit of the result is obtained
from the ith bit of the value of e1 and the ith bit of the value of e2 according
to the following table:

e1 e2 AND OR XOR EQV

0 0 0 0 0 1

0 1 0 1 1 0

1 0 0 1 1 0

1 1 1 1 0 1

The appropriate rule is applied %BPVAL times, once for each bit in the result.

Boolean logic applies to single bits while BLISS always operates on fullwords.
Therefore special precautions are sometimes required in programming Boolean
logic in BLISS.

For example, if A is the name of a Boolean variable whose value is always 0 or
1, and the negation of the contents of A must be assigned to another Boolean
variable named B, you might try the following assignment:

B = (NOT .A);

However, this assignment does not produce a Boolean value. Instead, its effect
(assuming a BLISS–32 fullword) is as follows:

Contents of A Contents of B

0 11111111111111111111111111111111 (binary)

1 11111111111111111111111111111110 (binary)

The low-order bit is the desired Boolean result, but the other bits clutter up the
result. To assign a Boolean value to B, the high-order bits can be masked out as
follows:
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B = ((NOT .A) AND 1); or B = .A XOR 1;

5.1.4.7 Assignment Expressions
An assignment expression is used to store a given value at a given address. The
form of the expression is as follows:

e1 = e2

The left operand of an assignment expression can be a field-reference that has a
field-selector; in that case the assignment expression has a special interpretation.
However, the use of a field-selector is not recommended outside of a structure-
declaration. For that reason, the effect of a field-selector on an assignment
expression is described later, in Section 11.2. An assignment-expression without
a field-selector is evaluated as follows:

BLISS–16/32 ONLY

1. If e1 is the name of a data segment, then determine its allocation-unit from its
declaration. If e1 is any other expression, then use the default allocation-unit
(WORD for BLISS–16, LONG for BLISS–32).

2. Interpret the value of e1 as an address. Depending on whether the allocation-
unit of e1 is LONG, WORD, or BYTE, store the corresponding number of
rightmost bits of the value of e2 in the longword, word, or byte at the given
address. (LONG and longword apply to BLISS–32 only.)

3. Use the original value of e2 (that is, the fullword value) as the value of the
assignment expression.

BLISS–36 ONLY

1. Interpret the value of e1 as an address and store the value of e2 in the
fullword at the given address.

2. Use the value of e2 as the value of the assignment expression.

5.1.5 Pragmatics
Two aspects of the interpretation of operator-expressions are discussed here: the
effect of explicit parenthesization, and the order of expression evaluation.

5.1.5.1 Explicit Parenthesization
Any expression can be placed in parentheses. The value of the parenthesized
expression is the value of the expression within the parentheses. The effect of the
parentheses is to delimit the operands of the expression. Consider the following
expressions:

(.A)+1

.(A+1)

The two different placements of the parentheses produce two expressions that are
not equivalent. In the first example, the operand of the fetch operator is just A,
while in the second example, it is A+1.

Every expression is fully parenthesized, if necessary, by the compiler to determine
which operands go with each operator, according to the default rules given in
Section 5.1.3. For example, the default parenthesization of the expression .A+1 is
as follows:

(.A)+1
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This parenthesization follows from the fact that the fetch operator has
higher priority than the addition operator. The expression could be explicitly
parenthesized as follows, however, to specify the interpretation required:

.(A+1)

Sometimes an operator-expression must be explicitly parenthesized because of
restrictions that prohibit the use of certain operands (see Section 5.1.2). Any
operand can, itself, be a parenthesized expression because a parenthesized
expression is a form of block (as defined in Section 8.1), which is a primary (as
defined in Section 4.1). For example, the following expression is valid but the
unparenthesized form is not:

X = (IF .ALPHA EQL 0 THEN .X1 ELSE .X2)

Again, the following expression is valid, but the unparenthesized form is not:

.A EQL (NOT .B)

5.1.5.2 The Order of Evaluation
As stated in Section 5.1.4, the order in which operator-expressions are evaluated
is largely undefined. By leaving the order undefined, the language definition
permits the compiler to choose an order of evaluation that is efficient.

In most cases, the results of programs are not affected by the absence of a defined
order of evaluation. For example:

X = 2*.X + 3/.Y;

The absence of a defined order of evaluation does not affect the value assigned to
X because all possible orders of evaluation of this assignment (after the operands
are delimited by default parenthesization) produce the same value.

The rule near the beginning of Section 5.1.4, however, states that assignment
expressions, routine-calls, and control-expressions are evaluated in left-to-
right order. In some cases where the order of evaluation is important, this
rule provides the necessary ordering. For example:

BETA = 2*R(.Y) + Q(.Z)

If R and Q are names of routines, and the routines they designate use the same
data (for example, R sets a data segment that Q fetches), then it is important
that the routines be called in the indicated order.

It must be said, however, that the example just given is not good programming.
It is legitimate for a routine-call to set or use data that is not mentioned in the
routine-call, but a dependence between two routine-calls in the same expression
is dangerously obscure.

Some expressions are invalid because they depend on an ordering that is
undefined. For example:

Q = .X + (X=.Y);

It is not valid to assume that the contents of X will be fetched before it is set.
The value assigned to Q could be either the value of .X+.Y or the value of 2*.Y.
Assuming that it was the first of the two values that was intended, you can revise
the example by breaking it into two assignments, as follows:

Q = .X + .Y;
X = .Y;
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This version is valid because expressions that are separated by a semicolon are
always evaluated in sequence, one at a time.

The example just given was quite obviously bad programming. However, the
same problem can arise with certain routine-calls, and then the problem is less
obvious. As an example, suppose that routine R contains, among other things,
the following assignment expression:

X = .Y;

Now consider the following expression:

Q = .X + R();

This statement has the same problem as the earlier one; there is no rule that
specifies whether the operator that fetches X or the call on the routine R is
evaluated first.

5.1.5.3 Operations on Field Values in BLISS–16/32
When all data segments involved in a calculation occupy fullwords, the calculation
is relatively easy to program. Fullwords accommodate large values, and
assignment from one fullword to another never modifies a value.

When a data segment that is smaller than a fullword is involved in a calculation,
problems can arise, either through the assignment of a large value to the small
data segment or through the incorrect extension of the contents of the small data
segment. An example of the latter problem follows:

OWN
X: BYTE,
Y;

...
X = -1;
Y = .X + 1

For purposes of discussion, assume that there is a good reason for restricting X
to one byte. Because X does not occupy a fullword, it is extended before being
incremented and assigned to Y. And because X is UNSIGNED by default, the
extended value is 255 rather than –1. Thus the value of Y becomes 256 rather
than 0.

The program fragment under discussion does not violate any rules of BLISS–16
or BLISS–32; it is valid. However, since it assigns a negative number, –1, to a
name that is declared UNSIGNED by default, the program fragment is certainly
inconsistent.

You can fix the program in either of the following ways:

• Change the numeric literal from –1 to 255. This change does not affect the
value assigned to Y, but it does make it clear that you expect that result.

• Insert the SIGNED attribute to the declaration of X. This change causes 0 to
be assigned to Y.

The choice between these changes depends entirely on your intentions and cannot
be made by looking at this small part of the program. Related problems can arise
(in any dialect) from the use of field-references for fields that are smaller than a
fullword. These are discussed in Section 11.2.5.4.
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5.2 Executable-Functions
The executable-functions are called ‘‘executable’’ to distinguish them from the
lexical-functions, which are described in Chapter 15. There are five kinds of
executable-functions:

standard-functions
supplementary-functions
condition-handling-functions (BLISS–16/32 only)
linkage-functions
machine-specific-functions

Each of these kinds of function is described in the following paragraphs.

The standard-functions are general-purpose functions; that is, they are restricted
to neither a specific area of system programming nor a specific computer
system. The standard-functions are just as fundamental to BLISS as the
operator-expressions. An example of a call on a standard-function follows:

MAX(.X, .Y, 0)

The value of this function is the contents of X, the contents of Y, or 0, whichever
is greatest. The name MAX is predeclared as an executable-function, so the
example just given can appear where MAX is undeclared. The standard-functions
are defined in this chapter (Section 5.2.2).

The supplementary-functions are designed for particular areas of system
programming. These functions are usually defined and documented in ‘‘packages’’.
One such package consists of the character-handling functions. An example of a
call on such a function follows:

X = CH$RCHAR(.PTR3);

This assignment reads a character from the position selected by the contents
of PTR3 and assigns it to X. The character-handling functions are the only
supplementary-functions defined in this manual. However, it is anticipated that
other packages of supplementary-functions will be added to the language in the
future.

The condition-handling-functions are used for generating signals for unusual
events or conditions and for controlling the subsequent processing of a signal
(BLISS–16/32 only). These functions are defined in Chapter 17.

The linkage-functions are used in combination with some linkages (calling
sequences) to code routines in a more general way; for example, to code a routine
that can be called with different numbers of parameters in different calls. The
linkage-functions are defined in Section 13.6.

The machine-specific-functions are designed for specific computer systems.
Usually a machine-specific-function represents a single hardware instruction.
Such a function permits the use of a hardware instruction without digressing to
an assembly language. The use of a machine-specific-function makes a program
machine dependent. An example of the use of a machine-specific-function is not
given here. Such an example would be misleading without a detailed description
of the context in which it appeared. The use of machine-specific-functions
requires knowledge of both the hardware instruction set and the optimization
strategies of the compiler. Machine-specific-functions are described in the
respective BLISS user manual.
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5.2.1 Syntax

executable-function executable-function-name

(
n

actual-parameter, . . .
nothing

o
)

executable
-function-name n

name
% name

o

actual-parameter expression

5.2.2 Semantics
The semantics of the executable-functions is nearly identical to that for operator-
expressions (see Section 5.1). The only difference is that the operation to be
performed is specified by a name at the beginning of the executable-function (for
example, MAX) instead of by an operator.

The semantics of the standard-functions are given in the following subsections.
The semantics of some supplementary-functions, the character-handling
functions, are given in Chapter 20. The semantics of the machine-specific-
functions are defined in the user manual for each dialect.

5.2.2.1 SIGN and ABS Functions
The SIGN and ABS functions are used to extract the sign and the absolute value,
respectively, from a value. The functions have the following form:n

SIGN
ABS

o
( e1 )

Either of these functions is a compile-time-constant-expression if its actual-
parameter is a compile-time-constant-expression. The values returned by these
functions are as follows:

Function Value

SIGN( x ) +1
0

–1

if x > 0
if x = 0
if x < 0

ABS( x ) x
–(x)

if x � 0
if x < 0

Examples of the use of the SIGN and ABS functions are as follows:

Example Value

SIGN(5)
ABS(5)

+1
+5

SIGN(–5)
ABS(–5)

–1
+5
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Example Value

SIGN(0)
ABS(0)

0
0

Observe that, in each of these examples, the following expression is true:

SIGN(x)*ABS(x) EQL x

5.2.2.2 MAX and MIN Functions
The MAX and MIN functions are used to select the largest and the smallest,
respectively, from a set of values. The functions have the following form:n

MAX | MAXU | MAXA
MIN | MINU | MINA

o
( e1 , e2 , . . . )

The interpretation of the function itself is determined by the first three letters of
its name, as follows:

MAX select the largest value

MIN select the smallest value

The interpretation of the operands is determined by the fourth letter of the
function name as follows:

No fourth letter: Interpret operand values as signed values.

Fourth letter is U: Interpret operand values as unsigned values.

Fourth letter is A: Interpret operand values as addresses.

The value of the function is the largest or smallest of the values of the operands,
depending on the function name.

In both BLISS–16 and BLISS–32, the functions MAXU and MAXA are equivalent,
as are MINU and MINA. That is, the unsigned and address forms of the MAX and
MIN functions are equivalent. In BLISS–36, however, the functions MAX (signed)
and MAXA are equivalent, as are MIN and MINA. This reflects a difference in
the range of valid address values allowed by the corresponding systems.

The distinction between the signed/unsigned and the address forms of the
functions is provided so that programmers can specify the desired interpretation
of the values being operated on, in a both explicit and transportable fashion.
Examples of the use of the signed and unsigned maximum and minimum
functions are as follows:

Example Value

MAX(–1,0,1)
MAXU(–1,0,1)

1
–1

MIN(–1,0,1)
MINU(-1,0,1)

–1
0

These examples show the difference between the signed and unsigned functions.
The signed functions treat –1 (which is represented as a fullword of 1s) as a
negative value, whereas the unsigned functions treat –1 as a large positive value.
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An example of the use of the address maximum and minimum functions is as
follows:

OWN
X: VECTOR[10],
Y,
Z;

...
Z = MAXA(X[5],Y)

The assignment sets Z to the value of Y because OWN data segments are
allocated at increasing addresses.

5.2.2.3 The %REF Function
The %REF function provides temporary storage for the value of an actual-
parameter in a routine-call or executable-function. The function has the following
form:

%REF ( e1 )

The function can be used only as an actual-parameter in a routine-call or
executable-function.

The function is evaluated as follows:

1. Allocate a temporary fullword and place the value of e1 in that fullword.

2. Use the address of the temporary fullword as the value of the function.

For purposes of discussion, suppose that a programmer has declared a routine
called RHO. The details of the declaration are not given here. All that matters
is that the routine has one parameter, which is the address of a given value, and
returns a result which, presumably, depends on the given value.

Suppose, now, that the value to be passed is not stored in a data segment but
must, instead, be calculated. Specifically, it is the value of the expression: .X+1.
It would not be correct to write the following:

Y = RHO(.X+1);

In this version, .X+1 would not be used as the given value (which was intended),
but rather as the address of the given value. A correct solution to the problem
is to declare and use a temporary data segment name. However, the use of a
temporary just to deal with a calculated parameter is inconvenient. The %REF
function provides a better solution, as follows:

OWN
X,
Y;

...
Y = RHO(%REF(.X+1));

Observe that %REF is not an ‘‘undot’’ operation. The following calls are not
equivalent:

F(X)

F(%REF(.X))

The routine-call F(X) passes the address of X as the actual-parameter of the
routine F, while the second call passes the address of a temporary data segment
that contains a copy of the contents of X.
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5.2.3 Pragmatics
The cost of evaluating a typical executable function is much less than the cost of
evaluating a typical routine-call. The use of an executable-function usually does
not produce a routine call; instead, it is compiled into a few instructions that are
often designed precisely for the required operation. In contrast, a routine-call
usually requires the passing of parameters, the creation of a stack frame, and
the return of a result as well as the inevitable subroutine jump. In fact, the
similarity between an executable-function and a routine-call does not extend
much beyond the similarities in their syntax.
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6
Control Expressions

Early programming languages permitted unrestricted patterns of control
flow, and the logic of many programs was very difficult to follow. More recent
languages have introduced specialized and restricted patterns of flow, and thus
encourage the construction of programs that are better organized.

There are five fundamental kinds of control flow in BLISS: sequential,
conditional, iterative, subroutine, and condition handling. Sequential flow, a
simple notion, is defined in Section 8.1.3 as part of the description of blocks.
Conditional and iterative flow is described in this chapter. Subroutine flow is
described in Chapter 12, and condition handling in Chapter 17.

Notable by its absence in BLISS is the familiar GO TO construct. Its absence
prevents the use of arbitrary patterns of flow. Programming without the GO TO
frequently requires more analysis of the problem, but usually results in a clearer
and more reliable program.

In BLISS, the constructs for conditional and iterative flow control are called
control-expressions. Because they are expressions, these constructs can have
values and can be nested within larger expressions.

The syntax diagram for control-expressions is as follows:

control-expression

8>>><
>>>:

conditional-expression
case-expression
select-expression
loop-expression
exit-expression
return-expression

9>>>=
>>>;

Loop-expressions are described under two categories: indexed-loops and tested
loops.

6.1 Conditional-Expressions
A conditional-expression performs a given test and then, depending on whether
or not the test is satisfied, evaluates the first or second of two given expressions.

An example of a conditional-expression follows:

IF .X GTR XMAX THEN F(.X) ELSE G(.X);

In this example the contents of X is compared with a value XMAX. If .X is greater
than XMAX, then the routine F is called; otherwise, routine G is called.
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6.1.1 Syntax

conditional-
expression

(
IF test THEN consequence ELSE alternative

IF test THEN consequence

)

� test
consequence
alternative

� expression

In addition to these syntactic rules, the following rule also is required:

An ELSE alternative always modifies the closest IF-THEN in a conditional-
expression.

An example of an expression to which this rule applies follows:

IF .A EQL 0 THEN IF .B EQL 0 THEN X = 5 ELSE X = 6;

This expression is interpreted as follows:

IF .A EQL 0 THEN (IF .B EQL 0 THEN X = 5 ELSE X = 6);

6.1.2 Restrictions
A conditional-expression that lacks an ‘‘ELSE alternative’’ must not be used in a
context that requires a value.

6.1.3 Semantics
The satisfaction of a test depends on the low-order (rightmost) bit of the value of
the test. If the low-order bit is 1, the test is satisfied; otherwise, the test is not
satisfied.

Expressions used as test expressions are subject to an evaluation rule that is
more flexible (for optimization purposes) than the rule applied in other contexts.
Specifically, the test-expression evaluation rule is as follows:

Within a test expression, an expression that is not needed to determine the
value of the test expression is not necessarily evaluated.

A test expression that is subject to this rule appears in the following conditional-
expression:

IF .A OR F(.B) THEN X = 0

If the contents of A is 1 (true), then the value of the entire test expression is 1
(true) regardless of the value of F(.B). Consequently, the call on routine F may not
be evaluated. Writing the test in the reverse order does not change the situation.
(See Section 6.1.4.3)

Given the preceding description of test evaluation, the interpretation of an entire
conditional-expression is as follows:

1. Evaluate the test.

2. If the test is satisfied, evaluate the consequence and use that value as the
value of the conditional-expression.

3. If the test is not satisfied and if an alternative is present, evaluate the
alternative and use that value as the value of the conditional-expression. If
an alternative is not present, the value of the expression is undefined.
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6.1.4 Pragmatics
The following concerns the nesting of conditional expressions, the use of returned
values, and proper test evaluation.

6.1.4.1 Nesting of Conditional Expressions
Conditional expressions provide a way to choose one of two mutually exclusive
actions, depending on a specified test condition. The test, consequence, or
alternative can be any expression. It is common, for example, for the consequence
or alternative to be a sequence of expressions (written as a block) as in the
following:

IF .X EQL 0
THEN (Y = .Y+1; F(.Y); G())
ELSE (G(); Y = .Y-1);

Control expressions can also be included in these expressions. For example:

IF (IF .X EQL 0 THEN .Y ELSE F(.Y))
THEN

Z = G() + 5;

In this example, the following conditional-expression appears as the test
expression of another, larger conditional-expression:

IF .X EQL 0 THEN .X ELSE F(.Y)

The inner test (.X EQL 0) determines which of the two expressions (.Y or F(.Y)) is
used as the test for the outer conditional.

6.1.4.2 Used Versus Discarded Values
Every BLISS expression has a value; however, in some contexts that value is used
and in others it is discarded. This aspect of BLISS is discussed here because the
conditional-expression is a good example of an expression that works as well in
both contexts. However, the following discussion applies to the value of any kind
of BLISS expression.

An example of a conditional-expression whose value is used is as follows:

D = (IF .I EQL .J THEN 20 ELSE 30);

If .I and .J are equal, then 20 (which is the value of the consequence) becomes the
value of the conditional-expression and is assigned to D. Note that, because the
assignment expression is followed by a semicolon, its value is discarded, but only
after the assignment has been performed.

An example of a conditional-expression whose value is discarded is as follows:

IF .I EQL .J THEN D = 20 ELSE D = 30;

Assume that .I and .J are again equal; then the evaluation of the consequence
causes 20 to be assigned to D and also causes 20 to be the value of the
conditional-expression. Since the conditional-expression is followed by a
semicolon, its value is discarded.

The two expressions just given are equivalent in function, and are close enough
in their cost that the choice between the two examples is ordinarily a matter of
programming style.
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6.1.4.3 Complete Versus Incomplete Test Evaluation
As Section 6.1.3 stated, a test may not be fully evaluated. Furthermore, different
occurrences of the same test may be evaluated in different ways. These variations
reflect the fact that the BLISS compiler performs a far-reaching analysis of the
context in which a test appears and then produces code that is optimized for that
context. For this reason, an expression that must be evaluated (because it sets
values or has other side effects) must not be part of a test.

If an assignment or routine-call must be evaluated, its value should be assigned
to a temporary variable. Then the value of the temporary variable can be used in
the test expression. For example:

IF .A OR F(.B) THEN X = 0;

This can be rewritten as follows:

T = F(.B);
IF .A OR .T THEN X = 0;

6.2 Case-Expressions
A case-expression evaluates an index and then uses the value of that index to
choose one expression to be evaluated from a set of expressions.

An example of a case-expression is as follows:

CASE .X+1 FROM -1 TO 8 OF
SET
[1]: F1();
[2 TO 4]: F2();
[5, 7, -1]: F3();
[INRANGE]: F4();
[OUTRANGE]: F5();
TES

In this example, the value of .X+1 is used to choose one of five routines to be
called as follows:

Value of .X+1 Routine Called

–1 F3

0 F4

1 F1

2 F2

3 F2

4 F2

5 F3

6 F4

7 F3

8 F4

(all other values) F5
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6.2.1 Syntax

case-expression CASE case-index
FROM low-bound TO high-bound OF
SET
case-line . . .
TES

case-line [ case-label , . . . ] : case-action ;

case-label

8<
:

single-value
low-value TO high-value
INRANGE
OUTRANGE

9=
;

n
case-index
case-action

o expression

8>><
>>:

low-bound
high-bound
single-value
low-value
high-value

9>>=
>>;

compile-time-constant-expression

6.2.2 Restrictions
Every value within the range specified by the low-bound and high-bound
expressions must be accounted for exactly once in a case-expression. If an
integer value in the range is not explicitly given, a case-action must be specified
for INRANGE.

If the case-index can assume a value outside the specified range, a case-action
must be specified for OUTRANGE.

If the INRANGE case-label is used, it must appear after all case-labels of one of
the following forms:

single-value

low-value TO high-value

Thus, the only case-label that can follow INRANGE is OUTRANGE.

6.2.3 Semantics
The matching of the case-index to a case-label determines the case-action to be
evaluated. The syntax provides four kinds of case-label. The following list gives,
for each kind of case-label, the condition under which a match occurs.

Case-Label Condition for a Match

single-value A match occurs if the values of the case-index and the
single-value are equal.
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Case-Label Condition for a Match

low-value TO high-value A match occurs if the value of the case-index is in
the range specified by the values of the low-value
and high-value expressions (that is, the following
signed comparisons hold: low-value � case-index �
high-value).

INRANGE A match occurs if the value of the case-index is in the
range specified by the values of the low-bound and
high-bound expressions (that is, the following signed
comparisons hold: low-bound � case-index � high-
bound) and the case-index does not match any other
case-label.

OUTRANGE A match occurs if the value of the case-index is outside
the range specified by the values of the low-bound and
high-bound expressions.

Given the preceding definition of matching, the interpretation of an entire
case-expression is as follows:

1. Evaluate the case-index.

2. Evaluate the case-action in the case-line that contains the case-label matched
by the case-index.

3. Use the value of the case-action as the value of the case-expression.

The case-expression is designed for a special, very efficient implementation. In
order to make a decision about using a case-expression, you need to understand
its implementation. Briefly, the bounds and case-labels of a case-expression are
all compile-time-constant-expressions and can therefore be evaluated by the
compiler. For this reason, the compiler can prepare a transfer vector for use in
the evaluation of a case-expression. The transfer vector has one element for each
value of the case-index in the range from low-bound to high-bound. The first
element of the vector provides the address of the object code for the case-action
that is performed when the case-index is equal to low-bound. The second element
provides the address of the object code for the case-action that is performed when
the case-index is equal to low-bound plus 1; and so on.

When a case-expression is evaluated during program execution, only a single
operation is required to get to the appropriate case-action. That is, the case-index
is used as an index into the transfer vector. Thus a case-expression does not
require a search through the case-labels.

6.2.4 Pragmatics
A case-expression is most useful when the case-index assumes values in a small
range. An example of the effective use of a case-expression follows:

CASE .TYPECODE FROM 0 TO 3 OF
SET
[0]: LITERAL();
[1]: IDENTIFIER();
[2]: KEYWORD();
[3]: PREDCL();
TES;
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This case-expression is used to choose the routine to be evaluated based on the
value of .TYPECODE. The data segment named TYPECODE contains a code that
is set earlier in the program. Since TYPECODE cannot assume a value outside
the specified range, a case-action is not given for OUTRANGE and since each of
the values within the range is associated with a specific case-action, a case-action
is not given for INRANGE.

Another example of a case-expression follows:

CASE .NUMBER FROM 1 TO 10 OF
SET
[1,2,3,5,7]: PRIME = .PRIME + 1;
[INRANGE]: NONPRIME = .NONPRIME + 1;
[OUTRANGE]: ERROR();
TES;

This case-expression increments the counter PRIME if the contents of NUMBER
is 1, 2, 3, 5, or 7. If the contents of NUMBER is 4, 6, 8, 9, or 10, the counter
NONPRIME is incremented. If the contents of NUMBER is outside the specified
range, an error routine is called.

6.3 Select-Expressions
A select-expression evaluates an index and then uses the value of that index to
choose one or more expressions to be evaluated. Two kinds of select-expressions
are defined for BLISS: one evaluates all expressions chosen by the index, and the
other only evaluates the first such expression. A select-expression differs from a
case-expression in several important ways:

• Select-labels are evaluated at execution time.

• A range of values is not specified for the select-index.

• The select-index and select-labels can be interpreted as signed, unsigned, or
address values depending on the form of the select expression used.

The following select-expression example assumes the VAX–11/780 target system:

SIZE=(SELECTONE .VALUE OF
SET
[-128 TO 127]: 1;
[-32768 TO 32767]: 2;
[OTHERWISE]: 4;
TES);

In this example, the contents of VALUE is used to determine the number of bytes
of storage needed for its representation.

If the select-expression in this example is reprogrammed as a case-expression, it
requires a range from –32768 to 32767, and its transfer vector occupies 65536
16-bit words. For this reason, the case-expression is decidedly impractical for
this example. (The particular example used and the transfer-vector size cited
are not appropriate for all target systems, of course, but do convey the essential
differences between select- and case-expression usage.)
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6.3.1 Syntax

select-expression n
SELECT | SELECTU | SELECTA
SELECTONE | SELECTONEU | SELECTONEA

o

select-index OF
SET
select-line . . .
TES

select-line [ select-label , . . . ] : select-action ;

select-label

8<
:

selector
low-selector TO high-selector
OTHERWISE
ALWAYS

9=
;

8>><
>>:

select-index
select-action
selector
low-selector
high-selector

9>>=
>>;

expression

6.3.2 Restrictions
The select-label ALWAYS cannot be used in an expression that begins with
SELECTONE, SELECTONEU, or SELECTONEA.

6.3.3 Semantics
The matching of the select-index to a select-label determines whether or not
the select-action in the select-line containing the select-label is evaluated. The
syntax provides four kinds of select-label. The following list gives, for each kind
of select-label, the condition under which a match occurs.

Select-Label Condition for a Match

selector A match occurs if the values of the select-index and selector
are equal.

low-selector TO
high-selector

A match occurs if the value of the select-index is in the
range specified by the values of the low-selector and high-
selector expressions (that is, low-selector � select-index �
high-selector).

OTHERWISE A match occurs if a match has not previously occurred.

ALWAYS A match always occurs.

The keyword at the beginning of a select-expression consists of SELECT or
SELECTONE, followed by an optional added letter, U or A. The added letter
affects the matching of the select-index to a particular select-label. Specifically, it
determines the kind of comparison, as follows:

No added letter: Use signed comparison.

Last letter is U: Use unsigned comparison.

6–8 Control Expressions



Last letter is A: Use address comparison.

Given the preceding discussion of matching and keywords, the interpretation for
an entire select-expression is as follows:

1. Evaluate the select-index.

2. Let the first select-line of the select-expression be the current select-line.

3. Evaluate the select-labels on the current select-line to determine whether at
least one of them matches the select-index.

4. If a match is found, then evaluate the select-action of the current select-line.
Otherwise, go to step 6.

5. If the select-expression is a form of SELECTONE, then go to step 8.

6. If the current select-line is the last select-line, then go to step 8.

7. Let the select-line that follows the current select-line be the new current
select-line and go to step 3.

8. Use the value of the most recently evaluated select-action as the value
of the select-expression. If no select-action has been evaluated during
this evaluation of the select-expression, use –1 as the value of the select-
expression.

In step 3 of this interpretation, the select-labels in a single select-line may be
evaluated in any order. Furthermore, they are subject to partial evaluation in the
same way as a test in a conditional-expression (see Section 6.1.3). Therefore, a
select-label must not contain assignments or routine-calls that must be evaluated
because they have important side effects.

6.4 Indexed-Loop-Expressions
A loop-expression repeatedly evaluates a given expression, the loop-body.
Loop-expressions are classified as indexed-loops (described in this section) and
tested-loops (described in the next section).

An indexed-loop has a loop-index that starts at a given value and is stepped
each time the loop cycles until a final value is reached. The loop-index not
only determines the number of cycles performed by the loop, but can also be
used as data in the calculations performed in the loop-body. An example of an
indexed-loop follows:

OWN
V: VECTOR[10],
SUM;

...
SUM = 0;
INCR I FROM 0 TO 9 DO

SUM = .SUM + .V[.I];

In this loop-expression, the loop-body is a single assignment-expression. The
assignment-expression is evaluated ten times, for the sequence of values of .I as
follows: 0, 1, 2, . . . , 9. The effect of the loop is to place the sum of the elements
of the vector V in the data segment named SUM.
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6.4.1 Syntax

loop-expression n
indexed-loop-expression
tested-loop-expression

o

indexed-loop-
expression

n
INCR | INCRU | INCRA
DECR | DECRU | DECRA

o
loop-index

n
FROM initial
nothing

o n
TO final
nothing

o n
BY step
nothing

o

DO loop-body

loop-index name

8<
:

loop-body
initial
final
step

9=
; expression

6.4.2 Restrictions
The value of the step expression in an indexed-loop-expression must be positive.

6.4.3 Defaults
The initial, final, and step expressions can be omitted in an indexed-loop-
expression. The following defaults apply:

Keyword Defaults

INCR
INCRU
INCRA

FROM 0 TO +infinity BY 1
FROM 0 TO +infinity BY 1
FROM 0 TO +infinity BY 1

DECR
DECRU
DECRA

FROM largest-signed-value
FROM largest-unsigned-value
FROM largest-address-value

TO 0 BY 1
TO 0 BY 1
TO 0 BY 1

The default ‘‘+infinity’’ for INCR, INCRU, and INCRA loop-expressions means
that no end test is made if no final expression is given. The ‘‘largest values’’
referred to are the maximum values accommodated by a signed or unsigned
fullword, or the maximum address value provided, respectively, on the target
system.

6.4.4 Semantics
The loop-index is implicitly declared to be a LOCAL name for the scope of the
loop-body. This implicit declaration supersedes any previous declaration for
that name throughout the indexed-loop. The MAP declaration, described in
Section 10.10, can be used to provide a structure attribute for the loop-index.

The keyword at the beginning of an indexed-loop-expression is INCR or DECR,
followed by an optional added letter, U or A. The added letter affects the
comparison of the index to the first and final expressions. Specifically:
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No added letter: Use signed comparison.

Last letter is U: Use unsigned comparison.

Last letter is A: Use address comparison.

Given the preceding discussion of indexes and keywords, the interpretation for an
entire indexed-loop-expression is as follows:

1. Set the value of the loop-index to the value of the initial expression.

2. Evaluate the step and final expressions and save the values of these
expressions.

3. If there is no final expression (so that ‘‘+infinity’’ is assumed by default), skip
to step 5. Otherwise, perform the end test. The end test is satisfied if:

a. The keyword is INCR, INCRU, or INCRA, and the value of the loop-index
is greater than the saved value of the final expression; or,

b. The keyword is DECR, DECRU, or DECRA and the value of the loop-
index is less than the saved value of the final expression.

4. If the end test is satisfied, evaluation of the loop-expression is complete. Use
–1 as the value of the loop-expression.

5. Evaluate the loop-body.

6. If the keyword is a form of INCR, add the saved value of the step expression
to the loop-index. If the keyword is a form of DECR, subtract the saved value
of the step expression from the loop-index. Go to step 3.

6.4.5 Pragmatics
The improper declaration of a loop-index is a common programming error. For
example:

SUM = 0;
INCR I FROM 0 TO 9 DO

BEGIN
LOCAL

I;
SUM = .SUM + .V[.I];
END;

The preceding program fragment is incorrect because I is used as a loop-index
and then ‘‘blocked off’’ from use in the loop-body by an explicit declaration of I
as LOCAL. The name I in .V[.I] refers to a data segment that is allocated by the
explicit declaration, not to the implicit data segment that contains the loop-index.
The correct version of this example appears at the beginning of this section
(Section 6.4).

6.5 Tested-Loop-Expressions
A tested-loop-expression contains a test expression that is evaluated once
during each loop cycle. The test expression determines whether or not repeated
evaluation of the loop-body continues.

In a pre-tested loop, the test is made at the beginning of each cycle. If the test
is satisfied, then the loop-body is evaluated and a new cycle begins; otherwise,
evaluation of the loop-expression is complete. An example of a pre-tested-loop
follows:
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WHILE .PTR NEQ 0 DO
BEGIN
SUM = LIST[.PTR,CONT];
PTR = LIST[.PTR,LINK];
END;

In this example, the loop-body is the BEGIN-END block, with its two assignment-
expressions. Each cycle of the loop begins with a test of the contents of PTR. If
the value is not 0, then the block is evaluated and a new cycle begins; otherwise,
evaluation of the loop-expression is complete.

A post-tested-loop differs from a pre-tested-loop only in the position of the test.
In a post-tested-loop, the test is evaluated at the end of each cycle.

6.5.1 Syntax

tested-loop-
expression

n
pre-tested-loop
post-tested-loop

o

pre-tested-loop n
WHILE
UNTIL

o
test DO loop-body

post-tested-loop
DO loop-body

n
WHILE
UNTIL

o
test

6.5.2 Restrictions
The test in a pre-tested-loop or post-tested-loop is subject to the same evaluation
rules as the test in a conditional-expression, described in Section 6.1.3.
Assignments or routine-calls that must be evaluated because they set values
or have other side effects must not be included as part of a test.

6.5.3 Semantics
The interpretation of a pre-tested-loop follows:

1. Evaluate the test.

2. Examine the test clause (that is, the ‘‘WHILE test’’ or ‘‘UNTIL test’’). The test
clause is satisfied if the keyword is WHILE and the low-order bit of the test
is 1 or if the keyword is UNTIL and the low-order bit of the test is 0.

3. If the test clause is satisfied, evaluate the loop-body and return to step 1.

4. If the test clause is not satisfied, use the value –1 as the value of the
loop-expression.

The interpretation of a post-tested loop follows:

1. Evaluate the loop-body.

2. Evaluate the test.

3. Examine the test clause. If the test clause is satisfied, as defined in step 2 of
the interpretation of the pre-tested-loop, return to step 1.

4. If the test clause is not satisfied, use the value –1 as the value of the
loop-expression.
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6.5.4 Pragmatics
The keywords WHILE and UNTIL are used to determine the continuation of
a loop. If WHILE is used, then the loop continues if the low bit of the test
expression value is 1. If UNTIL is used, the loop continues if the low bit of the
test expression is 0. Thus, WHILE (test) is equivalent to UNTIL NOT (test).

The most fundamental form of loop is one that begins with the following:

WHILE 1 DO

Such a loop could cycle indefinitely because the loop test is always satisfied.
Evaluation of the loop can be ended by an exit-expression (see Section 6.6) or a
return-expression (see Section 6.7) that is executed within the loop-body.

6.6 Exit-Expressions
An exit-expression gives three items of information: a command to end the
evaluation of a block, the label of the block to which the command applies, and
optionally a value for the designated block. An example of an exit-expression
follows:

LEAVE ALPHA WITH .X-1;

This expression must occur in a block that is labeled ALPHA. It causes evaluation
of that block to end and provides the value of .X–1 as the value of that block. The
labeling of blocks is described in Section 8.1.

6.6.1 Syntax

exit-expression n
leave-expression
exitloop-expression

o

leave-expression
LEAVE label

n
WITH exit-value
nothing

o

exitloop-expression
EXITLOOP

n
exit-value
nothing

o

label name

exit-value expression

6.6.2 Restrictions
A leave-expression must be contained in a block labeled by the same label that
appears in the leave-expression.

An exitloop-expression must be contained in a loop-expression. If an exit-
expression applies to an expression whose value is used, then the exit-expression
must contain an exit-value.
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6.6.3 Semantics
The semantics of the two kinds of exit-expression is presented in the following
sections.

6.6.3.1 Leave-Expressions
The interpretation of a leave-expression follows:

1. If an exit-value is given, evaluate the exit-value and use that value as the
value of the labeled-block.

2. If an exit-value is not given, the value of the labeled-block is undefined.

3. End the evaluation of the labeled-block designated by the label of the leave-
expression.

6.6.3.2 Exitloop-Expressions
The interpretation of an exitloop-expression follows:

1. If an exit-value is given, evaluate the exit-value and use that value as the
value of the loop-expression.

2. If an exit-value is not given, the value of the loop-expression is undefined.

3. End the evaluation of the innermost loop.

6.6.4 Pragmatics
An exitloop-expression is a special case of a leave-expression that leaves the
innermost containing loop-expression. An exitloop-expression is convenient
because it does not require the use of a label.

An example of an exitloop-expression appears in the following program fragment:

OWN
X: VECTOR[10],
ZEROFLAG;

...
ZEROFLAG = 0;
INCR I FROM 0 TO 9 DO

IF .X[.I] EQL 0
THEN (ZEROFLAG = 1; EXITLOOP);

The elements of the vector X are examined to determine if there is an element
whose contents is 0. If an element containing 0 is found, then ZEROFLAG
is set to 1 and evaluation of the loop-expression is ended by the EXITLOOP.
Evaluation of the loop ends when the first zero is found; the elements of the
vector following the first element containing 0 are not examined. An example of a
leave-expression appears in the following program fragment:

OWN
XYZ: ARRAY[10,20],
ZEROFLAG;

LABEL
L;

...
ZEROFLAG = 0; ! Initialize to no zeros found
L: BEGIN

INCR I FROM 0 TO 9 DO
INCR J FROM 0 TO 19 DO

IF .XYZ[.I,.J] EQL 0
THEN (ZEROFLAG = 1; LEAVE L);

END;
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When the leave-expression is evaluated, it ends evaluation of two loops: the inner
loop with index J and the outer loop with index I.

The value of an exit-expression can be used to give a value to a loop. An example
of this use of an exit-expression appears in the following program fragment:

OWN
VALBUF: VECTOR[10],
BUFLEN;

...
BUFLEN = 1+

BEGIN
DECR J FROM 9 TO 0 DO

IF .VALBUF[.J] NEQ 0 THEN EXITLOOP .J
END;

Assume that the initial elements of VALBUF contain nonzero values, and the
remaining elements contain zero. BUFLEN is the number of nonzero values in
VALBUF. Observe that if a nonzero value is found, then the exitloop-expression
ends the evaluation of the loop. If the buffer is all zeros, the evaluation of
the loop runs to completion and the loop value is –1. In both cases, the value
returned is 1 less than the desired number of values.

6.7 Return-Expressions
A return-expression is used to end the evaluation of a routine and send control
back to the point at which the routine was called.

6.7.1 Syntax

return-expression
RETURN

n
returned-value
nothing

o

returned-value expression

6.7.2 Restrictions
A return-expression in a routine that does not have the NOVALUE attribute
must have a returned-value.

6.7.3 Semantics
The interpretation of the return-expression follows:

1. If the return-expression has a returned-value, evaluate the returned-value
and use that value as the value of the routine-body.

2. End the evaluation of the routine-body.

Discussion of return-expressions is presented in the sections on the NOVALUE
attribute (Section 9.10) and routine-declarations (Section 12.3).
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7
Constant Expressions

A constant expression is an expression that can be evaluated before program
execution begins. The practical and efficient implementation of BLISS requires
that constant expressions be used in certain contexts, as specified in the syntax
diagrams. An expression is a constant expression if certain restrictions are met,
and those restrictions are given in this chapter.

There are two kinds of constant expression. The compile-time constant
expression is the more heavily restricted of the two, and can be evaluated during
the compilation of the module in which it appears. The link-time constant
expression includes the compile-time constant expression as a special case, and
can be evaluated by the compiler, the linker, and the operating system working
together.

This chapter has two sections, one for each kind of constant expression.

7.1 Compile-Time Constant Expressions
This section defines compile-time constant expressions. The definition assumes
the definition of expressions given in the previous chapters and then imposes
restrictions. The restrictions are designed to permit a compile-time constant
expression to be evaluated during the compilation of the module in which it
appears. When the compiler encounters a compile-time constant expression, it
evaluates that expression and makes use of its value in compiling efficient object
code.

Constant values known to the compiler are required in several places in BLISS
in order to give a reasonable interpretation to another language feature. For
example, in order for the compiler to allocate static storage for plits, the actual
sizes of all components must be known—including any repetition counts. The
same consideration applies to the sizes of other static storage declarations, such
as an own-declaration.

In other cases, requiring constant values assures that an efficient implementation
can be provided by the compiler. For example, requiring that all LOCAL (and
STACKLOCAL) storage allocation is of constant size and therefore known to the
compiler assures that storage allocation can be done efficiently and that LOCAL
data segments can be addressed efficiently.

Some simple examples of compile-time constant expressions are as follows:

5
3 * 15 - 4
7 + %C’A’
MAX(3, 7, 3*15-4)
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Compile-time constant expressions often involve names that are declared
LITERAL; for example:

LITERAL
REG = 5,
SIZE = 47;
...
BEGIN
OWN X: VECTOR[MAX(SIZE,3)+1];
REGISTER A = REG;
...
END

There are quite a few contexts that require compile-time constant expressions,
and they are scattered through the language. For convenience, a complete list
follows.

A compile-time constant expression must be used as follows:

• The replicator in a PLIT (Chapter 4)

• The low-bound, high-bound, single-value, low-value, and high-value
expressions in a case-expression (Chapter 6)

• The boundary expression in an alignment-attribute (Chapter 9)

• The ctce-access-actual in a preset-attribute of a data-declaration (Chapter 9)

• The bit-count in a range-attribute of a literal- or external-literal-declaration
(Chapter 9)

• The register-number in a register-declaration (Chapter 10)

• The sign-extension-flag in a field-selector (Chapter 11)

• The structure-size in the declaration of a structure-name (Chapter 11)

• The allocation-actual parameter in a structure-attribute (Chapter 11)

• The field-component in a field-declaration (Chapter 11)

• The register-number in a linkage-option (Chapter 13)

• The literal-value in a literal-declaration (Chapter 14)

• Certain parameters in lexical-functions (Chapter 15)

• The lexical-test in a lexical-conditional (Chapter 15)

• The compile-time-value in a compile-time-declaration (Chapter 15)

• The level value in an OPTLEVEL module-switch (Chapter 19)

7.1.1 Syntax

compile-time-constant-expression expression

7.1.2 Restrictions
These restrictions apply to an expression after any macro calls in the expression
have been expanded.

A compile-time constant expression must be one of the following expressions:

1. A numeric-literal.

2. A string-literal.
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3. A name that satisfies the following conditions:

a. It is declared in any bound-declaration except an EXTERNAL literal-
declaration (as described in Chapter 14).

b. It is bound to a value that is given by a compile-time constant
expression.

4. A structure-reference that yields a compile-time constant expression when it is
expanded (as described in Chapter 11).

5. A block that has a compile-time constant expression (and nothing else) as its
body.

6. An operator-expression that satisfies the following conditions:

a. It is not a fetch-expression or an assignment-expression.

b. It has a compile-time constant expression as each of its operands.

7. An operator-expression that has the following form:

e1
n

rela
–

o
e2

In these forms, rela is one of the relational operators for addresses (EQLA,
NEQA, and so on). Both e1 and e2 must be link-time constant expressions;
furthermore, their values must be addresses that are relative to the same
program section, external data segment, or external routine name.

8. An executable-function that satisfies the following conditions:

a. It is the ABS function, the SIGN function, or one of the max or min
functions.

b. It has a compile-time constant expression as each of its parameters.

9. A supplementary-function that satisfies certain restrictions. Those restrictions
are not given here but instead appear as part of the definition of each
supplementary-function. (For example, Section 20.2.1.1 states that the
CH$ALLOCATION function is a compile-time constant expression if its
parameters are compile-time constant expressions.)

10. A conditional-expression that satisfies the following conditions:

a. It has a test that is a compile-time constant expression.

b. It has a consequence or alternative that is a compile-time constant
expression, depending on whether the test is satisfied or fails.

11. A case-expression that satisfies the following conditions:

a. It has a case-index that is a compile-time constant expression.

b. It has at least one case-action that is a compile-time constant expression;
namely, that case-action that is chosen by the value of the case-index.

7.1.3 Semantics
A compile-time constant expression is evaluated during the compilation of the
module in which it appears. In all other respects, its interpretation is the same
as that for an unrestricted expression (see Chapters 4, 5, and 6).
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7.2 Link-Time Constant Expressions
This section defines link-time constant expressions. The definition assumes
the definition of expressions given in the previous chapters, and then imposes
restrictions. The definition of link-time constant expressions includes the
compile-time constant expressions as a special case. The restrictions on a link-
time constant expression are designed to permit the expression to be evaluated
by the compiler, the linker, and the operating system before the value is needed
for program execution.

The need for link-time constant expressions arises in two ways:

• A name that designates storage in a program section is specified as an offset,
not a full, absolute address, by the compiler. The absolute address cannot be
determined until link time, when the program sections are allocated and their
base addresses are determined.

• A name that is declared EXTERNAL is entirely undetermined at compile
time because its original declaration is in another module. Its offset or its
absolute address cannot be determined until link time, when the module in
which the GLOBAL declaration of the name appears is present.

A simple example of the use of a link-time constant expression is contained in the
following program fragment:

OWN X: VECTOR[10];
...
OWN ALPHA: INITIAL(X[2]);

During compilation, the final value of X is not known; it is expressed as an offset
in the OWN program section. Only at link time is it possible to determine the
absolute address of X, to evaluate X[2] (the address of the third element of X),
and, finally, to supply the initial value for ALPHA.

There are five contexts in which a link-time constant expression is required:

• The plit-expression in a PLIT (Chapter 4)

• The plit-expression in an initial-attribute of an own- or global-declaration
(Chapter 9)

• The preset-value in a preset-attribute of an own- or global-declaration
(Chapter 9)

• The data-name-value in a GLOBAL bind-data-declaration (Chapter 14)

• The routine-name-value in a GLOBAL bind-routine-declaration (Chapter 14)

7.2.1 Syntax

link-time-constant-expression expression

7.2.2 Restrictions
These restrictions apply to an expression after any macro-calls in the expression
have been expanded.

A link-time constant expression must be one of the following expressions:

1. A compile-time-constant-expression.

2. A PLIT.
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3. A name that is declared as one of the following:

a. OWN, GLOBAL, EXTERNAL, or FORWARD. (These are used for names
of permanently allocated data segments.)

b. ROUTINE, GLOBAL ROUTINE, EXTERNAL ROUTINE, or FORWARD
ROUTINE. (These are used for names of routine segments.)

c. EXTERNAL LITERAL. (This is used for names of literals that are bound
in other modules.)

4. A name that satisfies the following conditions:

a. It is declared by a bound-declaration (as described in Chapter 14).

b. It is bound to a value that is given by a link-time-constant-expression.

5. A structure-reference that yields a link-time constant expression when it is
expanded (as described in Chapter 11).

6. A block that has a link-time constant expression (and nothing else) as its
body.

7. An operator-expression that has the following form:

e1
n

+
–

o
e2

In these forms, e1 must be a link-time constant expression and e2 must be a
compile-time constant expression.

8. An operator-expression that has the following form:

e1
n

rela
–

o
e2

In these forms, rela is one of the relational operators for addresses (EQLA,
NEQA, and so on). Both e1 and e2 must be link-time constant expressions;
furthermore, their values must be addresses that are relative to the same
program section, external data segment, or external routine name.

9. A supplementary-function that satisfies certain restrictions. Those restrictions
are not given here but appear as part of the definition of each supplementary
function. (For example, Section 20.2.2.1 states that the CH$PTR function
is a link-time constant expression if its first parameter is a link-time
constant expression and its remaining parameters are compile-time constant
expressions.)

7.2.3 Semantics
A link-time constant expression is evaluated during the compilation, linking, and
loading of the module in which it appears. In all other respects, its interpretation
is the same as that for an unrestricted expression (see Chapters 4, 5, and 6).

The following summarizes the restrictions presented above:

A link-time-constant-expression is one of the following:

• Any compile-time constant expression

• A data segment name or external name

• A data segment name or external name modified by adding or subtracting
a constant value (using + and –)
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• The result of comparing or taking the difference of two link-time constant
expressions that represent addresses in the same program section or
relative to the same external name (using the relational operators for
addresses)
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8
Blocks and Declarations

This chapter describes the general structure and use of blocks and declarations.
Blocks and declarations are the fundamental structural features of BLISS. They
are interdependent and complementary. A block is used to gather a sequence of
declarations and expressions into a single construct. In contrast, a declaration is
used to distribute a single set of information to many places in a block, that is, to
each place where the declared name is used.

Later chapters describe specific types of declarations in detail.

8.1 Blocks
On the inside, a block can contain a long and complicated sequence of declarations
and expressions. From the outside, that same block is a single syntactic unit that
has a single value. In this way, blocks provide for the large-scale structuring of a
program.

Blocks need not be complicated. They are often used to specify the order in which
operators are to be evaluated; for example:

2*(.A-1)

In this expression, (.A-1) is a block. It is used to show that the difference of .A
and 1 should be calculated before multiplication by 2. This block is the simplest
kind of block, a parenthesized expression.

In some cases, a block is used to gather several expressions together so that they
are evaluated as a unit; for example:

IF .ALPHA NEQ 0
THEN

BEGIN
Q1 = .ALPHA*.S1;
Q2 = .ALPHA*.S2;
END;

An equivalent way of writing this block follows:

IF .ALPHA NEQ 0 THEN (Q1 = .ALPHA*.S1; Q2 = .ALPHA*.S2;);

The block in these examples is a compound-expression; that is, a block that
contains one or more expressions but does not contain a declaration. The choice
between parentheses and the BEGIN-END pair is entirely a matter of appearance
and readability.

Finally, a block can be used to gather together a sequence of declarations and
expressions of arbitrary length and complexity.
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8.1.1 Syntax

block n
labeled-block
unlabeled-block

o

labeled-block { label : } . . . unlabeled-block

label name

unlabeled-block n
BEGIN block-body END
( block-body )

o

block-body n
declaration . . .
nothing

o
n

block-action . . .
nothing

o
n

block-value
nothing

o

block-action expression ;

block-value expression

A block immediately contains a given construct (such as a name or a declaration)
if it is the smallest block that contains the given construct.

A compound-expression is a block that does not immediately contain any
declarations.

A parenthesized-expression is a block that has the following form:

(expression)

8.1.2 Restrictions
The label in a labeled-block must be declared by a label-declaration (see
Section 18.4).

A block that appears in a context that requires a value must contain a block-value
expression.

A block must not be empty; that is, it must contain at least one declaration,
block-action, or block-value.

8.1.3 Semantics
Consider, first, a block whose evaluation runs to completion without being
prematurely ended by, for example, a leave-expression. The block is evaluated in
three steps, as follows:

1. Process the declarations (if any).

2. Evaluate the block-actions (if any) in the order in which they are written.
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3. Evaluate the block-value expression (if any).

If the block has a block-value expression, then the value of that expression is the
value of the block; otherwise, the value of the block is undefined and an attempt
to use that value is invalid.

Most of the processing of declarations is performed before program execution
begins. For example, the information in an OWN declaration is used by the
compiler and linker to allocate storage, provide an initial value, and so on. In
a few cases, the processing of a declaration requires run-time calculations. For
example, the value in a BIND declaration can be given by an expression that
must be evaluated each time the block is entered.

The evaluation of block-actions in order, one after another, is the basis for
sequential flow of control. It is valid to assume that the evaluation of a block-
action is completed before the evaluation of the next block-action begins. In the
course of optimization, the compiler alters the order of some calculations, but
never in a way that affects the results.

In BLISS the block-action plays a role similar to the role of the ‘‘statement’’ in
other high-level languages. The semicolon at the end of a block-action has the
syntactic role of separating the block-action from the next component of the block.
In addition, it has the semantic effect of discarding the value of the expression.
Thus it is valid to use an expression whose value is undefined as the expression
in a block-action.

Consider, next, a block that does not run to completion. Such a situation arises
because of a return-expression, leave-expression, or exitloop-expression that
is contained in the block. In this situation, the value of the block is the value
supplied by the return-expression, leave-expression, or exitloop-expression. If no
value is supplied, then the value of the block is undefined.

8.1.4 Discussion
An example of a block is contained in the following conditional-expression:

IF .Q EQL 0
THEN

BEGIN
LOCAL

TEMP;
TEMP = .X;
X = .Y;
Y = .TEMP;
END;

The block is evaluated if the contents of Q is 0.

The block in this example begins with one declaration, continues with three
block-actions, and does not contain a block-value expression. The declaration
describes a data segment named TEMP, which is allocated for use in this block
only. The block actions are all assignments; they exchange the contents of X and
Y. Clearly, it is important, in this example, that the assignments are performed in
the order written.

The entire example is an expression (a conditional-expression) followed by a
semicolon. Therefore, it is a block-action and is part of some larger block (not
shown).
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8.2 Declarations
A declaration provides information about the block that contains it. Usually, the
information affects the interpretation of one or more names that are used in the
block. Thus, although the declaration does not directly cause any action, it does
affect the interpretation of the block by specifying information about the names
that are declared.

In the simplest case, the information provided by a declaration is just a single
keyword; for example:

OWN
X;

This specifies that X is an OWN name.

Sometimes a declaration gives some of the attributes that are described in
Chapter 9. For example:

GLOBAL
DELTA: VECTOR[120] INITIAL(REP 120 OF (-1));

This specifies that DELTA is a GLOBAL name and that it has the given
structure- and initial-attributes.

In other cases, a declaration can give even more information. For example:

GLOBAL ROUTINE EXCH(X,Y): NOVALUE =
BEGIN
LOCAL TEMP;
TEMP = ..X;
.X = ..Y;
.Y = .TEMP;
END;

This specifies that EXCH is a global routine-name, that it has the novalue-
attribute, that it has the formal-name list (X,Y), and that it designates the
routine given in the BEGIN-END block.

A declaration applies to those occurrences of a name that are within its scope.
In the example just given, the declaration (LOCAL TEMP;) applies only to the
occurrences of TEMP within the BEGIN-END block. The example is part of a
module (not shown), but any other use of TEMP in that module lies outside the
scope of the local-declaration in the example.
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8.2.1 Syntax

declaration

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

data-declaration
structure-declaration
field-declaration
routine-declaration
linkage-declaration
enable-declaration
bound-declaration
compiletime-declaration
macro-declaration
require-declaration
library-declaration
psect-declaration
switches-declaration
label-declaration
builtin-declaration
undeclare-declaration

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

The syntax diagrams for the specific kinds of declarations are given in later
chapters. With few exceptions, however, each kind of declaration declares a
user-chosen symbol as a specific kind of name (data-segment name, structure-
definition name, routine name, and so forth), and generally provides additional
information about that name.

A given name can be used more than once in a module and can have different
declarations in different places. The declaration that applies to a given use of a
name governs that name. To find the declaration that governs a given use of a
name, proceed as follows:

Start at the given use of the name and scan backwards through the module. If
the end of a block is encountered, skip over everything contained in that block.
The first declaration of the given name that is encountered during this scan is
the desired declaration.

One declaration of a name can govern many uses of the name. The part of a
module that is governed by a declaration is the scope of that declaration.

8.2.2 Restrictions
Every use of a name must be governed by an explicit declaration. The predeclared
names (see Appendix A) are an exception to this rule; they can be used without
being explicitly declared.

Two declarations of the same name must not be immediately contained in the
same block.

The two restrictions just given are subject to some exceptions when UNDECLARE
declarations are used (see Chapter 18).

A name is declared as global when its declaration begins with the keyword
GLOBAL. A name must not be declared global more than once in a program.

8.2.3 Semantics
A declaration supplies the following information about each occurrence of a name
that it governs:

1. The one or more keywords with which the declaration begins

2. The attributes that appear in the declaration of the name
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3. Other, specialized, information that is included in certain kinds of declaration,
such as the routine-body in a routine-declaration, or the bound-value in a
bind-declaration

Most of the information supplied by the declaration is processed by the compiler.
For most declarations, part of the processing defines a value for the declared
name. For example, when an own-declaration is processed, an address offset is
associated with the name, and that address-offset is bound (by the linker) to the
address of a data segment.

8.2.4 Discussion
As defined in Section 8.2.1, the scope of a declaration is the part of a module that
is governed by the declaration. An example of scopes is given in the following
diagram:

BEGIN

OWN
          X,
          Y,
          Z;

ROUTINE S1 =

...( Calculation #2 )

...( Calculation #4 )

END

BEGIN
LOCAL
            X,
            A;

...( Calculation #1 )

END;

BEGIN
MACRO  Y = 0%;

...( Calculation #3 )

END

BLOCK A

BLOCK B

BLOCK C

ZK−6004−GE

The three blocks in this example are enclosed in boxes that are identified as A,
B, and C for convenience of discussion. Block A designates the entire example
(including the contents of Block B and Block C). The details of the calculations
performed by the example block are not important, so they are omitted. The
places where names could be used in calculations are called Calculation #1,
Calculation #2, and so on.
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The example contains seven declarations of names. The scopes of the declarations
are:

Declaration Scope of Declaration

X
Y
Z
S1
X
A
Y

(in Block A)
(in Block A)
(in Block A)
(in Block A)
(in Block B)
(in Block B)
(in Block C)

Block A except Block B
Block A except Block C
Block A
Block A
Block B
Block B
Block C

Another way to express this information is to show the declaration that governs
each name in each of the calculations, as follows:

Use of Name Declaration of Name

In Calculation #1
X
Y
Z
S1
A

LOCAL
OWN
OWN
ROUTINE
LOCAL

(Block B)
(Block A)
(Block A)
(Block A)
(Block B)

In Calculation #2
X
Y
Z
S1
A

OWN
OWN
OWN
ROUTINE
(undeclared)

(Block A)
(Block A)
(Block A)
(Block A)

In Calculation #3
X
Y
Z
S1
A

OWN
MACRO
OWN
ROUTINE
(undeclared)

(Block A)
(Block C)
(Block A)
(Block A)

In Calculation #4 (Same as in Calculation #2)

A second example of scope follows:
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BEGIN

OWN
          X,
          Y;

ROUTINE S2     (X) = .X + 1 ;

BLOCK A

ZK−6003−GE

ROUTINE S3     (X, Y, N) =

...
END

BEGIN
MAP
           Y : REF VECTOR ;
.X = 0 ;
DECR I FROM .N TO 0 DO

.X = ..X +   .Y [ .I ] ;

END;

BLOCK C

BLOCK B

BLOCK D

BLOCK E

The blocks in this example are labeled in the same way as in the previous
example. Three of the blocks are implicit; that is, they are assumed to exist
even though a BEGIN-END or parenthesis pair is not used. Specifically, Blocks
B and C are the implicit blocks that each surround the formal-names and the
routine-body of a routine-declaration. Block E is the implicit block that surrounds
the body of a loop.

This example contains ten declarations. Five of the declarations are implicit.
Specifically, the formal-name X is implicitly declared in Block B; the formal-
names X, Y, and N are implicitly declared in Block C; and the loop-index I is
implicitly declared in Block E. The scopes of the declarations are as follows:

Declaration Scope of Declaration

X
Y
S2
X
S3
X
Y
N
Y
I

(in Block A)
(in Block A)
(in Block A)
(in Block A)
(in Block B)
(in Block A)
(in Block C)
(in Block C)
(in Block C)
(in Block D)
(in Block E)

Block A except Blocks B and C
Block A except Block C
Block A
Block B
Block A
Block C
Block C except Block D
Block C
Block D
Block E

Unlike all other declarations, the MAP declaration redeclares a name; that is,
it establishes a new set of attributes to be used with a previously declared data
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segment name. Thus, the two declarations of Y in Blocks C and D refer to the
same data segment.
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9
Attributes

Many declarations are used to associate attributes with a declared name, as well
as declaring the name to be of a specific kind. Some attributes are common to
many forms of declarations, and some apply to only a few forms. This chapter
describes the attributes themselves.

The following syntax diagram lists the attributes:

attribute

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

allocation-unit
extension-attribute
structure-attribute
field-attribute
alignment-attribute
initial-attribute
preset-attribute
psect-allocation
volatile-attribute
novalue-attribute
linkage-attribute
range-attribute
address-mode-attribute
weak-attribute

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

( 16/32
( 16/32

( 16/32

( 16/32 Only
( 32 Only

Each attribute is described in a section of this chapter. A final section
summarizes the usage of attributes by showing which attribute can be used with
which kind of declaration.

9.1 The Allocation-Unit—BLISS–16/32 Only
An allocation-unit can be used in a data-declaration or a bind-data-declaration.
An allocation-unit can appear either as an independent attribute or as an
allocation-actual parameter within a structure-attribute (as described in Chapter
11).

An allocation-unit is used wherever the ‘‘granularity’’ of storage allocation must
be specified. Examples of the use of allocation-units in the declaration of names
follow:

OWN !A is a scalar data segment composed
A: WORD; !of one word (16 bits).

GLOBAL !B is a vector data segment composed
B: VECTOR[10,BYTE]; !of ten one-byte elements.

LOCAL !C is a scalar data segment composed
C; !(by default) of one fullword.
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9.1.1 Syntax

16/32 Only )

allocation-unit (
LONG
WORD
BYTE

)
( 32 Only

9.1.2 Default
The default allocation-unit is WORD for BLISS–16, and LONG for BLISS–32.

9.1.3 Restriction
As shown in the syntax diagram, the allocation-unit LONG is valid for BLISS–32
only.

An allocation-unit (used as an attribute) must not be used in the same declaration
as a structure-attribute.

If a declaration contains both an allocation-unit (used as an attribute) and an
initial-attribute, then the allocation-unit must precede the initial-attribute.

9.1.4 Semantics
An allocation-unit specifies a quantity of storage, as follows:

LONG 32 bits

WORD 16 bits

BYTE 8 bits

If the declaration of a name does not contain a structure-attribute (and is
therefore a scalar declaration), the allocation-unit determines the quantity
of storage allocated for the entire data segment. If the declaration has a
structure-attribute, the attribute can include an allocation-unit as one of its
allocation-actuals.

9.2 The Extension-Attribute—BLISS–16/32 Only
Like an allocation-unit, an extension-unit can be used in a data-declaration
or a bind-data-declaration. An extension-attribute can appear either as an
independent attribute or as an allocation-actual within a structure-attribute (as
described in Chapter 11).

Examples of the use of an extension-attribute follow:

OWN !A is a scalar data segment composed
A: SIGNED WORD; !of one signed word.

GLOBAL !B is a vector data segment composed
B: VECTOR[10,BYTE,SIGNED]; !of 10 signed bytes.

LOCAL !C is a scalar segment composed
C: UNSIGNED BYTE; !of one unsigned byte.
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9.2.1 Syntax

16/32 Only )

extension-attribute n
SIGNED
UNSIGNED

o

9.2.2 Restriction
An extension-attribute (used as an attribute) must not appear in the same
declaration as a structure-attribute.

9.2.3 Default
The default extension-attribute is UNSIGNED.

9.2.4 Semantics
An extension-attribute specifies the value extension rule to use when fetching the
contents of a scalar field value. SIGNED specifies that the high order bit of the
fetched value (the sign bit) is to be used. UNSIGNED specifies that zero bits are
to be used.

The extension-attribute is normally specified in combination with the allocation-
unit BYTE in BLISS–16, and with BYTE or WORD in BLISS–32.

9.3 The Structure-Attribute
A structure-attribute can be used in a data-declaration or a bind-data-declaration.
It associates the declared data-segment name to a separately declared structure-
definition, causing the allocation of the data-segment to be controlled by that
structure-definition. Subsequent access to the data-segment is also controlled
by the associated structure-definition. (A structure-definition is declared in a
structure-declaration. BLISS provides several predeclared structure-definitions,
as described in Chapter 11.)

An example of the use of a structure-attribute follows:

OWN
X: VECTOR[8];

The structure-attribute here is VECTOR[8]. The attribute specifies that X is a
data-segment with a VECTOR structure. The predeclared structure-definition
named VECTOR is described in Section 11.10. In accordance with that definition
plus the allocation-actual, 8, specified in the attribute, X is allocated as a
sequence of eight fullword elements that are designated X[0] through X[7].
(In BLISS–16 or BLISS–32, an allocation-unit can be used as an additional
allocation-actual, for example, VECTOR[8,BYTE], to specify the size of the
elements allocated.)

A structure-attribute can name a user-declared structure-definition as well
as one of the standard, predeclared structures described in Chapter 11. In
any case, the interpretation of the structure-attribute depends entirely on the
structure-declaration that governs the given structure-name.

For example:

GLOBAL
Y: MATRIX[10];
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The structure-attribute here is MATRIX[10]. The attribute specifies that Y is a
MATRIX structure. BLISS does not have a predeclaration for the name MATRIX;
therefore, this example must occur in the scope of an explicit STRUCTURE
declaration of MATRIX. The interpretation of the example depends entirely on
that STRUCTURE declaration.

The structure-attribute is fully described in Chapter 11, together with the
structure-declaration.

9.4 The Field-Attribute
A field-attribute can be used in data-declarations and bind-data-declarations.
It specifies one or more field-names that are to be associated with the declared
data-segment-name. This association allows the field-names to be used in
structure-references to the data segment, as described in Chapter 11. (The
field-attribute is meaningful only in declarations of structured data segments.)

The definition of a field-name, in terms of field-component values, is given in a
field-declaration that governs the use of that name. Field-declarations are also
described in Chapter 11.

For notational convenience, a group of field-name definitions can be identified
(in the field-declaration) by a field-set-name and can then be referred to in a
field-attribute by that single name.

9.4.1 Syntax

field-attribute
FIELD (

n
field-name
field-set-name

o
, . . . )

n
field-name
field-set-name

o name

9.4.2 Default
If a field-attribute is not specified for a data-segment-name, no field-names may
appear in an ordinary-structure-reference to the corresponding data segment.

9.4.3 Semantics
A field-attribute specifies the set of field-names that can validly appear in an
ordinary-structure-reference to a data segment declared with the given field-
attribute. A field-set-name in a field-attribute specifies a set of field-names that
can so appear. If no field-attribute is given, then no field-name is valid in such a
reference.

9.5 The Alignment-Attribute—BLISS–16/32 Only
An alignment-attribute can be used in an OWN, GLOBAL, LOCAL, or
STACKLOCAL data-declaration. In BLISS–32, an alignment-attribute can
also be used in a psect-declaration, as described in Section 18.1.1. This attribute
indicates the address alignment required for a data segment relative to the
different levels of address boundaries (for example, byte, word, longword,
quadword).
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The purpose of the alignment-attribute is to specify the smallest boundary at
which the data segment may be allocated, generally a larger boundary than the
default one. For example, an alignment-attribute might be used to specify that
a particular byte-scalar segment is to start at a word boundary only, rather than
at any byte boundary which is the default. Use of this attribute can result in
unused storage left between the previously allocated data segment and the data
segment to which the attribute applies.

The alignment-attribute indicates a particular address boundary by means of a
boundary value, n, which specifies that the binary address of the data segment
must end in at least n 0s. For example:

OWN
A:BYTE ALIGN(1);

The alignment-attribute, ALIGN(1), specifies that data-segment A is to be
allocated at an address that ends with at least one 0; which is to say that it is to
be aligned to a word boundary.

An example of BLISS–32 usage of the alignment-attribute is given in Section
9.5.5.

9.5.1 Syntax

16/32 Only )

alignment-attribute ALIGN ( boundary )

boundary compile-time-constant-expression

9.5.2 Restrictions
The value of boundary must be a positive integer.

BLISS–16 ONLY
The value of boundary must be either 0 or 1, corresponding to byte- or word-
boundary alignment respectively.

The value of boundary must not exceed the value of the program-section
alignment boundary for the storage class being allocated.

The value of boundary in a LOCAL or STACKLOCAL declaration must not exceed
2.

9.5.3 Default
The default alignment depends on the kind of data that is declared, as follows:

Kind of Data Default Alignment

BYTE scalar ALIGN(0)

WORD scalar ALIGN(1)

LONG scalar ALIGN(2) ( 32 Only

Any structure ALIGN(1) ( 16 Only

Any structure ALIGN(2) ( 32 Only
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9.5.4 Semantics
Suppose the value of the boundary expression is n. The compiler allocates the
declared data segment in the unused portion of the appropriate program section
at the smallest possible address offset that ends with at least n zero bits.

9.5.5 Discussion
The alignment-attribute is a nontransportable feature, is not required for most
purposes, and should only be used with a thorough knowledge of the target
system’s storage organization and accessing mechanisms.

A data segment declared as OWN or GLOBAL is allocated in the appropriate
OWN or GLOBAL program section. Its location is defined in terms of an address
offset, that is, an address relative to the beginning of the program section. In
BLISS–16 and BLISS–32, any address constitutes the boundary of one or more
allocation units: Thus all addresses are byte boundaries, every other address
(relative to zero) is a word boundary as well, and in BLISS–32 every fourth
address is also a longword boundary, and so on.

By default, a data segment is allocated at an address offset that is ‘‘natural’’
for either its size or type; for example, a word-size scalar is aligned to a word
boundary, and a structured segment is always fullword aligned, whatever its
allocation unit.

In BLISS–16, where the value of boundary may be 0 or 1, the only meaningful use
of the alignment-attribute is to force byte-size scalar items to a word boundary,
presumably for reasons of execution efficiency in special situations.

In BLISS–32 the boundary value for OWN and GLOBAL data segments is limited
only by physical-storage considerations. Further, the alignment-attribute can be
used to specify a smaller as well as a larger boundary than the default (except
for byte items, obviously), essentially for purposes of storage compaction versus
execution efficiency.

A data segment declared in a LOCAL or STACKLOCAL declaration is allocated
in the current stackframe. The stack handling mechanism imposes certain
restrictions such that the alignment specified for a LOCAL or STACKLOCAL
data segment cannot exceed a longword boundary in BLISS–32.

An example of the use of an alignment-attribute in BLISS–32 follows:

OWN
X: ALIGN(3);

In this example the alignment-attribute, ALIGN(3), directs the compiler to
allocate data-segment X in such a way that its binary address offset ends in at
least three 0s. That is to say, it directs the compiler to align the segment to a
quadword boundary. Depending on where available storage begins, the compiler
must leave from zero to seven bytes of unused storage in order to satisfy this
alignment attribute.

9.6 The Initial-Attribute
An initial-attribute can be used in an OWN, LOCAL, STACKLOCAL, REGISTER,
GLOBAL-REGISTER, EXTERNAL-REGISTER, or GLOBAL data-declaration.

An initial-attribute supplies one or more initialization values, which are assigned
to the data segment before program execution begins.
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Examples of the use of initial-attributes follow:

OWN X: INITIAL(2); !X is initialized to 2.

GLOBAL Y: VECTOR[6] !Each element of Y is initialized
INITIAL(REP 6 OF (-1)); !to -1.

16/32 Only:

GLOBAL Z: VECTOR[20,BYTE] !The first 4 bytes of Z are
INITIAL(BYTE(’STOP’, !initialized to S, T, O, and

REP 16 OF (0))); !P; the last 16 bytes to 0.

9.6.1 Syntax

initial-attribute INITIAL ( initial-item , . . . )

initial-item (
initial-group
initial-expression
initial-string

)

initial-group (
allocation-unit
REP replicator OF
REP replicator OF allocation-unit

)
( 16/32

( 16/32

( initial-item , . . . )

16/32 Only )

allocation-unit (
LONG
WORD
BYTE

)
( 32 Only

replicator compile-time-constant-expression

initial-expression expression1

initial-string string-literal

1The initial-item can be an executable expression, but is restricted in use to a link-time constant
expression for OWN and GLOBAL declarations. For LOCAL, STACKLOCAL, REGISTER, GLOBAL
REGISTER, and EXTERNAL REGISTER declarations the initial-item can be an executable
expression.

9.6.2 Restriction
The initial-item values must not occupy more storage than is allocated for the
data segment.

If a declaration contains both a structure-attribute and an initial-attribute, then
the structure-attribute must precede the initial-attribute.

If a declaration contains both an allocation-unit (used as an attribute) and
an initial-attribute, then the allocation-unit must precede the initial-attribute
(BLISS–16/32 only).
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9.6.3 Default
BLISS–16/32 ONLY
If an initial-attribute appears in the declaration of a scalar name without a
structure-attribute being present, the default allocation-unit for the initial-items
in the initial-attribute is the allocation-unit of the scalar name. Otherwise
(without a structure-attribute), the default allocation-unit is WORD for BLISS–16
and LONG for BLISS–32.

9.6.4 Semantics
With the exception of the case where a LOCAL declaration is handling a non-
PLIT item, the list of initial-items is evaluated as it would be in a PLIT. The
resulting value is placed in the data segment at the time it is allocated. If the
initial-item occupies less storage than the data segment, the trailing bits of the
data segment are initialized to zeros.

9.6.5 Pragmatics
The use of the INITIAL attribute is the preferred method for initializing scalar
data segments, while the use of the PRESET attribute (as described in Section
9.7) is the best method for initializing structured storage.

9.7 The Preset-Attribute
A preset-attribute can be used in an OWN, LOCAL, STACKLOCAL, REGISTER,
GLOBAL-REGISTER, EXTERNAL-REGISTER, or GLOBAL data-declaration that
declares a structured data-segment. It allows static initialization of individual
fields of a structured data-segment.

A preset-attribute supplies an initialization value for one or more fields of a
data structure, one value per specified field. These values are assigned to the
data segment before program execution begins. Unspecified portions of the data
segment are set to zero.

An example of the use of PRESET is given in the following program fragment,
involving a block structure defined with field-names:

FIELD LINK_LIST_ITEMS =
SET
LL_VALUE = [0,0,%BPVAL/2,0],
LL_TYPE = [0,%BPVAL/2,%BPVAL/2,0],
LL_LAST = [1,0,%BPVAL,0],
LL_NEXT = [2,0,%BPVAL,0]
TES;

GLOBAL LLIST_HEAD : BLOCK[3] FIELD(LINK_LIST_ITEMS)
PRESET( [LL_NEXT] = LLIST_HEAD,

[LL_LAST] = LLIST_HEAD,
[LL_VALUE] = -1 ) ;

In this example the origin block of a linked list is initialized with suitable values;
note that the list of preset values is order independent. The LL_TYPE field is
set to zero by default. (The predeclared literal %BPVAL used in the example is
defined in Section 14.1.5.)
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9.7.1 Syntax

preset-attribute PRESET ( preset-item , . . . )

preset-item [ ctce-access-actual , . . . ] = preset-value

ctce-access-actual n
compile-time-constant-expression
field-name

o

preset-value expression1

1For OWN and GLOBAL declarations the preset-value must be a link-time constant expression. For
LOCAL, STACKLOCAL, REGISTER, GLOBAL REGISTER, and EXTERNAL REGISTER declarations
the preset-value can be an executable expression.

The field-name is defined in Chapter 11.

9.7.2 Restriction
Within the declaration (OWN, LOCAL, and so forth), the preset-attribute must be
preceded by a structure-attribute.

If any preset-item contains a field-name, the preset-attribute must be preceded by
a field-attribute designating that field-name.

The preset-attribute and initial-attribute cannot be used in the same declaration.

A declaration cannot contain more than one preset-attribute.

The preset values must not occupy more storage than is allocated for the data
segment, and the fields described by the preset-items cannot overlap.

When expanded, the structure-reference formed by concatenating the declaration
name with the bracketed access-actual list of a preset-item must only yield a link-
time constant expression for an OWN or GLOBAL declaration. The value of that
expression must be within the range of addresses allocated to the data-segment.
Also, if that expression is a field-reference, it must conform to the dialect-specific
restrictions on field-references used in an assignment context, as specified in
Section 11.2.

9.7.3 Default
When a preset-attribute appears in one of the declarations, any portion of the
segment not described by a preset-item is set to zeros on allocation.

9.7.4 Semantics
The declaration name (OWN, LOCAL, and so forth) is concatenated with each
preset-item, in turn, and the expressions so formed are evaluated as if they were
assignment expressions. The resulting values are placed in the data segment at
the time it is allocated. Any portions of the data-segment not explicitly initialized
by preset-items are set to zeros.
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9.7.5 Pragmatics
The use of the PRESET attribute is the preferred method for initializing
nonscalar data-segments, although some simple VECTOR-type structures can
be initialized conveniently with the INITIAL attribute. Initialization of most
heterogeneous structures with the INITIAL attribute is, however, impractical or
at least an error-prone practice.

Note that a psect-allocation attribute can be used to conveniently assign an
initialized data-segment to write-protected storage; see Section 9.8.

Assignment-expressions involving a structure-reference as their left operand are,
in effect, evaluated during the initialization process and must meet the following
conditions:

1. Must be resolvable at link time for an OWN or GLOBAL declaration.

2. Must result only in stores to locations allocated to the named data-segment
(with no spillover).

3. Must result in assignments that are valid for the intended target systems, in
terms of field size and word-boundary constraints (if any). For example, in all
dialects a field to be stored into (or fetched from) may not be longer than a
fullword.

The specific restrictions on field-references (the typical result of structure-
reference expansions) are fully described in Chapter 11.

These restrictions come into play only in the case of a relatively complicated
structure, such as one whose definition contains a routine call or performs bounds
checking, for example. They pose no problem for the initialization of predeclared
structures and other comparably straightforward user-declared structures.

9.8 The Psect-Allocation Attribute
The psect-allocation attribute can be used in declarations of permanent data-
segments and in declarations of routines. It specifies the name of the program
section in which the declared data-segment or routine (code segment) is to be
allocated. Program sections and the psect-declaration are described in Chapter
18.

The psect-allocation attribute provides a more convenient means of making
program-section assignments for OWN, GLOBAL, and code segments than is
possible using the psect-declaration alone. A major use of the psect-allocation
attribute is for assigning an OWN or GLOBAL data-segment to write-protected
storage. For example:

GLOBAL LITERAL
MAIN_POWER = 0, AUX_POWER = 1, PRIMARY_BYPASS = 2,
VALVE_1 = 3, VALVE_2 = 4, SECOND_BYPASS = 5, DUMPER = 6,
OFF = 0, ON = 1 ;

GLOBAL STARTUP_STATE : BITVECTOR[7] PSECT( $PLIT$ )
PRESET([MAIN_POWER] = ON ,

[AUX_POWER] = OFF ,
[VALVE_1] = ON ,
[VALVE_2] = OFF ,
[PRIMARY_BYPASS] = OFF ,
[SECOND_BYPASS] = ON ,
[DUMPER] = OFF ) ;
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This fragment of a supposed process-control program establishes a control table
of symbolically named binary values for use by several modules and, because its
content should never be modified, it is allocated in the $PLIT$ program-section,
by means of the PSECT attribute. $PLIT$ names the default program section for
PLIT storage, which is given read-only access protection (if available on a given
target system).

9.8.1 Syntax

psect-allocation PSECT ( psect-name )

psect-name name

9.8.2 Restrictions
The psect-allocation attribute can appear in the following data- and routine-
declarations only: FORWARD, OWN, GLOBAL, EXTERNAL, FORWARD
ROUTINE, ROUTINE, GLOBAL ROUTINE, EXTERNAL ROUTINE.

The psect-name specified in the attribute must either be a predeclared, default
program-section name or be explicitly declared in a psect-declaration before its
use (see Section 18.1). If specified in a FORWARD or FORWARD ROUTINE
declaration, the psect-name must match the psect-name explicitly or implicitly
associated with the controlling declaration of the data-segment or routine.

9.8.3 Defaults
If no psect-allocation attribute is specified, then the declared data- or code-
segment is allocated in the program section established by the most recent
psect-declaration for the segment’s storage class (OWN, GLOBAL, or CODE), or
in the appropriate default program section.

9.8.4 Semantics
In declarations other than EXTERNAL or EXTERNAL ROUTINE, the psect-
allocation attribute causes the declared data-segment or code-segment to be
allocated in the named program section.

In EXTERNAL and EXTERNAL ROUTINE declarations, the psect-allocation
attribute informs the compiler that the declared segment is allocated in the
named program section of another module (presumably), and any attributes
defined for that program section in the current module are to apply.

9.8.5 Pragmatics
While the psect-allocation attribute need not appear in a FORWARD or
FORWARD ROUTINE declaration, its specification in those declarations can
favorably affect the quality of code generated for the segment in question,
particularly in the case of FORWARD ROUTINE. (Note that there is no default
program-section name associated with a FORWARD or FORWARD ROUTINE
declaration.)

The psect-allocation attribute is essentially a convenience, allowing you to
more easily achieve what would otherwise require repeated uses of the PSECT
declaration.
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9.9 The Volatile-Attribute
A volatile-attribute can be used in any data-declaration other than a REGISTER
declaration. It can also be used in a bind-data-declaration.

For purposes of optimization, the compiler assumes that the contents of a
data segment will be changed during execution in either of two ways: by an
assignment or by a routine-call. The volatile-attribute specifies that the contents
of the declared data segment can change in a third way: by an action that is
not directly specified in the module being compiled. This attribute causes the
compiler to assume that the value in the declared data segment can change at
any time. Consequently the compiled code must fetch the contents of that data
segment anew for each fetch in the BLISS program and must store a value for
each assignment.

An example of the use of a volatile-attribute follows:

GLOBAL INPUT_PORT: VOLATILE;

In this example, it is assumed that INPUT_PORT designates a data segment that
is set, through an interrupt routine, whenever a fullword of input arrives.

9.9.1 Syntax

volatile-attribute VOLATILE

9.9.2 Semantics
A volatile attribute is a warning to the compiler that the contents of a data
segment can change at any time. A module that does not declare each such data
segment as VOLATILE is invalid.

If the volatile-attribute appears in the declaration of the name of a REF structure
(as described in Sections 11.1.3.5 and 11.4), then the volatile attribute applies
both to the storage for the address of the structure and to the storage for the
structure itself.

9.10 The Novalue-Attribute
The novalue-attribute can be used in a routine-declaration or a bind-routine-
declaration. It specifies that the declared routine does not return a value.

It is usually possible to determine by inspection whether or not a routine
returns a value. However, in order to facilitate optimization and to provide clear
documentation, this information must be given as part of the declaration of
the routine-name. Specifically, the novalue-attribute must or must not be used
depending on whether the routine does not or does return a value.

An example of a routine that does not return a value follows:

ROUTINE EXCH(X,Y): NOVALUE = !There is a NOVALUE attribute, so the
BEGIN !routine does not return a value;
LOCAL TEMP; !instead, its effect is to exchange
TEMP = ..X; !the values of X and Y.
.X = ..Y;
.Y = .TEMP;
END;
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This routine, having no RETURN expression, returns control after complete
evaluation of the routine-body. Because the routine-body is a block that consists
solely of block-actions (expressions terminated by a semicolon) and has no block-
value, no value is returned. The NOVALUE attribute affirms this procedure-like
characteristic. See Section 8.1 for a discussion of block-actions and block-values.

Note that if routine EXCH did not contain the NOVALUE attribute, the compiler
would assume that a null expression (namely the block-value expression) exists
between the last expression shown and the block terminator. This in turn would
cause the compilation diagnostic ‘‘Null expression appears in value-required
context’’. When such a routine is called, it may appear to return a value, but that
value is unpredictable.

Alternatively, if the last assignment expression were not terminated by a
semicolon (and NOVALUE was specified), the routine would indeed have a
block-value—the value of that assignment expression. However, that value would
be discarded prior to return of control because of the NOVALUE attribute. Thus,
a routine with the NOVALUE attribute never has a return value, no matter what
value-implying expressions appear in its body.

9.10.1 Syntax

novalue-attribute NOVALUE

9.10.2 Restrictions
A routine that is declared with a novalue-attribute must not be called in a context
that requires a value.

9.10.3 Semantics
The value of a routine that is declared with the novalue-attribute is undefined.

9.11 The Linkage-Attribute
The linkage-attribute can be used in a routine-declaration or a bind-routine-
declaration. It specifies a linkage-name that is associated with the declared
routine-name. This, in turn, causes the routine-name to be associated with
the linkage-declaration that governs that linkage-name. The linkage-definition
identified by the linkage-name controls both the code generated for the given
routine and the code generated for any call to that routine.

A linkage is the mechanism used to call a routine; it saves registers, passes
parameters, and controls other aspects of communication between a routine-
call and the called routine. The default linkage-name BLISS in BLISS–16/32,
or BLISS36C in BLISS–36, identifies the standard linkage convention for
BLISS–compiled routines.

The linkage-attribute is simply a name; it is the declaration of that name that
specifies the linkage to be used. BLISS includes several predeclared linkage-
names. Linkage-declarations and predeclared linkage-names are described in
Chapter 13.
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9.11.1 Syntax

linkage-attribute linkage-name

linkage-name name

9.11.2 Restrictions
A linkage-name must be one of the predeclared linkage-names or must be
governed by a linkage-declaration.

A linkage-attribute given for a routine-name in an EXTERNAL ROUTINE,
FORWARD ROUTINE, BIND ROUTINE, or GLOBAL BIND ROUTINE
declaration must be the same as the linkage-attribute given in the corresponding
ROUTINE or GLOBAL ROUTINE declaration.

9.11.3 Defaults
The default linkage-attribute is the predeclared linkage-name BLISS for BLISS–
16 or BLISS–32, and the linkage-name BLISS36C for BLISS–36.

9.11.4 Semantics
A linkage-attribute associates a linkage-name with a routine-name. Thus, the
linkage-attribute indirectly controls the linkage-related code generated for a
ROUTINE or GLOBAL ROUTINE DECLARATION, and the code generated for
all calls to the routine, according to the definition of the specified linkage-name.

9.12 The Range-Attribute
The range-attribute can be used in a literal-declaration or external-literal-
declaration. These declarations are described in Chapter 14.

A literal-name designates a constant value that is used as data but is stored in
the object code rather than in a data segment. When the compiler is provided
with sufficient information and the literal value is small enough, a short field can
be generated for the value rather than a fullword.

The range-attribute specifies the quantity of storage required for a literal
and indicates whether the field is to be interpreted as a signed or unsigned
representation.

An example of the use of the range-attribute follows:

EXTERNAL LITERAL X: UNSIGNED(4);

The effect of this attribute in a BLISS–32 context is as follows. (Analogous
effects would be obtained on other target systems.) At the time the module
containing this declaration is compiled, it is assumed that the value of X can
be accommodated in a literal-operand specifier, and code is generated on that
assumption. Then, when the modules are linked, a check is made for agreement
of the range-attribute with the external value and the value of X is then placed in
the empty fields provided for it.

Suppose the following declaration appears in another module of the same
program:

GLOBAL LITERAL X = 12: UNSIGNED(4);
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This declaration not only specifies that X designates the value 12, but also that it
can be stored as an unsigned integer in four bits. This attribute both documents
that a range-attribute assumption exists in another module of the program and
allows the compiler to verify that the assumption is satisfied.

9.12.1 Syntax

range-attribute n
SIGNED
UNSIGNED

o
( bit-count )

bit-count compile-time-constant-expression

9.12.2 Restriction
The value, n, of bit-count must be in the range 1 � n � %BPVAL. That is, the
field specified cannot be longer than a fullword.

9.12.3 Default
The default range-attribute is SIGNED(%BPVAL).

9.12.4 Semantics
The range-attribute specifies the maximum number of bits required for a given
literal value, and indicates whether the value is to be interpreted as a signed or
unsigned integer.

9.13 The Addressing-Mode-Attribute—BLISS–16/32 Only
Each data or routine name has, as its value, an address. As the compiler
translates a BLISS module into an object module, it replaces each use of a data
or routine name with an offset address value. The final address value is supplied
later by the linker and the operating system. But the compiler does provide a
sequence of bytes in the object code to accommodate the final address value.

An address can be encoded as either absolute or relative, and in either a short or
long form, and a PDP–11 address can be encoded as either absolute or relative.
The addressing-mode-attribute determines the way in which the address is
encoded. For every use of a data or routine name, the default rules specify an
addressing-mode-attribute (if one is not given explicitly).

An addressing-mode-attribute can be given in an OWN, GLOBAL, FORWARD, or
EXTERNAL declaration, described in Chapter 10, or in a ROUTINE, GLOBAL
ROUTINE, FORWARD ROUTINE, or EXTERNAL ROUTINE declaration,
described in Chapter 12. This attribute can also be used in a PSECT declaration
(Section 18.1), and in a SWITCHES declaration or a module-head switch (Sections
18.2 and 19.2 respectively). The latter two uses indirectly control a number of
individual data and routine declarations.

9.13.1 Syntax

16/32 Only )

addressing-mode-
attribute ADDRESSING_MODE

n
mode-16
mode-32

o
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mode-16 n
ABSOLUTE
RELATIVE

o

mode-32

8<
:

GENERAL
ABSOLUTE
LONG_RELATIVE
WORD_RELATIVE

9=
;

9.13.2 Default
Consider a name that is declared by one of the following declarations:

own-declaration
global-declaration
forward-declaration
external-declaration
routine-declaration
global-routine-declaration
forward-routine-declaration
external-routine-declaration
psect-declaration

For a name so declared, the addressing-mode-attribute is obtained by the
following rules:

1. If a default PSECT is associated with one of these declarations, the mode
declared in the psect is used. Thus, OWN, GLOBAL, and ROUTINE
declarations would use psect addressing modes of OWN, GLOBAL, and
CODE, respectively (as described in Section 18.1).

2. If the declaration type is FORWARD or FORWARD ROUTINE, the mode
established by the ADDRESSING_MODE (NONEXTERNAL#= . . . ) module-
head switch or the switches declaration is used (as described in Sections 18.2
and 19.2).

3. If the declaration type is EXTERNAL or EXTERNAL ROUTINE, the mode
established by the ADDRESSING_MODE (EXTERNAL#= . . . ) module-head
switch or the switches declaration is used (as described in Sections 18.2 and
19.2).

If a PSECT attribute is given, the addressing mode specified in the psect is used
as shown in the following example:

OWN
X: PSECT(GEN)
ADDRESSING_MODE( WORD RELATIVE );

If an ADDRESSING_MODE attribute is given, the addressing mode specified by
the switch is used. If both PSECT and ADDRESSING_MODE are used, then the
last attribute encountered determines the addressing mode.
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9.13.3 Semantics
The compiler translates each use of a data or routine name into an encoded
address. An encoded address consists of an encoding-type followed by a
displacement. The encoding-type specifies the addressing-mode-attribute and
other information, while the displacement is an address specification. The
encoding-type always occupies one byte, while the displacement occupies a
number of bytes that is determined by the addressing-mode-attribute. The
addressing-mode-attribute instructs the compiler in the preparation of an encoded
address, as follows:

Attribute Instruction to Compiler

GENERAL Let the linker make the choice between using a relative
displacement or an absolute value. Provide four bytes for
the displacement, or value, and one byte for the addressing
mode descriptor.

ABSOLUTE Use an absolute value. If BLISS–32, put in four bytes. If
BLISS–16, put in two bytes.

LONG_RELATIVE Use a relative displacement, and put it in four bytes.

WORD_RELATIVE Use a relative displacement, and put it in two bytes.

RELATIVE Use a relative displacement, and put it in two bytes.

The RELATIVE and WORD_RELATIVE attributes apply to most names (each
is the ultimate default for its mode), and are appropriate for references within
executable images that are not unusually large. The LONG_RELATIVE attribute
is used in the infrequent situation where 16 bits is not sufficient to represent
a relative address. The ABSOLUTE attribute is used for names that designate
addresses that are fixed in the address space, such as system service routines,
device register addresses, and data. The GENERAL attribute is used when the
choice between an absolute or relative address cannot be made at compile time.

9.14 The Weak-Attribute—BLISS–32 Only
The weak-attribute can be used in a declaration that has either GLOBAL or
EXTERNAL in its keyword phrase. Such declarations are described in the
following chapters.

The weak-attribute affects the way in which the VMS Linker and VMS Librarian
programs handle global names. (This is discussed further under EXTERNAL
declarations, in Section 10.4.3.)

9.14.1 Syntax

32 Only )

weak-attribute WEAK

9.14.2 Semantics
The weak-attribute specifies a property of a name for use by the linker and
librarian programs, as described in the manuals for those programs.
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9.15 A Summary of Attribute Usage
Each attribute description in this chapter includes a list of the declarations in
which the attribute can be used. That information is gathered together in the
following table, where an ‘‘x’’ marks each attribute that can be used in each kind
of declaration.

Allocation-Unit
| Extension
| | Structure
| | | Field
| | | | Alignment
| | | | | Initial
| | | | | | Preset
| | | | | | | Psect-Allocation
| | | | | | | | Volatile
| | | | | | | | | Novalue
| | | | | | | | | | Linkage
| | | | | | | | | | | Range
| | | | | | | | | | | | Addressing-Mode
| | | | | | | | | | | | | Weak
| | | | | | | | | | | | | |

OWN X X X X X X X X X . . . X .
GLOBAL X X X X X X X X X . . . X X
FORWARD X X X X . . . X X . . . X .
EXTERNAL X X X X . . . X X . . . X X

LOCAL X X X X X X X . X . . . . .
STACKLOCAL X X X X X X X . X . . . . .
REGISTER X X X X . X X . . . . . . .
GLOBAL REG. X X X X . X X . . . . . . .
EXTERNAL REG. X X X X . X X . . . . . . .

MAP X X X X . . . . X . . . . .

BIND X X X X . . . . X . . . . .
GLOBAL BIND X X X X . . . . X . . . . X

ROUTINE . . . . . . . X . X X . X .
GLOBAL RTN . . . . . . . X . X X . X X
FORWARD RTN . . . . . . . X . X X . X .
EXTERNAL RTN . . . . . . . X . X X . X X

BIND ROUTINE . . . . . . . . . X X . . .
GLOBAL BIND RTN . . . . . . . . . X X . . X

LITERAL . . . . . . . . . . . X . .
GLOBAL LIT . . . . . . . . . . . X . X
EXTERNAL LIT . . . . . . . . . . . X . X
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10
Data Declarations

A data-declaration describes one or more data segments. Taken together, the
data declarations of a program specify the storage required for the data on which
that program operates.

The data-declarations can be divided into three categories, as follows:

• A permanent declaration begins with OWN, GLOBAL, or EXTERNAL. It
describes a data segment that remains allocated throughout the execution of
the program.

• A temporary declaration begins with LOCAL, STACKLOCAL, REGISTER,
GLOBAL REGISTER, or EXTERNAL REGISTER. It describes a data
segment that exists only during each execution of a given block.

• An overlay declaration begins with MAP. It describes a data segment that has
been declared elsewhere, but that is given new attributes by this declaration.

A data-declaration provides some or all of the following information about each
data segment it declares:

• The name of the data segment.

• The address of the data segment, which is determined by the kind of
declaration and by some of the attributes. The address of the data segment
becomes the value of the declared name.

• The scope of the name of the data segment, which depends on the position of
the declaration within the program and on the kind of declaration.

• The longevity of the data segment, which is determined by the kind of
declaration (permanent or temporary).

• The attributes of the data segment, which are given as part of the declaration
and by the default rules for attributes.

The attributes applicable to data-declarations are described in Chapter 9, except
for the structure-attribute, which is described in Chapter 11 along with other
aspects of data structures. The syntax diagram for data-declarations is as follows:

data-declaration

8>>>>>>><
>>>>>>>:

own-declaration
global-declaration
forward-declaration
external-declaration
local-declaration
stacklocal-declaration
register-declaration
map-declaration

9>>>>>>>=
>>>>>>>;
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10.1 Own-Declarations
The storage for an OWN data segment is permanent; that is, it is created before
program execution begins and exists throughout program execution. The scope of
an own-declaration is its immediately containing block (including any lower-level
blocks contained therein). That is to say, the name of an OWN data segment can
be used only within the block in which it is declared.

An example of an own-declaration in a routine-declaration context follows:

ROUTINE KILO =
BEGIN
OWN

X: INITIAL(0);
X = .X+1;
IF .X LEQ 1000 THEN 1 ELSE 0
END;

The data segment named X is allocated and initialized only once, before program
execution begins. It can be referred to by the name X only within the routine
KILO.

10.1.1 Syntax

own-declaration OWN own-item , . . . ;

own-item
own-name

n
: own-attribute . . .
nothing

o

own-name name

own-attribute

8>>>>>>>><
>>>>>>>>:

allocation-unit
extension-attribute
structure-attribute
field-attribute
alignment-attribute
initial-attribute
preset-attribute
psect-allocation
volatile-attribute

9>>>>>>>>=
>>>>>>>>;

( 16/32 Only
( 16/32 Only

( 16/32 Only

10.1.2 Restrictions
BLISS–16/32 Only
A structure-attribute must not appear in the same declaration as an allocation-
unit or an extension-attribute. If the declaration contains both an allocation-unit
attribute and an initial attribute, the allocation-unit must precede the initial-
attribute.

A field-attribute can appear only in a declaration that has a structure-attribute.

If the declaration contains both a structure-attribute and an initial-attribute, the
structure-attribute must precede the initial-attribute.

If the declaration contains both a structure-attribute and a preset-attribute, the
structure-attribute must precede the preset-attribute.

An initial- and a preset-attribute must not appear together in the declaration.

10–2 Data Declarations



The declaration must not contain more than one initial- or preset-attribute.

If the preset-attribute contains a field-name, the preset-attribute must be
preceded by a field-attribute that designates the field-name.

10.1.3 Semantics
The data segment designated by a name that is declared OWN is allocated in the
current program section for the storage class OWN, as described in Section 18.1.
Program sections for the storage class OWN are created before program execution
begins and are not discarded until after program execution is complete.

The data segment for an OWN name is always allocated at the lowest possible
address within the unused portion of the current OWN program section, after
allowing for address-alignment requirements (if any).

In BLISS–16, data segments larger than one byte are allocated at even addresses,
which may leave an unused byte preceding the data segment. One-byte data
segments are allocated at the next available byte.

In BLISS–32 the address must be consistent with the alignment-attribute, which
is either given explicitly or determined by default. The alignment-attribute may
dictate some unused bytes, as described in Section 9.5.

In BLISS–36 there are no special alignment rules; each data segment is allocated
at the next available word.

Because OWN data segments are allocated in this way, the address of one OWN
data segment can be calculated relative to that of another, provided that both
segments are declared in the same module and allocated in the same program
section.

When the storage for an OWN data segment is created by the linker, it is set
to zeros. If the data segment is given an initial value in the declaration, it is
initialized by the linker.

10.2 Global-Declarations
Like an OWN data segment, the storage for a GLOBAL data segment is
permanent; that is, it exists throughout program execution. In contrast to an
OWN data segment, the name of a GLOBAL data segment can be used in several
separate blocks; that is, in the block in which it is declared GLOBAL and in each
block in which it is declared EXTERNAL.

Usually the block in which a name is declared GLOBAL is in one module and the
blocks in which it is declared EXTERNAL are in other modules. In this way, a
data segment can be shared among several modules.

Aside from the initial keyword, the syntax of the own-declaration and global-
declaration is identical, except that in BLISS–32 the weak-attribute is permitted
in a global-declaration.

10.2.1 Syntax

global-declaration GLOBAL global-item , . . . ;
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global-item
global-name

n
: global-attribute . . .
nothing

o

global-name name

global-attribute

8>>>>>>>>>><
>>>>>>>>>>:

allocation-unit
extension-attribute
structure-attribute
field-attribute
alignment-attribute
initial-attribute
preset-attribute
psect-allocation
volatile-attribute
weak-attribute

9>>>>>>>>>>=
>>>>>>>>>>;

( 16/32 Only
( 16/32 Only

( 16/32 Only

( 32 Only

10.2.2 Restrictions
A name is declared as global when the declaration begins with the keyword
GLOBAL, except for GLOBAL REGISTER (see Section 10.8). A name must not
be declared as global more than once in a program.

All the attribute restrictions given in Section 10.1.2 also apply to GLOBAL
declarations.

10.2.3 Semantics
The data segment designated by a name that is declared GLOBAL is allocated
in the current program section for the storage class GLOBAL, as described in
Section 18.1. Program sections for the storage class GLOBAL are created before
program execution begins and are not discarded until after program execution is
complete.

The data segment for a GLOBAL name is allocated in the same predictable way
as the data segment for an OWN name. Therefore, a programmer can determine
the relative addresses of any two GLOBAL data segments that are declared in
the same module and are allocated in the same program section.

A GLOBAL data segment can be accessed by name within the scope of the
declaration of its name. In addition, it can be accessed within the scope of any
external-declaration of its name.

10.3 Forward-Declarations
A forward-declaration is used to give the attributes of a name before storage
is allocated for the name. A forward-declaration is always used in conjunction
with an own-declaration or a global-declaration; it is used to avoid what would
otherwise be a circular definition of names.

As an example, suppose that X and Y are pointers; that is, X and Y are each
the name of a data segment that contains the address of another data segment.
Suppose, also, that X and Y must be initialized to point to each other. The
required declarations are as follows:
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FORWARD
Y;

OWN
X: INITIAL(Y),
Y: INITIAL(X);

The forward-declaration declares Y so that it can be used to initialize X which, in
turn, is used to initialize Y.

10.3.1 Syntax

forward-declaration FORWARD forward-item , . . . ;

forward-item
forward-name

n
: forward-attribute . . .
nothing

o

forward-name name

forward-attribute

8>>>>><
>>>>>:

allocation-unit
extension-attribute
structure-attribute
field-attribute
psect-allocation
volatile-attribute
addressing-mode-attribute

9>>>>>=
>>>>>;

( 16/32 Only
( 16/32 Only

( 32 Only

10.3.2 Restrictions
Each name that is declared by a forward-declaration must also be declared, a
second time, by an own-declaration or a global-declaration that is in the same
block.

After the default attributes have been filled in, a forward-declaration of a name
and the associated own-declaration or global-declaration of the same name must
be identical with respect to all the attributes allowed in the forward-declaration.

All the attribute restrictions given in Section 10.1.2 also apply to FORWARD
declarations.

10.3.3 Semantics
The forward-declaration associates attributes with a name without allocating the
storage for that name.

10.4 External-Declarations
A name that is declared EXTERNAL is assumed to be declared GLOBAL
somewhere else in the same program. The linker treats each occurrence of the
name governed by an external-declaration as if it were governed by the global-
declaration of the same name. Thus the external declaration does not cause
the allocation of a data segment but rather extends the accessibility of a data
segment that is allocated elsewhere.
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10.4.1 Syntax

external-declaration EXTERNAL external-item , . . . ;

external-item
external-name

n
: external-attribute . . .
nothing

o

external-name name

external-attribute

8>>>>>><
>>>>>>:

allocation-unit
extension-attribute
structure-attribute
field-attribute
psect-allocation
volatile-attribute
addressing-mode-attribute
weak-attribute

9>>>>>>=
>>>>>>;

( 16/32 Only
( 16/32 Only

( 32 Only
( 32 Only

10.4.2 Restrictions
A name that is declared EXTERNAL must also be declared GLOBAL somewhere
else in the same program. In BLISS–32, this restriction does not apply if the
EXTERNAL name has the weak-attribute.

All of the attribute restrictions given in Section 10.1.2 also apply to EXTERNAL
declarations.

After default attributes have been filled in, the following attributes of the
EXTERNAL and GLOBAL declarations of a given name must be identical:

allocation-unit
extension-attribute
structure-attribute
field-attribute
volatile-attribute

10.4.3 Semantics
The linker generates and uses a list of all names that are declared GLOBAL in
the entire program. For each such name, the list shows the value of the name
and some of the attributes of the name. This list is used in determining the value
of a given EXTERNAL name as follows:

• The list is searched for an entry for the given name. If such an entry is found,
then it supplies the value of the given EXTERNAL name.

• In BLISS–32 only, if no entry for the given name is found and the given name
has the weak-attribute, then zero is used as the value of the given name.

• If no entry for the given-name is found and the given name does not have the
weak-attribute, then the program is not valid.

In BLISS–32 only, when an EXTERNAL name has the value zero (determined
because no entry was found and the weak-attribute was present), the program
can be executed provided an attempt is not made to use the given name as an
address.
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An EXTERNAL name already declared can be encountered in a GLOBAL or
FORWARD declaration. If such a case arises during compilation, the following is
done:

1. Parse the declaration.

2. Compare the attributes of the EXTERNAL declaration with those of the
GLOBAL or FORWARD declaration.

3. If a mismatch occurs, generate a warning message.

10.5 Local-Declarations
The storage for a LOCAL data segment is temporary; that is, it exists only during
the execution of the block in which it is declared. The data segment is allocated
either in the stack frame for the block in which it is declared, or in a general
register that is free.

The scope of a LOCAL data-declaration is its immediately containing block
excluding any lower-level contained routines. That is, unlike OWN data
segments, ‘‘up-level’’ references to a LOCAL data segment from a lower-level
routine are not permitted.

10.5.1 Syntax

local-declaration LOCAL local-item , . . . ;

local-item
local-name

n
: local-attribute . . .
nothing

o

local-name name

local-attribute

allocation-unit
extension-attribute
structure-attribute
field-attribute
alignment-attribute
initial-attribute
preset-attribute
volatile-attribute

( 16/32 Only
( 16/32 Only

( 16/32 Only

10.5.2 Restrictions
A local-declaration must be contained in a routine-body.

Suppose the routine-body of a given routine, routine A, contains the declaration of
another routine, routine B. If a name is declared LOCAL in routine A and is not
declared in routine B, then the name cannot be used in routine B. (Such usage
would be an ‘‘up-level’’ reference, which is prohibited for local-names.)

A program must not depend on the relative positions of two LOCAL data
segments in storage.

All of the attribute restrictions given in Section 10.1.2 also apply to LOCAL
declarations.

BLISS–32 only: An alignment-attribute used in the declaration of a LOCAL
name must not have a boundary expression whose value is greater than 2.
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10.5.3 Semantics
The data segment for a LOCAL name is allocated either in the current stack
frame or in a general register. In either of the following situations, a given
LOCAL data segment is always allocated in the current stack frame:

• The given data segment occupies more than a fullword.

• The name of the given data segment is used as an independent address; that
is, its use is not confined to a fetch expression or to the left-hand side of an
assignment expression.

In other situations, the choice between stack frame and register is based on
strategies that the compiler uses for code optimization.

10.5.4 Pragmatics
A temporary data segment (such as a LOCAL data segment) must be used for a
recursive variable in a recursive routine.

10.6 Stacklocal-Declarations
A STACKLOCAL data segment is always allocated in the current stack frame. In
all other respects, it is the same as a LOCAL data segment.

10.6.1 Syntax

stacklocal-declaration STACKLOCAL local-item , . . . ;

The local-item is as defined in Section 10.5.1.

10.6.2 Restrictions
All of the attribute restrictions given in Section 10.1.2, and all the restrictions
given in Section 10.5.2 for LOCAL data segments, also apply to STACKLOCAL
declarations.

10.6.3 Semantics
The semantics given in Section 10.5.3 for LOCAL data segments apply to
STACKLOCAL data segments except that a STACKLOCAL data segment is
always allocated in the current stack frame.

10.7 Register-Declarations
A register data segment is a data segment that is always allocated in a general
register. In most other respects, it is the same as a LOCAL data segment. If
the declaration specifies a register number, the data segment is allocated in the
specified register. Otherwise, the data segment is allocated in a register chosen
by the compiler.

An example of a register-declaration follows:

REGISTER
STATUS = 5: BITVECTOR[10],
BETA;

This declaration associates the names STATUS and BETA with two general
registers. The register number for STATUS is given explicitly as 5 and only 10
bits of that register are used. The register number for BETA is left to be chosen
by the compiler, and the full register is used.
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10.7.1 Syntax

register-declaration REGISTER register-item , . . . ;

register-item register-namen
= register-number
nothing

o
n

: register-attribute . . .
nothing

o

register-name name

register-number compile-time-constant-expression

register-attribute

8>>><
>>>:

allocation-unit
extension-attribute
structure-attribute
field-attribute
initial-attribute
preset-attribute

9>>>=
>>>;

( 16/32 Only
( 16/32 Only

10.7.2 Restrictions
The value of the register number, if specified, must be in the range given below
for each dialect:

For BLISS–16: 0 through 5

For BLISS–32: 0 through 11

For BLISS–36: 0 through 12, if the governing linkage-attribute is BLISS36C (the
default), FORTRAN_FUNC, or FORTRAN_SUB.

1 and 3 through 15, if the governing linkage-attribute is BLISS10

The general rule for BLISS–36 is that the register number must not
specify a register in use as the stack pointer, the frame pointer, or the
argument pointer (if applicable). The linkage-definition that governs
the routine containing the register-declaration controls the assignment
of registers for these uses.

A register specified by register-number must be PRESERVED or NOTUSED in
the linkage of any routine called in the containing block if the call occurs within
the useful lifetime of the register data segment (that is, if the call occurs between
the first and last possible references to that segment).

A register data segment must not occupy more than a fullword.

A register-declaration must be contained in a routine-body.

Suppose the routine-body of a given routine, routine A, contains the declaration of
another routine, routine B. If a name is declared REGISTER in routine A and is
not declared in routine B, then the name cannot be used in routine B. Such usage
would be an ‘‘up-level’’ reference and is not permitted for register data segments.

All the attribute restrictions given in Section 10.1.2 also apply to REGISTER
declarations.
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A name declared in a register-declaration must be used only as the operand of
a fetch expression or as the first operand of an assignment expression. (This
restriction does not apply to certain machine-specific-function parameters; see the
applicable BLISS user manual.)

10.7.3 Semantics
If a register-number is given in the declaration of a register data segment, then
the data segment is allocated in that register. During execution of the routine
that contains the declaration, the register can be used for other purposes, but
none that conflict with the valid use of the allocated data segment.

A register data segment is similar to a local data segment in that it is created
on entry to the block in which it is declared and released on exit from that block,
and cannot be referenced from any lower-level contained routine-body.

10.7.4 Pragmatics
Standard register-names with appropriate predefined values are provided, as
built-in names, for each BLISS dialect. In order to use these names with their
predefined values, they may be declared in a BUILTIN declaration (Section 18.3).
The built-in register-names and values are as follows:

BLISS–16 BLISS–32

Name Value Name Value

R0
R1
R2
R3
R4
R5
SP
PC

0
1
2
3
4
5
6
7

R0
R1
R2

.

.

.
R11
AP
FP
SP
PC

0
1
2
.
.
.

11
12
13
14
15

BLISS–36 ONLY
The built-in register-names SP, FP, and AP are provided. The value defined for
each name depends upon the linkage-definition associated with the routine in
which the name is declared BUILTIN (see Chapter 13).

10.8 Global-Register-Declarations
A global register data segment is a data segment that is created and allocated
in a given register in one routine, and can be made available for use in other
routines that are called by the declaring routine. Global register data segments
are identified by name, and both the calling and called routine must agree
(through a matching set of register- and linkage-declarations) that a particular
global register data segment is available.

A global register data segment is the same as an ordinary register data segment
with respect to its use within the declaring routine.

A GLOBAL REGISTER declaration establishes the name and actual register
assignment of a global register data segment and creates the storage (that
is, allocates the register). For the data segment to be available to a called
routine, that routine must specify the same name in an EXTERNAL REGISTER
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declaration and must specify both the name and register-number in the GLOBAL
linkage-option of its governing linkage-definition.

10.8.1 Syntax

global-register-
declaration

GLOBAL REGISTER register-item , . . . ;

register-item register-name

= register-numbern
: register-attribute . . .
nothing

o

register-name name

register-number compile-time-constant-expression

register-attribute

8>>><
>>>:

allocation-unit
extension-attribute
structure-attribute
field-attribute
initial-attribute
preset-attribute

9>>>=
>>>;

( 16/32 Only
( 16/32 Only

10.8.2 Restrictions
The register-number is constrained by the containing routine’s linkage as
described for ordinary register data segments in the first paragraph of
Section 10.7.2, but is also constrained by the linkage-definition governing
any called routine that refers to the declared global register data segment. The
inter-routine requirements are described in Chapter 13.

A register data segment must not occupy more than a fullword.

A global-register-declaration must be contained in a routine-body.

Suppose the routine-body of a given routine, routine A, contains the declaration of
another routine, routine B. If a name is declared GLOBAL REGISTER in routine
A and is not declared in routine B, then the name cannot be used in routine B.
Such usage would be an ‘‘up-level’’ reference and is not permitted for register data
segments.

All the attribute restrictions given in Section 10.1.2 also apply to GLOBAL-
REGISTER declarations.

A name declared in a global-register-declaration must be used only as the operand
of a fetch expression or as the first operand of an assignment expression. (This
restriction does not apply to certain machine-specific-function parameters; see the
applicable BLISS user manual.)

If the linkage definition of a called routine specifies a global register data
segment, then the routine call must be in the scope of a global- or external-
register-declaration of the data segment.
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BLISS–16/36 ONLY
If a call to a routine occurs in the scope of a global register data segment, then
the register number of the data segment must be given in either the GLOBAL or
PRESERVE linkage-option of the called routine’s linkage definition.

BLISS–32 ONLY
If a call to a routine with CALL linkage-type occurs in the scope of a global
register data segment, then the register number of the data segment must be
given in either the GLOBAL or PRESERVE linkage-option of the called routine’s
linkage definition.

If a call to a routine with JSB linkage-type occurs in the scope of a global register
data segment, then the register-number of the data segment must be given in
either the GLOBAL or NOTUSED linkage-option of the called routine’s linkage
definition.

10.8.3 Semantics
A global register-declaration causes a register data segment to be allocated. A
global register data segment is a local data segment just like an ordinary register
data segment—it is created on entry to the block in which it is contained and
released on exit from that block. However, unlike an ordinary register data
segment, a global register data segment is available in called routines under
certain conditions, described briefly below and more fully in Chapter 13.

In order to pass a global register data segment to a called routine, the linkage-
definition of the called routine must contain the name and register-number of the
data segment in its GLOBAL linkage-option. There may be more global register
data segments available at a call than are specified in the linkage for the call;
however, every global register data segment specified in the linkage must be
available at the call. Only those global register data segments specified in the
linkage are available in the called routine.

10.9 External-Register-Declarations
An EXTERNAL REGISTER declaration specifies that a global register data
segment created in a calling routine is used in the routine containing the
declaration. This declaration must be used in combination with linkage
definitions that include appropriate GLOBAL linkage-options.

10.9.1 Syntax

external-register-
declaration

EXTERNAL REGISTER register-item , . . . ;

register-item register-namen
= register-number
nothing

o
n

: register-attribute . . .
nothing

o

register-name name
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register-number compile-time-constant-expression

register-attribute 8>>><
>>>:

allocation-unit
extension-attribute
structure-attribute
field-attribute
initial-attribute
preset-attribute

9>>>=
>>>;

( 16/32 Only
( 16/32 Only

10.9.2 Restrictions
The register number, if given, must be the same as that specified in the GLOBAL
linkage-option of the containing routine’s linkage definition. A register data
segment must not occupy more than a fullword.

An external-register-declaration must be contained within a routine declaration
whose linkage definition specifies the named global-register-segment.

Suppose the routine-body of a given routine, routine A, contains the declaration
of another routine, routine B. If a name is declared EXTERNAL REGISTER in
routine A and is not declared in routine B, then the name cannot be used in
routine B. Such usage would be an ‘‘up-level’’ reference and is not permitted for
register data segments.

All of the attribute restrictions given in Section 10.1.2 also apply to external-
register declarations.

A name declared in an external-register-declaration must be used only as the
operand of a fetch expression or as the first operand of an assignment expression.
(This restriction does not apply to certain machine-specific-function parameters;
see the applicable BLISS user manual.)

10.9.3 Defaults
If an external-register-declaration does not specify a register number, the register-
number given for that external-register-name in the GLOBAL linkage-option is
assumed.

10.9.4 Semantics
An external-register-declaration specifies that a global register data segment
created in a calling routine is available for use. The declared name must also
be specified in the called routine’s linkage definition; however, not all of the
global register data segments specified in the linkage need be declared in an
external-register-declaration.

BLISS–16/36 ONLY
If a global-register-segment is specified in the routine’s linkage but is not declared
EXTERNAL REGISTER, then the contents of the register are preserved by the
called routine and the register is available for other purposes.

BLISS–32 ONLY
If a global-register-segment is specified in the routine’s linkage but is not declared
EXTERNAL REGISTER, then in a routine with CALL linkage-type the contents
of the register are preserved by the called routine and the register is available for
other purposes. In a routine with JSB linkage-type, however, the contents of such
a register cannot be preserved and the register is not usable in any way.
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10.10 Map-Declarations
A map-declaration is used to supply new attributes in the current block to a name
that is already declared.

The most common use of a map-declaration is in the declaration of the formal-
names of a routine-declaration. Each formal-name is considered to be declared as
a fullword, unsigned scalar data segment in an imaginary block that surrounds
the routine-body. When those attributes are not suitable, a MAP declaration is
used to override these defaults. This use of a map-declaration is discussed in
Chapter 12.

10.10.1 Syntax

map-declaration MAP map-item , . . . ;

map-item map-name : map-attribute . . .

map-name name

map-attribute

8>><
>>:

allocation-unit
extension-attribute
structure-attribute
field-attribute
volatile-attribute

9>>=
>>;

( 16/32 Only
( 16/32 Only

10.10.2 Restrictions
A map-declaration must lie within the scope of another declaration of the
same name. The latter declaration must be a data-declaration or a bind-data-
declaration.

BLISS–16/32 only: A structure-attribute must not appear in the same declaration
as an allocation-unit or an extension-attribute.

A field-attribute can appear only in a declaration that has a structure-attribute.

10.10.3 Semantics
The declaration of a name as MAP changes neither the value of the name nor the
contents of the data segment designated by the name. Instead, the storage whose
address is given by the declared name is re-interpreted in accordance with the
attributes given in the map-declaration.
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11
Data Structures

A data structure is the framework for a collection of values that are stored under
a single name. Certain frequently used data structures are predefined in BLISS;
they are the vector, the bit vector, the block, and the block vector. The use of
these data structures is described in Chapter 3.

This chapter describes the features of BLISS that permit you to go beyond the
predefined data structures and design special data structures that fit a particular
application.

The first section of this chapter discusses the concepts of data structures and
provides a detailed example of a specific data structure.

The next section describes the field-reference, which is the fundamental BLISS
mechanism for accessing an element of a data structure.

The next seven sections describe the features of BLISS that are used to
define and use a data structure; they are structure-declarations, structure-
attributes, field-declarations, field-attributes, ordinary-structure-references,
default-structure-references, and general-structure-references.

The final two sections return to the description of specific data structures. One
section gives the full definition of each of the BLISS predefined structures. The
remaining section gives several examples of user-defined structures.

11.1 Introduction to Data Structures
The BLISS facilities for user-defined data structures have the following benefits:

1. Generality. If a specific application requires a data structure that is different
from any predefined data structure, you can define a new data structure that
fills the need.

2. Flexibility. If a specific application requires a different representation for an
existing kind of data structure (for example, one that requires less space), you
can provide a new data structure that provides the required representation.

3. Machine independence. If a program must depend on the architecture of the
computer in order to save space or execution time, that dependence can be
localized and concealed within the appropriate data structure definition.

4. Checking. If references must be checked for validity (for example, vector
subscript in range), an appropriate check can be built into a user-defined
structure definition.

The design for a new data structure has three parts: the abstract definition, the
concrete representation, and the programmed description. The abstract definition
and concrete representation are part of the design of a program; although they
may be written down as part of the documentation, they are not a part of the
BLISS program. On the other hand, the programmed description of a data
structure is part of the BLISS program in which the structure is used.
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This introductory discussion of data structures requires a specific example;
therefore, a data structure called a ‘‘decimal digit array’’ is carried through
each section of this discussion. The concrete representation and programmed
description for the example structure is first worked out for the VAX and BLISS–
32. Further on, concrete representations and programmed descriptions are given
for the PDP–11 and BLISS–16, and the DECsystem–10/20 and BLISS–36.

11.1.1 The Abstract Definition of Data Structures
An abstract definition of a data structure specifies the structure, content, and
usage of a particular collection of data in terms of its application, not in terms of
a particular computer implementation. Indeed, the definition is abstract only if it
applies equally to all possible representations of the data.

The abstract definition of a decimal digit array might be as follows:

A decimal digit array is a compact storage representation of a sequence of
decimal digits that permits reasonably quick access to individual digits.

The decimal digit array is not a predefined structure in BLISS and it is not
even an especially important structure. However, it is typical of the sort of data
structure that can be readily defined.

The abstract definition of the decimal digit array establishes four characteristics
of the desired structure:

1. The word ‘‘compact’’ asserts that the representation cannot waste space,
presumably because there will be many decimal digit arrays or because some
of them will have many elements.

2. The word ‘‘sequence’’, as well as the word ‘‘array’’ in the name of the structure,
indicates that the elements of the structure are ordered.

3. The words ‘‘decimal digit’’ indicate that each element can have ten distinct
values, and these values are associated with the characters ‘‘0’’, ‘‘1’’, and so
on, through ‘‘9’’.

Note that this characteristic asserts that each element accommodates a range
of 10 values (which requires somewhat less than four bits), not that each
element accommodates a decimal digit character code (which would require
seven or eight bits in ASCII).

4. The phrase ‘‘permits reasonably quick access to individual digits’’ provides
important information about the usage of the data structure.

11.1.2 The Concrete Representation of Data Structures
The concrete representation of a data structure determines which bits of memory
are occupied by the data and how these bits are interpreted. The design of the
representation depends on the following considerations:

1. The amount of storage available for the structure. If the structure is big, it
should not contain a large proportion of unused storage.

2. The amount of time available for access to the fields of the structure. If the
structure is accessed frequently, each access should be fast.

3. The effect of the representation on program development. If the elements
must be accessed during debugging, that access should be convenient.
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4. Compatibility with other representations of the same data. If a commitment
to a given representation has already been made, it may be necessary to
accept that representation even if it is not optimal.

The design of a concrete representation is difficult, especially at the beginning of
a project. The facilities of BLISS permit you to change concrete representations
easily, even after the project is under way.

The possible representations for a data structure can be ranked according to time
and space requirements. The ranking can begin with those that have compact
storage but slow access and proceed to those that have fast access but excessive
storage.

As an example, such a ranking for the decimal-digit-array data structure on the
VAX target system would be as follows:

1. Because 32 bits can accommodate any 9-digit decimal number, the array can
be stored nine digits to a fullword. In this representation, however, access to
a single digit requires considerable computation (conversion of a 32-bit binary
integer to a 9-digit decimal integer).

2. Because 4 bits can accommodate 10 distinct values, the array can be stored
eight digits to a fullword. This representation requires a conversion to get
from the element value to an ASCII character, but the conversion is a simple
addition or OR operation.

3. Because the ASCII codes for decimal digits normally occupy eight bits each,
and because the byte is a natural unit of storage on the VAX, the array can be
stored four digits per fullword. In this representation, about half the storage
is wasted, but access is quicker.

4. Because the VAX works best on fullword values, the array could be stored one
digit per fullword. This representation wastes a lot of storage, but provides
the most rapid access.

Ranking representations in this way is useful, but sometimes difficult. Many
considerations can affect the ranking, for example, both virtual and physical
memory management strategies. The ranking might even be different for
different models of the VAX.

Each of these concrete representations is correct for certain situations. For the
example under consideration, the representation in item 2 is chosen. That choice
is interesting because it leads to a data structure that is not predefined in BLISS.

The representation just chosen for a decimal digit array can be diagrammed for
the VAX as follows:

DDA

X[1],4 X[0],4

X[2],4

:X

. . .

. . . . . .

ZK−6020−GE

This diagram differs from those given in Section 3.2. In Chapter 3, the intent
was to represent data structures in a machine-independent way. Here, the intent
is to represent the specific layout of the data structure in VAX storage.
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The diagram depicts a sequence of bytes in VAX storage. The first line of the
diagram (X[1] and X[0]) is the first byte allocated for the array. The second line
( . . . and X[2]) is the second byte. The third line suggests successive bytes.

The diagram represents a specific instance of a decimal digit array. The name of
the array is X; that is, the value of X is the address of the first byte of the array.
The name X is written to the right of the diagram because of the VAX convention
of indexing bits and bytes from right (low order) to left (high order).

The diagram shows that the first element of the vector is called X[0] and contains
four bits. That element occupies the four low-order bits of the byte whose address
is X. The second element is called X[1] and occupies the four high-order bits of
the byte whose address is X. The third element is called X[2] and occupies the
four low-order bits of the byte whose address is X+1. The remaining elements of
the structure are designated in a similar way.

The name DDA (for decimal digit array) at the top of the diagram refers to the
layout of the fields relative to the starting address of the structure. There could
be more than one DDA structure in storage at a given time, one at X and others
at other addresses.

11.1.3 The Programmed Description of Data Structures
Once the abstract definition and concrete representation of a structure have
been designed, the facilities of BLISS can be used to describe and use the
structure. The principal facilities are structure-declarations, structure-attributes,
and structure-references. However, before these facilities can be described,
field-references must be considered.

11.1.3.1 Field-References
A field-reference is a BLISS construct that can designate any portion of storage
that is %BPVAL bits or less in size. For example, a field-reference can designate
a sequence of 15 bits starting with the second bit of the addressable unit whose
address is 3116.

A field-reference has the following form:

addr < pos, size, ext >

addr
Is interpreted as an addressable-unit address.

pos
Is the number of (least significant) bits skipped before the field begins.

size
Is the number of bits in the field.

ext
Is 0 or 1, depending on whether unsigned or signed extension is used in fetching
the contents of the field.

The ext parameter can be omitted if unsigned extension is suitable. Sign
extension is described in Section 3.1.3, and a full description of field-references is
given in Section 11.2.
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Restrictions on the values of addr, pos, and size are different in each BLISS
dialect because of differing capabilities of the respective target architectures.
Briefly stated, field-references in BLISS–32 can designate any field of up to
%BPVAL bits without regard to address boundaries; while field-references in
BLISS–16 and BLISS–36 must designate fields that are completely contained
within one fullword.

The BLISS–32 field-references for the decimal digit array X (diagrammed in
Section 11.1.2) are as follows:

X<0,4> !first element, X[0]
X<4,4> !second element, X[1]
X<8,4> !third element, X[2]
... ...

The field-reference for the third element is typical; it is interpreted as follows:

Find the addressable unit (VAX byte) whose address is X. Start at the low-
order bit of that unit of storage and skip forward across eight bits. Use the
next four bits as the field.

In this definition, ‘‘skip forward’’ means proceed toward higher order bits and
toward higher storage addresses.

Field-references can handle any memory access required in BLISS. However,
they are dependent on the concrete representation of data structures. The
features described in the following sections are designed to confine the use of
field-references to a special place, the structure-declaration, and thus localize the
dependence of a program on representation.

11.1.3.2 Structure-Declarations
The following program fragment contains the structure-declaration for BLISS–32
decimal digit arrays (DDAs).

STRUCTURE
DDA[I; N] =

[(N+1)/2]
DDA<4*I,4>;

...
OWN

X: DDA[10];
...
X[5] = .X[6];

The first four lines of the example are the structure-declaration. Each line has a
different purpose, as follows:

1. ‘‘STRUCTURE’’ is the keyword for the declaration.

2. ‘‘DDA[I; N] =’’ gives the structure-name, DDA, and the formal names I and
N. The name I before the semicolon is an access-formal, and is used when an
instance of the structure is referenced. The name N after the semicolon is an
allocation-formal, and is used when an instance of the structure is allocated.

3. ‘‘(N+1)/2’’ is the structure-size and determines the number of addressable units
(bytes in this case) allocated for each instance of the structure.

4. ‘‘DDA<4*I,4>’’ is the structure-body and provides a field-reference for each
reference to the structure in the program. (Note that, because of dialect-
specific differences in field-reference limitations noted above, this particular
structure-body definition is valid in the general case only in BLISS–32.)
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Observe that in the structure-size and structure-body a fetch operator ( . ) is not
used before a formal name to refer to the value of an actual parameter. In this
sense structure formal names are like macro formal names (see Chapter 16) and
unlike routine formal names (see Chapter 12).

11.1.3.3 Structure Allocation
A structure-declaration does not allocate any particular instance of a data
structure; it just associates a name with a description of a structure.

An instance of a given structure is allocated when its name is used in a structure-
attribute in the declaration of a data segment name. The following declaration
allocates a 10-element instance, named X, of a decimal digit array:

OWN
X: DDA[10];

The compiler determines how much storage to allocate for X by making a copy
of the structure-size, ‘‘(N+1)/2’’, replacing N, the allocation-formal, by 10, and
evaluating the expression. The result is 5, and thus five bytes are allocated.

The example structure-size expression is also valid for BLISS–16 (assuming an
identical concrete representation for DDA), because the addressable-unit size
is the same. The structure-size expression required for BLISS–36, assuming a
similar concrete representation for DDA, is given in Section 11.1.3.7.

11.1.3.4 Structure-References
The following assignment contains two examples of references to the decimal digit
array named X:

X[5] = .X[6];

When the program is compiled, the first structure-reference is replaced by a copy
of the structure-body from the declaration of DDA. Then, within the structure-
body, DDA is replaced by X and I is replaced by 5. The second structure-reference
is compiled in the same way, except that I is replaced by 6. The result is as
follows:

X<4*5,4> = .X<4*6,4>;

The actual-parameter of a structure-reference need not be a numeric-literal as in
this example; it can be any expression. For example:

X[.J3] = .X[.J3+1];

This assignment is expanded by the compiler into the following:

X<4*(.J3),4> = .X<4*(.J3+1),4>;

In this case, the fields selected depend on the contents of J3 each time the
assignment is executed.

Similar examples of the structure-body expression for BLISS–16 and BLISS–36,
assuming an identical or similar concrete representation for DDA, are given in
Section 11.1.3.7.
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11.1.3.5 REF Structures
It is sometimes useful to manipulate the addresses of data structures. To do
this, the compiler needs information about the structures to which the addresses
refer. This information is supplied with the REF keyword and an appropriate
structure-attribute in the declaration of storage for a structure address. For
example:

STRUCTURE
DDA[I; N] =

[(N+1)/2]
DDA<4*I,4>;

...
OWN

X: DDA[10],
Y: DDA[10];

OWN
ALPHA,
PDDA: REF DDA[10];

...
IF .ALPHA EQL 0 THEN PDDA=X ELSE PDDA=Y;
PDDA[5] = .PDDA[6];

The interpretation of the final assignment depends on the value of PDDA, and the
value of PDDA is determined, at run time, by the contents of ALPHA. If ALPHA
contains zero, the assignment is equivalent to the following:

X[5] = .X[6];

Otherwise it is equivalent to the following:

Y[5] = .Y[6];

A name that is declared with REF designates a data segment that contains the
address of a structure. Because an address always occupies a fullword, a fullword
is always allocated for such a name. In the example above, PDDA is the address
of a fullword that contains either the address X or the address Y.

When a name that is declared REF is used in a structure-reference (and is
therefore followed by a list of parameters in brackets), an extra level of indirection
is automatically supplied. For example:

PDDA[5] = .PDDA[6];

With this assignment, the address of the structure to which a value is assigned
is not PDDA but is rather the contents of PDDA. Similarly, the address of the
structure from which a value is fetched is not PDDA but is rather the contents of
PDDA.

When a name that is declared REF is not used in a structure reference, it is
interpreted without the extra level of indirection. (If this were not the case, then
the contents of a data segment used as a pointer to a structure could not be
changed.) For example:

PDDA = X;

With this assignment, the address of the data segment to which a value is
assigned is PDDA.
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11.1.3.6 Interchangeable Structure-Declarations
You can use different structure-declarations for the same abstract structure at
different stages in the development of a program. Three possible declarations for
decimal digit arrays are as follows:

• The declaration already considered in the preceding sections is as follows:

STRUCTURE
DDA[I; N] =

[(N+1)/2]
DDA<4*I,4>;

This declaration was presented as the one that implements the chosen
concrete representation for decimal digit arrays.

• A second declaration of DDA is as follows:

STRUCTURE
DDA[I; N] =

[N]
DDA<8*I,8>;

This declaration provides for faster access to the elements but uses twice as
much storage.

• A third declaration of DDA follows:

STRUCTURE
DDA[I; N] =

[N]
BEGIN
IF I LSS 0 OR I GTR N-1 THEN ERROR(DDA, I);
DDA
END<8*I,8>;

This declaration is oriented toward debugging. Specifically:

• It uses a full byte (instead of four bits) for each element of the array.
Thus the examination of memory is easier.

• It includes a check on the value of the subscript I to make sure that
it is in the range from 0 to N–1. Thus this class of errors is detected
automatically.

This declaration can be used during the development of a program, and one
of the previous declarations of DDA can be used for the production version of
the same program.

The debugging declaration illustrates an interesting feature of structures.
Suppose the following program fragment lies within the scope of the debugging
declaration:

OWN
X: DDA[10],
Y: DDA[20];

...
X[.J] = .Y[.K];

The compiler expands the assignment on the last line into the following
assignment:
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BEGIN
IF .J LSS 0 OR .J GTR 9 THEN ERROR(DDA, .J);
DDA
END<8*.J,8>
=
BEGIN
IF .K LSS 0 OR .K GTR 19 THEN ERROR(DDA, .K);
DDA
END<8*.K,8>;

This example shows that the compiler saves the value of the allocation-parameter,
N, each time the structure is allocated. For X this value is 10, for Y it is 20. Thus
this value can be used in the structure-body and, eventually, in each structure-
reference.

11.1.3.7 Decimal Digit Arrays in BLISS–16 and BLISS–36
For a packed four bits per digit decimal digit array in BLISS–36, a different
structure-size definition is required for the following reasons:

• The smallest (and only) addressable unit in BLISS–36 is the fullword, rather
than the byte as in BLISS–16 and BLISS–32.

• The 36-bit fullword of BLISS–36 can accommodate exactly nine 4-bit digits.

Instead of the BLISS–16/32 structure-size expression ‘‘(N+1)/2’’, which allocates
one 8-bit addressable unit for each two elements required plus one unit for an
odd final element, the following expression is appropriate for BLISS–36:

(N+8)/9

This structure-size expression allocates one 36-bit word for each nine elements
required plus one word for a final (or only) group of less than nine.

As noted above, the BLISS–32 structure-size expression is also valid for BLISS–
16, since the respective target systems have the same basic storage allocation
unit (that is, the byte).

The structure-body definition given for DDA in BLISS–32 needs to be modified
in both BLISS–16 and BLISS–36 because neither of these dialects allows the
position value of a field-reference to exceed %BPVAL (as it can in BLISS–32). In
BLISS–16 the DDA structure-body can be defined as follows:

(DDA+I/2)<(I MOD 2)*4,4>

Alternatives to this expression, which are logically equivalent but better in terms
of object code efficiency, are the following:

(DDA+I/2)<IF I THEN 4 ELSE 0,4>

(DDA+I/2)<(I AND 1)*4,4>

(DDA+I/2) <(I^2) AND 4,4>

These alternatives are listed in order of increasing space efficiency, although the
first alternative results in the fastest code sequence.

In BLISS–36 the DDA structure-body can be defined as follows:

(DDA+I/9)<(I MOD 9)*4,4>

To summarize, the BLISS–16 and BLISS–36 forms of the DDA structure-
declaration are the following:

• For BLISS–16—
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STRUCTURE
DDA[I; N] =

[(N+1)/2]
(DDA+I/2)<(I^2) AND 4,4>;

• For BLISS–36—

STRUCTURE
DDA[I; N] =

[(N+8)/9]
(DDA+I/9)<(I MOD 9)*4,4>

The user manual for each BLISS dialect describes, under ‘‘Transportability
Guidelines’’, the development of generalized, fully transportable structure-
declarations. In particular, it describes a general packed-vector data structure
called GEN_VECTOR which produces the same concrete representation described
here as DDA on any target system.

11.1.4 Conclusion
All high-level languages provide you with a set of predefined data structures.
Some programming languages provide facilities for the definition of new abstract
data structures based on predefined data structures. BLISS goes beyond such
facilities and provides for the definition of new concrete data structures.

Thus, when the need arises, you can access storage just as freely as an assembly
language programmer can. You can designate any addresses, any fields, any bits
in storage.

The structure-declaration is the interface between the implementation of a given
data structure and its use in the program. On one side of the interface lies the
specific layout of the structure, with machine-specific details and an appropriate
concern for efficiency. On the other side of the interface are the many references
to the structure, each treating it as an abstract, machine-independent entity. For
each data structure, communication between the two sides is by a single name,
such as DDA used for the example in this section.

Because the predefined structures of BLISS use the same facilities of BLISS as
user-defined structures, they provide a point of departure for data description
rather than presenting a restrictive barrier.

The BLISS facilities for data structures are unusual and relatively complicated.
They depend on the combination of the various declarations, attributes, and
references described in this chapter. Sections 11.10 and 11.11 show how these
facilities are combined to define and use specific structures.

11.2 Field-References
A field-reference designates a sequence of up to %BPVAL bits of storage. It
is normally used as the operand of a fetch operator or the left operand of an
assignment operator. With certain restrictions, however, a field-reference can be
used in any context that requires an address value.

Structure-declarations use field-references to map abstract, machine-independent
structures into concrete, machine-specific storage units. Thus, when suitably
parameterized, they support the writing of programs that are efficient and yet
transportable from one target system to another.

Field-references should be used only in structure-declarations. The use of field-
references in any other context introduces machine dependence in a confusing
and disorganized way.

11–10 Data Structures



Examples of field-references are given in Section 11.1.3.1.

11.2.1 Syntax

field-reference
address

n
field-selector
nothing

o

address n
primary
executable-function

o

field-selector
< position , size

n
, sign-extension-flag
nothing

o
>

n
position
size

o expression

sign-extension-flag compile-time-constant-expression

In addition to the syntactic rules just given, the following syntactic rules are
required:

1. A field-selector is associated with the closest fetch expression.

2. A field-selector that could be part of either an assignment expression or a
fetch expression is part of the fetch expression.

An example of an expression to which rule 1 applies is as follows:

..BETA<8,8>

The expression is correctly interpreted as follows:

.(.BETA<8,8>)

The following is an incorrect interpretation:

.(.BETA)<8,8>

In this example, the given expression is composed of one fetch expression within
another, and rule 1 is needed because one of the fetch expressions does not have
a field-selector. In the first interpretation, the field-selector is part of the inner
fetch expression, and is, therefore, applied to the data segment whose address
is BETA. In the second (nondefault) interpretation, the field-selector is part of
the outer fetch expression and, therefore, is applied to the data segment whose
address is .BETA.

An example of an expression to which rule 2 applies is as follows:

.Q<0,8> = .A+1

The expression is correctly interpreted as follows:

(.Q<0,8>) = .A+1

The following is an incorrect interpretation:

(.Q)<0,8> = .A+1
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In the first interpretation, the field-selector is part of the fetch expression and
the assignment is made, by default, to a fullword. In the second (nondefault)
interpretation, the field-selector is part of the assignment expression, and the
fetch is made, by default, from a fullword.

11.2.2 Restrictions
The restrictions on the address, position, and size expression values in a field-
selector are different for each BLISS dialect, as follows:

BLISS–16 ONLY
The size of a field may range from 0 to 16 bits, inclusive, but a field must not
cross a machine-word boundary. This implies two sets of specific restrictions on
the position ( p ) and size ( s ) values, as follows:

a. If the field-selector is applied to an even-numbered byte address (that is,
word-aligned), then the following are true:

0 � p
0 � s � 16
0 � p+s � 16

b. If the field-selector is applied to an odd-numbered byte address, then the
following are true:

0 � p
0 � s � 8
0 � p+s � 8

BLISS–32 ONLY
The value of the size expression can range from 0 to 32, inclusive, and the
field so specified can cross a longword boundary. More specifically, there is no
restriction on the position expression relative to storage-address boundaries, and
the restriction on size ( s ) is as follows:

0 � s � 32

BLISS–36 ONLY
The value of the size expression can range from 0 to 36, inclusive, but the field
so specified must not cross a machine-word boundary. More specifically, the
restrictions on position ( p ) and size ( s ) are as follows:

0 � p
0 � s � 36
0 � p+s � 36

The value of the sign-extension-flag must be 0 or 1.

A field-selector must not be immediately followed by another field-selector. For
example:

.Z<0,16><8,2> = .BETA

This is not valid. Parentheses can be used to avoid this restriction. For example:

(.Z<0,16>)<8,2> = .BETA

This is a valid expression.
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Normally a field-reference is the operand of a fetch operator or the left operand of
an assignment operator. When a field-reference is used in any other way, it must
specify a field that begins on an addressable-unit boundary, which is a position
that satisfies the following conditions:

• The value of the position expression must be 0 or 8 in BLISS–16, must be 0
or a multiple of 8 in BLISS–32, and must be 0 in BLISS–36.

• The address expression must not be a register-name.

• The position and size expressions must be compile-time constant expressions.

When the address in a field-reference is a register-name, the field-reference
must specify a field that lies entirely within the designated register; that is, the
position expression must be greater than or equal to 0 and the sum of the position
and size expressions must be less than or equal to %BPVAL.

11.2.3 Default
The default value for the sign-extension-flag is 0.

11.2.4 Semantics
A field-reference specifies a field of up to a fullword (%BPVAL bits) in size relative
to a given storage address. Certain aspects of the field-selector semantics are
dialect dependent.

In BLISS–16, the field is specified relative to a byte address, and the field must
be completely contained in the machine word containing the given byte.

In BLISS–32, the field is specified relative to a byte address, and the field can
occur anywhere in storage relative to the given byte.

In BLISS–36, the field is specified relative to a word address, and the field
must be completely contained in the given machine word. Depending on the
context in which it appears, a field-reference has one of the interpretations given
below. (These rules do not apply to field-references in the structure-body of a
structure-declaration, because the structure-body is not interpreted as part of the
declaration of a structure; rather, these rules apply when the structure-body is
used in the interpretation of a structure-reference, as described in Sections 11.7,
11.8, and 11.9.)

• Fetch context. If the field-reference is the operand of a fetch expression
(defined in Section 5.1), having the following form:

.e2 field-selector

then evaluate the fetch expression as follows:

1. Interpret the address expression, e2, as follows:

a. If the address is a register-name, then call the register the selected
unit.

b. Otherwise, let a be the value of the address expression. Locate the
addressable-unit in storage whose address is a. Call this addressable-
unit the selected unit.

2. Let p be the value of the position expression. Locate the sequence of p
bits that starts with the low-order bit of the selected unit. Call these bits
the offset field.

3. Let s be the value of the size expression. Locate the sequence of s bits
that immediately follows the offset field. Call these bits the selected field.
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4. Obtain a fullword value as follows:

a. If s = %BPVAL, fetch the contents of the selected field.

b. If 0 < s < %BPVAL, fetch the contents of the selected field and extend
it to a fullword as follows:

1. If the value of the sign-extension-flag is 0, then extend the
selected field by adding zero-bits at the left.

2. Otherwise, extend the selected field by adding copies of the sign
bit (leftmost bit) of the selected field at the left.

c. If s = 0, use the fullword representation of zero.

5. Use the value just obtained as the value of the fetch expression.

• Assignment context. If the field-reference is the left operand of an assignment
expression (defined in Section 5.1, having the following form:

e1 field-selector = e2

then evaluate the assignment expression as follows:

1. Locate the selected field of storage, relative to e1, as in steps 1 through 3
for the fetch context.

2. Let s be the value of the size expression and let v2 be the value of the
right operand, e2, of the assignment expression. Store a value as follows:

a. If s = %BPVAL, store v2 in the selected field.

b. If 0 < s < %BPVAL, store the rightmost s bits of v2 in the selected
field.

c. If s = 0, do not store a value.

3. Use the fullword value of e2 as the value of the assignment expression.

• Other contexts. If a field-reference appears in some other context, then
evaluate the field-reference as follows:

1. Let a be the value of the address expression and let p be the value of the
position. Compute the following:

a + p/%BPUNIT

Observe that a restriction in Section 11.2.2 requires that the address must
not be a register-name, and the value of p must be zero or, in the case
of BLISS–16/32, a multiple of 8, so that the value of p/%BPUNIT is an
integer. Also observe that the values of the size and sign-extension-flag
expressions are not used, but the restrictions on these values still apply.

2. Use the value just computed as the value of the field-reference.

The following considerations apply to the interpretation of field-references:

• The order in which the address, position, size, and sign-extension-flag
expressions are evaluated is not defined (see Section 5.1.4).

• The sign-extension-flag is ignored in all contexts except a fetch expression.

• The description of the field-reference just given uses phrases like ‘‘sequence
of p bits that starts with . . . ’’ and ‘‘sequence s of bits that immediately
follows . . . ’’. Thus it assumes an ordering of bits in storage. That ordering,
based on numeric significance, is as follows:
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Ordering for BLISS–16 and BLISS–32

Bit 0
.
.
.
Bit 7
Bit 8
.
.
.
Bit 15

The low-order bit of byte n
.
.

The high-order bit of byte n
The low-order bit of byte n+1

.

.

.
The high-order bit of byte n+1

Ordering for BLISS–32 Only

Bit 16
.
.
.
Bit 23
Bit 24
.
.
.

The low-order bit of byte n+2
.
.
.

The high-order bit of byte n+2
The low-order bit of byte n+3

.

.

.

Ordering for BLISS–36

Bit 0
.
.
.
Bit 35

The low-order bit of word n
.
.
.

The high-order bit of word n

• Observe that in BLISS–32, although the selected field cannot be longer than
32 bits, it can occur anywhere in storage, crossing boundaries between bytes,
words, or longwords.

11.2.5 Discussion
The BLISS bit numbering convention, defined above, is consistent across the
BLISS dialects: bit-position 0 is always the ‘‘rightmost’’ or least significant bit of
the specified addressable unit, for all target systems.

Several aspects of field-references are discussed in the following subsections.
First, some examples are given to illustrate various cases. Second, the placement
of a field-selector in the definition of a structure is discussed. Finally, the general
and fundamental relationship of field-references to expressions is discussed.

11.2.5.1 Examples
Field-references used in fetch and assignment contexts are illustrated throughout
this chapter and do not require further elaboration here. However, field-
references used in other contexts involve some special considerations.

As stated in Section 11.2.4, a field-reference that is not in a fetch or assignment
context computes a value according to the following formula:

b + p/%BPUNIT
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In BLISS–32 and to a limited extent in BLISS–16, such field-references allow you
to compute the address at which a field begins. Such address values might be
assigned to another data segment for later use or passed as actual-parameters
of a routine-call. Observe that the restrictions in such cases (the byte-address
is not a register name, position and size are compile-time constant values, and
the position is zero or a multiple of 8) assure that the compiler can verify that
the field does begin at a byte address and hence, that the above formula can be
computed.

Consider the following examples:

Example Comment

A = X The address of the data segment X is assigned to A.

A = X<0,8> The address of the data segment X is assigned to A (as in the
previous example).

A = X<10,12> Invalid. The field-reference does not designate a field that begins at
a byte address.

A = X<8,8> Invalid in BLISS–36; valid in BLISS–16/32. The address of the
data segment X plus 1 is assigned to A. This field-reference is
equivalent to the field-reference (X+1)<0,8>.

A = X<.Y,1> Invalid. The position expression is not a compile-time constant
value and, therefore, the field might not begin at a byte address.

Observe that in BLISS–16 the effective range of p/8 is 0 or 1; in BLISS–32, the
range of p/8 is unrestricted; and, in BLISS–36, the range of p/36 is always 0.
Consequently, the value of a field-reference in BLISS–36 is effectively the same as
the address part of the field-reference and the term ‘‘p/%BPUNIT’’ in the formula
for the value has no practical utility.

11.2.5.2 Field-References in Structure-Declarations
The definition of a structure-name can include a field-reference as the structure-
body (see Section 11.3), but when the structure-body involves a block, a common
error is to place the field-selector inside the block instead of following the block.

An example of correct placement of the field-selector following the block was given
in Section 11.1.3.6; it is repeated here:

STRUCTURE
DDA[I;N] =

[N]
BEGIN
IF I LSS 0 OR I GTR N-1 THEN ERROR(DDA, I);
DDA
END<8*I,8>;

Suppose the last two lines of this example are written as follows:

...
DDA<8*I,8>
END;

This code has a quite different meaning from the one intended. Because the field-
reference is contained inside the block, the rule for a field-reference in a context
other than a fetch or assignment context always applies. When the structure-
reference is used in a fetch or assignment, a fullword fetch or assignment results
according to the rules in Section 5.1 (assuming that the restrictions on field-
references do not result in an error).
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As can be seen in this example, the placement of the field-selector following the
block is essential for the desired meaning.

11.2.5.3 Field-References and Expressions in General
Consider again the first two examples in Section 11.2.5.1 as follows:

A = X

A = X<0,8>

In both cases, the address of the data segment X is assigned to A. These
examples describe a BLISS language design principle that ties field-references
and expressions together.

The BLISS rules regarding expressions and data segments given elsewhere in
this manual can be restated (in part) in the following way:

1. The declaration of a data segment name associates an implicit, default
field-selector with the name, which is determined as follows:

a. If the data segment is a scalar, then the default field-selector is <0, size,
sign> where:

i The size value is, in BLISS–16 and BLISS–32, a multiple of
%BPUNIT determined by the explicit or default allocation-unit,
and in BLISS–36 is simply %BPUNIT, that is, 36.

ii The sign value is, in BLISS–16 and BLISS–32, 0 or 1 according to the
explicit or default extension-attribute, and in BLISS–36 is always 0.

b. If the data segment is structured, then the default field-selector is <0,
%BPVAL, 0>. (This default applies only when the data segment name
does not appear in a structure-reference.)

2. For any expression other than a data segment name, the default field-selector
is <0, %BPVAL, 0>. (This default applies only when the expression does not
appear as the address-expression of a default-structure-reference.)

According to these rules, every expression in a BLISS program can be thought of
as having a default field-selector.

When the semantics for field-references given in Section 11.2.4 is applied
to expressions with default field-selectors as described here, the resulting
interpretation is equivalent to the semantics given in Chapter 5. The description
given there is used because it is simpler and more intuitive for the common
cases. The description given here presents an important part of the conceptual
foundation of BLISS.

11.2.5.4 Operations on Scalar Field Values
When all values involved in a calculation occupy fullwords, the programming
involved is relatively straightforward. Fullwords accommodate maximum-size
BLISS values, and assignment from one fullword to another never modifies a
value.

When a scalar field value—a value smaller than a fullword and not part of a data
structure—is involved in a calculation, however, problems can arise. They can
arise either through assignment of a large value to the small field, or through
incorrect extension of the contents of the field. An example of the former type of
problem is the inadvertent assignment of a fullword value to a field that is not
large enough to accommodate the significant portion of the fullword. Obviously
some significance will be lost in the stored result.
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The latter type of problem can be more subtle; for example:

OWN
X;
Y;

...
X<0,8> = -1;
Y = .X<0,8> + 1;
...

For purposes of discussion, assume that there is some good reason for using an
8-bit field relative to address X. Because this field occupies less than a fullword,
when fetched it is extended before being incremented and assigned to Y. And
because the extension for the field is unsigned by default, the extended field value
becomes 255 rather than –1. Thus the value of Y becomes 256 rather than 0,
presumably not the intended result.

The program fragment does not violate any rules of BLISS; it is valid. However,
because it assigns a negative number, –1, to a field that is by implication
unsigned, the program fragment is at least ambiguous in its intent, if not
incorrect.

Depending on whether the result obtained was or was not the one intended, the
program fragment can be altered in one of the following ways:

• Change the numeric-literal from –1 to 255. This change does not affect the
value assigned to Y, but does make clear that the result is the expected one.

• Replace the field-selectors shown with <0,8,1>, indicating signed value
extension. This change causes 0 to be assigned to Y.

In BLISS–16 or BLISS–32, the problems just described can also arise through the
use of an allocation-unit that causes field allocation of a scalar data segment; that
is, through the use of BYTE in BLISS–16, or BYTE or WORD in BLISS–32, as an
attribute in a data declaration. This is due to the implicit relationship between
allocation-units and field-selectors. An equivalent program fragment that uses
the BYTE allocation-unit rather than explicit field-references to produce results
identical to those described above is given in Section 5.1.5.3.

11.3 Structure-Declarations
A structure-declaration describes the organization of a data structure. It specifies
(or implies) a field-reference for every possible reference to the structure and thus
defines the layout of the structure in storage. It also specifies an expression to
be used to determine the amount of storage to be allocated when a structure is
associated with a name in a data-declaration.

An example of a structure-declaration in each of the BLISS dialects is as follows:

• In BLISS–16—

STRUCTURE
VECTOR[I; N, UNIT=2, EXT=0] =

[N*UNIT]
(VECTOR+I*UNIT)<0,8*UNIT,EXT>;

• In BLISS–32—

STRUCTURE
VECTOR[I; N, UNIT=4, EXT=0] =

[N*UNIT]
(VECTOR + I*UNIT)<0,8*UNIT,EXT>;
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• In BLISS–36—

STRUCTURE
VECTOR[I; N] =

[N]
(VECTOR+I)<0,36>;

These are equivalent declarations of the BLISS predeclared structure named
VECTOR, but they do not differ in any significant way from user-written
structure declarations.

The access-formal in this declaration is I and the allocation-formals are N and,
in BLISS–16/32, UNIT and EXT. UNIT and EXT have default values of %UPVAL
and 0, respectively. If in BLISS–16 or BLISS–32 a VECTOR structure-attribute
does not specify allocation-actuals for UNIT and EXT, then these default values
are used. The structure-size expression is N*UNIT and the structure-body is
(VECTOR + I*UNIT)<0,%BPUNIT*UNIT,EXT>.

Observe that in the BLISS–36 VECTOR declaration, the allocation-formals
UNIT and EXT are not included. This is because BLISS–36 does not have the
corresponding allocation-unit and extension-attribute (used in data-declarations
in the other two dialects), and therefore these formal parameters are of no
practical use. However, if these formal parameters were expressed in the BLISS–
36 declaration and given their default values of %UPVAL (1 in BLISS–36) and 0
(unsigned-extension), respectively, the BLISS–36 declaration would be not only
explicitly equivalent—varying only in the dialect-specific values of %UPVAL and
%BPUNIT—but also operationally valid.

11.3.1 Syntax

structure-declaration STRUCTURE structure-definition , . . . ;

structure-definition structure-name

[
n

access-formal , . . .
nothing

o
n

; allocation-formal , . . .
nothing

o
]

=
n

[ structure-size ]
nothing

o

structure-body

allocation-formal
allocation-name

n
= allocation-default
nothing

o

n
structure-size
structure-body

o expression
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� structure-name
access-formal
allocation-name

�
name

allocation-default compile-time-constant-expression

11.3.2 Restrictions
A primary of a structure-size expression must be either an allocation-name or a
compile-time constant expression. When a compile-time constant expression is
substituted for each allocation-name in the expression, the resulting expression
must be a compile-time constant expression. If the structure-body expression
contains a block, only the following declarations can appear in the block:

LOCAL EXTERNAL LITERAL

STACKLOCAL EXTERNAL ROUTINE

REGISTER LITERAL

EXTERNAL

11.3.3 Semantics
The structure-size expression of a structure-declaration is used by the compiler
when the structure name appears in a structure-attribute of a data-declaration.
It specifies the number of addressable units to allocate for the declared data
segment.

The structure-body is used each time a structure-reference appears in an
expression. It specifies a replacement for the structure-reference that consists of
an expression. Observe that a field-reference is one form of expression.

The use of these portions of the structure-definition is described in the following
sections on structure-attributes and storage allocation ( Section 11.4) and
structure-references (Sections 11.7, 11.8, and 11.9).

11.4 Structure-Attributes and Storage Allocation
The form of a data segment is determined when its name is declared. If a
structure-attribute appears in the declaration, then that structure-attribute
determines the structure of the data segment both for purposes of storage
allocation and access. If no structure-attribute appears, then the data segment is
assumed to be a scalar.

A structure-attribute in the declaration of a name provides two kinds of
information. First, it provides a structure-name and thus associates a structure-
definition with the name of the data segment. Second, it provides the allocation-
actual parameters for the structure-definition, and thus specifies the number of
addressable units of storage to be allocated for the data segment.

Observe that the parameters in a structure-attribute are positional; that is, the
formal names given in the structure-declaration are not used as keywords in a
structure-attribute.

The complete syntax and semantics of the declarations in which a structure-
attribute can appear are given in the chapters on data declarations (Chapter 10)
and on binding (Chapter 14). This section describes only the structure-attribute
itself and how it is used to determine the size of a structured data segment.
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11.4.1 Syntax

structure-attribute n
REF
nothing

o
structure-name

n
[ allocation-actual , . . . ]
nothing

o

structure-name name

allocation-actual

8<
:

compile-time-constant-expression
allocation-unit
extension-attribute
nothing

9=
; ( 16/32

( 16/32

16/32 Only

allocation-unit (
LONG
WORD
BYTE

)
( 32 Only

16/32 Only

extension-attribute n
SIGNED
UNSIGNED

o

11.4.2 Restrictions
BLISS–16/32 ONLY
An allocation-unit used directly as an attribute cannot appear in the same
declaration as a structure-attribute. Similarly, an extension-attribute used
directly as an attribute cannot appear in the same declaration as a structure-
attribute.

Unless the structure-attribute begins with REF or is in an EXTERNAL, MAP, or
BIND declaration, the following conditions apply:

1. A structure-size expression must appear in the definition of the structure-
name.

2. A non-null allocation-actual parameter must be given for each allocation-
name that appears in the structure-size expression and does not have an
allocation-default.

A non-null allocation-actual parameter must be given for each allocation-name
that appears in the structure-body and does not have an allocation-default.

11.4.3 Semantics
The allocation of a structure is performed by the compiler as follows:

1. If in BLISS–16 or BLISS–32 an allocation-unit or extension-attribute keyword
appears as an allocation-actual, it is replaced by a constant value as follows:
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Keyword Replaced by

LONG
WORD
BYTE

4 ( 32 Only
2
1

SIGNED
UNSIGNED

1
0

2. The allocation-actual parameters are evaluated and the values are associated
with the corresponding allocation-names in the specified structure-definition.

3. Any allocation-name that does not have a value already associated with it
from step 2, but does have an allocation-default value, is associated with its
default value.

4. The amount of storage to allocate for the declared name is determined as
follows:

a. If the structure-attribute appears in an EXTERNAL, MAP, or BIND
declaration, then no storage is allocated.

b. If the structure-attribute begins with the keyword REF, then one fullword
of storage is allocated.

c. Otherwise, the structure-size expression is evaluated using the values
that are associated with each of the allocation-formal names. The
resulting value specifies the number of addressable units of storage that
are allocated.

5. The structure-name and the values associated with each allocation-name
are recorded with the data-segment name being declared, for use when the
data-segment is referenced.

11.5 Field-Declarations
The FIELD declaration is used to define names of fields in BLOCK and
BLOCKVECTOR predeclared structures, and in user-defined structures that
are similar to BLOCK. A BLISS–36 example of a field-declaration is as follows:

FIELD
DCB_FIELDS =

SET
DCB_A = [0,0,36,0],
DCB_B = [1,0,6,0],
DCB_C = [1,6,12,0],
DCB_D = [1,18,18,0],
DCB_E = [2,0,36,0]
TES;

The field-names declared here are DCB_A, DCB_B, and so on. Each name can
be used as a parameter in a structure-reference to represent a sequence of four
access-actuals. For example, DCB_A can be used to represent ‘‘0,0,36,0’’. (In other
examples, the field-names might represent more or less than four access-actuals.)

The example field-declaration also provides a field-set-name, DCB_FIELDS. This
name is used to refer to the field-names collectively, when, for example, they must
be mentioned in a field-attribute.

The field-declaration is a special-purpose facility that can best be explained in the
context of a complete example of structure declaration and use. Such an example
is given in Section 11.10.3.
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11.5.1 Syntax

field-declaration
FIELD

n
field-set-definition
field-definition

o
, . . . ;

field-set-definition field-set-name =
SET
field-definition , . . .
TES

field-definition field-name = [ field-component , . . . ]

n
field-set-name
field-name

o name

field-component compile-time-constant-expression

11.5.2 Restrictions
A field-name can be used only as an access-actual parameter of a structure-
reference, a parameter of a field-attribute, or in the %FIELDEXPAND lexical-
function.

A field-set-name can be used only as a parameter of a field-attribute.

A field-name cannot be used for its own definition in a field-component.

11.5.3 Semantics
The field-declaration defines names for use as access-actual parameters of
structure-references to designate fixed fields in fixed data structures. As a
notational convenience, a set of such field-names can be declared and referred to
by a single name. Observe that both field-names and field-set-names follow the
normal rules concerning scope and uniqueness of names; there is no concept like
the ‘‘qualified names’’ of COBOL or PL/I.

When a field-name appears as an access-actual parameter of a structure-
reference, it is replaced by the list of field-component values from the field-
definition. (See example in Section 11.10.3.5.) These values provide one or more
of the access-actual parameters used in the evaluation of the structure-reference.
A field-name need not itself supply all of the actual parameters required for the
reference. (While this replacement has some of the characteristics of a macro
expansion, field-names are not macro-names; in particular, a field-name is not
valid in contexts other than a structure-reference.)

The field-attribute specifies the set of field-names that can appear in ordinary-
structure-references for the indicated data segment. If no field-attribute is given,
then no field-name is valid.

Any field-name can be used in a general-structure-reference.
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11.6 Field-Attributes
A field-attribute is used in the declaration of a structured data segment name;
that is, in the same declaration with a structure-attribute. The field-attribute
supplies field-names for some or all of the fields in the structured data segment,
either directly by listing field-names or indirectly by giving one or more field-set-
names, or both.

An example of the use of a field-attribute follows:

OWN
ALPHA: BLOCK[DCB_SIZE] FIELD(DCB_FIELDS);

In this example, the field-attribute associates the field-set-name DCB_FIELDS
with the data segment name ALPHA.

Like the field-declaration, the field-attribute can best be explained in the context
of a complete example of structure declaration and use. Such an example is given
in Section 11.10.3.

11.6.1 Syntax

field-attribute
FIELD (

n
field-name
field-set-name

o
, . . . )

n
field-name
field-set-name

o name

11.6.2 Restrictions
Although a field-set-name can appear as a field-attribute parameter in a data
segment declaration, it cannot be used in a structure-reference to the data
segment. The individual field-names associated with the field-set-name must be
used instead.

A field-attribute can be used only in a declaration that also has a structure-
attribute.

11.6.3 Semantics
A field-attribute specifies the set of field-names that can appear in an ordinary-
structure-reference to the data segment declared with the given field-attribute.
A field-set-name in a field-attribute implies a defined set of field-names that can
so appear. If no field-attribute is given, then no field-name is valid in such a
reference.

11.7 Ordinary-Structure-References
A structure-reference is used to access a part of a structured data segment.
The part of the segment that is accessed is determined by the access-actual
parameters in the structure-reference. For example, a structure-reference for a
vector has one access-actual parameter that specifies the element of the vector to
be accessed.

Three kinds of structure-reference are provided: ordinary, default, and general.
The ordinary-structure-reference is by far the most commonly used form. It
gives the name of a data segment and relies on the compiler to determine the
appropriate structure from the declaration of the segment name. A default-
structure-reference is similar, but the address of the data segment is given by an
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expression, often a preceding ordinary- or default-structure-reference, and relies
on the compiler to determine the structure from the default structure specification
given in a switches-declaration or module-switch. A general-structure-reference
is self-contained. It gives all the information necessary for the access.

Suppose the declaration of A is as follows:

OWN A: VECTOR[10];

An example of an ordinary-structure-reference follows:

A[.J]

The compiler uses the declaration of A to find the kind of structure that is being
accessed. This ordinary-structure-reference is a reference to a VECTOR that
consists of 10 elements. The structure-body that is declared for VECTOR is
used in combination with the allocation-actuals in the declaration of A and the
access-actuals in the structure-reference to determine the field-reference for the
appropriate element of the vector. Suppose the following set of declarations is
given:

OWN A: VECTOR[10];
SWITCHES STRUCTURE (BLOCK [1]);
FIELD FL = [0,0,%BPVAL/2,0],

FR = [0,%BPVAL/2,%BPVAL/2,0];

An example of a default-structure-reference follows:

A[.J][FL]

The compiler processes the initial ordinary-structure-reference, A[.J]. The
field-reference that results is then used as the address part of a subsequent
structure-reference. The compiler uses the specification of the default structure
in the switches-declaration to find the kind of structure that is being accessed.
In this example the default-structure-reference is a block that consists of
one fullword. The structure-body that is declared for the block is used in
combination with the allocation-actuals in the default structure specification in
the SWITCHES declaration to determine the field-reference for the appropriate
field in the jth element of segment A.

An example of a general-structure-reference follows:

VECTOR[A, .J; 10]

This general-structure-reference is equivalent to the ordinary-structure-reference
given above.

Ordinary-structure-references are described in this section. Default- and
general-structure-references are described in the next two sections.

11.7.1 Syntax

structure-reference

(
ordinary-structure-reference
default-structure-reference
general-structure-reference

)

ordinary-structure-
reference

segment-name [ access-actual , . . . ]
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segment-name name

access-actual

(
field-name
expression
nothing

)

11.7.2 Restrictions
A structure-attribute must be associated with the segment-name.

If field-names are used as access-actuals in the structure-reference, then a field-
attribute designating those field-names must be associated with the segment-
name. An access-actual parameter must be given for each access-formal name
that appears in the structure-body of the associated structure-definition.

11.7.3 Semantics
An ordinary-structure-reference is interpreted as follows:

1. Use the segment-name to obtain the structure-body of the associated
structure-definition and to obtain the values associated with each of the
allocation-names for that segment-name.

2. If the structure-attribute for the segment did not include the keyword REF,
then determine the value of the data segment name (which is the address of
the data segment) and associate that value with the structure name.

If the structure attribute did include the keyword REF, then fetch the
fullword contents of the segment-name and associate that value with the
structure name.

3. If one or more access-actuals is a field-name, replace each field-name with its
defined sequence of field-component values. This replacement may increase
the number of access-actual expressions in the resulting structure-reference.

4. Evaluate the access-actual expressions and associate the ith access-actual
value with the ith access-formal name in the structure definition. The order
of evaluation of the access-actual expressions is not defined (see Section 5.1.4).

5. Evaluate the structure-body using the values associated with each of the
allocation-formal names, the access-formal names, and the structure-name.

6. Use the resulting expression (which is typically a field-reference) in place of
the structure-reference.

11.7.4 Discussion
An important characteristic of structure-references is that the access-actual
expressions in a structure-reference are each evaluated exactly once. The
resulting value is used in the structure-body evaluation in each place that the
access-formal appears.

Consider the following declarations:
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EXTERNAL ROUTINE
X,
Y,
F;

STRUCTURE
XYZ[A;B] =

[B]
(XYZ+X(A)+Y(A));

OWN ABC: XYZ[4];

Given these declarations, the structure-reference ABC[F( )] is logically equivalent
to the following:

BEGIN
LOCAL TEMP;
TEMP = F();
X(.TEMP) + Y(.TEMP)
END

The routine F is called once in the structure-reference ABC[F( )] and the resulting
value is used twice.

Because structure-references are handled by the compiler in a manner similar to
macro expansions and they are, in fact, compiled to inline code, it is natural to
think of structure-references as macro calls; however, this example shows that the
interpretation of the actual parameters is more similar to that for routine-calls.

11.8 Default-Structure-References
A default-structure-reference is used when an ordinary-structure-reference cannot
provide the required field-reference. This usage arises when the address of the
accessed data segment is an expression, so that the name of the data (which
is part of an ordinary-structure-reference) is not known. When this occurs
frequently in a block or module, it can be convenient to give a default structure-
attribute in a switches-declaration or module-switch to provide the structure
information to be used for all such occurrences.

An example of a default-structure-reference has already been given in the
introduction of Section 11.7. A more extensive example is given in Section 11.11.7.

11.8.1 Syntax

default-structure-
reference

address [ access-actual , . . . ]

address n
primary
executable-function

o

access-actual (
field-name
expression
nothing

)
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11.8.2 Restrictions
The address of a default-structure-reference must not be the name of a data
segment declared with a structure-attribute. (If the address is the name of a data
segment declared with a structure-attribute, then the structure-reference is an
ordinary-structure-reference and is interpreted as described in Section 11.7.)

A default-structure-reference must only occur in the scope of a nonempty
STRUCTURE switch-item (see Section 18.2).

An access-actual parameter must be given for each access-formal name that
appears in the structure-body of the definition of the default structure.

11.8.3 Semantics
A default-structure-reference is interpreted as follows:

1. Use the default structure-attribute to get the structure-body of the associated
structure-definition and to get the allocation-actual values associated with
each of the allocation-names of the structure.

2. If the default structure-attribute does not include the keyword REF, then
associate the value of the address of the structure reference with the
structure-name. If the default structure-attribute does include the keyword
REF, then fetch the fullword contents of the address value, and associate the
result with the structure-name.

3. If one or more access-actuals is a field-name, replace each field-name with its
defined sequence of field-component values. This replacement may increase
the number of access-actual expressions in the resulting structure-reference.

4. Evaluate the access-actual expressions and associate the ith access-actual
value with the ith access-formal name in the structure-definition. The order
of evaluation of the access-actuals is not defined (see Section 5.1.4.

5. Evaluate the structure-body using the values associated with each of the
allocation-formal names, the access-formal names, and the structure-name.

6. Use the resulting expression (which is typically a field-reference) in place of
the structure-reference.

11.8.4 Discussion
Default-structure-references are very similar to ordinary-structure-references.
The differences are as follows:

1. A default-structure-reference uses the structure information established in a
default structure-attribute, and hence, must occur in the scope of a nonempty
STRUCTURE switch-item. In contrast, an ordinary-structure-reference uses
the structure information associated with the declaration of a data segment
name and is independent of whether or not a default structure-attribute is
established.

2. A default-structure-reference permits any field-name to be used as an access-
actual parameter. (In this respect it is like a general-structure-reference; see
Section 11.9.) There is no way to specify a default field-attribute to go with
the default structure-attribute. In contrast, an ordinary-structure-reference
permits only those field-names that are given in the field-attribute of the data
segment declaration.
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Observe that when an ordinary- or default-structure-reference occurs as the
address part of another default-structure-reference, the interpretation occurs
from left to right. That is, structure-references of the following forms are
equivalent:

exp[ actuals ,... ] [ actuals ,... ]

( exp [ actuals ,... ] ) [ actuals ,... ]

Also observe that such a structure-reference is a primary and is interpreted
before any operators are applied. For example, the following are equivalent:

X = .Y[1][2]

X = .(Y[1])[2]

The following are also equivalent:

X = ..Y[1][2][3]

X = ..((Y[1])[2])[3]

Consider the following block:

BEGIN
SWITCHES STRUCTURE(VECTOR[10]);
OWN X;
...
X[0] = 1; !Valid
...

BEGIN
SWITCHES STRUCTURE ();
...
X[0] = 1; !Invalid
...
END

...
END

The declaration of X in this example does not associate the structure-attribute
VECTOR[10] with X. Segment X is a scalar by default and is allocated a single
fullword.

The first occurrence of X[0], in the fifth line of the example, is a valid default-
structure-reference. It cannot be an ordinary-structure-reference because no
structure-attribute is associated with X. The second occurrence of X[0], in the
tenth line of the example, is invalid because the default structure-attribute
is empty and, as before, there is no structure-attribute associated with X. As
another example, consider the following block:

BEGIN
SWITCHES STRUCTURE(VECTOR[100]);
OWN X: BITVECTOR[20];
...
X[.I] = 1;
...
(X)[.I] = 1;
END

In this example, the structure-reference X[.I] is an ordinary-structure-reference
because the structure-attribute BITVECTOR[20] is given in the declaration of
X. Thus, the interpretation of the structure-reference uses the BITVECTOR
structure (and not the VECTOR structure).
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The structure-reference (X)[.I] is a default-structure-reference because ( X ), the
base address of the reference, is not a data segment name. The value of the
expression ( X ) is the same as the value of X, but the BITVECTOR structure-
attribute associated with X is lost in the evaluation of the expression ( X ),
just as it is in the evaluation of the expressions (X+4) and (X+0). Thus, the
interpretation of the structure-reference (X)[.I] uses the VECTOR structure (and
not the BITVECTOR structure).

The above examples illustrate how it is possible to be confused about whether
a structure-reference is ordinary or default when the address is a data segment
name. For this reason, default-structure-references should be used cautiously and
only when there is a very good reason.

A default-structure-reference provides no capability that cannot also be achieved
with a general-structure-reference. It is strictly a notational and stylistic
convenience.

More examples are given in Section 11.11.7.

11.9 General-Structure-References
A general-structure-reference is used when an ordinary-structure-reference
cannot provide the required field-reference. This usage arises in two ways. First,
a general-structure-reference must be used when the address of the accessed
data segment is an expression, so that the name of the data segment (which
is part of an ordinary-structure-reference) is not known. Second, a general-
structure-reference can be used to access a given data segment using a different
structure-definition than that which is associated with the name of the data
segment. An example of the second use of a general-structure-reference is given
in the following block:

BEGIN
STRUCTURE

ARRAY[I, J; M, N] =
[M*N*%UPVAL]
(ARRAY+(I*N+J)*%UPVAL);

OWN ALPHA: VECTOR[200];
...
ARRAY[ALPHA,.I,.J;50,4] = 0;
...
END

The general-structure-reference interprets the vector ALPHA as a two-
dimensional array according to the structure-declaration for ARRAY.
(The declaration of this two-dimensional array structure is discussed in
Section 11.11.3.)

11.9.1 Syntax

general-structure-
reference

structure-name
[ access-partn

; allocation-actual , . . .
nothing

o
]

access-part segment-expression
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n
, access-actual , . . .
nothing

o

segment-expression n
expression
nothing

o

The syntactic names structure-name, access-actual and allocation-actual are
defined in Sections 11.3 and 11.4.

11.9.2 Restrictions
If the structure-name appears in the structure-body of the definition of the
structure-name, then the segment-expression must be nonempty.

An access-actual parameter must be given for each access-formal name that
appears in the structure-body of the definition of the structure-name.

An allocation-actual must be given for each allocation-name that appears in the
structure-body and that does not have an allocation-default.

11.9.3 Semantics
A general-structure-reference is interpreted as follows:

1. Use the structure-name to get the structure-body for the declaration of that
name.

2. If one or more of the access-actuals is a field-name, replace each field-name
with its defined sequence of field-component values. This replacement
may increase the number of access-actual expressions in the resulting
structure-reference.

3. Evaluate the segment-expression and associate the value with the structure-
name in the structure definition.

4. Evaluate the access-actual expressions and associate the ith access-actual
value with the ith access-formal name in the structure definition.

5. In BLISS–16 or BLISS–32, if an allocation-unit or extension-attribute
keyword appears as an allocation-actual, replace it by a constant value as
follows:

Keyword Replace by

LONG
WORD
BYTE

4 ( 32 only
2
1

SIGNED
UNSIGNED

1
0

6. Evaluate the allocation-actual expressions and associate the ith allocation-
actual value with the ith allocation-formal name in the structure definition.
(Observe that each allocation-actual is a compile-time constant value.)

7. Any allocation-formal that does not have a value already associated with it
from the previous step, but does have an allocation-default value specified, is
associated with that default value.

8. Evaluate the structure-body using the values associated with the access-
formals, allocation-formals, and the structure-name.
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9. Use the resulting expression (which is typically a field-reference) in place of
the structure-reference.

The order of evaluation of the segment-expression and access-actual expressions
is not defined (see Section 5.1.4).

The interpretation of a general-structure-reference combines the relevant parts of
the rules for interpretation of an ordinary-structure-reference and the structure-
attribute for a given data segment.

11.9.4 Discussion
A general-structure-reference of the form

structure-name [ segment, access ,... ; allocation ,... ]

is equivalent to the following field-reference:

BEGIN
BIND base = address

: structure-name [ allocation ,... ];
base [ access ,... ]
END field-selector

base
Is an arbitrary unique name created for the purpose of this discussion.

address
Is the address part of the field-reference in the structure-body of the declaration
of the structure-name.

field-selector
Is the field-selector part of the field-reference in the structure-body of the
declaration of the structure-name. (As the syntax of Sections 11.2 and 11.3 show,
a field-selector is optional.)

The BIND declaration is described in Section 14.3.

As with an ordinary-structure-reference, the parameters of a general-structure-
reference are evaluated once, and the resulting values can be used more than
once (see Section 11.7.4).

Unlike an ordinary-structure-reference, however, any field-name can be used as
an access-actual of a general-structure-reference. There is no way to designate a
specific set of field-names that are valid; that is, there is nothing analogous to the
field-attribute for general-structure-references.

A general-structure-reference does not include (or need) anything analogous
to the REF keyword in a structure-attribute. You achieve the same effect by
explicitly indicating the extra fetch in the segment-expression. For example:

OWN
A: VECTOR[10],
B: REF VECTOR INITIAL(A);

...
A[1] = 1;
VECTOR[A,1;10] = 1;
B[1] = 1;
VECTOR[.B,1;10] = 1;
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All four assignments have the same effect; namely, they assign one to the second
element of A. The first two assignments show the corresponding ordinary-
and general-structure-references for the non-REF structure A. The second two
assignments show the corresponding ordinary- and general-structure-references
for the REF structure B.

11.10 Predeclared Structures
The structures most commonly used in system programming are predeclared
in BLISS. The use and interpretation of each of these structures has already
been introduced in Chapter 3 and used in examples. This section presents the
definition of each of these structures.

It is possible to write structure-declarations that are equivalent to the four
predeclared structures; they are predeclared in BLISS as a convenience and to
foster the use of uniform names for these common structures.

The predeclared structures are the following:

Structure-Name Usage

VECTOR A vector of signed or unsigned elements of uniform size (bytes or
words in BLISS–16; bytes, words, or longwords in BLISS–32; and
words in BLISS–36)

BITVECTOR A vector of one-bit elements

BLOCK A sequence of varying-sized fields

BLOCKVECTOR A vector of blocks

The declaration and use of the predeclared BLOCK structure is discussed here
in detail because of its fundamental nature (along with VECTOR, discussed
previously). The BITVECTOR and BLOCKVECTOR structures are discussed
more briefly because they are straightforward variations of the VECTOR and
BLOCK structures.

11.10.1 VECTOR Structures
A VECTOR structure is a sequence of elements of the same size. The number of
elements ( n ) is the extent of the vector. The elements are numbered from 0 to
n–1. The generalized form of the structure-declaration is as follows:

STRUCTURE
VECTOR[I; N, UNIT=%UPVAL, EXT=0] =

[N*UNIT]
(VECTOR+I*UNIT)<0,%BPUNIT*UNIT,EXT>;

When this generalized declaration is made dialect specific, the resulting (actual)
structure-declaration of VECTOR in each dialect is as follows:

• In BLISS–16—

STRUCTURE
VECTOR[I; N, UNIT=2, EXT=0] =

[N*UNIT]
(VECTOR+I*UNIT)<0,8*UNIT,EXT>;
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• In BLISS–32—

STRUCTURE
VECTOR[I; N, UNIT=4, EXT=0] =

[N*UNIT]
(VECTOR+I*UNIT)<0,8*UNIT,EXT>;

• In BLISS–36—

STRUCTURE
VECTOR[I; N] =

[N]
(VECTOR+I)<0,36>;

The formal names of the structure-declaration have the following meanings:

Formal Name Meaning

I The number of the element to be referenced.

N The number of elements in the vector.

UNIT The number of addressable-units in each element. The valid values
vary with the target system: 1 or 2 for BLISS–16, and 1 through 4
for BLISS–32. (Because the only valid value would be 1 in BLISS–36,
the formal name UNIT is omitted in that dialect.) The default value,
%UPVAL, implies a fullword.

EXT The sign-extension rule to be used for fetching elements. The valid
values are 0 and 1. The default is 0, that is, unsigned. (Sign-
extension of a fullword is not meaningful; thus, the formal name
EXT is omitted in BLISS–36.)

Example uses of this structure as structure-attributes in declarations are as
follows:

Example Interpretation

VECTOR[10] A vector of 10 fullwords

VECTOR[10,WORD] A vector of 10 unsigned words in BLISS–16/32

VECTOR[20,BYTE,SIGNED] A vector of 20 signed bytes in BLISS–16/32

REF VECTOR[5] A reference to a vector of 5 fullwords

VECTOR[20,3] A vector of twenty 3-byte elements, in BLISS–32
only

11.10.2 BITVECTOR Structures
A BITVECTOR is a sequence of one-bit elements that are densely packed in
storage. The number of elements ( n ) is the extent of the bitvector. The elements
are numbered from 0 to n–1. The generalized form of the structure-declaration is
as follows:

STRUCTURE
BITVECTOR[I; N] =

[(N+(%BPUNIT-1))/%BPUNIT]
(BITVECTOR+I/%BPUNIT)<I MOD %BPUNIT,1,0>;

The actual, dialect-specific forms of this structure-declaration are as follows:

• In BLISS–16:
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STRUCTURE
BITVECTOR[I; N] =

[((N+7)/8)]
(BITVECTOR+(I^-3))<I AND 7,1,0>;

• In BLISS–32 the following variation is used to take advantage of the less
restrictive field-references for better code quality:

STRUCTURE
BITVECTOR[I; N] =

[(N+7)/8]
BITVECTOR<I,1>;

• In BLISS–36:

STRUCTURE
BITVECTOR[I; N] =

[(N+35)/36]
(BITVECTOR+I/36)<I MOD 36,1,0>;

The formal names of this structure have the following meanings:

Formal Name Meaning

I The number of the element to be referenced

N The number of elements in the vector

Examples of uses of this structure as structure-attributes in declarations are as
follows:

Example Interpretation

REF BITVECTOR[8] A reference to a vector of eight 1-bit elements

BITVECTOR[60] A vector of sixty 1-bit elements

Observe that the second data segment would occupy eight bytes of PDP–11 or
VAX storage, and would leave the four high-order bits of the last byte unused.
On the DECsystem–10/20 the first data segment would occupy one word with 28
high-order bits unused; the second would occupy two words with 12 high-order
bits of the second word unused.

11.10.3 BLOCK Structures
A BLOCK structure is a sequence of components. The individual components of a
block can be of various sizes. The generalized form of the structure-declaration is
as follows:

STRUCTURE
BLOCK[O, P, S, E; BS, UNIT=%UPVAL] =

[BS*UNIT]
(BLOCK+O*UNIT)<P,S,E>;

The actual, dialect-specific forms of this structure-declaration are as follows:

• In BLISS–16:

STRUCTURE
BLOCK[O, P, S, E; BS, UNIT=2] =

[BS*UNIT]
(BLOCK+O*UNIT)<P,S,E>;
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• In BLISS–32:

STRUCTURE
BLOCK[O, P, S, E; BS, UNIT=4] =

[BS*UNIT]
(BLOCK+O*UNIT)<P,S,E>;

• In BLISS–36:

STRUCTURE
BLOCK[O, P, S, E; BS] =

[BS]
(BLOCK+O)<P,S,E>;

The formal names of this structure have the following meanings:

Formal Name Meaning

O The offset to the addressable-unit in which the field begins.

P The bit offset from the addressable-unit to the field beginning.

S The size of the field in bits. Valid values are 0 to %BPVAL.

E The extension flag. Valid values are 0 for zero extension and 1 for
sign extension.

BS The number of allocation units needed to represent the block (that is,
the block size).

UNIT The size of the allocation-unit and offset in terms of addressable
units. Valid values vary with the target system: 1 or 2 for BLISS–16,
1 through 4 for BLISS–32, and 1 only in BLISS–36 (the formal-name
UNIT is omitted in that dialect). The default is %UPVAL, that is, a
fullword.

Blocks are conventionally allocated in fullword units for most efficient operation of
the hardware. (Using default fullword allocation also facilitates transportability
of BLISS programs.)

11.10.3.1 A Typical Byte-Oriented BLOCK Structure
An example of a typical block on a byte-oriented target system (PDP–11 or VAX)
is considered in detail in the following paragraphs. The block is named ALPHA
and has five components, named A, B, C, D, and E. The VAX target system and
BLISS–32 dialect are assumed for the purposes of this example as they provide
the richest basis for explanation of the underlying BLISS structure mechanisms.
(A BLISS–36 example would be somewhat simpler because addressable byte
boundaries are not considered. Analogous code fragments for BLISS–36 are
shown in this discussion where appropriate.)

The layout of the example block in VAX storage is as follows:

ZK−6021−GE

DCB

A,32.

D,19 C,5 B,8

E,32

:ALPHA

This diagram uses the notation introduced in Section 11.1.2.
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The name DCB refers to the layout of the fields relative to the starting address
of the block. Thus there could be more than one DCB block in storage at a given
time, one at ALPHA and others at other addresses.

The block is divided into five components, and the name and size are given for
each component. Component A contains 32 bits and occupies the four bytes
whose addresses are ALPHA through ALPHA+3. Component B contains 8 bits
and occupies the byte at ALPHA+4. Component C contains 5 bits and occupies
the 5 low-order bits of the byte at ALPHA+5. Component D contains 19 bits
and occupies the remaining bits of the byte at ALPHA+5 as well as the next two
bytes. Component E occupies the next longword.

11.10.3.2 BLOCK Field-References
Each component of a block has a field-reference. The field-references for DCB are
as follows:

Component Field-Reference Analogue for BLISS–36

A of ALPHA (ALPHA+0)<0,32,0> (ALPHA+0)<0,36,0>

B of ALPHA (ALPHA+4)<0,8,0> (ALPHA+1)<0,8,0>

C of ALPHA (ALPHA+4)<8,5,0> (ALPHA+1)<8,5,0>

D of ALPHA (ALPHA+4)<13,19,0> (ALPHA+1)<13,23,0>

E of ALPHA (ALPHA+8)<0,32,0> (ALPHA+2)<0,36,0>

For example, the field-reference expression for component D of ALPHA is
interpreted by locating the byte whose address is (ALPHA+4) and then applying
the field-selector <13,19,0> at that position in memory. The field-selector starts
at the low-order (rightmost) bit of the designated byte, then skips 13 bits (first
parameter) to the left, then selects the next 19 bits (second parameter), and,
finally, applies unsigned extension (third parameter) if the access is a fetch.

The field-references given in the table reflect a bias towards fullwords. That is, if
ALPHA is a fullword address, then the expressions (ALPHA+4) and (ALPHA+8)
are also fullword addresses. This bias is natural for VAX, but it is not essential.
An alternative field-reference for component D that does not show this bias
follows:

(ALPHA+5)<5,19,0> !No analogue in BLISS--36

This field-reference is different from that given previously for D, but it selects the
same bits of storage.

Any of the field-references can be used for either a fetch or a store operation. For
example, to place the value 7 in component D of ALPHA, write the following:

(ALPHA+4)<13,19,0> = 7

11.10.3.3 BLOCK Allocation
A specific block data segment is allocated by means of a BLOCK structure-
attribute. The attribute provides values for the allocation-formals of the BLOCK
structure-declaration. The following declaration allocates storage for the DCB
block named ALPHA:

OWN
ALPHA: BLOCK[3,4];
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The structure-attribute in this example is BLOCK[3,4], and it provides the values
3 and 4 for the allocation-formals N and UNIT, respectively. When storage is
allocated for ALPHA, the structure-size expression in the declaration of BLOCK
is evaluated. That expression is N*UNIT and its value is therefore 12. Thus 12
bytes of storage (3 fullwords) are allocated for ALPHA.

An equivalent declaration of ALPHA is as follows:

OWN
ALPHA: BLOCK[3]; !Also valid in BLISS--36

In this declaration, the structure-attribute does not give a value for UNIT, so the
default value is used. (This declaration results in the allocation of three fullwords
in BLISS–36 also, whereas the prior version would not be valid in that dialect.)

Another equivalent declaration is as follows:

LITERAL
DCB_SIZE = 3;

...
OWN

ALPHA: BLOCK[DCB_SIZE];

This example uses a literal-name instead of a numeric-literal to provide the value
of the allocation-formal N. This practice is always desirable, and is especially so
when ALPHA is one of several data segments of the same form. The use of the
name DCB_SIZE tells the reader explicitly that ALPHA will eventually be used
for the block diagrammed at the beginning of this section.

11.10.3.4 BLOCK Structure-References
A specific component of a data block is accessed by means of a structure-reference.
The structure-reference begins with the name of the data segment and then gives
values for the four access-formals of the BLOCK structure declaration.

The following example ends by assigning 7 to component D of ALPHA:

LITERAL
DCB_SIZE = 3;

OWN
ALPHA: BLOCK[DCB_SIZE];

...
ALPHA[1,13,19,0] = 7;

The structure-reference in this example is interpreted as follows:

First, make the following copy of the structure-body of the declaration of BLOCK:

(BLOCK+O*UNIT)<P,S,E>

Next, replace the formal-name BLOCK with the name ALPHA, providing the
following:

(ALPHA+O*UNIT)<P,S,E>

Next, replace the allocation-formal UNIT with 4, providing the following:

(ALPHA+O*4)<P,S,E>

Finally, replace the four access-formals, O, P, S, and E, with the corresponding
access-actual parameters 1, 13, 19, and 0, providing the following:

(ALPHA+4)<1,13,19,0>

This is the same as the field-reference given for component D in Section 11.10.3.2.
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11.10.3.5 BLOCK Field-Declarations
The reference to component D of ALPHA is improved by the use of the BLOCK
structure-name, but it still requires a list of integer parameters, [1,13,19,0], that
bears no obvious relation to the description ‘‘component D of DCB’’.

You could solve this problem by defining a macro, such as the following:

MACRO
DCB_D = 1,13,19,0 %;

However, BLISS provides a special feature, the field-declaration, for this purpose.

The following program fragment shows the complete mechanism for handling the
block ALPHA:

LITERAL
DCB_SIZE = 3;

FIELD
DCB_FIELDS =

SET
DCB_A = [0,0,32,0],
DCB_B = [1,0,8,0],
DCB_C = [1,8,5,0],
DCB_D = [1,13,19,0],
DCB_E = [2,0,32,0]
TES;

MACRO
DCB = BLOCK[DCB_SIZE] FIELD(DCB_FIELDS) %;

OWN
ALPHA: DCB;

...
ALPHA[DCB_D] = 7;

The field-declaration defines the four-integer code for each component and also
gives a name, DCB_FIELDS, to the five field-names thus declared.

The declaration of the macro-name DCB is the final convenience; it permits the
block layout that is associated with ALPHA to be designated by a single name,
DCB.

When the macro-call on DCB is expanded, the declaration of ALPHA becomes the
following:

OWN
ALPHA: BLOCK[DCB_SIZE] FIELD(DCB_FIELDS);

The field-attribute allows the five field-names associated with DCB_FIELDS to be
used in structure-references for ALPHA.

11.10.4 BLOCKVECTOR Structures
A BLOCKVECTOR structure is a vector of blocks. The number of elements ( n )
is the extent of the vector, and the size of each element is the size of a single
block. The elements are numbered from 0 to n–1. The structure-declaration for
BLOCKVECTOR in each dialect is as follows:

• In BLISS–16:

STRUCTURE
BLOCKVECTOR[I, O, P, S, E; N, BS, UNIT=2] =

[N*BS*UNIT]
(BLOCKVECTOR+(I*BS+O)*UNIT)<P,S,E>;
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• In BLISS–32:

STRUCTURE
BLOCKVECTOR[I, O, P, S, E; N, BS, UNIT=4] =

[N*BS*UNIT]
(BLOCKVECTOR+(I*BS+O)*UNIT)<P,S,E>;

• In BLISS–36:

STRUCTURE
BLOCKVECTOR[I, O, P, S, E; N, BS] =

[N*BS]
(BLOCKVECTOR+(I*BS+O))<P,S,E>;

The formal names of the structure-declaration have the following meanings:

Formal Name Meaning

I The number of the block element. Valid values are 0 through n-1.

O The offset to a field. Valid values are 0 through BS-1.

P Bit offset from the addressable-unit to the beginning of the field.

S Size of the field in bits. Valid values are 0 through %BPVAL.

E Extension rule. Valid values are 0 for zero-extension and 1 for
sign-extension.

N The number of block elements in the vector.

BS The number of allocation-units in each block element.

UNIT The number of addressable-units in the allocation-unit.

The BLOCKVECTOR structure is a combination of the allocation and access
definitions from the BLOCK and VECTOR structures.

Using this structure, a declaration of a vector of DCB blocks (used as an example
of the BLOCK structure in Section 11.10.3) is written as follows:

OWN XXX: BLOCKVECTOR[100,DCB_SIZE] FIELD(DCB_FIELDS);

This declaration allocates storage for 100 DCB blocks, each of which is three
fullwords in size. If the contents of a variable J is 2, then the following fetches
the value of the D field of the third block in the vector:

.XXX[.J,DCB_D]

Observe that the same field-declaration used with the block discussed in
Section 11.10.3 is used with the block vector discussed here.

11.11 Other Structures
The predeclared structures described in the previous section are included in
BLISS because they occur frequently in many types of programs. However, they
are only a sample of the wide range of structures that can be defined with the
structure declaration. This section describes additional structures that illustrate
some other possibilities.

To minimize the complexity of the example structures presented, only fullword
versions of the structures are defined. These examples could be augmented in a
variety of ways to be more flexible. Also, the structure-declarations are written
in parameterized, transportable form (using the predeclared literal %UPVAL) so
that they are valid in all dialects.
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11.11.1 ‘‘One-Origin’’ Vector Structures
The definition of vector presented previously numbered the elements of the
vector ( n ) from 0 to n–1. In some applications, it is more natural to number the
elements from 1 to n instead.

A structure that accomplishes this is as follows:

STRUCTURE
VECTOR1[I; N] =

[N*%UPVAL]
(VECTOR1+(I-1)*%UPVAL);

This structure differs from the VECTOR structure previously presented in that
1 is subtracted from the element number before the offset relative to the base of
the vector is computed.

11.11.2 ‘‘Bounds Checking’’ Vector Structures
On occasion, particularly during debugging, it is desirable to perform validity
checking of the access-actuals of a structure-reference. For the VECTOR1
structure just given, bounds checking can be accomplished as follows:

STRUCTURE
VECTOR1CHK[I; N] =

[N*%UPVAL]
BEGIN
LOCAL T;
T = I;
IF .T LSS 1 OR .T GTR N
THEN

BEGIN
ERROR(.T);
T = 1;
END;

VECTOR1CHK+(.T-1)*%UPVAL
END;

This structure calls a routine ERROR for those cases in which the value of I is
not in the valid range of 1 through N inclusive.

11.11.3 Two-Dimensional Array Structures
A zero-origin two dimensional array structure can be defined as follows:

STRUCTURE
ARRAY[I, J; M, N] =

[M*N*%UPVAL]
(ARRAY+(I*N+J)*%UPVAL);

This structure stores elements in row order as in PL/I.

A similar structure that stores elements in one-origin column order, as in
FORTRAN, can be defined as follows:

STRUCTURE
ARRAYBYCOL[I, J; M, N] =

[M*N*%UPVAL]
(ARRAY+((J-1)*M+(I-1))*%UPVAL);

This structure differs from the previous example in the following ways:

• I is replaced by I–1 and J is replaced by J–1 to get one-origin numbering of
the elements.
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• I and J are interchanged in the structure-body, as are M and N, to get column
ordering instead of row ordering.

11.11.4 Symmetric Array Structures
A symmetric array is a square array in which the contents of A[I,J] is equal to
the contents of A[J,I]. For such an array, it is not necessary to allocate storage for
the entire array.

A symmetric 3-by-3 array can be diagrammed as follows:

(1,1) (1,2) (1,3)

(2,2) (2,3)

(3,3)

J

I

ZK−6000−GE

The number of elements needed to represent a symmetric array is as follows:

n * (n+1)/2

where n is the number of elements in each dimension. In the 3-by-3 example
above, this gives 3*4/2, or 6, elements.

The storage for such an array can be allocated with the elements in the following
order:

(1,1), (1,2), (2,2), (1,3), (2,3), (3,3)

If j is greater than or equal to i then the linear position of the (i,j) element in the
storage sequence is given by the following formula:

j*(j-1)/2+i

In the 3-by-3 example above, the position of the (2,3) element is as follows:

3*(3-1)/2+2 = 5

That is, element (2,3) is the fifth element of the linear sequence.

This analysis can be incorporated into a structure declaration for symmetric
arrays as follows:

STRUCTURE
SYMARRAY[I, J; M] =

[(M*(M+1)/2)*%UPVAL]
(SYMARRAY-%UPVAL+

(IF J GTR I
THEN

J*(J-1)/2+I
ELSE

I*(I-1)/2**
)*%UPVAL

);

Declaration and use of this structure is the same as for an ordinary two-
dimensional one-origin array. For example:

OWN SYMX: SYMARRAY[10,10];

This declares and allocates a 10-by-10 symmetric array named SYMX. It occupies
55 fullwords of storage.
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The sum of the 100 logical elements of the array can be computed as follows:

SUM = 0;
INCR I FROM 1 TO 10 DO

INCR J FROM 1 TO 10 DO
SUM = .SUM + .SYMX[.I,.J];

11.11.5 Noncontinuous Block Structures
The predeclared definition of the BLOCK structure given previously assumes
that all of the fields of the block are contiguous in memory. In some cases
this might not be possible or desirable. For example, a storage management
subsystem might be in use that provides only a fixed-size block of memory. In
such a circumstance it may still be desirable to reference a ‘‘logical block’’ as an
entity even though it might be represented using more than one physical block of
memory.

The following structure illustrates a way to achieve this:

STRUCTURE
LBLOCK[O, P, S, E, I] =

(CASE I FROM 0 TO 1 OF
SET
[0]: (LBLOCK+O*%UPVAL);
[1]: (.LBLOCK+O*%UPVAL);
TES

)<P,S,E>;

Because this structure is only intended to be used with dynamically allocated
memory, the definition does not contain a structure-size expression.

A typical declaration of a data segment that points to an instance of this structure
is as follows:

OWN XPTR: REF LBLOCK;

To understand this structure, consider the following diagram:
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%BPVAL bits

:XPTR
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LBLOCK Organization

The diagram illustrates a logical block consisting of 9 fields named A through
I. The logical block is represented as two physical blocks. Each physical block
consists of four fullwords, the assumed fixed-size storage management unit.
The arrows indicate fields that contain the address of the first block and of the
remainder of the logical block.

The first physical block is like the BLOCK structure described in Section 11.10.3.
However, the access formal list for the LBLOCK structure includes an additional
formal name, I, that the BLOCK structure did not have. This formal name is
used in the structure-body to choose one of two expressions as the structure
address expression.

The field-name for A is defined as follows:

FIELD A = [1,0,%BPVAL/2,1,0];

When used in a structure-reference to XPTR, the last 0 in this definition causes
the first case-line of the structure-body to be used, and thus the following
reference is like a BLOCK reference:

XPTR[A]

A field in the second physical block, such as F, is defined with a 1 as the last
value, as in the following:

FIELD F = [1,0,%BPVAL,1,1];

The last 1 in this definition causes the second case-line to be used. Examination
of the second case-line shows that it is just like the first except that the contents
of the first fullword of the first physical block is used as the base for applying the
offset, position, size, and extension values.
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A reference to this field is written in the same way as a reference to the A field:

XPTR[F]

The extra indirection used to reference this field is hidden in the structure and
field definitions used to define the logical structure.

11.11.6 Partially Overlaid Structures
Some programming applications require data structures that are similar with
respect to some, but not all, of their fields.

For example, consider the symbol table of a compiler. The table must
accommodate different kinds of identifiers (symbols), and has a different kind of
block for each kind of identifier. However, in order to make the table useful, some
fields will appear in all blocks of the table. One such common field will be the
type field, which specifies which kind of identifier a given block represents.

As another example, consider the table of device control blocks in an operating
system. Once again, the table must have different kinds of blocks, one kind for
each kind of device; and, once again, some fields will appear in all blocks of the
table. In this example, the common fields might be the priority level, a pointer to
a queue of operations, and a device type code. For example:

BLOCK TYPE 1 BLOCK TYPE 2

TYPE LEN

NAME_PTR

Q Z

LINK

F TYP LEN

NAME_PTR

VALUE

ZK−5997−GE

The diagram shows two different blocks that share some common fields, namely:
LEN, TYP, and NAME_PTR. Each block also has fields that are not common with
the other block; indeed, the blocks are not even the same size.

The following declarations illustrate one way to code the definitions of these two
blocks, using BLISS–36 as the sample dialect:

FIELD
COM_FLDS =

SET
LEN = [0,0,12,0],
TYP = [0,12,12,0],
NAME_PTR = [1,0,36,0]
TES,

TYP1_FLDS =
SET
F = [0,24,12,0],
VALUE = [2,0,36,0]
TES,

TYP2_FLDS =
SET
Z = [2,0,18,0],
Q = [2,18,18,1],
LINK = [3,0,36,0]
TES;
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MACRO
TYP1_BLOCK = BLOCK[3] FIELD(COM_FLDS,TYP1_FLDS) %,
TYP2_BLOCK = BLOCK[4] FIELD(COM_FLDS,TYP2_FLDS) %;

The field-declaration defines three sets of fields:

COM_FLDS For fields that are common to both types of block.

TYP1_FLDS For fields that are specific to the first type of block.

TYP2_FLDS For fields that are specific to the second type of block.

The macro-declaration defines two macros, one for each kind of block; the
expansions give the attributes appropriate for each kind of block.

These macro-names can be used in data declarations such as the following:

OWN
STARTUP: TYP1_BLOCK;

LOCAL
PTR: REF TYP2_BLOCK;

Observe that in the declaration of PTR (as LOCAL) the structure-attribute is
REF BLOCK[4], where REF is given explicitly and BLOCK[4] results from the
expansion of TYP2_BLOCK. If BLOCK[4] and FIELD (COM_FLDS,TYP2_FLDS)
had been given in the opposite order in the macro definition of TYP2_BLOCK,
then additional macro definitions would be needed in order to declare data
segments with REF structure-attributes. The definition technique shown above
has two advantages:

• The common definition information is given only once, thereby avoiding
the possibility of clerical errors in giving the same information in multiple
field-set definitions.

• Depending on specific details, changes or additions to the common fields
can be made in one place, which is easier and more reliable than making
corresponding changes in many places.

11.11.7 General-Purpose Structures for Default Structure References
Some programming applications involve complicated data structures using blocks
of various types connected together by pointers. If the nature of the application
involves frequent access to blocks related to a given block by ‘‘following pointers’’,
there may well be notational advantages to using a default structure (see Sections
11.8 and 18.2).

For example, suppose the following block is being used to represent a node in a
tree structure, such as might be used for expressions in a compiler.

ZK−5999−GE

OP

LEFT_OPND

RIGHT_OPND

. . .

The op field is used to contain a code for the kind of arithmetic operator
represented, and the LEFT_OPND and RIGHT_OPND fields are used to contain
addresses of other such nodes.
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A routine to compare the OP fields of the two subnodes of a given node for
equality might be written as follows:

ROUTINE COMPARE_SUBOPS(NODE) =
BEGIN
MAP NODE: REF TREE FIELD(TREE_FIELDS);
LOCAL

L_PTR: REF TREE FIELD(TREE_FIELDS),
R_PTR: REF TREE FIELD(TREE_FIELDS);

L_PTR = .NODE[LEFT_OPND];
R_PTR = .NODE[RIGHT_OPND];
IF .L_PTR[OP] EQL .R_PTR[OP]
THEN

...; ! Actions if subnodes have same OP value
END;

The structure and field name definitions assumed in this example should be
obvious from earlier examples and are not shown. You can achieve the same
effect using a default structure as follows:

ROUTINE COMPARE_SUBOPS1(NODE) =
BEGIN
SWITCHES STRUCTURE(REF TREE);
IF .NODE[LEFT_OPND][OP] EQL .NODE[RIGHT_OPND][OP]
THEN

...; ! Actions if subnodes have same OP value
END;

This second version is slightly shorter. It is also more suggestive of the ‘‘logical’’
access being performed because intermediate assignments are not needed simply
to obtain a data segment name (such as L_PTR in the first version) that is
declared with the appropriate structure properties for each step along the path of
access.

Observe that the default structure in this example is a REF structure. This
means that each step in the access path necessarily makes a fetch to obtain the
base address for the next field access.
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12
Routines

Routines are the logical units from which a program is built. Each routine
describes a portion of the program that is relatively complete and independent.
BLISS permits a routine to have its own block structure and local data.

A program has a single main routine (see Section 19.2). The main routine
controls the computation, but it can delegate parts of the computation to
subordinate routines. Each subordinate routine can, in turn, delegate part of its
computation to its own subordinate routines. A routine can also call an external
routine (one defined outside of its own block or module) to perform a commonly
needed function, for example.

The first two sections of this chapter describe routine-calls. The remaining five
sections describe routine-declarations.

The linkage-declaration, which controls the instruction sequence generated for a
call on a given routine, and the register-management discipline used within the
routine, is described in Chapter 13.

12.1 Ordinary-Routine-Calls
A routine-call causes the execution of a routine that has been declared as part
of the same module or some other BLISS module, or of a program written in
another language. Two kinds of routine-calls are provided: ordinary and general.
The ordinary-routine-call is the most commonly used form: it gives the name of
a routine and relies on the compiler to determine, from the declaration of the
named routine, the appropriate linkage (or calling sequence).

A general-routine-call is self-contained. It gives all of the information needed for
calling the routine.

The following is an example of an ordinary-routine-call:

OWN
A,
B;

EXTERNAL ROUTINE
RFACT;

.

.

.
A = RFACT(.B)
END

The RFACT routine is declared in another module. The function of the routine
is to determine the factorial of a given parameter. The result is the value of
the routine; therefore, the routine does not have a NOVALUE attribute. The
routine-call RFACT(.B) causes the contents of input-actual-parameter B to be
passed to the factorial routine and the returned result to be assigned to location
A. (The declaration of routine RFACT is given in Section 12.4.)
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In the example, the routine-call is used to pass an input-parameter; however,
output-parameters can also be passed. When this is done, each output-actual-
parameter is treated like the left-hand side of an assignment expression defining
where an output-register value (from the called routine) is to be stored.

Output-parameters permit a routine to return results that are larger than a
BLISS value or to return several values at once. For example, a double-precision
floating point value can be returned in R0 and R1.

In the routine-call syntax, output-parameters follow input-parameters and are
separated by a semicolon ( ; ).

12.1.1 Syntax

routine-call n
ordinary-routine-call
general-routine-call

o

ordinary-
routine-call

routine-designator

(
n

input-actual-parameter , . . .
nothing

o
n

; output-actual-parameter , . . .
nothing

o
)

routine-designator primary

input-
actual-parameter

n
expression
nothing

o

output-
actual-parameter

n
expression
nothing

o

12.1.2 Restrictions
The number of input-actual-parameters in a routine-call must agree with the
number of input-formal-parameters in the routine-declaration. (This restriction
can be relaxed through use of the linkage-functions described in Section 13.6.)

The value of each input-actual-parameter must be consistent with the context
in which the corresponding input-formal-parameter is used in the routine
declaration.

An output-actual-parameter can be any expression, including an undotted
register-name qualified by position, size, and sign extension information (that is,
a field-reference).

The number of output-actual-parameters must be less than or equal to the
number of output-formal-parameters specified in the routine declaration.

An output-actual-parameter must not be specified if a corresponding output-
parameter-location register is not specified in the linkage. The evaluation of
the routine-designator must yield the value of a name that has been declared
ROUTINE.
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The linkage of the routine-designator (determined as described in Section 12.1.3
must be the same as the linkage-attribute in the declaration of the routine that is
called.

A linkage-name defined with the linkage-type INTERRUPT or RSX_AST must
not be used in a general-routine-call.

The order in which the routine-designator and actual-parameters are evaluated
is as follows: Input-actual-parameters are evaluated before the routine call, and
output-actual-parameters are evaluated when the routine returns to the caller.

12.1.3 Semantics
An ordinary-routine-call is interpreted as follows:

1. Evaluate the routine-designator and the actual-parameters.

2. Determine the linkage to be used with the routine-designator. If the
routine-designator is a routine-name, then the linkage is given by the
linkage-attribute (explicit or default) in the declaration of the routine-
name. Otherwise, the linkage is given by the linkage-name established in a
LINKAGE switch or, if no LINKAGE switch applies, the linkage is the default
linkage-name for the dialect in use (BLISS for BLISS–16/32; BLISS36C for
BLISS–36).

3. Associate the actual-parameters with the formal-parameters of the routine
called. The value of the ith actual-parameter becomes the content of the ith
formal-parameter.

4. Create a stack frame. The kind of stack frame and the details of its
organization depend on the linkage of the routine.

5. Evaluate the routine-body.

6. Delete the stack frame.

7. Evaluate the output-actual-parameter expressions and assign the returned
output-register values to the appropriate output-actual-parameters.

8. If a value is returned, use that value as the value of the routine-call.

The linkage used in a routine-call does not affect the semantics of the call, but
instead affects the details of how the call is carried out. Linkages are described
in Chapter 13.

12.1.4 Pragmatics
An input-actual-parameter in a routine-call can be a %REF standard function.
This function is especially designed for use in routine-calls. It is described and
illustrated in Section 5.2.2.3.

12.2 General-Routine-Calls
A routine whose address is computed during execution can be called with a
linkage other than the default linkage using a general-routine-call. The following
is an example of a general-routine-call:
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EXTERNAL ROUTINE
F1: FORTRAN_SUB NOVALUE,
F2: FORTRAN_SUB NOVALUE,
F3: FORTRAN_SUB NOVALUE;

BIND
TABLE = UPLIT(F1,F2,F3) : VECTOR;

...
FORTRAN_SUB(.TABLE[.I], P1, P2)
...

The address of the FORTRAN routine to be called is computed by fetching an
element of a vector. Because the routine has linkage-type FORTRAN_SUB, the
general-routine-call must be used to give the compiler the information necessary
to generate the correct form of routine-call.

12.2.1 Syntax

general-routine-
call

linkage-name

( routine-address

8>>>>>><
>>>>>>:

n
, input-actual-parameter , . . .
nothing

o
n

; output-actual-parameter , . . .
nothing

o
nothing

9>>>>>>=
>>>>>>;

)

linkage-name name

routine-address expression

input-
actual-parameter

n
expression
nothing

o

output-
actual-parameter

n
expression
nothing

o

12.2.2 Restrictions
BLISS–16 ONLY
A linkage-name defined with the linkage-type INTERRUPT or RSX_AST must
not be used in a general-routine-call.

The evaluation of the routine-address expression must yield the address of a
routine that is declared with the specified linkage-name as its linkage-attribute.

The number of input-actual-parameters in a routine-call must agree with the
number of input-formal-parameters in the routine-declaration. (This restriction
can be relaxed through use of the linkage-functions described in Section 13.6.)

The value of each input-actual-parameter must be consistent with the context
in which the corresponding input-formal-parameter is used in the routine-
declaration.
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An output-actual-parameter can be any expression, including an undotted
register-name qualified by position, size, and sign extension information (that
is, a field-reference).

The number of output-actual-parameters must be less than or equal to the
number of output-formal-parameters specified in the routine declaration.

An output-actual-parameter must not be specified if a corresponding output-
parameter-location register is not specified in the linkage.

The order in which the routine-address expression and actual-parameters are
evaluated is as follows: Input-actual-parameters are evaluated prior to the
routine call, and output-actual-parameters are evaluated when the routine
returns to the caller.

12.2.3 Semantics
In a general-routine-call, the routine-address expression is interpreted as the
address of the routine to be called, and the remaining expressions are interpreted
as the actual parameters of the call. The linkage to be used is given by the
linkage-name. In all other respects, the semantics is the same as for an ordinary-
routine-call.

12.3 Routine-Declarations
A routine-name can be declared in five different ways in BLISS. An ordinary-
routine-declaration is used to give the definition of a routine that is used only
in the block in which it is declared. A global-routine-declaration is used to
give the definition of a routine that is used in other modules as well as in the
module in which it is declared. A forward-routine-declaration declares the name
of a routine so that it can be called from a point in the block that precedes its
complete definition, which is given by an ordinary- or global-routine-declaration.
An external-routine-declaration declares the name of a routine whose definition
is given as a global-routine-declaration in another module. A bind-routine-
declaration gives the definition of the address of a routine in terms of an
expression.

The first four ways of declaring a routine-name are described in the following
sections. The bind-routine-declaration is described in Section 14.4.

12.3.1 Syntax

routine-declaration

8<
:

ordinary-routine-declaration
global-routine-declaration
forward-routine-declaration
external-routine-declaration

9=
;

12.3.2 Semantics
The semantics of the routine-declaration is given in the following sections where
each kind of routine-declaration is considered separately.
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12.4 Ordinary-Routine-Declarations
An ordinary-routine-declaration defines a routine. The scope of the declared
routine-name is the immediately containing block (including all contained blocks).
The declaration includes an expression, the routine-body, which is evaluated each
time the routine is called. The declaration also includes a list of formal-names.
When the routine is called, the value of each actual-parameter in the routine-call
is assigned to the corresponding formal-name. The formal-names can be accessed
in the routine-body as if they were LOCAL data segment names, except that
values must not be assigned to them.

A BLISS routine can be recursive. A routine is recursive if it can be called while
a previous call to the routine is still active. Recursion can be direct or indirect.
Direct recursion occurs when the routine contains a call on itself; for example, the
routine-body for the routine A contains a call on the routine A. Indirect recursion
occurs when the routine contains a call on another routine, which ultimately
results in a call on the routine being declared; for example, the routine-body
for the routine A contains a call on the routine B, which contains a call on the
routine A.

An example of an ordinary-routine-declaration follows:

ROUTINE AVERAGE3(F1,F2,F3) = (.F1 + .F2 + .F3)/3;

The routine AVERAGE3 has three formal-names F1, F2, and F3. An example of
a call on this routine follows:

AVERAGE3(5, .A, .B*.C)

Another example of an ordinary-routine-declaration is the declaration of a
factorial routine. This routine computes the mathematical function factorial(n):

ROUTINE IFACT (N) =
BEGIN
LOCAL

RESULT;
RESULT = 1;
INCR I FROM 2 TO .N DO

RESULT = .RESULT*.I;
.RESULT
END;

When the routine IFACT is called, it computes the factorial of the actual-
parameter specified. If the content of N is less than 2, the indexed-loop is not
executed and the value of the routine is 1. An example of a call in this routine
follows:

IFACT(.A * .B)

In this example, if the content of A is assumed to be 2 and the content of B is
assumed to be 3, the result returned by the call is 720.

The factorial routine could be rewritten as a directly recursive routine, as follows:

ROUTINE RFACT (N) =
IF .N GTR 1

THEN
.N * RFACT (.N - 1)

ELSE
1;
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(For the computation of a factorial the first version, IFACT, is more efficient than
the recursive version, RFACT. Recursion is used when it is the most natural or
efficient method.)

12.4.1 Syntax

ordinary-routine-
declaration

ROUTINE routine-definition , . . . ;

routine-definition routine-name

8<
:

( input-list )
( ; output-list )
( input-list ; output-list )
nothing

9=
;

n
: routine-attribute . . .
nothing

o
= routine-body

routine-name name

input-list input-formal-parameter , . . .

output-list output-formal-parameter , . . .

input-
formal-parameter

output-
formal-parameter

formal-item

formal-item
formal-name

n
: formal-attribute-list
nothing

o

formal-name name

formal-
attribute-list

{ map-declaration-attribute . . . }
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map-declaration-
attribute

8>><
>>:

allocation-unit
extension-attribute
structure-attribute
field-attribute
volatile-attribute

9>>=
>>;

( 16/32 Only
( 16/32 Only

routine-attribute

8>><
>>:

novalue-attribute
linkage-attribute
psect-allocation
addressing-mode-attribute
weak-attribute

9>>=
>>; ( 16/32 Only

( 32 Only

routine-body expression

12.4.2 Restrictions
The number of input-formal-parameters in the routine-declaration must agree
with the number of input-actual-parameters in the routine-call. (This restriction
can be relaxed through use of the linkage-functions described in Section 13.6.)

The number of output-formal-parameters in the routine-declaration must be
less than or equal to the number of output-parameter-locations specified in the
linkage-declaration.

An output-formal-parameter must not be specified if a corresponding output-
parameter-location is not specified in the linkage.

The value of an output-formal-parameter is undefined until it is assigned a value
within the routine-body.

An input-formal-name must not be assigned a value.

Both the value of a formal-name and its content are undefined except during the
evaluation of the routine-body.

If the routine is declared with the NOVALUE attribute, it must not be called in a
context that requires a value and if any RETURN expression in the routine-body
has a returned-value, the expression is evaluated but its value is not used. If the
routine does not have the NOVALUE attribute, any RETURN expression in the
routine-body as well as the routine-body itself must have a returned-value.

Suppose the routine-body of a given routine, routine A, contains the declaration
of another routine, routine B. If a name is a formal-name for routine A, then
that name cannot be used as such within routine B. Such usage would be an
‘‘up-level’’ reference, which is prohibited for formal-names just as for local-names
(see Section 10.5).

12.4.3 Defaults
Each formal-name is implicitly declared by a routine-declaration. Each
declaration is assumed to be a scalar, with a default allocation-unit and extension-
attribute (BLISS–16/32 only). If this assumption is not appropriate, other
map-declaration-attributes can be specified (see Section 12.4.5.3).

If a linkage-attribute is not given and the routine is in the scope of a LINKAGE
switch, then the default linkage-attribute is the linkage-name given by the
LINKAGE switch (see Sections 18.2 and 19.2). Otherwise, the default is the
predeclared linkage-name BLISS for BLISS–16/32, or BLISS36C for BLISS–36.

12–8 Routines



12.4.4 Semantics
The compiler makes use of the information in an ordinary-routine-declaration as
follows:

1. The attributes and keywords are processed.

2. The routine-body is processed. Input- and output-formal-names are treated
as local variable names that are declared in an implicit block enclosing the
routine-body. The input-formal-names are then initialized with the values
of the corresponding input-actual-parameters from a routine-call; however,
output-formal-names are not initialized with corresponding output-actual
values.

3. When the routine returns to the caller, the contents of the data-segment
associated with each output-formal-parameter, are moved to the registers
specified in the associated linkage-declaration.

4. If the routine is declared with the NOVALUE attribute, the mechanism for
returning a value is suppressed.

12.4.5 Pragmatics
The following sections give examples that illustrate various aspects of the routine
facility of BLISS.

12.4.5.1 Parameter Passing
The value of each actual-parameter of a routine-call is passed to the routine by
means of the corresponding formal-name. However, the value of the formal-name
is not the value of the actual-parameter. Instead, each formal-name designates a
data segment that contains the value of the actual parameter. The data segment
designated by the formal-name is defined only during evaluation of the routine-
body, and it is ‘‘temporary’’ in that sense.

Because it is the value of an actual-parameter that is normally of interest (rather
than the address of the temporary data segment that contains that value), a
use of a formal-name without a preceding fetch-operator is often an error. For
example:

ROUTINE AVERAGE3(F1,F2,F3) =
(.F1 + .F2 + .F3)/3;

This routine is called with three actual-parameters whose values are to be
averaged. An example of a call on the routine follows:

AVERAGE3(5, .A, .B*.C)

Each formal-name of the routine can be thought of as a special kind of LOCAL
name that is declared in the implicit block that surrounds the routine-body.
Therefore, the routine-body for AVERAGE3 can be thought of as the following
block:

BEGIN
LOCAL

F1,
F2,
F3;

F1 = 5;
F2 = .A;
F3 = .B*.C;
(.F1 + .F2 + .F3)/3
END
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This interpretation shows that it is .F1, .F2, and .F3 that represent the values to
be averaged, not F1, F2, and F3.

In the preceding example, the routine-call supplied values that were intended for
calculation. It is also possible for a routine-call to supply values that are intended
for use as addresses. For example:

ROUTINE EXCHANGE(X,Y): NOVALUE =
BEGIN
LOCAL TEMP;
TEMP = ..X;
.X = ..Y;
.Y = .TEMP;
END;

This routine is called with two actual-parameters whose values are the addresses
of data segments. An example of a call on the routine follows:

EXCHANGE(Q,R)

When this call is evaluated, the contents of Q and R are interchanged. Once
again, each formal-name can be thought of as a special kind of LOCAL name.
Thus the given parameters Q and R are represented by .X and .Y, respectively,
not by X and Y.

Note that routines to be called from FORTRAN must assume that actual-
parameter values are always the addresses of data segments. This is so because
FORTRAN routines pass parameters by address, not by value.

For example:

ROUTINE AVERAGE3A(F1,F2,F3) =
(..F1 + ..F2 + ..F3)/3;

This routine requires that the actual-parameters be the addresses of the values
to be averaged. Thus a BLISS call on this routine might be as follows:

AVERAGE3A(UPLIT(5), A, %REF(.B*.C))

This call on AVERAGE3A gives the same value as the call, given earlier, on
AVERAGE3. The first actual-parameter uses a UPLIT (see Section 4.4) to supply
the address of the numeric-literal 5. The second actual-parameter simply uses
the name A (without a fetch operator) to get the address of the value. The third
actual-parameter uses the %REF standard function (see Section 5.2) to supply an
address for the value of the expression .B*.C.

The routine AVERAGE3A uses addresses of values where values would have
been sufficient for interaction with other BLISS routines. That is to say, it does
not minimize indirection. However, the routine is valid and, written in this way,
can be made callable from programs written in the FORTRAN language by the
addition of the FORTRAN_FUNC linkage-attribute (see Section 13.5).

12.4.5.2 Allocation of Formal-Name Data Segments
While data segments for formal-names are like local data segments in most
respects (as discussed in Section 12.4.5.1), they are not necessarily allocated in
the same way as local data segments. Formal data segments are allocated and
assigned values by the routine making a call, rather than by the routine that is
called. The calling routine can arrange to allocate formals in static memory that
is protected from write access rather than, for example, in a temporary segment
in a stack frame. This is an optimization because, under suitable conditions,
the calling routine does not need to allocate and assign values for the formals
each time the call is made. Moreover, the calling routine can even be able to
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use the same formal data segments for different routine calls if they have the
same number and sequence of actual parameter values. A restriction given in
Section 12.4.2, namely, that a formal name must not be assigned a value, assures
that it is valid for a calling routine to use such optimizations.

12.4.5.3 Attributes for Formal-Names
If the default attributes (UNSIGNED WORD in BLISS–16, UNSIGNED LONG
in BLISS–32, none in BLISS–36) are not appropriate for a formal-name, an
appropriate attribute can be selected from the map-declaration-attributes. An
example of the use of a structure-attribute in an ordinary routine declaration is
as follows:

ROUTINE ZEROBIT(A : REF BITVECTOR[12],B,C): NOVALUE =
BEGIN
IF .A[.B]
THEN

BEGIN
A[.B] = 0;
.C = ..C + 1;
END;

END;

The structure-attribute REF BITVECTOR[12] is provided for the first formal-
name ( A ). Assuming the content of B is i, the routine ZEROBIT tests the ith bit
of the bit vector structure A. If that bit is 1, it is set to 0 and the content of the
location pointed to by .C is incremented.

12.4.5.4 Computed Routine Addresses
A routine-call usually begins with a routine-name, which designates the routine
in an explicit and constant way. However, a routine-call can begin with any
expression that yields a valid routine address. For example:

ROUTINE ENTVAL(A,ERR): NOVALUE =
BEGIN
... !Try to enter .A in LIST1
IF .FILLED THEN (.ERR)(1, .A);
... !Try to enter .A in LIST2
IF .FILLED THEN (.ERR)(2, .A);
END;

Assume that this routine tries to put the content of A into two lists, LIST1
and LIST2. If the list is filled up, an error message must be printed. However,
ENTVAL does not print a message and does not even call a specific routine to
print an error message. Instead, ENTVAL calls a routine whose address is given
as one of the formal-names.

An example of the use of ENTVAL follows:

ROUTINE ERRX(N,VAL): NOVALUE =
BEGIN
... !Print error message for invalid .X
END

.

.

.
ENTVAL(.X,ERRX)

In this example, ENTVAL is called to enter the contents of X in the lists. The
second parameter of the call is ERRX, which is the name of a routine designed
especially to report an invalid value of .X. Observe that the name ERRX in this
call does not call the routine ERRX because there are no parentheses following it.
Thus, ERRX is not a routine call. Presumably, the same program contains other
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calls on ENTVAL, and different calls use different routines to report an invalid
value.

12.5 Global-Routine-Declarations
A global-routine-declaration provides the same information as the ordinary-
routine-declaration. The only difference between these two declarations is their
scope. A routine that is declared in an ordinary-routine-declaration can only be
called in the block in which the declaration is given (Section 8.2.4). A routine
that is declared in a global-routine-declaration can be called outside the block in
which it is declared. The scope of the routine-name is extended beyond the block
by means of one or more external-routine-declarations in other blocks or modules.

The only differences between the syntax of the ordinary-routine-declaration
and the global-routine-declaration are that the GLOBAL keyword is required
in the latter and, in BLISS–32 only, the weak-attribute is permitted in a
global-routine-declaration.

12.5.1 Syntax

global-routine-
declaration

GLOBAL ROUTINE global-routine-definition , . . . ;

global-routine-
definition

routine-name8>>><
>>>:

(
n

input-formal-parameter , . . .
nothing

o
n

; output-formal-parameter, . . .
nothing

o
)

9>>>=
>>>;

n
: global-routine-attribute . . .
nothing

o
= routine-body

routine-name name

global-routine-
attribute

8>><
>>:

novalue-attribute
linkage-attribute
psect-allocation
addressing-mode-attribute
weak-attribute

9>>=
>>; ( 16/32 Only

( 32 Only

routine-body expression

12.5.2 Restrictions
The restrictions given in Section 12.4.2 for ordinary-routine-declarations also
apply to global-routine-declarations.

BLISS–16 and BLISS–36 restrictions on names declared as global are given in
Section 4.5.2.
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12.5.3 Defaults
The defaults given in Section 12.4.3 for ordinary-routine-declarations also apply
to global-routine-declarations.

12.5.4 Semantics
The compiler makes use of the information in a global-routine-declaration as
follows:

1. The global nature of the routine is recorded. An indicator is set for the linker
to show that this is a global-declaration. If the routine-declaration has the
weak-attribute, another indicator is set for the linker.

2. The semantics are then the same as the semantics for an ordinary-routine-
declaration, given in Section 12.4.4.

12.6 Forward-Routine-Declarations
Every routine must be declared by an ordinary- or global-routine declaration.
Sometimes, however, it is necessary to use the routine-name before its full
definition is given. Before you use the name, a forward-routine-declaration must
be used to declare the name as a routine-name and to associate a limited set of
attributes with it.

As an example of the use of a forward-routine-declaration, consider the two
routines A and B. Routine A calls routine B and routine B calls routine A. If the
ordinary-routine-declaration for A is given first, a forward-routine-declaration
must be given for B. If the ordinary routine-declaration for B is given first, a
forward-routine-declaration must be given for A.

In general, the use of a forward-routine declaration (at the beginning of a block)
to specify all of the routine-names that are declared in the remainder of the block
serves as a useful ‘‘table of contents’’ and allows the routines to be written in an
order that is independent of their calling relationships.

12.6.1 Syntax

forward-routine-
declaration

FORWARD ROUTINE forward-routine-item , . . . ;

forward-routine-
item routine-name

n
: fwd-routine-attribute . . .
nothing

o

fwd-routine-
attribute

8<
:

novalue-attribute
linkage-attribute
psect-allocation
addressing-mode-attribute

9=
;

( 16/32 Only

routine-name name
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12.6.2 Restrictions
A routine-name declared in a forward-routine-declaration must appear in an
ordinary- or global-routine-declaration later in the same block.

After any default attributes are filled in, a forward-routine-declaration must
agree with its corresponding ordinary- or global-routine-declaration with respect
to the set of attributes allowed in both declarations.

12.6.3 Semantics
A forward-routine-declaration declares a name to be a routine-name whose
definition is given later in the same block, and associates with that name the set
of attributes needed for generation of calls to the named routine. The semantics
of the BLISS–32 addressing-mode-attribute (which is not one of the ordinary or
global routine-attributes) is described in Section 9.13.

12.7 External-Routine-Declarations
Often a routine must be defined in one block of a program and called in other
blocks of the same program. Usually this situation arises from the organization
of the program into separately compiled modules, but this need not be the case.

In order to provide for the linkage between routine-calls and routine definitions
that occur in different scopes (for example, different modules), external-routine-
declarations must be used. Specifically, the routine-name is declared in one block
by a global-declaration (which defines the routine) and is declared in the other
blocks by external-declarations.

12.7.1 Syntax

external-routine-
declaration

EXTERNAL ROUTINE external-routine-item , . . . ;

external-
routine-item routine-name

n
: ext-routine-attribute . . .
nothing

o

routine-name name

ext-routine-
attribute

8>><
>>:

novalue-attribute
linkage-attribute
psect-allocation
addressing-mode-attribute
weak-attribute

9>>=
>>; ( 16/32 Only

( 32 Only

12.7.2 Restrictions
A name must not be declared an external routine unless it is declared a global
routine or a global bind routine in some other block of the same program. This
restriction does not apply, however, to an external name that is declared with the
weak-attribute (BLISS–32 only; see Section 9.14).
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12.7.3 Semantics
An external-routine-declaration informs the compiler that the definition of
the routine-name is not in the current block. The compiler takes note of the
attributes given in the external-routine-declaration. Then, each time a use of
the declared routine-name is encountered, the compiler leaves a blank space in
the object code for the routine-address. Later, the linker fills in the blank with a
specific address.

The attributes in an external-routine-declaration provide the information the
compiler and linker need to proceed in the absence of a full routine-declaration
in the same module. The linkage attribute gives the compiler information about
the type of call to generate for the routine and the availability and uses of
registers within the routine. In particular, the novalue-attribute permits the
compiler to detect an invalid call on the routine (a call that expects a value). The
addressing-mode-attribute and weak-attribute (BLISS–32 only) are described in
Chapter 9.
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13
Linkages

A linkage is the particular calling-sequence convention used in calling a routine,
and the register-management discipline used during execution of the routine that
is called. The type of object code generated by the compiler for a routine-call
is determined by the linkage-definition associated with the called routine. The
linkage-definition also controls the object code generated for the entry and exit
sequences of the routine with which it is associated. Thus, a linkage serves as
the bridge between a routine and any routines that call it.

A linkage-definition may be explicitly declared in a linkage-declaration. Each
BLISS dialect also provides several predefined linkages: one designed for
standardized calls between BLISS–compiled routines (used as the default
linkage), and others for calls between BLISS–compiled routines and FORTRAN-
compiled routines. In the case of BLISS–36, a predefined linkage is also provided
for compatibility with BLISS–10.

Each linkage-definition, whether predefined or explicitly declared, is identified by
a linkage-name. Every routine, in turn, has a linkage-name associated with it,
either by default or by explicit specification of a linkage-attribute in the routine’s
declaration.

The BLISS linkage facility consists of the following features:

• Linkage-declarations

• Predeclared linkage-names

• Linkage-functions (a class of executable-functions)

• Global-register-declarations

• External-register-declarations

This chapter describes the first three language features, and then discusses their
use in conjunction with the global- and external-register-declarations. Primary
descriptions of the register declarations are given in Chapter 10.

In general, the BLISS linkage facility provides a type of control over the compiled
code that is quite unusual in high-level languages, but which is often needed for
efficiency-sensitive system applications. It allows, when necessary, a high degree
of control over the kind of calling sequence generated by the compiler, and the
register-usage conventions that are observed by related routines.

This control might be exercised, for example, in order to optimize a given
routine or group of routines (for example, a subsystem) in terms of either size
or execution time, or to produce a BLISS routine suitable for use with software
written in other languages.

Linkages 13–1



13.1 Introduction to Linkage-Declarations
A linkage-declaration declares a linkage-name that is defined by a particular
combination of linkage characteristics. These characteristics include:

• Linkage-type—The general type of calling sequence, in terms of the specific
transfer-of-control instructions and/or the software calling convention.

• Parameter-location options—The method by which actual-parameters are
passed.

• Register-usage options—Specification of the registers that are saved and
restored across a call, and of those that will not be used in a called routine.

• Global-register options—Specification of register data segments that are
shared between routines.

The linkage-declarations of each BLISS dialect are quite system-specific; they
are tailored to the particular hardware capabilities of each system and to the
major software calling conventions in use on those systems. Nonetheless, there
are many aspects of linkage-declarations that apply to two or more of the BLISS
dialects.

This introduction to linkage-declarations explains the common aspects in three
sections. The first discusses the many ways that registers can be used. This
section is especially important because it establishes much of the vocabulary and
many of the concepts used throughout this chapter. The second section presents
a partial syntax for linkage-declarations that includes constructs common to
at least two of the BLISS dialects. The third section describes the parts of the
linkage-declaration and further develops the concepts introduced in the first
section.

13.1.1 Register Usage
During the execution of a routine, some temporary storage is usually needed
for holding values until they are used. The stack frame associated with the
execution of the routine is one place to hold such values and the general registers
are another. The general registers are more often preferable to the stack frame
because they can be accessed more quickly and/or with shorter instructions.
However, when one routine calls another, some consistent rules regarding
register usage must be observed in order for both to use the machine registers
correctly. The different uses of these registers can be broadly classified as
special purpose and general purpose. Special purpose registers are dedicated for
the same particular purpose among a group of routines; frequently that group
is all of the routines of a program. General purpose registers are used for a
variety of purposes by different routines and even within a single routine. This
classification is hardly precise and does not even consider certain other kinds of
usage that are described later; but it does provide a basis for discussion.

13.1.1.1 Special Purposes
In BLISS there are five types of special purposes to consider for register usage:
program counter, stack pointer, frame pointer, argument pointer, and value-return
register. (As will be seen, registers are not dedicated for all of these purposes in
every routine.)

The program counter register is used to contain the address of the next instruction
to be executed. In BLISS–16, the program counter is always register 7, and in
BLISS–32 it is always register 15. In BLISS–36, the program counter is a special,
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not generally accessible part of the machine architecture, and thus does not figure
in BLISS–36 register assignments.

The stack pointer register is used to contain the address of a portion of memory
used for temporary storage during the execution of each routine. When a routine
is called, the stack pointer is adjusted to point to a new area and when the
routine returns the previous address is put back. The stack pointer may
be adjusted many times during the execution of the routine as the need for
temporary storage grows and diminishes in different parts of the routine. The
portion of storage between the original address in the stack pointer and the
current value at any particular point in time is known as the stack frame for that
call of the routine.

Stack frames can vary greatly in size and complexity. A stack frame might be
as small as a single fullword containing the program counter for returning to
the calling routine or it might be very large, containing many values, fields,
addresses, preserved register values, and so on.

The frame pointer register is used to contain the address of a fixed part of the
stack frame of a routine. In contrast with the stack pointer, which may be
adjusted many times during the execution of a routine, the frame pointer is
generally set once at the beginning of routine execution and only changes when
another routine is called and when the routine completes and returns. The utility
of a frame pointer comes from this stable characteristic; the frame pointer makes
access to fixed parts of the stack frame simple and efficient.

The argument pointer register is used to contain the address of a block of storage
that contains the values of the actual-parameters of a routine-call.

The value return register is a register used to contain the value of a routine
during the process of completion and returning.

The value return register, unlike the other special registers, is used as such only
briefly during the completion of one routine and the resumption of the calling
routine. Consequently, this register can also be used for general purposes during
the execution of a routine.

13.1.1.2 General Purposes
A register that is not dedicated to one of the special purposes described in the
preceding section can be used in a variety of ways. These uses are divided as
follows:

Locally usable
Preserved
Nonpreserved

Globally usable
Not used

A preserved register contains the same value after returning from a routine-call
as it contained at the time the routine was called.

A nonpreserved register does not (necessarily) contain the same value after
returning from a routine-call as it contained at the time the routine was called.

Preserved and nonpreserved registers are together called locally usable registers.
This combined designation is convenient because many of the rules concerning
register usage apply equally to both preserved and nonpreserved registers.

Locally usable registers are used by the compiler according to its optimization
strategies. The compiler determines how many of them to use, which to use for
evaluating expressions, which to allocate for local data segments, and so on.
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A globally usable register is used to contain a global register data segment,
that is, a register data segment that is accessible in more than one routine.
Global register data segments are governed by special rules involving LINKAGE
declarations in combination with GLOBAL REGISTER and EXTERNAL
REGISTER declarations. See Section 13.7 for complete details.

A not used register is simply not used in any way (applicable to BLISS–32 only).

13.1.1.3 Other Purposes
Registers can also be used to pass the values of actual-parameters of a routine-
call to the routine that is called. (These registers must be among the locally
usable registers of the called routine.) When such an actual-parameter is
evaluated, the value is assigned to a given register instead of to a position in an
argument block or the stack. The routine that is called can efficiently fetch such
a parameter value because it is already available in a register at the beginning of
the routine execution.

One or more of the locally usable registers can be allocated for a data segment
established by a REGISTER declaration (see Section 10.7).

13.1.1.4 Multiple Purposes
Most registers are not limited to a single purpose or class of purpose. The
program counter and stack pointer in both BLISS–16 and BLISS–32, as well as
the frame pointer in BLISS–32, are truly dedicated by the hardware for these
purposes; but these are the only cases.

Registers can be used for multiple purposes so long as those uses do not conflict.
Because of the many different kinds of use, the rules for compatible use are
complicated and lengthy. Even so, BLISS still does not always allow every
imaginable combination; that would get even more complicated and lengthy. But,
by and large, BLISS does allow nearly all of the register uses and combinations of
uses that play a significant role in system software on each of the target systems.

13.1.2 Typical Syntax

linkage-declaration LINKAGE linkage-definition , . . . ;

linkage-definition linkage-name = linkage-type8>>>>><
>>>>>:

(
n

input-parameter-location , . . .
nothing

o
n

; output-parameter-location , . . .
nothing

o
)

nothing

9>>>>>=
>>>>>;

n
: linkage-option . . .
nothing

o

linkage-type n
CALL
- - -

o
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input-parameter-
location

(
REGISTER = register-number
STANDARD
nothing

)

output-parameter-
location

{REGISTER = register number}

linkage-option

8<
:

GLOBAL (global-register-segment , . . . )
PRESERVE
NOPRESERVE (register-number , . . . )
- - -

9=
;

global-register-
segment

global-register-name = register-number

(
global-

register-name
linkage-name

)
name

register-number compile-time-constant-expression

The notation ‘‘- - -’’ in the above diagram indicates that there are additional
alternatives in some of the dialects that are not shown. This syntax diagram
does not apply completely to all of the BLISS dialects, but it is representative.
(For example, the CALL linkage-type is part of BLISS–16 and BLISS–32, but not
BLISS–36.)

13.1.3 Restrictions
In BLISS–16, the CALL linkage type is valid with input-parameter-locations, but
not with output-parameter-locations.

The general-registers referenced by output-parameter-locations are implicitly
NOPRESERVE, and cannot appear in NOTUSED, PRESERVE, or GLOBAL
linkage modifiers; however, they may appear in NOPRESERVE modifiers, but
this is not required.

A register-number value must not be given as both a parameter-location and
a global-register-segment, and must not be given in more than one parameter-
location or global-register-segment,

A register-number value must not be given in more than one linkage option.

13.1.4 Semantics
The same register may be both an input- and an output-parameter-location.

Each output-parameter-location specifies that a result from the evaluation of the
routine-body will be returned in that register.

The output-actual expressions in the routine-call are associated with the output-
parameter-location registers specified by the linkage-declaration. When the
routine returns to the caller, the contents of each output-parameter-location
register is assigned to the output-actual field reference.
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If fewer output-actual expressions are present than were specified by the
linkage, the remaining output-parameter-location registers are treated as
NOPRESERVE’s. If an empty element (identified by a null expression) appears
in the list, it will (when output-actuals are bound to the appropriate output-
parameter-location registers) be treated as a placeholder.

The linkage-declaration defines a name for a particular combination of calling
sequence characteristics. A name so declared can be used as a linkage-attribute
in any kind of routine-declaration. The several parts of a linkage-definition are
described in the following sections.

13.1.4.1 Linkage-Types
The linkage-type selects the principal characteristics of the calling sequence to be
used. Each linkage-type generally establishes the following:

• The specific machine instructions to be used to transfer control to a routine
and to return from the routine.

• Whether or not an argument pointer is used to address actual-parameter
values.

• Which linkage-options are applicable.

• The defaults for linkage-options.

The CALL keyword occurs as a linkage-type in BLISS–16 and BLISS–32;
however, the only common characteristic that CALL implies is the use of an
argument pointer to access actual-parameters (that is, input- and output-actuals
for BLISS–32, and input-actuals only for BLISS–16). CALL is not the only
linkage-type that implies use of an argument pointer; the F10 linkage-type in
BLISS–36 also implies use of an argument pointer.

13.1.4.2 Parameter-Locations
An input-actual-parameter of a routine-call can be passed to the called routine
in one of two ways: it can be passed in a standard, or default, method or it can
be assigned to one of the general registers; however, an output-actual-parameter
must be assigned to one of the general registers.

There are two major variations on the standard method; the linkage-type
determines which one is used. The two methods are:

• By argument pointer

• By implicit stack location

13.1.4.2.1 Argument Pointer Method In the argument pointer method, all
of the input-actual-parameters of the routine-call are assigned to successive
positions in a block called the argument block. The address of this block is
passed to the called routine using one of the general registers. A register used
in this way is called an argument pointer register. The called routine fetches
an input-actual-parameter value from the argument block, using the argument
pointer value in combination with an offset determined from the formal-name
that corresponds to that input-actual-parameter position.

In addition to the input-actual-parameter values, an argument block can contain
additional information concerning the parameter values. In each BLISS dialect,
the argument block contains the number of input-actual-parameter values in the
block. In BLISS–36 other information may also be contained in the argument
block.
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An argument block may be located anywhere in storage at the option of the
compiler. It might be part of the stack frame of the routine containing the
routine-call or it might be in permanently allocated storage. A restriction against
assigning to a formal-name assures that an argument block can be allocated in
storage protected against writing and/or reused in the calling routine for other
routine-calls.

13.1.4.2.2 Implicit Stack Location Method In the implicit stack location
method, the input-actual-parameters of the routine-call are assigned to successive
positions in the stack frame of the routine containing the call. No explicit value
giving the location of the parameters is passed to the routine that is called. The
called routine fetches an input-actual-parameter value using implicit information
about where the value is located in the stack frame.

13.1.4.2.3 Register Parameters In addition to the standard method of passing
input-actual-parameter values, some or all of the parameters can be passed
by assigning them to specified general registers. This method can be used in
combination with the standard method; for example, one parameter can be passed
in a register, and the others in the standard way. However, all output-actual-
parameters must be passed by the general-register method.

The general-registers referenced by output-parameter-locations are implicitly
NOPRESERVE, and cannot appear in NOTUSED, PRESERVE, or GLOBAL
linkage modifiers. The registers may appear in a NOPRESERVE linkage-option,
but such specification is unnecessary.

13.1.5 Linkage-Options
Linkage-options supplement and modify the basic calling sequence conventions
established by the linkage-type. For example, in BLISS–36 the LINKAGE_REGS
option can be used in combination with the PUSHJ linkage-type to specify the
registers to be used as the stack pointer, frame pointer, and value-return register,
respectively, if the default choices for the PUSHJ linkage-type are not suitable.

In some cases, a particular linkage-option must only be used in combination
with a specific linkage-type. The LINKAGE_REGS option just mentioned is an
example; it must only be used with the PUSHJ linkage-type in BLISS–36.

In a few cases, linkage-options can be used with several linkage-types and in
more than one BLISS dialect. The PRESERVE, NOPRESERVE, and GLOBAL
linkage-options are examples. They can be used in all dialects with at least two
different linkage-types.

In the object code generated for a given routine, each register’s use is governed
by one of three usage conventions, each corresponding to one of the following
linkage-option keywords:

PRESERVE A preserved register can be used during the execution of the routine, but
the original contents at the time of the routine call must be restored at
the time the routine completes and returns.

NOPRESERVE A nonpreserved register can be used during the execution of the routine
(without restoring its original contents).

GLOBAL A globally usable register is used only as determined by its corresponding
GLOBAL REGISTER and EXTERNAL REGISTER declarations, and by
explicit source-code references to such a register.
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A register that is given in a PRESERVE linkage-option contains the same value
after returning from a routine as it contained at the time the routine was called.
The called routine may or may not use the register. If it does, then special action
is taken to save the contents of the register (push it onto the stack) before the
register is used and restore it (pop it from the stack) afterward. If the register
is not used, then no special action is needed. In either case, a calling routine
is able to leave useful information in a register preserved by the routine being
called—the information is still available after the call.

A register that is given in a NOPRESERVE linkage-option does not necessarily
contain the same value after returning from a routine as it contained at the time
the routine was called. The called routine may or may not use the register, but
in either case no special action is taken to preserve its contents. A calling routine
must not leave needed information in a register that is not preserved by the
routine being called—the information may not be available after the call.

Registers that are given in a GLOBAL linkage-option are used to contain global
register data segments by both calling and called routines. Globally usable
registers are not managed by the compiler; they are used only as explicitly
directed by the source program. In certain special cases, depending on the
linkage-type and other details, a register given in a GLOBAL linkage-option may
be treated as a preserved register, rather than as globally usable. These cases are
described later in the sections for each BLISS dialect.

Globally usable registers are described fully in Section 13.7 where the GLOBAL
linkage-option and the related GLOBAL REGISTER and EXTERNAL REGISTER
declarations are considered together.

13.2 BLISS–16 Linkage-Declarations
The linkage capabilities provided by the linkage-declaration in BLISS–16 are the
following:

• The JSR, CALL, EMT, TRAP, IOT, INTERRUPT, and RSX_AST linkage-types

• Standard or register parameter-locations for input-actuals and register
parameter-locations for output-actuals

• Globally used and locally used registers

• The CLEARSTACK, RTT, and VALUECBIT exit sequence linkage-options

As an example of a linkage-declaration, consider the following:

LINKAGE
PAR2REG3 = CALL(STANDARD, REGISTER = 3);

The declaration indicates that the CALL linkage-type is to be used and that
the second input-actual-parameter is to be passed using register 3. The first
input-actual-parameter and any parameters after the second parameter are to be
passed in the standard way.

13.2.1 Syntax

linkage-declaration LINKAGE linkage-definition , . . . ;
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linkage-definition linkage-name = linkage-type8>>>>><
>>>>>:

(
n

input-parameter-location , . . .
nothing

o
n

; output-parameter-location , . . .
nothing

o
)

nothing

9>>>>>=
>>>>>;

n
: linkage-option . . .
nothing

o

16 Only )

linkage-type

8>>>>><
>>>>>:

JSR
CALL
EMT
TRAP
IOT
INTERRUPT
RSX_AST

9>>>>>=
>>>>>;

1

1

1

input-parameter-
location

(
REGISTER = register-number
STANDARD
nothing

)

output-parameter-
location {REGISTER = register-number}

16 Only )

linkage-option

8>>><
>>>:

CLEARSTACK
RTT
VALUECBIT
GLOBAL (global-register-segment , . . . )
{PRESERVE }
{NOPRESERVE} (register-number , . . . )

9>>>=
>>>;

global-register-
segment

global-register-name = register-number

(
global-

register-name
linkage-name

)
name

register-number compile-time-constant-expression

1Linkage-type is invalid with output-parameter-locations.
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13.2.2 Restrictions
Linkage-names defined with EMT, TRAP, or IOT linkage-types can be used only
as a linkage-attribute in bind, global bind, and external routine declarations (or
in a general-routine-call as described in Section 13.2.4.2).

The register-number value must be in the range 0 to 5.

A register-number value must not be given as both a parameter-location and
a global-register-segment, and must not be given in more than one parameter-
location or global-register-segment.

A register-number value must not be given in more than one linkage-option.

If the CALL linkage-type is given, then the register-number of a REGISTER
parameter-location must be in the range 0 to 4.

The GLOBAL, PRESERVE, NOPRESERVE, CLEARSTACK, and VALUECBIT
linkage-options must not be specified with the CALL linkage-type.

If OTS (run-time library) routines are called, register 0 must not be specified as a
global-register-segment in the calling routine’s linkage-definition.

If the CLEARSTACK linkage-option is given, the number of actual-parameters in
a (general) routine-call must be equal to the number of parameter-locations given.

The VALUECBIT linkage-option may not be specified in a linkage-definition for a
routine written in BLISS.

If the VALUECBIT linkage-option is given, the CLEARSTACK linkage-option
must also be given.

The RTT linkage-option must be given only with the INTERRUPT linkage-type.

No linkage-option can be given with the RSX_AST linkage-type.

13.2.3 Defaults
If a parameter-location is not given, then STANDARD is assumed. If a routine-
call or routine-declaration contains more parameters than are given in the
associated linkage-definition, then STANDARD is assumed as the parameter-
location for each of the additional parameters.

For the JSR linkage-type, the registers are used as follows, by default:

Registers Default Usage

0 Value return register, nonpreserved

1–5 Preserved

6 Stack pointer

7 Program counter

For the CALL linkage-type, the registers are used as follows:

Registers Usage

0 Value return register, nonpreserved

1–4 Preserved

5 Argument pointer
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Registers Usage

6 Stack pointer

7 Program counter

(The default usage cannot be modified for the CALL linkage-type.)

For the EMT, TRAP, IOT, INTERRUPT, and RSX_AST linkage-types, the registers
are used as follows, by default:

Registers Default Usage

0–5 Preserved

6 Stack pointer

7 Program counter

13.2.4 Semantics
A linkage-definition defines a name that designates a particular combination
of calling sequence options. Generally, such a name can be used as a linkage-
attribute in any kind of routine-declaration; however, this is not true of all
linkage-names.

The linkage-type JSR specifies that the PDP–11 JSR and RTS instructions are
used by the compiled code, and that the parameters with STANDARD parameter-
locations are placed on the stack (without a parameter count) and accessed by the
called routine relative to the stack pointer (SP) register.

The linkage-type CALL specifies that the PDP–11 JSR and RTS instructions
are used by the compiled code, and that the parameters with STANDARD
parameter-locations are passed using register 5 (R5) as the argument pointer.

The linkage-types INTERRUPT and RSX_AST specify that a routine will be
called only by a PDP–11 hardware or software interrupt. These linkages are
further described in Sections 13.2.4.1 and 13.2.4.3.

If REGISTER is specified for a parameter-location, the given register will be
used as the location to which the actual-parameter value is to be assigned, and
correspondingly, is the location where the called routine expects to find the value.
This use of a register location to transmit an actual-parameter value to a called
routine does not affect the semantics associated with the use of the corresponding
formal-parameter name.

The CLEARSTACK linkage-option (which can be used only with the JSR, EMT,
TRAP, IOT, or INTERRUPT linkage-type) specifies that the actual-parameters
that are placed on the stack for a routine-call are removed from the stack
by the called routine (instead of by the calling routine). If CLEARSTACK
is not specified, they will not be removed by the called routine (and are the
responsibility of the caller). The VALUECBIT linkage-option (which can be used
only with the JSR, EMT, TRAP, IOT, or INTERRUPT linkage-type, and only in
combination with CLEARSTACK) specifies that an external routine declared with
this linkage-option returns its value in the C bit, and that the value of register
0 is undefined on return from such a routine. (This linkage-option is used to
communicate with non-BLISS routines having this value-return characteristic.)

The RTT linkage-option (which can be used only with the INTERRUPT linkage-
type) specifies that the PDP–11 RTT instruction should be used to exit from the
interrupt routine instead of the normal RTI instruction.
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The GLOBAL, PRESERVE, and NOPRESERVE linkage-options specify the usage
conventions that apply to each PDP–11 machine register at the time a routine is
called and during the execution of the routine. There are three conventions, one
corresponding to each of the three linkage-option keywords. You specify a usage
convention for a register by giving its number in the appropriate linkage-option.
The description of these linkage-options is given in Section 13.1.5.

Register usage conventions can be specified only for registers 0 through 5; the
remaining registers (the stack pointer and program counter) are used only as
specified in the PDP–11 hardware and software architecture.

Globally usable registers are not managed by the compiler; they are used only as
explicitly given in the source program.

13.2.4.1 INTERRUPT Linkage-Type
A linkage-name defined with the INTERRUPT linkage-type can be used only
as a linkage-attribute in a forward-, ordinary-, or global-routine declaration. It
specifies that the routine to which it is applied will be invoked only by a PDP–11
hardware interrupt or software simulation of an interrupt (such as an RSX–11
Synchronous System Trap). Interrupts may occur as a result of certain external
events, such as I/O device completion, or as a result of programmed events, such
as execution of certain instructions: EMT, IOT, and so on. (See Section 13.2.4.3
concerning the related linkage-type RSX_AST.)

The number of formal-names given for the routine must equal the number
of values pushed on the stack by the call. In most cases this is exactly two.
However, interrupt routines that are called by general-routine-calls using a
linkage-name defined with an EMT, TRAP, or IOT linkage-type can have more
than two formal parameters.

The formal parameters of the routine correspond to the hardware values in the
order pushed; that is, the first formal parameter corresponds to the first value
pushed, the second formal parameter corresponds to the second value pushed,
and so on. Consequently, the first formal parameter corresponds to the pushed
processor status (PS) and the second formal parameter corresponds to the pushed
program counter (PC).

13.2.4.2 EMT, TRAP, and IOT Linkage-Types
In a general-routine-call that uses a linkage-name defined with an EMT, TRAP,
or IOT linkage-type, the following special rules apply:

• For EMT and TRAP, the first value in the actual-parameter list is not
interpreted as a routine-address. Instead it is interpreted as a value that
is incorporated into the low byte of the EMT or TRAP instruction itself. It
must be a compile-time constant expression in the range 0 to 255.

• For IOT, all of the values in the parameter list are actual-parameters. There
is no routine-address parameter.

13.2.4.3 RSX_AST Linkage-Type
Similar to the INTERRUPT linkage-type, the RSX_AST linkage-type specifies
that the routine to which it is applied will be invoked only by an RSX–11
Asynchronous System Trap (AST). The first four formal parameters of such a
routine are mandatory and correspond to the following context information:

1. Event-flag mask word

2. Program status word
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3. Program counter

4. Directive Status Word of the interrupted task

Additional formal parameters must be specified if the kind of AST that invokes
the routine pushes supplemental information onto the stack. At the routine’s
return point, any such supplemental information is removed from the stack and
an RSX–11 AST SERVICE EXIT directive (rather than an RTS instruction) is
executed.

13.2.5 BLISS–16 Predeclared Linkage-Names
Four linkage-names are predeclared in every BLISS–16 module. The linkages
are provided for compatible and transportable usage among the several BLISS
dialects. See Section 13.5 concerning such usage.

The predeclared linkage-names are defined as shown in the following declaration:

LINKAGE
BLISS = JSR,
FORTRAN = CALL,
FORTRAN_SUB = CALL,
FORTRAN_FUNC = CALL;

13.3 BLISS–32 Linkage-Declarations
A linkage-declaration in BLISS–32 can be used to specify a CALL, JSB, or
INTERRUPT linkage-type, to designate registers for passing parameters, and to
identify registers as globally used, locally used, or not used. For example:

LINKAGE
DBL_PREC = CALL( ; REGISTER=0, REGISTER=1);

The declaration indicates that the CALL linkage-type is to be used and that
output-actual-parameters are to be passed using registers 0 and 1 for a double-
precision result. Because the registers are treated as output-parameter locations,
the called routine (DBL_PREC) should be declared as NOVALUE.

13.3.1 Syntax

linkage-declaration LINKAGE linkage-definition , . . . ;

linkage-definition linkage-name = linkage-type8>>>>><
>>>>>:

(
n

input-parameter-location , . . .
nothing

o
n

; output-parameter-location , . . .
nothing

o
)

nothing

9>>>>>=
>>>>>;

n
: linkage-option . . .
nothing

o

32 Only )
linkage-type {CALL | JSB | INTERRUPT}
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input-parameter-
location

(
REGISTER = register-number
STANDARD
nothing

)

output-
parameter-
location {REGISTER = register number}

32 Only )

linkage-option

8>><
>>:

GLOBAL (GLOBAL-register-segment , . . . )(
PRESERVE
NOPRESERVE
NOTUSED

)
(register-number , . . . )

9>>=
>>;

global-register-
segment

global-register-name = register -number

(
global-

register-name
linkage-name

)
name

register-number compile-time-constant-expression

13.3.2 Restrictions
A NOTUSED linkage-option must only be given with the JSB and INTERRUPT
linkage-types. It must not be given in combination with the CALL linkage-type.

The register-number in a REGISTER parameter-location or a linkage-option must
be in the range 0 to 11.

A register-number value must not be given as both a parameter-location and
a global-register-segment, must not be given as both a parameter-location
and in a NOTUSED linkage-option, and must not be given in more than one
parameter-location or global-register-segment.

A register-number value must not be given in more than one linkage-option.

Some of the character-handling and machine-specific functions require the use
of particular machine registers because they result in VAX instructions that use
specified registers; such functions must not be used if the required registers are
not locally usable. Observe that at most the set of registers 0 through 5 inclusive
must be locally usable to satisfy this requirement.

The VAX calling standard requires that register 0 or registers 0 and 1 together
be used to return routine values. This requirement, combined with the preceding
general restriction, leads to the following two special-case restrictions:

• If a routine-call is in the scope of a global register data segment that is
allocated in either register 0 or 1, then the routine that is called must not
return a value; that is, must be declared with the NOVALUE attribute.

• If the linkage-attribute of a routine-declaration specifies registers 0 or 1 as
PRESERVE, GLOBAL, or NOTUSED, then that routine must also have the
NOVALUE attribute.
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The VAX calling standard also requires that registers 0 and 1 be usable as
temporary registers by the condition handling software during processing of a
signal (see Chapter 17). Further, only routine stack frames associated with the
CALL linkage-type are used for restoring register contents during unwinding.
These requirements, together with the above restrictions on linkages, lead to the
following special-case restrictions:

• A routine-body must not immediately contain an ENABLE declaration if
the linkage-attribute of the routine is defined with linkage-type JSB, or
INTERRUPT, or with registers 0 or 1 as either PRESERVE, GLOBAL, or
NOTUSED.

• A routine whose linkage-attribute is defined with registers 0 or 1 as
PRESERVE, GLOBAL, or NOTUSED must not be terminated by unwinding.

• If a routine-call to a routine with JSB linkage-type occurs in a routine with
JSB linkage-type, all of the locally usable registers of the called routine must
also be given as locally usable registers of the routine containing the call.
That is, the outermost JSB routine in a nest of JSB routines must specify all
the registers that are locally usable. (This restriction assures that the CALL
routine that calls the outermost JSB routine can preserve all the necessary
registers.)

The VAX calling standard is described in the VAX Architecture Handbook.
Condition handling and its interaction with linkages are described in Chapter 17
of this manual.

13.3.3 Defaults
If a parameter-location is not given, then STANDARD is assumed. If a routine-
call or routine-declaration contains more parameters than are given in the
associated linkage-definition, then STANDARD is assumed as the parameter-
location for each of the additional parameters.

For the CALL linkage-type, the registers are used as follows, by default:

Registers Default Usage

0 Value return register, nonpreserved

1 Nonpreserved

2–11 Preserved

12 Argument pointer

13 Frame pointer

14 Stack pointer

15 Program counter

For the JSB linkage-type, the registers are used as follows, by default:

Registers Default Usage

0 Value return register, nonpreserved

1 Nonpreserved

2–11 Preserved

12–13 Not used
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Registers Default Usage

14 Stack pointer

15 Program counter

Observe that, for both CALL and JSB linkage-types, registers 0 to 11 are locally
usable by default.

For the INTERRUPT linkage-type, the registers are used as follows, by default:

Registers Default Usage

0–13 Preserved

14 Stack pointer

15 Program counter

13.3.4 Semantics
A linkage-declaration defines a name for a particular combination of calling
sequence options. A name so declared can be used as a linkage-attribute in any
kind of routine-declaration.

The linkage-type CALL specifies that the VAX CALLS, CALLG, and RET
instructions are used. Further, the parameters with STANDARD parameter-
locations are passed using register 12 (AP) as the argument pointer.

The linkage-type JSB specifies that the VAX JSB, BSBW, BSBB, and RSB
instructions are used by the compiled code. Further, the parameters with
STANDARD parameter-locations are placed on the stack (without a count) and
accessed by the called routine relative to the stack pointer (SP) register. If
REGISTER is given as a parameter-location, then the given register is used as
the location to which the actual-parameter value is assigned in performing a
routine-call, and correspondingly, is the location where the called routine expects
to find the actual-parameter value. This use of a register location to transmit
an actual-parameter value to a called routine does not affect the semantics
associated with the use of the corresponding formal-parameter name.

The linkage-options specify the usage conventions that apply to each VAX
machine register at the time a routine is called and during the execution of
the routine. There are four conventions, one corresponding to each of the
four linkage-option keywords, GLOBAL, PRESERVE, NOPRESERVE, and
NOTUSED. A usage convention is specified for a register by giving its number in
the appropriate linkage-option. The description of these linkage-options is given
in Section 13.1.5.

Register usage conventions can be specified only for registers 0 through 11; the
remaining registers (the argument pointer, frame pointer, stack pointer, and
program counter) are used only as specified in the VAX hardware and software
architecture.

Globally usable registers are not managed by the compiler; they are used only as
explicitly given in the source program, with the following exception:

In a routine with a linkage that specifies CALL linkage-type and a globally-
usable register (in a GLOBAL linkage-option), if the global-register-segment
is not declared as a global register data segment (using an EXTERNAL
REGISTER declaration) within the body of the routine, then the compiler can
choose to consider the register preserved (and hence, locally usable).
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However, in a routine with a linkage that specifies JSB linkage-type, the compiler
cannot preserve and use such registers. The reason for the difference has to do
with the requirements for condition handling. Briefly, the CALL linkage-type
provides the information needed for the condition handling software to properly
recover register values when doing unwinding; the JSB linkage-type does not.

Registers that are given in a NOTUSED linkage-option are not used in any
way. Only routines with a linkage that specifies the JSB linkage-type can have
registers that are not usable.

Some guidelines concerning the choice of registers to specify in a NOTUSED
linkage-option are discussed in Section 13.7.2.

13.3.4.1 JSB Linkage-Type
The routine EXCHANGE in Section 12.4.5 is an example of a routine that can be
made significantly smaller and faster by the use of a linkage-declaration such as
the following:

LINKAGE
FAST = JSB(REGISTER = 0, REGISTER = 1);

When the linkage-attribute FAST is given for the routine EXCHANGE, the JSB
linkage-type is used instead of the CALL linkage-type and the parameters are
passed in registers 0 and 1.

When a set of routines with JSB linkage-type call one another, make sure that
the locally usable registers of the calling routine include all the locally usable
registers of any routine that it calls. For example, consider the following linkage-
declarations:

LINKAGE
JSB_ALL = JSB,
JSB_NO11 = JSB: NOTUSED(11);

The linkage JSB_ALL specifies a JSB linkage-type. Because no linkage-options
are given, the locally usable registers are registers 0 to 11. The linkage JSB_
NO11 also specifies a JSB linkage-type. Because the linkage-option indicates that
register 11 is not used, the locally usable registers are registers 0 to 10.

Suppose the following routines are declared:

FORWARD ROUTINE
ALPHA: JSB_ALL,
BETA: JSB_NO11;

Then routine ALPHA can legitimately call routine BETA. But routine BETA must
not call routine ALPHA because the set of locally usable registers of ALPHA is
not a subset of the locally usable registers of BETA.

13.3.4.2 INTERRUPT Linkage-Type
The INTERRUPT linkage-type for BLISS–32 is used for the same purposes and
provides the same functionality as that described for BLISS–16, and is similar
to the JSB linkage-type. When used in a routine-declaration, a linkage-name
defined with the INTERRUPT linkage-type affects the following:

• All registers are preserved.

• As necessary, registers are explicitly saved with PUSHL or PUSHR
instructions.

• All references to formal-parameters are via the stack pointer (SP).
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• At routine exit, all but the last two arguments are removed from the stack;
these are assumed to be a valid program counter (PC) and processor status
longword (PSL).

• A Return from Exception or Interrupt (REI) instruction is executed.

Input- or output-parameter-location REGISTER assignments are not permitted
with INTERRUPT linkages.

The correct number of formal-parameters must be declared with an INTERRUPT
linkage routine to ensure that the compiler cleans the stack on exiting the
routine; a routine with less than two parameters is invalid.

An INTERRUPT linkage routine is implicitly declared NOVALUE. An example of
an INTERRUPT linkage routine in BLISS–32 follows:

LINKAGE
ARITH_EXCP= INTERRUPT: NOTUSED(3,4,5,6,7,8,9,10,11);

ROUTINE ARITH_EXCP_HDLR(CODE,PC,PSL): ARITH_EXCP=
BEGIN
CASE .CODE FROM SRM$K_INT_OVF_T TO SRM$K_FLT_UND_F OF
SET

...

...

TES
END

The code in the example is expanded as follows:

ARITH_TRAP_HDLR:
PUSHL R0
CASEL 4(SP) ,#1,#9
.WORD ...
...

MOVL (SP)+,R0
ADDL2 #4,SP
REI

Notice in the first line of the expanded code that only one register (R0) is needed.
In the second line the exception is dispatched via the exception code. The register
is then restored (MOVL), and the trap code is eliminated (ADDL2) before a return
(REI) is executed.

Explicit calls are also permitted to routines declared with interrupt linkage.
The caller treats such a call as if it were declared with a JSB linkage attribute;
an exception being that the parameters are automatically removed from the
stack by the called routine and not the caller. The parameter order is such that
the caller’s PC is always the first formal-parameter and will not appear as an
actual-parameter in the explicit routine-call.

If an interrupt linkage routine exists (for example, SETPSL), that is invoked with
only the PC and PSL as actual-parameters, the routine can be explicitly called
with the following BLISS expression:

SETPSL( .NEWPSL ):
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13.3.5 BLISS–32 Predeclared Linkage-Names
Four linkage-names are predeclared in every BLISS–32 module. These linkages
are provided for compatible and transportable usage among the several BLISS
dialects. See Section 13.5 concerning such usage.

The predeclared linkage-names are defined as shown in the following declaration:

LINKAGE
BLISS = CALL,
FORTRAN = CALL,
FORTRAN_SUB = CALL,
FORTRAN_FUNC = CALL;

13.4 BLISS–36 Linkage-Declarations
A linkage-declaration in BLISS–36 can be used to specify a PUSHJ, JSYS, F10,
or PS_INTERRUPT linkage-type, to identify globally used registers, to specify the
use of a PORTAL instruction in the entry sequence of a routine, and to specify
other linkage capabilities. For example:

LINKAGE
PAR2REG4 = PUSHJ(STANDARD, REGISTER = 4);

The declaration indicates that the PUSHJ linkage-type is used and that the
second actual-parameter is passed using register 4. The first actual-parameter
and any parameters after the second parameter are passed in the standard way.

13.4.1 Syntax

linkage-declaration LINKAGE linkage-definition , . . . ;

linkage-definition linkage-name = linkage-type8>>>>><
>>>>>:

(
n

input-parameter-location , . . .
nothing

o
n

; output-parameter-location , . . .
nothing

o
)

nothing

9>>>>>=
>>>>>;

n
: linkage-option . . .
nothing

o

BLISS–36 Only )
linkage-type { PUSH | JSYS | F10 | PS_INTERRUPT }

input-parameter-
location

(
REGISTER = register-number
STANDARD
nothing

)

output-
parameter-
location { REGISTER = register number }
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BLISS–36 Only )

linkage_option
(

general-linkage-option
pushj-linkage-option
ps_interrupt-linkage-option

)

general-linkage-
option

8>>>><
>>>>:

GLOBAL ( global-register-segment , . . . )
PORTAL8<
:

PRESERVE
NOPRESERVE
SKIP(value)
CLEARSTACK

9=
; ( register-number , . . . )

9>>>>=
>>>>;

pushj-linkage-
option

LINKAGE_REGS ( stack-pointer- reg,
frame-pointer-reg , return-value-reg)

ps_interrupt-
linkage-option

(
PORTAL
LINKAGE_REGS ( stack-pointer-reg,

frame-pointer-reg, return-value-reg

)

(
stack-pointer-reg
frame-pointer-reg
return-value-reg

)
register-number

global-register-
segment

global-register-name = register -number

(
global-

register-name
linkage-name

)
name

register-number compile-time-constant-expression

skip-value -1 | 0 | 1 | 2

13.4.2 Restrictions
A REGISTER parameter-location (input or output) can be specified only with a
PUSHJ or JSYS linkage-type.

Input- and output-parameter-locations cannot be specified with a PS_
INTERRUPT linkage-type.

The registers referenced by output-parameter-locations are implicitly
NOPRESERVE and cannot appear in PRESERVE or GLOBAL linkage modifiers.

The register-number in a REGISTER parameter-location must be in the range
0 to 15 (JSYS excepted) and must not specify a register given as either the
stack-pointer (SP) or the frame-pointer (FP). It can, however, be the same as the
register given as the value-return register.
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The register-numbers for the JSYS linkage must be in the range 1 to 4 (physical
registers AC1 through AC4).

The LINKAGE_REGS linkage-option cannot be given in combination with a JSYS
or F10 linkage-type.

Note

The JSYS built-in function is obsolete and should be avoided; instead, use
the JSYS linkage.

When using a LINKAGE_REGS option with the PS_INTERRUPT linkage-type,
you must supply all three register numbers, although the return-value-register is
unused.

The SP register and the value-return register in the LINKAGE_REGS option
must be in the range 0 to 15, and the FP register must be in the range 1 to 15.
The register number in a linkage-option other than the LINKAGE-REGS option
must be in the range 0 to 15 and must not specify a register used as a SP, FP, or
argument pointer (if applicable).

All of the routines in a given program must use the same SP register, including
any implicitly called Object Time System (OTS) routines. (This restriction assures
that a single OTS library can satisfy all of the requirements of a program.)

The same register number value must not be given as both a parameter-location
and a global-register-segment, and must not be given more than once as a
parameter-location or a linkage-option register number. There is one exception:
the register specified as the value return register in a LINKAGE_REGS option
can also be specified as preserved, nonpreserved, or global.

If the value return register is also specified as preserved or global then the
linkage-name so defined must only be used as a linkage-attribute in the
declaration of a routine that also has the NOVALUE attribute or in a general-
routine-call in a context that does not require a value.

The skip-values for the PUSHJ linkage-type are restricted to 0 through 2.

Some executable-functions impose hidden restrictions on the linkage-definition
and explicit register usage of the containing routine. More specifically, some of
the character-handling-functions and each of the condition-handling-functions
result in calls to OTS routines.

These implicit routine calls are made with the governing OTS linkage for
the program (BLISS36C by default). Therefore, any routine containing such
functions must also be able to call a routine having the governing OTS linkage.
In particular, the containing routine’s use of register data segments declared by
register-number, whether local or global, must be consistent with the register
conventions of the OTS linkage. (See the restrictions in Sections 10.7, 10.8, and
10.9.)

13.4.3 Defaults
The defaults for each of the linkage-options depend on the linkage-type that is
given.
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Defaults for the PUSHJ Linkage-Type
If a parameter-location is not given, then STANDARD is assumed. If a routine-
call or routine-declaration contains more parameters than are given in the
associated linkage-definition, then STANDARD is assumed as the parameter-
location for each of the additional parameters.

Default register usage for the PUSHJ linkage-type is determined in two steps:
First, the defaults for the LINKAGE_REGS option are applied if the LINKAGE_
REGS option is not given; second, the defaults for all remaining registers are
determined.

The default for the LINKAGE_REGS option is LINKAGE_REGS(0,2,3), which
indicates the following:

Register Default Usage

0 Stack pointer

2 Frame pointer

3 Value return register, nonpreserved

For any register not specified by the explicit or default LINKAGE_REGS option,
the default usage is as follows:

Registers Default Usage

0–10 Nonpreserved

11–15 Preserved

As an example, if the PUSHJ linkage-type is given without any linkage-option,
then the resulting register usage is the following:

Registers Usage

0 Stack pointer

1 Nonpreserved

2 Frame pointer

3 Value return register, nonpreserved

4–10 Nonpreserved

11–15 Preserved

Defaults for the JSYS Linkage-Type
For JSYS, the registers are used as follows, by default:

Registers Default Usage

0 Preserved

5–15 Preserved

1–4 Nonpreserved

Defaults for the F10 Linkage-Type
For F10, the registers are used as follows, by default:
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Registers Default Usage

0 Value return register, nonpreserved

1–13 Nonpreserved

14 Argument pointer

15 Stack pointer

Observe that a frame pointer is not used.

Defaults for the PS_INTERRUPT Linkage-Type
For PS_INTERRUPT, the default register usage is determined in two steps:
First, the defaults for the LINKAGE_REGS option are applied if the LINKAGE_
REGS option is not given; second, the defaults for all remaining registers are
determined. The registers are used as follows, by default:

Registers Default Usage

0 Preserved

1 Value return register, preserved

2–12 Preserved

13 Frame pointer

14 Preserved

15 Stack pointer

Note that the value return register is specified but unused.

13.4.4 Semantics
The GLOBAL linkage-option can be used with both PUSHJ and F10 linkage-
types. It is introduced in Section 13.1 and is discussed in detail in Section 13.7.

The PORTAL linkage-option is used with the PUSHJ, F10, and PS_INTERRUPT
linkage-types. When used in the definition of the linkage-attribute of a ROUTINE
or GLOBAL ROUTINE declaration, it causes the first instruction of the code
compiled for the routine to be a PORTAL instruction (JRST 1,.+1). The PORTAL
instruction is used in the construction of certain kinds of execute-only programs.
See the system hardware manuals for details.

The PRESERVE and NOPRESERVE linkage-options are described in
Section 13.1.

The LINKAGE_REGS option, used only with the PUSHJ and PS_INTERRUPT
linkage-types, specifies the registers to be used for the stack pointer, frame
pointer, and the value return register.

13.4.4.1 PUSHJ Linkage-Type
The PUSHJ linkage-type specifies a calling sequence in which the actual-
parameters are passed on the stack without the use of an argument pointer.
Unlike the F10 linkage-type, actual-parameters can also be passed in registers
(as described in 13.1.1.3) and the LINKAGE_REGS option can be used to specify
which registers are used for the stack pointer, frame pointer, and value return
registers. For example:
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LINKAGE
DBL_PREC = PUSHJ( ; REGISTER=1, REGISTER=2):

LINKAGE_REGS(15,13,1)
NOPRESERVE(2,3,4,5)
PRESERVE(0,6,7,8,9,10,11,12,14);

The example defines linkage for a double-precision result in AC1 and AC2, with
STANDARD locations (that is, the stack) reserved for an arbitrary number of
inputs. Because AC1 is treated as an output-parameter-location, the routine
should be NOVALUE.

The SKIP linkage modifier determines how PUSHJ returns to the calling-location.
The following describes the skip-values used:

0 The routine returns to the calling-location plus 1 (this is the default skip-value).

1 The routine may return to the calling-location plus 1 or plus 2. The call value is zero
(no skip) or 1 (skip).

2 The routine may return to the calling-location plus 1, 2, or 3. The call value is then
zero, 1, or 2 respectively.

A nonzero skip-value must appear only in a valued routine, and a value-return
register must be NOPRESERVE.

For ROUTINE declarations, the return-value is added to the saved PC value;
therefore, the routine must not be NOVALUE.

The CLEARSTACK linkage modifier can be used only with PUSHJ. This option
specifies that the actual-parameters (placed on the stack by a routine-call) will be
removed from the stack by the called routine, instead of the calling routine. If the
modifier is not specified, the parameters will not be removed from the stack by
the called routine and become the responsibility of the caller. Be aware, however,
that the number of actual-parameters used in the call must be exactly equal to
the number of formal-parameters declared.

13.4.4.2 JSYS Linkage-Type
The JSYS linkage-type specifies a calling sequence in which actual-parameters
are passed by register to TOPS–20 JSYS functions. For example:

LINKAGE
SIN_LNKG = JSYS(REGISTER=1, REGISTER=2, REGISTER=3, REGISTER=4;

REGISTER=1, REGISTER=2, REGISTER=3 ) :SKIP(-1);
BIND ROUTINE

SIN = %O’52’ :SIN_LNKG;

The SIN routine reads a string from a specified source to the caller’s address
space using an inline JSYS instruction; parameters are passed by means of
AC1-AC4.

The SKIP linkage modifier determines how the JSYS will return to the calling-
location. The following describes the skip-values used:

–1 The instruction after the JSYS will be an ERJMP. The value of the call is zero if an
error occurs; otherwise the value is a 1.

0 Control is returned to the next instruction; the value of the call is zero.

1 Control returns to the calling-location plus 1 or plus 2. The value of the call is zero
(no skip) or 1 (skip).

2 Same as 1, except control also can return to the calling-location plus 3 (in which
case, the value of the function is 2).
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13.4.4.3 F10 Linkage-Type
The F10 linkage-type specifies a calling sequence in which input-actual-
parameters are passed using an argument block (see Section 13.1.1.1) whose
address is contained in register 14. Register 15 is the stack pointer and register
0 is the value return register.

13.4.4.4 PS_INTERRUPT Linkage-Type
The PS_INTERRUPT linkage-type is similar to PUSHJ and compatible with
TOPS–10 and TOPS–20 software interrupt (PSI) mechanisms; as such, a
PS_INTERRUPT makes use of the DEBRK% JSYS and DEBRK. UUO exit
mechanisms for TOPS–20 and TOPS–10. For example:

LINKAGE
INTERRUPT = PS_INTERRUPT;

ROUTINE PSI: INTERRUPT =
BEGIN
...
END;

Assuming a TOPS–20 compilation, the code expansion would be as follows:

PSI: PUSH SP, [ PSI36% ] ;fake return PC to keep
;stack adjusted

PUSH SP, FP ;[OPT] set up frame
MOVE FP, SP ;[OPT]
PUSH SP, ... ;[OPT] save necessary ACs

...
POP SP, ... ;[OPT] restore saved ACs
POP SP, FP ;[OPT] recover old FP
ADJSP SP, 1 ;Remove fake return PC
DEBRK% ;Return to monitor

Notice that the expansion is exactly like that of a PUSHJ routine, the exception
being that at routine entry the called routine places a dummy PC on the stack,
and at routine exit the dummy PC is removed before the DEBRK% JSYS is
executed. The environment is the same for TOPS–10, the only exception being
that DEBRK.UUO is used to exit the routine.

A routine declared as a PS_INTERRUPT type must adhere to the following rules:

1. The routine must only be called by the PSI system.

2. The routine must only fetch from or assign to data segments which satisfy
one of the following requirements:

• A data-segment whose scope is limited to the body of the routine

• A data-segment declared with a VOLATILE attribute

3. If an UNWIND can occur within the scope of the routine, a condition handler
must be established by means of an ENABLE declaration within the routine.

When an UNWIND occurs, it is necessary that a DEBRK% JSYS, or
DEBRK.UUO be executed to allow subsequent software interrupts to occur.
To guarantee future interrupts the user must establish a condition handler in the
PS_INTERRUPT linked routine. The BLISS–36 OTS uses this handler to ensure
that the software interrupt system is re-enabled.
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13.4.5 BLISS–36 Predeclared Linkage-Names
Four linkage-names are predeclared in every BLISS–36 module. These linkages
are provided for compatible and transportable usage among the BLISS dialects.
See Section 13.5 concerning such usage. The default linkage-name is BLISS36C.
The predeclared linkage-names are defined as shown in the following declaration:

LINKAGE
BLISS10 = PUSHJ,
BLISS36C =

PUSHJ:
LINKAGE_REGS(15,13,1)
NOPRESERVE(2,3,4,5)
PRESERVE(0,6,7,8,9,10,11,12,14),

FORTRAN_SUB = F10,
FORTRAN_FUNC =

F10: PRESERVE(2,3,4,5,6,7,8,9,10,11,12,13);

The BLISS10 linkage is provided for convenient interfacing with routines
compiled by the BLISS–10 compiler. (BLISS–10 is an older dialect of BLISS that
is becoming obsolete.) The definition of the BLISS10 linkage given here assumes
that default register options are used by the BLISS–10 module.

The BLISS36C linkage is the default linkage for BLISS–36. The BLISS36C
linkage can also be used for BLISS–10 routines that are compiled with the /Z
qualifier of the BLISS–10 compiler.

13.5 Common Predeclared Linkage-Names
Two linkage-names are predeclared in all BLISS dialects, FORTRAN_SUB and
FORTRAN_FUNC. In addition, the linkage-names BLISS and FORTRAN are
predeclared in BLISS–16 and BLISS–32.

The complete semantics for these linkage-names is given in the earlier sections
on the linkage-declaration for each dialect (see Section 13.2.5 for BLISS–16,
Section 13.3.5 for BLISS–32, and Section 13.4.5 for BLISS–36). This section
summarizes the common characteristics that apply across dialects.

13.5.1 The BLISS Linkages
In BLISS–16 and BLISS–32, the BLISS linkage is the default linkage in the
absence of any other specification. In BLISS–36, the default linkage is BLISS36C.
The semantics associated with these linkages is given in Sections 12.4 through
12.7.

In light of the defaults, the way to obtain a compatible and transportable BLISS
linkage in all dialects is to use no explicit linkage specification at all.

13.5.2 The FORTRAN Linkages
The FORTRAN-related linkages provide a compatible and transportable means to
interface with FORTRAN compiled routines on each of the target systems. Use of
the FORTRAN linkages is quite similar to use of the BLISS linkages with these
exceptions:

• Each formal parameter must be assumed to contain a value that is an
address. The body of the routine must be written appropriately. (In BLISS–
32, this restriction can be relaxed through use of the %VAL built-in function
of VAX FORTRAN.)

• Each actual-parameter must be a value that is an address.
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There are several FORTRAN linkages because, in the case of FORTRAN-10 on
the DECsystem–10/20, FORTRAN-10 compiled SUBROUTINE subprograms use
the machine registers in a different way than FORTRAN-10 compiled FUNCTION
subprograms. (This difference is reflected in the declarations for the FORTRAN_
SUB and FORTRAN_FUNC linkage-names given for BLISS–36 in Section 13.4.5.)
There is no such difference for PDP–11 and VAX FORTRAN systems.

To obtain compatible and transportable interfacing to FORTRAN with all three
BLISS dialects, do the following:

• Use the FORTRAN_SUB linkage-name in the declaration of any routine
which is to be used as a FORTRAN SUBROUTINE subprogram.

This applies to all EXTERNAL ROUTINE declarations, for example,
regardless of whether the routine is actually written in BLISS or FORTRAN.
This also applies, obviously, to the ROUTINE or GLOBAL ROUTINE
declaration if the routine is written in BLISS. In both cases, it is also
highly desirable to use the NOVALUE attribute as well.

• Use the FORTRAN_FUNC linkage-name in the declaration of any routine
which is to be used as a FORTRAN FUNCTION subprogram.

As with the FORTRAN_SUB linkage, this applies to EXTERNAL ROUTINE
declarations as well as to ROUTINE and GLOBAL ROUTINE declarations.

If compatible and transportable interfacing to only PDP–11 and VAX FORTRAN
systems is desired, then the FORTRAN linkage-name can be used for both
SUBROUTINE and FUNCTION subprograms in BLISS–16 and BLISS–32.

13.6 Linkage-Functions
Linkage-functions are executable-functions (see Section 5.2) that provide
specialized information about the actual-parameters used to call a routine. For
example, linkage-functions can be used to code a routine that can be called with
different numbers of actual-parameters in different routine-calls.

13.6.1 Common Linkage-Functions
There are three common BLISS linkage-functions: ACTUALCOUNT,
ACTUALPARAMETER and ARGPTR. These functions can be used with all
of the FORTRAN-related predeclared linkages in all BLISS dialects. They can
also be used with some of the BLISS–related predeclared linkages.

13.6.1.1 Definition
The common linkage-functions are defined as follows:

• ACTUALCOUNT( )

Restriction. Must be declared BUILTIN within the body of a routine whose
linkage-attribute is defined with certain linkage-types. The linkage-types,
and the predeclared linkages that are consequently permitted, are as follows:

Dialect Linkage-Type Predeclared Linkages

BLISS–16 CALL FORTRAN
FORTRAN_SUB
FORTRAN_FUNC
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Dialect Linkage-Type Predeclared Linkages

BLISS–32 CALL BLISS
FORTRAN
FORTRAN_SUB
FORTRAN_FUNC

BLISS–36 F10 FORTRAN_SUB
FORTRAN_FUNC

Value. Return the number of actual-parameters passed to the routine using
STANDARD parameter-locations; parameters passed using REGISTER
parameter-locations are not included in the returned value.

For the predeclared linkages in all dialects, all parameters are passed using
STANDARD parameter-locations and, consequently, ACTUALCOUNT returns
the number of actual-parameters.

• ACTUALPARAMETER( i )

Restrictions. The first restriction for ACTUALPARAMETER is the same as
for ACTUALCOUNT above.

The value of i must be in the range 1 to ACTUALCOUNT( ).

Value. Return the value of the ith actual-parameter that was passed using
STANDARD parameter-locations; parameters passed using REGISTER
parameter-locations are not obtainable with this function.

For the predeclared linkages in all dialects, all actual-parameters
are passed using STANDARD parameter-locations, and, consequently,
ACTUALPARAMETER(i) returns the value of the ith actual-parameter.

• ARGPTR( )

Restriction. The restriction for ARGPTR is the same as for ACTUALCOUNT
above.

Value. Return the address of the argument block.

13.6.1.2 Examples
The use of the linkage-functions permits routines to be written in a more
general way. Consider, for example, a generalization of the routine AVERAGE3
(Section 12.4.5,) which accepts three parameters, to the routine AVERAGE, which
accepts any number of parameters:

ROUTINE AVERAGE =
BEGIN
BUILTIN

ACTUALCOUNT,
ACTUALPARAMETER;

LOCAL
L;

L = 0;
INCR I FROM 1 TO ACTUALCOUNT() DO

L = .L + ACTUALPARAMETER(.I);
.L/ACTUALCOUNT()
END;
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Some calls on the routine AVERAGE and the value of these calls are as follows:

Call Value

AVERAGE(1,2,3) 2

AVERAGE(2,4,6,8,10) 6

AVERAGE(8) 8

AVERAGE( ) ??? (Invalid)

In some cases a routine has a fixed and variable set of parameters. For example,
consider the following routine, which calculates the difference between an
expected value (the fixed part) and the average of a set of values (the variable
part):

ROUTINE DELTA_AVERAGE(EXPECTED) =
BEGIN
BUILTIN

ACTUALCOUNT,
ACTUALPARAMETER;

LOCAL
L;

L = 0;
INCR I FROM 2 TO ACTUALCOUNT() DO

L = .L + ACTUALPARAMETER(.I);
.EXPECTED - .L/(ACTUALCOUNT()-1)
END;

Some calls on the routine DELTA_AVERAGE follow:

Call Value

DELTA_AVERAGE(3,1,2,3) 1

DELTA_AVERAGE(6,2,4,6,8,10) 0

DELTA_AVERAGE(7) ??? (Invalid)

DELTA_AVERAGE( ) ??? (Invalid)

Observe in this example that explicit formal-parameters are not distinct from
the parameters accessed by the linkage-functions. Specifically, .EXPECTED is
equivalent to ACTUALPARAMETER(1). Consequently, the loop initial value
is 2, not 1, and the divisor in the next to last line is ACTUALCOUNT( )-1, not
ACTUALCOUNT( ).

The ARGPTR linkage-function returns the address of the argument block of a
routine-call. In some cases the argument block address passed in the argument
pointer register may not be left in that same register throughout the execution
of the called routine. For example, in BLISS–36 this is usually done in the code
compiled for a routine with the F10 linkage-type that calls another routine which
also has the F10 linkage-type. The ARGPTR function provides a compatible
means to obtain the address of the argument block in all dialects.
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13.6.2 BLISS–16 and BLISS–32 Linkage-Functions
The NULLPARAMETER linkage-function (in BLISS–16 and BLISS–32 only)
tests a parameter position of a call from a FORTRAN routine and returns true
if the actual-parameter is a null or omitted parameter. See the PDP–11 and
VAX FORTRAN manuals for a description of null and omitted parameters.

The NULLPARAMETER linkage-function is defined as follows:

NULLPARAMETER( i )

Restriction. If i is not a formal-name then it is interpreted as an expression and
the value of i must then be greater than or equal to 1. The linkage-type and
predeclared linkages that are permitted are as follows:

Dialect Linkage-Type Predeclared Linkages

BLISS–16 CALL FORTRAN
FORTRAN_SUB
FORTRAN_FUNC

BLISS–32 CALL BLISS
FORTRAN
FORTRAN_SUB
FORTRAN_FUNC

Value. If i is a formal-name and the corresponding actual-parameter tested is
null, or omitted, a value of 1 is returned; otherwise, a zero is returned. If i is an
expression, a value of 1 is returned when i is greater than the number of actual-
parameters. A value of 1 is also returned if i is not greater than the number
but the ith actual-parameter has the value –1 in BLISS–16 or 0 in BLISS–32;
otherwise, a zero is returned.

13.7 Global Register Data Segments and Linkages
A global register data segment is a data segment that is created and allocated in a
given register in one routine and can be made available for use in other routines
that it calls. Global register data segments are identified by name and both the
calling and called routine must agree that a particular data segment is available.

A GLOBAL REGISTER declaration (Section 10.8) causes a global register data
segment to be allocated. A global register data segment is a local data segment
just like an ordinary register data segment—it is created on entry to the block
in which it is contained and released on exit from that block. However, unlike
an ordinary register data segment, a global data segment is available in called
routines under certain circumstances.

To pass a global register data segment to a called routine, the linkage-attribute
for the called routine must contain the name of the data segment and its
register assignment in its GLOBAL linkage-option. There may be more global
register data segments available at a call than are given in the linkage for the
call; however, every global register data segment given in the linkage must
be available at the call. Only those global register data segments given in the
linkage are available in the called routine.

An EXTERNAL REGISTER declaration (Section 10.9) specifies that a global
register data segment created in a calling routine is available for use. The
declared name must be given in the linkage; however, not all global register data
segments given in the linkage need be declared in an EXTERNAL REGISTER
declaration.
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The linkage-attribute forms a bridge between calling and called routines.
Consider the use of the global register data segment GRDS in the following
example:

%IF %BLISS(BLISS16) OR %BLISS(BLISS32)
%THEN
LITERAL

GRDS_REG = 1 ;
LINKAGE

BRIDGE =
%BLISS16(JSR: GLOBAL(GRDS = GRDS_REG))
%BLISS32(CALL: GLOBAL(GRDS = GRDS_REG));

%ELSE ! For BLISS--36
LITERAL

GRDS_REG = 6 ;
LINKAGE

BRIDGE = PUSHJ:
LINKAGE_REGS(15,13,1)
NOPRESERVE(2,3,4,5)
PRESERVE(0,7,8,9,10,11,12,14)
GLOBAL(GRDS = GRDS_REG);

%FI

FORWARD ROUTINE
ROUT2: BRIDGE NOVALUE;

ROUTINE ROUT1 =
BEGIN
GLOBAL REGISTER

GRDS = GRDS_REG;
GRDS = 0;
ROUT2();
.GRDS
END;

ROUTINE ROUT2: BRIDGE NOVALUE =
BEGIN
EXTERNAL REGISTER

GRDS;
GRDS = .GRDS + 1;
END;

First, the literal-name GRDS_REG is bound to either the value 1 or the value
6, depending upon the compiler used for the compilation. This literal value
is used to specify a register number in several subsequent declarations. (The
conditional-compilation constructs used in this example are described in Chapters
15 and 16.)

Next, the name BRIDGE is defined as a linkage-name with the global register
data segment GRDS. This declaration also depends upon the compiler used for
the compilation. (Note that the definition of BRIDGE for BLISS–36 matches the
default BLISS36C linkage except for the GLOBAL option, and thus is compatible
with the default linkage.) Then, the forward-routine-declaration for ROUT2 uses
the linkage-attribute BRIDGE. The calling routine ROUT1 allocates the global
register data segment GRDS and sets it to 0. (Observe that ROUT1 does not need
any special linkage-attribute in order to create the global register data segment.)
ROUT1 then calls the routine ROUT2. ROUT2 increments the value of the global
register data segment, and returns. The value of routine ROUT1 is the value of
the global register data segment, 1.
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Because the information about the global register data segment is supplied by the
linkage-attribute BRIDGE, the compiler can perform several consistency checks to
verify that the global register data segment is being used correctly. In the above
example, the compiler knows that ROUT2 uses a global register data segment
and can, therefore, check that a call on that routine occurs within the scope of
the global register declaration. Further, the compiler can check that the external
register declaration for GRDS is within a routine with a linkage-attribute for the
global register data segment GRDS.

A global register data segment is a register that is, by convention, reserved for
a particular use by a set of routines that function together as a package. For
example, consider a file maintenance package. Typically, such a package consists
of interface routines and internal routines. The interface routines establish the
function to be performed by the file maintenance package (for example, open,
insert, and so on) and set up the appropriate environment. The internal routines
perform the basic processing within the environment established by the interface.
Part of that environment is often the establishment of one or more global register
data segments.

To describe some of the elements of a file maintenance package, the following
provides a simplified version of such a system.

The module consists of two global routines, VECMAXMIN and
VECMAXMINAVG, each of which uses two additional internal routines. Both
VECMAXMIN and VECMAXMINAVG are written to be callable from FORTRAN.
Each actual-parameter to these routines must be the address of the desired
FORTRAN variable or array.

The first routine, VECMAXMIN, is called with the first parameter giving the base
of an integer vector, and the second parameter giving the number of elements
in the vector. The maximum value encountered in the vector is returned via the
third parameter, while the minimum value is returned via the fourth parameter.
The value of the routine is the difference between the maximum and minimum.

The second routine, VECMAXMINAVG, is called with two parameters which are
the same as the first two parameters of VECMAXMIN. Its value is the average of
the maximum and minimum elements of the array.

The internal routine VECMAX1 searches a vector and returns the maximum
value; and similarly, the internal routine VECMIN1 returns the minimum
value. Routines VECMIN1 and VECMAX1 each receive their two parameters
as global register data segments, in registers that are appropriate for the
respective, dialect-specific linkage definitions. (See the guidelines given further
on concerning the preferred choice of registers for each target system.)

MODULE VECOPS(IDENT=’03’) =
BEGIN

LITERAL
VECREG = %BLISS16(1)

%BLISS32(11)
%BLISS36(12),

LENREG = %BLISS16(2)
%BLISS32(10)
%BLISS36(11);
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LINKAGE
BLISSTWOREG =

%BLISS16(JSR:)
%BLISS32(CALL:)
%BLISS36(PUSHJ: LINKAGE_REGS(15,13,1)

NOPRESERVE(2,3,4,5)
PRESERVE(0,7,8,9,10,14))

GLOBAL(VEC = VECREG, LEN = LENREG);

FORWARD ROUTINE
VECMAXMIN: FORTRAN_FUNC,
VECMAXMINAVG: FORTRAN_FUNC,
VECMAX1: BLISSTWOREG,
VECMIN1: BLISSTWOREG;

GLOBAL ROUTINE
VECMAXMIN(VECADR,LENADR,MAXADR,MINADR): FORTRAN_FUNC =
BEGIN

GLOBAL REGISTER
VEC = VECREG : REF VECTOR,
LEN = LENREG;

! Initialize global registers
!
VEC = .VECADR;
LEN = ..LENADR;

! Main code
!
.MAXADR = VECMAX1();
.MINADR = VECMIN1();
..MAXADR-..MINADR
END;

GLOBAL ROUTINE VECMAXMINAVG(VECADR,LENADR): FORTRAN_FUNC =
BEGIN

GLOBAL REGISTER
VEC = VECREG : REF VECTOR,
LEN = LENREG;

VEC = .VECADR;
LEN = ..LENADR;

(VECMAX1() - VECMIN1())/2
END;

ROUTINE VECMAX1: BLISSTWOREG =
BEGIN

EXTERNAL REGISTER
VEC: REF VECTOR,
LEN;

LOCAL
MAXX;

MAXX = .VEC[0];
DECR J FROM .LEN-1 TO 1 DO

MAXX = MAX(.MAXX,.VEC[.J]);

.MAXX
END;

ROUTINE VECMIN1: BLISSTWOREG =
BEGIN

EXTERNAL REGISTER
VEC: REF VECTOR,
LEN;
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LOCAL
MINN;

MINN = .VEC[0];
DECR J FROM .LEN-1 TO 1 DO

MINN = MIN(.MINN,.VEC[.J]);

.MINN
END;

END
ELUDOM

13.7.1 Discussion
GLOBAL REGISTER and EXTERNAL REGISTER declarations in combination
with linkage-definitions that include a GLOBAL linkage-option provide a
controlled means to extend the scope of a register data segment from one routine
into another routine. The restrictions help assure that this unusual dynamic
extension of register scope is clearly documented and unlikely to be a source of
error because of hidden effects.

The use of global register data segments provides two optimization benefits.
First, both the called and the calling routines benefit from code efficiency that
results from the use of a register instead of a temporary (stack) location to hold
the parameter value during the call. Second, the calling routine benefits from
the fact that the global register value is still available in the same register after
return from the called routine. The saving and restoring of the register contents
is not required around the call.

The same conventions can (and must) be used to share register data segments
between nested routine definitions. In this case, the convention allows the inner
routine to access a local data segment of the outer routine in an efficient manner.
(This capability is sometimes called ‘‘up-level addressing’’ in other languages and
often requires complex and inefficient code.) Observe, however, that there is no
particular advantage to writing the called routine as a nested routine. Indeed,
the convention works equally well between routines in separately compiled
modules.

Using global registers is a useful optimization technique. However, when using
this technique, you must ensure that independently developed parts of the
program do not inadvertently use register assignments that would be in conflict
when the parts are brought together. Global registers are not subject to the
normal optimization strategies of the compiler and, consequently, may lead to
worse, rather than better, code quality if too many are used.

13.7.2 Guidelines for BLISS–16
The many restrictions concerning the use of LINKAGE declarations and global
register data segments are necessary to ensure proper management of the
machine registers at all times.

Two guidelines are particularly recommended:

• The value return register should always be specified as nonpreserved (which
is the default). This will avoid the special restrictions related to this register.

• When planning the allocation of global register data segments, use contiguous
registers beginning with register 1; for example, if two registers are needed,
use registers 1 and 2.
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Note that, because the PDP–11 has very few locally usable registers (relative to
other target systems), the allocation of even one register as global over a large
span of code will very likely decrease overall code quality.

13.7.3 Guidelines for BLISS–32
The many restrictions concerning the use of LINKAGE declarations and
global register data segments are necessary to ensure proper management of
the machine registers at all times, especially during condition handling (see
Chapter 17).

One restriction in particular deserves special consideration when JSB routines
and global register data segments are used together: If a call to a routine with
JSB linkage-type occurs in the scope of a global register data segment, then the
given register-number of the data segment must be given in either a GLOBAL
linkage-option or a NOTUSED linkage-option of the linkage of the called routine.

That is, if a global register data segment is active at the point of a call to a JSB
routine, the only permitted use of the register in the JSB routine is as a global
register data segment; if not used that way, it must not be used at all.

Some service routines in the VMS Run-Time Library (RTL) use JSB linkage. By
convention, these routines use a contiguous group of registers, none of which are
preserved, starting at register number 0. In light of this convention, and the
above restrictions, the following two guidelines are suggested:

• When specifying the linkage of a routine with JSB linkage, give the locally
usable registers as contiguous lower numbered registers starting at zero.
Keep the set of locally usable registers as small as possible consistent with
acceptable code quality.

• When planning the allocation of global register data segments, use contiguous
higher-numbered registers, that is, 11, 10, 9, and so on.

A reasonable strategy is to divide the registers into groups so that JSB routines
never locally use more than, for example, registers 0 through 7 and global
register data segments are always specified in registers 8 through 11. This
guarantees that no conflicts will arise in using JSB routines and global register
data segments together.

One additional guideline is strongly recommended: Registers 0 and 1 should
always be specified as nonpreserved (which is the default). This will avoid the
error-prone special restrictions related to condition handling (see Section 13.3.2).

13.7.4 Guidelines for BLISS–36
The many restrictions concerning the use of LINKAGE declarations and global
register data segments are necessary to ensure proper management of the
machine registers at all times.

Two guidelines are particularly recommended:

• The value return register should always be specified as nonpreserved (which
is the default). This will avoid the special restrictions related to this register.

• When planning the allocation of global register data segments, use the
highest-numbered contiguous set of registers available (for example, 12, 11,
10, 9, and so on when using the BLISS36C type register conventions).
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14
Binding

Bound-declarations are different from most of the declarations discussed thus far
because a bound-declaration defines a name in terms of other names and values.
Bound-declarations do not involve the allocation of storage. Instead, they provide
a name for a constant value, or an additional name and sometimes a different
interpretation for existing storage.

A bound-declaration defines a name. The definition of a name consists of its
scope, its value, and its attributes. The scope and attributes are determined in
the usual way. However, the value of the name defined in the bound-declaration
is determined from the value of an expression.

A name can be defined by a bound-declaration to be a literal-name, a data-name,
or a routine-name. The syntax diagram for bound-declarations is as follows:

bound-declaration

8<
:

literal-declaration
external-literal-declaration
bind-data-declaration
bind-routine-declaration

9=
;

The syntax and semantics for each kind of bound-declaration are given in the
following sections.

14.1 Literal-Declarations
A literal-declaration is used to define a name whose value is determined by
a constant expression. After a name is defined in this way, it can be used to
designate the constant expression.

A literal-declaration can contribute to the readability of a program. An example
of this usage follows:

LITERAL
CAPACITY = 25;

This declaration allows the following assignment to be written:

STUDENTS = .ROOMS * CAPACITY

In this expression, STUDENTS and ROOMS are data segment names and
CAPACITY is the literal name declared above. The use of the literal-declaration
makes clear the significance of the value 25.

A literal-declaration is especially useful for defining a constant value that is used
at several different places in a program. In the event that a different version
of the program requires a different value for the constant value, the change can
be made in just one place; namely, in the literal-declaration. An example of this
usage follows:

LITERAL
BUFFERSIZE = 266;
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It is assumed that the size of the buffer changes from time to time and that this
value is involved in computations throughout the program. A change in the value
of BUFFERSIZE in this declaration automatically changes the value of all the
occurrences of BUFFERSIZE within the program.

14.1.1 Syntax

literal-declaration n
LITERAL
GLOBAL LITERAL

o
literal-item , . . . ;

literal-item literal-name = literal-value

n
: literal-attribute . . .
nothing

o

literal-name name

literal-value compile-time-constant-expression

literal-attribute n
range-attribute
weak-attribute

o
( 32 Only

14.1.2 Restrictions
The value, n, of the bit-count expression in the range-attribute must lie in the
range 1 < n < %BPVAL.

The literal-value must be representable in the given number of bits.

BLISS–32 ONLY
The WEAK attribute can be specified only in a GLOBAL LITERAL declaration.

14.1.3 Defaults
If a range-attribute is not specified, then SIGNED(%BPVAL) is assumed.

14.1.4 Semantics
A literal-declaration is processed by the compiler as follows:

1. The literal-value expression is evaluated.

2. The range-attribute is used to validate the representation of the literal-value.
The bit-count expression is evaluated and the value obtained in step 1 is
checked to verify that it can be represented as a SIGNED or UNSIGNED
value in the number of bits specified.

3. If the literal-declaration is GLOBAL or GLOBAL with the weak-attribute
(BLISS–32 only), then the appropriate indicators are set for the linker.

4. The literal-name is associated with the value represented in step 2. Wherever
the literal-name appears in the module, it is replaced by its associated value.
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14.1.5 Predeclared Literals
The following literal-names are predeclared in BLISS:

Name
BLISS–16
Value

BLISS–32
Value

BLISS–36
Value Significance

%BPVAL 16 32 36 Bits per BLISS value (fullword)

%BPUNIT 8 8 36 Bits per smallest addressable
unit

%BPADDR 16 32 18 or 30 Bits per address value

%UPVAL 2 4 1 Addressable units per BLISS
value (%BPVAL divided by
%BPUNIT)

The value of %BPADDR in BLISS–36 is determined by the cpu-option setting
of the ENVIRONMENT module-switch (Section 19.2); see the BLISS–36 User’s
Guide for target-system environment information.

These predeclared names can be used to enhance the transportability of a
program from one target system to another. See the appropriate BLISS user
manual for further information.

14.2 External-Literal-Declarations
An external-literal-declaration gives a list of literal-names that are declared
in other, separately compiled, modules. When the program that contains these
modules is linked, the value of the external-literal-names is determined.

External-literal-declarations are useful for providing mnemonic names for
constant expressions that are common to the modules of a program. An example
of an external-literal declaration follows:

EXTERNAL LITERAL
BLKSIZ: SIGNED(8);

14.2.1 Syntax

external-literal-
declaration EXTERNAL LITERAL external-literal-item , . . . ;

external-literal-
item literal-name

n
: literal-attribute . . .
nothing

o

literal-name name

literal-attribute n
range-attribute
weak-attribute

o
( 32 Only
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14.2.2 Restrictions
A name must not be declared EXTERNAL LITERAL unless it is declared
GLOBAL LITERAL in some other block or module of the same program.
This restriction does not apply, however, to a name that is declared with the
weak-attribute in BLISS–32 (see Section 9.14).

The range-attribute for an EXTERNAL literal-name must accommodate the value
given for the literal in its GLOBAL literal-declaration. For further discussion, see
Section 9.10.

14.2.3 Defaults
If a range-attribute is not given, then SIGNED(%BPVAL) is assumed.

14.2.4 Semantics
An external-literal-declaration is processed by the compiler as follows:

1. Each name in the list is identified as an EXTERNAL literal-name.

2. If the WEAK attribute is specified, an indicator is provided for the linker
(BLISS–32 only).

14.3 Bind-Data-Declarations
A bind-data-declaration is used to define another name for a data segment, or
part of a data segment, that already exists. The bound name can have different
attributes and can therefore depart from the original interpretation of the data
segment. An example of a bind-data-declaration appears in the following program
fragment:

OWN
ALPHA: VECTOR[20];

BIND
A = ALPHA[8];

...
INCR I FROM 0 TO 20 DO

ALPHA[.I] = .ALPHA[.I] * .A;

The name A is defined by the bind-data-declaration to be a fullword scalar with
the same address as the ninth element of the vector ALPHA. A reference to A,
therefore, is equivalent to, but more concise than, a reference to ALPHA[8].

In the example just given, the value of A can be determined at the time the
program is linked since the address of the ninth element of the vector ALPHA is
known at link time. An example of a binding that cannot be determined at link
time is as follows:

BIND B = ALPHA[2*.J-1]

The contents of J is not known at link time and so the binding of B is deferred
to execution time. Specifically, the binding occurs just before the evaluation of
the block in which the declaration appears. The introduction of the name B can
be efficient because no matter how often B is used during the evaluation of the
block, the expression 2*.J-1 is evaluated only once.
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14.3.1 Syntax

bind-data-
declaration

n
BIND
GLOBAL BIND

o
bind-data-item , . . . ;

bind-data-item bind-data-name = data-name-value

n
: bind-data-attribute . . .
nothing

o

bind-data-name name

data-name-value expression

bind-data-attribute

8>>><
>>>:

allocation-unit
extension-attribute
structure-attribute
field-attribute
volatile-attribute
weak-attribute

9>>>=
>>>;

( 16/32
( 16/32

( 32 Only

14.3.2 Restrictions
The data-name-value expression must be the address of a data segment that can
be accessed within the scope of the declaration.

The data-name-value expression must be a link-time constant expression if the
declaration begins with GLOBAL or the declaration is at the outermost level of a
module (and is not, therefore, contained in a routine-declaration).

The data-name-value expression in a GLOBAL bind-data-declaration is limited to
a restricted subset of link-time constant expressions, in that it must not contain
a name declared EXTERNAL, EXTERNAL ROUTINE, or EXTERNAL LITERAL
unless that name is an operand of a compile-time constant expression (see
Section 7.1.2, item 7). Furthermore, the data-name-value expression must not
contain a name declared BIND, GLOBAL BIND, BIND ROUTINE, or GLOBAL
BIND ROUTINE unless the definition of that name satisfies this same restriction.

A structure-attribute must not appear in a declaration that has an allocation-unit
or an extension-attribute (BLISS–16/32 only).

A field-attribute can appear only in a declaration that has a structure-attribute.

A weak-attribute can appear only in a GLOBAL bind-data-declaration (BLISS–32
only).

14.3.3 Defaults
If an allocation-unit is not given, fullword allocation is assumed (BLISS–16/32
only).

If a structure-attribute is not given, the name is assumed to be a scalar.
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14.3.4 Semantics
A bind-data-declaration is processed as follows:

1. The bind-data-name is associated with the attributes given either explicitly or
by default in the declaration.

2. The value of the bind-data-name is determined. The time of evaluation
depends on the kind of data-name-value expression given. If the expression is
not a link-time constant expression, it is evaluated just prior to the evaluation
of the immediately containing block.

14.4 Bind-Routine-Declarations
A bind-routine-declaration is used to define another name for an existing
routine. After a routine-name is defined in this way, it can be used in the scope
of the bind-routine-declaration either by itself to designate the value of the
routine-name or with a parenthesized list of parameters to indicate a call on the
routine.

An example of a bind-routine-declaration follows:

BIND ROUTINE CALC = CALCULATION4;

It is assumed that CALCULATION4 is the name of a routine that is declared
elsewhere, and under this assumption, the value of CALC can be determined at
link time.

Another example of a bind-routine-declaration follows:

BIND ROUTINE SR = (IF .A LSS 0 THEN SNEG ELSE SPOS);

It is assumed that SNEG and SPOS are names of routines that are declared
elsewhere. Because the expression to the right of the equal sign ( = ) operator is
not a link-time constant expression, the value of SR is determined just before
each evaluation of the block that contains the declaration.

14.4.1 Syntax

bind-routine-
declaration

n
BIND ROUTINE
GLOBAL BIND ROUTINE

o
bind-routine-item , . . . ;

bind-routine-item bind-routine-name = routine-name-value

n
: bind-routine-attribute . . .
nothing

o

bind-routine-name name
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routine-name-value expression

bind-routine-
attribute

(
novalue-attribute
linkage-attribute
weak-attribute

)
( 32 Only

14.4.2 Restrictions
The value of the routine-name-value expression must be the address of a routine
that can be called within the scope of the bind-routine-declaration.

The routine-name-value expression must be a link-time constant expression if the
declaration begins with GLOBAL or the declaration is at the outermost level of a
module (and is not, therefore, contained in a routine-declaration).

The routine-name-value expression in a GLOBAL bind-routine-declaration is
limited to a restricted subset of link-time constant expressions, in that it must
not contain a name declared EXTERNAL, EXTERNAL ROUTINE, or EXTERNAL
LITERAL unless that name is an operand of a compile-time constant expression
(see Section 7.1.2, item 7). Furthermore, the routine-name-value expression
must not contain a name declared BIND, GLOBAL BIND, BIND ROUTINE, or
GLOBAL BIND ROUTINE unless the definition of that name satisfies this same
restriction.

The WEAK attribute must be given only with a GLOBAL bind-routine-declaration
(BLISS–32 only).

14.4.3 Default
If a linkage-attribute is not given and the bind-routine-declaration is in the scope
of a LINKAGE switch, then the default linkage-attribute is the linkage-name
given in the linkage-switch (see Sections 18.2 and 19.2). Otherwise, the default
linkage-attribute is the predeclared linkage-name BLISS in BLISS–16 and
BLISS–32, or BLISS36C in BLISS–36.

14.4.4 Semantics
A bind-routine-declaration is processed as follows:

1. The bind-routine-name is associated with the attributes given either explicitly
or by default in the declaration.

2. The value of the bind-routine-name is determined. The time of evaluation
depends on the kind of routine-name-value expression given. If the expression
is not a link-time constant expression, it is evaluated just before the
evaluation of the immediately containing block.
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15
Lexical Functions

BLISS provides two groups of features that are concerned with the compile-time
processing of a module: lexical-functions, described in this chapter, and macros,
described in Chapter 16. Lexical functions and macros are closely related and
share many common concepts and mechanisms. Consequently, the introduction to
this chapter considers both together in an integrated way and lays the foundation
for the description of macros in the next chapter.

The lexical-functions perform basic operations on the text of the module; for
example, the %STRING lexical-function gathers several lexemes into a single
quoted-string lexeme, and the %CHARCOUNT lexical-function counts the
characters in a given quoted-string. The example material in this chapter
includes both lexical-functions and macros, because in practical use these two
features are usually intertwined.

Closely related to the lexical-functions is the lexical-conditional, which permits
you to indicate that a portion of a program is to be included or omitted depending
on the outcome of a given compile-time test. Another related facility is the
compile-time-declaration, which declares names whose values can be changed
during compilation and which can control macro-expansion.

All these facilities depend on lexical processing, which is the first step in the
compilation of a module. During lexical processing, lexemes are formed and
interpreted, names are associated with their declarations, and the various kinds
of lexical constructs are processed.

The first section introduces lexical processing and the second section gives
the quotation conventions. The next four sections describe lexical-expressions,
lexical-functions (in general and in particular), and lexical-conditionals. The final
section describes the compile-time-declaration.

15.1 Introduction to Lexical Processing
The compilation of a module begins with lexical processing, which divides the
module into lexemes, binds names to their associated declarations, and expands
macro-calls.

15.1.1 From Characters to Lexemes
A module is supplied to the compiler as a sequence of characters and linemarks.
As the module is processed, the characters and linemarks are collected to form
lexemes. The various kinds of lexemes are described in Chapter 2.

As an example of conversion to lexemes, consider the following module:
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MODULE EX =
BEGIN
GLOBAL

X: VECTOR[1024];
END
ELUDOM

This module is presented to the compiler as a source file composed of the following
characters:

M, O, D, U, L, E, blank, E, X, blank, =, linemark,
B, E, G, I, N, linemark,
G, L, O, B, A, L, linemark,
blank, blank, blank, blank, X, :,
blank, V, E, C, T, O, R, [, 1, 0, 2, 4, ], ;, linemark,
E, N, D, linemark,
E, L, U, D, O, M, linemark

As the module is read by the compiler, it is converted into the following list of 14
lexemes:

MODULE, EX, =,
BEGIN,
GLOBAL,
X, :, VECTOR, [, 1024, ], ;,
END,
ELUDOM

It is the lexemes that are important in BLISS, not the individual characters, and
in the remainder of this chapter, modules are discussed as sequences of lexemes.
That is, the division of modules into lexemes is taken for granted.

15.1.2 Lexeme-by-Lexeme Processing
The compiler works on one lexeme at a time. That is, the compiler does not
read a new lexeme until it has done everything it can with the portion of the
module it has already seen. This lexeme-by-lexeme processing is a fundamental
characteristic of BLISS. For example:

OWN
ALPHA;

ALPHA = 2;

When the compiler encounters this fragment, it is already in the midst of a
module. Assume that the compiler has already encountered, in an outer block,
a declaration of ALPHA as a literal-name. The first lexeme in the fragment is
OWN. When the compiler reads this lexeme, it recognizes that the next lexeme
will be a new declaration of some name, and it prepares for that situation.

The second lexeme is ALPHA. Although ALPHA is already declared, the compiler
treats this occurrence of ALPHA as a new, overriding declaration of ALPHA.

The third lexeme is a semicolon. When the compiler reads this lexeme, it knows
that the declaration is complete. Therefore, the compiler fills in the various
defaults for ALPHA, providing a complete declaration for the name.

The fourth lexeme is another occurrence of ALPHA. Because of the context, the
compiler knows that this occurrence of ALPHA is a use of the name rather than
another declaration. Because the compiler is working on one lexeme at a time, it
has the full declaration of ALPHA ready to apply to this use of ALPHA. And that
is the main point of this example.
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The lexeme-by-lexeme processing of a BLISS program is quite natural and
obvious for simple modules, such as the example just given. However, in more
complicated cases, there may be more than one ‘‘obvious’’ way to interpret a
module, and the lexeme-by-lexeme rule must be invoked to determine what
actually happens.

15.1.3 Binding
Every identifier that is not a reserved keyword can be used as a name. When an
identifier is used as a name, it must be declared; that is, it must be associated
with a declaration. Declarations can be implicit (supplied by the compiler) or
explicit (written by the programmer). The process of associating a given use of a
name with a declaration is called lexical binding. (The process of associating a
declaration of a name with a storage address is also called binding, as discussed
in Section 1.4. Binding in this sense, however, is not a concern of this chapter.)

In some cases, there is more than one way to lexically bind a name. Consider the
following example:

LITERAL
ABS = 0;

...
ROUTINE ALPHA(X): NOVALUE =

BEGIN
LOCAL

ABS;
ABS = ..X+1;
.x = .ABS*..X;
END;

In this example, there are three declarations of ABS. First, ABS is implicitly
declared as the name of the absolute value executable function, as described
in Chapter 5. Second, ABS is explicitly declared as LITERAL on the second
line. Third, ABS is explicitly declared as LOCAL within the routine-declaration.
According to the rules for scoping given in Section 8.2, the use of ABS in the
assignment to .X is bound to the third (and most recent) declaration of ABS.

15.1.4 Expansion
BLISS includes a facility for defining and using macros. Macros have names and
the names are defined and given by declarations, just like other BLISS names.
Thus, the macro facility is an integral part of the BLISS language.

A macro-declaration associates a sequence of lexemes, a macro-body, with a
macro-name. Within the scope of the macro-declaration the macro-name can be
used in a macro-call. During compilation, each macro-call is replaced by a copy of
the macro-body.

A macro can be parameterized; that is, each macro-call can supply actual-
parameters that are substituted for formal-names in the macro-body.

When the compiler encounters a macro-call, it first reads through the call itself,
collecting and processing the actual-parameters. Then the compiler replaces the
macro-call by its expansion. The expansion is a modified copy of the macro-body
that is given in the declaration of the macro.

A simple example follows:

MACRO
PROD(X) = (((X)+1)*((X)-1)) %;

...
B = PROD(2*A);
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Here, the macro-call is PROD(2*A) and the macro-body is ((X)+1)*((X)–1). After
the macro-call is expanded, the assignment to B becomes the following:

B = (((2*A)+1)*((2*A)-1));

The term ‘‘expansion’’ reflects the fact that macros are often used as a short
way to express a long construct. Indeed, in the example above, the expansion
is considerably longer than the macro-call that it replaced. In general, however,
expansion refers to the replacement of one sequence of lexemes by another during
compilation. There are four kinds of expansion in BLISS:

• A lexical-function is replaced by its expansion, as described in Sections 15.4
and 15.5.

• A lexical-conditional is replaced by its lexical-consequence or lexical-
alternative, as described in Section 15.6.

• A macro-call is replaced by the corresponding macro-body, and the formal-
parameters in the macro-body are replaced by the corresponding actual-
parameters, as described in Sections 16.2 and 16.3.

• A require-declaration or library-declaration is replaced by the file it
designates, as described in Sections 16.5 and 16.6.

Because the idea of replacing one entire sequence of lexemes with another,
all at once, is inconsistent with the lexeme-by-lexeme processing described
in Section 15.1.2, the compiler processes a module in several stages; lexical
processing is the first stage. The lexical processing stage of the compiler reads
lexemes from the source file, collects lexemes until it can perform some lexical
processing, passes the resulting lexemes to the next stage of the compiler, and,
once again, reads lexemes from the source file.

The compiler can be thought of as working from a single sequence of lexemes, the
input stream, as follows:

• At the beginning of compilation, the input stream is the given module.

• Each time the compiler can do nothing more without another lexeme, it takes
a lexeme from the head of the input stream.

• Whenever the compiler has accumulated a construct that can be expanded
(such as a lexical-function or a macro-call), it processes that construct and
places the resulting sequence of lexemes at the head of the input stream.

• Whenever the lexical-processing stage of the compiler has accumulated a
construct that cannot be further expanded (such as a keyword or a plus
symbol), it passes that construct on to the next stage of the compiler.

• When the input stream is empty, compilation is complete.

The method of lexical processing just described is simplified, but only in the
following way: it suppresses those details of the BLISS compiler that, while they
are important for efficient operation of the compiler, do not affect the meaning of
the program or the object code produced by the compiler.
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15.1.5 An Example of Lexical Processing
The following module provides an example of lexical processing:

MODULE S1 =
BEGIN
REQUIRE

’STDMAC’;
GLOBAL BIND

P1 = STR8(’ABC’),
P2 = STR8(’ABCDEFGHIJKLM’);

END
ELUDOM

The fourth line of this module references the file named STDMAC. The contents
of that file is assumed to be the following:

MACRO
STR8(S) =

%IF %CHARCOUNT(S) GTR 10
%THEN %WARN(’STR8 PARAM TOO LONG’) %FI
PLIT( %EXACTSTRING(10,%C’ ’,S) )

%;

A detailed trace of the lexical processing of the module follows. The binding of
names is described, expansions are performed, and the state of the compilation is
given after each expansion.

The compiler starts with MODULE and reads lexemes from the input stream.
The identifier S1 is treated in a special way because it is the module name;
it does not affect the meaning of the program. When the compiler reads the
semicolon on the fourth line, it knows that it has reached the end of a complete
require-declaration. In accordance with the definition of require-declarations
(Section 16.5), the compiler expands the require-declaration by placing the
contents of the designated file at the head of the input stream.

At this point, the state of compilation is as follows:

MODULE S1 =
BEGIN

==> MACRO
STR8(S) =

%IF %CHARCOUNT(S) GTR 10
%THEN %WARN(’STR8 PARAM TOO LONG’) %FI
PLIT( %EXACTSTRING(10,%C’ ’,S) )

%;
GLOBAL BIND

P1 = STR8(’ABC’),
P2 = STR8(’ABCDEFGHIJKLM’);

END
ELUDOM

The arrow at the beginning of the third line is a marker used in this explanation
of lexical processing. Everything from the beginning of the module up to the
arrow has passed through lexical processing and everything from the arrow
through the end of the module is the input stream. The lexeme that immediately
follows the arrow is the head of the stream.

The compiler continues processing lexemes, starting with MACRO. The
occurrence of STR8 declares that name as a macro-name. The first occurrence
of S declares that name to be the first (and only) formal parameter of STR8.
The second and third occurrences of S are bound to this declaration. When
the compiler reads the percent lexeme, it knows that it has read a complete
macro-definition. It associates the macro-body with the name STR8.

Lexical Functions 15–5



The compiler continues, starting with GLOBAL. The occurrence of P1 declares
that name to be a GLOBAL BIND name with a given value. The occurrence of
STR8 is bound to the macro-declaration of the same name. When the compiler
reads the right parenthesis that follows ’ ABC’ , it knows that it has read a
complete macro-call. In accordance with the definition of ordinary macros
(Section 16.2.3), the compiler expands the macro-call by placing a copy of the
macro-body at the head of the input stream and replacing each formal-parameter
in the copy by the corresponding actual-parameter.

At this point, the state of compilation is as follows:

MODULE S1 =
BEGIN
MACRO

STR8(S) =
%IF %CHARCOUNT(S) GTR 10
%THEN %WARN(’STR8 PARAM TOO LONG’) %FI
PLIT( %EXACTSTRING(10,%C’ ’,S) )

%;
GLOBAL BIND

P1 =
==> %IF %CHARCOUNT(’ABC’) GTR 10

%THEN %WARN(’STR8 PARAM TOO LONG’) %FI
PLIT( %EXACTSTRING(10,%C’ ’,’ABC’) ) ,

P2 = STR8(’ABCDEFGHIJKLM’);
END
ELUDOM

The compiler continues, starting with the first lexeme, %IF, of the lexical-
conditional. When the compiler reads the right parenthesis that immediately
follows ’ ABC’ , it knows that it has read a complete %CHARCOUNT lexical
function. In accordance with the definition of that function (Section 15.5.2),
the compiler expands the function by counting the number of characters in the
actual-parameter ’ ABC’ and placing a numeric-literal that represents the count
at the head of the input stream. Now the state of compilation is as follows:

...
GLOBAL BIND

P1 =
%IF ==> 3 GTR 10
%THEN %WARN(’STR8 PARAM TOO LONG’) %FI
PLIT( %EXACTSTRING(10,%C’ ’,’ABC’) ) ,

P2 = STR8(’ABCDEFGHIJKLM’);
...

When the compiler reaches %THEN, it has evaluated the lexical-test of a
lexical-conditional; because 3 is not greater than 10, the test is not satisfied.
In accordance with the definition of lexical-conditionals (see Section 15.6), the
compiler skips the remainder of the lexical-conditional. The state of compilation
is as follows:

...
GLOBAL BIND

P1 = ==> PLIT( %EXACTSTRING(10,%C’ ’,’ABC’) ) ,
P2 = STR8(’ABCDEFGHIJKLM’);

...

The compiler continues, starting with PLIT. The occurrence of %EXACTSTRING
is recognized as a lexical-function name, and when the compiler reads the right
parenthesis that follows, it knows it has a complete %EXACTSTRING lexical
function. In accordance with the definition of that function (Section 15.5.2), the

15–6 Lexical Functions



compiler makes ’ ABC’ into a 10-character quoted-string by filling at the right
with blanks, and places this expansion at the head of the input stream.

The state of compilation is as follows:

...
GLOBAL BIND

P1 = PLIT( ==> ’ABC ’ ),
P2 = STR8(’ABCDEFGHIJKLM’);

...

The compiler continues, and reaches the declaration of P2. This declaration is
treated similarly to that of P1; however, because the string given for P2 contains
more than 10 characters, the test in the compilation-expression is satisfied and
the compilation arrives at the following state:

...
GLOBAL BIND

P1 = PLIT( ’ABC ’ ),
P2 =
==> %WARN(’STR8 PARAM TOO LONG’) %FI

PLIT( %EXACTSTRING(10,%C’ ’,’ABCDEFGHIJKLM’) );
...

The compiler expands the %WARN lexical-function by generating the warning
message ‘‘STR8 PARAM TOO LONG’’, incrementing the warning count, and then
placing the empty sequence (that is, nothing at all) at the head of the input
stream. The compiler skips the %FI, which is the end of the lexical-conditional.
Now the state of compilation is as follows:

...
GLOBAL BIND

P1 = PLIT( ’ABC ’ ),
P2 =
==> PLIT( %EXACTSTRING(10,%C’ ’,’ABCDEFGHIJKLM’) );

...

The compiler continues to the %EXACTSTRING lexical-function, which it
expands as follows:

...
GLOBAL BIND

P1 = PLIT( ’ABC ’ ),
P2 = PLIT( ’ABCDEFGHIJ’ ==> );

...

The compiler continues to the end of the input stream without performing any
further binding or expansion. The result is the same as the result of compiling
the following module:

MODULE S1 =
BEGIN
GLOBAL BIND

P1 = PLIT( ’ABC ’ ),
%WARN(’STR8 PARAM TOO LONG’)
P2 = PLIT( ’ABCDEFGHIJ’ );

END
ELUDOM
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15.2 Quotation
BLISS has facilities for quotation. Quotation postpones until a later lexical scan
the binding of a name and the expansion of a lexical-function or macro-call.

The need for quotation in BLISS is not obvious. The argument in favor of being
able to quote a name is as follows:

• Some names are processed more than once. For example, a name in a macro-
body is processed once as part of the macro-declaration and then, a second
time, as part of the expansion of a macro-call.

• A particular use of a name can only be bound to one declaration. Therefore,
a name that is processed twice could be bound in two different ways, and a
choice must be made.

• A simple rule for choosing among bindings, such as ‘‘always bind a name the
first time it is processed,’’ is not flexible enough.

Therefore, some mechanism is necessary to specify when binding shall occur.
This mechanism is the quotation facility.

The BLISS quotation facility has two parts: the quotation rules, and the quote-
functions. Each quotation rule states that in a particular context certain kinds of
names are bound or not bound. The quote-functions override the quotation rules
and tell the compiler, for example, to quote a particular name regardless of the
applicable quotation rules. The quotation rules are given later in this section.

A preliminary example of the BLISS quotation facility is as follows:

OWN
X;

LITERAL
MARK = 4;

MACRO
M = MARK + %UNQUOTE MARK %;

...
BEGIN
LITERAL

MARK = 5;
X = M;
...
END

The interesting part of the example is the binding of the uses of MARK. A
detailed discussion follows.

The name MARK is declared twice, both times as LITERAL, but with different
values. Each use of MARK must be bound to one or the other of these
declarations.

The only uses of MARK are in the declaration of the macro M. There are two
uses and they are handled in two different ways. The first occurrence is not
bound because one of the BLISS quotation rules (defined in Section 15.2.2)
states that in the macro-body of a macro-declaration only a macro formal-name
is bound. The second occurrence is bound because the %UNQUOTE function
(defined in Section 15.5.14) overrides the rule just stated and forces binding.
After processing, the macro-body is as follows:

MARK (not bound yet) + MARK (bound to LITERAL 4)

This macro-body is associated with the macro-name M.
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Later in the processing of the example, the compiler replaces the macro-call on M
with its expansion, and begins to process the expansion. This time around, the
first MARK is bound because the quotation rules permit it. The second MARK is
already bound and, because a name is never bound for a second time, is left as it
is. After processing, the expansion is as follows:

MARK (bound to LITERAL 5) + MARK (bound to LITERAL 4)

Thus, the assignment statement is compiled as assigning 9 to X.

In this example, the application of the quotation rules to the binding of names
has been illustrated. They also apply to the expansion of lexical-functions and
macro-calls.

15.2.1 Quote Levels
The quotation rules of BLISS are organized around three quote levels. At any
given time during compilation of a module, a particular quote level applies to the
lexemes being read from the input stream. As compilation proceeds, the quote
level changes depending on the language construct that is being compiled.

Quote levels are numbered from 1 to 3 and defined as follows:

1. Normal-quote. This level applies to any portion of a module not covered by
the following quote levels.

2. Name-quote. This level applies to lexical contexts in which it is ‘‘natural’’ to
ignore most applicable declarations. The portions of a module processed at
name-quote level are as follows:

a. A name that is about to be declared (explicitly or implicitly); specifically,
a name that begins a definition within a declaration, or a name that
appears in the formal-name-list of a routine, structure, or macro
declaration.

b. A name that appears in a name-quote actual-parameter of a lexical-
function or any actual-parameter of a macro-call.

c. An unreserved keyword in a context in which an unreserved keyword is
required. An example is a module-switch in a module-head (described in
Section 18.1), where the context makes it clear that a keyword is being
used as a switch. (The BLISS keywords are listed in Appendix A.)

3. Macro-quote. This level applies primarily to a macro-body in a macro-
declaration. It also applies to a keyword-default-actual-parameter
(Section 16.2).

If more than one of the preceding levels could apply to a given context, the quote
level with the highest number is chosen.

15.2.2 Quotation Rules
The quotation rules determine the binding of names and the expansion of both
macro-calls and lexical functions. There are three quotation rules, one for each
quote level, as follows:

1. At normal-quote level, bind every name.

At this level, expand every macro-call and lexical-function.

2. At name-quote level, bind macro-names. That is, bind a name only if the
binding, performed in the usual way, associates the name with a macro-
declaration. At this level, expand every macro-call and lexical-function.
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3. At macro-quote level, bind macro-formal-names. That is, bind a name only
if the binding, performed in the usual way, associates the name with the
(implicit) declaration of a macro-formal-name.

At this level, expand only the quote lexical-functions: %QUOTE,
%UNQUOTE, and %EXPAND.

The quote-functions, described in Section 15.5.14, are specifically designed to
override the rules above. However, a quote-function only applies at a specific
place in a program. For example, the %QUOTE function postpones application of
the bind operation to a name that immediately follows the function, even though
the quotation rules may call for binding of that name.

15.3 Lexical-Expressions
A module is presented to the compiler as a source file composed of characters and
linemarks. During lexical processing, the characters are grouped into lexemes
and then the lexemes are grouped into lexical-expressions.

A lexical-expression can be a single lexeme. Examples follow:

+ The plus symbol

MODULE The keyword that begins a module

ALPHA A name (not declared MACRO)

329 A decimal-literal

’ ABC’ A quoted-string

Each of these examples is not only a single lexeme but is also primitive; that is, it
is not expanded into some other sequence of lexemes during lexical processing.

Some examples of lexical-expressions that are more complicated are as follows:

%ASCIC’ ABC’ A string-literal

%CHARCOUNT(’ ABC’ ) A lexical-function

%IF %SWITCHES(DEBUG)
%THEN %WARN(’ BANG’ ) %FI

A lexical-conditional with two nested lexical-
functions

BETA(3,’ ABC’ ) A macro-call (assume BETA is declared MACRO)

REQUIRE ’ TBS’ ; A require-declaration

LIBRARY %STRING(’ XYZ’ ,Q); A library-declaration with a nested lexical-function

All of these lexical-expressions are composed of two or more lexemes. The first
example is a %ASCIC string-literal and is primitive. The second example is a
%CHARCOUNT lexical-function and is nonprimitive; it is expanded to 3, which is
a primitive lexical-expression. The remaining examples are all nonprimitive, but
their expansion requires contextual information not given here.

An example of a sequence of lexical-expressions that constitutes a complete
module follows:

MODULE Q =
BEGIN
MACRO

PACK(X) = UPLIT(%CHARCOUNT(X),X);
GLOBAL BIND

MESSAGE = PACK(’HELLO’);
END
ELUDOM
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This module is mainly composed of primitive, single-lexeme lexical-
expressions. The two exceptions are %CHARCOUNT(X) on the fourth line
and PACK(’ HELLO’ ) on the sixth line. The first nonprimitive lexical-expression,
%CHARCOUNT(X), occurs within a macro-body and, therefore, is processed at
macro-quote level; it is not expanded during macro definition, but is treated
simply as a single-lexeme sequence. The PACK(’ HELLO’ ) lexical-expression is a
macro-call, and its expansion is as follows:

UPLIT(%CHARCOUNT(’HELLO’),’HELLO’)

This expansion includes the nonprimitive lexical-expression
%CHARCOUNT(’ HELLO’ ). This is a lexical-function at normal-quote level,
and its expansion is 5.

This section introduces the various kinds of lexical-expressions in BLISS and
thus prepares for detailed descriptions in the remaining sections of this chapter.

15.3.1 Syntax

lexical-expression n
primitive
nonprimitive

o

primitive

8>><
>>:

delimiter
keyword
name
numeric-literal
string-literal

9>>=
>>;

nonprimitive

8>><
>>:

lexical-function
lexical-conditional
macro-call
require-declaration
library-declaration

9>>=
>>;

The primitive lexical-expressions are described in other parts of this manual;
specifically, the delimiters are listed in Section 2.2.1, the keywords are listed in
Appendix A, and the names, numeric-literals, and string-literals are described in
Chapter 4.

Under certain conditions, a name, by itself, is also a macro-call; in that case, the
name is nonprimitive.

15.3.2 Semantics
The fundamental lexical rule of BLISS is as follows:

A given sequence of lexemes is a valid BLISS module if and only if the
expansion of nonprimitive lexical-expressions produces a sequence of lexemes
that satisfies the definition of module given in Chapter 19.

This rule joins together the description of lexical-expressions given in this chapter
and the definition of a module given in Chapter 19. (That definition of a module
includes, by reference, most of the other chapters of this manual.)

The semantics of the various nonprimitive lexical-expressions are given in later
sections of this chapter.
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A few remarks about numeric- and string-literals as lexical-expressions are
necessary. These remarks are presented here rather than in Chapter 4 because
they are closely related to the concepts of lexical processing.

15.3.2.1 Types of Numeric-Literals
The numeric-literals, as defined in Section 4.2, can be classified as follows:

Fullword Type:
Unsigned Decimal-Literal
Integer-Literal
Character-Code-Literal

Single-Precision-Float Type:
Single-Precision-Float-Literal

Double-Precision-Float Type:
Double-Precision-Float-Literal

Different numeric-literals of the same type can be used interchangeably, but
numeric-literals of different types cannot. For example, if a decimal-literal
is called for in the syntax, then an integer-literal can be used instead, but a
single-precision-float-literal cannot.

15.3.2.2 Types of String-Literals
The string-literals, as described in Section 4.3, can be classified as follows:

Uncounted ASCII Type: Quoted-String (without preceding string-type)
%ASCII String-Literal
%ASCIZ String-Literal

Counted ASCII Type: %ASCIC String-Literal (BLISS–16/32 only)

Radix–50 Type: %RAD50_11 String-Literal (BLISS–16/32 only)
%RAD50_10 String-Literal (BLISS–36 only)

Sixbit Type: %SIXBIT String-Literal (BLISS–36 only)

Packed Decimal Type: %P String-Literal (BLISS–16/32 only)

Different string-literals of the same type can be used interchangeably, but string-
literals of different types cannot. For example, if a quoted-string is called for,
then a %ASCII string-literal can be used but a %ASCIC string-literal cannot.

BLISS permits this interchange of uncounted string-literals because each of them
represents a sequence of ASCII characters. (The zero at the end of a %ASCIZ
literal is the ASCII ‘‘null’’ character, which has a 0 code.)

The interchangeability of uncounted ASCII literals does make a slight addition to
the language. Consider the definition of the %ASCIC string-literal (BLISS–16/32
only) given in Section 4.3:

%ASCIC quoted-string

Because of the interchangeability of uncounted ASCII literals, the quoted-string
can be replaced by an ASCIZ string-literal, and the result is as follows:

%ASCIC %ASCIZ quoted-string
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Thus the following construct is a valid %ASCIC string-literal in BLISS–16 or
BLISS–32:

%ASCIC %ASCIZ ’ABC’

This literal has a different interpretation from either %ASCIC’ ABC’ or
%ASCIZ’ ABC’ . It is encoded in five bytes. The first byte contains the number of
characters, 4, in the character sequence. The next three bytes contain the ASCII
codes for A, B, and C. The final byte contains 0, which is the ASCII code for the
null character.

Some further applications of interchangeability of uncounted ASCII literals
follow:

%B %ASCII’11011’
%C %ASCII’Q’
%ASCII %ASCIZ %ASCII’ABC’

15.3.2.3 Numeric- and String-Literals
Except for the decimal-literal and quoted-string, the numeric- and string-literals
are all composed of two lexemes. Each of these lexemes can be produced by
nonprimitive lexical-expressions. An example is the following program fragment:

MACRO
OCT(N) = %O %STRING(N) %;

...
OCT(23)

When the macro-call OCT(23) is expanded, the result is as follows:

%O %STRING(23)

Then the %STRING lexical-function is evaluated and the result is as follows:

%O ’23’

Thus, the final value is 19 (decimal).

15.3.3 Discussion
Some nonprimitive lexical-expressions have an empty expansion; that is, they
do not produce any lexemes. They are used for their side effects in controlling
the compilation process. Two examples are the %UNQUOTE and %WARN
lexical-functions described in Section 15.2.

Other nonprimitive lexical-expressions have nonempty expansions, as do most of
the lexical-expressions introduced so far. Almost all instances of this expanding
type of nonprimitive lexical-expression can, in principle, be replaced by an
equivalent sequence of primitive lexical-expressions. Such replaceable lexical-
expressions do not produce any results that (again, theoretically) could not be
obtained without them. Their purpose is to facilitate both conditional compilation
and the writing of macros. Also, they often radically reduce the effort required to
achieve a given result, and can be used to enhance the clarity of a module.

It is useful to examine those few cases in which a nonprimitive lexical-expression
cannot in any way be replaced by an equivalent primitive lexical-expression
sequence. There are three such cases. Each of them is rather specialized, and
all of them involve lexical-functions. They are internal-only character sequences,
excessively-long character sequences, and internal-only names.
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An internal-only character sequence is a character sequence that is not composed
entirely of printing characters, blanks, and tabs. Such character sequences can
be represented by means of the %STRING and %CHAR lexical-functions, but
cannot, according to Section 4.3, be represented by a quoted-string.

As an example, consider the following character sequence:

A, carriage-return, line-feed, B

This sequence can be represented as follows:

%STRING(’A’,%CHAR(13),%CHAR(10),’B’)

The lexical-functions %STRING and %CHAR are defined later, in Section 15.5.2.
In this example, %CHAR(13) and %CHAR(10) represent the troublesome
characters, and the %STRING function joins the four characters into a single
sequence. That sequence cannot be represented by a quoted-string because a
quoted-string cannot include a carriage return or a line feed. Thus, the uses of
the %STRING and %CHAR functions are essential in this example.

An excessively long character sequence is one that contains more characters than
can be represented on one line by a quoted-string. Such a character sequence can
be represented on several lines by means of %STRING as follows:

%STRING(’A line of many characters’,
’Another line of characters’)

Again, %STRING is essential in this example.

An internal-only name is a character sequence that must be used as a BLISS
name but that does not satisfy the syntax for a BLISS name. An example is
XYZ.A, which is a valid assembler name but not a valid BLISS name. In BLISS,
this name can be represented only as follows:

%NAME(’XYZ.A’)

The lexical-function %NAME is defined later, in Section 15.5.4.

15.3.4 Pragmatics
The description of the lexical-processing stage of the compiler given in this
chapter is correct with respect to the results of compilation, but does not reflect
techniques that make the compiler itself more efficient. One such technique
involves the use of internal encoding of lexemes, and another the use of multiple
input streams for the expansion of lexical-expressions.

The latter technique merits some discussion, since it pertains to the scanning
of lexemes. The compiler does not, in fact, maintain a single input stream into
which the expansion of every lexical-expression is inserted. Instead, the compiler
maintains several input streams. The principal input stream is the file for the
module that is being compiled. However, a new input stream is introduced each
time an expansion occurs. For example, after a macro-call has been processed, the
corresponding macro-body becomes a new input stream. Even the replacement of
a formal-name in a macro-body by the associated macro actual-parameter is done
by treating the actual-parameter as a new input stream.

When a new input stream is introduced, input from the old input stream is
suspended. Lexemes are taken from the new input stream until it terminates.
This new stream can itself contain lexical-expressions whose expansion may
introduce further new streams. When the end of an input stream is reached, the
previous input stream is restored. Thus, the input streams are nested, and the
initial input stream (the module file) is always the final input stream.
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15.4 Lexical-Functions in General
A lexical-function is processed by the compiler. The result is a sequence of
lexemes that is the expansion of the lexical-function. The expansion then becomes
input to the compiler and is processed in its turn.

It is important to distinguish between the evaluation of a computational
expression and the expansion of a lexical-function. A computational expression
yields a value, and that value can be used in the evaluation of other expressions.
In contrast, a lexical-function yields a sequence of lexemes, and that sequence can
be used as input to the compiler.

It is also useful to distinguish between lexical-functions and macro-calls. Both
return a sequence of lexemes, but a lexical-function invokes an operation that is
built into BLISS, whereas a macro-call invokes an operation that must be defined
in a macro-declaration. Thus, lexical-functions and macro-calls are related in the
same way that executable-functions and routine-calls are related.

Certain parameters of lexical-functions can be expressions, but every such
expression must be a compile-time constant expression. This restriction reflects
the fact that all lexical-functions must be fully processed during compilation.

Each lexical-function begins with a keyword that, in turn, begins with a percent
character; for example, %STRING and %CHAR.

A few examples of lexical-functions follow:

Lexical-Function Expansion

%STRING(’ A’ ,’ B’ ,’ C’ ) ’ ABC’

%STRING(’ X’ ,24) ’ X24’

%CHARCOUNT(’ ABC’ ) 3

%NUMBER(’ –00062’ ) –62 (written internally as one lexeme)

These are simple examples: the expansion of each of these lexical-functions is a
single lexeme.

Some lexical-functions can return a sequence that is more than one lexeme in
length. A simple example follows:

Lexical-Function Expansion

%EXPLODE(’ ABC’ ) ’ A’ ,’ B’ ,C’

In this case, the expansion consists of five lexemes (three quoted-strings and
two commas). Some lexical-functions are replaced by nothing (that is, an empty
sequence of lexemes). For example, the following two lines produce the same
object code:

Y = .A+%PRINT(’CHECK POINT 20’)F(X);

Y = .A+F(X);

However, the first version causes the informational message CHECK POINT 20
to be included in the output listing of the compiler.

Lexical functions can be nested. An example follows:

%STRING(’A’,%CHARCOUNT(’XYZ’),’B’)
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Expansion of this %STRING function begins with the expansion of the nested
%CHARCOUNT function as follows:

%STRING(’A’,3,’B’)

The %STRING function itself is then expanded as follows:

’A3B’

This quoted-string is the final expansion of the nested lexical functions.

This section gives the general definition of lexical functions, without defining any
particular function. Specific definitions are given in the next section.

15.4.1 Syntax

lexical-function lexical-function-name

(
(lexical-actual-parameter , . . . )
lexeme
nothing

)

lexical-
function-name %name

lexical-actual-
parameter n

lexeme . . .
nothing

o

15.4.2 Restrictions
A lexical-function must conform syntactically to one of the specific lexical-function
definitions given in Section 15.5. For example, the %DECLARED function
requires just one parenthesized parameter, and that parameter must be a single
lexeme, specifically a name. Each lexical-function-name is a reserved keyword. It
must not be declared and cannot be used for any other purpose.

15.4.3 Semantics
The processing of a lexical-function is performed as part of the compilation
of a module. Processing begins when the compiler calls for the next lexeme
of the input stream and that lexeme is recognized as a lexical-function-name.
Processing continues until the last lexeme of a valid lexical-function has been
processed. When processing is complete, the lexical-function is replaced by a
sequence of lexemes that is its expansion.

You can prevent the processing of a lexical-function by placing a %QUOTE in
front of it.

When processing of a lexical-function is complete and the lexical-function has
been replaced by its expansion, the compiler takes its next lexeme from the
beginning of the expansion. If the expansion is the empty sequence, the compiler
takes its next lexeme from the stream that follows the lexical-function.

Most lexical-functions require a parenthesized list of actual-parameters. That
parameter list can, itself, contain lexical-functions or macro-calls; it is no different
in that respect than other portions of a BLISS module.
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Each actual-parameter of a lexical-function is processed at either name-quote
level or normal-quote level. For example, the first two actual-parameters of the
%EXACTSTRING function are at normal-quote level, while the remaining actual-
parameters are at name-quote level. In the individual definitions in Section 15.5,
you indicate this distinction by placing a number sign ( # ) character before each
parameter that is processed at name-quote level.

Once the actual-parameters have been processed, they must satisfy certain
restrictions. The definition of each lexical-function gives restrictions that apply
to its parameters. But one restriction applies to all lexical-functions: when a
parameter can be an expression, it must be a compile-time-constant-expression.
This restriction is necessary because lexical-functions are always expanded during
compilation.

A few lexical-functions cause the compiler to skip over a lexeme sequence
that could otherwise be compiled. For example, %ERRORMACRO will, under
certain circumstances, abort every macro-call expansion that is in progress.
However, such lexical-functions never cause a portion of the unparsed input
stream to be skipped; instead, they discard secondary sources of lexemes (macro-
bodies) and proceed as if each of those macro-bodies had ended. Such lexical-
functions are defined in Section 15.5.12 (%ERRORMACRO) and Section 15.5.15
(%EXITITERATION and %EXITMACRO).

15.5 Specific Lexical-Functions
For purposes of this presentation, the lexical-functions are grouped as follows:

String-Functions %STRING, %EXACTSTRING, %CHAR, %CHARCOUNT

Delimiter-Functions %EXPLODE, %REMOVE

Name-Functions %NAME, %QUOTENAME

Sequence-Test-Functions %NULL, %IDENTICAL

Expression-Test-Functions %ISSTRING, %CTCE, %LTCE

Bits-Functions %NBITSU, %NBITS

Allocation-Functions %ALLOCATION, %SIZE

Fieldexpand-Function %FIELDEXPAND

Calculation-Functions %ASSIGN, %NUMBER

Compiler-State-Functions %DECLARED, %SWITCHES, %BLISS, %VARIANT

Advisory-Functions %ERROR, %WARN, %INFORM, %PRINT, %MESSAGE,
%ERRORMACRO

Titling-Functions %TITLE, %SBTTL

Quote-Functions %QUOTE, %UNQUOTE, %EXPAND

Macro-Functions %REMAINING, %LENGTH, %COUNT,
%EXITITERATION, %EXITMACRO

Require-Function %REQUIRE

A description of these lexical-functions follows. The description begins with a
brief discussion of quotation within lexical-functions. Then each class of lexical
functions is described in its own section. Finally, all the lexical-functions are
summarized in a single table.
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15.5.1 Quote Levels for Lexical-Actual-Parameters
If a lexical-function appears in a context that is at macro-quote level, then the
lexical-function is not expanded and its parameters are processed at macro-quote
level. Otherwise, each parameter is processed at a quote level that is specified in
the definition of the lexical-function.

In the definitions of lexical-functions that follow, a number sign ( # ) character
sometimes appears before a parameter; in that case, the parameter is processed
at name-quote level and is called a ‘‘name-quote parameter’’. Otherwise, the
parameter is processed at normal-quote level.

For example, the definition of %EXACTSTRING in Section 15.5.2 begins with the
following:

%EXACTSTRING( n , fill , #p , . . . )

Therefore, the first two parameters of %EXACTSTRING are processed at normal-
quote level and the remaining parameters are processed at name-quote level.

Note that the number sign character is part of the definition of BLISS; it never
actually appears before a parameter in a program.

15.5.2 String-Functions
The string-functions operate on or produce quoted-string lexemes. They are
important because they facilitate the compile-time manipulation of quoted-strings,
and provide a useful basis for the definition of new macros. The string-functions
also support the run-time functions for character handling that are described in
Chapter 20.

Most of these functions convert a given sequence of lexemes into a different but
essentially equivalent sequence of lexemes. The %STRING function converts a
sequence of lexemes into a single quoted-string lexeme. The %EXACTSTRING
function is like %STRING except that it adjusts the resulting quoted-string to a
specified length. The %CHAR function takes a sequence of numeric values and
converts it into a quoted-string lexeme.

The only string-function that does not perform a lexical conversion (as informally
defined in the preceding paragraph) is %CHARCOUNT. This function forms a
quoted-string and then yields a numeric-literal equal to the number of quoted-
characters in the string.

The %STRING function plays a leading role among the lexical-functions because
several lexical-functions are based on it. It accepts parameters that are each
a quoted-string, numeric-literal, name, or empty sequence, and it puts these
parameters together into a single quoted-string lexeme. For example:

Function Expansion

%STRING(’ ABC’ ,’ D’ ) ’ ABCD’

%STRING(23,%B’ –111’ ) ’ 23–7’

%STRING(ALPHA,,,9) ’ ALPHA9’

The following lexical functions are all based on the %STRING function:

String-Functions %EXACTSTRING, %CHARCOUNT

Delimiter-Function %EXPLODE
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Name-Functions %NAME

Advisory-Functions %ERROR, %WARN, %INFORM, %PRINT, %MESSAGE,
%ERRORMACRO

Require-Function %REQUIRE

Each of these lexical-functions begins by using the %STRING function to gather
its parameters into a single quoted-string. Then the function performs an action
on the quoted-string that is different for each function.

15.5.2.1 Definition
The string-functions are expanded as follows:

%STRING( #p , . . . )

Restriction. Each parameter must be one of the following:

Fullword numeric-literal, that is:
unsigned decimal-literal
integer-literal
character-code-literal

ASCII string-literal, that is:
quoted-string
%ASCII string-literal
%ASCIZ string-literal
%ASCIC string-literal

Identifier except for reserved keyword
Empty sequence

Expansion. Modify each parameter, depending on what kind of lexeme it is, as
follows:

• If the parameter is a quoted-string, then remove the initial and final quote
characters.

• If the parameter is a string-literal with a string-type, then process the string-
type (Section 4.3), adding a leading or trailing character position as required,
and remove the initial and final quote characters.

• If the parameter is a numeric-literal, then represent its value as a standard
numeric-literal. A standard numeric-literal represents a positive value as
a sequence of decimal digits that does not begin with 0, and represents a
negative value as a minus sign followed by a sequence of digits that does not
begin with 0.

• If the parameter is a name, change any lowercase letters to uppercase.

• If the parameter is an empty sequence, leave it as is.

Concatenate the modified parameters in the order given to form a single character
sequence. Place the sequence in quotes, forming a quoted-string. Return the
quoted-string.

%EXACTSTRING( n , fill , #p , . . . )
%EXACTSTRING( n , fill )

Restrictions. The parameter n must be a compile-time constant expression, and
its value must satisfy implementation restrictions, given elsewhere, on the length
of a character sequence.
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The parameter fill must be a compile-time constant expression, and its value
must be in the range 0 through 255. Use of a simple string-literal to represent a
fill character is strongly discouraged because it will produce differing results
in different dialects (see Section 3.3). However, the character-code-literal
(%C’ character’ ) is fully transportable.

Each of the remaining parameters must satisfy the restrictions on %STRING
parameters.

Expansion. Evaluate the first two parameters. Then proceed as for the %STRING
function, obtaining a single quoted-string from the third through last actual-
parameters. If the function has only two parameters, form an empty quoted
string ( " ).

Modify the resulting quoted-string as follows:

• If the quoted-string represents n characters, leave it unchanged.

• If the quoted-string represents more than n characters, remove quoted-
characters from the right end until it represents n characters.

• If the quoted-string represents less than n characters, add quoted-characters
at the right end until it represents n characters. Use the character whose
ASCII code is given by the value of fill.

Return the resulting quoted-string.

%CHAR( code , . . . )

Restrictions. Each parameter must be a compile-time-constant-expression. The
value of each parameter must be in the range 0 through 255.

Expansion. Evaluate each parameter and interpret its value as the code for an
ASCII character. Concatenate the resulting characters to form a single character
sequence. Return the quoted-string that represents that character sequence.

%CHARCOUNT( #p , . . . )

Restriction. The parameters must satisfy the restrictions on %STRING
parameters.

Expansion. Proceed as for the %STRING function, obtaining a single quoted-
string. Determine the number of quoted-characters (see Section 4.3.1) in the
quoted-string. Represent this number as a numeric-literal. Return the numeric-
literal.

The result of a %STRING, %EXACTSTRING, or %CHAR function is a quoted-
string. However, unlike the quoted-strings written by BLISS programmers, this
quoted-string is not restricted to printing characters, blanks, and tabs; instead, it
can represent any sequence of ASCII characters. This quoted-string is processed
by the compiler as if it were an ordinary quoted-string.

15.5.2.2 Examples
The following are more illustrative than practical examples of string-function
definitions:
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Function Expansion

%STRING(’ ABC’ )
%STRING(’ ABC’ ,’ D’ )
%STRING(%C’ A’ )
%STRING(’ ABC’ ,%C’ A’ )

’ ABC’
’ ABCD’
’ 65’
’ ABC65’

%STRING(23)
%STRING(00023)
%STRING(’ 00023’ )
%STRING(20+3)
%STRING(’ 20+3’ )

’ 23’
’ 23’
’ 00023’
(INVALID: Operator not allowed)
’ 20+3’

%STRING(%B’ –1111’ )
%STRING(%O’ 77’ ,%X’ 77’ )
%STRING(%E’ 1.125E–02’ )

’ –15’
’ 63119’
(INVALID: Float-literal not allowed)

%STRING(beta,’ beta’ )
%STRING(,X,,Y)
%STRING(OWN,MODULE)

’ BETAbeta’
’ XY’
(INVALID: Reserved-keywords not allowed)

%STRING(’ OWN’ ,’ MODULE’ ) ’ OWNMODULE’

%STRING(Q,18)
%STRING(Q,%DECIMAL’ –
18’ )
%STRING(Q,–18)

’ Q18’
’ Q–18’
(INVALID: Leading sign not allowed)

It is assumed in these examples that beta, X, Y, and Q are not macro-names. As
%STRING parameters, non-macro names are treated literally (except for possible
case conversion), whereas a macro-name is expanded.

In most situations, at least some of the parameters of the %STRING function (or
any other lexical-function) are variable. For example:

%STRING(U,’=’,V(X,Y))

Assume that U and V are declared as macros. The %STRING function will
put the expansions of the two macros into a single quoted-string separated by
an equal sign ( = ). If the expansions of U and V are ’ ALPHA’ and ’ X+Y’ ,
respectively, then the final expansion of the %STRING function is the quoted-
string ’ ALPHA=X+Y’ . Examples of the %EXACTSTRING function follow:

Function Expansion

%EXACTSTRING(6,%C’ X’ ,’ ABC’ )
%EXACTSTRING(3,%C’ X’ ,’ A BC’ )
%EXACTSTRING(2,%C’ X’ , ’ ABC’ )
%EXACTSTRING(0,%C’ X’ , ’ ABC’ )
%EXACTSTRING(–2,%C’ X’ ,’ ABC’ )

’ ABCXXX’
’ ABC’
’ AB’
’’
(INVALID: Negative count)

%EXACTSTRING(4,%C’ -’ )
%EXACTSTRING (6,%C’ *’ ,38,’ –6’ )

’ - - - -’
’ 38–6**’

%EXACTSTRING(4,%C’ Y’ , %C’ X’ )
%EXACTSTRING(4,’ Y’ ,’ X’ )
%EXACTSTRING(4,’ Y’ ,’ X’ )
%EXACTSTRING(4,%C’ Y’ ,’ X’ )
%EXACTSTRING(4,89,’ X’ )

’ 88YY’
’ X’ in BLISS–36 only
’ XYYY’ in BLISS–16/32 only
’ XYYY’ in all dialects
’ XYYY’

Examples of the %CHAR function follow. They are assumed to lie in the scope of
these declarations:
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LITERAL
ACODE = 65,
BCODE = 66,
APOSTROPHE = 39,
CR = 13,
LF = 10;

The examples follow:

Function Expansion

%CHAR(65,66)
%CHAR(ACODE,BCODE)
%CHAR(ACODE+32)
%CHAR(ACODE,APOSTROPHE,BCODE)
%CHAR(CR,LF)

’ AB’
’ AB’
’ a’
’ A’’ B’ (3 characters)
(new line)

Examples of the %CHARCOUNT function follow:

Function Expansion

%CHARCOUNT(’ ABC’ )
%CHARCOUNT(,,’’ ,)
%CHARCOUNT(’ A’’ C’ )

3
0
3

15.5.3 Delimiter-Functions
The delimiter-functions insert or delete delimiters within a given string. The
%EXPLODE function forms a quoted-string and then ‘‘explodes’’ it into a list of
single-character quoted-strings. It can be used to take a given string apart. The
%REMOVE function deletes parentheses, brackets, or angle brackets that enclose
a given actual-parameter.

15.5.3.1 Definition
The delimiter-functions are expanded as follows:

%EXPLODE( #p , . . . )

Restriction. Each parameter must satisfy the restriction on %STRING
parameters.

Expansion. Proceed as for the %STRING function, obtaining a single quoted-
string.

Remove the quotes from the ends of the resulting quoted-string, place each
quoted-character in its own pair of quotes, and insert a comma between each
quoted-string and the next.

Return the resulting sequence of quoted-strings and commas.

%REMOVE( #p )

Expansion. If the parameter begins and ends with a matched pair of parentheses,
( . . . ), brackets, [ . . . ], or angle brackets, < . . . >, then remove these lexemes
from the parameter. Otherwise, leave the parameter unchanged.

Return the resulting sequence of lexemes.

The result of a %EXPLODE function is a sequence of one or more one-character
quoted-strings. As with the %STRING, %EXACTSTRING, and %CHAR lexical-
functions, these quoted-strings can represent any ASCII characters.
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15.5.3.2 Examples
Examples of the %EXPLODE function follow:

Function Expansion

%EXPLODE(’ ABC’ )
%EXPLODE(’ A’ )
%EXPLODE( )
%EXPLODE(’ A’ ,’ B’ )
%EXPLODE(%O’ 77’ )
%EXPLODE(’ A’ ,%O’ –
77’ )

’ A’ ,’ B’ , ’ C’
’ A’
’’
’ A’ ,’ B’
’ 6’ ,’ 3’
’ A’ ,’ -’ ,
’ 6’ ,’ 3’

(5 lexemes)
(1 lexeme)
(1 lexeme)
(3 lexemes)
(3 lexemes)
(7 lexemes)

The following example is especially interesting:

%STRING(%EXPLODE(’ABC’))

In this example, %STRING acts as the inverse of %EXPLODE, and the final
expansion of the nested functions is just ’ ABC’ .

Examples of the %REMOVE function follow:

Function Expansion

%REMOVE((A,B,C))
%REMOVE(<A+1>)
%REMOVE([R(A+1)])
%REMOVE((A+B))
%REMOVE((A)+(B))

A, B, C
A+1
R(A+1)
A+B
(A)+(B)

This function is usually applied to macro-formal-names. A simple example of this
application follows:

MACRO
A(X) = RRR(%REMOVE(X))+1 %;

...
A(1);
A((1,2,3));

The extra parentheses in the second macro-call are required to keep its parameter
from being treated as three parameters. The %REMOVE function deletes the
extra parentheses, and the two macro-calls expand to the following:

RRR(1)+1;
RRR(1,2,3)+1;

Assuming that RRR is a conditional or iterative macro (as defined in Section 16.3)
and thus accepts a parameter list of variable length, this is a useful result.

15.5.4 Name-Functions
Sometimes it is necessary to put together a name during program compilation.
This need arises either because the name cannot be written in advance or because
it is a sequence of characters that would not normally be accepted as a name.
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15.5.4.1 Definition
The name-functions are expanded as follows:

%NAME( #p , . . . )
%QUOTENAME( #p , . . . )

Restriction. Each parameter must satisfy the restriction on %STRING
parameters.

Expansion. Proceed as for the %STRING function, obtaining a single quoted-
string.

Treat the sequence of quoted-characters in the quoted-string as a name. Return
the resulting name.

The result of a %NAME and %QUOTENAME lexical-function is a name. Unlike
user-defined names, this name is not restricted to the syntax for a BLISS name;
instead, it can be any sequence of ASCII characters. It is accepted by the compiler
as a name.

The %QUOTENAME lexical-function is similar to the %NAME function, the
exception being that the resultant name is implicitly %QUOTED to prevent
macro-expansion of the name.

15.5.4.2 Examples
The %NAME function permits the formation of a name at compile time. An
example follows:

MACRO
BLOCKOP(A) =

OWN A: BLOCK[10];
ROUTINE %NAME(A,’_INIT’): NOVALUE =

BEGIN
...
END;

%;

Suppose this macro is called as follows:

BLOCKOP(BETA)

The expansion is as follows:

OWN BETA: BLOCK[10];
ROUTINE BETA_INIT: NOVALUE =

BEGIN
...
END;

The macro BLOCKOP uses the given name, BETA, for an OWN data segment. It
uses %NAME to generate a related but distinct name, BETA_INIT, for the routine
that initializes BETA.

The %NAME function also can be used to force the compiler to accept any
character sequence as a name. That can be useful when something entirely
new is needed. An example follows:

%NAME(’+302’)

Each time this construct appears, it is equivalent to writing just +302 and having
those four characters accepted by the compiler as a valid name.
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The %NAME function should not be used casually. Sometimes its use can cause
an unexpected conflict with names generated by the compiler. For example,
one compiler uses names like P.AAA, P.AAB, and so on, for PLIT storage.
Furthermore, some operating systems restrict global names to characters that
are in the RAD50 character set; in that situation, %NAME(+302) would be
invalid as a global name.

The %NAME cannot be used to produce the ‘‘name’’ of a macro that is already
declared; it will, however, always produce the macro expansion and may be used
to invoke and expand a legitimately produced macro, as follows:

MACRO %NAME(’A.B’) = OWN X;%;
%NAME(’A.B’) !expands to "OWN X;"

There are also cases in which %NAME is essential. For example, the period
character is used for global names in some software. Since period cannot be used
in an ordinary BLISS name, %NAME must be used to form such a global name.

As an example of the use of the %QUOTENAME function, consider the following:

MACRO FOOBAR = .XYZ * 5 %;
...
UNDECLARE %NAME(’FOO’,’BAR’);

This would produce an error, because the compiler would interpret the
UNDECLARE declaration as follows:

UNDECLARE .XYZ * 5

Moreover, inserting a %QUOTE before the %NAME, as follows, would again
result in an incorrect compiler interpretation:

UNDECLARE %QUOTE %NAME(’FOO’,’BAR’)

However, using the %QUOTENAME function as follows:

UNDECLARE %QUOTENAME(’FOO,’BAR’)

results in a correct expansion to the following equivalent:

UNDECLARE %QUOTE FOOBAR;

15.5.5 Sequence-Test-Functions
A sequence-test-function expands to 1 or 0, depending on whether or not a certain
condition is met. Because a test-function is expanded during compilation, it can
be used within other lexical constructs. In particular, a sequence-test-function
can be used as a compile-time-test in a lexical-conditional, as described in
Section 15.6.

The two test-functions, %NULL and %IDENTICAL, are applied to lexeme
sequences. The %NULL function determines whether a sequence is empty, that
is, contains nothing. The %IDENTICAL function compares two sequences to
determine if they contain the same lexemes in the same order.

15.5.5.1 Definition
The sequence-test-functions are expanded as follows:

%NULL( #seq , . . . )

Expansion. Process the actual-parameters as for an ordinary macro-call, as
defined in Section 16.3.3.1. Return the numeric-literal 1 or 0, depending on
whether or not all the parameters expand to the empty sequence.
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%IDENTICAL( #seq1 , #seq2 )

Expansion. Process the actual-parameters, seq1 and seq2, as for an ordinary
macro-call, as defined in Section 16.3.3.1. Return the numeric-literal 1 or 0,
depending on whether or not the two resulting lexeme sequences are the same.

When two identifiers are compared, all letters are considered to be upper-case,
so that case is effectively ignored. When two numeric-literals are compared, the
numeric values of the numeric-literals are compared rather than the numeric-
literals themselves.

15.5.5.2 Examples
Examples of the %NULL and %IDENTICAL functions follow:

Function Expansion

%NULL( )
%NULL(,,)
%NULL(%EXACTSTRING( 0,0,’ ABC’ ))
%NULL(,ALPHA)

1
1
0
0

%IDENTICAL(A+B,A+B)
%IDENTICAL(,)
%IDENTICAL(3,%CHARCOUNT(’ ABC’ ))
%IDENTICAL(%O’ 77’ ,63)
%IDENTICAL(ALPHA,alpha)
%IDENTICAL(’ ALPHA’ ,’ alpha’ )
%IDENTICAL(A+B,A+C)
%IDENTICAL(32,’ 32’ )

1
1
1
1
1
0
0
0

The third example of %NULL is interesting, since it might be thought that a
character sequence of length 0 would be a lexical sequence of length 0. However,
the value of the following is the string-literal that represents the empty character
sequence ( " ) and that string-literal constitutes one lexeme:

%EXACTSTRING(0,0,’ABC’)

15.5.6 Expression-Test-Functions
An expression-test-function expands to 1 or 0, depending on whether or not each
of its parameters constitutes a particular form of expression. Since a test-function
is expanded during compilation, it can be used within other lexical constructs.
In particular, an expression-test-function can be used as a compile-time-test in a
lexical-conditional, as described in Section 15.6.

The functions %ISSTRING, %CTCE, and %LTCE are applied to expressions.
The %ISSTRING function determines whether or not each of its parameters
is a string-literal. The %CTCE function determines whether or not each of
its parameters is a compile-time-constant-expression. The %LTCE function
determines whether or not each of its parameters is a link-time constant
expression.

15.5.6.1 Definition
The expression-test-functions are expanded as follows:

%ISSTRING( exp , . . . )

Restriction. Each parameter must be a valid expression.
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Expansion. Process each parameter, expanding all macro-calls and lexical-
functions. Return the numeric-literal 1 if each of the resulting expressions is a
quoted-string; return the numeric-literal 0 if any of the resulting expressions is
not a quoted-string.

%CTCE( exp , . . . )

Restriction. Each parameter must be a valid expression.

Expansion. Process each parameter, expanding all macro-calls and lexical-
functions. Return the numeric-literal 1 if each of the resulting expressions is
a compile-time-constant-expression; return the numeric-literal 0 if any of the
resulting expressions is not a compile-time constant expression.

%LTCE( exp , . . . )

Restriction. Each parameter must be a valid expression.

Expansion. Process each parameter, expanding all macro-calls and lexical-
functions. Return the numeric-literal 1 if each of the resulting expressions is a
link-time-constant-expression; return the numeric-literal 0 if any of the resulting
expressions is not a link-time constant expression.

15.5.6.2 Examples
Examples of the expression-test-functions follow:

Function Expansion

%ISSTRING(’ ALPHA’ , ’ BETA’ ,’ GAMMA’ )

%ISSTRING(’ ALPHA’ , ’ BETA’ ,GAMMA)
%ISSTRING(%ASCIC ’ ALPHA’ )
%ISSTRING(%RAD50_11’ AB.99’ ,%P’ 372’ )

1
0
1 ( 16/32 Only
1 ( 16/32 Only

%ISSTRING(GET_STRING_RTN(BUF+I))
%ISSTRING(%CHARCOUNT(’ GAMMA’ ))
%ISSTRING(%STRING(%ASCIC’ BETA’ ))

0
0
1

%ISSTRING(’ ABCDEFGHIJ’ )
%ISSTRING(PLIT(’ ABCDEFGHIJ’ ))

1
0

(Context for the following examples:

OWN X: REF VECTOR,
Y: VECTOR[10];

EXTERNAL LITERAL A;
LITERAL V = 100; )

%CTCE (X,Y)
%CTCE (A)
%CTCE (V)
%CTCE (A,V)

0
0
1
0

%LTCE (X,Y)
%LTCE (X+A)
%LTCE (X[0])
%LTCE (Y[9])
%LTCE (V)

1
1
0
1
1
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15.5.7 Bits-Functions
A bits-function determines the smallest number of bits required for the BLISS
encoding of a given value. The %NBITSU function determines the number of bits
required for an unsigned encoding, and the %NBITS function does the same for a
signed encoding.

15.5.7.1 Definition
The bits-functions are expanded as follows:

%NBITSU( n , . . . )

Restriction. Each parameter must be a compile-time constant expression.

Expansion. This function calculates a bit count for each of its parameters. The
bit count is the smallest number of bits required to represent the parameter as
an unsigned binary integer. The following algorithm is used:

• If the function has just one parameter, evaluate that parameter.

If the value of the parameter is negative, then the desired bit count is
%BPVAL (which, in BLISS–32 for example, is 32).

Otherwise, the desired bit count is the smallest integer, i, that satisfies
the following relation:

0�vp�(2 � �i)� 1

where vp is the value of the given parameter, and 2**i means ‘‘2 to the ith
power’’.

• If the given %NBITSU function has several parameters, then the desired bit
count is the value of the following expression:

MAX( %NBITSU( n1 ), %NBITSU( n2 ), . . . )

where n1, n2, and so on, are the given parameters.

Represent the bit count thus obtained as a numeric-literal. Return the
numeric-literal.

%NBITS( n , . . . )

Restriction. Each parameter must be a compile-time constant expression.

Expansion. This function calculates a bit count for each of its parameters.
The bit count is the smallest number of bits required to represent the
parameter as a signed (two’s complement) binary integer. The following
algorithm is used:

• If the function has just one parameter, evaluate that parameter. The desired
bit count is the smallest integer, i, that satisfies the following relation:

�(2 � �(i� 1))�vp�(2 � �(i� 1))� 1

where vp is the value of the given parameter and 2**(i–1) means ‘‘2 to the
(i–1)th power’’.

• If the given %NBITS function has several parameters, then the desired bit
count is the value of the following expression:

MAX( %NBITS( n1 ), %NBITS( n2 ), . . . )

where n1, n2, and so on, are the given parameters.

Represent the bit count thus obtained as a numeric-literal. Return the
numeric-literal.
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15.5.7.2 Examples
Examples of the %NBITSU and %NBITS functions follow:

Parameter List
Expansion of
%NBITSU Expansion of %NBITS

–8
–1
0
1
2
255

%BPVAL
%BPVAL
0
1
2
8

4
1
1
2
3
9

1,7
–8,7
0,1,255,2,3

3
%BPVAL
8

4
4
9

15.5.8 Allocation-Functions
An allocation-function determines the amount of storage required for a given
kind of data. Allocation-functions are useful in laying out storage and calculating
address offsets.

The %ALLOCATION function determines how many addressable units have
been allocated for a given data name. The %SIZE function determines how
many addressable units would be allocated for a given structure-attribute if that
attribute were used in a data declaration.

15.5.8.1 Definition
The allocation-functions are expanded as follows:

%ALLOCATION( name )

Restriction. The parameter must be a name that is declared as one of the
following:

OWN
GLOBAL
FORWARD
LOCAL
STACKLOCAL
REGISTER
GLOBAL REGISTER
EXTERNAL REGISTER

Expansion. Determine the number of addressable units allocated in the data
segment for the given name. Represent the number just obtained as a numeric-
literal. Return the numeric-literal.

%SIZE( structure-attribute )

Restriction. The parameter must be a structure-attribute, as described in
Chapter 11.

Expansion. Determine the number of addressable units that would be allocated
for a data structure if the given structure-attribute appeared in a data-declaration
at this point in the program. (A full description of structure-attributes is given in
Section 11.4.) Represent the number just obtained as a numeric-literal. Return
the numeric-literal.
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15.5.8.2 Examples
The examples that follow are assumed to lie in the scope of these declarations:

GLOBAL
X,
Y: BYTE, <= BLISS--16/32 only
Z: VECTOR[10];

STRUCTURE
ARRAY[I,J;M,N] =

[M*N*4]
(ARRAY+(I*N**)*4);

Examples of the %ALLOCATION and %SIZE functions follow:

Function Expansion Comment

%ALLOCATION(X) %UPVAL (For example, 1 in BLISS–36)

%ALLOCATION(Y)
%ALLOCATION(Z)

1
%UPVAL*10

(In BLISS–16/32 only)
(For example, 40 in BLISS–16)

%SIZE(VECTOR[10]) %UPVAL*10 (For example, 20 in BLISS–16)

%SIZE(VECTOR[10,WORD])
%SIZE(REF VECTOR)

20
%UPVAL

(In BLISS–16/32 only)
(For example, 1 in BLISS–36)

%SIZE(ARRAY[3,3]) %UPVAL*9 (For example, 36 in BLISS–32)

15.5.9 Fieldexpand-Function
The fieldexpand-function plays a specialized role in the declaration of data-
structures. The function is used in conjunction with field-names, which are
described in Chapter 11.

The %FIELDEXPAND function replaces a given field-name with its associated
list of field-components. When an additional parameter is given, that parameter
selects one of the field-components.

15.5.9.1 Definition
The field-functions are defined as follows:

%FIELDEXPAND( field )
%FIELDEXPAND( field , n )

Restrictions. The first parameter must be a field-name declared in a field-
declaration.

The second parameter, if present, must be a compile-time constant expression,
and its value, v, must lie in the range 0 through k–1, where k is the number of
field-components associated with the field.

Expansion. Determine the list of field-components associated with the given
field-name (see Chapter 11).

Represent each field-component as a standard numeric-literal (see the definition
of %STRING); use a comma to separate each field-component in the list from the
next.

If a second parameter is not given, return the entire list of field-components.
Otherwise, return the vth field-component, where v is the value of the second
parameter.
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15.5.9.2 Examples
The examples that follow are assumed to lie in the scope of this declaration:

FIELD
DCB_FIELDS =

SET
DCB_A = [0,0,0,0],
DCB_B = [0,8,3,0],
DCB_C = [0,11,5,1],
DCB_D = [0,16,16,1],
DCB_E = [1,0,%BPVAL,0]
TES;

(This declaration is taken from Section 11.5, where field-declarations are
described and illustrated.)

Examples of the %FIELDEXPAND function follow:

Function Expansion Comment

%FIELDEXPAND(DCB_A)
%FIELDEXPAND(DCB_C)
%FIELDEXPAND(DCB_C,0)
%FIELDEXPAND(DCB_C,3)

0,0,0,0
0,11,5,1
0
1

(7 lexemes)
(7 lexemes)
(1 lexeme)
(1 lexeme)

A field-name in a structure-reference is expanded without application of the
%FIELDEXPAND function. Elsewhere, the %FIELDEXPAND function is
necessary to force expansion.

15.5.10 Calculation-Functions
The calculation-functions provide a compile-time facility for calculating a value,
saving it, and using it later in the compilation.

The %ASSIGN function assigns a value during program compilation. The
value is obtained from a compile-time-constant-expression and is assigned to
a COMPILETIME name. The %NUMBER function produces a numeric-literal
from another numeric-literal, a quoted-string, or a name. When the %NUMBER
function is applied to a name, the name must be a COMPILETIME, LITERAL, or
GLOBAL LITERAL name.

15.5.10.1 Definition
The calculation-functions are expanded as follows:

%ASSIGN( #name , n )

Restrictions. The first parameter must be a name that is declared
COMPILETIME.

The second parameter must be a compile-time-constant-expression.

Expansion. Evaluate the second parameter and associate the resulting value with
the first parameter. Return the empty sequence.

%NUMBER( p )

Restrictions. The parameter must be a quoted-string, a numeric-literal, or a
name.
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If the parameter is a quoted-string, its quoted-characters must consist of an
optional sign followed by a sequence of decimal digits. If the parameter is a
numeric-literal, it must not be a float-literal. If the parameter is a name, it must
be declared as one of the following:

LITERAL
GLOBAL LITERAL
COMPILETIME

Expansion. First determine the value of the parameter, as follows:

• If the parameter is a quoted-string, then remove the quotes and interpret the
remainder as a decimal integer.

• If the parameter is a numeric-literal, use the value it represents.

• If the value is a name, use the value associated with the name by its
declaration or, in the case of a COMPILETIME name, the most recently
processed %ASSIGN function.

Once the value of the parameter has been determined, represent that value as a
numeric-literal. Return the numeric-literal.

15.5.10.2 Example
An example of a macro that uses the %ASSIGN function appears in the following
program fragment:

BEGIN
...
COMPILETIME

ERRS = 0;
MACRO

COUNT_ERROR = %ASSIGN(ERRS,ERRS+1) %;
...
END

The first declaration in this block declares ERRS as a COMPILETIME name.
The second declaration declares COUNT_ERROR as a macro name. Wherever
COUNT_ERROR is called, it will expand to the following:

%ASSIGN( ERRS, ERRS+1 )

Wherever the compiler encounters this expansion, it will increase ERRS by one.
Thus the macro can be used to keep a count of a particular kind of error.

The combined use of the %ASSIGN and %NUMBER functions is the only way the
value of a compile-time-constant-expression can be incorporated in a compile-time
character sequence. An example follows:

COMPILETIME
N = 0,
Q = 4;

...
%ASSIGN(N,2*Q-1)
%INFORM(’HERE IS AN INTEGER: ’,%NUMBER(N))

The use of %ASSIGN is essential because 2*Q–1 is not a valid parameter for
either %INFORM or %NUMBER.

More examples of the %NUMBER function follow. They are assumed to lie in the
scope of the following declaration:

LITERAL
Q = -16;
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Examples are as follows:

Function Expansion

%NUMBER(’ –180’ )
%NUMBER(83)
%NUMBER(%O’ 100’ )

%NUMBER(Q)

–180 (coded internally as one lexeme)
83
64
–16 (coded internally as one lexeme)

15.5.11 Compiler-State-Functions
Like the sequence-test-functions, a compiler-state-function expands to 0 or 1,
depending on whether or not a certain condition is met. Since the function is
expanded during compilation, it can be used within other lexical constructs. In
particular, a compiler-state-function can be used as a lexical-test in a lexical-
conditional, described in Section 15.6.

The compiler-state-functions refer to tables that are maintained by the compiler.
The %DECLARED function determines whether a given name has been explicitly
declared. The %SWITCHES function determines the settings of one or more
compilation switches. The %BLISS function determines which compiler (BLISS–
16, BLISS–32, or BLISS–36) is in use. The %VARIANT function determines the
integer value given in the /VARIANT qualifier switch (if any) in the compiler
command line.

15.5.11.1 Definitions
The test-functions are expanded as follows:

%DECLARED( #name )

Restriction. The parameter must be a name.

Expansion. Return the numeric-literal 1 or 0, depending on whether or not it is
explicitly declared at this point in the compilation of the program.

%SWITCHES( #switch-name , . . . )

Restriction. Each parameter must be one of the following on-off-switches:

ERRS | NOERRS
OPTIMIZE | NOOPTIMIZE
UNAMES | NOUNAMES
SAFE | NOSAFE
ZIP | NOZIP
CODE | NOCODE
DEBUG | NODEBUG

Expansion. Return the numeric-literal 1 or 0, depending on whether or not every
parameter designates the current setting of an on-off-switch.

%BLISS( #language-name )

Restriction. The parameter must be one of the following compiler names:

BLISS16
BLISS32
BLISS36

Expansion. Return the numeric-literal 1 or 0, depending on whether or not the
parameter designates the compiler that is compiling this program.
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%VARIANT

Expansion. One of the following must apply:

• If the compiler command line contained a qualifier switch of the following
form:

/VARIANT:n or /VARIANT=n

where n is an unsigned decimal-literal, then return n.

• If the compiler command line contained a qualifier switch of the following
form:

/VARIANT

then return the decimal-literal 1.

• If the compiler command line did not contain a /VARIANT qualifier switch,
then return the decimal-literal 0.

15.5.11.2 Examples
The examples that follow are assumed to lie in the scope of only the following
declarations:

OWN
A,
B;

SWITCHES
OPTIMIZE,
NOCODE;

UNDECLARE B;

It is further assumed that a BLISS–32 compiler is being used.

Examples of the %DECLARED, %SWITCHES, and %BLISS functions are as
follows:

Function Expansion

%DECLARED(A)
%DECLARED(B)
%DECLARED(C)

1
0
0

%SWITCHES(OPTIMIZE)
%SWITCHES(OPTIMIZE,NOCODE)
%SWITCHES(OPTIMIZE,CODE)

1
1
0

%BLISS(BLISS16)
%BLISS(BLISS32)
%BLISS(BLISS36)

0
1
0

15.5.12 Advisory-Functions
The advisory-functions generate compile-time output. The kind of advisory
function determines the form of output: it may be an error message, a warning
message, an informational message, or just a line in the program listing.

Two of the advisory functions do more than generate compile-time output:
%ERRORMACRO also aborts any current macro-expansion, and %ERROR
inhibits most subsequent expression evaluations and causes the object module to
be discarded. (See the appropriate BLISS user manual for further information on
the side effects of %ERROR.)

15–34 Lexical Functions



15.5.12.1 Definitions
The advisory-functions are expanded as follows:

%ERROR( #p , . . . )

Restriction. Parameters of an advisory-function must satisfy the restriction on
parameters of the %STRING function.

Expansion. Proceed as for the %STRING function, obtaining a single quoted-
string. Use the quoted-string as the text of a compiler error message, transmit
the message as if it were a standard diagnostic, and add 1 to the compiler error
count. Return the empty sequence.

%WARN( #p , . . . )

Restriction. Parameters of an advisory-function must satisfy the restriction on
parameters of the %STRING function.

Expansion. Proceed as for the %STRING function, obtaining a single quoted-
string. Use the quoted-string as the text of a compiler warning message, transmit
the message as if it were a standard diagnostic, and add 1 to the compiler
warning count. Return the empty sequence.

%INFORM( #, . . . )

Restriction. Parameters of an advisory-function must satisfy the restriction on
parameters of the %STRING function.

Expansion. Proceed as for the %STRING function, obtaining a single quoted-
string. Use the quoted-string as the text of a compiler information message, and
transmit the message as if it were a standard diagnostic. (Do not increment
either the compiler error or warning count.) Return the empty sequence.

%PRINT( #p , . . . )

Restriction. Parameters of an advisory-function must satisfy the restriction on
parameters of the %STRING function.

Expansion. Proceed as for the %STRING function, obtaining a single quoted-
string. Insert the character sequence directly into the compilation listing as the
next line of that listing. Return the empty sequence.

%MESSAGE( #p , . . . )

Restriction. Parameters of an advisory-function must satisfy the restriction on
parameters of the %STRING function.

Expansion. Proceed as for the %STRING function, obtaining a single quoted-
string. Write the character sequence directly to the user’s terminal (or other
standard output device for the compilation). Return the empty sequence.

%ERRORMACRO( #p , . . . )

Restriction. Parameters of an advisory-function must satisfy the restriction on
parameters of the %STRING function.

Expansion. Proceed as for the %STRING function, obtaining a single quoted-
string. Use the quoted-string as the text of a compiler error message, transmit
the message as if it were a standard diagnostic, and add 1 to the compiler error
count. Then, in addition, abort every macro-call expansion that is currently in
progress. Resume compilation of the program with the lexeme that follows the
outermost of the aborted macro-calls.

Lexical Functions 15–35



15.5.12.2 Examples
Examples of the form of message produced by the advisory-functions appear in
the BLISS user manual.

15.5.13 Titling-Functions
Each page of a compilation listing begins with a header. The header may vary
from one implementation to another, but, typically, it includes the page number,
compilation date, and other identifying information. By means of the titling-
functions, a programmer can specify a title and a subtitle for inclusion in the
header.

15.5.13.1 Definition
The titling-functions are expanded as follows:

%TITLE qs

Restriction. The lexeme qs must be a quoted-string. (Note that qs is not enclosed
in parentheses.)

Expansion. Use the value of qs as the title in subsequent headers of the
compilation listing. Return the empty sequence.

%SBTTL qs

Restriction. The lexeme qs must be a quoted-string. (Note that qs is not enclosed
in parentheses.)

Expansion. Use the value of qs as the subtitle in subsequent headers of the
compilation listing. Return the empty sequence.

These functions can be used repeatedly throughout a module, thus changing the
title and/or subtitle from page to page of the listing.

15.5.13.2 Examples
Listing titles and subtitles appear in the BLISS user manual.

15.5.14 Quote-Functions
The quotation-functions are used to override the quotation rules given earlier, in
Section 15.2.2. Each function applies to the name or lexical-function-name that
immediately follows it. The %QUOTE function can also be applied to a comma or
percent lexeme.

The %QUOTE function prevents a name from being bound and prevents
expansion of a lexical-function or macro-call. The %UNQUOTE function causes
a name to be bound but does not cause any expansion. The %EXPAND function
causes both binding and expansion.

15.5.14.1 Definitions
The quote-functions are expanded as follows:

%QUOTE

Restrictions. The next lexeme must be a name, a lexical-function-name, a comma,
or a percent sign.

Use of this function is restricted to macro-bodies or to the actual-parameters of a
macro-call or lexical-function. That is, it applies only to lexemes encountered at
macro-quote or name-quote level.
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Expansion. Temporarily change the quotation rules so that binding of the next
lexeme is deferred to a subsequent scan of the lexeme stream in which it occurs:

• If the next lexeme is an unbound name, an attempt to bind it will not occur
when it is read.

• If the next lexeme is the beginning of a macro-call or lexical-function, an
attempt to expand the macro-call or lexical-function will not occur when it is
read.

• If the next lexeme is itself a quote-function in a macro-definition, that quote-
function will be interpreted as a lexeme in the macro-body and thus will not,
at that point, affect the binding of the lexeme which follows it.

• If the next lexeme is a comma in a list of actual-parameters in a lexical-
function or macro-call, it will be interpreted as a lexeme in the current actual-
parameter rather than as the separation between two actual-parameters.

• If the next lexeme is a percent in a macro-definition, it will be interpreted as
a lexeme in the macro-body rather than as the termination of the macro-body.

Return the empty sequence.

%UNQUOTE

Restriction. The next lexeme must be a name or lexical-function-name.

Use of this function is restricted to macro-bodies or to the actual-parameters of a
macro-call or lexical-function. That is, it applies only to lexemes encountered at
macro-quote or name-quote level.

Expansion. Attempt to bind the next lexeme.

(Forced binding of a macro-name or lexical-function-name does not also force
expansion of the corresponding call or function.)

Return the empty sequence.

%EXPAND

Restriction. The sequence of lexemes that follows %EXPAND must begin with a
lexical-function or macro-call.

Use of this function is restricted to macro-bodies. That is, it applies only to
lexemes encountered at macro-quote level.

Expansion. Temporarily change the quotation rules so that the lexical-function
or macro-call that follows %EXPAND is expanded. (Any macro-calls or lexical-
functions contained in the expansion are not themselves automatically expanded.)

Return the empty sequence.

15.5.14.2 Examples
A simple example of the use of the %UNQUOTE function is given earlier (in
Section 15.2). A series of more complex examples is given here. They are each
based on the following program fragment:
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MACRO
Q1(P) = 1,P %,
Q2 = 2 %,
X = Q1(Q2) %;

...
ROUTINE R =

BEGIN
MACRO

%QUOTE Q1(X) = 10,X %,
%QUOTE Q2 = 20 %;

BIND
Y = UPLIT(%STRING(X));

...
END;

When Q1(Q2) in the declaration of X is processed, neither Q1 nor Q2 is bound
because they are names at macro-quote level (see Section 15.2.1).

The %QUOTE functions are necessary in the second macro-declaration because
Q1 and Q2 would otherwise be interpreted as macro-calls, and the declaration
would become the following:

MACRO
1,X = 10,X %,
2 = 20 %;

which makes no sense. This expansion would occur because Q1 and Q2 are
macro-names at name-quote level.

A call on the macro X appears in the bind-declaration. When X is expanded and
processed, it is as follows:

10,20

This result reflects the fact that Q1 and Q2 are both bound in the scope of the
second declarations of Q1 and Q2.

The following table shows the effect of using various quote-functions in the
macro-body of the declaration of X:

If Q1(Q2) is replaced with: Then the processed expansion is:

Q1(%UNQUOTE Q2)
%UNQUOTE Q1(Q2)
%UNQUOTE Q1(%UNQUOTE Q2)

10,2
1,20
1,2

%EXPAND Q1(Q2)
%EXPAND Q1(%QUOTE Q2)

1,2
1,20

Q1(%QUOTE Q2)
Q1(%QUOTE %QUOTE %QUOTE
%QUOTE %QUOTE %QUOTE Q2)

10,20
10,Q2

The last two examples are especially interesting. In Q1(%QUOTE Q2), the
%QUOTE has no effect because Q2 is at macro quote level and would not be
bound or expanded anyhow.

In the final example, the many occurrences of %QUOTE have the effect of keeping
Q2 from ever being expanded. The processed macro-body for this example is as
follows:

Q1(%QUOTE %QUOTE %QUOTE Q2)

15–38 Lexical Functions



This macro-body becomes the expansion of X and must be processed as such; the
result is as follows:

Q1(%QUOTE Q2)

Next, this macro-call is expanded. Before processing, the expansion is as follows:

10,%QUOTE Q2

Finally, this expansion is processed, giving the result shown, 10,Q2.

The preceding example is largely concerned with macro-names. That is not
intended to imply that quote-functions are not important for lexical-functions or
for names other than macro-names.

An example of %QUOTE applied to a comma and a percent sign is as follows:

MACRO
X =

MACRO
Q(A) = UPLIT(A) %QUOTE %

%;
X;
BIND

Y = Q(4 %QUOTE, 5 %QUOTE, 6);

When the declaration of X is processed, the following macro-body is associated
with X:

MACRO
Q(A) = UPLIT(A) %;

The terminal percent gets into the macro-body because it was quoted in the
declaration. The expansion of the macro-call X is exactly this same macro-body,
and when it is processed, it establishes a declaration for Q.

The macro-call of Q has just one actual-parameter, as follows:

4, 5, 6

The commas get into the actual-parameter because they are quoted. The net
effect of this example is to produce the following declaration:

BIND
Y = UPLIT(4,5,6);

The following is an example of the use of %EXPAND:

MACRO
B = C %,
A = B %,
X = A %,
XX = %EXPAND A %;

UNDECLARE
%QUOTE A,
%QUOTE B;

OWN X;
OWN XX;

The macro-call X in the first OWN declaration is expanded to the name A with no
further expansion, since the macro-name A has been undeclared.

The macro definition of XX is B, since the %EXPAND function forces expansion
of the macro-call A within the macro-body for XX (prior to the undeclaration
of macro-name A). Thus the macro-call XX in the second OWN declaration is
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expanded to B, again with no further expansion, since the macro-name B has
been undeclared.

Note that the expansion of the function %EXPAND A within the macro-body for
XX is not carried through to the name C. The following macro can be used to
obtain this effect when desired:

MACRO
FORCE [] = %QUOTE %EXPAND %REMAINING %;

The previous example could then be extended as follows:

MACRO
B = C %,
A = B %,
X = A %,
XX = %EXPAND A %,
XXX = %EXPAND FORCE(A) %;

UNDECLARE
%QUOTE A,
%QUOTE B;

OWN X,
XX,
XXX;

The internally stored definition of FORCE is %EXPAND %REMAINING. When
the macro-declaration of XXX is processed, the %EXPAND function causes the
macro-call FORCE(A) to be expanded. Whenever a macro-call is expanded, all
actual-parameters of the call are completely expanded. Therefore the actual-
parameter A becomes C. That is, the body of FORCE expands simply to its fully
expanded argument list.

The %EXPAND function has several practical applications:

• You can reduce compilation time by forcing a one-time expansion of embedded
macro-calls at macro-declaration time, rather than at every occurrence of the
containing macro-call.

• You can reduce the memory used during compilation for storing macro-bodies
by forcing expansion of macros involving complicated conditional-compilation
syntax.

• You can gain further efficiencies in the use of library files by forcing as much
expansion as possible during the library pre-compilation.

• Macro-names declared for use within a library precompilation can be
undeclared and thus freed for different uses in modules that refer to the
library, if all instances of the macro-names are expanded within the library
file.

15.5.15 Macro-Functions
The macro-functions are especially designed for use within macro-definitions; they
are not useful in any other context. Complete definitions of the macro-functions
are given in this section. However, these definitions are difficult to understand
without a discussion of macros. Examples and motivation for the macro-functions
are given later, in Section 16.3 on macro-calls and Section 16.4 on examples of
macros.
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15.5.15.1 Definition
The macro-functions are expanded as follows:

%REMAINING

Expansion. Concatenate the actual-parameters not associated with formal-
parameters, separating them by commas. Return the resulting sequence of
lexemes.

%LENGTH

Expansion. Determine the number of actual-parameters for the current macro-
call. Represent this number as a numeric-literal. Return the numeric-literal.

%COUNT

Expansion. Determine the recursion depth in a conditional-macro or the number
of completed iterations in an iterative-macro. Represent this number as a
numeric-literal. Return the numeric-literal.

%EXITITERATION

Expansion. Terminate the expansion of the current iteration of an iterative macro
call. If a default separator or closing grouper (as specified in Section 16.3.3.4) is
required at normal termination of an iteration, include it.

%EXITMACRO

Expansion. Terminate the expansion of the smallest macro-body in which this
lexical-function is contained, just as if the terminal precent sign ( % ) lexeme
appeared here.

15.5.15.2 Examples
Some examples of these functions are given as part of the discussion of macros in
Section 16.4.

15.5.16 Require-Function
The require-function is the functional equivalent of the require-declaration (see
Section 16.5); however, because it is not a declaration, %REQUIRE can appear in
any context.

15.5.16.1 Definition
The require-function is defined as follows:

%REQUIRE( #P , . . . )

Restrictions. Parameters must satisfy the restrictions of the %STRING function
(see Section 15.5.2).

The resulting quoted-string must be a valid file specification for the host operating
system.

If the required file contains a %IF lexeme, it must also contain the matching
%THEN, %ELSE (if used), and %FI of the same lexical condition.

During the expansion of a required file (function or declaration), a fatal error will
occur if the end of the file is found while a macro is still being declared.

A required file (function or declaration) must not appear during the expansion of
a macro.
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Expansion. Proceed as for the %STRING function, obtaining a single quoted-
string for the required file. The specified file is then placed at the head of the
input stream as the following actions are performed:

1. The file-name default rules for the host system and the compiler are applied.

2. Input from the current lexeme source is suspended.

3. The specified file is adopted as the current lexeme source.

4. Input from the suspended lexeme source is resumed when the specified file is
empty.

15.5.16.2 Examples
The following depicts a required file named ADDMOD:

%IF %BLISS( BLISS32 )
%THEN

,ADDRESSING_MODE(
EXTERNAL = LONG_RELATIVE)

%ELSE
%IF %BLISS( BLISS16 )
%THEN

,ADDRESSING_MODE(RELATIVE)
%FI

%FI

And the following depicts how the file may be required:

MODULE A( %TITLE ’SETMODES’ IDENT = ’1-1’
%REQUIRE(’ADDMOD’)
) =

BEGIN

...
END
ELUDOM

Note that unlike a require-declaration, the require-function can appear as a
module-head-switch.

The following example shows a macro-declaration that produces a fatal error
when called:

MACRO REQ = %REQUIRE(’ERRMSG’) %;

The error occurs because the %REQUIRE is encountered during the expansion of
the macro.

The following example shows a macro-declaration that is allowed:

MACRO REQ = %EXPAND
%REQUIRE(’ERRMSG’)

In the above example, the %EXPAND function expands the %REQUIRE function
during the declaration of MACRO REQ. Notice that the percent lexeme, required
for the termination of the macro-body, does not appear and is contained within
the required file.
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15.5.17 Summary of Lexical-Functions
The following table gives an example of each lexical-function:

Function Expansion

%STRING(’ ABC’ ,23,%B’ –1111’ ,,phi)
%EXACTSTRING(8,%C’ X<single_quo
te>,’ ABC’ ,23)
%CHAR(65,66,67,39,97,98,99)
%CHARCOUNT(’ ABC’ ,23)

’ ABC23–15PHI’
’ ABC23XXX’
’ ABC’’ abc’
5

%EXPLODE(’ ABC’ ,23)
%REMOVE(Q) [where Q is (A+1)]

’ A’ ,’ B’ ,’ C’ ,’ 2’ ,’ 3’
A+1

%NAME(’ +302’ ,beta) +302BETA (as a name)

%QUOTENAME(’ FOO’ ,’ BAR’ ) FOOBAR (as a quoted name)

%NULL(’ abc’ ,’’ )
%IDENTICAL(ABC 5,ABC %B’ 101’ )

0 (not a null sequence)
1 (sequences are identical)

%ISSTRING(BETA,’ BETA’ )
%CTCE(ALPHA[1])

%LTCE(.ALPHA[1])

0 (one not a string)
0 (not a compile-time constant expression)
0 (not a link-time constant expression)

%NBITSU(7,2)
%NBITS(7,2)

3
4

%ALLOCATION(X) [scalar by default]
%SIZE(VECTOR[10,WORD])

%UPVAL
20 (BLISS–16/32 only)

%FIELDEXPAND(DCB_E) 1,0,%BPVAL,0

%ASSIGN(X,2+3) [X is COMPILETIME]
%NUMBER(Y) [Y declared LITERAL 6]

Empty (associates 5 with X)
6

%DECLARED(A)
%SWITCHES(OPTIMIZE,NOCODE)
%BLISS(BLISS32)

1 (A is declared)
1 (these switches are on)
1 (under BLISS–32 compiler)

%ERROR(’ error message’ )
%WARN(’ warning message’ )
%INFORM(’ information message’ )
%PRINT(’ text in listing’ )
%MESSAGE(’ text for terminal’ )
%ERRORMACRO(’ error message’ )

Empty (steps error count)
Empty (steps warning count)
Empty
Empty
Empty
Empty (aborts all macros)

%TITLE ’ On Top Line of Page’
%SBTTL ’ On Second Line of Page’

Empty
Empty

%QUOTE lexeme, comma, or percent
%UNQUOTE (Binds following name)
%EXPAND (Binds and expands)

Empty
Empty
Empty

%REMAINING
%LENGTH
%COUNT
%EXITITERATION
%EXITMACRO
%REQUIRE(’ ERRMSG’ )
%VARIANT

Unmatched actual-parameters
Number of actual-parameters
Recursion or iteration count
Empty (abort iteration)
Empty (abort smallest macro)
Include specified file
Return decimal-literal

15.6 Lexical-Conditionals
A lexical-conditional evaluates a compile-time constant expression and then,
depending on the value of that expression, skips one or the other of two given
lexeme sequences. In some other programming languages, this kind of facility is
called ‘‘conditional compilation’’.
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Like the lexical-functions, a lexical-conditional is fully processed at compile-time.
However, the lexical-conditional differs from a lexical-function in two respects.
First, its syntax is different; that is just a matter of programming convenience.
Second, and more important, it can be used to skip over a sequence of lexemes.

An example of a lexical-conditional is given in Section 15.1.5.

15.6.1 Syntax

lexical-conditional %IF lexical-test

%THEN lexical-consequence

n
%ELSE lexical-alternative
nothing

o
%FI

lexical-test compile-time-constant-expression

n
lexical-consequence
lexical-alternative

o n
lexeme . . .
nothing

o

The syntactic name lexeme is defined in Section 2.2.

15.6.2 Restrictions
If a macro-body contains the lexeme %IF, then it must also contain the matching
%THEN, %ELSE (if present), and %FI of the same lexical-conditional. This
restriction must be satisfied by the source file before any lexical processing has
been performed.

The restriction just given applies not only to a macro-body, but also to an actual-
parameter in a macro-call or lexical-function, to the file that is designated by a
require-declaration, or to the lexical-consequence or lexical-alternative within
another lexical-conditional.

The keywords %IF, %THEN, %ELSE, or %FI must not be preceded by a quote-
function.

15.6.3 Semantics
The expansion of a lexical-conditional begins with the evaluation of the lexical-
test. If the low-order bit of the value of the lexical-test is 1, then the test is
satisfied; otherwise, the test is not satisfied.

If the test is satisfied, the lexical-consequence is subjected to lexical processing
and the lexical-alternative (if present) is skipped.

If the test is not satisfied, the lexical-consequence is skipped, and the lexical-
alternative (if present) is subjected to lexical processing.

When a lexical-consequence or lexical-alternative is skipped, it is not processed in
any way; the compiler scans through, looking for the terminating %ELSE or %FI
and ignoring everything else.

A lexical-conditional in the macro-body of a macro-definition is not expanded;
instead, it is included in the macro-body that is associated with the macro-name.
Later, when the macro-body is used to expand a macro-call, the lexical-conditional
is expanded.
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15.7 Compile-Time Declarations
Compile-time variables provide a means to compute and assign values during
compilation, particularly for use in combination with lexical-conditionals.

15.7.1 Syntax

compile-time-declaration COMPILETIME compile-time-item , . . . ;

compile-time-item compiletime-name = compile-time-value

compile-time-name name

compile-time-value compile-time-constant-expression

15.7.2 Semantics
The compile-time-declaration establishes a name whose value can be changed
during compilation of the source module. In all other respects a compile-time-
name is the same as a (non-GLOBAL) LITERAL name and can be used in all the
same ways that a literal name can be used.

Observe that a compile-time-name must be given an initial value when the name
is declared.

The value of a compile-time-name can be changed by the %ASSIGN lexical-
function as described in Section 15.5.10.
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16
Macros

Macros can make programs short and clear. When a certain construct is used
often, a macro can be defined that gives the construct a name, and the name can
then be used wherever the construct is required. By this means, a construct that
is either large or unclear can be given a short, intuitive representation.

The idea of using the name of a construct instead of the construct itself can be
extended in several ways, and BLISS has a variety of macro facilities. You can
use simple macros in an obvious and intuitive way or you can use complicated
macros to generate large and intricate tables.

This chapter discusses the macros and related facilities for user-defined expansion
of source text. The first section introduces the various kinds of macros. The next
two sections describe the declaration and call of macros. The final two sections
describe the require- and library-declarations.

16.1 Introduction to Macros
The macro facilities of BLISS are important to learn because they can be used
to add new notations to BLISS and thus greatly improve the organization and
clarity of your programs. Other high-level programming languages that feature
macro facilities generally provide limited capabilities; however, BLISS macro
facilities are extremely innovative.

The expansion of macros is a part of lexical processing, and therefore macros
are initially discussed at the beginning of Chapter 15. Specifically, the basic
principles of macro expansion are presented in Section 15.1.4, and an example is
given in Section 15.1.5. An understanding of lexical processing is a prerequisite
for the discussion of macros in this chapter.

This section provides an informal description of the basic simple macro, which
introduces most of the general techniques of macro usage and is sufficient for
most programming applications. If you do not have a strong interest in macros,
you can read this section and skip the remaining descriptions.

16.1.1 Macro Declarations and Calls
A macro has two parts: the macro-declaration and the macro-call. A macro-
declaration contains one or more macro-definitions, and each macro-definition
associates a name, the macro-name, with a sequence of lexemes, the macro-body.
Once a macro-name has been declared, it can be used in macro-calls.

An example of a macro-declaration follows:

MACRO
CLA = PLIT(502,-1,3) %,
ADD = PLIT(402,0,3) %;
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This declaration contains two macro-definitions. The first macro-definition
associates the name CLA with the macro-body PLIT(502,–1,3), and the second
associates ADD with PLIT(402,0,3). Each macro-body is terminated by a percent
sign ( % ) lexeme.

Two examples of macro-calls appear in the following example:

IF USED(REG)
THEN CODE = CLA
ELSE CODE = ADD;

The macro-calls here are CLA and ADD. If this conditional-expression is
within the scope of the macro-declaration in the preceding paragraph, then it
is equivalent to the following:

IF USED(REG)
THEN CODE = PLIT(502,-1,3)
ELSE CODE = PLIT(402,0,3);

Assuming that the names CLA and ADD have some mnemonic significance in
the program from which this example is drawn, their use in the conditional-
expression is certainly more clear than the use of the PLIT expressions.

A macro-body is processed twice. The first processing occurs when it is
encountered as part of a macro-definition. During that processing, no object
code is generated by the compiler; instead, the macro-body is saved by the
compiler as a sequence of lexemes and that sequence is associated with the
macro-name. The second processing occurs when the macro-body is used as the
expansion of a macro-call. During that processing, the macro-body is compiled in
the normal way.

16.1.2 Macros with Parameters
A macro-definition can have a list of formal-name parameters, and these formal-
name parameters can appear in the macro-body. When a macro-call is expanded,
each appearance of a formal-name parameter in the macro-body is replaced by
the corresponding actual-parameter from the macro-call. The use of parameters
in macros can greatly increase their power and generality.

An example of a macro with parameters follows:

MACRO
GETBYTE(N,I) = ((N)^(-(I)) AND %B’11111111’) %;

...
X = GETBYTE(.Y+1,12)-2;

In this example, the list of formal-names is (N,I) and the list of actual-parameters
is (.Y+1,12). When the macro-call on GETBYTE is expanded, a copy of the macro-
body associated with GETBYTE is made, and then N is replaced by .Y+1 and I is
replaced by 12. The resulting expansion is as follows:

((.Y+1)^(-(12)) AND %B’11111111’)

This expansion is placed at the head of the input stream (as described in
Section 15.1.4 and is then compiled. Note that the expansion of GETBYTE(N,I) is
an expression whose value is the 8-bit field (one byte) of N that is I bits from the
right or low order end of N.

Actual-parameters are processed twice, as macro-bodies are. The first processing
of an actual-parameter occurs when the macro-body is encountered as part of
a macro-call. During that processing, no object-code is generated, just as for
a macro-body. However, macro-calls, lexical-functions, or lexical-conditionals
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encountered within the actual-parameter are expanded during this first
processing, and in this respect an actual-parameter differs from a macro-body.
The second processing of the actual-parameter occurs during the expansion of
a macro-call. During that processing, the actual-parameter is compiled like an
ordinary sequence of lexemes.

16.1.3 Parenthesization of Macros
If a macro-body is an operator-expression, then it should be parenthesized;
otherwise, a conflict of priority between the macro-body and its context may
produce an unwanted interpretation. For the same reason, each formal-name
that is an operand of an operator-expression should be enclosed in parentheses.

The definition of GETBYTE, given above, follows the parenthesization guidelines
just given. If it did not, that is, if the extra parentheses were not included, then
the macro-declaration would be as follows:

MACRO
GETBYTE(N,I) = N^(-I) AND %B’11111111’ %;

and the assignment would become as follows:

X = .Y+1^(-12) AND %B’11111111’-2;

After insertion of default parentheses in accordance with operator priorities given
in Section 6.1.1, the assignment becomes the following:

X = (.Y)+(1^(-12)) AND (%B’11111111’-2);

This result is very different from that obtained previously, and the expression
does not extract the desired byte value from N.

16.1.4 Quotation Rules and Macros
The quotation rules, described in Section 15.2, have an important impact on
macro usage. The following paragraphs present two examples of some of the
less obvious effects of the quotation rules. The examples are concerned with the
interpretation of constructs at the name-quote level.

Because the declaration of a name is at name-quote level, and because macros are
expanded at that level, special measures are required to redeclare a macro-name.
For example:

MACRO
ALPHA = BETA %;

ROUTINE R =
BEGIN
LITERAL

ALPHA = 1,
%QUOTE ALPHA = 2;

...
END

The first use of ALPHA in the LITERAL declaration is expanded before being
declared, so that BETA is declared as a literal with value 1. The second use of
ALPHA is quoted and therefore ALPHA is redeclared as a literal with value 2.
Thus, within the routine R, BETA represents 1 and ALPHA represents 2.

Because a name in the formal-name list of a structure, routine, or macro-
declaration is also at name-quote level, the consideration just illustrated applies
to it.
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Because an actual-parameter is processed at name-quote level, and because only
macro-names are bound at that level, some unexpected results can occur. For
example:

MACRO
A(P1,P2) =

BEGIN
MACRO

%QUOTE %QUOTE M = 1 %QUOTE %;
LITERAL

N = 2;
OUTPUT(P1,P2);
END %;

MACRO
M = 10 %;

LITERAL
N = 20;

...
A(M,N)

The macro-body for A is stored internally as follows:

BEGIN
MACRO

%QUOTE M = 1 %;
LITERAL

N = 2;
OUTPUT(P1,P2);
END

When the macro-call A(M,N) is expanded, its first actual-parameter, a macro-
name, is bound and expanded but the second actual-parameter, a literal-name, is
not bound (quotation rule 2). Thus the call is equivalent to the following:

A(10,N)

The expansion of this macro-call is as follows:

BEGIN
MACRO

M = 1 %;
LITERAL

N = 2;
OUTPUT(10,N);
END

Observe that the %QUOTE before the first occurrence of M prevents the
replacement of that occurrence of M by 10, and thus keeps the macro-declaration
valid. Observe, also, that the %QUOTE before the first % (percent) lexeme
prevents the premature termination of the macro-body of A. The final result of
lexical-processing is equivalent to the following:

OUTPUT(10,2)

Thus, N is finally bound to 2, not 20.

Although in most cases results will be as expected, the quotation rules emphasize
that you must use macros carefully. Much of the need for quote-functions arises
from the use of duplicate names within the scope of your program. However,
because quote-functions add a level of complexity that can increase the chance of
error, you should avoid such usage wherever possible.
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16.1.5 A Survey of Macros and Related Facilities
The macros described in the preceding sections are simple positional macros;
however, there are other kinds of macros. Moreover, BLISS has additional
facilities that are not called macros, but are closely related to them. Macros and
related facilities are discussed in this section.

BLISS has two main kinds of macros: positional and keyword. The difference
between the two is in the way the actual-parameters of a macro-call are
associated with the formal-names of the designated macro-declaration.

In a positional macro, the order of the actual-parameters is important; that is,
the first actual-parameter is associated with the first formal-name, the second
actual-parameter is associated with the second formal-name, and so on.

In a keyword macro, however, the order of the actual-parameters does not matter;
instead, each actual-parameter is explicitly assigned to a formal-name. (BLISS
uses the word ‘‘keyword’’ in two ways. In classifying macros, the word designates
a way of handling actual-parameters; elsewhere, it designates an identifier with a
built-in meaning.)

Positional macros are further classified as simple, conditional, and iterative.
Simple macros are not only the simplest kind of macro but also the most
commonly used. Conditional-macros and iterative-macros provide two ways
of handling macros with a variable number of parameters.

The BLISS facilities that are related to macros are compiletime-declarations,
require-declarations, library-declarations, and bound-declarations.

The compile-time-declarations are described in Section 15.7. They are used to
support macros. For example, a name that has been declared COMPILETIME
can be used to designate a counter that is incremented each time a given macro
is expanded.

The require-declarations are described in Section 16.5. Each require-declaration
designates a file of BLISS declarations. When the require-declaration is
processed, it is replaced by the designated file. A require-declaration can be
viewed as a specialized form of macro that, in contrast to a true macro, can go to
another file for its body.

The library-declarations are described in Section 16.6. A library-declaration is
similar to a require-declaration except that it designates a file that has been
preprocessed and thus requires minimal compilation. Library-declarations reduce
compilation costs.

The bound-declarations are described in Chapter 14. They are used to associate
a value with a name. Sometimes, you have a choice between a macro and a
bound-declaration. In that situation, the bound-declaration is preferred. A
bound-declaration not only makes the programmer’s intentions more specific, but
also is compiled more efficiently.

The BLISS macros and related facilities can be listed in outline form as follows:

Macros and related facilities
Macros

Positional macros
Simple macros
Conditional macros
Iterative macros

Keyword macros
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Related facilities
Compile-time-declarations
Require-declarations
Library-declarations
Bound-declarations

All of these facilities can be used to give a name to a programming construct and
then to use that name instead of the construct. The construct can be an entire
file of declarations as with a require-declaration, or a single integer, as with a
literal-declaration. In any case, they can greatly improve the organization and
clarity of a program.

16.2 Macro-Declarations
As the previous section states, every use of a macro has two parts: declaration
and call. This section describes the macro-declarations for all kinds of BLISS
macros.

A positional-macro-declaration consists of the reserved keyword MACRO,
followed by a list of one or more macro-definitions. As with other declarations,
the definitions are separated by commas and the declaration ends with a
semicolon. Each macro-definition can be a simple-macro-definition, an iterative-
macro-definition, or a conditional-macro-definition.

A simple-macro-definition consists primarily of a macro-name and a macro-
body. The name is separated from the body by an equal sign, and the body is
terminated by a percent sign ( % ) lexeme. The macro-name can, optionally, be
followed by a parenthesized list of formal-names. The following macro-declaration
contains a simple-macro-definition:

MACRO
SM1(F1,F2,F3) =
((F1(F2)+F1(F3))/2) %;

In this example, the name being declared is SM1, the formal-names are F1, F2,
and F3, and the macro-body is as follows:

((F1(F2)+F1(F3))/2)

The percent sign lexeme after the macro-body is essential. Omission of the
percent sign lexeme (a common programming error) causes the compiler to
include in the macro-body everything it sees until it reaches either a subsequent
percent lexeme or the end of the module.

A conditional-macro-definition is distinguished from a simple-macro-definition
by an empty pair of square brackets inserted just before the equal sign. For
example:

MACRO
CM1(F1,F2)[] =
((F1)^-(F2) + CM1(%REMAINING)) %;

In this example, the empty brackets ( [ ] ) identify the definition as a conditional-
macro-definition.

An iterative-macro-definition is distinguished from a simple-macro- definition by
an additional list of one or more formal-names that is enclosed in square brackets
and inserted just before the equal sign. For example:
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MACRO
IM1(F1)[F2] =
F1+F2 %;

In this example, the bracketed list of formal-names (just one, in this example),
[F2], identifies the definition as an iterative-macro-definition.

A keyword-macro-declaration consists of the keyword KEYWORDMACRO
followed by a list of one or more keyword-macro-definitions. A keyword-
macro-definition is the same as a simple-macro-definition except that each
formal-name can, optionally, have an explicit default-actual-parameter assigned
to it. The default parameter is used when a call on the macro does not give the
corresponding actual-parameter. For example:

KEYWORDMACRO
COPYVECTOR(DEST,SOURCE,N=1) =

INCR I FROM 1 TO N DO
DEST[.I] = .SOURCE[.I] %;

In this example, the default-actual-parameter 1 is associated with the formal-
name N. Defaults are not given for the other formal-names, DEST and SOURCE,
so the empty lexeme sequence is the implicit default-actual-parameter for these
formal-names. (For this example, the macro-call must give actual-parameters
for DEST and SOURCE, since the use of an empty lexeme sequence for either of
these formal-names would yield an invalid macro expansion.)

When a macro-definition is processed, the given macro-name is associated with
the given macro-body. Aside from the recognition of formal-names within the
macro-body, very little is done to the macro-body; it remains a lexeme sequence.
No object code is generated during the processing of a macro-declaration.

In fact, the processing of a macro-declaration is a relatively small part of the
processing of a macro. Only when macro-expansion is described, in Section 16.3,
can motivation for different kinds of macro-declarations be provided.
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16.2.1 Syntax

macro-declaration n
positional-macro-declaration
keyword-macro-declaration

o

positional-macro
declaration

MACRO positional-macro-definition , . . . ;

positional-macro-
definition

(
simple-macro-definition
conditional-macro-definition
iterative-macro-definition

)

simple-macro-
definition macro-name

n
(macro-formal-name , . . . )
nothing

o
= macro-body %

conditional-macro-
definition macro-name

n
(macro-formal-name , . . . )
nothing

o
[ ]
= macro-body %

iterative-macro-
definition macro-name

n
(fixed-formal-name , . . . )
nothing

o
[iterative-formal-name , . . . ]
= macro-body %

macro-name
macro-formal-name
fixed-formal-name
iterative-formal-name

name

macro-body n
lexeme . . .
nothing

o

keyword-macro-
declaration

KEYWORDMACRO
keyword-macro-definition , . . . ;

keyword-macro-
definition macro-name

( keyword-pair , . . . )
= macro-body %

keyword-pair
keyword-formal-name

n
= default-actual
nothing

o

macro=name
keyword-formal-name name
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macro-body
default-actual

n
lexeme . . .
nothing

o

The syntactic name lexeme is defined in Section 2.2.

16.2.2 Restrictions
Only a conditional-macro with one or more macro-formal-names can be used
recursively. That is, the macro-body of any other macro must not contain a call
on itself or a call on another macro that ultimately results in a call on the macro
being defined.

A percent sign ( % ) in a macro-body must be quoted. It is quoted if it immediately
follows an odd number of %QUOTE functions. For example:

%QUOTE

%QUOTE %QUOTE %QUOTE

Otherwise, the percent sign would terminate the macro-body.

A macro-body must not end with an odd number of %QUOTE functions.
Otherwise, the the percent sign that terminates a macro-body would become
part of the macro-body.

A default-actual in a keyword-macro-declaration must satisfy the restrictions
on an actual-parameter in a macro-call. (Literal commas must be quoted,
parentheses must be balanced, and an odd number of quotes must not occur at
the end; see Section 16.3.2.)

16.2.3 Semantics
When the compiler encounters a macro-declaration, it processes the macro-
definitions in the declaration one by one in the order in which they appear.

This section describes both the lexical processing and final interpretation of a
macro-definition.

16.2.3.1 Lexical Processing of Macro-Definitions
Lexical processing of a macro-definition is performed at two quote levels, neither
of which is the ‘‘normal’’ quote level. Indeed, the main reason BLISS has special
quote levels is to properly support macro-definitions.

The following paragraphs specify the quote level for each part of a macro-
definition. The definitions of the quote levels, given in Section 15.2.1, are
reviewed here.

The macro-body of a macro-definition is processed at macro-quote level. At this
level, the compiler takes the following actions:

• Binds any occurrence of a name that is a formal-name in the macro-definition

• Expands any quote-function (%QUOTE, %UNQUOTE, or %EXPAND)

These actions are the minimum lexical processing. They leave most of the
processing of a macro-body for later, when the macro is expanded at the point
of call.

Each default-actual-parameter in a keyword-macro-definition is also processed at
macro-quote level.
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The macro-name and the formal-names (if any) are processed at name-quote level.
At this level, the compiler takes the following actions:

• Binds macro-names only

• Expands lexical-functions and macro-calls

These actions can produce unexpected results, as illustrated in Section 16.1.4.

16.2.3.2 Interpretation of Macro-Definitions
As lexical-processing of a macro-definition is performed, the compiler forms
the definition of a macro, which it retains for use when a call on the macro is
encountered. The definition contains the following information:

• The kind of macro: simple, iterative, conditional, or keyword.

• The number of formal-names. For iterative macros, the distinction between
fixed- and iterative-formal-names. For a keyword-macro, a list of the formal-
names and the default-actual-parameters (if any) for each.

• A copy of the macro-body, with each formal-name properly identified as such.

16.2.4 Predeclared Macros
Three macro-names are predeclared in each BLISS dialect, %BLISS16,
%BLISS32, and %BLISS36. The definition of these macro-names in BLISS–32,
for example, is as follows:

MACRO
%BLISS16[] = % ,
%BLISS36[] = % ,
%BLISS32[] = %REMAINING % ;

(In each of the other dialects the %REMAINING lexical function occurs in the
definition of the appropriate name.) This is not a valid declaration to give in a
program because the names in the declaration begin with a percent sign ( % ) and
are, in fact, reserved keywords rather than names (see Appendix A). However, the
declaration does convey the interpretation given these identifiers.

The example declaration causes the BLISS–32 compiler to replace each call
on %BLISS16 and %BLISS36 by the null lexeme and to replace each call on
%BLISS32 by the actual-parameter sequence in the call. Each BLISS compiler
predeclares these macro-names so that only the macro-name associated with the
applicable language (BLISS–16, BLISS–32, or BLISS–36) expands to a non-null
sequence.

By means of calls on these predeclared macros, you can specify processor
dependencies. Then, when the program is compiled, only the actions relevant to
the given processor are retained.

16.3 Macro-Calls
Once a macro has been defined, it can be invoked by a macro-call. BLISS has two
kinds of macro-call, corresponding to the two main kinds of macro-declaration,
positional and keyword. This section describes both kinds of macro-call.

A positional-macro-call consists of a macro-name followed by an optional list of
actual-parameters. The list of parameters is normally enclosed in parentheses;
however, square brackets or angle brackets can be used instead, without changing
the interpretation of the call. An actual-parameter can be nearly any sequence of
lexemes.
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An example of a positional-macro-call follows:

ALPHA(A,.B+3,’qrs’ 16 MODULE)

In this example, the macro-name is ALPHA. The first and second actual-
parameters are A and .B+3, which happen to be valid BLISS expressions;
however, they are not compiled as such until after the call has been expanded.
The third actual-parameter is a sequence of three lexemes that does not appear
to make sense in BLISS; however, there is nothing inherently wrong with the
use of this sequence as a macro actual-parameter. In order for this example to
be a valid macro-call, it must lie within the scope of a declaration of ALPHA as
a positional macro; and that declaration must make some valid use of the given
actual-parameters.

A keyword-macro-call is similar to a positional-macro-call except that a name
must be associated with each actual-parameter. The name and actual-parameter
are separated by an equal sign. The name must be one of the keyword-formal-
names in the definition of the given macro.

An example of a keyword-macro-call is as follows:

GAMMA(X=Q(R,1),Y=3)

It is assumed that this call occurs in the scope of a declaration of GAMMA as a
keyword-macro name. That declaration must have X and Y as formal-names.

16.3.1 Syntax

macro-call n
positional-macro-call
keyword-macro-call

o

positional-
macro-call

macro-name

8<
:

( macro-actuals )
[ macro-actuals ]
< macro-actuals >
nothing

9=
;

macro-actuals n
macro-actual-parameter , . . .
nothing

o

keyword-
macro-call macro-name

(
( keyword-assignments )
[ keyword-assignments ]
< keyword-assignments >

)

keyword-
assignments

n
keyword-assignment , . . .
nothing

o

keyword-
assignment

keyword-formal-name = macro-actual-parameter
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macro-actual
parameter

n
lexeme . . .
nothing

o

macro-name
keyword-

formal-name
name

The syntactic name lexeme is defined in Section 2.2.

16.3.2 Restrictions
The macro-name in a positional-macro-call must be declared in a positional-
macro-declaration. Similarly, the macro-name in a keyword-macro-call must be
declared in a keyword-macro-declaration.

Each keyword-assignment in a keyword-macro-call must begin with a formal-
name from the declaration of the designated keyword-macro. No formal-name can
be used more than once in a keyword-macro-call.

A macro-actual-parameter must not contain unbalanced parentheses or brackets
(<> or [ ]). That is, every left parenthesis must be followed (somewhere in the
same macro-actual-parameter) by a matching right parenthesis; every left square
bracket, by a matching right square bracket; and every left angle bracket by a
matching right angle bracket.

A comma ( , ) in a macro-actual-parameter must be quoted or parenthesized. It
is quoted if it immediately follows an odd number of %QUOTE functions. It is
parenthesized if it is enclosed in a balanced pair of parentheses or brackets that
is, itself, contained in the macro-actual-parameter.

A macro-actual-parameter must not end with an odd number of %QUOTE
functions. Otherwise, the following comma would be quoted.

If the macro-name of a macro-call is declared as a simple macro with no formal-
names, then the macro-call must consist of just the macro-name. (This does not
mean that the macro-name cannot be followed by something that looks like a
parenthesized list of actuals; it only means that the compiler will not process that
construct as part of the macro-call.)

If the macro-name of a macro-call is declared other than as a simple macro-
call with no formal-names, then the macro-call must have a parenthesized (or
bracketed) list of actual-parameters. (The list can be empty, but the pair of
parentheses or brackets must be there.)

16.3.3 Semantics
A macro-call is first subjected to lexical-processing and then expanded. Lexical-
processing is the same for all macro-calls, and is described in the next section.
Expansion is different for the different kinds of macros, and is described in four
separate sections.

The expansion of a macro-call can be cut short by a %EXITITERATION or
%EXITMACRO lexical-function; these functions are described in Section 15.5.15.
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16.3.3.1 Lexical Processing of Macro-Calls
The processing of a macro-call begins when a macro-name is bound to a macro-
declaration.

Once a macro-name has been bound, the actual-parameters (if any) are processed
at name-quote level. At this level, the compiler takes the following actions:

• Binds macro-names only

• Expands lexical-functions and macro-calls

Because the compiler expands lexical-functions and macro-calls at this level,
an expansion can occur within another expansion. The actual-parameters of
a macro-call are separated by commas. However, a comma that is quoted or
parenthesized is treated literally. (See Section 16.3.2 for the definition of a quoted
or parenthesized comma.)

The list of actual-parameters is terminated by the right parenthesis or bracket
that matches the left parenthesis or bracket that begins the list.

The following list gives some macro-calls and identifies the actual-parameters in
these calls. Because some macro-calls are included in the actual-parameters, the
following macro-definitions are given first:

MACRO
M1(F1,F2) = F1, F1/F2, F1*F2 %,
M2 = A, B, C, D %;

The identification of the actual-parameters a1, a2, . . . is given in the following
list:

Macro-Call a1 a2 a3 a4

M3(X,Y,Z) X Y Z

M3(X,Y %QUOTE, Z,W) X Y,Z W

M3(1(X,Y)) X X/Y X*Y

M3(M2) A B C D

M3(X,%QUOTE M1(X,Y),Z) X M1(X,Y) Z

M3(X,(Y,Z),W) X (Y,Z) W

M3(X,F[M2],Y) X F[A,B,C,D] Y

16.3.3.2 Expansion of Simple Macros
The compiler uses the following algorithm for expanding a simple macro-call:

1. Associate actuals with formals. Associate the first actual-parameter with the
first formal-name of the corresponding definition, the second actual-parameter
with the second formal-name, and so on.

a. If there are too many actual-parameters, save the extra actual-parameters
for use in the value of %REMAINING.

b. If there are too few actual-parameters, associate the empty lexeme
sequence with each formal-name that does not have an actual-parameter.

2. Prepare macro-body. Make a copy of the macro-body of the corresponding
definition. In the copy, replace each unquoted occurrence of a formal-name
with the corresponding actual-parameter.
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3. Expand macro-functions. Replace certain lexical-functions in the copy of the
macro-body as follows:

a. %LENGTH becomes an unsigned integer-literal that represents the
number of parameters in the list of actual-parameters.

b. %REMAINING becomes a list of the extra actual-parameters.

If the macro-definition has n formal-names, then %REMAINING is
replaced by the following lexeme sequence: the (n+1)th actual-parameter,
a comma, the (n+2)th actual-parameter, a comma, and so on, ending with
the last actual-parameter.

If there are no extra actual-parameters, %REMAINING is replaced by the
empty lexeme sequence.

c. %COUNT becomes zero.

4. Place expansion in stream. Place the modified copy of the macro-body at the
head of the input stream.

16.3.3.3 Expansion of Conditional Macros
The compiler uses the following algorithm for expanding a conditional macro-call:

(The semantics of conditional-macros is quite similar to those of simple-macros.
In the following, each item that differs from simple-macros is marked with an
asterisk ( * ).)

1. Associate actuals with formals. Associate the first actual-parameter with the
first formal-name of the corresponding definition, the second actual-parameter
with the second formal-name, and so on.

a. If there are too many actual-parameters, save the extra actual-parameters
for use in the value of %REMAINING.

b. *If there are too few actual-parameters, use the empty lexeme sequence
as the expansion of the macro-call and exit from this algorithm.

c. *If there are no actual-parameters in the call and no formal-names in the
macro-definition, use the empty lexeme sequence as the expansion of the
macro-call and exit from this algorithm.

2. Prepare macro-body. Make a copy of the macro-body of the corresponding
definition. In the copy, replace each unquoted occurrence of a formal-name
with the corresponding actual-parameter.

3. Expand macro-functions. Replace certain lexical-functions in the copy as
follows:

a. %LENGTH becomes an unsigned integer-literal that represents the
number of parameters in the list of actual-parameters.

b. %REMAINING becomes a list of the extra actual-parameters.

If the macro-definition has n formal-names, then %REMAINING is
replaced by the following lexeme sequence: the (n+1)th actual-parameter,
a comma, the (n+2)th actual-parameter, a comma, and so on, ending with
the last actual-parameter.

If there are no extra actual-parameters, %REMAINING becomes the
empty lexeme sequence.

c. *%COUNT becomes an unsigned integer-literal that represents the depth
of recursion for this macro.
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If the macro-definition has no formal-names, then recursion is not
permitted, and %COUNT always becomes 0.

The depth of recursion is the number of calls on the same macro that occurred
prior to the current call and are still in the process of being expanded.

4. Place expansion in stream. Place the modified copy of the macro-body at the
head of the input stream.

16.3.3.4 Expansion of Iterative-Macros
The compiler uses the following algorithm for expanding an iterative macro-call:

1. Associate actuals with fixed-formals. Associate the first actual-parameter
with the first fixed-formal-name of the macro-definition, associate the second
actual-parameter with the second fixed-formal-name, and so on.

a. If there are one or more extra actual-parameters, call them the remaining-
actuals-list, and go to step 2.

b. Otherwise, use the empty lexeme sequence as the expansion of the
macro-call and exit from this algorithm.

2. Prepare fixed-macro-body. Make a copy of the macro-body of the designated
macro-definition. In that copy, replace each unquoted occurrence of a fixed-
formal-name by the corresponding actual-parameter. Call the result the
fixed-macro-body.

3. Expand %LENGTH macro-function. Replace any %LENGTH lexical- function
in the macro-body with its expansion, as follows:

a. %LENGTH becomes an unsigned integer-literal that represents the
number of parameters in the list of actual-parameters.

(The next four steps, step 4 through step 7, are a loop. Each pass through the
loop generates a new copy of the macro-body. These copies are placed on the input
stream in step 8.)

4. Associate actuals with iterative-formals. Associate the first actual-parameter
of the remaining-actuals-list with the first iterative-formal-name of the
macro-definition, associate the second actual-parameter with the second
iterative-formal-name, and so on.

As each actual-parameter is associated with an iterative-formal-name, remove
it from the remaining-actuals-list. If there are too few actual-parameters,
associate the empty lexeme sequence with each iterative-formal-name that
does not have an actual-parameter.

Steps 1a and 7 of this algorithm guarantee that there will always be at least
one remaining actual-parameter at the beginning of this step.

5. Prepare iterative-macro-bodies. Make a copy of the fixed-macro-body (obtained
in steps 2 and 3). In that copy, replace each unquoted occurrence of an
iterative-formal-name by its associated actual-parameter (obtained in step 4).

6. Expand other functions. Replace any occurrences of the %COUNT or
%REMAINING function in the iterative-macro-body as follows:

a. %COUNT becomes an unsigned numeric-integer that represents the
iteration count for this iteration.

The iteration count is the number of completed iterations; thus the count
is 0 the first time this step is executed, 1 the second time, and so on.

b. %REMAINING becomes the remaining-actuals-list.
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7. End test. If the remaining-actuals-list is not empty, go back to step 4.

8. Place expansion in stream. Place the following sequence of lexemes at the
head of the input stream:

a. The default left grouper, if any.

b. The copies of the macro-body prepared in step 4 through step 6. Place a
default separator between each pair of copies.

c. The default right grouper, if any.

The final step of the algorithm just given requires default punctuation.
Specifically, step 8b requires a default separator, and step 8a and step 8c require
default groupers.

The selection of default punctuation for a given macro-call depends on the one
or two lexemes that immediately precede the macro-call. Those lexemes are
called the left context, and they are examined only after their lexical processing is
complete.

BLISS has five combinations of default separator and default groupers. The
first three use a comma, a semicolon, or an operator as the separator and do
not use groupers. The fourth uses a semicolon as a separator and parentheses
as groupers. The fifth uses a semicolon as a separator and SET and TES as
groupers.

The left context for each of the five combinations is given in the following list,
together with remarks that show why those defaults are appropriate.

1. Comma separators, no groupers. In the following cases, the default separator
is a comma and default groupers are not used:

Left Context Remarks

(
[
<

The expansion serves as a list of actual-parameters, formal-
names, or plit-items.

The keyword phrase
at the beginning of a
declaration

The expansion serves as a list of declaration-items.

, (comma) The expansion serves as the continuation of a list of actual-
parameters, formal-names, plit-items, or declaration-items.

This case does not apply to a left parenthesis that is the first lexeme of a
block or an expression.

2. Semicolon separators, no groupers. In the following cases, the default
separator is a semicolon and default groupers are not used:

Left Context Remarks

BEGIN
(

The expansion serves as the contents of a block as defined in
Section 8.1.1.

SET The expansion serves as a sequence of case-lines in a case-
expression or select-lines in a select-expression.

Leading keyword of
control-expression

(Not a useful default.)
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Left Context Remarks

CODECOMMENT (Not a useful default.)

;(semicolon) The expansion serves as the continuation of a sequence of
declarations, block-actions, case-lines, or select-lines.

This case applies to a left parenthesis ‘‘(’’ only if it is the first lexeme of a
block or an expression.

3. Operator separator, no groupers. In the following cases, the default separator
is a copy of the specific operator that precedes the macro-call and default
groupers are not used.

Left Context Remarks

Operator The expansion serves as the continuation of the operator-
expression that begins in the left context.

This case applies to all operators (both delimiters and keywords) in the table
in Section 5.1.1.

4. Semicolon separator, SET and TES groupers. In the following cases, the
default separator is a semicolon and default groupers are SET and TES.

Left Context Remarks

OF The expansion serves as the body of a case-expression or a
select-expression.

This case applies to the keyword OF when it appears in a case-expression or
a select-expression.

5. Comma separator, parenthesis groupers. In the following cases, the default
separator is a comma and the default groupers are parentheses.

Left Context Remarks

name
literal
attribute
psect-attribute
switch
list-option
linkage-type
linkage-modifier
)
]
>
END
TES

The expansion serves as a parenthesized list of actual-
parameters or formal-names. (This default is based on the
assumption that the left context gives the address of a routine
or a data segment; the usefulness of this assumption varies
from one situation to another.)

:(colon) (Not a useful default.)

OF The expansion serves as a repeated group of plit-items.

This case applies to the keyword OF when it appears in a plit-group.
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16.3.3.5 Expansion of Keyword-Macros
The compiler uses the following algorithm for expanding a keyword macro-call:

1. Associate actuals with formals. Associate actual-parameters with formal-
names as indicated by the keyword-assignments in the macro-call.

If the macro-call does not include a keyword-assignment for a particular
formal-name, then use the corresponding default-actual from the declaration
of the macro. If the declaration does not have such a default-actual, then use
the empty lexeme sequence.

2. Complete expansion. Complete the expansion of the macro-call as if it were a
simple-macro-call (starting with step 2 of Section 16.3.3.2).

16.3.4 Discussion
The following discussion of macros begins with easy examples and continues with
a section on the default punctuation of iterative macros.

16.3.4.1 Introductory Examples
Four examples of macro-declarations were given in the preceding section on
macro-declarations. In the following paragraphs, each of those declarations is
given again with an accompanying call and the expansion of the call.

An example of a simple-macro follows:

MACRO
SM1(F1,F2,F3) =

((F1(F2)+F1(F3))/2) %;
...
SM1(ROUT,0,.A+.B)

The expansion of the call on SM1 is as follows:

((ROUT(0)+ROUT(.A+.B))/2)

In this and subsequent examples, it is assumed that the macro-call appears in a
context in which it plays a valid and useful role.

An example of a conditional-macro follows:

MACRO
CM1(F1,F2)[] =

F1 = .F1 ^ -F2 ;
CM1(%REMAINING) %;

CM1(A,0,B,6,C,2)

The expansion of the call on CM1 proceeds recursively, as follows. The original
call yields the following:

A = .A ^ -0;
CM1(B,6,C,2)

Next, the new call is expanded, and the accumulated result is as follows:

A = .A ^ -0;
B = .B ^ -6;
CM1(C,2)

Once more the new call is expanded, as follows:

A = .A ^ -0;
B = .B ^ -6;
C = .C ^ -2;
CM()
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This time, the new call has insufficient parameters, and its expansion is the null
lexeme sequence, so the final result is as follows:

A = .A ^ -0;
B = .B ^ -6;
C = .C ^ -2;

The significant feature of this macro is that it can accept any number of pairs of
actual-parameters, and produces an assignment for each.

An example of an iterative-macro follows:

MACRO
IM1(F1)[F2] =

F1+F2 %;
...
PLIT(IM1(2,A,B,C,D,))

The expansion of the call on IM1 is as follows:

2+A,2+B,2+C,2+D

Thus, in this example, the macro-call provides four plit-items for the PLIT
expression.

This example illustrates two of the special features of iterative-macros. First, it
shows how some parameters (just the first one in this example) can be used in
each iteration of the expansion while the remaining parameters are used up (one
at a time in this example) by the individual iterations. Second, it shows that the
iterations are separated by a lexeme (a comma in this example) that depends on
the context (a PLIT in this example).

An example of a keyword macro follows:

KEYWORDMACRO
COPYVECTOR(DEST,SOURCE,N=1) =

INCR I FROM 1 TO N DO
DEST[.I] = .SOURCE[.I] %;

...
COPYVECTOR(N=10,DEST=V2,SOURCE=V1);

The expansion of the call on COPYVECTOR is as follows:

INCR I FROM 1 TO 10 DO
V2[.I] = .V1[.I];

The main advantage of keyword macros over simple macros is that the actual-
parameters need not be given in the same order as the formal-names. This is
useful when the order of the formal names is hard to remember, that is, when
there are many parameters or when there is no natural order. This example
illustrates such a situation.

16.3.4.2 Default Punctuation
Section 16.3.3.4 defines the default punctuation for iterative-macros. This section
further discusses that aspect of BLISS and gives some examples.

The default punctuation of an iterative macro-call is based on an examination of
the context in which the macro-call appears. The context used by the compiler
is minimal (the one or two lexemes that precede the call), but it usually provides
the result you want. For example:
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MACRO
SHIFT[A,B] = A^B %;

BIND
PTR = PLIT(

SHIFT(1,2,3,4,5,6),
0+SHIFT(1,2,3,4));

In this example, the macro SHIFT is called twice. After expansion of these
macro-calls, the BIND expression is as follows:

BIND
PTR = PLIT(

1^2,3^4,5^6,
0+1^2+3^4);

The first macro-call appears after the lexeme PLIT, and should supply one or
more plit-items; therefore, commas, which are the separators in a list of plit-
items, are supplied as default punctuation. The second macro-call appears after
the plus sign ( + ) lexeme, and should supply a sequence of operands; therefore,
the plus sign operator, in this case, is supplied as the default punctuation.

The default punctuation is not always the punctuation you want. If you want
something different, you can either avoid the use of an iterative macro or else
change the context. The second macro-call in the preceding example is an
example of a change of context: the zero-plus (0+) before the call changes its
context without changing the value of the plit-item provided by the call.

Consider an iterative-macro-call that occurs at the beginning of a macro-actual-
parameter in a larger macro-call. The iterative-macro-call is expanded prior to
the containing macro-call; therefore, its context is just the left parenthesis, left
bracket, or comma that precedes it in the actual-parameter list. Later, the actual-
parameter replaces a formal-name in a macro-body, but that is too late to affect
the expansion of the embedded iterative-macro. This aspect of macro-expansion
limits the usefulness of iterative-macro-calls.

An example of default punctuation that uses default brackets arises in the
processing of the following block.

BEGIN
MACRO

CASEGEN(INDEX)[ ] =
BEGIN
MACRO

CASELINE[ACTION] =
[%COUNT]: ACTION %QUOTE %;

CASE INDEX FROM 0 TO %LENGTH-2 OF
CASELINE(%REMAINING)

END%;
...
CASEGEN(.I, Q1, Q2, Q3);
...
END;

After macro expansion, this block is as follows:
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BEGIN
...

BEGIN
CASE .I FROM 0 TO 4-2 OF

SET
[0]: Q1;
[1]: Q2;
[2]: Q3
TES

END
...
END;

The default brackets, SET and TES, were supplied by the compiler because
the macro-call on CASELINE was expanded in the left context of OF in a case-
expression.

Observe that a containing block is generated by the macro CASEGEN because
it contains a nested macro-definition. The generation of a containing block is
advisable for two reasons. First, the macro CASEGEN can then be called in any
context, not just at the end of the declarations in a block. Second, the name of
the nested macro is then confined to the scope of the generated block and is,
therefore, not known at the same block level as the name CASEGEN.

16.4 Examples of Macros
This section provides some relatively advanced examples of the use of macros. It
gives some idea of the variety of tasks that macros can handle.

16.4.1 Macros for Initializing a BLOCK Structure
When a BLOCK structure is used in a program, its fields can be initialized
conveniently by means of a macro. An example of this application of macros
follows.

Suppose a BLISS–32 block structure that has the following layout is required:

ZK−5998−GE

CNT F OFFSET

VAL

Let this structure be called a QVAL block, and suppose that its fields have the
following properties:

Field Size (in Bits) Extension

OFFSET 16 UNSIGNED

F 3 UNSIGNED

CNT 13 SIGNED

VAL 32 SIGNED

The fields are laid out in the order of increasing byte addresses, with OFFSET
first, then F, and so on. Thus OFFSET occupies the first word, F occupies the
low-order three bits of the second word, CNT occupies the remaining bits of that
word, and VAL occupies the third and fourth 16-bit words (the entire second
fullword).
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The following simple-macro provides for initialization of a QVAL block:

MACRO
INIT_QVAL(OFFSET,F,CNT,VAL) =

INITIAL( WORD(OFFSET,
((F) AND %O’7’) OR ((CNT)^3 AND %O’177770’)),
LONG(VAL)) %;

This macro packs four values, one for each field, into the correct layout for a
QVAL block. Consider the following use of the macro:

OWN
X: BLOCK[QVAL_SIZE] INIT_QVAL(0,3,-1,2);

When the macro is expanded, the declaration becomes the following:

OWN
X: BLOCK[QVAL_SIZE] INITIAL( WORD(0,%O’177773’), LONG(2));

Observe that the values for F and CNT are packed into the second word by
masking their values, shifting the CNT value three bits left, and then combining
the values with an OR operator.

The use of macros described here supports the declaration and referencing of the
BLOCK structures described in Chapter 11.

16.4.2 A Complicated Macro
Sometimes it is appropriate to use a macro for a relatively specialized and
complicated purpose. An example of such an application follows:

MACRO
BLOCKSETUP (A) [] =

OWN A: BLOCK[10];
ROUTINE %NAME (A,’_INIT’): NOVALUE =

BEGIN
INCR I FROM 0 TO 9 DO ! Zero the block

%NAME (A) [.I,0,32,0] = 0;
FILL (A, %REMAINING) ! Set fields
END;

%,
FILL (A)[B] = A B %;

These macros declare a given name (represented by the formal-parameter A) as
an OWN BLOCK composed of ten longwords. In addition, they declare a routine
that, when called, initializes the block. The routine begins by setting all ten
longwords to zero and then initializing any number of specified fields within the
block.

Suppose that two of the fields within the block are given names as follows:

MACRO
ALPHA = 0,8,8,0%,
BETA = 5,0,16,1%;

It is assumed that ALPHA and BETA are the only fields that require
initialization. Then an example of a call on the macro BLOCKSETUP is as
follows:

BLOCKSETUP(QQ, [ALPHA] = 25, [BETA] = 32);
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The expansion is as follows:

OWN
QQ: BLOCK[10];

ROUTINE
QQ_INIT: NOVALUE =

BEGIN
INCR I FROM 0 TO 9 DO

QQ[.I,0,32,0] = 0;
QQ[0,8,8,0] = 25;
QQ[5,0,16,1] = 32;
END;

Given these declarations, a call on QQ_INIT (without any actual-parameters) will
zero QQ and set two of its fields.

16.4.3 Nested Macro Definition
A macro definition can be given within a macro definition, as follows:

MACRO
M1(F1,F2)[] =

OWN F1, F2;
MACRO NM1[F3,F4] =

LOCAL %NAME(F3,’_1’), %NAME(F4,’_1’); %QUOTE %;
NM1(F1,F2,%REMAINING)
%;

The %QUOTE lexical-function prevents the percent ( % ) lexeme from being
lexically bound and thus from being interpreted as the termination lexeme for the
macro body of M1. An example of a call on the macro M1 follows:

M1(A, B, C, D, E, F)

The result of this call is the following expansion:

OWN A,B;
LOCAL A_1,B_1;
LOCAL C_1,D_1;
LOCAL E_1,F_1;

16.4.4 Declarations Within Macros
Declarations within macros can lead to problems. For example:

BEGIN
MACRO

S(A,B) =
BEGIN
LOCAL C;
C = .A + .B;
.C
END %;

OWN C,X;
S(C,X);
S(%UNQUOTE C,X);
END

In the first call on S, the substitution of the actual-parameter C in the macro
body causes it to be interpreted as the local variable declared in the macro
body. The second call on S avoids this problem by the use of the %UNQUOTE
lexical-function.
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16.5 Require-Declarations
A require-declaration specifies the name of a file. When the module is compiled,
the require-declaration is replaced by the contents of the file. Text that is common
to a number of separate modules can be made into a single file and, in this way,
included in each module (see also Section 15.5.16).

The most common use of a require-declaration is in connection with a file that
contains structure-declarations, field-declarations, macro-declarations, and
literal-declarations common to several related modules of a program.

16.5.1 Syntax

require-declaration REQUIRE file-designator ;

file-designator quoted-string

The syntactic name quoted-string is defined in Section 4.3.

16.5.2 Restrictions
The file-designator given in a require-declaration must be a valid file name on the
system on which the compiler is running.

The result of replacing the require-declaration with the specified file must be a
valid module.

If the required file contains a %IF lexeme, it must also contain the matching
%THEN, %ELSE (if used), and %FI of the same lexical condition.

During the expansion of a required file (declaration or function) a fatal error will
occur if the end of the file is found while a macro is still being declared.

A required file (declaration or function) must not appear during the expansion of
a macro.

16.5.3 Semantics
The specified file is placed at the head of the input stream. The following actions
are performed:

1. Locate the file specified by the file-designator. File name default rules are
given in the appropriate BLISS user manual.

2. Suspend input from the current lexeme source.

3. Adopt the specified file as the current lexeme source.

4. When the specified file is empty, resume input from the lexeme source that
was suspended in step 2.

16.6 Library-Declarations
A library-declaration calls upon a file that has been precompiled. The effect is to
introduce a set of declarations into a module without compiling them.

Before a library declaration can be compiled, a separate compilation activity must
be performed. That is, a library source file must be created by the programmer,
compiled as described in the appropriate BLISS user’s guide, and saved as a
library binary file. It is the latter file that is used when the library-declaration is
compiled as part of a module.
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A library-declaration (and the associated precompilation) is chosen over a
require-declaration entirely for reasons of efficiency: it can reduce compilation
costs. Most of the cost associated with compiling a library file is done during
precompilation. Therefore a saving results if the library file is used in several
modules or if it is revised less often than the modules in which it is used.

Aside from efficiency, a given library-declaration has the same effect as an
analogous require-declaration.

16.6.1 Syntax

library-declaration LIBRARY file-designator ;

file-designator quoted-string

The syntactic name quoted-string is defined in Section 4.3.

16.6.2 Restrictions
The file specified by the library-declaration must be a library binary file produced
by the same compiler that is compiling the library-declaration.

The result of replacing the library-declaration with the associated library binary
file must be a valid module. (The compiler does not actually perform this
replacement, but such a replacement is easy to imagine.)

The associated library source file must not contain any use of a name that is not
declared in that file.

The associated library source file must consist of a sequence of declarations. Only
certain kinds of declarations can be used. These declarations, listed according to
the chapters in which they are described, are as follows:

Declarations Chapter

external-declarations Chapter 10

structure-declarations
field-declarations

Chapter 11

external-routine-declarations Chapter 12

linkage-declarations Chapter 13

external-literal-declarations
literal-declarations
(Specifically, LITERAL is permitted, but
GLOBAL LITERAL is not)
bind-data-declarations
(only if data-name-value
is a compile-time constant expression)
bind-routine-declarations
(only if routine-name-value
is a compile-time constant expression)

Chapter 14

compile-time-declarations
macro-declarations
keyword-macro-declarations
require-declarations
library-declarations

Chapters 15 and 16

switches-declarations
undeclare-declarations
built-in-declarations

Chapter 18
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16.6.3 Semantics
The declarations encoded in the specified library binary file are incorporated into
the module being compiled. The following actions are performed:

1. Locate the file specified by the file-designator. File name default rules are
described in the appropriate BLISS user manual.

2. Verify that the specified file is a library binary file and that the compiler
that generated the file is compatible with the compiler that is compiling the
library-declaration.

3. Add the precompiled tables that make up the specified file to the tables
already formed by the compiler.

The result is to establish a set of declarations with a minimum of compiler
activity.

Switches-declarations in the library source file affect the precompilation of the file
but have no effect on the module that uses the file in a library-declaration.

Lexical-expressions are expanded at the time a library source file is compiled to
produce the library binary file, not when the library binary file is incorporated
into another module.

The undeclare-declaration can be used at the end of a library source file to
prevent declarations from being output to the library binary file. In this way, the
effect of a declaration can be confined to the compilation of the library file itself.
This approach is essential when the same name is declared in several library files
that are used together in the same module.

A library source file can include both a require-declaration and a library-
declaration.

Library declarations are permitted in a library precompilation to allow data-
structuring packages (such as XPORT) to be used both in library construction and
within any individual modules that refer to the library.

All symbols defined by the nested library will be implicitly undeclared at the end
of precompilation; this prevents the generation of error messages due to names
being declared in two libraries. However, if it is necessary to retain the symbols
from the declared library, the library can be referenced by a require-declaration
using the source file as file-designator.

As an example, assume library COMLIB is being built to contain a common set
of data structures for a project; moreover, the structures use XPORT $FIELD
macros, while the project uses the XPORT I/O package. Thus, COMLIB.REQ will
contain lines such as the following:

LIBRARY ’SYS$LIBRARY:XPORT’;

...

$FIELD
LINKED _LIST=

SET
NEXT= [$ADDRESS]
LAST= [$ADDRESS]’
VALU= [$INTEGER]
TES;

...

16–26 Macros



When COMLIB.REQ is being precompiled, the $FIELD, $ADDRESS, and
$INTEGER definitions are defined by the XPORT library; however, at the end of
the precompilation process the definitions are deleted.

When a module that uses XPORT I/O is compiled it can contain the following
lines:

LIBRARY ’SYS$LIBRARY:XPORT’;
LIBRARY ’LIB$:COMLIB’;

...

Note that if the COMLIB library contained a macro declaration such as the
following:

MACRO DOLLAR_FIELD = $FIELD %;

the macro would not be expanded at declaration time and $FIELD would
be unbound. Thus, if a source module (that did not have a library XPORT
declaration) referenced the DOLLAR_FIELD macro, $FIELD would be treated as
an undefined name.

Another example of a library-declaration within a library compilation follows.
This example emphasizes the sometimes unexpected behavior that can occur
during the compilation of nested libraries.

For the example, assume that two files are separately compiled as follows:

$ BLISS/LIBRARY INNER
.
.
.

$ BLISS/LIBRARY OUTER

The first compilation produces INNER.L32 as follows:

; 0001 0 FIELD
; 0002 0 CAB_FIELDS =
; 0003 0 SET
; 0004 0 CAB$W_BLN = [1,2,3]
; 0005 0 TES;

The second compilation produces OUTER.L32 as follows:

; 0001 0 LIBRARY ’INNER’;
; 0002 0
; 0003 0 EXTERNAL ZOT : BLOCK[100] FIELD(CAB_FIELDS);
; WARN 201
; Illegal occurrence of bound name CAB_FIELDS in library source
; module

The error message occurs because symbols from the INNER library are not
included in the OUTER library. The symbol ZOT, declared in the OUTER library,
refers to the symbol CAB_FIELDS, declared in the INNER library; if, in a
subsequent compilation, the OUTER library is used without the INNER library
the declaration of CAB_FIELDS will not be available.
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17
Condition Handling

Condition handling is the response to an unusual event that is signaled during
execution of a program. The unusual event is often the detection of an error,
but need not be; it could, for example, be part of a scheme to measure the
performance of a program. This chapter describes the features of BLISS that
support condition handling.

Condition handling involves the BLISS language together with the target
hardware and software system. For additional system details, see the respective
hardware and operating system reference manuals, as well as the respective
BLISS user manuals.

17.1 Introduction to Condition Handling
Condition handling begins when an event or situation is signaled by a call on
one of the executable-functions SIGNAL or SIGNAL_STOP. The signal is directed
to a part of the system called the Condition Handling Facility (CHF). The CHF
retains control until the unusual event has been dealt with; but the CHF can, and
usually does, call user routines for assistance. Then, depending on the outcome,
program execution continues or is terminated.

17.1.1 Routines
Condition handling involves the interaction of three kinds of routines. First is a
signaler routine, which contains code that generates the signal, either explicitly
or implicitily. Second are handler routines, which are called upon by the CHF
to provide the desired response to a signal. Third are establisher routines that
contain a special declaration, the enable-declaration, that associates a handler
routine with the establisher routine.

These three kinds of routines are not new; they are routines that are used in a
new way, to play special roles in condition handling. A single routine can play
two or three of these roles at the same time; in fact, a routine can even establish
itself as its own condition handler.

Furthermore, a single routine can be used in many places; for example, a single
routine can be established as the handler routine by many establisher routines.

17.1.2 Signals
A signal can be generated in three ways. First, a signal can be explicitly
generated by a call on the executable-function SIGNAL or SIGNAL_STOP.
Second, a signal can be implicitly generated by the hardware or the software
system as a result of a condition detected during program execution. Third, a
special kind of signal, the unwind signal, can be indirectly generated by a handler
routine by means of a call on the executable-function SETUNWIND.
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When a signal is generated, a data segment termed the signal vector is used
to describe the condition. This vector contains a condition value, which is an
encoding of the primary description of the condition that caused the signal. The
encoding of the condition value is defined by software conventions and is the
same for all conditions. The remaining elements of the signal vector provide
suplementary information about the condition; this information can vary from
one condition to another.

17.1.3 Processing
When condition handling is initiated, the CHF searches the stack of routine calls
for the most recently established handler. The handler is called by the CHF with
three parameters giving, respectively, values from the signaler (one of which is a
condition value), values from the CHF itself, and values from the establisher of
the handler. The handler uses this information to determine what action to take
in response to the condition.

The handler indicates to the CHF how condition handling for the signal should
proceed after the handler returns to the CHF. In the simplest case, the handler
requests the CHF to return to the signaler. This completes condition handling for
that signal.

The handler can also request resignaling. In this case, CHF searches for the
next handler in the stack of routine calls and calls it. The search for and
calling of successive handlers continues as long as each handler in turn requests
resignaling.

Finally, the handler can request unwinding. Unwinding causes the execution of
various routines to be terminated by removing each routine’s stack frame from
the stack of routine calls as though the routine had returned normally.

During unwinding, the handler of any routine that is being terminated is called
(a second time) to give each handler an opportunity to perform any actions
necessary on behalf of the establisher in order for the establisher to complete
properly. Examples of such actions are closing files opened by the establisher,
releasing dynamically allocated storage, adjusting counters and flags, and so on.
Normal execution resumes after the call to the establisher of the handler that
requested unwinding. This completes condition handling for that signal.

The description of condition handling is given in five parts. The first three parts
present the BLISS language features relevant to the three kinds of routines
involved in condition handling. First, enable-declarations, used in establisher
routines, are described. Second, signals and the means by which a signaler
routine initiates condition handling are described. Third, handler routines,
their parameters and the means by which a handler directs CHF processing
are described. The fourth part describes the flow of control during condition
handling among the three kinds of routines. The fifth part gives examples of the
application of condition handling.

17.2 Enable-Declarations
An enable-declaration is the means by which one routine, an establisher,
identifies another routine as a handler routine. The association is established at
the beginning of the establisher’s execution and lasts throughout the execution
of that routine and any routines that it calls. The association is automatically
broken when the establisher routine returns.

17–2 Condition Handling



In addition to specifying the handler routine, the establisher can also specify
parameters that will be passed to the handler if the handler is actually called.
For example:

ROUTINE X(Y,Z) =
BEGIN
EXTERNAL ROUTINE

XH;
LOCAL

L: VOLATILE;
ENABLE

XH(L);
. . .

END;

Routine X establishes the routine XH as its handler and specifies the address of a
local data segment, L, to be passed to the handler when the handler is called.

17.2.1 Syntax

enable-
declaration

ENABLE routine-name

n
( enable-actual , . . . )
nothing

o

enable-actual 8<
:

own-name
global-name
forward-name
local-name

9=
;

8><
>:

routine-name
own-name
global-name
forward-name
local-name

9>=
>; name

17.2.2 Restrictions
An enable-declaration must appear only in the outermost block of a routine-
definition.

Only one enable-declaration can appear in the outermost block of a routine-
definition. (This does not prohibit a nested routine, as well as the outer routine,
from containing an enable-declaration.)

In BLISS–16 and BLISS–32, a routine that contains an enable-declaration must
be declared with a linkage-attribute that is itself declared with a linkage-type
as follows: the JSR linkage-type in BLISS–16, or the CALL linkage-type in
BLISS–32; observe that the predeclared default linkage satisfies this restriction
in each case. Further, no external registers or output-registers are permitted.

The routine-name given in an enable-declaration must be the name of a routine
declared in a routine- or bind-routine-declaration.

In BLISS–16 and BLISS–32, the linkage-attribute of the handler routine-name
given in the enable-declaration must be the predefined linkage-attribute BLISS.

Each data segment name that appears as an enable-actual parameter in an
enable-declaration must have the volatile-attribute specified in its declaration.
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If the handler routine can potentially modify any data segment other than an
enable-actual data segment (for example, a data segment whose address is given
by the contents of an enable-actual parameter), that data segment must be
declared with the volatile-attribute.

17.2.3 Semantics
The enable-declaration establishes a given routine as the routine to handle
any software- or hardware-detected conditions that are signaled during the
execution of the routine containing the enable-declaration. The execution of
the establisher includes the execution of any routines that it calls, directly or
indirectly. However, it may or may not include the execution of any handlers, as
described in Section 17.5.

The enable-actual parameters given in the declaration are the names of data
segments whose address values are passed to the handler when and if it is called.

An enable-actual parameter can be the name of a local data segment (declared
LOCAL or STACKLOCAL) and if so, that data segment is implicitly initialized to
all zero bits before the handler routine is established.

The enable-declaration does not, of itself, call the given handler routine.

17.3 Signaling
Signaling initiates condition handling and thereby indicates that a particular
event or condition has occurred. You can explicitly generate a signal by calling
one of the executable-functions SIGNAL or SIGNAL_STOP. Such signals can be
implicitly generated by hardware-detected error conditions (such as an access
violation or arithmetic overflow) and can be indirectly generated by a handler
routine request for unwinding.

All signals identify a condition by means of a vector that contains a condition
value. The vector can also contain additional values that provide auxiliary
information about the condition.

17.3.1 Condition Values
A condition value is a single fullword value that encodes the identity and severity
of the condition. The severity field is encoded in the low-order three bits and
the identity field in the remaining high-order bits. In BLISS–16, the identity
field consists of all 13 of the high-order bits of the 16-bit word. In BLISS–32
the identity field consists of the next 25 bits (above the severity field), and in
BLISS–36 consists of the next 29 bits, leaving the high-order four bits for other
purposes in both dialects.

When accessing a condition value to determine which condition is being reported,
it is necessary to examine only the identity field, excluding the remainder. The
same condition identity value may be signaled with different severity values at
different times.

A more detailed description of condition value representation is given in
Section 17.6.1, along with example declarations for conveniently creating and
accessing condition values.
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17.3.2 Explicit Signals
BLISS programs can explicitly generate a signal by calling one of the executable-
functions SIGNAL or SIGNAL_STOP. These functions are defined as follows:

SIGNAL( condition-value )

SIGNAL( condition-value , parameter , . . . )

Initiates condition handling for the condition indicated by the given condition-
value. If parameters are given in addition to the condition-value, these values are
included in the signal vector (see Section 17.4.2.1) passed to each handler that is
called.

The function returns if and only if a handler for the condition requests
continuation. (In BLISS–32, the VMS system establishes a default catchall
handler for all signals; see Section 17.6.4.2.)

The function returns a value if and only if a handler assigns a returned-value to
the mechanism vector (see Section 17.4.2.2); otherwise, the value is undefined.

SIGNAL_STOP( condition-value )

SIGNAL_STOP( condition-value , parameter , . . . )

Initiates condition handling for the condition indicated by the given condition-
value. A condition-value with the severity field replaced by the code for severe
error (STS$K_SEVERE, see Section 17.6.1) is included in the signal vector
passed to each handler that is called. If parameters are given in addition to the
condition-value, these values are also included in the signal vector passed to each
handler. The function does not return a value.

SIGNAL and SIGNAL_STOP are identical in their actions, with two exceptions.
First, if SIGNAL is called, control may eventually return to the caller depending
on the actions of the handler, while if SIGNAL_STOP is called, control will not
return to the caller. Second, the condition-value of a SIGNAL_STOP call is
changed to indicate a severe error while the condition-value of a SIGNAL call is
used without modification.

Information can be returned from a handler to a signaler if the signaler includes
a parameter in the call to SIGNAL that gives the address of a data segment
where the information should be assigned by the handler.

17.3.3 Implicit Signals
Signals may be generated by the system in response to a hardware detected
condition or an operating system detected condition. For hardware conditions, the
system uses the information available from the hardware and simulates a call to
SIGNAL as though SIGNAL were called at the instruction that caused the error
(either before or after the instruction, depending on the target system and the
type of hardware condition). Thereafter, processing is the same as for explicitly
generated signals.

17.3.4 Unwind Signals
The handler of a condition may cause the routine that generated a signal to be
terminated. In fact, many routines may be terminated in this abnormal way,
called unwinding. During unwinding, the handler of each routine that is being
terminated is called with a condition value indicating that the establisher routine
is being terminated. This particular condition is termed the unwind signal and
some special rules apply.
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Unwind signals are further discussed in the next section.

17.4 Condition-Handling Routines
A condition-handling routine is a routine that is declared by some other routine
to be a handler. The purpose of a condition-handling routine is to accept and deal
appropriately with some set of signaled conditions that may occur during the
execution of the establisher. In nearly all respects, a handler routine is like any
other routine: it can call other routines, call the operating system for service, and
so on. It can establish a handler for itself and in some cases that handler might
even be itself.

A handler is special in that it is called in response to conditions that are signaled
by other routines. It is unlikely that a routine written for use as a handler would
ever be called directly. Because handlers are called by system software, and not
directly by user-written calls, they must conform to system-defined restrictions
and conventions.

A handler is called by the CHF with three actual parameters. The first parameter
is the address of a vector, termed the signal vector, that contains the parameter
values specified in the call to SIGNAL or SIGNAL_STOP that generated the
trace signal. (In BLISS–32, additional values are supplied as well.) The second
parameter is the address of a second vector, termed the mechanism vector, that
contains values provided by the CHF software. The third parameter is the
address of a third vector, termed the enable vector, that contains the enable-
actual parameter values specified in the enable-declaration of the routine that
established the handler. Thus, a handler has available information from both the
routine generating the signal and the routine that established the handler, as
well as certain system information, to determine how to deal with the condition.

A handler is called as a result of every signal that occurs during the execution
of its establisher and that is not dealt with by another handler. The first
responsibility of every handler is to examine the condition value of each signal to
determine whether the signal is to be dealt with at all. It is quite unusual for a
specific handler to be relevant to every possible signal that can occur.

If a signal is not the unwind signal, a handler must request the CHF to further
process the signal in one of the following ways:

• Continue the routine that generated the signal.

• Resignal the same signal, or possibly a modified signal, to some other handler.

• Unwind.

The next three sections discuss condition handling routines in detail. The first
specifies the restrictions that must be met by every handler routine. The second
describes the parameters to a handler routine. The third specifies how a handler
routine requests each of the three options.

17.4.1 Restrictions
In BLISS–16 and BLISS–32, a condition-handling routine must be declared with
the predeclared linkage-attribute BLISS (see Section 13.5). Observe that this will
be the default unless another default is established by a LINKAGE switch-item
(see Section 18.2) or module-switch (see Section 19.2).

A condition-handling routine must be declared with three formal parameters.

A condition-handling routine must not have the NOVALUE attribute unless it
always requests unwinding for every signal.
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A condition handling routine must fetch from or assign to data segments that
satisfy one of the following requirements:

• A data segment whose scope is limited to the body of the condition handling
routine itself

• An element of one of the vectors whose addresses are passed to the handler
as parameters

• Any data segment that is declared with the volatile-attribute

17.4.2 Parameters
A condition handling routine is called with three parameters. Each parameter is
the address of a counted vector containing the relevant information. A counted
vector is a vector of fullwords in which the first element (with index value zero)
contains the number of additional elements in the vector. The first element is
always present and contains the value zero if there are no additional elements in
the vector.

The following BLISS code fragment shows a template for the declaration of a
handler routine. This template is used in the remainder of this section in the
discussion of each parameter of a handler routine. The template is as follows:

ROUTINE HANDLER(SIG, MECH, ENBL) =
BEGIN
MAP

SIG: REF VECTOR, ! Signal vector
MECH: REF VECTOR, ! Mechanism vector
ENBL: REF VECTOR; ! Enable vector

BIND
COND = SIG[1]: CONDITION_VALUE,
RETURN_VALUE = MECH

[
%BLISS16(1)
%BLISS36(1)
%BLISS32(3)
];

...
END;

In this template, the map-declaration (see Section 10.10) associates the REF
VECTOR structure-attribute (see Section 11.10.1) with each of the routine formal
names for referencing of each vector whose address is passed to the handler. The
bind-declaration (see Section 14.3) defines names for two of the most commonly
accessed elements of the passed vectors. CONDITION_VALUE is the name of a
macro whose expansion gives the attributes appropriate for accessing a condition
value. Its definition is presented in Section 17.6.1. The predeclared macros
%BLISS16, %BLISS32, and %BLISS36 are described in Section 16.2.4.

17.4.2.1 The Signal Parameter
The first parameter, SIG, contains the address of a signal vector, which is a
counted vector that contains the values of the actual parameters of the call to
SIGNAL or SIGNAL_STOP. In BLISS–32, the CHF adds two values following
those given in the SIGNAL or SIGNAL_STOP call: the hardware program
counter (PC) and the program status longword (PSL) of the next instruction
to execute in case the handler requests continuation of the signaler. In the
context of the above template, .SIG[n] is the nth actual parameter value, where,
in particular, .SIG[1] is the condition value, .SIG[0] is the number of actual
parameters, and COND is the address of the condition value.
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For explicit signals, the actual parameter values are given by the parameters of
the call to SIGNAL or SIGNAL_STOP.

For implicit signals and the unwind signal, the actual parameter values are
defined by the system. These values and their encodings are not described in this
manual.

17.4.2.2 The Mechanism Parameter
The second parameter, MECH, contains the address of a mechanism vector, which
is a counted vector that contains the values of parameters provided by the CHF.
These values provide specialized software status information about the signal
being processed. Of the several values that may be present, only one is described
in this manual.

The element of the mechanism vector with address MECH[1] in BLISS–16 and
BLISS–36, or MECH[3] in BLISS–32 in the preceding template, is a data segment
to which a handler routine can assign a value to be used as a returned-value. A
handler can assign a value to this location in two situations.

When a handler requests continuation of the signaler routine, the CHF uses the
contents of this location as the return value of the SIGNAL call. By assigning to
this location, the handler can determine the return value. If the handler does not
assign to this location, the returned value is undefined.

After unwind processing, the CHF uses the contents of the return value location
in the mechanism vector as the return value of the last routine to be terminated.
By assigning to this location, the handler can determine the establisher’s return
value. By this means, the establisher routine returns a meaningful value to its
caller even though it is terminated by the CHF. A handler for any establisher
that returns a value (that is, does not have the NOVALUE attribute) must assign
an appropriate return value to the return value location in the mechanism vector
during unwinding.

17.4.2.3 The Enable Parameter
The third parameter, ENBL, contains the address of an enable vector, which is
a counted vector that contains the values of the enable-actual parameters of the
ENABLE declaration of the establisher routine. In the context of the earlier
template, the expression .ENBL[n] is the nth enable-actual parameter value, and
.ENBL[0] is the number of enable-actual parameters.

The enable-declaration requires that each enable-actual parameter must be the
address of a data segment. Consequently, within the handler routine it may
frequently be convenient to bind (Section 14.3) names to these address values, as
in the following:

BIND
PARAM1 = .ENBL[1],
XYZZY = .ENBL[2];

Enable-actual parameters can be the names of local data segments declared in
the establisher routine. If a recursive routine establishes a handler, the same
handler will be used for all active calls of the recursive routine. If the handler is
called and resignals the condition, the same handler is repeatedly called for each
active call of the establisher routine. In each case, the address of a local data
segment name passed to the handler is the appropriate address in the respective
active call of the establisher.
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17.4.3 Handler Options
For every condition other than the unwind signal, a handler must request one of
three subsequent actions for the CHF to perform after the handler returns.

1. The handler can deal appropriately with the condition and then cause the
routine that initiated the signal to continue.

Continuing the routine that initiated the signal completes processing of the
condition.

2. The handler can resignal using the same condition value, or possibly a
modified one.

Resignaling with the same condition value is the normal response for a
condition that the handler does not deal with. Resignaling causes the CHF to
resume searching for a handler that will deal with the condition.

3. The handler can deal appropriately with the condition and then terminate
the execution of the routine that generated the signal as well as the other
routines called by the establisher by unwinding.

Unwinding causes a special unwind signal to be generated. The handlers
of all routines that are being terminated will be called with this condition.
Unwinding also completes processing of the condition.

These options are not available when a handler is called for the unwind signal.

The means of requesting these actions are presented in the following sections.

17.4.3.1 Continuation
A handler requests continuation of the routine that generated the signal by
returning a true value (low bit set to 1) to the CHF. The handler must not also
call SETUNWIND, as described in Section 17.4.3.3.

After the handler returns to the CHF, the CHF returns from the call to SIGNAL
in the routine that generated the signal.

A handler must not request continuation for a signal that was generated by
calling SIGNAL_STOP. That is, a handler must not request continuation if the
severity field of the condition-value indicates severe error.

17.4.3.2 Resignaling
A handler requests resignaling by returning a false value (low bit set to 0)
to the CHF. The handler must not also call SETUNWIND, as described in
Section 17.4.3.3.

After the handler returns to the CHF, the CHF searches for another handler
routine to call, as described in Section 17.5.

When resignaling is requested, the same signal vector is passed to subsequent
condition handlers that are called. Thus, the severity and the condition
identification can be changed when the handler assigns new values to the
condition value element of the signal vector. If condition handling is initiated
by a SIGNAL_STOP call, however, the severity field is set to severe error by the
CHF each time a handler is called. Consequently, the severity field cannot be
changed by a handler in this case.

Changing the condition value and resignaling is different from generating a new
signal by calling SIGNAL or SIGNAL_STOP in the handler. In the latter case,
processing of the first signal is suspended until processing of the second signal is
completed; then processing of the first signal resumes.
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17.4.3.3 Unwinding
A handler requests unwinding by calling the executable-function SETUNWIND.
The function is defined as follows:

SETUNWIND( )

SETUNWIND( parameter ) ( 32 Only

SETUNWIND( parameter , parameter ) ( 32 Only

Requests the CHF to initiate unwind processing after the currently executing
handler returns to the CHF. (In BLISS–32, the two optional parameters can be
used to specify the routine level at which the unwind will stop and the address
where normal execution is to resume. These parameters are not described in this
manual.) The function does not return a value in BLISS–16 or BLISS–36, and
returns a VMS-defined status value in BLISS–32.

When a handler requests unwinding the returned-value of the handler is ignored.

The handler specifies the value to be used as the returned-value of the establisher
by assigning the appropriate value in the mechanism parameter vector (see
Section 17.4.2.2) when the handler is called for the unwind signal.

In the default case, that is, when no parameters are given in the call to
SETUNWIND, all routines between and including the routine that generated
the signal and the establisher of the handler are terminated. Execution resumes
after the call to the establisher as though the establisher had returned in the
normal way.

Unwinding does not start immediately when SETUNWIND is called. The
call simply advises the CHF that unwinding is requested. When the handler
eventually returns to the CHF, unwinding begins.

During unwind processing, the handler, if any, of each routine being terminated is
called with a condition value indicating an unwind is in progress. In the default
case, where the establisher is one of the routines being terminated, the handler
requesting the unwind will itself be called a second time to process the unwind
signal.

A condition handling routine can call other routines as part of its processing
and the request for unwinding can be made from any such routine. The call to
SETUNWIND need not be made in the topmost routine directly called by the
CHF.

It is invalid to request unwinding in any of the following cases:

• Condition handling is not in progress.

• An unwind request has already been made.

• Unwind signal processing is in progress.

17.5 Condition-Handling Flow of Control
Condition-handling flow of control refers to the order in which condition handling
routines are called during condition handling. The order is defined in terms of
the stack of routine calls that are active at the time a signal is generated in
combination with subsequent handler requests.
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17.5.1 Definition
The definition of condition-handling flow of control has two parts. The first part
defines the flow of control for a signal that is generated when condition handling
is not in progress. The second defines the modified flow of control that results for
a signal that is generated while condition handling for a previous signal is still in
progress.

17.5.1.1 Normal Flow of Control
The generation of a signal begins a sequence of events that is carried out under
the control of the CHF.

First, the CHF creates the signal vector and mechanism vector for use in calling
a handler. If the signal is generated by a SIGNAL_STOP call, the severity field of
the condition value in the signal vector is assigned the code for severe error.

Next, the stack of routine calls is searched, beginning with the routine that
generated the signal. If that routine did not establish a handler, then the routine
that called it is considered, and so on, until the most recently called routine is
found that did establish a handler. This handler is called with three parameters,
as described in Section 17.4.2.

Following the return from the handler, processing depends upon which option is
requested by the handler.

If continuation is requested, then the CHF returns to the signaler and condition
handling for that signal is completed.

If resignaling is requested, then the CHF continues searching the stack prior
to the establisher of the handler just called. If another handler is found, then
it is called in the same way as the previous handler. This process of searching
for and calling successive handlers continues as long as each handler requests
resignaling. If every handler indicates resignaling, that is, no handler is found
that causes completion of the signal, then system defined error processing takes
place.

In BLISS–16, if no handler is found the program exits. In BLISS–36, if no
handler is found a message is displayed on the user’s terminal and the program
exits.

In BLISS–32, the VMS system establishes a catchall handler to provide default
handling for all signals. Consequently, this handler will be called if no user
handler is found or if every user handler requests resignaling. The action of this
handler is described in Section 17.6.4.2.

If unwinding is requested, then the handler just called and its establisher are
remembered and a new search is started. This search starts over at the signaler
routine just as in the first search. This time, however, each routine is terminated
by removing its stack frame from the stack of routine calls. If the routine has
a handler, the routine is terminated after the handler is called with a condition
value that indicates that unwinding is in progress. The handler does not have the
three options that are available during the first search: SETUNWIND must not
be called and the value of the handler is ignored. This second search completes
after the handler that initiated unwinding is called the second time. When that
handler returns, the establisher is terminated and normal execution resumes
immediately following the call to the establisher.
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17.5.1.2 Modified Flow of Control for Nested Signals
A nested signal is a signal that is generated while condition handling for a
previous signal is in progress. A nested signal occurs, for example, if a handler
routine calls SIGNAL. When a nested signal is generated, condition handling for
the previous signal is suspended until condition handling for the nested signal is
completed. Then processing resumes for the previous signal.

Processing of a nested signal is the same as for a nonnested signal with one
exception: the search for handlers is modified to exclude any handlers that have
been called for the previous signal. The handler that is active when the nested
signal is generated is excluded by this rule. However, this handler can itself have
a handler and if so, this (second) handler is included in the modified search.

If the handler of a previous signal is terminated (so that it cannot request
CHF processing) because of an unwind request for a nested signal, then all of
the routines considered during condition handling of the previous signal are also
terminated. The handlers of the combined set of routines being terminated are all
called with the unwind signal in the inverse order to which they were established.
More than one previous signal can be affected in this way. Completion of
unwinding completes condition handling for all of the affected signals.

17.5.2 Discussion
Several aspects of condition handling flow of control are discussed. First,
examples of the detailed sequence of events are illustrated. Second, recursive
handlers are considered. Finally, interactions between condition handling and
routine linkages are discussed.

17.5.2.1 Examples of Flow of Control
Example sequences of flow of control during signal processing are illustrated
using the following diagram:

A

B

C

D

CH

BH

F

SIGNAL

E SETUNWIND

ZK−6005−GE

In this diagram, a diagonal line indicates that the upper routine calls the lower
routine, for example, A calls B, B calls C, and so on. A horizontal line indicates
that the left routine establishes the right routine as a handler; for example,
routine C establishes routine CH as its handler.
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The example begins by assuming that routine A is executing, that is, A has been
called by some other routine not shown in the diagram.

Routine A does not establish a handler. At some point in its execution A calls
routine B. B establishes routine BH as a handler; BH is not called when it is
established. B calls routine C. Routine C establishes handler CH and then calls
D. D does not establish a handler but does generate a signal.

At this point the stack of routine calls consists of A, B, C, and D, with D being
the most recently called (the call to SIGNAL does not count). Routines B and C
have established handlers, but A and D do not.

The CHF searches for a handler. First routine D is considered, but no handler is
established. Next, routine C is considered. A handler is established and, thus,
CH is called. CH calls another routine E which returns to CH which returns to
the CHF. What happens next depends on the option requested by CH.

First, suppose that CH requests continuation. In this case, the CHF returns to D
and D continues. The complete sequence of events is summarized as follows:

A calls B
B establishes handler BH
B calls C
C establishes handler CH
C calls D
D calls SIGNAL
CHF calls CH
CH calls E
E returns to CH
CH returns to CHF requesting continuation
CHF returns to D
D continues

Next, suppose that CH requests resignaling (instead of continuation). In this
case, the CHF continues searching for a handler by considering routine B. B has
a handler, and, thus, BH is called. BH calls F and F calls SETUNWIND. The
CHF records the fact that an unwind is requested and returns to F. F returns
to BH and BH returns to CHF. The value of BH is not used by CHF because
unwinding has been requested. At this point, the second search starts. D does
not have a handler and is terminated. CHF call CH which returns to CHF. C
is terminated. CHF calls BH which returns to CHF. This completes the second
search. B is terminated. Finally, CHF ‘‘returns’’ to A using the returned-value
obtained from the mechanism vector as though B had returned in normal fashion
and A continues.

The sequence of events is summarized as follows (the first nine events are the
same as the preceding summary):

A calls B
B establishes handler BH
B calls C
C establishes handler CH
C calls D
D calls SIGNAL
CHF calls CH
CH calls E
E returns to CH
CH returns to CHF requesting resignaling
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CHF calls BH
BH calls F
F calls SETUNWIND
CHF records the unwind request
CHF returns to F
F returns to BH
BH returns to CHF
D is terminated
CHF calls CH with the unwind signal
CH returns to CHF
C is terminated
CHF calls BH with the unwind signal
BH returns to CHF
B is terminated
CHF ‘‘returns’’ to A as though B had returned
A continues

Observe in this example that handler BH must assign the return value of B for
the call from A when BH is called for the unwind signal. If BH assigned the
return value the first time it was called, there is the possibility that some other
handler, such as CH in this example, will assign a return value when it is called
with the unwind signal. Thus, the returned value intended by BH would be lost.

For an example of nested signal processing, the following diagram is used:

A

B

C

AH

BH

SIGNAL

ZK−6001−GE

BHH

SIGNAL

D DH

The initial sequence of events is apparent from the previous examples and is
summarized by the following:

A establishes handler AH
A calls B
B establishes handler BH
B calls C
C calls SIGNAL
CHF calls BH
BH establishes handler BHH
BH calls D
D establishes handler DH
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At this point D generates a nested signal. The modified search in this case
considers, as potential establishers, only routines D, BH, A, and so on. Routines
C and B are excluded from consideration. Assume that DH and BHH request
resignaling and AH requests continuation. Events proceed as follows:

D calls SIGNAL
CHF calls DH
DH returns to CHF requesting resignaling
CHF calls BHH
BHH returns to CHF requesting resignaling
CHF calls AH
AH returns to CHF requesting continuation
CHF returns to D

At this point, processing of the nested signal is complete and processing of the
first signal resumes. The subsequent sequence of events is not described here.

As a final possibility, assume for the nested signal just illustrated that DH and
BHH request resignaling (as before) and AH requests unwinding (instead of
continuation). In this case, control will not return to D or BH because they will
be terminated. Consequently, BH cannot request an option for the first signal.
Processing of the first signal must, consequently, be terminated as well. In effect,
the unwind requested by AH for the nested signal also applies to the previous
signal. (This can apply to yet a third signal if the previous signal was itself a
nested signal, and so on.) The second search of the stack considers all of the
routines that are being terminated including those so far considered by the first
signal. In this example, the order of consideration is D, BH, C, B, and A. Events
proceed as follows (starting when AH is called):

AH calls SETUNWIND
CHF records unwind request
CHF returns to AH
AH returns to CHF
CHF calls DH with the unwind signal
DH returns to CHF
D is terminated
CHF calls BHH with the unwind signal
BHH returns to CHF
BH is terminated
C is terminated
CHF calls BH with the unwind signal
BH returns to CHF
B is terminated
CHF calls AH with the unwind signal
AH returns to CHF
A is terminated
CHF ‘‘returns’’ to A’s caller (not shown)
A’s caller continues
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17.5.2.2 Recursive Handlers
A recursive handler routine is a handler routine that establishes itself as a
handler or that calls (directly or indirectly) another routine that establishes it
as a handler. Consequently, it is possible during the execution of such a handler
that it will be recursively called to handle a nested signal.

Programming a recursive handler can be more difficult than programming a
nonrecursive handler, just as programming any recursive routine can be more
difficult than a nonrecursive routine. You must consider the sequence of events
that may result from the combination of the two (or more) calls of the same
routine.

Observe that each call of the handler will be caused by a different signal.

17.5.2.3 Condition Handling and Linkage Interactions
The flow of control during the processing of a signal causes various routines
to be called in an order that may not be apparent when examining a program.
The CHF software depends on calling sequence conventions to ensure proper
accounting for the machine registers and other machine status values during this
process.

The linkage-declaration (see Section 13.3) provides the ability to choose many
calling sequence variations other than the predefined linkages BLISS and
FORTRAN. When you use such nonstandard linkages, there are various complex
rules and restrictions that must be followed.

In BLISS–32, note that a routine whose linkage-attribute is defined with JSB
linkage-type must not contain an enable-declaration and must not be declared as
a handler. Such routines cannot directly interact with the CHF software, except
to call the functions SIGNAL, SIGNAL_STOP, or SETUNWIND.

17.6 Examples
The following sections give examples of applying various aspects of condition
handling. Because condition handling involves the interaction of several routines,
complete examples are necessarily quite lengthy. The examples given below leave
out many details in order to be as brief as possible.

The first section presents declarations that are suitable for accessing and creating
condition values. The following sections illustrate applications of condition
handling.

17.6.1 Accessing and Defining Condition Values
Condition values have similar but not identical encodings in BLISS–16 and
BLISS–32. The following two sections give the encodings used and declarations
for conveniently accessing and defining condition values, in BLISS–16 and
BLISS–32 respectively.

17.6.1.1 Condition Values in BLISS–16
In BLISS–16, a condition value is a single fullword value that is encoded with
two primary fields: a severity field in the low-order 3 bits, and an identity field in
the high-order 13 bits.

The identity field is itself divided into two fields: the condition identification field
and the customer definition flag.
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The twelve low-order bits of the identity field (bits 3 through 14 of the condition
value) are the condition identification field. This field encodes the specific
condition for the signal.

The high-order bit of the identity field (bit 15 of the condition value) is the
customer definition flag. It distinguishes condition identification values for
DIGITAL-supplied software (bit set to 0) and non-DIGITAL-supplied software (bit
set to 1).

Condition values defined for application use must always have bit 15 set to 1 in
order to avoid conflict with DIGITAL-defined values.

A condition value is a BLOCK data structure (see Section 11.10.3). The following
declarations can be used to describe this structure:

FIELD
CONDIT_FIELDS =

SET
STS$V_SEVERITY = [0,0,3,0], ! Severity field
STS$V_SUCCESS = [0,0,1,0], ! Success field
STS$V_COND_ID = [0,3,13,0], ! Identity field
STS$V_CODE = [0,3,12,0], ! Code for condition only
STS$V_CUST_DEF = [0,15,1,0] ! Customer definition flag
TES;

MACRO
CONDITION_VALUE = BLOCK[1] FIELD(CONDIT_FIELDS) %;

The following literal-declaration can be used to declare names for the codes used
for the severity field of a condition value:

LITERAL
STS$K_WARNING = 0, ! Warning
STS$K_SUCCESS = 1, ! Successful Completion
STS$K_ERROR = 2, ! Error
STS$K_INFO = 3, ! Information
STS$K_SEVERE = 4; ! Severe Error

Observe that these codes are chosen so that testing of the low order bit of the
severity field will distinguish a successful condition (low bit equal to 1) from an
unsuccessful condition (low bit equal to 0).

In the above declarations, the names used are the same as the names used in
BLISS–32 (see Section 17.6.1.2), which are based on names used in the VMS
operating system.

As an aid to creating a condition value, the following keyword-macro- declaration
is useful:

KEYWORDMACRO
STS$VALUE(

SEVERITY = STS$K_SEVERE, ! default is severe error
CODE, ! no default
CUST_DEF = 1^15 )= ! default is user definition

(SEVERITY AND 7) OR
(CODE AND %O’7777’)^3 OR
IF CUST_DEF NEQ 0

THEN 1^15
ELSE 0)

%;
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Comparing two condition values to determine if they represent the same condition
must exclude the severity field. The following macro is useful for this purpose:

MACRO
STS$MATCH(A,B) =

(((A) AND %O’177770’) EQL ((B) AND %O’177770’)) %;

The macro returns true if two given condition values are equal and false
otherwise.

The CHF-defined condition value needed in order to test for an unwind signal
is provided as a global literal value. The following declaration can be used to
declare the name of this literal:

EXTERNAL LITERAL
SS$UNW;

17.6.1.2 Condition Values in BLISS–32
In BLISS–32, a condition value is a single fullword value that is encoded with
three primary fields (proceeding from low-order to high-order): a severity field of
3 bits, an identity field of 25 bits, and a field of 4 bits that is reserved for system
use.

The identity field is itself divided into two major fields: the message number field
and the facility code field.

The 13 low-order bits of the identity field (bits 3 through 15 of the condition
value) are the message number field. This field identifies the specific condition for
the signal. The high-order bit (bit 15) distinguishes system wide codes (bit set to
0) that are common to all software (including user programs) and facility, specific
(component) codes (bit set to 1).

The 12 high-order bits of the identity field (bits 16 through 27 of the condition
value) are the facility code. This field identifies the specific software component in
which the signal is generated. The high-order bit (bit 27) distinguishes DIGITAL-
supplied software facilities (bit set to 0) and non-DIGITAL-supplied facilities (bit
set to 1).

Condition values defined for application use must always have both bits 15 and
27 set to 1 in order to avoid conflict with DIGITAL-defined values. Application
programs can use systemwide message number values provided they are used as
defined for the VMS system.

A condition value is a BLOCK data structure (see Section 11.9.3). The following
declarations can be used to describe this structure:

FIELD
CONDIT_FIELDS =

SET
STS$V_SEVERITY = [0,0,3,0], ! Severity field
STS$V_SUCCESS = [0,0,1,0], ! Success field

! (subfield of severity)
STS$V_COND_ID = [0,3,25,0], ! Identity field
STS$V_MSG_NO = [0,3,13,0], ! Message number field
STS$V_FAC_SP = [0,15,1,0], ! Facility-specific flag
STS$V_CODE = [0,3,12,0], ! Code for condition only
STS$V_FAC_NO = [0,16,12,0], ! Facility code
STS$V_CUST_DEF = [0,27,1,0] ! Customer definition flag
TES;

MACRO
CONDITION_VALUE = BLOCK[1] FIELD(CONDIT_FIELDS) %;
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The following literal-declaration can be used to declare names for the codes used
for the severity field of a condition value:

LITERAL
STS$K_WARNING = 0, ! Warning
STS$K_SUCCESS = 1, ! Successful Completion
STS$K_ERROR = 2, ! Error
STS$K_INFO = 3, ! Information
STS$K_SEVERE = 4; ! Severe Error

Observe that these codes are chosen so that testing of the loworder bit of the
severity field will distinguish a successful condition (low bit equal to 1) from an
unsuccessful condition (low bit equal to 0).

As an aid to creating a condition value, the following keyword-macro- declaration
is useful:

KEYWORDMACRO
STS$VALUE (

SEVERITY = STS$K_SEVERE, ! default is severe error
CODE, ! no default
FAC_SP = 1^15, ! default is facility specific
FAC_NO = 0, ! arbitrary default
CUST_DEF = 1^27) = ! default is user definition

(SEVERITY AND 7) OR
(CODE AND (1^13-1))^3 OR
(IF FAC_SP NEQ 0

THEN 1^15
ELSE 0) OR

(FAC_NO AND (1^12-1))^16 OR
(IF CUST_DEF NEQ 0

THEN 1^27
ELSE 0)

%;

Comparing two condition values to determine if they represent the same condition
takes several steps. The following macro serves this purpose:

MACRO
STS$MATCH(A,B)=

BEGIN
LOCAL

QQQQA: CONDITION_VALUE,
QQQQB: CONDITION_VALUE;

QQQQA = (A);
QQQQB = (B);
IF NOT (.QQQQA[STS$V_FAC_SP] OR .QQQQB[STS$V_FAC_SP])
THEN

.QQQQA[STS$V_CODE] EQL .QQQQB[STS$V_CODE]
ELSE

.QQQQA[STS$V_COND_ID] EQL .QQQQB[STS$V_COND_ID]
END %;

This macro returns true if two given condition values are equal and false
otherwise.

The CHF-defined condition value needed in order to test for an unwind signal
is provided as a global literal value. The following declaration can be used to
declare the name of this literal:

EXTERNAL LITERAL
SS$_UNWIND;
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17.6.1.3 Condition Values in BLISS–36
In BLISS–36, a condition value is a single fullword value that is encoded with
three primary fields (proceeding from loworder to highorder): a severity field of
3 bits, an identity field of 29 bits, and a field of 4 bits that is reserved for future
use.

(Note that, in the following descriptions, bit positions are expressed in accordance
with the BLISS bit-numbering convention: bit 0 is the low-order or rightmost bit
and bit 35 is the high-order or leftmost bit.)

The identity field is itself divided into two major fields: the message number field
and the facility code field.

The 15 low-order bits of the identity field (bits 3 through 17 of the condition
value) are the message number field. This field identifies the specific condition for
the signal. Message numbers with the high-order bit (bit 17) clear are reserved
for DIGITAL-supplied software.

The 14 high-order bits of the identity field (bits 18 through 31 of the condition
value) are the facility code. This field identifies the specific software component in
which the signal is generated. The high-order bit (bit 31) distinguishes DIGITAL-
supplied software facilities (bit set to 0) and non-DIGITAL-supplied facilities (bit
set to 1).

Condition values defined for application use must always have both bits 17 and
31 set to 1 in order to avoid conflict with DIGITAL-defined values.

The four high-order bits (bits 32 through 35) are reserved for future use and
should be set to zero.

The following declarations can be used to access the various fields of the BLISS–
36 condition value:

FIELD
CONDIT_FIELDS =

SET
STS$V_SEVERITY = [0,0,3,0], ! Severity field
STS$V_SUCCESS = [0,0,1,0], ! Success field

! (subfield of severity)
STS$V_COND_ID = [0,3,29,0], ! Identity field
STS$V_MSG_NO = [0,3,15,0], ! Message number field
STS$V_FAC_SP = [0,17,1,0], ! Facility specific flag
STS$V_CODE = [0,3,14,0], ! Code for condition only
STS$V_FAC_NO = [0,18,14,0], ! Facility code
STS$V_CUST_DEF = [0,31,1,0] ! Customer definition flag
TES;

MACRO
CONDITION_VALUE = BLOCK[1] FIELD(CONDIT_FIELDS) %;

The following literal-declaration can be used to declare names for the codes used
for the severity field of a condition value:

LITERAL
STS$K_WARNING = 0, ! Warning
STS$K_SUCCESS = 1, ! Successful Completion
STS$K_ERROR = 2, ! Error
STS$K_INFO = 3, ! Information
STS$K_SEVERE = 4; ! Severe Error

Observe that these codes are chosen so that testing of the low order bit of the
severity field will distinguish a successful condition (low bit equal to 1) from an
unsuccessful condition (low bit equal to 0).
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As an aid to creating a condition value, the following keyword-macro- declaration
is useful:

KEYWORDMACRO
STS$VALUE (

SEVERITY = STS$K_SEVERE, ! default is severe error
CODE, ! no default
FAC_SP = 1^17, ! default is facility specific
FAC_NO = 0, ! arbitrary default
CUST_DEF = 1^31) = ! default is user definition

(SEVERITY AND $O’7’) OR
(CODE AND %O’37777’)^3 OR
(IF FAC_SP NEQ 0

THEN 1^17
ELSE 0) OR

(FAC_NO AND %O’37777’)^18 OR
(IF CUST_DEF NEQ 0

THEN 1^31
ELSE 0)

%;

Comparing two condition values to determine if they represent the same condition
takes several steps. The following macro is useful for this purpose:

MACRO
STS$MATCH(A,B)=

BEGIN
LOCAL

QQQQA: CONDITION_VALUE,
QQQQB: CONDITION_VALUE;

QQQQA = (A);
QQQQB = (B);
IF NOT (.QQQQA[STS$V_FAC_SP] OR .QQQQB[STS$V_FAC_SP])
THEN

.QQQQA[STS$V_CODE] EQL .QQQQB[STS$V_CODE]
ELSE

.QQQQA[STS$V_COND_ID] EQL .QQQQB[STS$V_COND_ID]
END %;

The macro returns true if two given condition values are equal and false
otherwise.

The CHF-defined condition value needed in order to test for an unwind signal
is provided as a global literal value. The following declaration can be used to
declare the name of this literal:

EXTERNAL LITERAL
SS$UNW;

17.6.2 A Recursive-Descent Parser
A recursive-descent parser is a parser in which there is generally a one-to-
one correspondence between the syntactic rules of the language and routines
that parse constructs of the language. Each routine is designed to process one
syntactic name and calls other routines to parse non-literal parts of the syntactic
rule. The BLISS language is an example of a language that is suitable for this
kind of parsing technique.

To begin this example, assume that the following two syntactic rules are part of a
language to be parsed.

if-statement IF expression THEN statement
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expression � name
name + expression
( expression )

�

Further, assume that a routine named READ_LEX is available that reads the
input for the parser, identifies the next lexeme, and assigns a code for the kind of
lexeme to a data segment named LEXTYPE. (This data segment must be declared
with the VOLATILE attribute because, as will be seen later, its contents may be
changed by a handler routine.) The following names of lexical codes are used in
the example:

Name of Code Usage

LEX_IF Keyword IF

LEX_THEN Keyword THEN

LEX_NAME A name

LEX_PLUS Plus operator ‘‘+’’

LEX_LPAREN Left parenthesis ‘‘(’’

LEX_RPAREN Right parenthesis ‘‘)’’

The actual values for the codes are not important so long as they are distinct.

A routine to parse an if-statement can be written as follows:

ROUTINE SIF: NOVALUE =
BEGIN
READ_LEX();
SEXPRESSION();
IF .LEXTYPE NEQ LEX_THEN
THEN

BEGIN
ERROR (’Missing THEN’);
RETURN
END;

READ_LEX();
SSTATEMENT();
END;

In this routine, the IF lexeme is recognized by some other parse routine, which
then calls SIF. SIF calls READ_LEX to get the next lexeme in the input stream
and then calls SEXPRESSION to parse an expression. When SEXPRESSION
returns, the code for the first lexeme not accepted as part of an expression is still
contained in LEXTYPE. Next SIF determines whether that lexeme is the keyword
THEN. If not, an error is reported and SIF returns. Otherwise, READ_LEX is
again called to get a new lexeme, SSTATEMENT is called to parse a statement,
and SIF returns.

The routine SIF illustrates the close correspondence between the syntactic rule
for the if-statement and the code that performs the parsing.

The code to parse an expression is more complicated, but is based on the same
kind of correspondence. However, the name of the routine given next, which does
the parsing for an expression, is SEXPRESSION1 instead of SEXPRESSION. The
reason for this is discussed later. The code is as follows:
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LITERAL
EXP_ERROR = STS$VALUE(CODE = 1);

ROUTINE SEXPRESSION1: NOVALUE =
BEGIN
SELECTONE .LEXTYPE OF

SET
[LEX_LPAREN]:

BEGIN
READ_LEX();
SEXPRESSION1();
READ_LEX();
IF .LEXTYPE NEQ LEX_RPAREN
THEN

BEGIN
ERROR(’Missing ")"’) ;
SIGNAL(EXP_ERROR)
END;

END;
[LEX_NAME]:

BEGIN
READ_LEX();
IF .LEXTYPE EQL LEX_PLUS
THEN

BEGIN
READ_LEX();
SEXPRESSION1();
END;

END;
[OTHERWISE]:

ERROR(’Missing expression’);
TES;

END;

An important aspect of this routine is that it recursively calls itself.

Consider what might happen if SEXPRESSION1 has recursed several levels
when an error is detected. This would happen, for example, for the following
invalid input for an expression:

(+Y+((Z(+Q))
^

The left parenthesis marked by the circumflex ( ^ ) is the point of error (a
left parenthesis where there should be a right parenthesis). At this point
SEXPRESSION1 has called itself three times. The problem is how to proceed
after the error in a reasonable way. One simple strategy is to stop expression
parsing, discard any subsequent lexemes that could be part of an expression, and
then return to the routine that called for expression parsing in the first place.

A means to do this using condition handling is shown in the following pair of
routines. The first routine, SEXPRESSION, is the establisher routine. The only
purpose of SEXPRESSION is to establish the second routine, SEXP_ERROR, as a
handler and then call SEXPRESSION1 to do the actual expression parsing. The
routines are written as follows:

ROUTINE SEXPRESSION: NOVALUE =
BEGIN
ENABLE SEXP_ERROR;
SEXPRESSION1();
END;
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ROUTINE SEXP_ERROR(SIG, MECH, ENAB) =
BEGIN
MAP

SIG: REF VECTOR;
BIND

COND = SIG[1]: CONDITION_VALUE;

! Resignal all but EXP_ERROR, ignore unwind

IF NOT STS$MATCH(.COND, EXP_ERROR)
THEN RETURN 0;

! Skip all lexemes that can be part of an expression,
! Stop on any other lexeme.
WHILE

(SELECTONE .LEXTYPE OF
SET
[LEX_LPAREN, LEX_RPAREN, LEX_NAME, LEX_PLUS]: 1;
[OTHERWISE]: 0;
TES)

DO
READ_LEX();

SETUNWIND();
RETURN 0
END;

The coding for SEXP_ERROR follows the template for condition handlers given
in Section 17.4.2, but is simplified because not all of the parameters are used.
The coding also assumes the declarations given in Section 17.6.1 for accessing
condition values.

If SEXPRESSION1 calls SIGNAL, then CHF skips over all of the calls to
SEXPRESSION1 since no handler is established, and calls SEXP_ERROR.

SEXP_ERROR first tests whether the condition value is the one for an expression
error. If not, then resignaling is requested. The same coding also causes an
unwind signal to be ignored. It is valid in this case not to assign a return value
for the establisher routine in the mechanism vector during unwinding because
the establisher routine, SEXPRESSION, does not return a value. If the condition
value does indicate an expression error, then the WHILE loop causes lexemes
that could be part of the erroneous expression to be read and ignored. (Recall
that calling READ_LEX changes the contents of LEXTYPE. Because this change
results from execution of a handler routine, LEXTYPE must be declared with the
VOLATILE attribute.) Finally, SETUNWIND is called to cause all of the calls to
SEXPRESSION1 and the call to SEXPRESSION to be terminated.

17.6.3 Performance Measurement
In some cases condition handling is convenient for conducting certain kinds of
performance measurement. This is particularly true when the analysis to be
performed involves the dynamic calling relationship between routines.

For example, suppose the desired information is the relative number of times
that a certain routine, say R, is called directly or indirectly by each of two other
routines, say C1 and C2. You can accomplish this as follows:

1. Modify routine R to call SIGNAL at some appropriate point in its execution.

2. Modify routines C1 and C2 to establish handlers, say C1H and C2H.

3. Code C1H and C2H to increment counters each time a signal is received from
R and then request continuation.
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4. Execute the modified program to collect the frequency data and analyze the
results.

It may also be prudent to modify the main routine to have a handler for the
signal from R as well. This handler will be called if R signals when C1 or C2 is
not in the stack of executing routine calls.

Observe that with this arrangement, if C1 calls C2 calls R, then the handler for
C2 will be the one called.

It is, of course, possible to get the same frequency data by modifying the routines
to set and test various counters and flags directly. But, in cases such as this one,
condition handling may well be simpler and more convenient.

17.6.4 Target Operating Systems and Condition Handling
Target operating system support and use of condition handling is discussed briefly
in the following sections.

17.6.4.1 PDP–11 Operating Systems
In BLISS–16, PDP–11 operating systems generally do not support condition
handling as described in this manual, nor do they use condition handling in their
internal operation. Condition handling for BLISS–16 is supported by the CHF in
the BLISS–16 Run-Time Library.

17.6.4.2 The VMS Operating System
In BLISS–32, condition handling is directly supported by the condition handling
facilities of the VMS operating system. The VMS system uses condition handling
in several ways to achieve modular software components that can be flexibly
used.

Condition handling plays a central role in reporting error messages. All error
conditions are signaled using condition values and additional parameters that
encode the error message to be reported. When DCL starts a user’s program, it
establishes its own handler, termed the catchall handler, in a stack frame prior to
the stack frame for the main routine. Consequently, the catchall handler will be
called for any signals that are not handled by the user’s program.

The catchall handler is programmed to interpret the system’s condition values
and output the appropriate error messages. In addition, the catchall handler
interprets the severity field as follows: If severe error is given, then the user
program image is terminated; otherwise, the handler returns to CHF requesting
continuation. Observe that if the signal was generated using SIGNAL_STOP, the
severity will necessarily be severe error (see Sections 17.3.2 and 17.4.3.2).

This design provides considerable flexibility in adapting system software to
various applications. On the one hand, a program that does not establish any
handlers will receive standard system error messages. On the other hand, a
program can establish a handler that will modify some or all of the system
condition values in order to provide messages that are more appropriate to
particular groups of users. For example, in a database inquiry application used
by nontechnical users, a condition value for a subtle disk allocation problem can
be replaced by a condition value for a message such as ‘‘System malfunction.
Please call computer operations for assistance.’’
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The VMS system provides exception vectors that provide a means to establish
handlers that will be called before CHF begins searching the stack of routine calls
for handlers and for certain cases where CHF encounters an invalid stack frame.
The VMS Debugger module uses an exception vector to establish a handler to
intercept signals for analysis and program testing purposes.

In certain special cases, the FORTRAN Run-Time Library establishes a handler
between the command processor catchall handler and the user’s main program to
deal with various conditions specific to itself.

When reading the VMS manuals concerning condition handling, observe that
the VMS software calls a handler with two parameters, the signal vector and
mechanism vector, rather than three parameters as described in Section 17.4.2.
The BLISS system itself provides the enable vector parameter in addition to the
two provided directly by VMS.

17.6.4.3 TOPS–10 and TOPS–20 Operating Systems
In BLISS–36, the TOPS–10 and TOPS–20 operating systems generally do
not support condition handling as described in this manual, nor do they use
condition handling in their internal operation. Condition handling for BLISS–36
is supported by the CHF software in the BLISS–36 Run-time Library.
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18
Special Features

The preceding chapters describe declarations for the names of data, structures,
routines, conditions, bound values, lexical functions, and macros. This chapter
describes the remaining declarations of BLISS. These declarations make use
of the general declaration mechanism of BLISS for some rather specialized
purposes. They are as follows:

• The psect-declaration, which specifies the required properties of the program
sections used in a program

• The switch-declaration, which permits the specification of compiler switches
for any block of a program

• The built-in-declaration, which makes available certain names that are
predefined but not predeclared

• The label-declaration, which is used in connection with the exit-expressions

• The undeclare-declaration, which cancels the effect of any other kind of
declaration for a given name

18.1 Psect-Declarations
The psect-declaration allows you to inform the linker about the storage
characteristics required for different sections of your program, and allows
you to group various kinds of object code in an efficient manner.

You can, for example, request that a given program section be write-protected
(which it normally might not be), or request that a given section be allocated in
the same memory space as a section by the same name from another module.
Also on some target systems you can request that a given section be shareable by
several different processes.

Most of the program section characteristics, called psect-attributes, are very
target-system specific. Therefore, the psect-declaration is in general not
transportable, although it can be used transportably in a limited fashion.

A psect-declaration can be used to allow a BLISS program to share data with
a program written in another language. In the VAX environment, for example,
another use of the psect-declaration allows a set of modules to share a workspace
whose size is determined by the linker, based on the needs of the particular set of
modules present.

A psect-declaration can also be used to provide a second level of control over
program organization. The first level of control is specified by the division of a
program into modules. A second level of control is sometimes necessary if the
division into modules (and the default program sections, where supplied) does
not by itself provide the best organization of storage for efficient execution or
debugging.
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Examples of psect-declarations are given in the following block:

OWN
A,
B;

PSECT OWN = ALPHA(NOWRITE);
OWN

C,
D,
E;

PSECT OWN = BETA(EXECUTE);
OWN F: VECTOR[10];

The data segments for the OWN variables A and B are allocated in the default
program section for the storage-class OWN. The data segments for C, D, and
E are allocated in the program section ALPHA, which cannot be written into.
The data segment for F is allocated in the program section BETA, which can be
executed.

BLISS is unusual if not unique among higher-level languages in providing the
kind of storage-allocation control permitted by the psect-declaration.

18.1.1 Syntax

psect-declaration PSECT psect-item , . . . ;

psect-item storage-class = psect-name

n
(psect-attribute , . . . )
nothing

o

storage-class

8>><
>>:

OWN
GLOBAL
PLIT
CODE
NODEFAULT

9>>=
>>;

psect-name name

psect-attribute

8>>><
>>>:

WRITE | NOWRITE
EXECUTE | NOEXECUTE
OVERLAY | CONCATENATE
b16-psect-attribute
b32-psect-attribute
b36-psect-attribute

9>>>=
>>>; ( 16 Only
( 32 Only
( 36 Only

16 Only )

b16-psect-attribute {LOCAL | GLOBAL}
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32 Only )

b32-psect-attribute

8>>>>><
>>>>>:

READ | NOREAD
SHARE | NOSHARE
PIC | NOPIC
LOCAL | GLOBAL
VECTOR
alignment-attribute
addressing-mode-attribute

9>>>>>=
>>>>>;

36 Only )

b36-psect-attribute
n

READ | NOREAD
ORIGIN(address-expression)

o

address-expression compile-time-constant-expression

The alignment-attribute is described in Section 9.5 and the addressing-mode-
attribute is described in Section 9.13.

18.1.2 Restrictions
In the definition of the psect-attribute, most attributes are given in mutually
exclusive pairs: WRITE and NOWRITE, OVERLAY and CONCATENATE, and
so on. You cannot use both members of such a pair in declaring a single psect-
name. The alignment-attribute, the addressing-mode-attribute, and the ORIGIN
attribute are not members of such pairs.

All declarations of a given psect-name in a program must provide the same set
of psect-attributes for the name. This restriction is applied after any missing
attributes have been supplied by the default rules.

BLISS–32 ONLY
The value of the boundary expression in an alignment-attribute for a program
section must be in the range 0 through 9.

The value of that boundary expression must not be exceeded by the value of
the boundary expression in an alignment-attribute for any data segment that is
allocated in the program section.

BLISS–36 ONLY
A psect-name must be unique among all other psect-names within its first six
characters.

If a declaration of a psect-name other than $LOW$ or $HIGH$ appears in a
module, the first (or only) such declaration must appear before any data- or
routine-declarations (other than the external or forward forms), and before any
expression containing a PLIT. That is, it must appear before the first declaration
that causes storage to be allocated or object code to be generated.

The value of the address-expression in the ORIGIN attribute must be in the
range 0 to (2**18)–1 inclusive.
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18.1.3 Defaults
BLISS–16 ONLY
The following psect-declaration is assumed to appear in a block that surrounds
each module:

PSECT
OWN = $OWN$ (WRITE,NOEXECUTE,CONCATENATE,LOCAL),
GLOBAL = $GLOBAL$ (WRITE,NOEXECUTE,CONCATENATE,LOCAL),
PLIT = $PLIT$ (NOWRITE,NOEXECUTE,CONCATENATE,LOCAL),
CODE = $CODE$ (NOWRITE,EXECUTE,CONCATENATE,LOCAL);

This declaration provides a default program section name for each of the four
storage-classes. The psect-attributes used are the default psect-attributes that
are given in the following paragraph.

If a psect-item contains a parenthesized list of psect-attributes, then any missing
attributes are filled in by default. The defaults are as follows:

Attribute Default

WRITE | NOWRITE WRITE

EXECUTE | NOEXECUTE NOEXECUTE (EXECUTE for CODE)

OVERLAY | CONCATENATE CONCATENATE

LOCAL | GLOBAL LOCAL

BLISS–32 ONLY
The following psect-declaration is assumed to appear in a block that surrounds
each module:

PSECT
OWN = $OWN$ (READ,WRITE,NOEXECUTE,NOSHARE,

NOPIC,CONCATENATE,LOCAL,ALIGN(2),
ADDRESSING_MODE(WORD_RELATIVE)),

GLOBAL = $GLOBAL$ (READ,WRITE,NOEXECUTE,NOSHARE,
NOPIC,CONCATENATE,LOCAL,ALIGN(2),
ADDRESSING_MODE(WORD_RELATIVE)),

PLIT = $PLIT$ (READ,NOWRITE,NOEXECUTE,NOSHARE,
NOPIC,CONCATENATE,LOCAL,ALIGN(2),
ADDRESSING_MODE(WORD_RELATIVE)),

CODE = $CODE$ (READ,NOWRITE,EXECUTE,NOSHARE,
NOPIC,CONCATENATE,LOCAL,ALIGN(2),
ADDRESSING_MODE(WORD_RELATIVE));

This declaration provides a default program section name for each of the four
storage-classes. The psect-attributes used are the default psect-attributes that
are given in the following paragraph.

If a psect-item contains a parenthesized list of psect-attributes, then any missing
attributes are filled in by default. The defaults are as follows:

Attribute Default

READ | NOREAD READ

WRITE | NOWRITE WRITE (NOWRITE for PLIT or CODE)

EXECUTE | NOEXECUTE NOEXECUTE (EXECUTE for CODE)

SHARE | NOSHARE NOSHARE
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Attribute Default

PIC | NOPIC NOPIC

OVERLAY | CONCATENATE CONCATENATE

LOCAL | GLOBAL LOCAL

alignment-attribute ALIGN(2)

addressing-mode-attribute ADDRESSING_MODE(WORD_RELATIVE)

BLISS–36 ONLY
The following psect-declaration is assumed to appear in a block that surrounds
each module:

PSECT
OWN = $LOW$ (READ,WRITE,EXECUTE,CONCATENATE,

ORIGIN(0)),
GLOBAL = $LOW$ (READ,WRITE,EXECUTE,CONCATENATE,

ORIGIN(0)),
PLIT = $HIGH$ (READ,NOWRITE,EXECUTE,CONCATENATE,

ORIGIN(%O’400000’)),
CODE = $HIGH$ (READ,NOWRITE,EXECUTE,CONCATENATE,

ORIGIN(%O’400000’));

This declaration provides a default program-section name for each of the four
storage-classes. The psect-attributes used are the default psect-attributes that
are given in the following paragraph.

If a psect-item contains a parenthesized list of psect-attributes, then any missing
attributes are filled in by default. The defaults are as follows:

Attribute Default

READ | NOREAD READ

WRITE | NOWRITE WRITE (NOWRITE for PLIT or CODE)

EXECUTE | NOEXECUTE EXECUTE

OVERLAY | CONCATENATE CONCATENATE

There is no default for the ORIGIN attribute: if it is not specified, then the
corresponding program-section origin must be specified at link time (/SET
qualifier of the LINK command). Further, there is no default for the address-
expression of this attribute.

If a psect-item does not contain a parenthesized list of psect-attributes and
if a previous declaration of the psect-name is given in the module, then the
psect-attributes are taken from the first declaration of the same psect-name.

18.1.4 Semantics
NODEFAULT is a special storage-class which allows the declaration of a psect
without overriding current defaults for OWN, GLOBAL, PLIT, or CODE data;
thus, the current defaults need not be either known or restored. For example, the
following declarations allow a longword to be shared between BLISS–32 and VAX
PL/I:

PSECT
NODEFAULT = PLI_DATA(ADDRESSING_MODE(ABSOLUTE),OVERLAY,READ,WRITE);

OWN
PLI_DATA : PSECT(PLI_DATA);
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With the last declaration, PL/I will expect global and external symbols to be
declared in an overlaid psect of the same name; moreover, it has not been
necessary to redeclare the defaults.

In the following sections, the semantics of the psect-declaration are given in
four parts. First, the storage-classes are described. Next, the program section
attributes are given. Then, psect-names and their scope are discussed. Finally,
the interpretation of a psect-declaration is given.

18.1.4.1 Storage-Classes
The storage-class in a psect-item determines the kind of data that is allocated in
the corresponding program section. The following list indicates the declarations
or primaries that are associated with each storage-class.

Declaration or Primary Storage-Class

OWN declarations OWN

GLOBAL declarations GLOBAL

PLITs PLIT

ROUTINE and GLOBAL ROUTINE declarations CODE

In other words, any data segments allocated by the compiler in processing OWN
declarations are allocated in program sections declared for the storage-class
OWN; any data segments allocated in processing GLOBAL data declarations are
allocated in program sections for the storage-class GLOBAL; and so on.

18.1.4.2 Psect-Attributes
The following attributes of a program section provide information to the linker
about the way the program section should be allocated in storage:

READ | NOREAD ( 32/36 Only

WRITE | NOWRITE

EXECUTE | NOEXECUTE

OVERLAY | CONCATENATE

SHARE | NOSHARE ( 32 Only

PIC | NOPIC ( 32 Only

LOCAL | GLOBAL ( 16/32 Only

VECTOR ( 32 Only

ALIGN(boundary) ( 32 Only

ADDRESSING_MODE(mode) ( 32 Only

ORIGIN(address) ( 36 Only

The READ, WRITE, and EXECUTE attributes determine which kinds of access
to the program section are permitted. Based on these attributes, the linker
establishes the hardware memory-management access control needed for the
storage of the program section, assuming that a target system’s hardware
/software environment does in fact provide the required facilities. (That is,
for transportability purposes, attributes designated for a given system that have
no effective meaning in another are allowed in the corresponding dialect because
they will be ignored.)

18–6 Special Features



The OVERLAY attribute causes program sections that have the same name but
come from different modules to be allocated in the same storage (like FORTRAN
COMMON blocks, for example). The CONCATENATE attribute causes program
sections with the same name from different modules to be allocated contiguously,
each in its own storage.

BLISS–16/32 ONLY
The LOCAL and GLOBAL attributes provide indicators for the target-system
linker, which uses them in the allocation and management of physical memory
for a program. In BLISS–16, these indicators direct the construction of program
overlays. In BLISS–32, these indicators direct the grouping of pages within a
program image so as to optimize performance.

BLISS–32 ONLY
The SHARE attribute specifies that the program section can be accessed by more
than one process.

The PIC (position-independent code) attribute indicates that the program section
can be relocated without affecting its validity.

The alignment-attribute causes the storage for the program section to begin with
a byte whose address ends with at least n zero bits, where n is the value of the
boundary expression in the alignment-attribute. This attribute also causes the
storage for the program section to be extended, if necessary, with unused bytes
until its last byte is just before a byte whose address ends with at least n zero
bits. Thus, for example, an ALIGN(1) attribute causes a program section to begin
and end at word boundaries, an ALIGN(2) at longword boundaries, and so on.
The alignment-attribute is further described in Section 9.5.

The addressing-mode-attribute determines the addressing mode for each data
segment allocated in the program section. The significance of the addressing
mode is given in Section 9.13.

The VECTOR psect-attribute causes generation of an indication to the linker
that the program section contains entry-point vector information for a VMS
privileged shared image, used in the construction of shared run-time libraries.
(This attribute is analogous to the VEC attribute in VAX MACRO.)

BLISS–36 ONLY
The ORIGIN attribute specifies the machine address at which a program section
is to start. For example, ORIGIN(%O’ 400000’ ) will cause the corresponding
program section to start at the standard high-segment beginning address, 400000
octal. Note that the use of this attribute can result in unallocated storage left
between two program sections, or in overlapping program sections. Proper use of
this attribute must be guided by familiarity with the linker for the target system
in question.

A complete understanding of the program-section attributes requires knowledge of
the way storage is or can be laid out by the linker. Information on the allocation
of storage can be found in the appropriate linker (or task-builder) reference
manual for the target system. See also the appropriate BLISS user manual for
additional information.
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18.1.4.3 Psect-Names
A psect-name is interpreted by the linker and is, necessarily, global to a module.
The first declaration of a given psect-name within a module serves two purposes.
First, it establishes the name and defines the attributes for the program
section associated with that name for the scope of the module. Second, the
first declaration of a given name establishes the program section associated with
that name as the current program section for the storage class in the scope in
which it is declared. Thus, unless a NODEFAULT storage class is used to prevent
an override of the default attributes, subsequent declarations of the psect-name
will serve only the second purpose, which is to establish the current program
section for a storage-class. All declarations of a particular psect-name within
a module must be equivalent. Psect-declarations are equivalent if one of the
following applies:

• The declarations are identical.

• The declarations have the same set of attributes after the missing attributes
have been filled in by default.

• The second of the two declarations has no parenthesized list of attributes.
(In this case, the attributes from the first declaration apply to the second
declaration.)

18.1.4.4 Interpretation
Every use of the same psect-name in a program refers to the same program
section. A psect-declaration not only states (or restates) the psect-attributes for
a given program section, but also selects that program section for use within the
scope of the declaration for a given storage-class.

18.1.5 Discussion
The simplest way to ensure that all declarations of a psect-name in a given
module are equivalent is to use the simple form of a psect-declaration, in which
no parenthesized list of attributes is given, for all psect-declarations except the
first one. Consider the following program segment:

BEGIN
ROUTINE S=

BEGIN
PSECT OWN = ALPHA (NOWRITE);
OWN S1;
...
END

OWN A, B;
PSECT OWN = BETA;
OWN C;
...
PSECT OWN = ALPHA;
OWN D;
...
END

The first declaration of the psect-name ALPHA defines the name and establishes
its attributes; in BLISS–32, for example, the code can be as follows:

READ, NOWRITE, NOEXECUTE, NOSHARE, NOPIC, CONCATENATE, LOCAL,
ALIGN(2), ADDRESSING_MODE(WORD_RELATIVE)
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The NOWRITE attribute is given explicitly in the psect-declaration and the
other attributes are determined by default. The subsequent declaration of the
psect-name ALPHA does not have a parenthesized list of attributes; therefore, the
list associated with the previous declaration is assumed. Note that giving these
declarations in the opposite order results in an error.

Data and routines from different storage-classes can be allocated in the same
program section by means of the appropriate psect-declarations. For example,
suppose that all PLITs for a given module must be allocated in the same program
section that is used for the object code for routines. Then the following declaration
can be written in the outer block of the module:

PSECT
PLIT = $CODE$;

This declaration overrides the default psect-declaration for the PLIT storage-class,
which allocates PLITs in the program section named $PLIT$.

Suppose the following declaration appears in an inner block of the module in the
previous paragraph:

PSECT
PLIT = $PLIT$;

Within the block in which this declaration appear, PLITs are allocated in the
default program section for PLITs, just as if the declaration mentioned in the
preceding paragraph were not present.

18.2 Switches-Declarations
A switches-declaration allows you to give the compiler additional information
about the desired interpretation of a block. In this way, each block can be given
individual treatment by the compiler.

For example, a block that is still in the debugging process can have a switches-
declaration that causes the compiler to provide listings, error messages, and
macro expansion traces for that block. Or, a block in an inner loop can have a
switches-declaration that causes the compiler to perform special optimizations.

An example of a switches-declaration is given in the following block:

BEGIN
...

BEGIN
SWITCHES NOERRS;
...
END;

...
END

The inner block has a switches-declaration that specifies that no warning or error
messages are to be displayed for that block.

Some switch-items, such as ADDRESSING_MODE, simply set attribute defaults
for the remainder of the block, and thus have only an indirect effect, that is,
through other declarations later in the block that take those defaults.

In general, the actions or interpretations requested by a switches-declaration
take effect only after the occurrence of the declaration (from the viewpoint of code
generation). Therefore, in the normal case where the effect is desired throughout
the block in question, the correct positioning of the switches-declaration is at the
very beginning of the block (that is, prior to any code-producing declaration).

Special Features 18–9



18.2.1 Syntax

switches-declaration SWITCHES switch-item , . . . ;

switch-item n
on-off-switch-item
special-switch-item

o

on-off-switch-item

8>><
>>:

ERRS | NOERRS
OPTIMIZE | NOOPTIMIZE
SAFE | NOSAFE
UNAMES | NOUNAMES
ZIP | NOZIP

9>>=
>>;

special-switch-item

8>>>>>>><
>>>>>>>:

ADDRESSING_MODE
(mode-spec , . . . )

LANGUAGE (language-list)
LINKAGE (linkage-name)
LIST (list-option , . . . )
STRUCTURE

({structure-attribute})
{nothing}

9>>>>>>>=
>>>>>>>;

( 32 Only

language-list

(
COMMON
language-name , . . .
nothing

)

language-name {BLISS16 | BLISS32 | BLISS36}

linkage-name name

list-option

8>>>>>>>>>><
>>>>>>>>>>:

SOURCE | NOSOURCE
REQUIRE | NOREQUIRE
EXPAND | NOEXPAND
TRACE | NOTRACE
LIBRARY | NOLIBRARY
OBJECT | NOOBJECT
ASSEMBLY | NOASSEMBLY
SYMBOLIC | NOSYMBOLIC
BINARY | NOBINARY
COMMENTARY | NOCOMMENTARY

9>>>>>>>>>>=
>>>>>>>>>>;

32 Only )
mode-spec n

EXTERNAL = mode
NONEXTERNAL = mode

o

18–10 Special Features



32 Only )

mode
8<
:

GENERAL
ABSOLUTE
LONG_RELATIVE
WORD_RELATIVE

9=
;

The structure-attribute is defined in Section 11.4.

18.2.2 Restrictions
An ADDRESSING_MODE switch can have no more than one EXTERNAL
mode-spec and no more than one NONEXTERNAL mode-spec (BLISS–32 only).

The linkage-name in a LINKAGE switch must either be explicitly declared as a
linkage-name in a containing block or must be a predeclared linkage-name.

The structure-name in the structure-attribute of a STRUCTURE switch must
either be explicitly declared as a structure-name in a containing block or must be
a predefined structure-name.

18.2.3 Defaults
If a switch-item is not specified, the setting established by the compilation
command specification, by the module-head or by a switches-declaration in an
outer block is assumed.

If a null language-list appears in a LANGUAGE switch (that is, LANGUAGE ( ) ),
the single language-name corresponding to the compiler in use is assumed. This
implies that no transportability checking is to be performed within the scope of
the containing block.

If the keyword COMMON appears in the language-list of the LANGUAGE switch,
it is equivalent to the explicit specification of all three language-names.

18.2.4 Semantics
The switch-items specify actions to be taken by the compiler in processing a block.

In addition to the following description, additional discussion of the compiler
actions for these switches can be found in the BLISS user manual for the
appropriate compiler.

18.2.4.1 On-Off-Switch-Items
Each on-off-switch-item has a negation, which consists of the switch-item prefixed
by the characters NO. The negation of a switch-item indicates that the associated
action should not be taken. The action associated with each switch-item is given
in the following list:

Switch-Item Action

ERRS Print warnings and error messages from the compiler on the terminal.

OPTIMIZE Perform optimization across mark points.

SAFE Ignore computed addresses in doing optimization.

UNAMES Generate unique names for OWN variables, nonglobal ROUTINE names,
and labels when producing a listing that is to be assembled.

ZIP Optimize time at the expense of space.

Special Features 18–11



18.2.4.2 Special-Switch-Items
The special-switch-items provide additional information about the block being
compiled. The action associated with each special-switch-item is given in the
following list:

Switch-Item Action

ADDRESSING_MODE
(mode-spec, . . . )

( BLISS–32 Only
Establish the given addressing modes as the addressing-
mode defaults for subsequent declarations in the current
block. An EXTERNAL mode-spec supplies the default for
EXTERNAL and EXTERNAL ROUTINE declarations.
A NONEXTERNAL mode-spec supplies the default
for FORWARD, FORWARD ROUTINE, and PSECT
declarations. (This default is ineffective unless a program
section is declared within the block.) The addressing-mode
attribute is described in Section 9.13.

LANGUAGE
(language-list)

Establish the given list of language-names for the
remainder of the current block. Perform transportability
checking, if applicable, for the combination of dialects
specified or implied in the list. See Section 18.2.5 and
Appendix C for further information.

LINKAGE
(linkage-name)

Establish the given linkage-name as the linkage-name
default for the remainder of the current block. This linkage-
name is used as the linkage-attribute of any subsequent
routine declaration in the current block that does not
specify a linkage-attribute.

LIST
(list-option, . . . )

Establish the given list-options for the output listing of
the remainder of the current block. The list-options are
described in the following subsection.

STRUCTURE
(structure-attribute)

Establish the given structure-attribute as the default
structure-attribute to be used in subsequent default-
structure-references within the current block (see Sections
11.4 and 11.8). If the given structure-attribute is null, then
all subsequent default-structure-references in the block are
invalid.

18.2.4.3 List-Options
The output listing produced as a result of a BLISS compilation can contain the
following separate parts:

Source listing
Macro expansions and traces
Library usage traces
Object code listing

The LIST switch-item controls the parts of the output listing to be produced
according to the settings specified by the list-options. The first two list-options,
SOURCE and REQUIRE, operate on a special counter, the source listing counter.
The counter is initially set to 1, and source text is listed when, and only when, the
value of the counter is greater than zero. Thus the SOURCE and REQUIRE list-
options control the listing of the source text from files specified in the compilation
command and by REQUIRE declarations.
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The action associated with each list-option is given in the following list.

List-Option Action

SOURCE Increments the source listing counter. NOSOURCE decrements the
source listing counter.

REQUIRE Causes the source listing counter to be left unchanged when a file
specified by a REQUIRE declaration is opened or closed. NOREQUIRE
causes the source listing counter to be decremented when a file
specified by a REQUIRE declaration is opened, and incremented when
the file is closed.

EXPAND List the lexeme stream that is the result of each macro expansion.

TRACE Trace the expansion of macros, printing each lexeme stream produced
during the expansion and the final lexeme stream produced as as result
of the expansion.

LIBRARY Trace the usage of names whose declarations are obtained from library
binary files.

OBJECT List the object code. The format of the listing is determined by the
settings of the following four switches.

ASSEMBLY List the object code instructions in a form suitable for assembly.

SYMBOLIC List the object code instructions in a form suitable for interpretation by
the programmer. This format uses source program symbols wherever
possible in the object code instructions.

BINARY List the binary text of the object code.

COMMENTARY List commentary produced by the compiler concerning the object
code generated. At present, commentary is limited to a line-number
cross-reference.

18.2.5 Discussion
The LANGUAGE switch is an aid in the development of transportable programs.
As a module-switch, it declares your intention to compile the module under
several different compilers, for use on the corresponding target systems.
It requests that the compiler analyze the module from the standpoint of
transportability. For example, with two compiler names specified in the
LANGUAGE switch, both compilers will check for and report the occurrence
of certain machine-sensitive language features that may pose problems when the
module is processed by the other compiler.

Used in a SWITCHES declaration, this switch essentially allows you to turn
off transportability checking within the block immediately containing the
declaration. For example, the need for this capability arises where a given
block is not coded transportably, is inherently machine- or system-dependent, and
must be modified for each target system.

The specific language constructs that are checked for a given set of target systems
are described in Appendix C. Briefly, these constructs fall into the following
categories:

• All syntactic features that are not common to the target set. For example,
if all three target systems are specified, then the occurrence of any dialect-
specific feature is reported.

• Most syntactic features that, although common to the target set, are likely in
certain forms to cause transportability problems (for example, string-literals
used as primary expressions).
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• Certain dialect-sensitive elements that may occur in otherwise valid
constructs; for example, field-selector values that are compile-time constant
expressions are checked at compile time for conformance to the restrictions
imposed by the most restrictive target system.

In general, the checks performed in response to the LANGUAGE switch alert you
to language features that most often require special attention when transporting
programs. Such checking cannot, however, identify or resolve all of the problems
that may be encountered. In particular, the functional equivalence of a program
in several different environments cannot be assured (at compile time) in all cases,
even though the program compiles sucessfully in each environment.

Each BLISS user manual contains a section on ‘‘Transportability Guidelines’’.
A study of this section and frequent, parallel compilations of the module to be
transported are strongly recommended.

18.3 Built-In-Declarations
Certain names are predefined in BLISS. Some of the predefined names are
predeclared, so that they can be used without being declared explicitly; an
example is the name ABS, which is the name of the absolute-value function.
Other predefined names are not predeclared, but must, instead, be declared
BUILTIN before they can be used.

The classification of a given predefined name as predeclared or built-in is part
of the BLISS language definition; it is given in Appendix A. Names that are
frequently used and that apply to all dialects of BLISS are predeclared. Names
that are predefined only in certain dialects of BLISS are built in. In particular, all
names of machine-specific-functions are built in; these are listed in Appendix D.

18.3.1 Syntax

built-in-declaration BUILTIN built-in-name , . . . ;

built-in-name name

18.3.2 Restrictions
Each name in a built-in-declaration must be listed in Appendix A under the
classification ‘‘built-in name’’.

A built-in-declaration containing a predefined register-name (see Section 10.7.4)
or a predefined name of a linkage-function (see Section 13.6) must be contained
in a routine-declaration.

18.3.3 Semantics
A built-in-declaration informs the compiler that the names listed are used as
built-in-names in the current block.

The full definition of each built-in-name is given elsewhere in the definition of
BLISS. For example, in BLISS–16 the built-in-name PC is a register-name and
is defined in Section 10.7.4. For another example, the built-in-name BICPSW
is a VAX machine-specific-function name and is defined in the BLISS–32 User
Manual.
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18.4 Label-Declarations
The use of labels is very restricted in BLISS. Labels are used only to identify a
block so that a LEAVE expression can be used to terminate the evaluation of the
block. When a label is used, it must be declared by a label-declaration.

18.4.1 Syntax

label-declaration LABEL label-name , . . . ;

label-name name

18.4.2 Semantics
A label declaration informs the compiler that the names listed are used as labels
in the current block.

The use of labels is discussed in connection with exit-expressions in Section 6.6.

18.5 Undeclare-Declarations
An undeclare-declaration is used to limit the scope of a declaration. An undeclare-
declaration in an inner block prevents references to names declared in outer
blocks. An undeclare-declaration may also be used in a library source file to
prevent a name from being entered into the precompiled library binary file (see
Section 16.6).

An example of an undeclare-declaration follows:

BEGIN
OWN A,B,C;
...
BEGIN
UNDECLARE A,C;
...
END
END

In the inner block, the name B designates the OWN variable declared in the
outer block, but the names A and C have no meaning.

18.5.1 Syntax

undeclare-declaration UNDECLARE undeclared-name , . . . ;

undeclared-name name

18.5.2 Semantics
An undeclare-declaration informs the compiler that each undeclared- name in the
list has no declared meaning for the scope of the current block.

A name that is undeclared may be subsequently declared for some other use
within the scope of the declaration.

A name that is undeclared at the end of a library compilation is not entered in
the library binary file produced by the compiler.
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18.5.3 Pragmatics
In order to redeclare a macro-name it must be ‘‘quoted’’ using the lexical function
%QUOTE (see Section 15.5.14). Effectively this inhibits expansion of the macro-
name at the point of redeclaration. For example, to undeclare the name ZYX
declared as a macro-name elsewhere in the same module, the following form of
declaration is required:

UNDECLARE %QUOTE ZYX

This requirement applies to any other redeclaration of a macro-name as well.
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19
Modules and Programs

This chapter describes modules and programs. No new functional capability
is introduced here; instead, the way in which a program interfaces with the
compiler in particular and the target system in general is described.

This chapter has four sections. The first section describes modules in a general
way. The second section completes the description of modules by defining the
module-switches. The third section describes the predefined names, which
provide one form of connection between programs and the system. The fourth
section describes programs.

19.1 Modules
The module is the compilation unit of BLISS. Each module is complete for
purposes of compilation. However, a module is usually incomplete for purposes of
execution because it often depends on information supplied by the other modules
with which it is linked to form a program. The use of GLOBAL and EXTERNAL
declarations allows these points of communication to be identified so that their
resolution can occur at link time.

The division of a program into modules helps define the fundamental organization
of the program. Declarations that have some property in common can be grouped
into a single module. For example, if two routine-declarations are always used
together, then grouping them in a module ensures that they are allocated
together. For another example, if some declarations are subject to change when a
new version of the program is produced, then grouping them together in a module
makes it possible to change the program by only recompiling a single module.

An example of a module is as follows:

MODULE COMPOOL (IDENT = ’000015’) =
BEGIN
GLOBAL LITERAL

BUFSIZ = 226,
PAGESIZ = 132,
FACTOR = 33: SIGNED(9);

GLOBAL BIND X = PLIT (0,1,2,3,4,5,6,7,8,9,10,11,12)
: VECTOR[13];

END
ELUDOM

This module contains the constant declarations that are used in other modules of
the program.

Another example of a module follows:

Modules and Programs 19–1



MODULE STK (IDENT = ’000001’) =
BEGIN
OWN STK: VECTOR[1000];
OWN STKPTR: INITIAL(0);
EXTERNAL ROUTINE

STKERR1,
STKERR2;

GLOBAL ROUTINE PUSH(X): NOVALUE =
BEGIN
IF .STKPTR GEQ 1000 THEN STKERR1();
STKPTR = .STKPTR + 1;
STK[.STKPTR] = .X;
END;

GLOBAL ROUTINE POP(X): NOVALUE =
BEGIN
IF .STKPTR LSS 0 THEN STKERR2();
.X = .STK[.STKPTR];
STKPTR = .STKPTR-1;
END;

END
ELUDOM

This module contains both data-declarations and routine-declarations.

19.1.1 Syntax

module MODULE module-head =
module-body
ELUDOM

module-head
module-name

n
( module-switch , . . . )
nothing

o

module-name name

module-body block

19.1.2 Restrictions
A module-body’s outermost level can contain only declarations; that is, it must
be a sequence of declarations within a BEGIN-END or parenthesis pair. Some of
these declarations can be routine-declarations, and these define the actions that
can be performed by the module.

Some declarations must not be given at the outermost level of a module, namely,
declarations of temporary data segments and linkage-functions. These are
local-declarations (Section 10.5), stacklocal-declarations (Section 10.6), register-
declarations (Section 10.7), and built-in-declarations (Section 18.3) that give
any of the predefined register names (Section 10.7.4) or any of the names of
linkage-functions (Section 13.6.)

19.1.3 Semantics
A module provides the compiler with three items:

• The module-name, which is used in some contexts by the compiler to identify
the object code for the module.

• The module-switches, which select various options offered by the compiler.

• The module-body, which is translated by the compiler from BLISS into an
object code file.
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19.2 Module-Switches
Module-switches allow you to control some aspects of the compiler’s treatment
of the module. Because you know the module’s stage of development and its
intended use, you can use switches to cause additional operations to be performed
and to suppress other operations. Consider the development of a typical module
from syntax checking through debugging into production. At the beginning, the
module is as follows:

MODULE M1 (IDENT = ’0001’, NOCODE, LIST(TRACE),
LANGUAGE(BLISS16,BLISS32)) =

BEGIN
...
END
ELUDOM

In this example, the module-switches direct the compiler to perform only a syntax
check (NOCODE) and to trace the expansion of macros (LIST(TRACE)). The
LANGUAGE switch signifies the intent to compile the module with both the
BLISS–16 and the BLISS–32 compilers. It requests that the compiler currently
in use check for and report the appearance of dialect-sensitive language features
that might cause problems in transporting the module across the specified
systems. Switches that are not given explicitly are determined by the default
rules. For example, the switch ERRS is assumed by default and therefore the
compiler prints warnings and error messages on your terminal.

Later, when the module is being debugged, the module’s switches are changed to
the following:

MODULE M1 (IDENT = ’0005’, DEBUG, NOOPTIMIZE) =
BEGIN
...
END
ELUDOM

In this version, the module-switches direct the compiler to prepare the symbol
table and the linkages required for use by a debugger and to omit certain kinds of
optimization by the compiler of the generated object code (NOOPTIMIZE). When
the module is ready for production, the switches are changed as follows:

MODULE M1 (IDENT = ’0203’) =
BEGIN
...
END
ELUDOM

In this version, all the switches except the identification switch are omitted
because the default rules are oriented toward a production module.

19.2.1 Syntax

module-switch { on-off-switch | special-switch }
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on-off-switch

8>>>>><
>>>>>:

CODE | NOCODE
DEBUG | NODEBUG
ERRS | NOERRS
OPTIMIZE | NOOPTIMIZE
SAFE | NOSAFE
UNAMES | NOUNAMES
ZIP | NOZIP

9>>>>>=
>>>>>;

special-switch

8<
:

common-switch
BLISS–16-switch
BLISS–32-switch
BLISS–36-switch

9=
; ( 16 Only

( 32 Only
( 36 Only

common-switch

8>>>>>>>>>><
>>>>>>>>>>:

IDENT = quoted-string
LANGUAGE ( language-list , . . . )
LINKAGE ( linkage-name )
LIST ( list-option , . . . )
STRUCTURE

( { structure-attribute } )
{nothing }

MAIN = routine-name
OPTLEVEL = { 0 | 1 | 2 | 3 }
VERSION = quoted-string

9>>>>>>>>>>=
>>>>>>>>>>;

language-list

(
COMMON
language-name , . . .
nothing

)

language-name {BLISS16 | BLISS32 | BLISS36 }

list-option

8>>>>>>>>>><
>>>>>>>>>>:

SOURCE | NOSOURCE
REQUIRE | NOREQUIRE
EXPAND | NOEXPAND
TRACE | NOTRACE
LIBRARY | NOLIBRARY
OBJECT | NOOBJECT
ASSEMBLY | NOASSEMBLY
SYMBOLIC | NOSYMBOLIC
BINARY | NOBINARY
COMMENTARY | NOCOMMENTARY

9>>>>>>>>>>=
>>>>>>>>>>;

n
linkage-name
routine-name

o name

16 Only )
bliss–16-switch n

ADDRESSING_MODE ( mode-16 )
ENVIRONMENT (environ-16-option , . . . )

o

mode-16 {ABSOLUTE | RELATIVE }
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environ-16-option { EIS | NOEIS | LSI11 | T11 | PIC
| ODT }

32 Only )

bliss–32-switch ADDRESSING_MODE (mode-spec
, . . . )

mode-spec n
EXTERNAL = mode-32
NONEXTERNAL = mode-32

o

mode-32

8<
:

GENERAL
ABSOLUTE
LONG_RELATIVE
WORD_RELATIVE

9=
;

36 Only )

bliss–36-switch

ADDRESSING_MODE ( mode-36 )
ENTRY ( global-name , . . . )
ENVIRONMENT (environ-36-option
, . . . )
OTS = quoted-string
OTS_LINKAGE = linkage-name

mode-36 {INDIRECT | NOINDIRECT }

environ-36-option

8<
:

cpu-option
monitor-option
ots-option
stack-option

9=
;

cpu-option { KA10 | KI10 | KL10 | KS10 |
EXTENDED }

monitor-option { TOPS10 | TOPS20 }

ots-option n
BLISS10_OTS
BLISS36C_OTS

o

stack-option STACK = segment-name

(
global-name
linkage-name
segment-name

)
name

The structure-attribute is defined in Section 11.4.
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19.2.2 Restrictions
The MAIN switch must appear once and only once in a program.

The routine-name specified in the MAIN switch must be declared in a ROUTINE
or GLOBAL ROUTINE declaration in the same module.

The VERSION switch can appear only in a module that also contains the MAIN
switch.

The name specified in the structure-attribute of a STRUCTURE switch must be a
predeclared structure-name.

BLISS–36 ONLY
Each name specified in the ENTRY switch must be declared GLOBAL, GLOBAL
ROUTINE, GLOBAL BIND, GLOBAL BIND ROUTINE, or GLOBAL LITERAL
in the same module.

The ots-option of the ENVIRONMENT switch must not appear together with
either the OTS switch or the OTS_LINKAGE switch.

The stack-option of the ENVIRONMENT switch may appear only in a module
that also contains the MAIN switch.

The quoted-string given in the VERSION switch must conform to the TOPS–10
/20 version-number format:

oooa(oooooo)-o

where o represents an octal digit and a represents an alphabetic character.
Leading zeros are not required.

The linkage-name in the OTS_LINKAGE switch must either be predeclared or
appear in a linkage-declaration preceding the first routine-declaration in the
module. The named linkage-definition must not specify register parameter-
locations or global-registers.

19.2.3 Defaults
If a setting for an on-off-switch is not given, the following default settings are
used:

On-Off-Switch Default Action

CODE Generate object code.

NODEBUG Do not build table and linkages for the debugger.

ERRS Print compiler diagnostic messages on terminal.

OPTIMIZE Optimize across mark points.

SAFE Ignore computed addresses in performing optimization.

NOUNAMES Do not generate unique names.

NOZIP Do not optimize time at the expense of space.

If a setting for a special-switch is not given, the following defaults are assumed:
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Special-Switch Default Action

ADDRESSING_MODE(RELATIVE) ( BLISS–16 Only
Use the relative addressing mode for all
generated instructions.

ADDRESSING_MODE(EXTERNAL
= WORD_RELATIVE,
NONEXTERNAL
= WORD_RELATIVE)

( BLISS–32 Only
Use the short/relative form of address
encoding as the ultimate addressing-mode
default.

ADDRESSING_MODE(NOINDIRECT) ( BLISS–36 Only
Do not use the indirect addressing mode for
any generated instructions.

ENVIRONMENT(EIS) ( BLISS–16 Only
Produce the object module using instructions
from the Extended Instruction Set (ASH,
ASHC, DIV, MUL, SOB, SXT) wherever
appropriate.

LANGUAGE(%BLISS16(BLISS16)
%BLISS32(BLISS32)
%BLISS36(BLISS36))

The module is intended for compilation only
by the compiler currently in use, and no
transportability checking is to be performed.
(See Section 16.2.4 for a description of the
predeclared macros shown above.)

LINKAGE(BLISS)
LINKAGE(BLISS36C)

( BLISS–16/32
( BLISS–36 Only
Use the predefined linkage BLISS in BLISS–
16 and -32, or the predefined linkage
BLISS36C in BLISS–36, for any routine
that does not specify a linkage-attribute.

LIST(SOURCE, NOREQUIRE,
NOEXPAND, NOTRACE,
NOLIBRARY, OBJECT,
NOASSEMBLY, SYMBOLIC,
BINARY, COMMENTARY)

List the source text, but not the text
contributed by files specified in require-
declarations. Do not list macro expansions
or traces. Do not list library usage traces.
List the object code instructions using
symbolic names, the binary text, and
commentary produced by the compiler.

STRUCTURE( ) That is, the default structure-attribute is
empty, and default-structure-references are
invalid (see Section 11.8).

OPTLEVEL=2 Perform all optimizations that can be
invoked without making any special
assumptions about the program.

The BLISS–36 ENVIRONMENT switch defaults, except for the ots-option and
stack-option, are established when a given BLISS–36 compiler is generated. See
the BLISS–36 User’s Guide for details.

The default for the ots-option is BLISS36C_OTS. This implies the standard
BLISS36C Object Time System file name for a given target environment, and
implies the standard BLISS36C linkage for generating OTS routine calls.

If the stack-option is not specified in a module that contains the MAIN switch, a
2048-word stack is established by default.

The defaults for the OTS and OTS_LINKAGE switches are, respectively, the
standard OTS filename and the standard OTS linkage established by the (explicit
or default) ENVIRONMENT switch ots-option. More specifically, the OTS_
LINKAGE default can be either BLISS36C or BLISS10, depending upon the
ots-option setting.
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If a null language-list appears in a LANGUAGE switch (that is, LANGUAGE
( ) ), the single language-name corresponding to the compiler in use is assumed.
(This is equivalent to the default for the entire LANGUAGE switch, as described
above.)

19.2.4 Semantics
The module-switches inform the compiler to take or suppress an action. The
actions associated with the special-switches and on-off-switches are described in
the following sections.

19.2.4.1 Special-Switches
The special-switches ADDRESSING_MODE (in BLISS–32), LANGUAGE,
LINKAGE, LIST, and STRUCTURE can be used in a switches-declaration
as well as in a module-head; those switches are described in Section 18.2.
(See Appendix C also for further information on the LANGUAGE switch and
transportability checking.)

The special-switches that can be used only as module-switches are defined as
follows:

Special-Switch Action

ADDRESSING_MODE(mode-16) ( BLISS–16 Only
Generate instructions using absolute or
relative addressing mode as indicated.

ADDRESSING_MODE(mode-36) ( BLISS–36 Only
Generate instructions using indirect or
noindirect addressing mode as indicated.

ENTRY(name , . . . ) ( BLISS–36 Only
Produce an object-module record that contains
the specified global (entry) names, for use by
the linker when forming a library of object
modules.

ENVIRONMENT(environ-16-option) ( BLISS–16 Only
EIS: Generate object code employing
instructions from the PDP–11 Extended
Instruction Set.

NOEIS: Generate object code employing only
the instructions available to all PDP–11
models.

LSI11: Generate object code employing only
the instructions available to the LSI–11
processor.

T11: Generate object code employing only the
instructions available to the T11 processor.

PIC: Generate position-independent code.

ODT: Facilitate debugging with ODT.
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Special-Switch Action

ENVIRONMENT(environ-36-options) ( BLISS–36 Only
Cpu-option: Specifies the processor model
of the target system for which code is to be
generated.

Monitor-option: Specifies the operating system
of the target system for which code is to be
generated.

Ots-option: Specifies which of the standard
object-time systems is to be used (at link-time)
to satisfy outstanding external references, and
implies the corresponding standard linkage to
be used for OTS calls (which may differ from
the default linkage for non-OTS calls).

Stack-option: Specifies the name of an OWN
or GLOBAL data-segment declared in the
same (main) module to be used as the control
stack for the program, in place of a default
compiler-generated segment.

IDENT = ’ xxx’ ( BLISS–16/32 Only
Include the quoted-string as an identification
in the object module generated from
the compilation of the module. (See the
appropriate BLISS user manual for any
applicable restrictions.)

MAIN = routine-name Save the routine-name. Program execution
will begin with a routine-call on the routine
designated by this routine-name.

OPTLEVEL = level Use the value of level as a guide for the kind
of optimizations performed, as follows:

Level Meaning

0 Minimum Optimization

1 Low Optimization

2 Normal Optimization

3 Maximum Optimization

The level value 0 produces the most readable
object code.

OTS = ’ ots-file-spec’ ( BLISS–36 Only
Use the specified object-module library
file when searching for object-time-
system routines instead of the standard
OTS file implied by the ots-option (see
ENVIRONMENT).

Note that LINK-20 requires that the quoted
file-spec conform to the TOPS–10 style
(DEV:[PPN]filnam).
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Special-Switch Action

OTS_LINKAGE = linkage-name ( BLISS–36 Only
Use the named linkage-definition when
generating calls to the object-time-system
identified in the OTS switch.

VERSION = ’ version-number’ ( BLISS–36 Only
Include the quoted-string as an identification
in the executable image of the program
generated by linking the main module
containing this switch.

BLISS–32 ONLY
The quoted-string given with the IDENT special-switch is printed by the linker in
the map it produces as a result of linking the modules of a program. This quoted-
string usually contains an identifier that is used to determine which version of an
object module is present in a program.

BLISS–36 ONLY
The quoted-string given with the VERSION special-switch is placed in the
‘‘version number’’ location of the executable image produced as a result of linking
the modules of a program. (Note that the module containing the VERSION
switch must also contain the MAIN switch.) This quoted-string must contain
a conventional version number that is used to identify the version level of a
program.

19.2.4.2 On-Off-Switches
The on-off-switches ERRS, OPTIMIZE, SAFE, UNAMES, and ZIP can be used in
a switches-declaration as well as in a module-head; these switches are described
in Section 18.2. The on-off-switches that can be used only as module-switches are
defined as follows:

On-Off-Switch Action

CODE Generate the object code for the module.

DEBUG Build the symbol table and the linkages required for use of the
debugger.

Each of these switches has a negation, formed by prefixing the switch name with
NO. The negated switch means that the indicated action should not be taken.

19.3 Predefined Names
Some names have a predefined, specific meaning that is part of the definition
of BLISS. For example, ABS is the name of the absolute value function, and
VECTOR is the name of a predefined vector structure.

There are two kinds of predefined names: predeclared and built-in. The
predeclared names can be used without any declaration; indeed, a predeclared
name must not be declared wherever it is used in its predefined sense. On the
other hand, a built-in name must be declared BUILTIN wherever it is used in its
predefined sense.

It is important to note that predefined names are not reserved. A predefined
name can be declared for some user purpose (for example, as the name of a data
segment or a macro or a routine). Within the scope of such a declaration, the
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predefined meaning of the name is lost; but if that meaning is not required, no
damage is done.

The names that are predefined in the versions of BLISS that are described in this
manual are listed in the following paragraphs. Additional predefined words will
be added to BLISS as the language grows.

Predeclared standard-function-names: The following names are predeclared as
standard-function-names:

SIGN, ABS
MAX, MAXU, MAXA
MIN, MINU, MINA
%REF

The description for each of these standard-function names is given in Section 5.2.

Built-in register-names: The predefined register-names must be declared
BUILTIN wherever they are used as such. The register-names that are
predefined for each dialect are described in Section 10.7.4.

Predeclared structure-names: The following names are predeclared as names for
predefined structures:

BITVECTOR
BLOCK
BLOCKVECTOR
VECTOR

The structure-declaration for each of these structure-names is given in
Section 11.10.

Predeclared linkage-names: The following names are predeclared as linkage-
names:

BLISS ( 16/32 only

FORTRAN ( 16/32 only

FORTRAN_FUNC

FORTRAN_SUB

BLISS36C ( 36 only

BLISS10 ( 36 only

The description of these linkage-names is given in Section 13.5.

Built-in linkage-functions: The following predefined names of linkage-functions
must be declared BUILTIN wherever they are used as such:

ACTUALCOUNT

ACTUALPARAMETER

ARGPTR

NULLPARAMETER ( 16/32 only

The description of these linkage-functions is given in Section 13.6.

Predeclared condition-handling-functions: The following names are predeclared
as names of condition-handling-functions:

SETUNWIND
SIGNAL
SIGNAL_STOP
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The description of these condition-handling-functions is given in Chapter 17.

Predeclared macro-names: The following names are predeclared as macro-names:

%BLISS16
%BLISS32
%BLISS36

The description for each of these macro-names is given in Section 16.2.4.

Predeclared supplementary-function-names: The following names are predeclared
as supplementary-function-names:

CH$ALLOCATION, CH$SIZE
CH$PTR, CH$PLUS, CH$DIFF
CH$RCHAR, CH$A_RCHAR, CH$RCHAR_A
CH$WCHAR, CH$A_WCHAR, CH$WCHAR_A
CH$MOVE, CH$FILL, CH$COPY
CH$COMPARE
CH$EQL, CH$NEQ, CH$LSS, CH$LEQ, CH$GTR, CH$GEQ
CH$FIND_CH, CH$FIND_NOT_CH, CH$FIND_SUB, CH$FAIL
CH$TRANSTABLE, CH$TRANSLATE

All of these are names of functions in the character-handling package, which is
described in Chapter 20.

Built-in machine-specific-function names: Each BLISS dialect provides a set of
predefined machine-specific-function names that must be individually declared
BUILTIN wherever they are used as such. The machine-specific-functions defined
for each dialect are described in the appropriate BLISS user’s guide. The function
names (for all dialects) are included in the listing of predefined identifiers given
in Appendix A of this manual.

19.4 Programs
A program is made up of object modules that have been linked together to
form a single executable unit. The object modules that make up the program
are produced as a result of the translation of a source module by one of the
translators in the system. For example, the BLISS compiler translates BLISS
modules into object modules and the FORTRAN compiler translates FORTRAN
programs into object modules. Each translator produces an object module with
a uniform set of indicators for the linker. The linker uses these indicators to
allocate the modules and resolve points of communication among them.

Consider a program that inputs values, sorts them, and then outputs the same
values in sorted order. This program could consist of a FORTRAN program to do
input/output and the following BLISS modules:

MODULE TREESORT (IDENT = ’0002’)
BEGIN
ROUTINE EXCHANGE(F1,F2) =

...;
GLOBAL ROUTINE TREESORT(F1,F2) =

...;
END
ELUDOM
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MODULE PROCESS (IDENT = ’0002’,MAIN = PROCESS) =
BEGIN
EXTERNAL ROUTINE

INPUT: FORTRAN,
OUTPUT: FORTRAN,
TREESORT;

ROUTINE PROCESS =
BEGIN
PSECT OWN = ALPHA;
OWN A: VECTOR[100];
INPUT(A);
TREESORT(A,100);
OUTPUT(A)
END;

END
ELUDOM

The linker links the two object modules produced by a BLISS compiler and the
FORTRAN object module produced by the FORTRAN compiler to form a single
unit. Then, execution begins at the specified point. In this case, execution begins
with the routine PROCESS.
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20
Character-Handling Functions

A major part of computing is devoted to character handling; that is, the
manipulation of sequences of characters. Character handling is required for the
interpretation of user commands, for the preparation of output listings, for the
management of symbol tables, for the editing of text, and for the maintenance of
files.

This chapter describes the BLISS functions that are designed for character
handling. Some of these functions perform a basic operation, such as allocating
storage for a character sequence, or creating a pointer that can move back and
forth through a character sequence, or writing (or reading) a character at a given
position in a character sequence. Other functions perform an operation on an
entire character sequence, such as moving, copying, comparing, or searching the
sequence.

The functions described in this chapter are part of the set of supplementary-
functions that was introduced in Section 5.2. A call on one of these functions
usually does not produce a subroutine call; instead, it is compiled into a few
hardware instructions that are specially designed for character handling. These
functions provide a way of using these hardware instructions without causing a
program to be machine-dependent. A program that uses these functions correctly
(and that does not have machine dependence elsewhere) can be transported
without change to another BLISS target system.

The first section of this chapter presents the concepts that are necessary for
a discussion of character handling. The second section defines the character
handling functions.

20.1 Fundamental Concepts
A discussion of the fundamental concepts of character handling follows. First
character data is described, and then the operations that are applied to character
data are summarized.

20.1.1 Character Sequence Data
A character code is a sequence of bits that represents a character. Usually the
ASCII encoding of characters is used in BLISS. However, as long as a program
makes consistent use of a given character encoding, it does not matter what that
encoding is.

A character position is the storage for a single character code. For a given
implementation of BLISS, the size of a character position is determined by
two factors: the requirements of the character set and the organization of the
computer memory. A program can be written in a way that does not depend on
the specific character size used by a specific implementation.
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A character position sequence is a portion of storage that is used for one or more
character positions. Such a sequence has a first and last position. For each
position except the first, there is a previous position, and for each position except
the last, there is a next position.

A character data segment is a character position sequence that is allocated as a
single portion of storage. In the simpler applications of character handling, it
is possible to treat each character data segment as a separate unit, allocated in
the same way other data segments are. In more advanced applications, a single
character position sequence may extend across several data segments and may be
reorganized as program execution proceeds.

A character pointer is a value that designates a character position. Sometimes a
character pointer is set to the first character position of a sequence and remains
there, providing access to the entire sequence. In other cases, a character pointer
is used to scan back and forth in a sequence, selecting one position after another.
A character pointer occupies a fullword. It can be moved from one fullword to
another or can be passed as a parameter of a routine, like any other fullword
value. However, a character pointer can be correctly interpreted only by a
character-handling function. For example, a character pointer must be advanced
by the CH$PLUS function, not by the plus sign ( + ) operator.

A null pointer is a returned value that indicates the absence of a valid character
pointer. A null pointer results from the unsuccessful search for one or more
characters within a sequence. The presence of a null pointer can only be tested
for by a CH$FAIL function, and a null pointer must not be passed to any other
character function.

The length of a character position sequence is the number of character positions
in the sequence. The length of a sequence is not included as part of the sequence
itself. In order to fully specify a character position sequence, both its length and
a pointer to its first position must be given. Typically, the parameters of the
character handling functions occur in pairs, a length followed by a pointer.

Character handling can be programmed on two levels. On the simpler level, all
the data is divided into independent character data segments, and the segments
are allocated in the usual way for OWN or LOCAL segments. In more advanced
applications, data can be allocated dynamically, under program control.

20.1.2 Character Sequence Operations
The basic operations of character handling are summarized here. These
operations are the allocating of storage, creating of a pointer, moving a pointer,
fetching or storing a character code, and comparing of character sequences. A
character data segment is allocated in a special way. Specifically, the amount
of storage required is expressed in terms of character positions rather than
longwords, words, or bytes.

A character pointer is created from a given data segment address. The data
segment must be one that was allocated as a character sequence segment. The
character pointer designates the first character position of the sequence.

A character pointer that designates a given character position is moved forward
by changing it to designate the next character position of the sequence. Similarly,
a character pointer is moved backward by changing it to designate the previous
character position of the sequence. A character pointer should not be moved
beyond the character data segment in which it originated unless you are quite
sure what lies beyond that segment or you intend to move it back into the same
segment before using it.
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The contents of a character position must always be fetched or stored by means
of a character pointer that designates the character position. In contrast, a
character pointer can be fetched or stored like any other fullword value (by means
of the fetch operator ( . ) or the assignment operator ( = )).

Character sequences and character pointers must be compared only by means of
the character handling functions designed for that purpose.

20.2 Functions
For the purpose of definition, the character handling functions are arranged in
eight classes, as follows:

Allocation functions
Pointer functions
Character-reading functions
Character-writing functions
Sequence-writing functions
Sequence-comparing functions
Sequence-searching functions
Sequence-translating functions

Each class of functions is described in one of the following sections.

The name of each character handling function consists of the prefix CH$ followed
by a mnemonic name; for example, CH$ALLOCATION is the name of the function
that computes the storage that must be allocated for a sequence.

20.2.1 Allocation Functions
The allocation functions determine the amount of storage required for character
data. The function CH$ALLOCATION returns the number of fullwords required
for a given number of characters. The function CH$SIZE returns the number of
bits required for a single character.

20.2.1.1 Definition
The allocation functions are defined as follows:

CH$ALLOCATION( n, cs )

Interpret n as an unsigned integer (the length of the allocated sequence).
Interpret cs as an unsigned integer (the character size). Imagine a character
position sequence composed of n character positions, each of which occupies cs
bits. Return the number of fullwords that would be required for storage of such a
character position sequence.

Default character size. The character-size parameter can be omitted; that is, the
form CH$ALLOCATION(n) is permitted. In this case, the system default for the
character size is used for cs. In BLISS–16 and BLISS–32 this default is 8; in
BLISS–36, the default is 7.

CH$SIZE( ptr )

Interpret ptr as a pointer to a character position sequence. Return the character
size for the sequence; that is, return the number of bits occupied by each
character position of the sequence.

Default character size. The pointer parameter can be omitted; that is, the form
CH$SIZE( ) is permitted. In this case, the system default for character size is
returned.
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The character size (cs) must be a compile-time constant expression.

The CH$ALLOCATION function is a compile-time constant expression if the
length parameter (n) is a compile-time constant expression.

The CH$SIZE function is a compile-time constant expression if the pointer
parameter (ptr) is omitted.

In BLISS–16 and BLISS–32, a function that specifies a character size other than
8 is invalid. Thus, the character size is a constant in BLISS–16 and BLISS–32.
While the character size in BLISS–36 variable, with a range of 1 through 36 bits,
any departure from the default 7-bit character size for ASCII encodings or the
6-bit character size for the SIXBIT encoding must be used with caution.

20.2.1.2 Examples
The CH$ALLOCATION function is normally used within the VECTOR attribute.
An example of this usage follows:

OWN
S3: VECTOR[CH$ALLOCATION(80)];

This declaration allocates a character data segment for S3 that is composed of 80
character positions.

The use of CH$ALLOCATION within the VECTOR attribute is a way of
extending the BLISS language to handle character data without making major
changes in the design of the language. Specifically, the use of the VECTOR
attribute is a way of allocating storage for a character position sequence. It
follows that storage allocated in this way should not be accessed as a vector,
even though that is technically possible. Instead, the storage should always be
accessed by the character-handling functions.

In fact, the combination of the VECTOR attribute with CH$ALLOCATION should
be thought of as a single language construct, as in the following macro:

MACRO
CH$SEQUENCE(N) = VECTOR[CH$ALLOCATION(N)] %;

Within the scope of this declaration, CH$SEQUENCE can be used as if it were a
character-sequence attribute. For example, the declaration of S3 can be written
as follows:

OWN
S3: CH$SEQUENCE[80];

The CH$SEQUENCE macro just given is not a predeclared part of the BLISS
language. It is given here as a suggested user-declared macro. If it is used in a
program, then it must be explicitly declared in that program.

When the CH$ALLOCATION function is used in the VECTOR attribute (as is
normally the case), the parameters of CH$ALLOCATION must be compile-time-
constant-expressions. This restriction follows from the definition of the VECTOR
attribute (given in Section 11.4.1, which requires that an expression that is an
actual parameter of the VECTOR attribute be a compile-time constant expression.

The declaration of S3, given above, satisfies this requirement because its length
parameter is 80 and its character-size parameter is absent.

In advanced programming applications, CH$ALLOCATION is used with a
nonconstant length. For example, in a program that performs dynamic allocation
of storage for character sequences, CH$ALLOCATION is used to determine the
amount of storage required.
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20.2.2 Pointer Functions
The pointer functions create or manipulate character pointers. The CH$PTR
function returns a character pointer that designates a character position. The
CH$PLUS function creates a character pointer that is offset by a given number
of character positions from another character pointer. The CH$DIFF function
determines the offset between two given character pointers.

20.2.2.1 Definition
The pointer functions are defined as follows:

CH$PTR( addr, i, cs )

Interpret addr as the address of a data segment (the base address). Interpret i
as a signed integer (the index). Interpret cs as an unsigned integer (the character
size). Assume that the given segment is a character position sequence that uses
cs bits for each character position. Return a character pointer to the (i+1)th
character position of the sequence contained in the segment at addr.

Default character size. The character-size parameter can be omitted; that is, the
form CH$PTR(addr,i) is permitted. In this case, the system default is used for the
character size. In BLISS–16 and BLISS–32, this default is 8; in BLISS–36, the
default is 7.

Default index. When the character-size parameter is omitted, the index
parameter can also be omitted; that is, the form CH$PTR(addr) is permitted.
In this case, the system default is used for the character size and zero is used for
the index.

CH$PLUS( ptr, i )

Interpret ptr as a pointer into a character position sequence. Interpret i as a
signed integer (the index). Suppose that ptr designates the kth character position
of the given sequence. Return a pointer that designates the (i+k)th character
position of the given sequence.

CH$DIFF( ptr1, ptr2 )

Interpret ptr1 and ptr2 as character pointers of the same character size (bits
per character) pointing into the same character position sequence. Suppose the
pointers designate the n1th and n2th character positions, respectively, of the
given sequence. Return (n1–n2).

The character size (cs) in a CH$PTR function must be a compile-time constant
expression, and in BLISS–16 and BLISS–32 its value must be 8.

The CH$PTR function is a link-time constant expression if addr is a link-time
constant expression and i and cs are, if given, each a compile-time constant
expression.

In BLISS–16 and BLISS–32 a function that specifies a character size other than
eight bits is not valid.

20.2.2.2 Examples
A character data segment is allocated with a name whose value is an address.
Because a character position sequence must be accessed through a character
pointer, some means for creating a pointer is required. The CH$PTR fills this
need.
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An example of the use of the CH$PTR function follows:

LITERAL
BUFFSIZE = 80;

OWN
QADDR: CH$SEQUENCE[BUFFSIZE],
QBEGIN,
QEND;

...
QBEGIN = CH$PTR(QADDR);
QEND = CH$PTR(QADDR,BUFFSIZE-1);

The two assignments set the contents of QBEGIN and QEND to pointers to the
first and last character positions of the segment QADDR. (CH$SEQUENCE is a
user-declared macro that was described in Section 20.2.1.2.)

Given a pointer to a character position, the CH$PLUS function can produce a
modified pointer that designates a character position that is a certain number of
positions before or after the original position. For example:

LITERAL
BUFFSIZE = 80;

OWN
X: CH$SEQUENCE[BUFFSIZE],
PTR1;

...
PTR1 = CH$PTR(X);
INCR I FROM 0 TO BUFFSIZE-1 DO

BEGIN
... ! Operation #1
PTR1 = CH$PLUS(.PTR1,1);
END;

This loop evaluates Operation #1 (which is not specified here) BUFFSIZE times.
During each evaluation, PTR1 designates a different character position within X,
starting at the first position and advancing by one position each time.

Given two pointers, the number of characters between them can be obtained by
means of the CH$DIFF function. For example:

OWN
M: CH$SEQUENCE[100];
PTR1,
PTR2,
N;

...
PTR1 = CH$PTR(M,25);
PTR2 = CH$PTR(M,75);
...
N = CH$DIFF(.PTR2,.PTR1);

This program fragment sets N to 50, which is the offset of PTR2 relative to PTR1.

The CH$DIFF function is the only valid way to compare two character pointers.
Suppose, for example, it is necessary to call the routine REX if the pointer
contained in X is the same as the pointer contained in Y. This action can be
programmed as follows:

IF CH$DIFF(.X,.Y) EQL 0 THEN REX();
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20.2.3 Character-Reading Functions
Each of the character-reading functions returns a character code. Specifically,
each function uses a given character pointer to locate a character position, and
then fetches the character code that is contained in that character position. The
functions operate on the given character pointer in different ways: CH$RCHAR
does not change the pointer, CH$A_RCHAR advances the pointer by one character
position before fetching a character code, and CH$RCHAR_A advances the pointer
after fetching.

20.2.3.1 Definition
The character-reading functions are defined as follows:

CH$RCHAR( ptr )

Interpret ptr as a character pointer. Fetch the contents of the character position
that is designated by the character pointer. Return the fetched value.

CH$A_RCHAR( addr )

Interpret addr as the address of a character pointer. Advance the character
pointer to the next character position and then fetch the contents of the character
position designated by the character pointer. Return the fetched value.

CH$RCHAR_A( addr )

Interpret addr as the address of a character pointer. Fetch the contents of the
character position designated by the character pointer and then advance the
character pointer to the next character position. Return the fetched value.

Note that the parameter of CH$RCHAR is a character pointer, whereas the
parameter of CH$A_RCHAR and CH$RCHAR_A is the address of a character
pointer.

20.2.3.2 Examples
For some examples of these functions, consider the following program fragment:

CP = CH$PTR(UPLIT(’ ABCD’ ));
CV1 = CH$RCHAR(.CP);
CV2 = CH$A_RCHAR(CP);
CV3 = CH$RCHAR_A(CP);
CV4 = CH$RCHAR(.CP);

!Creates pointer to sequence.
!Sets CV1 to %C’ A’ .
!Sets CV2 to %C’ B’ .
!Sets CV3 to %C’ B’ .
!Sets CV4 to %C’ C’ .

20.2.4 Character-Writing Functions
Each of the character-writing functions stores a character code. Specifically,
each function uses a given character pointer to locate a character position, and
then stores a given character-code in that character position. Like the character-
reading functions, these functions operate on the given character pointer in
different ways: CH$WCHAR does not change the pointer, CH$A_WCHAR
advances the pointer by one position before storing the character code, and
CH$WCHAR_A advances the pointer after storing.

20.2.4.1 Definition
The character-writing functions are defined as follows:

CH$WCHAR( c, ptr )

Interpret c as a character code and interpret ptr as a character pointer. Store c in
the character position designated by the character pointer. Do not return a value.

CH$A_WCHAR( c, addr )
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Interpret c as a character code and interpret addr as the address of a character
pointer. Advance the character pointer to the next character position, then store
c in the character position designated by the character pointer. Do not return a
value.

CH$WCHAR_A( c, addr )

Interpret c as a character code and interpret addr as the address of a character
pointer. Store c in the character position designated by the character pointer,
then advance the character pointer to the next character position. Do not return
a value.

In each of these functions, c must be in a range suitable for use as a character
code. Because none of these functions return a value, they must not be used
in contexts that require a value. As with the character-reading functions, the
parameter of CH$WCHAR is a character pointer, whereas the parameter of
CH$A_WCHAR and CH$WCHAR_A is the address of a character pointer.

20.2.4.2 Examples
An example of the use of these functions is the following program fragment:

OWN
S4: CH$SEQUENCE[5],
P: INITIAL(CH$PTR(S4));

...
CH$WCHAR(%C’P’,.P);
INCR I FROM 1 TO 4 DO

CH$A_WCHAR(%C’Q’,P);

This example fills S4 up with ’ PQQQQ’ .

20.2.5 Sequence-Writing Functions
Each of the sequence-writing functions sets the contents of a character position
sequence. The CH$MOVE function copies a specified number of characters from
one character position sequence into another. The CH$FILL function sets all of
the character positions of a sequence to a given character code; for example, it can
initialize a sequence to all blanks. The CH$COPY function is relatively complex;
it can copy several separate character sequences into a given character position
sequence and then fill in any remaining positions with a given fill character. Thus
a single CH$COPY function acts like a series of CH$MOVE functions followed by
a CH$FILL function.

20.2.5.1 Definition
The sequence-writing functions are defined as follows:

CH$MOVE( n, sptr, dptr )

Interpret n as an unsigned integer (the length of both source and destination).
Interpret sptr and dptr as pointers. Use these pointers to locate two character
position sequences (the source and the destination, respectively).

Copy n characters from the source into the destination. That is, copy the contents
of the first character position of the source into the first character position of the
destination, copy the contents of the second character position of the source into
the second character position of the destination, and so on, until n characters
have been copied. Return a pointer to the (n+1)th character position of the
destination.

CH$FILL( fill, dn, dptr )
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Interpret fill as a character code. Interpret dn as an unsigned integer (the length
of the destination). Interpret dptr as a character pointer. Use the pointer to
locate the beginning position of a character position sequence (the destination).

Copy fill into the first n character positions of the destination. Return a pointer
to the (dn+1)th character position of the destination.

CH$COPY( sn1, sptr1, sn2, sptr2, . . . , fill, dn, dptr )

Interpret sn1, sn2, . . . , and dn as unsigned integers (the lengths of the sources
and the destination). Interpret sptr1, sptr2, . . . , and dptr as character pointers.
Use sptr1, sptr2, . . . , and dptr to locate the beginning positions of some character
position sequences (the first source, the second source, . . . , and the destination,
respectively). Interpret fill as a character code.

Copy sn1 character codes from the first source into the first sn1 character
positions of the destination, copy sn2 character codes from the second source
into the next sn2 character positions of the destination, and so on. If less than
dn characters have been copied, copy the character code fill into the remaining
character positions of the destination. Return a pointer to the (dn+1)th character
position of the destination.

If the source lengths, sn1, sn2, and so on, are all compile-time constant
expressions, then sn1+sn2+ . . . must not be greater than dn. If the lengths
of the sources are not all compile-time expressions, then the sn1+sn2+ . . . can
exceed dn, but any character code that would be stored in a character position
beyond the end of the destination is discarded.

The destination of a CH$MOVE function must not overlap the source; that is, the
two sequences must not have any character positions in common. Similarly, the
destination of the CH$COPY function must not overlap any of its sources.

20.2.5.2 Examples
The sequence-writing functions are a convenience because they combine in a
single function what would require many CH$WCHAR functions. Also, they
contribute to efficiency by making use of the special hardware instructions
especially designed for moving character sequences.

An example of the use of the CH$MOVE and CH$FILL functions follows:

OWN
X: CH$SEQUENCE[20],
P;

BIND
S = UPLIT(’ABCD’);

...
P = CH$PTR(X);
INCR I FROM 1 TO 4 DO

BEGIN
P = CH$MOVE(.I, CH$PTR(S), .P);
P = CH$FILL(%C’-’, 5-.I, .P);
END;

At the end of this fragment, the contents of X is as follows:

’A----AB---ABC--ABCD-’

The final value of P is a pointer to the twenty-first character position of X; that
is, the unspecified character position that follows the last character position of X.
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An example of the use of the CH$COPY function follows:

OWN
ALPHA: CH$SEQUENCE[10];

BIND
Q = UPLIT(’ABCDEFGH’);

...
CH$COPY(

3, CH$PTR(Q,5),
5, CH$PTR(Q),
%C’ ’,
10, CH$PTR(ALPHA));

At the end of this program fragment, the contents of ALPHA is as follows:

’FGHABCDE ’

This example assigns a relatively complicated value to ALPHA by means of a
single function call.

The CH$COPY function does not do anything that cannot be done by a
combination of the CH$MOVE and CH$FILL functions. For example, the
previous program fragment could be replaced by the following:

OWN
ALPHA: CH$SEQUENCE[10],
PA;

BIND
Q = UPLIT(’ABCDEFGH’);

...
PA = CH$PTR(ALPHA);
PA = CH$MOVE(3, CH$PTR(Q,5), .PA);
PA = CH$MOVE(5, CH$PTR(Q), .PA);
CH$FILL(%C’ ’, 2, .PA);

This version is less compact and less efficient than the version that uses
CH$COPY. The use of PA as temporary storage for the pointer could be
eliminated by a nesting of function calls; nevertheless, this version would require
three function calls to replace the single call on CH$COPY.

20.2.6 Sequence-Comparing Functions
Each of the sequence-comparing functions compares the contents of one character
position sequence to another. With the exception of CH$COMPARE, these
functions return 1 if the comparison is satisfied and return 0 otherwise; thus they
serve character sequences in the same way relational operators serve integer
and address values (see Section 5.1.4.5). If one of the character sequences is
shorter than the other, it is extended (for purposes of the comparison only) by the
addition of fill characters at the end.

The CH$EQL function determines whether or not the two given sequences are
identical, and the CH$NEQ function is the negation of CH$EQL. The remaining-
sequence comparing functions depend on the ordering of character sequences.
That ordering is determined by rules similar to those for arranging the words
and phrases in a dictionary. The CH$LSS function determines whether or not the
first parameter occurs before the second parameter in the ordering of sequences.
The CH$LEQ, CH$GTR, and CH$GEQ functions are similarly defined.

The CH$COMPARE function determines whether the first parameter occurs
before, is equal to, or occurs after the second parameter. The function returns
–1, 0, or 1, respectively. This function can be used as a case-index in a case-
expression to provide, in a clear and efficient way, an action for each of the three
possible relations between two sequences.
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20.2.6.1 Definition
The sequence-comparing functions are defined as follows:

CH$xxx( n1, ptr1, n2, ptr2, fill )

In this definition, ‘‘CH$xxx’’ stands for any one of the seven function names given
in the table below. Interpret n1 and n2 as unsigned integers (the lengths of
the given sequences). Interpret ptr1 and ptr2 as character pointers. Use these
pointers to locate the beginning positions of two character position sequences.
Interpret fill as a character code.

If n1 is not equal to n2 (so that the sequences are of different lengths), treat
the shorter one as if it had sufficient additional character positions and each
additional character position contained fill.

Look through the two sequences in parallel, one character position at a time.
That is, select the first position of each sequence, then select the second position
of each sequence, and so on. Proceed in this manner until a position is selected
that contains one character code for one sequence and a different character code
for the other. If no such position is found (because the sequences are identical),
proceed to the last position of the sequences.

Call the character codes in the selected positions of the first and second sequence
c1 and c2, respectively. These character codes are integers, and are subject to
arithmetic comparison. On the basis of the function name and the character
codes c1 and c2, obtain a value from the following table:

Function
Name

c1 less
than c2

c1 equal
to c2

c1 greater
than c2

CH$EQL
CH$NEQ

0
1

1
0

0
1

CH$LSS
CH$LEQ

1
1

0
1

0
0

CH$GTR
CH$GEQ

0
0

0
1

1
1

CH$COMPARE -1 0 1

Return the value thus obtained.

Default fill character. The last parameter can be omitted; that is, the form
CH$(n1,ptr1,n2,ptr2) is permitted. In this case, zero is used as the value of fill.

20.2.6.2 Examples
Assume the following declarations in the examples:

BIND
P_ALPHA = CH$PTR(UPLIT(’ALPHA’)),
P_BETA = CH$PTR(UPLIT(’BETA’)),
P_BEAR = CH$PTR(UPLIT(’BEAR’)),
P_BE = CH$PTR(UPLIT(’BE’));

The examples are as follows:

1. CH$LSS(5, P_ALPHA, 4, P_BETA)

When corresponding characters are compared, it is determined that the first
characters of the parameters, ’ A’ and ’ B’ , are different. Because the ASCII
code for ’ A’ is less than the ASCII code for ’ B’ , the value of the function is
1.
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2. CH$GTR(4, P_BETA, 4, P_BEAR)

It is determined that the third characters of the parameters ’ T’ and ’ A’ are
different. Because the ASCII code for ’ T’ comes after the ASCII code for ’ A’ ,
the value of the function is 1.

3. CH$GTR(4, P_BEAR, 2, P_BE)

The fill character added to the second parameter plays a decisive role. That
is, the first two characters of the parameters are the same, so it is ’ A’ and
the fill character that are different. The default fill character is 0. Because
the ASCII code for ’ A’ is greater than 0, the value of the function is 1.

4. CH$GTR(4, P_BEAR, 2, P_BE, 127)

The fill character is given explicitly as 127, which is equal to the highest
ASCII code. Because the ASCII code for ’ A’ is less than 127, the value of the
function is 0.

5. CH$COMPARE(5, P_ALPHA, 4, P_BETA)

Because the value of the ASCII code for ’ A’ is less than the ASCII code for
’ B’ , the value of the function is –1.

20.2.7 Sequence-Searching Functions
The sequence-searching functions are used to find a single character or a sequence
of characters within a larger character sequence. Searching is always done from
from left to right (from the first character position to the last).

The CH$FIND_CH function looks for a character position that contains a given
character, whereas the CH$FIND_NOT_CH looks for a character position that
contains anything but a given character. The CH$FIND_SUB function looks for a
given sequence of characters.

If the desired character or character sequence cannot be found by these functions,
a null pointer is returned. A CH$FAIL function then determines whether the
returned pointer is or is not a null pointer. A null pointer must not be passed to
any CH$ function except CH$FAIL.

20.2.7.1 Definition
The sequence-searching functions are defined as follows:

CH$FIND_CH( n, ptr, char )

Interpret n as an unsigned integer (the length of the context). Interpret ptr
as a character pointer. Interpret char as a character code. Use ptr to locate a
character sequence, the context.

Search the first n character positions of the context for a position that contains
char, and return a pointer to that position. If no such character position is found,
return the null pointer.

CH$FIND_NOT_CH( n, ptr, char )

Proceed as for CH$FIND_CH above. However, search the given sequence for a
position whose contents are not equal to char.

CH$FIND_SUB( cn, cptr, pn, pptr )

Interpret cn and pn as unsigned integers (the lengths of the context and pattern,
respectively). Interpret cptr and pptr as character pointers. Use these pointers to
locate two character position sequences, the context and the pattern.
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Start at the first character position of the context and search for a sequence
of positions that contains the pattern. If such a sequence is found, return a
character pointer to the first position of the sequence. Otherwise, return the null
pointer.

CH$FAIL( ptr )

Interpret ptr as a pointer. If the pointer is the null pointer, then return 1;
otherwise, return 0.

20.2.7.2 Examples
As an example of the use of the CH$FIND_CHAR and CH$FIND_NOT_CHAR
functions, consider the following routine:

ROUTINE FIND_WORD(N, LINE): NOVALUE =
BEGIN
EXTERNAL ROUTINE

PROCESS_WORD;
OWN

LE,
RE;

LE = CH$FIND_NOT_CH(.N, .LINE, %C’ ’);
RE = CH$FIND_CH(.N-CH$DIFF(.LE,.LINE), .LE, %C’ ’);
PROCESS_WORD(CH$DIFF(.RE,.LE), .LE);
END;

This routine finds the first full ‘‘word’’ in a given line of text. For purposes of this
routine, a ‘‘word’’ is any sequence of characters that does not contain a space.

The two parameters of the routine are defined as follows:

.N The number of positions in the character position sequence that contains the
given text

.LINE A pointer to the first position of the character position sequence that contains
the given text

The first assignment in the routine sets .LE to point to the first character of the
word. The second assignment sets .RE to point to the first space after the word.
Finally, a routine that processes the word is called; that routine, PROCESS_
WORD, is not specified here.

20.2.8 Sequence-Translating Functions
The sequence-translating functions are used to translate a character sequence
from one encoding to another. The CH$TRANSTABLE function builds a table
that controls the translation. The CH$TRANSLATE function uses the table to
translate a given sequence into the new encoding.

The character translation table is, itself, a character position sequence. Suppose,
for example, the contents of the first character position of such a table is 7; this
means that a character code whose value is 0 will be translated to 7 by the table.

The table contains one position for each character-code value in the source
character-code set. For example, if the source character sequence is ASCII
encoded, then the translation table must contain 128 positions, one for each value
in the (7-bit) ASCII character-code set. The CH$TRANSLATE function uses the
value of a given source character position as a zero-based index into the table,
from which it obtains the corresponding destination code value.
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20.2.8.1 Definition
The contents of a character translation table is given as a parameter of the
CH$TRANSTABLE function. The syntax of this parameter is:

translation-string translation-item , . . .

translation-item n
translation-code
REP replicator OF ( translation-string )

o

replicator compile-time-constant-expression

translation-code single-character-literal

The sequence-translating functions are defined as follows:

CH$TRANSTABLE( ts )

(The symbol ts represents a translation-string, which is described above.) Create
the translation table specified by ts and place it in the current PLIT program
section. Return the address of the translation table.

CH$TRANSLATE( tab, sn, sptr, fill, dn, dptr )

Interpret tab as an address and use it to locate a character translation table.
Interpret sn and dn as unsigned integers (the lengths of the source and the
destination, respectively). Interpret sptr and dptr as pointers and use them to
locate the beginning positions of two character position sequences (the source and
the destination). Interpret fill as a character code.

Let n be sn or dn (the length of the source or the destination), whichever is
smaller. Perform the following steps for i = 1, 2, . . . , n: fetch the contents of
the ith character position of the source, and call its value c. Fetch the contents
of character position c of the character translation table (whose first position is
numbered zero), and call the value tc. Store tc in the ith character position of the
destination.

If sn is greater than dn (that is, the source is longer than the destination), then
ignore the last sn-dn positions of the source. If sn is less than dn, then set the
last (dn-sn) character positions of the destination to fill. Observe that the fill
character code is not translated.

Return a pointer to the (dn+1)th character position of the destination.

The CH$TRANSTABLE function is always a compile-time constant expression.
In fact, the table is created and allocated by the compiler in the same way a
PLIT is created and allocated. The destination of a call on the CH$TRANSLATE
function must not overlap the source; that is, the two sequences must not have
any character positions in common.
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20.2.8.2 Examples
As an example of the use of the sequence-translating functions, consider the
following routine:

ROUTINE R(N, LINE, WORK_BUF): NOVALUE =
BEGIN
BIND

TAB =
CH$TRANSTABLE(

REP 32 OF (%C’*’),
%C’ ’,
REP 10 OF (%C’*’),
%C’+’,
REP 1 OF (%C’*’),
%C’-’,
REP 2 OF (%C’*’),
%C’0’, %C’1’, %C’2’, %C’3’, %C’4’,
%C’5’, %C’6’, %C’7’, %C’8’, %C’9’,
REP 70 OF (%C’*’));

...
CH$TRANSLATE(

TAB,
.N, .LINE,
0,
.N, .WORK_BUF);

STAR = CH$FIND_CH(.N, .WORK_BUF, %C’*’);
IF CH$FAIL(.STAR)

THEN PROCESS(.N, .LINE)
ELSE ERROR(.N, .LINE, CH$DIFF(.STAR, .WORK_BUF));

END;

This routine performs a preliminary check of a given line of text that is expected
to represent one or more integers. For purposes of this routine, the presence of
any character other than a space, a sign, or a digit makes the line invalid. If
the line is valid, then a routine to further process the line if called; that routine,
PROCESS, is not specified here. Otherwise, a routine to handle an invalid line,
ERROR, also not specified here, is called.

The three parameters of the routine are defined as follows:

.N The number of positions in the character position sequence that contains
the given text

.LINE A pointer to the first position of the character position sequence that
contains the given text

.WORK_BUF A pointer to the first character position of a work area that is to receive
the translated sequence

A step-by-step description of the routine R follows:

1. A translation table is defined and its address is bound to TAB. The table is
designed to leave unchanged any space, sign, or decimal digit, but to replace
any other character with an asterisk ( * ).

2. The given character position sequence is translated. If it is valid, it is
unchanged. If it is invalid, each invalid character is replaced by an asterisk.

3. The translated sequence is searched for an asterisk, and the resulting pointer
is assigned to STAR.
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4. The pointer in STAR is checked by means of CH$FAIL. If it is null, then no
asterisk was found and the text is passed to the routine PROCESS. If the
pointer is not null, the line is passed to the error routine together with the
index of the first invalid character.

This program fragment is relatively complicated, but it is very efficient. Without
the translating functions, some method of checking individually for each of the
valid characters would be required.
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A
Predefined Identifiers

A predefined identifier is an identifier that has a special meaning in one
or more dialects of BLISS. For example, ‘‘IF’’ indicates the beginning of a
conditional-expression, and ‘‘MAXU’’ designates the ‘‘unsigned maximum’’
standard-function.

There are four kinds of predefined identifiers that are classified as either
keywords or predefined names. Each keyword is either reserved or unreserved,
and each predefined name is either predeclared or built-in.

The use of a predefined identifier as an explicitly declared name is more or less
restricted, depending on the classification of the identifier. The restrictions are as
follows:

• A reserved keyword must not be used as an explicitly declared name under
any circumstances.

• An unreserved keyword can be used freely as an explicitly declared name,
just as if it were not a predefined identifier. The only disadvantage is that a
reader of a program may be confused to see a familiar BLISS keyword (such
as MAIN, for example) being used as an explicitly declared name.

• A predeclared name can be used as an explicitly declared name. However,
such a use makes it impossible to use the name in its predefined sense within
the scope of the explicit declaration. For example, wherever ABS is explicitly
declared (for example, as a data segment name), it cannot be used as the
name of the absolute value standard-function.

• A built-in name must always appear in an explicit declaration. If it is
declared by a built-in declaration, then it has its predefined meaning;
otherwise, it has the meaning given it by the explicit declaration, just as if it
were not a predefined identifier.

These restrictions can be summarized as follows: In choosing a name, never use
a reserved keyword and avoid the use of any predefined name if its use could
cause confusion.

The following list includes identifiers that are predefined in the versions of
BLISS described in this manual, as well as a number of identifiers that will be
predefined in later versions of BLISS. The applicable dialects are indicated by
parenthesized numbers in the classification column.

Identifier Classification Usage

ABS predeclared name standard-function

ABSOLUTE unreserved keyword(16,32) addr.-mode, object-option

ACTUALCOUNT built-in name linkage-function
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Identifier Classification Usage

ACTUALPARAMETER built-in name linkage-function

ADDRESSING_MODE reserved keyword addr.-mode-attr., -switch

ALIGN reserved keyword alignment-attribute

ALWAYS reserved keyword select-label

AND reserved keyword operator-expression

AP built-in name(32,36) register-name

ARGPTR built-in name linkage-function

ASSEMBLY unreserved keyword list-option

BEGIN reserved keyword block

BINARY unreserved keyword list-option

BIND reserved keyword bind-declaration

BIT reserved keyword (Future BLISS)

BITVECTOR predeclared name structure-name

BLISS predeclared name linkage-name

BLISS10 predeclared name(36) environment-option

BLISS10_OTS unreserved keyword(36) environment-option

BLISS16 unreserved keyword language-name

BLISS32 unreserved keyword language-name

BLISS36 unreserved keyword language-name

BLISS36C predeclared name(36) linkage-name

BLISS36C_OTS unreserved keyword(36) environment-option

BLOCK predeclared name structure-name

BLOCKVECTOR predeclared name structure-name

BUILTIN reserved keyword built-in-declaration

BY reserved keyword indexed-loop

BYTE reserved keyword allocation-unit

CALL unreserved keyword(16,32) linkage-type

CASE reserved keyword case-expression

CH$A_RCHAR predeclared name supplementary-function

CH$A_WCHAR predeclared name supplementary-function

CH$ALLOCATION predeclared name supplementary-function

CH$COMPARE predeclared name supplementary-function

CH$COPY predeclared name supplementary-function

CH$DIFF predeclared name supplementary-function

CH$EQL predeclared name supplementary-function

CH$FAIL predeclared name supplementary-function

CH$FILL predeclared name supplementary-function

CH$FIND_CH predeclared name supplementary-function

A–2 Predefined Identifiers



Identifier Classification Usage

CH$FIND_NOT_CH predeclared name supplementary-function

CH$FIND_SUB predeclared name supplementary-function

CH$GEQ predeclared name supplementary-function

CH$GTR predeclared name supplementary-function

CH$LEQ predeclared name supplementary-function

CH$LSS predeclared name supplementary-function

CH$MOVE predeclared name supplementary-function

CH$NEQ predeclared name supplementary-function

CH$PLUS predeclared name supplementary-function

CH$PTR predeclared name supplementary-function

CH$RCHAR predeclared name supplementary-function

CH$RCHAR_A predeclared name supplementary-function

CH$SIZE predeclared name supplementary-function

CH$TRANSLATE predeclared name supplementary-function

CH$TRANSTABLE predeclared name supplementary-function

CH$WCHAR predeclared name supplementary-function

CH$WCHAR_A predeclared name supplementary-function

CLEARSTACK unreserved keyword(16,36) linkage-option

CODE unreserved keyword module-switch

CODECOMMENT reserved keyword codecomment block

COMMENTARY unreserved keyword list-option

COMPILETIME reserved keyword compile-time-declaration

CONCATENATE unreserved keyword psect-attribute

DEBUG unreserved keyword module-switch

DECR reserved keyword indexed-loop

DECRA reserved keyword indexed-loop

DECRU reserved keyword indexed-loop

DO reserved keyword loop-expression

ELSE reserved keyword conditional-expression

ELUDOM reserved keyword module

EMT unreserved keyword(16) linkage-option

ENABLE reserved keyword enable-declaration

END reserved keyword block

ENTRY unreserved keyword(36) module-switch

ENVIRONMENT unreserved keyword(36) module-switch

EQL reserved keyword operator-expression

EQLA reserved keyword operator-expression

EQLU reserved keyword operator-expression
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Identifier Classification Usage

EQV reserved keyword operator-expression

ERRS unreserved keyword switch-item, module-switch

EXECUTE unreserved keyword psect-attribute

EXITLOOP reserved keyword exitloop-expression

EXPAND unreserved keyword list-option

EXTENDED unreserved keyword(36) environment-option

EXTERNAL reserved keyword address-mode-switch

FIELD reserved keyword field-declaration, -attribute

FORTRAN predeclared name(16,32) linkage-name

FORTRAN_FUNC predeclared name linkage-name

FORTRAN_SUB predeclared name linkage-name

FORWARD reserved keyword data-, routine-declaration

FP built-in name(32,36) register-name

FROM reserved keyword indexed-loop, case-expression

F10 predeclared name(36) linkage-name

GENERAL unreserved keyword(32) addressing-mode

GEQ reserved keyword operator-expression

GEQA reserved keyword operator-expression

GEQU reserved keyword operator-expression

GLOBAL reserved keyword linkage-option, psect-attribute

GTR reserved keyword operator-expression

GTRA reserved keyword operator-expression

GTRU reserved keyword operator-expression

IDENT unreserved keyword module-switch

IF reserved keyword conditional-expression

INCR reserved keyword indexed-loop

INCRA reserved keyword indexed-loop

INCRU reserved keyword indexed-loop

INDIRECT unreserved keyword(36) addressing-mode

INITIAL reserved keyword initial-attribute

INRANGE reserved keyword case-label

INTERRUPT unreserved keyword(16,32) linkage-type

IOPAGE reserved keyword (Future BLISS)

IOT unreserved keyword(16) linkage-type

JSB unreserved keyword(32) linkage-type

JSR unreserved keyword(16) linkage-type

JSYS unreserved keyword(36) linkage-type
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Identifier Classification Usage

KEYWORDMACRO reserved keyword keyword-macro-declaration

KA10 unreserved keyword(36) environment-option

KC10 unreserved keyword(36) environment-option

KI10 unreserved keyword(36) environment-option

KL10 unreserved keyword(36) environment-option

KS10 unreserved keyword(36) environment-option

LABEL reserved keyword label-declaration

LANGUAGE unreserved keyword switch-item, module-switch

LEAVE reserved keyword leave-expression

LEQ reserved keyword operator-expression

LEQA reserved keyword operator-expression

LEQU reserved keyword operator-expression

LIBRARY reserved keyword list-option, library-declaration

LINKAGE reserved keyword switch, linkage-declaration

LINKAGE_REGS unreserved keyword(36) linkage-option

LIST unreserved keyword switch-item, module-switch

LITERAL reserved keyword literal-declaration

LOCAL reserved keyword local-declaration, psect-attribute

LONG reserved keyword allocation-unit

LONG_RELATIVE unreserved keyword(32) addressing-mode

LSI11 unreserved keyword(16) environment-option

LSS reserved keyword operator-expression

LSSA reserved keyword operator-expression

LSSU reserved keyword operator-expression

MACRO reserved keyword macro-declaration

MAIN unreserved keyword module-switch

MAP reserved keyword map-declaration

MAX predeclared name standard-function

MAXA predeclared name standard-function

MAXU predeclared name standard-function

MIN predeclared name standard-function

MINA predeclared name standard-function

MINU predeclared name standard-function

MOD reserved keyword operator-expression

MODULE reserved keyword module

NEQ reserved keyword operator-expression
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Identifier Classification Usage

NEQA reserved keyword operator-expression

NEQU reserved keyword operator-expression

NOASSEMBLY unreserved keyword list-option

NOBINARY unreserved keyword list-option

NOCODE unreserved keyword module-switch

NOCOMMENTARY unreserved keyword list-option

NODEBUG unreserved keyword module-switch

NODEFAULT unreserved keyword psect-attribute

NOERRS unreserved keyword switch-item, module-switch

NOEXECUTE unreserved keyword psect-attribute

NOEXPAND unreserved keyword list-option

NOINDIRECT unreserved keyword(36) addressing-mode

NOLIBRARY unreserved keyword list-option

NONEXTERNAL unreserved keyword(32) addressing-mode-switch

NOOBJECT unreserved keyword list-option

NOOPTIMIZE unreserved keyword switch-item, module-switch

NOPIC unreserved keyword psect-attribute

NOPRESERVE unreserved keyword linkage-option

NOREAD unreserved keyword psect-attribute

NOREQUIRE unreserved keyword list-option

NOSAFE unreserved keyword switch-item, module-switch

NOSHARE unreserved keyword psect-attribute

NOSOURCE unreserved keyword list-option

NOSYMBOLIC unreserved keyword list-option

NOT reserved keyword operator-expression

NOTRACE unreserved keyword list-option

NOTUSED unreserved keyword(32) linkage-option

NOUNAMES unreserved keyword switch-item, module-switch

NOVALUE reserved keyword novalue-attribute

NOWRITE unreserved keyword psect-attribute

NOZIP unreserved keyword switch-item, module-switch

NULLPARAMETER built-in name(16,32) linkage-function

OBJECT unreserved keyword list-option, module-switch

OF reserved keyword case-, select-expression; plit

OPTIMIZE unreserved keyword switch-item, module-switch

OPTLEVEL unreserved keyword module-switch

OR reserved keyword operator-expression

ORIGIN unreserved keyword(36) psect-attribute

OTHERWISE reserved keyword select-label
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Identifier Classification Usage

OTS unreserved keyword(36) module-switch

OTS_LINKAGE unreserved keyword(36) module-switch

OUTRANGE reserved keyword case-label

OVERLAY unreserved keyword psect-attribute

OWN reserved keyword own-declaration

PC built-in name(16,32) register-name

PIC unreserved keyword psect-attribute

PLIT reserved keyword plit

PORTAL unreserved keyword(36) linkage-option

PRESERVE unreserved keyword linkage-option

PRESET reserved keyword preset-attribute

PSECT reserved keyword psect-declaration, -allocation

PS_INTERRUPT unreserved keyword(36) linkage-type

PUSHJ unreserved keyword(36) linkage-type

READ unreserved keyword psect-attribute

RECORD reserved keyword (Future BLISS)

REF reserved keyword structure-attribute

REGISTER reserved keyword register-, linkage-declaration

RELATIVE unreserved keyword(16) addressing-mode

RELOCATABLE unreserved keyword(16) object-option

REP reserved keyword plit

REQUIRE reserved keyword list-option, require-declaration

RETURN reserved keyword return-expression

ROUTINE reserved keyword routine-declaration

RSX_AST unreserved keyword(16) linkage-type

RTT unreserved keyword(16) linkage-option

R0 built-in name(16,32) register-name

R1 built-in name(16,32) register-name

R2 built-in name(16,32) register-name

R3 built-in name(16,32) register-name

R4 built-in name(16,32) register-name

R5 built-in name(16,32) register-name

R6 built-in name(32) register-name

R7 built-in name(32) register-name

R8 built-in name(32) register-name

R9 built-in name(32) register-name

R10 built-in name(32) register-name

R11 built-in name(32) register-name
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Identifier Classification Usage

SAFE unreserved keyword switch-item, module-switch

SELECT reserved keyword select-expression

SELECTA reserved keyword select-expression

SELECTONE reserved keyword select-expression

SELECTONEA reserved keyword select-expression

SELECTONEU reserved keyword select-expression

SELECTU reserved keyword select-expression

SET reserved keyword case-, select-expression; field-declaration

SETUNWIND predeclared name condition-handling-function

SHARE unreserved keyword psect-attribute

SHOW reserved keyword (Future BLISS)

SIGN predeclared name standard-function

SIGNAL predeclared name condition-handling-function

SIGNAL_STOP predeclared name condition-handling-function

SIGNED reserved keyword extension-, range-attribute

SKIP unreserved keyword(36) linkage-option

SOURCE unreserved keyword list-option

SP built-in name register-name

STACK unreserved keyword(36) environment-option

STACKLOCAL reserved keyword stacklocal-declaration

STANDARD unreserved keyword linkage-declaration

STANDARD_OTS unreserved keyword(36) environment-option

STRUCTURE reserved keyword structure-declaration, switch

SWITCHES reserved keyword switches-declaration

SYMBOLIC unreserved keyword list-option

T11 unreserved-keyword(16) environment-option

TES reserved keyword case-, select-expression; field-declaration

THEN reserved keyword conditional-expression

TO reserved keyword loop, case-expression, select-label

TOPS10 unreserved keyword(36) environment-option

TOPS20 unreserved keyword(36) environment-option

TRACE unreserved keyword list-option

TRAP unreserved keyword(16) linkage-type

UNAMES unreserved keyword switch-item, module-switch

UNDECLARE reserved keyword undeclare-declaration

UNSIGNED reserved keyword extension-, range-attribute

UNTIL reserved keyword loop-expression
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Identifier Classification Usage

UPLIT reserved keyword plit

VALUECBIT unreserved keyword(16) linkage-option

VECTOR predeclared name structure-name, psect-attr.

VERSION unreserved keyword switch-item, module-switch

VOLATILE reserved keyword volatile-attribute

WEAK reserved keyword weak-attribute

WHILE reserved keyword loop-expression

WITH reserved keyword leave-expression

WORD reserved keyword allocation-unit

WORD_RELATIVE unreserved keyword addressing-mode

WRITE unreserved keyword psect-attribute

XOR reserved keyword operator-expression

ZIP unreserved keyword switch-item, module-switch

$CODE$ predeclared name psect-name

$GLOBAL$ predeclared name psect-name

$HIGH$ predeclared name(36) psect-name

$LOW$ predeclared name(36) psect-name

$OWN$ predeclared name psect-name

$PLIT$ predeclared name psect-name

%ALLOCATION reserved keyword allocation-function

%ASCIC reserved keyword(16,32) string-literal

%ASCID reserved keyword string-literal

%ASCII reserved keyword string-literal

%ASCIZ reserved keyword string-literal

%ASSIGN reserved keyword calculation-function

%B reserved keyword integer-literal

%BLISS reserved keyword compiler-state-function

%BLISS16 reserved keyword predeclared macro

%BLISS32 reserved keyword predeclared macro

%BLISS36 reserved keyword predeclared macro

%BPADDR reserved keyword predeclared literal

%BPUNIT reserved keyword predeclared literal

%BPVAL reserved keyword predeclared literal
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Identifier Classification Usage

%C reserved keyword integer-literal

%CHAR reserved keyword string-function

%CHARCOUNT reserved keyword string-function

%COUNT reserved keyword macro-function

%CTCE reserved keyword exp-test-function

%D reserved keyword float-literal

%DECIMAL reserved keyword integer-literal

%DECLARED reserved keyword compiler-state-function

%E reserved keyword float-literal

%ELSE reserved keyword lexical-conditional

%ERROR reserved keyword advisory-function

%ERRORMACRO reserved keyword advisory-function

%EXACTSTRING reserved keyword string-function

%EXITITERATION reserved keyword macro-function

%EXITMACRO reserved keyword macro-function

%EXPAND reserved keyword quote-function

%EXPLODE reserved keyword delimiter-function

%FI reserved keyword lexical-conditional

%FIELDEXPAND reserved keyword fieldexpand-function

%G reserved keyword float-literal

%H reserved keyword float-literal

%IDENTICAL reserved keyword sequence-test-function

%IF reserved keyword lexical-conditional

%INFORM reserved keyword advisory-function

%ISSTRING reserved keyword exp-test-function

%LENGTH reserved keyword macro-function

%LTCE reserved keyword exp-test-function

%MESSAGE reserved keyword advisory-function

%NAME reserved keyword name-function

%NBITS reserved keyword bits-function
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Identifier Classification Usage

%NBITSU reserved keyword bits-function

%NULL reserved keyword sequence-test-function

%NUMBER reserved keyword calculation-function

%O reserved keyword integer-literal

%P reserved keyword string-literal

%PRINT reserved keyword advisory-function

%QUOTE reserved keyword quote-function

%QUOTENAME reserved keyword macro-name function

%RAD50_10 reserved keyword(36) string-literal

%RAD50_11 reserved keyword(16,32) string-literal

%REF reserved keyword standard-function

%REMAINING reserved keyword macro-function

%REMOVE reserved keyword delimiter-function

%REQUIRE reserved keyword require-function

%SBTTL reserved keyword title-function

%SIXBIT reserved keyword(36) string-literal

%SIZE reserved keyword allocation-function

%STRING reserved keyword string-function

%SWITCHES reserved keyword compiler-state-function

%THEN reserved keyword lexical-conditional

%TITLE reserved keyword title-function

%UNQUOTE reserved keyword quote-function

%UPVAL reserved keyword predeclared literal

%VARIANT reserved keyword compiler-state-function

%WARN reserved keyword advisory-function

%X reserved keyword integer-literal
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B
String Encodings

This appendix describes the several types of character-string encodings used in
the BLISS dialects:

• In BLISS–16 and BLISS–32: ASCII and RAD50_11

• In BLISS–36: ASCII, RAD50_10, and SIXBIT

B.1 ASCII Encoding
An ASCII string-literal is a common way of encoding a character sequence.
The size of an ASCII character position varies with the dialect as follows: In
BLISS–16 and BLISS–32, one character occupies an 8-bit byte; in BLISS–36,
each 36-bit word contains five ASCII character positions, each of which occupies
seven bits.

The code value for each ASCII character can be found in B–1 both in octal and
hexadecimal representation.

Table B–1 ASCII Code Table

Octal
Code

Hex
Code

ASCII
Char.

Octal
Code

Hex
Code

ASCII
Char.

Octal
Code

Hex
Code

ASCII
Char.

000 00 NUL 053 2B + 126 56 V

001 01 SOH 054 2C , 127 57 W

002 02 STX 055 2D – 130 58 X

003 03 ETX 056 2E . 131 59 Y

004 04 EOT 057 2F / 132 5A Z

005 05 ENQ 060 30 0 133 5B [

006 06 ACK 061 31 1 134 5C \

007 07 BEL 062 32 2 135 5D ]

010 08 BS 063 33 3 136 5E ^

011 09 HT 064 34 4 137 5F _

012 0A LF 065 35 5 140 60 `

013 0B VT 066 36 6 141 61 a

014 0C FF 067 37 7 142 62 b

015 0D CR 070 38 8 143 63 c

016 0E SO 071 39 9 144 64 d

017 0F SI 072 3A : 145 65 e

(continued on next page)
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Table B–1 (Cont.) ASCII Code Table

Octal
Code

Hex
Code

ASCII
Char.

Octal
Code

Hex
Code

ASCII
Char.

Octal
Code

Hex
Code

ASCII
Char.

020 10 DLE 073 3B ; 146 66 f

021 11 DC1 074 3C < 147 67 g

022 12 DC2 075 3D = 150 68 h

023 13 DC3 076 3E > 151 69 i

024 14 DC4 077 3F ? 152 6A j

025 15 NAK 100 40 @ 153 6B k

026 16 SYN 101 41 A 154 6C l

027 17 ETB 102 42 B 155 6D m

030 18 CAN 103 43 C 156 6E n

031 19 EM 104 44 D 157 6F o

032 1A SUB 105 45 E 160 70 p

033 1B ESC 106 46 F 161 71 q

034 1C FS 107 47 G 162 72 r

035 1D GS 110 48 H 163 73 s

036 1E RS 111 49 I 164 74 t

037 1F US 112 4A J 165 75 u

040 20 space 113 4B K 166 76 v

041 21 ! 114 4C L 167 77 w

042 22 " 115 4D M 170 78 x

043 23 # 116 4E N 171 79 y

044 24 $ 117 4F O 172 7A z

045 25 % 120 50 P 173 7B {

046 26 & 121 51 Q 174 7C |

047 27 ’ 122 52 R 175 7D }

050 28 ( 123 53 S 176 7E ~

051 29 ) 124 54 T 177 7F DEL

052 2A * 125 55 U

B.2 Radix–50 Encoding
A Radix–50 string-literal specifies a particular way of encoding and packing a
sequence of characters. The characters in the string-literal must be members of
the Radix–50 character set, which is a 40-character subset of the ASCII graphic
characters. This subset is the same for all three BLISS dialects, but the details
of encoding and packing vary between BLISS–16 and BLISS–32 on one hand
(RAD50_11) and BLISS–36 on the other (RAD50_10). These two variations of
Radix–50 encoding are described in the following two subsections.
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B.2.1 RAD50_11 Encoding
In BLISS–16 and BLISS–32, Radix–50 encoding is invoked with the %RAD50_11
string function (see Section 4.3). A sequence of Radix–50 characters is packed
three characters per 16-bit word, as described below.

If necessary, trailing blanks are added so that the number of characters in the
sequence is a multiple of 3. Then the sequence is divided into groups of three
characters. The code for each character is obtained from B–2, based on both the
character and its position in its group. Then the octal codes for each character in
a group are added together to obtain a 16-bit value.

For example, if the string-literal %RAD50_11’ AB’ is evaluated, a trailing blank
is added, giving %RAD50_11’ AB ’ . Then the literal is encoded and packed as
follows:

A (as first character) = 003100

B (as second character) = 000120

Blank (as third character) = 000000

%RAD50_11’ AB’ = 003220 (octal)

The character encoding table is derived as follows. The Radix–50 character set is
composed of 50 (octal) characters. These characters are treated as the digits of a
radix-50 number system. Suppose the ith character of the set must be encoded.
Depending on whether it is the first (leftmost), second, or third character of a
sequence, the character is encoded as 50*50*i, 50*i, or i (all octal). The value 50
(octal) was chosen as the radix because it is the largest value that permits the
packing of three characters into a 16-bit word.

Table B–2 RAD50_11 Code Table

First Character Second Character Third Character

Blank 000000 Blank 000000 Blank 000000

A 003100 A 000050 A 000001

B 006200 B 000120 B 000002

C 011300 C 000170 C 000003

D 014400 D 000240 D 000004

E 017500 E 000310 E 000005

F 022600 F 000360 F 000006

G 025700 G 000430 G 000007

H 031000 H 000500 H 000010

I 034100 I 000550 I 000011

J 037200 J 000620 J 000012

K 042300 K 000670 K 000013

L 045400 L 000740 L 000014

M 050500 M 001010 M 000015

N 053600 N 001060 N 000016

O 056700 O 001130 O 000017

(continued on next page)
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Table B–2 (Cont.) RAD50_11 Code Table

First Character Second Character Third Character

P 062000 P 001200 P 000020

Q 065100 Q 001250 Q 000021

R 070200 R 001320 R 000022

S 073300 S 001370 S 000023

T 076400 T 001440 T 000024

U 101500 U 001510 U 000025

V 104600 V 001560 V 000026

W 107700 W 001630 W 000027

X 113000 X 001700 X 000030

Y 116100 Y 001750 Y 000031

Z 121200 Z 002020 Z 000032

$ 124300 $ 002070 $ 000033

. 127400 . 002140 . 000034

Unused 132500 Unused 002210 Unused 000035

0 135600 0 002260 0 000036

1 140700 1 002330 1 000037

2 144000 2 002400 2 000040

3 147100 3 002450 3 000041

4 152200 4 002520 4 000042

5 155300 5 002570 5 000043

6 160400 6 002640 6 000044

7 163500 7 002710 7 000045

8 166600 8 002760 8 000046

9 171700 9 003030 9 000047

B.2.2 RAD50_10 Encoding
In BLISS–36, Radix–50 encoding is invoked with the %RAD50_10 string function
(see Section 4.3). A sequence of Radix–50 characters is encoded and packed six
characters per 36-bit word, as described below.

The sequence is divided into groups of six characters. If the last (or only)
group contains less than six characters, leading blanks are added to the group
in order to extend it to six characters. For each of these groups, the code for
each character is obtained from B–3 and B–4, which list codes starting with
the righthand character. (Note that this table has several differences from the
RAD50_11 table.) Then these octal codes are added to obtain a 36-bit value.

For example, if the string-literal %RAD50_11 ’ ABCD’ is evaluated, two leading
blanks are added, giving %RAD50-11 ’ ABCD’ . Then the literal is encoded and
packed as follows:

D (as rightmost character) = 000000000016

C (as second character from right) = 000000001010
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B (as third character from right) = 000000045400

A (as fourth character from right) = 000002537000

Blank (as fifth character from right) = 000000000000

Blank (as sixth character from
right)

= 000000000000

%RAD50_10’ ABCD’ = 000002605426 (octal)

The RAD50_10 character encoding table is derived as follows. The Radix–50
character set is composed of 50 (octal) characters. These characters are treated
as the digits of a Radix–50 number system. If the ith character of the set which
is located as the nth character from the right in a group must be encoded,
it is represented as (50**(n–1))*i (where numbers are octal and ** denotes
exponentiation). Thus if six characters are numbered from right to left in the
following form:

C(6) C(5) C(4) C(3) C(2) C(1)

where C(n) is the octal code for the nth character, the RAD50_10 representation
of the character string can be generated by the following:

((((((C(6)*50)+C(5))*50+C(4))*50+C(3))*50+C(2))*50+C(1)

where all numbers are octal.

Table B–3 RAD50_10 Code Table

Rightmost Character Code
Second Character

from Right
Third Character

from Right

Blank 000000000000 Blank 000000000000 Blank 000000000000

0 000000000001 0 000000000050 0 000000003100

1 000000000002 1 000000000120 1 000000006200

2 000000000003 2 000000000170 2 000000011300

3 000000000004 3 000000000240 3 000000014400

4 000000000005 4 000000000310 4 000000017500

5 000000000006 5 000000000360 5 000000022600

6 000000000007 6 000000000430 6 000000025700

7 000000000010 7 000000000500 7 000000031000

8 000000000011 8 000000000550 8 000000034100

9 000000000012 9 000000000620 9 000000037200

A 000000000013 A 000000000670 A 000000042300

B 000000000014 B 000000000740 B 000000045400

C 000000000015 C 000000001010 C 000000050500

D 000000000016 D 000000001060 D 000000053600

E 000000000017 E 000000001130 E 000000056700

F 000000000020 F 000000001200 F 000000062000

G 000000000021 G 000000001250 G 000000065100

H 000000000022 H 000000001320 H 000000070200

(continued on next page)
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Table B–3 (Cont.) RAD50_10 Code Table

Rightmost Character Code
Second Character

from Right
Third Character

from Right

I 000000000023 I 000000001370 I 000000073300

J 000000000024 J 000000001440 J 000000076400

K 000000000025 K 000000001510 K 000000101500

L 000000000026 L 000000001560 L 000000104600

M 000000000027 M 000000001630 M 000000107700

N 000000000030 N 000000001700 N 000000113000

O 000000000031 O 000000001750 O 000000116100

P 000000000032 P 000000002020 P 000000121200

Q 000000000033 Q 000000002070 Q 000000124300

R 000000000034 R 000000002140 R 000000127400

S 000000000035 S 000000002210 S 000000132500

T 000000000036 T 000000002260 T 000000135600

U 000000000037 U 000000002330 U 000000140700

V 000000000040 V 000000002400 V 000000144000

W 000000000041 W 000000002450 W 000000147100

X 000000000042 X 000000002520 X 000000152200

Y 000000000043 Y 000000002570 Y 000000155300

Z 000000000044 Z 000000002640 Z 000000160400

. 000000000045 . 000000002710 . 000000163500

$ 000000000046 $ 000000002760 $ 000000166600

% 000000000047 % 000000003030 % 000000171700

Table B–4 RAD50_10 Code Table

Fourth Character from Right Fifth Character from Right
Sixth Character

from Right

Blank 000000000000 Blank 000000000000 Blank 000000000000

0 000000175000 0 000011610000 0 000606500000

1 000000372000 1 000023420000 1 001415200000

2 000000567000 2 000035230000 2 002223700000

3 000000764000 3 000047040000 3 003032400000

4 000001161000 4 000060650000 4 003641100000

5 000001356000 5 000072460000 5 004447600000

6 000001553000 6 000104270000 6 005256300000

7 000001750000 7 000116100000 7 006065000000

8 000002145000 8 000127710000 8 006673500000

9 000002342000 9 000141520000 9 007502200000

A 000002537000 A 000153330000 A 010310700000

(continued on next page)
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Table B–4 (Cont.) RAD50_10 Code Table

Fourth Character from Right Fifth Character from Right
Sixth Character

from Right

B 000002734000 B 000165140000 B 011117400000

C 000003131000 C 000176750000 C 011726100000

D 000003326000 D 000210560000 D 012534600000

E 000003523000 E 000222370000 E 013343300000

F 000003720000 F 000234200000 F 014152000000

G 000004115000 G 000246010000 G 014760500000

H 000004312000 H 000257620000 H 015567200000

I 000004507000 I 000271430000 I 016375700000

J 000004704000 J 000303240000 J 017204400000

K 000005101000 K 000315050000 K 020013100000

L 000005276000 L 000326660000 L 020621600000

M 000005473000 M 000340470000 M 021430300000

N 000005670000 N 000352300000 N 022237000000

O 000006065000 O 000364110000 O 023045500000

P 000006262000 P 000375720000 P 023654200000

Q 000006457000 Q 000407530000 Q 024462700000

R 000006654000 R 000421340000 R 025271400000

S 000007051000 S 000433150000 S 026100100000

T 000007246000 T 000444760000 T 026706600000

U 000007443000 U 000456570000 U 027515300000

V 000007640000 V 000470400000 V 030324000000

W 000010035000 W 000502210000 W 031132500000

X 000010232000 X 000514020000 X 031741200000

Y 000010427000 Y 000525630000 Y 032547700000

Z 000010624000 Z 000537440000 Z 033356400000

. 000011021000 . 000551250000 . 034165100000

$ 000011216000 $ 000563060000 $ 034773600000

% 000011413000 % 000574670000 % 035602300000

B.3 Sixbit Encoding
In BLISS–36, SIXBIT encoding is invoked with the %SIXBIT string function (see
Section 4.3). SIXBIT encoding applies to the 64-character graphic subset of the
ASCII characters. A sequence of SIXBIT characters is encoded as follows.

A character-sequence is divided into groups of six characters, with trailing blanks
added to fill the final (or only) group of six, if necessary. Lowercase letters are
converted to uppercase and then the 6-bit character code found in Table B-5 is
obtained for each character. These six 6-bit codes form a fullword (36-bits).
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Table B–5 SIXBIT Code Table sixbit_tab

Octal
Code

SIXBIT
Char

Octal
Code

SIXBIT
Char

Octal
Code

SIXBIT
Char

00 space 25 5 53 K

01 ! 26 6 54 L

02 " 27 7 55 M

03 # 30 8 56 N

04 $ 31 9 57 O

05 % 32 : 60 P

06 & 33 ; 61 Q

07 ’ 34 < 62 R

10 ( 35 = 63 S

11 ) 36 > 64 T

12 * 37 ? 65 U

13 + 40 @ 66 V

14 , 41 A 67 W

15 – 42 B 70 X

16 . 43 C 71 Y

17 / 44 D 72 Z

20 0 45 E 73 [

21 1 46 F 74 \

22 2 47 G 75 ]

23 3 50 I 76 ^

24 4 51 J 77 _

25 5 52 K
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C
Transportability Checking

This appendix describes the transportability checking that is performed by each
compiler in response to the LANGUAGE special-switch. See Sections 18.2 and
19.2 for the description of the LANGUAGE switch, and particularly Section 18.2.5
for a general discussion of its use.

When transportability checking is performed, the compiler scans the source input
for any of the language features described below, and issues a warning message
reporting any occurrence of such features. Two classes of transportability
checking are currently provided, depending on how the language-list is specified
in the LANGUAGE switch. The two classes are as follows:

1. Full Transportability Checking is performed if any one of the following
specifications appears in the language-list:

COMMON
BLISS16,BLISS36
BLISS32,BLISS36
BLISS16,BLISS32,BLISS36

All dialectal constructs are checked, as well as any other construct likely to
cause problems in transporting a program between any two target systems.

2. BLISS–16/BLISS–32 Subset Checking is performed if the specification
BLISS16, BLISS32 appears in the language list. This is a somewhat relaxed
form of full (that is, Common BLISS) checking. Certain dialectal features
that are valid in both BLISS–16 and BLISS–32 are not checked for in this
case.

When no LANGUAGE switch appears in the module-head, or when a switch that
specifies or implies only one language-name appears in either the module-head
or a SWITCHES declaration, no transportability checking is done within the
module or within the scope of the declaration, respectively (except that the switch
specification, if explicit, is checked for validity). If specified, the LANGUAGE
switch must include (or imply) the language-name corresponding to the compiler
in use.

The specific language constructs involved in full checking and in BLISS–16
/BLISS–32 subset checking are described in separate sections below.

C.1 Full Transportability Checking
The dialectal or problematic language features checked for and reported on under
full checking are categorized below in alphabetical order.

Attributes—The dialectal attributes are as follows:

• Addressing-mode attribute

• Alignment-attribute
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• Allocation-units BYTE, WORD, and LONG

• Extension-attributes SIGNED and UNSIGNED (when used as extension-
attributes, see note below)

• Weak-attribute

Note

The keyword SIGNED or UNSIGNED when used as part of a range-
attribute in a literal-declaration is a Common BLISS construct.

Built-in names and declarations—The occurrence, in a BUILTIN declaration, of
any built-in-name except ACTUALCOUNT or ACTUALPARAMETER (common
linkage-functions) is reported.

Condition handling features—Any use of an ENABLE declaration expression is
reported. Use of parameters to SETUNWIND is reported.

Field selectors—Any field-selector that specifies a field not entirely contained
within a fullword is reported. (That is, the position and size values must not
exceed %BPVAL, and neither must their sum.) Also, any field-reference that
does not modify a fetch or store operation and whose position value is not zero is
reported. Note that the field-selector parameters must be compile-time constant
expressions for the compiler to perform this checking.

GLOBAL and EXTERNAL names—The occurrence of any global- or external-
name that is not unique (throughout the module) within its first six characters is
reported.

Linkage declarations—Any use of a linkage-declaration is reported.

Linkage switches and linkage attributes—The use of any linkage-name other than
FORTRAN_FUNC or FORTRAN_SUB in a linkage-switch or linkage-attribute is
reported.

Literals—Occurrences of the following kinds of literals are reported:

• %E, %D, %G, and %H numeric-literals (floating point) and %P string-literals
(packed decimal)

• Any string-literal used as a primary expression (that is, not a plit-item)

• An alphanumeric string-literal with a string-type other than %ASCII or
%ASCIZ.

Module-switches—The occurrences of any of the following module-switches are
reported:

PSECT declarations—Any use of a PSECT declaration is reported.

ADDRESSING_MODE OTS OTS_LINKAGE

Switches—The occurrence of ADDRESSING_MODE in a SWITCHES declaration
is reported.
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C.2 BLISS–16/BLISS–32 Subset Checking
The slightly less restrictive set of language features (relative to full checking)
checked for and reported on under BLISS–16/BLISS–32 subset checking is
categorized below in alphabetical order.

(Briefly, the allocation-units BYTE and WORD, the extension-units SIGNED
and UNSIGNED, and the string-type %RAD50_11 are considered transportable
constructs in this case.)

Attributes—The attributes checked on are as follows:

• Addressing-mode attribute

• Alignment-attribute

• Allocation-unit LONG

• Weak-attribute

Built-in names and declarations—The occurrence, in a BUILTIN declaration, of
any built-in name except ACTUALCOUNT or ACTUALPARAMETER (common
linkage-functions) is reported.

Condition-handling features—Any use of an ENABLE declaration is reported.

Field selectors—Any field-selector that specifies a field not entirely contained
within a fullword is reported. (That is, the position and size values must not
exceed %BPVAL, and neither must their sum.) Also, any field-reference that
does not modify a fetch or store operation and whose position value is not zero is
reported. Note that the field-selector parameters must be compile-time constant
expressions for the compiler to perform this checking.

GLOBAL and EXTERNAL names—The occurrence of any global- or external-
name that is not unique (throughout the module) within its first six characters is
reported.

Linkage declarations—Any use of a linkage-declaration is reported.

Linkage switches and linkage attributes—The use of any linkage-name other than
BLISS, FORTRAN, FORTRAN_FUNC, or FORTRAN_SUB in a linkage-switch or
linkage- attribute is reported.

Literals—Occurrences of the following kinds of literals are reported:

• %E, %D, %G, and %H numeric-literals (floating point) and %P string-literals
(packed decimal)

• Any string-literal used as a primary expression (that is, not a plit-item)

• An ‘‘alphanumeric’’ string-literal with a string-type other than %ASCII,
%ASCIZ, or %RAD50_11.

Module-switches—The occurrences of any of the following module-switches are
reported:

PSECT declarations—Any use of a PSECT declaration is reported.

ADDRESSING_MODE OTS OTS_LINKAGE

Switches—The occurrence of ADDRESSING_MODE in a SWITCHES declaration
is reported.
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D
Built-In Functions

This appendix lists the names of the built-in machine-specific functions
predefined for each BLISS dialect. Detailed descriptions of these functions may
be found in the user manual associated with each BLISS dialect.

D.1 BLISS–16 Machine-Specific Functions
The following lists the predefined BLISS–32 machine-specific functions by
operation.

D.1.1 Memory Management Operations

MFPD Move from previous data space

MTPD Move to previous data space

MFPI Move from previous instruction space

MTPI Move to previous instruction space

D.1.2 Processor Status Operations

MFPS Move byte from processor status word

MTPS Move byte to processor status word

SPL Set priority level

D.1.3 Bit Manipulation Operations

ROT Rotate

SWAB Swap bytes

D.1.4 Arithmetic Operations

ADDD Add D-floating operands

ADDF Add F-floating operands

ADDM Add multiword operands

DIVD Divide D-floating operands

DIVF Divide F-floating operands

EDIV Extended-precision divide

EMUL Extended-precision multiply
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MULD Multiply D-floating operands

MULF Multiply F-floating operands

SUBD Subtract D-floating operands

SUBF Subtract F-floating operands

SUBM Subtract multiword operands

D.1.5 Arithmetic Comparison Operations

CMPD Compare D-floating operands

CMPF Compare F-floating operands

CMPM Compare multiword operands

D.1.6 Arithmetic Conversion Operations

CVTDF Convert D-floating to F-floating

CVTFD Convert F-floating to D-floating

CVTDI Convert D-floating to integer

CVTID Convert integer to D-floating

CVTFI Convert F-floating to integer

CVTIF Convert integer to F-floating

D.1.7 Processor Action Operations

BPT Breakpoint trap

HALT Halt processor

NOP No operation

RESET Reset hardware

WAIT Processor wait

D.1.8 Miscellaneous Operations

DECX Specialized routine call

D.2 BLISS–32 Machine-Specific Functions
The following lists the predefined BLISS–32 machine-specific functions by
operation.

D.2.1 Processor Register Operations

MFPR Move from a processor register

MTPR Move to a processor register
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D.2.2 Parameter Validation Operations

PROBER Probe read accessibility

PROBEW Probe write accessibility

D.2.3 Program Status Operations

BICPSW Bit clear processor status word

BISPSW Bit set processor status word

MOVPSL Move from processor status longword

D.2.4 Queue Operations

INSQHI Insert entry in queue head, interlocked

REMQHI Remove entry from queue head, interlocked

INSQTI Insert entry in queue tail, interlocked

REMQTI Remove entry from queue tail, interlocked

INSQUE Insert entry in queue

REMQUE Remove entry from queue

D.2.5 Bit Manipulation Operations

FFC Find first clear bit

FFS Find first set bit

TESTBITCC Test for bit clear, then clear bit

TESTBITCS Test for bit clear, then set bit

TESTBITSC Test for bit set, then clear bit

TESTBITSS Test for bit set, then set bit

TESTBITCCI Test for bit clear, then clear bit interlocked

TESTBITSSI Test for bit set, then set bit interlocked

D.2.6 Arithmetic Operations

ADAWI Add aligned word interlocked

ADDD Add D-floating operands

ADDF Add F-floating operands

ADDG Add G-floating operands

ADDH Add H-floating operands

ADDM Add multiword operands
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ASHQ Arithmetic shift quad

DIVD Divide D-floating operands

DIVF Divide F-floating operands

DIVG Divide G-floating operands

DIVH Divide H-floating operands

EDIV Extended-precision divide

EMUL Extended-precision multiply

MULD Multiply D-floating operands

MULF Multiply F-floating operands

MULG Multiply G-floating operands

MULH Multiply H-floating operands

SUBD Subtract D-floating operands

SUBF Subtract F-floating operands

SUBG Subtract G-floating operands

SUBH Subtract H-floating operands

SUBM Subtract multiword operands

D.2.7 Arithmetic Comparison Operations

CMPD Compare D-floating operands

CMPF Compare F-floating operands

CMPG Compare G-floating operands

CMPH Compare H-floating operands

CMPM Compare multiword operands

D.2.8 Arithmetic Conversion Operations

CVTDF Convert D-floating to F-floating

CVTFD Convert F-floating to D-floating

CVTDI Convert D-floating to integer

CVTID Convert integer to D-floating

CVTDL Convert D-floating to long

CVTLD Convert long to D-floating

CVTFG Convert F-floating to G-floating

CVTGF Convert G-floating to F-floating

CVTFH Convert F-floating to H-floating
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CVTHF Convert H-floating to F-floating

CVTFI Convert F-floating to integer

CVTIF Convert integer to F-floating

CVTFL Convert F-floating to long

CVTLF Convert long to F-floating

CVTLG Convert long to G-floating

CVTGL Convert G-floating to long

CVTLH Convert long to H-floating

CVTHL Convert H-floating to long

CVTRDH Convert rounded D-floating to H-floating

CVTRDL Convert rounded D-floating to long

CVTRFL Convert rounded F-floating to long

CVTRGH Convert rounded G-floating to H-floating

CVTRGL Convert rounded G-floating to long

CVTRHL Convert rounded H-floating to long

D.2.9 Character String Operations

CMPC3 Compare characters 3 operand

CMPC5 Compare characters 5 operand

CRC Calculate cyclic redundancy check

LOCC Locate character

SKPC Skip character

MOVC3 Move character 3 operand

MOVC5 Move character 5 operand

MOVTC Move translated characters

MOVTUC Move translated until character

MATCHC Match characters

SCANC Scan characters

SPANC Span characters
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D.2.10 Decimal String Operations

ASHP Arithmetic shift and round packed

CMPP Compare packed

CVTLP Convert long to packed

CVTPL Convert packed to long

CVTPS Convert packed to leading separate numeric

CVTSP Convert leading separate numeric to packed

CVTPT Convert packed to trailing numeric

CVTTP Convert trailing numeric to packed

EDITPC Edit packed to character string

MOVP Move packed

D.2.11 Processor Action Operations

BPT Breakpoint

CHM(x) Change mode

HALT Halt processor

NOP No operation

D.2.12 Miscellaneous Operations

BUGL Bugcheck with long operand

BUGW Bugcheck with word operand

CALLG Call with general argument list

INDEX Compute index

ROT Rotate

XFC Extended function call
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D.3 BLISS–36 Machine-Specific Functions
The following lists the predefined BLISS–32 machine-specific functions by
operation.

D.3.1 Logical Operations

ASH Arithmetically shift a value

FIRSTONE Find the leftmost nonzero list in a value

LSH Logically shift a value

ROT Rotate a value

D.3.2 Byte Manipulation Operations

COPYII Increment both source and destination byte pointers and copy a byte

COPYIN Increment a source byte pointer and copy a byte

COPTNI Increment a destination byte pointer and copy a byte

COPYNN Copy a byte

DPB Deposit a byte

INCP Increment a byte pointer

LDB Load a byte

POINT Build a DECsystem–10/20 byte pointer

REPLACEI Increment a byte pointer and store a byte

REPLACEN Store a byte given a byte pointer

SCANI Increment a byte pointer and fetch a byte

SCANN Fetch a byte given a byte pointer
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D.3.3 Arithmetic Operations

ADDD Add D-floating operands

ADDF Add F-floating operands

ADDG Add G-floating operands

DIVD Divide D-floating operands

DIVF Divide F-floating operands

DIVG Divide G-floating operands

MULD Multiply D-floating operands

MULF Multiply F-floating operands

MULG Multiply G-floating operands

SUBD Subtract D-floating operands

SUBF Subtract F-floating operands

SUBG Subtract G-floating operands

D.3.4 Arithmetic Comparison Operations

CMPD Compare D-floating operands

CMPF Compare F-floating operands

CMPG Compare G-floating operands

D.3.5 Arithmetic Conversion Operations

CVTDF Convert D-floating to F-floating

CVTFD Convert F-floating to D-floating

CVTDI Convert D-floating to integer

CVTID Convert integer to D-floating

CVTFI Convert F-floating to integer

CVTIF Convert integer to F-floating

CVTGF Convert G-floating to F-floating

CVTFG Convert F-floating to G-floating

CVTGI Convert G-floating to integer

CVTIG Convert integer to G-floating

D.3.6 Machine Code Insertion Operations

MACHOP Execute a DECsystem–10/20 instruction

MACHSKIP Execute a DECsystem–10/20 instruction and record any skip
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D.3.7 System Interface Operations

JSYS Perform a TOPS–20 monitor call

UUO Perform a TOPS–10 monitor call
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ABSOLUTE

in addressing-mode-attribute, 9–16
in module-switch(16), 19–5
in module-switch(32), 19–5
in switch, 18–10

ABS standard function, 5–14
Access-actual

in default-structure-reference, 11–27
in general-structure-reference, 11–30
in ordinary-structure-reference, 11–25
in preset-attribute, 9–9

Access-formal, 11–19
ACTUALCOUNT linkage-function, 13–27
ACTUALPARAMETER linkage-function, 13–28
ADAWI(32), D–3
ADDD(16,32,36), D–1
ADDF(16,32,36), D–1
ADDG(32,36), D–3
ADDH(32), D–3
Addition operator, 5–7
ADDM(16,32), D–1
Address

in default-structure-reference, 11–27
in field-reference, 11–11

Address, encoded, 9–17
Addressable unit, 3–6

usage of, 1–5
Addressing

dialectal differences in, 1–4
introduction to, 1–4

Addressing-mode-attribute, 9–15
in external-routine-decl, 12–14
in forward-routine-decl, 12–13

Addressing-mode-attribute*
as psect-attribute, 18–2

ADDRESSING_MODE
in attribute, 9–15
in module-switch(16), 19–5
in module-switch(32), 19–5
in module-switch(36), 19–5
in switch, 18–10

Address offset
in alignment-attribute, 9–6

Alignment-attribute, 9–5
Alignment-attribute*

as psect-attribute, 18–2
Allocation-actual

in general-structure-reference, 11–30
in structure-attribute, 11–21

Allocation-default, 11–19
Allocation-formal, 11–19
%ALLOCATION function, 15–29
Allocation functions

for character handling, 20–3
Allocation-unit

as attribute, 9–2
in general-structure-reference, 11–31
in plit, 4–11
in structure-attribute, 11–21

Alternative, 6–2
ALWAYS in select-expression, 6–8
AND as infix operator, 5–9
Apostrophe

in character-code-literal, 4–3
in float-literal, 4–3
in integer-literal, 4–3
in string-literal, 4–6

ARGPTR linkage-function, 13–28
Argument block, 13–6
Argument passing, 12–9
Argument pointer (AP) register, 13–3, 13–6
Arithmetic comparison operations

builtin
D-floating(16,32,36), D–2, D–4, D–8
F-floating(16,32,36), D–2, D–4, D–8
G-floating(32,36), D–4, D–8
H-floating(32), D–4
multiword(16,32), D–2, D–4

infix
address, 5–7
signed integer, 5–7
unsigned integer, 5–7

Arithmetic conversion operations
builtin(16,32,36), D–2, D–4, D–8

Arithmetic expression, 5–6
Arithmetic operations

builtin
D-floating(16,32,36), D–1, D–3, D–8
F-floating(16,32,36), D–1, D–3, D–8
G-floating(32,36), D–3, D–8
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Arithmetic operations
builtin (cont’d)

H-floating(32), D–3
multiword(16,32), D–1, D–3

signed integer, 5–6
Arithmetic shift operations

ASH(36), D–7
packed(32), D–6
quad(32), D–3
signed, 5–5

Array
(see VECTOR structure), 11–33

%ASCIC in string-literal, 4–6
%ASCID in string-literal, 4–6
ASCII

code table, B–1
encoding, B–1

%ASCII in string-literal, 4–6
%ASCIZ in string-literal, 4–6
ASH(36), D–7
ASHP(32), D–6
ASHQ(32), D–4
ASSEMBLY

in module-switch, 19–5
in switch, 18–10

%ASSIGN function, 15–31
Assignment expression, 5–10

introduction to, 1–5
Associativity, 5–1
Asterisk as operator, 5–6
Attribute, 9–1

for formal-name, 12–11
in a declaration, 8–5
summary of usage, 9–18

Attribute*
introduction to, 1–8

B
BEGIN in block, 8–2
BICPSW(32), D–3
BINARY

in module-switch, 19–5
in switch, 18–10

Binary operators, 5–1
Binding

in constant expressions, 1–14
in lexical processing, 15–3
introduction to, 1–11

%B in integer-literal, 4–3
BISPSW(32), D–3
Bit-count

in range-attribute, 9–15
Bit manipulation operations

builtin(16,32), D–1, D–3
Bit operations, 5–9

bit-position numbering, 3–9
Bit-position numbering, 11–14, 11–15
Bits per value, 14–3
BITVECTOR structure, 11–34

example of, 3–9
Blank character, 4–7
BLISS10C

in module-switch(36), 19–5
BLISS10_OTS

in module-switch(36), 19–5
BLISS16

in module-switch, 19–5
in switch, 18–10

BLISS32
in module-switch, 19–5
in switch, 18–10

BLISS36
in module-switch, 19–5
in switch, 18–10

BLISS36C_OTS
in module-switch(36), 19–5

%BLISS function, 15–33
BLISS System, 1–13
BLISS value, 3–2
Block, 8–2

as primary, 4–14
example of, 8–3
purpose of, 8–1

Block*
introduction to, 1–6

BLOCK structure, 11–35
example of, 3–10
macros for, 16–21

BLOCKVECTOR structure, 11–39
example of, 3–10

Boolean expression, 5–9
Boundary

in alignment-attribute, 9–5
Bounds-checking structure, 11–41
%BPADDR literal-name, 14–3
BPT(16,32), D–2
%BPUNIT literal-name, 14–3
%BPVAL literal-name, 14–3
Brace character

in syntax rules, 2–6
Bracket

as default punctuation, 16–21
in macro-actual-parameter, 16–12

BUGL(32), D–6
Builtin-declaration*, 18–14
Builtin names

machine-specific-functions, D–1
predefined identifiers, A–1

BY in loop-expression, 6–10
BYTE allocation-unit, 9–2
Byte manipulation operations

builtin(36), D–7
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Byte pointer, 3–14, D–7

C
CALLG(32), D–6
Calling sequence

control over, 13–1
VAX standard, 13–14

CALL linkage-type(16,32), 13–11, 13–16
Carriage return character, 2–2
Case (of letters), 4–14
Case analysis, 6–3
Case-expression, 6–5
Case-expression*

introduction to, 1–9
Case-label

in case-expression, 6–5
Case-line

in case-expression, 6–5
CH$ALLOCATION function, 20–3
CH$A_RCHAR function, 20–7
CH$A_WCHAR function, 20–7
CH$COMPARE function, 20–11
CH$COPY function, 20–9
CH$DIFF function, 20–5
CH$EQL function, 20–11
CH$FAIL function, 20–13
CH$FILL function, 20–8
CH$FIND_CH function, 20–12
CH$FIND_NOT_CH function, 20–12
CH$FIND_SUB function, 20–12
CH$GEQ function, 20–11
CH$GTR function, 20–11
CH$LEQ function, 20–11
CH$LSS function, 20–11
CH$MOVE function, 20–8
CH$NEQ function, 20–11
CH$PLUS function, 20–5
CH$PTR function, 20–5
CH$RCHAR function, 20–7
CH$RCHAR_A function, 20–7
CH$SEQUENCE macro, 20–4
CH$SIZE function, 20–3
CH$TRANSLATE function, 20–14
CH$TRANSTABLE function, 20–14
CH$WCHAR function, 20–7
CH$WCHAR_A function, 20–8
Character, 2–1
Character-code-literal, 4–3
Character data, 20–1

representations of, 3–11
Character handling, 20–1

functions, 20–3
operations, 20–1

character pointer
description, 3–12
representation, 3–13, 3–14

Character-reading functions, 20–7
Character sequence

excessively-long, 15–14
internal-only, 15–14

Character string operations
builtin(32), D–5

Character-writing functions, 20–7
%CHARCOUNT function, 15–20
%CHAR function, 15–20
CHMx(32), D–6
%C in character-code-literal, 4–3
CLEARSTACK linkage-option, 13–11
CMPC3(32), D–5
CMPC5(32), D–5
CMPD(16,32,36), D–2
CMPF(16,32,36), D–2
CMPG(32,36), D–4
CMPH(32), D–4
CMPM(16,32), D–2
CMPP(32), D–6
CODE

in module-switch, 19–5
in psect-declaration, 18–2

$CODE$ default psect, 18–4
CODECOMMENT, 4–16
Colon

in labeled-block, 8–2
Comma

in macro-actual-parameter, 16–12
Comment, 2–3
COMMENTARY

in module-switch, 19–5
in switch, 18–10

COMMON
in module-switch, 19–5
in switch, 18–10

Comparing character sequences, 20–10
Comparison operator

(see arithmetic comparison operations), 5–7
Compilation

introduction to, 1–13
of library source file, 16–24
role of, 1–3

Compile-time-constant-expression
definition of, 7–2
discussion of, 7–3
motivation for, 7–1

Compile-time-constant-expression*
introduction to, 1–14

Compiletime-declaration*
use with %ASSIGN, 15–32

Compound-expression, 8–2
introduction to, 1–7

Computational expressions, 5–1
Computed routine addresses, 12–11
CONCATENATE

psect-attribute, 18–2
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Concatenation
in syntax notation, 2–6

Conditional compilation, 15–43
Conditional-expression, 6–2
Conditional-expression*

introduction to, 1–9
Conditional flow of control, 6–1
Conditional-macro-call

expansion of, 16–14
Condition handling, 17–1

examples of, 17–16
flow of control, 6–1
flow of control in, 17–10

examples of, 17–12
function

SETUNWIND, 17–10
SIGNAL, 17–5
SIGNAL_STOP, 17–5

introduction to, 17–1
in VMS, 17–25

Condition value, 17–4
as SIGNAL parameter, 17–5
as SIGNAL_STOP parameter, 17–5
comparison of, 17–19, 17–21
declarations for, 17–18, 17–20
element of signal vector, 17–7
structure of, 17–16

Consequence, 6–2
constant

character, 4–2
floating-point, 4–2
integer, 4–2
string, 4–6, 4–12

Constant-expression
compile-time, 7–2
introduction to, 1–14
link-time, 7–4

Continuation
in condition handling, 17–9

Control-expression, 6–1
COPTNI(36), D–7
COPYII(36), D–7
COPYIN(36), D–7
COPYNN(36), D–7
Counted PLIT, 4–11
Counted vector

definition of, 17–7
%COUNT function, 15–41

in conditional-macro expansion, 16–14
in iterative-macro expansion, 16–15
in simple-macro expansion, 16–14

CRC(32), D–5
%CTCE function, 15–27
CVTDF(16,32,36), D–2
CVTDI(16,32,36), D–2
CVTDL(32), D–4

CVTFD(16,32,36), D–2
CVTFG(32,36), D–4
CVTFH(32), D–4
CVTFI(16,32,36), D–2
CVTFI(32,36), D–5
CVTFL(32), D–5
CVTGF(32,36), D–4
CVTGL(32), D–5
CVTHF(32), D–5
CVTHL(32), D–5
CVTID(16,32,36), D–2
CVTIF(16,32,36), D–2
CVTIF(32,36), D–5
CVTLD(32), D–4
CVTLF(32), D–5
CVTLG(32), D–5
CVTLH(32), D–5
CVTLP(32), D–6
CVTPL(32), D–6
CVTPS(32), D–6
CVTPT(32), D–6
CVTRDH(32), D–5
CVTRDL(32), D–5
CVTRFL(32), D–5
CVTRGH(32), D–5
CVTRGL(32), D–5
CVTRHL(32), D–5
CVTSP(32), D–6
CVTTP(32), D–6

D
Dangling ELSE, 6–3
Data, introduction to, 1–4
Data-declaration, 10–1
Data segments

introduction to, 3–5
Data structures, 11–1

abstract definition of, 11–2
concrete representation of, 11–2
introduction to, 1–9
predeclared, 11–33
programmed description of, 11–4
user-defined, 11–40

Data values
representation of, 3–1

DEBUG
in module-switch, 19–5

Decimal-digit, 4–3
%DECIMAL in integer-literal, 4–3
Decimal-literal, 4–3
Decimal string literal

(see also %P), 4–7
Decimal string operations

builtin(32), D–6
literal, 4–7

Index–4



Declaration, 8–5
examples of, 8–6
governs name, 8–5
of loop-index, 6–11
scope of, 8–5

Declaration*
introduction to, 1–8

%DECLARED function, 15–33
DECRA in loop-expression, 6–10
DECR in loop-expression, 6–10
DECRU in loop-expression, 6–10
DECX(16), D–2
Default punctuation

examples of, 16–19
in iterative-macro expansion, 16–16

Default-structure-reference, 11–27
compared to ordinary-str-ref, 11–28
examples of, 11–25, 11–29, 11–46

Delimiter
as character, 2–1
as lexeme, 2–3

Descriptor
%ASCID, 4–8

Design objectives of BLISS, 1–2
Dialectal distinctions

in syntax rules, 2–7
Dialects of BLISS

introduction to, 1–1
%D in float-literal, 4–3
Direct recursion, 12–6
Discarded value, 6–3
Disjunction

in syntax notation, 2–6
Displacement, 9–17
DIVD(16,32,36), D–1
DIVF(16,32,36), D–1
DIVG(32,36), D–4
DIVH(32), D–4
Division operator, 5–7
DO in loop-expression, 6–10, 6–12
double-precision

float-literal, 4–2
DPB(36), D–7

E
EDITPC(32), D–6
EDIV(16,32), D–1
%E in float-literal, 4–3
EIS

in module-switch(16), 19–5
Ellipsis

in syntax notation, 2–7
ELSE in conditional-expression, 6–2
ELUDOM in module, 19–2
Embedded comment, 2–4

Empty block
restriction of, 8–2

EMT linkage-type(16), 13–12
EMUL(16,32), D–1
Enable-actual*, 17–3
Enable-declaration*, 17–3

examples of, 17–3, 17–23
Enable vector, 17–8

in VMS, 17–26
Encoded address, 9–17
Encoding-type, 9–17
END in block, 8–2
ENTRY

in module-switch(36), 19–5
ENVIRONMENT

in module-switch(16), 19–5
in module-switch(36), 19–5

EQLA as infix operator, 5–7
EQL as infix operator, 5–7
EQLU as infix operator, 5–7
Equals

as infix operator, 5–10
EQV as infix operator, 5–9
%ERROR function, 15–35
%ERRORMACRO function, 15–35
ERRS

in module-switch, 19–5
in switch, 18–10

Establisher routine, 17–2
examples of, 17–3
introduction to, 17–1

Evaluation rules
discussion of, 5–11
for blocks, 8–3
for operator-expressions, 5–4

%EXACTSTRING function, 15–19
Exception handling, 17–1
Executable-function, 5–14
Executable-function*

SETUNWIND, 17–10
SIGNAL, 17–5
SIGNAL_STOP, 17–5

EXECUTE
psect-attribute, 18–2

Execution of programs, 1–3
Exit-expression, 6–13
%EXITITERATION function, 15–41
Exitloop-expression, 6–13
%EXITMACRO function, 15–41
EXPAND

in module-switch, 19–5
in switch, 18–10

%EXPAND function, 15–37
Expansion

in lexical processing, 15–3
of conditional-macro-call, 16–14
of iterative-macro-call, 16–15
of keyword-macro-call, 16–18
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Expansion (cont’d)
of simple-macro-call, 16–13

%EXPLODE function, 15–22
Exponent, 4–4
Expression, 4–1

control-expression, 6–1
in relation to field-references, 11–17
operator-expression, 5–1

Expression*
introduction to, 1–6

EXTENDED
in module-switch(36), 19–5

Extension-attribute
as attribute, 9–3
in general-structure-reference, 11–31
in structure-attribute, 11–21

EXTERNAL
in switch, 18–10

External-declaration, 10–6
External-name, 10–6
External-name*

introduction to, 1–13
External-register-declaration, 10–12
External-routine-attribute, 12–14
External-routine-declaration, 12–14
Externals

in library source file, 10–7

F
F10 linkage-type(36), 13–25
Fetch expression, 5–4

introduction to, 1–5
FFC(32), D–3
FFS(32), D–3
Field-attribute, 9–4, 11–24
Field-component, 11–23
Field-declaration, 11–23

examples of, 11–39
Field-declaration*

examples of, 17–18, 17–20
Field-definition, 11–23
%FIELDEXPAND function, 15–30
Field-name

in data-declarations, 9–4
in field-attribute, 9–4, 11–24
in field-declaration, 11–23
in general-structure-reference, 11–31
in ordinary-structure-reference, 11–26

Field-reference, 11–11
as primary, 4–15
examples of, 11–16
in assignment context, 11–14
in fetch context, 11–13
in other contexts, 11–14
in relation to expressions, 11–17
in structure-declarations, 11–16
introduction to, 11–4

Field-selector, 11–11
default, 11–17
placement in structure-decl, 11–16

Field-set-definition, 11–23
Field-set-name

in field-attribute, 9–4, 11–24
in field-declaration, 11–23

Field value
definition of, 3–1, 3–3
extension of, 3–3

FIRSTONE(36), D–7
Fixed-macro-body

in iterative-macro-call, 16–15
Float-literal, 4–3
Flow of control, 6–1

introduction to, 1–9
Formal-name

in ordinary-routine-decl, 12–7
FORTRAN linkages, 13–26
Forward-declaration, 10–5
Forward-routine-attribute, 12–13
Forward-routine-declaration, 12–13
Frame pointer (FP) register, 13–3
Free character, 2–1
FROM

in case-expression, 6–5
in loop-expression, 6–10

Fullword
definition of, 3–1

Fullword values, 3–2

G
GENERAL

in addressing-mode-attribute, 9–16
in module-switch(32), 19–5
in switch, 18–10

General purpose structure, 11–46
General-structure-reference, 11–30

compared to ordinary-str-ref, 11–32
examples of, 11–25, 11–30, 11–32

GEQA as infix operator, 5–7
GEQ as infix operator, 5–7
GEQU as infix operator, 5–7
%G in float-literal, 4–3
GLOBAL

as psect-attribute, 18–2
as psect storage-class, 18–2
in data-declaration, 10–3

Global-declaration, 10–3
GLOBAL linkage-option, 13–7, 13–23
Global-name, 10–4
Global-register-declaration, 10–11
Global register segments

interaction with linkages, 13–30
Global-routine-attribute, 12–12

Index–6



Global-routine-declaration, 12–12
GO TO construct, 6–1
Govern

declaration governs name, 8–5
GTRA as infix operator, 5–7
GTR as infix operator, 5–7
GTRU as infix operator, 5–7

H
HALT(16,32), D–2
Handler routine, 17–6

examples of, 17–23
introduction to, 17–1
options of, 17–9

continuation, 17–9
resignaling, 17–9
unwinding, 17–10

parameters, 17–7
recursive, 17–16

$HIGH$ default psect, 18–5
%H in float-literal, 4–4

I
IDENT

in module-switch, 19–5
%IDENTICAL function, 15–26
IF in conditional-expression, 6–2
Immediately contains, 8–2
Implicit block

example of, 8–8
Implicit declaration

of formal name, 8–8
of loop-index name, 8–8

INCP(36), D–7
INCRA in loop-expression, 6–10
INCR in loop-expression, 6–10
INCRU in loop-expression, 6–10
INDEX(32), D–6
Indexed-loop-expression, 6–10
INDIRECT

in module-switch(36), 19–5
Indirect recursion, 12–6
Infix-operator, 5–2
%INFORM function, 15–35
Initial-attribute, 9–7
Initial-item

in initial-attribute, 9–7
Input-actual-parameter

in routine-call, 12–2
Input-formal-parameter

in ordinary-routine-decl, 12–7
INRANGE in case-expression, 6–5
INSQHI(32), D–3
INSQTI, D–3

INSQUE, D–3
Integer-literal, 4–3
Internal-only

character sequence, 15–14
name, 15–14

INTERRUPT linkage-type(16,32), 13–11
IOT linkage-type(16), 13–12
%ISSTRING function, 15–26
Iteration count

in iterative-macro-call, 16–15
Iterative flow, 6–1
Iterative-macro-call

default punctuation, 16–16
expansion of, 16–15

Iterative-macro-definition*
examples of, 16–6

J
JSB linkage(32)

examples, 13–17
JSB linkage-type(32), 13–16
JSR linkage-type(16), 13–11
JSYS(36), D–9

K
KA10

in module-switch(36), 19–5
Keyword

complete list of, A–1
in a declaration, 8–5

Keyword-macro-call*
expansion of, 16–18

Keyword-macro-declaration*
examples of, 16–7, 17–21

KI10
in module-switch(36), 19–5

KL10
in module-switch(36), 19–5

KS10
in module-switch(36), 19–5

L
Label, 8–2

in exit-expression, 6–13
Label-declaration*, 18–15
Labeled-block, 8–2
LANGUAGE

in module-switch, 19–5
in switch, 18–10

checking performed for, C–1
meaning of, 18–13

Language-list*
in module switch, 19–5
in switch, 18–10
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LDB(36), D–7
Leave-expression, 6–13
Left-operand, 5–2
%LENGTH function, 15–41

in conditional-macro expansion, 16–14
in iterative-macro expansion, 16–15
in simple-macro expansion, 16–13

LEQA as infix operator, 5–7
LEQ as infix operator, 5–7
LEQU as infix operator, 5–7
Letter, 4–13
Lexeme, 2–3

processing of, 15–2
Lexical-function

%ALLOCATION, 15–29
%ASSIGN, 15–31
%BLISS, 15–33
%CHAR, 15–20
%CHARCOUNT, 15–20
%COUNT, 15–41
%CTCE, 15–27
%DECLARED, 15–33
%ERROR, 15–35
%ERRORMACRO, 15–35
%EXACTSTRING, 15–19
%EXITITERATION, 15–41
%EXITMACRO, 15–41
%EXPAND, 15–37
%EXPLODE, 15–22
%FIELDEXPAND, 15–30
%IDENTICAL, 15–26
%INFORM, 15–35
%ISSTRING, 15–26
%LENGTH, 15–41
%LTCE, 15–27
%MESSAGE, 15–35
%NAME, 15–24
%NBITS, 15–28
%NBITSU, 15–28
%NULL, 15–25
%NUMBER, 15–31
%PRINT, 15–35
%QUOTE, 15–36
%QUOTENAME, 15–24
%REMAINING, 15–41
%REMOVE, 15–22
%SBTTL, 15–36
%SIZE, 15–29
%STRING, 15–19
summary of, 15–43
%SWITCHES, 15–33
%TITLE, 15–36
%UNQUOTE, 15–37
%VARIANT, 15–34
%WARN, 15–35

Lexical-function*
general rules for, 15–15
quote-levels for, 15–18

Lexical processing
examples of, 15–5
introduction to, 15–1
of lexical-functions, 15–15
of library source file, 16–26
of macro calls, 16–13
of numeric-literals, 15–12
of string-literals, 15–12

LIBRARY
in module-switch, 19–5
in switch, 18–10

Library binary file, 16–24
Library-declaration*, 16–25
Library source file, 16–24

declarations allowed in, 16–25
lexical processing of, 16–26

Linemark, 2–2
Linkage

general definition of, 13–1
LINKAGE

in module-switch, 19–5
in switch, 18–10

Linkage-attribute, 9–14
Linkage-declaration*

introduction to, 13–2
Linkage-definition

introduction to, 13–1
Linkage-functions

common, 13–27
for BLISS–16 and -32, 13–30

Linkage-name*
in switch, 18–10
predeclared

common, 13–26
for BLISS–16, 13–13
for BLISS–32, 13–19
for BLISS–36, 13–26

Linkage-option*
introduction to, 13–7

Linkages
BLISS, 13–26
FORTRAN-related, 13–26
FORTRAN_FUNC, 13–27
FORTRAN_SUB, 13–27

Linkage-type*
introduction to, 13–6

LINKAGE_REGS linkage-option, 13–23
Linker

external names, 10–6
handling of psects, 18–1
role of, 1–3, 1–13
use of IDENT switch, 19–10
use of VERSION switch, 19–10

Link-time-constant-expression
definition of, 7–4
discussion of, 7–5
motivation for, 7–4
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Link-time-constant-expression*
introduction to, 1–15

LIST
in module-switch, 19–5
in switch, 18–10

List-option*, 18–10
LOCAL

psect-attribute, 18–2
Local-declaration, 10–7
LOCC(32), D–5
Logical operations

builtin(36), D–7
LONG allocation-unit, 9–2
Longevity of data segment, 10–1
LONG_RELATIVE

in addressing-mode-attribute, 9–16
in module-switch(32), 19–5

Loop-expression, 6–10
Loop-expression*

introduction to, 1–10
loop-index, 6–10
Loop-index

declaration of, 6–11
implicit declaration of, 8–8

$LOW$ default psect, 18–5
LSH(36), D–7
LSI11

in module-switch(16), 19–5
LSSA as infix operator, 5–7
LSS as infix operator, 5–7
LSSU as infix operator, 5–7
%LTCE function, 15–27

M
Machine code insertion operations

builtin(36), D–8
Machine-specific function, 5–13
MACHOP(36), D–8
MACHSKIP(36), D–8
Macro-call*

lexical processing of, 16–13
Macro-declaration*

for BLOCK structure, 16–21
introduction to, 16–6
nested, 16–23

Macro-quote level, 15–9
MAIN

in module-switch, 19–5
Main routine, 1–3
Mantissa, 4–4
Map-declaration, 10–14
MATCHC(32), D–5
Matching

of case-index, 6–5
of select-index, 6–8

MAXA standard function, 5–15
MAX standard function, 5–15
MAXU standard function, 5–15
Mechanism vector, 17–8
Memory management operations

builtin(16), D–1
%MESSAGE function, 15–35
MFPD(16), D–1
MFPI(16), D–1
MFPR(32), D–2
MFPS(16), D–1
MINA standard function, 5–15
MIN standard function, 5–15
Minus

as infix operator, 5–6
as prefix operator, 5–5
in float-literal, 4–4

MINU standard function, 5–15
Miscellaneous operations

builtin(16,32), D–2, D–6
MOD as infix operator, 5–6
Mode

in addressing-mode-attribute, 9–16
Mode*

as switch, 18–10
Module*, 19–2

role of, 1–3
small example of, 1–15

Module-body*, 19–2
Module-head*, 19–2
Module-switch*, 19–5
MOVC3(32), D–5
MOVC5(32), D–5
MOVP(32), D–6
MOVPSL(32), D–3
MOVTC(32), D–5
MOVTUC(32), D–5
MTPD(16), D–1
MTPI(16), D–1
MTPR(32), D–2
MTPS(16), D–1
MULD(16,32,36), D–2
MULD(32), D–4
MULF(16,32,36), D–2
MULF(32), D–4
MULG(32,36), D–4
MULH(32), D–4
Multiplication operator, 5–6

N
Name, 4–13

declaration of, 8–4
value of, 8–6

Name*
internal-only, 15–14
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%NAME function, 15–24
examples of, 16–22

Name-quote level, 15–9
%NBITS function, 15–28
%NBITSU function, 15–28
NEQA as infix operator, 5–7
NEQ as infix operator, 5–7
NEQU as infix operator, 5–7
Nested macro definition, 16–23
Nested signal, 17–12

examples of, 17–14
Newline character, 2–2
NOASSEMBLY

in module-switch, 19–5
in switch, 18–10

NOBINARY
in module-switch, 19–5
in switch, 18–10

NOCODE
in module-switch, 19–5

NOCOMMENTARY
in module-switch, 19–5
in switch, 18–10

NODEBUG
in module-switch, 19–5

NODEFAULT
in psect-declaration, 18–2

NOEIS
in module-switch(16), 19–5

NOERRS
in module-switch, 19–5
in switch, 18–10

NOEXECUTE
psect-attribute, 18–2

NOEXPAND
in module-switch, 19–5
in switch, 18–10

NOINDIRECT
in module-switch(36), 19–5

NOLIBRARY
in module-switch, 19–5
in switch, 18–10

Non-contiguous structure, 11–43
NONEXTERNAL

in switch, 18–10
Nonprinting-character

representation of, 4–7
NOOBJECT

in module-switch, 19–5
in switch, 18–10

NOOPTIMIZE
in module-switch, 19–5
in switch, 18–10

NOP(16,32), D–2
NOPIC

psect-attribute, 18–2

NOPRESERVE linkage-option, 13–7
NOREAD

psect-attribute, 18–2
NOREQUIRE

in module-switch, 19–5
in switch, 18–10

Normal-quote level, 15–9
NOSAFE

in module-switch, 19–5
in switch, 18–10

NOSHARE
psect-attribute, 18–2

NOSOURCE
in module-switch, 19–5
in switch, 18–10

NOSYMBOLIC
in module-switch, 19–5
in switch, 18–10

NOT as prefix operator, 5–9
Notation for syntax, 2–5
NOTRACE

in module-switch, 19–5
in switch, 18–10

NOTUSED linkage-option, 13–17
NOUNAMES

in module-switch, 19–5
in switch, 18–10

Novalue-attribute, 9–13
example of, 9–12

Novalue-attribute*
example of, 1–8

NOWRITE
psect-attribute, 18–2

NOZIP
in module-switch, 19–5
in switch, 18–10

%NULL function, 15–25
NULLPARAMETER linkage-function, 13–30
%NUMBER function, 15–31
Number-sign

in lexical-function def., 15–18
Numeric-literal, 4–3
Numeric-literal*

lexical processing of, 15–12

O
OBJECT

in module-switch, 19–5
in switch, 18–10

Object file, 1–13
ODT

in module-switch(16), 19–5
OF

in case-expression, 6–5
in plit, 4–11
in select-expression, 6–8
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Offset
as value of name, 8–6
in alignment-attribute, 9–6

%O in integer-literal, 4–3
One-origin vector structure, 11–41
On-off-switch*, 18–10, 19–5
Operand, 5–2
Operator-expression, 5–1
Optimization, effects of, 1–12, 8–3
OPTIMIZE

in module-switch, 19–5
in switch, 18–10

OPTLEVEL
in module-switch, 19–5

Opt-sign, 4–3
OR as infix operator, 5–9
Ordinary-routine-declaration, 12–7
Ordinary-structure-reference, 11–25

compared to general-str-ref, 11–32
examples of, 11–25

ORIGIN
psect-attribute, 18–2

OTHERWISE in select-expression, 6–8
OTS

in module-switch(36), 19–5
OTS_LINKAGE

in module-switch(36), 19–5
Output-actual-parameter

in routine-call, 12–2
Output-formal-parameter

in ordinary-routine-decl, 12–7
OUTRANGE in case-expression, 6–5
OVERLAY

psect-attribute, 18–2
Overlay data, 10–1
OWN

in psect-declaration, 18–2
$OWN$ default psect, 18–4
Own-declaration, 10–2

P
Parameter

enable-actual, 17–3
of handler routine

enable vector, 17–8
mechanism vector, 17–8
signal vector, 17–7

Parameter-location*
discussion of, 13–6

Parameter passing, 12–9
methods of, 13–6

by argument pointer, 13–6
by register, 13–7
implicit stack location, 13–7

Parameter validation operations
builtin(32), D–3

Parenthesis
in macro-actual-parameter, 16–12

Parenthesization
default rules, 5–3
discussion of, 5–10

Parenthesized expression, 8–2
introduction to, 1–7

Partially overlayed structure, 11–45
Percent

before name, 5–14
Performance measurement

using condition handling, 17–24
Period

in fetch expression, 5–4
in float-literal, 4–4

Permanent data, 10–1
PIC

in module-switch(16), 19–5
psect-attribute, 18–2

%P in string-literal, 4–6
Plit, 4–11
PLIT

in plit, 4–11
in psect-declaration, 18–2

$PLIT$ default psect, 18–4
Plit-item, 4–11
Plus

as infix operator, 5–6
as prefix operator, 5–5
in float-literal, 4–4

POINT(36), D–7
Pointer functions

for character handling, 20–5
PORTAL linkage-option, 13–23
Position

in field-selector, 11–11
Positional-macro-declaration*

examples of, 16–6
Post-tested-loop, 6–12
Precedence of operators, 5–1
Predeclared name

complete list of, A–1
declaration of, 8–5
for literal, 14–3
for macro, 16–10
for structure, 11–33
summary of, 19–10

Predefined identifiers, 19–10
classification of, A–1
complete list of, A–1

Prefix-operator, 5–2
Prefix sign expression, 5–5
PRESERVE linkage-option, 13–7
Preset-attribute, 9–9
Preset-item

in preset-attribute, 9–9
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Preset-value
in preset-attribute, 9–9

Pre-tested-loop, 6–12
Primary, 4–2
%PRINT function, 15–35
Printing-character, 4–6
Priority levels, 5–1

discussion of, 5–10
PROBER(32), D–3
PROBEW(32), D–3
Procedures

(see routines), 12–1
Processor action operations

builtin(16,32), D–2, D–6
Processor register operations

builtin(32), D–2
Processor status operations

builtin(16), D–1
Program, 19–12

development of, 1–3
execution of, 1–3
small example of, 1–15

Program counter (PC) register, 13–2
Program stack, 3–15
Program status operations

builtin(32), D–3
Program storage, 3–14
Psect-allocation

in plit, 4–11
Psect-allocation attribute, 9–11
Psect-attribute*, 18–2, 18–6
Psect-declaration*, 18–2
Psect-name

in psect-allocation attribute, 9–11
Psect-name*

in psect-declaration, 18–2
PS_INTERRUPT linkage-type(36), 13–25
Punctuation marks, 2–3
PUSHJ linkage-type(36), 13–23

Q
Quantity of storage, 9–2
Queue operations

builtin(32), D–3
Quotation, 15–8

in macro-calls, 16–13
in macros, 16–3
levels of, 15–9
lexical-functions for, 15–36
rules for, 15–9

Quoted-string, 4–6
%QUOTE function, 15–36

examples of, 16–4, 16–23
in macro-actual-parameter, 16–12

Quote-level, 15–9
examples of, 15–37
in lexical-functions, 15–18

%QUOTENAME function, 15–24

R
RAD50_10

code table, B–5
encoding, B–4

%RAD50_10 in string-literal, 4–6
RAD50_11

code table, B–3
encoding, B–3

%RAD50_11 in string-literal, 4–6
Radix–50 encoding, B–2
Range-attribute, 9–15
READ

psect-attribute, 18–2
Reading characters, 20–7
Record

(see BLOCK structure), 11–33
(see FIELD declaration), 11–33

Recursive routine, 12–6
Redeclaration

by map-declaration, 8–8
REF

effect on structure-reference, 11–26
introduction to, 11–7

equivalent in general-str-ref, 11–32
in structure-attribute, 11–21

%REF
standard function, 5–16

Register
argument pointer (AP), 13–3, 13–6
frame pointer (FP), 13–3
program counter (PC), 13–2
stack pointer (SP), 13–3
value return, 13–3

Register-declaration, 10–9
Register-names

builtin, 10–10
standard, 10–10

REGISTER parameter-location, 13–11, 13–16
Registers, 3–15

general purpose, 13–3
globally usable, 13–4
locally usable, 13–3
nonpreserved, 13–3
not used, 13–4
preserved, 13–3

multi-purpose usage, 13–4
passing parameters in, 13–4
special purpose, 13–2

Register usage categories, 13–2
Register usage conventions, 13–7

GLOBAL, 13–8
NOPRESERVE, 13–8
PRESERVE, 13–8
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Relational expression, 5–7
RELATIVE

in addressing-mode-attribute, 9–16
in module-switch(16), 19–5

Relative address, 9–17
Remaining-actuals-list

in iterative-macro-call, 16–15
%REMAINING function, 15–41

examples of, 16–22
in conditional-macro expansion, 16–14
in iterative-macro expansion, 16–15
in simple-macro expansion, 16–13

%REMOVE function, 15–22
REMQHI(32), D–3
REMQTI, D–3
REMQUE, D–3
REP in plit, 4–11
REPLACEI(36), D–7
REPLACEN(36), D–7
Replication

in syntax notation, 2–7
Replicator, 4–11
REQUIRE

in module-switch, 19–5
in switch, 18–10

Require-declaration*, 16–24
Reserved word

complete list of, A–1
RESET(16), D–2
Resignaling, 17–9

examples of, 17–13
RETURN, 6–15
Return character, 2–2
Returned-value*

element of mechanism vector, 17–8
of establisher routine, 17–8

Return-expression, 6–15
Right-operand, 5–2
ROT(16,32,36), D–1
Routine, 12–1

establisher, 17–2
handler, 17–6
main routine, 1–3
signaler, 17–1
small example of, 1–15

Routine-attribute
in external-routine-decl, 12–14
in forward-routine-decl, 12–13
in global-routine-decl, 12–12
in ordinary-routine-decl, 12–7, 12–8

Routine-body
in global-routine-declaration, 12–12
in ordinary-routine-decl, 12–7

Routine-call, 12–2
Routine-declaration, 12–5

implicit block, 8–8

Routine-designator, 12–2
Routine-name

in external-routine-decl, 12–14
in forward-routine-decl, 12–13
in global-routine-declaration, 12–12
in ordinary-routine-decl, 12–7

Routine-name*
in enable-declaration, 17–3

RSX_AST linkage-type(16), 13–11, 13–12
RTT linkage-option, 13–11

S
SAFE

in module-switch, 19–5
in switch, 18–10

Satisfaction of test, 6–2
%SBTTL function, 15–36
Scalar data segment, 3–5

allocation of, 3–6
SCANC(32), D–5
SCANI(36), D–7
SCANN(36), D–7
Scope of declaration, 8–5

examples of, 8–4, 8–6
Searching character sequences, 20–12
Segment-name

in ordinary-structure-reference, 11–25
SELECTA in select-expression, 6–8
Select-expression, 6–8
SELECT in select-expression, 6–8
Select-label

in select-expression, 6–8
Select-line

in select-expression, 6–8
SELECTONEA in select-expression, 6–8
SELECTONE in select-expression, 6–8
SELECTONEU in select-expression, 6–8
SELECTU in select-expression, 6–8
Semicolon

in block, 8–2
in general-structure-reference, 11–30
in structure-declaration, 11–19
significance of, 8–3

Separation rules, 2–4
for numeric-literal, 4–4

Sequence-comparing functions, 20–10
Sequence-searching functions, 20–12
Sequence-translating functions, 20–13
Sequence-writing functions, 20–8
Sequential flow, 6–1
SET

in case-expression, 6–5
in field-declaration, 11–23
in select-expression, 6–8

SETUNWIND function, 17–10
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SHARE
psect-attribute, 18–2

Shift operator, 5–5
Side effects, 4–15
Signal, 17–1

implicit, 17–5
nested, 17–12
unwind, 17–5

Signaler routine, 17–1
SIGNAL function, 17–5

assigning value of, 17–8
Signal vector, 17–7
SIGNAL_STOP function, 17–5
SIGNED

in extension-attribute, 9–3
in range-attribute, 9–15

Signed value extension, 3–4
Sign-extension-flag, 11–11
SIGN function, 5–14
Simple-macro-call

expansion of, 16–13
Simple-macro-definition*

examples of, 16–6
SIXBIT

code table, B–7
encoding, B–7

%SIXBIT in string-literal, 4–6
Size

in field-selector, 11–11
%SIZE function, 15–29
SKPC(32), D–5
Slash as operator, 5–6
SOURCE

in module-switch, 19–5
in switch, 18–10

Source file, 1–13
Source listing counter, 18–12
Space, 2–3
SPANC(32), D–5
Special character, 2–1
Special-switch*, 18–10, 18–12, 19–5
SPL(16), D–1
Stack, 3–15
STACK

in module-switch(36), 19–5
Stack frame, 13–3
Stackframe for LOCAL data, 10–7
Stacklocal-declaration, 10–8
Stack pointer (SP) register, 13–3
Standard-function, 5–13
Statement

block-action as, 8–3
Storage, 3–14
Storage allocation

using structure-attribute, 11–21
Storage-class*

in psect-declaration, 18–2

String encodings, B–1
ASCII, B–1
RAD50_10, B–4
RAD50_11, B–3
Radix–50, B–2
SIXBIT, B–7

%STRING function, 15–19
String-literal, 4–6
String-literal*

lexical processing of, 15–12
String operations

compile-time
(see Lexical Functions), 15–1

run-time
(see Character Handling), 20–1

String-type, 4–6
Structure, 3–5

introduction to, 1–9
predeclared

BITVECTOR, 3–9, 11–33
BLOCK, 11–33
BLOCKVECTOR, 3–10, 11–33
VECTOR, 3–8, 11–33

predeclared>BLOCK, 3–10
user-defined, 3–11, 11–40, 11–41, 11–42, 11–43,

11–45, 11–46
STRUCTURE

in module-switch, 19–5
in switch, 18–10

Structure allocation, 11–20
introduction to, 11–6

Structure-attribute, 11–21
Structure-attribute*

in switch, 18–10, 19–5
Structure-body, 11–19
Structure-declaration, 11–19

interchangable, 11–8
introduction to, 11–5
placement of field-selector, 11–16

Structure-name
in general-structure-reference, 11–30
in structure-attribute, 11–21
in structure-declaration, 11–19

Structure-reference, 11–25
as primary, 4–15
examples of, 11–25
introduction to, 11–6

Structure-size, 11–19
SUBD(16,32,36), D–2
SUBF(16,32,36), D–2
SUBG(32,36), D–4
SUBH(32), D–4
SUBM(16,32), D–2
Subroutine flow, 6–1
Subtraction operator, 5–7
Supplementary functions, 5–13

for character handling, 20–1
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SWAB(16), D–1
Switches-declaration*, 18–10

in library source file, 16–26
%SWITCHES function, 15–33
SYMBOLIC

in module-switch, 19–5
in switch, 18–10

Symbolic constants
(see BIND-data-declaration,

LITERAL declaration), 14–1
Symmetric array structure, 11–42
Syntax notation, 2–5

concatenation, 2–6
dialect-specific features, 2–7
disjunction, 2–6
ellipsis, 2–7
replication, 2–7
syntactic literal, 2–5
syntactic name, 2–5
syntactic rule, 2–5

System interface operations
builtin(36), D–9

T
T11

in module-switch(16), 19–5
Tab character, 4–7
Target-system differences, 3–5
Target systems, 1–1
Temporary data, 10–1
TES

in case-expression, 6–5
in field-declaration, 11–23
in select-expression, 6–8

Test, 6–2
incomplete evaluation of, 6–4

TESTBITCC(32), D–3
TESTBITCCI(32), D–3
TESTBITCS(32), D–3
TESTBITSC(32), D–3
TESTBITSS(32), D–3
TESTBITSSI(32), D–3
Tested-loop-expression, 6–12
THEN in conditional-expression, 6–2
%TITLE function, 15–36
TO

in case-expression, 6–5
in loop-expression, 6–10
in select-expression, 6–8

TOPS10
in module-switch(36), 19–5

TOPS20
in module-switch(36), 19–5

TRACE
in module-switch, 19–5
in switch, 18–10

Trailing comment, 2–3
Transfer vector, 6–6
Transportability checking, 18–13, C–1
TRAP linkage-type(16), 13–12
Two-dimensional structure, 11–41

U
UNAMES

in module-switch, 19–5
in switch, 18–10

Unary operators, 5–1
Uncounted PLIT, 4–11
Undeclare-declaration*, 18–15
Undefined value of block, 8–3
%UNQUOTE function, 15–37

examples of, 15–8, 15–38, 16–23
UNSIGNED

in extension-attribute, 9–3
in range-attribute, 9–15

Unsigned value extension, 3–4
UNTIL in loop-expression, 6–12
Unwinding, 17–10

examples of, 17–15
Unwind signal, 17–5
Up-arrow operator, 5–5
UPLIT in plit, 4–11
%UPVAL literal-name, 14–3
User-defined structures, 11–40

bounds-checking structure, 11–41
general purpose structure, 11–46
non-contiguous structure, 11–43
one-origin vector structure, 11–41
partially overlayed structure, 11–45
symmetric array structure, 11–42
two-dimensional structure, 11–41

UUO(36), D–9

V
Value

discarded value, 6–3
extension of, 9–3
of a block, 8–3
of names, 8–6
undefined value, 8–3

VALUECBIT linkage-option, 13–11
Value return register, 13–3
Values

normal representation of, 3–1
%VARIANT function, 15–34
/VARIANT in compiler command, 15–34
VAX calling standard, 13–14
VECTOR

as psect-attribute, 18–2, 18–7
VECTOR structure, 11–33

example of, 3–8
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VERSION
in module-switch, 19–5

Vertical bar in syntax, 2–6
VMS

condition handling in, 17–25
Volatile-attribute, 9–12
Volatile-attribute*

use in condition handling, 17–4, 17–7, 17–24

W
WAIT(16), D–2
%WARN function, 15–35
Weak-attribute, 9–17

in external-routine-decl, 12–14
purpose of, 10–6

WHILE in loop-expression, 6–12
WITH in leave-expression, 6–13
WORD allocation-unit, 9–2
WORD_RELATIVE

in addressing-mode-attribute, 9–16
in module-switch(32), 19–5
in switch, 18–10

WRITE
psect-attribute, 18–2

Writing characters, 20–7
Writing character sequences, 20–8

X
XFC(32), D–6
%X in integer-literal, 4–3
XOR as infix operator, 5–9

Z
ZIP

in module-switch, 19–5
in switch, 18–10
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