HP OpenVMS DCL Dictionary:
A-M

Order Number: BA555-90001

July 2006

This manual provides detailed reference information and examples for
HP OpenVMS DCL commands and lexical functions.

Revision/Update Information: This manual supersedes the HP
OpenVMS DCL Dictionary: A-M,
Version 8.2.

Software Version: OpenVMS 164 Version 8.3
OpenVMS Alpha Version 8.3

Hewlett-Packard Company
Palo Alto, California

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Java is a US trademark of Sun Microsystems, Inc.

Microsoft is a US registered trademark of Microsoft Corporation.

Motif is a trademark of The Open Group in the US and other countries.

PostScript is a registered trademark of Adobe Systems Incorporated.

UNIX is a registered trademark of The Open Group.

Windows, Windows NT, and MS Windows are US registered trademarks of Microsoft Corporation.

Intel and Itanium are registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

ZK6199
The HP OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface vii
! (Comment Delimiter). DCLI-1
= (Assignment Statement) DCLI-2
= (String Assignment) DCLI-6
@ (Execute Procedure) DCLI-10
ACCOUNTING . ..ot e e e e DCLI-15
ALLOCATEo e e e e DCLI-16
ANALYZE/AUDIT e e DCLI-20
ANALYZE/CRASH_DUMP e DCLI-21
ANALYZE/DISK_STRUCTURE DCLI-22
ANALYZE/ERROR_LOG/ELV (Alpha/I64 Only) DCLI-23
ANALYZE/IMAGE DCLI-24
ANALYZE/MEDIA e DCLI-35
ANALYZE/OBJECT e DCLI-36
ANALYZE/PROCESS_DUMP e DCLI-46
ANALYZE/RMS_FILE e e DCLI-52
ANALYZE/SSLOG (Alpha/I64 Only). i DCLI-53
ANALYZE/SYSTEMo e DCLI-54
APPEND e DCLI-55
ASSIGN . .. e DCLI-60
ASSIGN/MERGE DCLI-67
ASSIGN/QUEUE e DCLI-68
ATTACH . .. e DCLI-70
BACKUP . .. DCLI-72
CALL . .. e DCLI-73
CANCEL DCLI-77
CHECKSUM e e e e e DCLI-79
CLOSE e DCLI-84
CONNECT e e e DCLI-86
CONTINUE e e e DCLI-89
CONVERT e e DCLI-90
CONVERT/DOCUMENT e DCLI-91
CONVERT/RECLAIM e e DCLI-103
COPY . . DCLI-104
COPY/ETP . . . e e e e e DCLI-114
COPY/RCP . . . e e e e DCLI-116
CREATE . .. DCLI-118
CREATE/DIRECTORY e DCLI-122

CREATE/FDL e DCLI-125

CREATE/MAILBOX (Alpha/I64 Only) DCLI-126
CREATE/NAME_TABLE e DCLI-128
CREATE/TERMINAL. e DCLI-132
DEALLOCATE e e e e e e DCLI-138
DEASSIGN . .. DCLI-139
DEASSIGN/QUEUE e e e e DCLI-144
DEBUG DCLI-145
DECK. . DCLI-150
DECRYPT . .. DCLI-153
DEFINE . . . DCLI-156
DEFINE/CHARACTERISTIC. DCLI-163
DEFINE/FORM e e e DCLI-165
DEFINE/KEY . . . e e e e e e e e e e e e e DCLI-169
DELETE . . DCLI-173
DELETE/BITMAP (Alpha/I64 Only) DCLI-178
DELETE/CHARACTERISTIC DCLI-179
DELETE/ENTRY DCLI-180
DELETE/FORM e DCLI-183
DELETE/INTRUSION _RECORD. DCLI-184
DELETE/KEY e e e e e e e e e e DCLI-186
DELETE/MAILBOX (Alpha/I64 Only) DCLI-188
DELETE/QUEUE e e DCLI-189
DELETE/QUEUE/MANAGER e DCLI-191
DELETE/SYMBOL e DCLI-192
DEPOSIT DCLI-194
DIFFERENCES e e DCLI-198
DIRECTORY e e e DCLI-208
DISABLE AUTOSTART DCLI-222
DISCONNECT . . . e e e e DCLI-224
DISMOUNT . . . e DCLI-226
DUMP . . DCLI-231
EDIT/ACL . . DCLI-240
EDIT/EDT e DCLI-241
EDIT/EDL DCLI-245
EDIT/SUM . . . oo DCLI-246
EDIT/TECO e DCLI-247
EDIT/TPU . . DCLI-250
ENABLE AUTOSTART e DCLI-251
ENCRYPT . . DCLI-254
ENCRYPT /AUTHENTICATE e DCLI-258
ENCRYPT /CREATE _KEYo e DCLI-261
ENCRYPT /REMOVE_KEY DCLI-264
ENDSUBROUTINE DCLI-265
EOD . .. DCLI-266
EOJ . DCLI-268
EXAMINE . .. DCLI-269

EXCHANGE e e DCLI-272

EXCHANGE/NETWORK e DCLI-273
EXIT . e DCLI-283
FONT . .. e DCLI-287
GOSUB . .. e DCLI-288
GOTO .. e DCLI-290
HELP . . e DCLI-292
HELP/MESSAGE e e DCLI-300
TF e DCLI-306
INITIALIZE e e DCLI-309
INITIALIZE/QUEUE e DCLI-325
INQUIRE DCLI-341
INSTALL . . .o e DCLI-344
JAVA e DCLI-345
JOB L DCLI-346
Lexical Functions DCLI-352
FSCONTEXT . ..ot DCLI-356
FSCSID ... DCLI-362
FOCUNITS . . oot e DCLI-364
FOCV I .. DCLI-365
FSCVTIME e e e e e e e e e et DCLI-367
FSCVUI . .. e e e e e DCLI-370
FSDELTA_TIME e e e e et et et DCLI-371
FSDEVICE e e e e e e e e e e e e e DCLI-372
FSDIRECTORYttt i DCLI-374
FSEDIT DCLI-375
FSELEMENT e DCLI-377
FSENVIRONMENT DCLI-379
FSEXTRACT . ..o e DCLI-382
FOEAO . . DCLI-384
F$FID_TO_NAME (Alpha/I64 Only)coivenn... DCLI-391
F$FILE_ATTRIBUTES e e et DCLI-392
FSGET DV e e e e e e e e DCLI-396
FSGETENV (Alpha Only)outiiiinenn... DCLI-413
FSGETJIPI DCLI-414
FSGETQUIL. o e DCLI-423
FSGETSYI . . DCLI-447
FSIDENTIFIER i DCLI-458
FSINTEGER e e e e e e e e DCLI-460
FSLENGTH e e e e e e e e e e e e DCLI-461
F$LICENSE (Alpha/I64 Only) DCLI-462
FSLOCATE e DCLI-463
FSMATCH_WILD.t e DCLI-465
FSMESSAGE DCLI-466
FSMODE DCLI-468
F$SMULTIPATH (Alpha/I64 Only).o DCLI-470
FOPARSE DCLI-472

FOPID .. DCLI-475

FSPRIVILEGE e DCLI-477
FSPROCESS e e e e DCLI-478
FESEARCH e DCLI-479
FESETPRV DCLI-482
FESTRINGot e DCLI-486

FSTIME DCLI-487
FETRNLNMot e e e e DCLI-488

FETYPE . . . DCLI-493
F$UNIQUE (Alpha/I64 Only)ot DCLI-495

FSUSERo DCLI-496
FEVERIFY DCLI-497

LIBRARY . .. DCLI-499
LICENSE DCLI-500

LINK .. DCLI-501
LOGIN Procedurettt DCLI-502
LOGOUT . .. DCLI-506
MACRO ..o DCLI-507

MAIL . . DCLI-508
MERGE DCLI-509
MESSAGE . .. DCLI-510
MONITOR . . . e e e e e e DCLI-511
MOUNT . .. DCLI-512

Index
Tables

DCLI-1 CPU Time Limit Specifications and Actions. DCLI-331
DCLI-2 Working Set Default, Extent, and Quota Decision DCLI-338
DCLI-3 Summary of Lexical Functions DCLI-352
DCLI-4 Summary of FAO Directives. DCLI-386
DCLI-5 FSFILE_ATTRIBUTES Itemsc.c.utiiiiineeannn.. DCLI-392
DCLI-6 FESGETDVI Ttemsottt i DCLI-397
DCLI-7 FSGETIPITtemsottt et e i DCLI-415
DCLI-8 FSGETQUI Keywordst DCLI-425
DCLI-9 FSGETQUI Itemsottt e et e e e e e DCLI-427
DCLI-10 F$GETSYITtemsottt et e e DCLI-448
DCLI-11 F$MESSAGE Keywordso vvi et DCLI-466
DCLI-12 Context Symbol Types i DCLI-493
DCLI-13 Keywords for Tapes DCLI-525

vi

Preface

Intended Audience

This manual is intended for all users of the HP OpenVMS operating system. It
includes descriptions of all DIGITAL Command Language (DCL) commands and
lexical functions. If a command has any restrictions or requires special privileges,
they are noted in reference information for that command.

Readers of this manual should be familiar with the material covered in the
OpenVMS User’s Manual.

Document Structure

This manual contains detailed descriptions of each command and lexical function.
The commands are listed in alphabetical order, with the command name
appearing at the top of every page. The lexical functions are grouped under the
heading Lexical Functions (after the JOB command description) and are listed
alphabetically within that grouping; the lexical function name appears at the top
of each page.

The hardcopy version of the HP OpenVMS DCL Dictionary is a two-part manual.
The first volume contains commands beginning with the letters A to M (including
the lexical functions); the second volume contains commands beginning with the
letters N to Z.

Appendix A of this manual (in the second volume of the hardcopy manual) lists
the obsolete DCL commands and the current services that replace them.

The commands that invoke language compilers and other OpenVMS optional
software products are not included in this manual; they are included in the
documentation provided with those products.

Related Documents

For an introduction to the OpenVMS operating system and for information
on using DCL, see the OpenVMS User’s Manual. This manual is especially
recommended for novice users or users lacking experience with interactive
computer systems.

The OpenVMS User’s Manual provides an overview of DCL command language
concepts and defines and illustrates good practices in constructing command
procedures with DCL commands and lexical functions.

See to the various utilities reference manuals for detailed information about
utilities. These manuals describe the DCL commands that invoke the various
utilities, describe any commands that you can enter while running a utility, and
provide reference information. The HP OpenVMS DCL Dictionary provides only a
brief description and format information for each utility.

For message descriptions, use the online Help Message utility.

vii

For additional information about HP OpenVMS products and services, visit the
following World Wide Web address:

http://www.hp.com/go/openvms

Reader’s Comments

HP welcomes your comments on this manual. Please send comments to either of

the following addresses:

Internet
Postal Mail

openvmsdoc@hp.com

Hewlett-Packard Company

OSSG Documentation Group, ZK03-4/U08
110 Spit Brook Rd.

Nashua, NH 03062-2698

How to Order Additional Documentation

For information about how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Conventions

The following conventions may be used in this manual:

Ctrl/x

PF1x

O)

viii

A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

A horizontal ellipsis in examples indicates one of the following
possibilities:

e Additional optional arguments in a statement have been
omitted.

e The preceding item or items can be repeated one or more
times.

e Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

{}

bold type

italic type

Example

UPPERCASE TYPE

numbers

In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.

Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

Bold type represents the introduction of a new term. It also
represents the name of an argument, an attribute, or a reason.

Italic type indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

This typeface indicates code examples, command examples, and
interactive screen displays. In text, this type also identifies
URLs, UNIX commands and pathnames, PC-based commands
and folders, and certain elements of the C programming
language.

Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

! (Comment Delimiter)

! (Comment Delimiter)

Format

Description

Example

Indicates that everything that follows it on a command line is a comment and
should not be processed as part of a command.

I comment-text

$!

$ WRITE SYSSOUTPUT "hello" ! This
hello

S FOO = " " ! This

$ FOO WRITE SYSSOUTPUT "hello" ! This
hello

$ FOO = "I ! This
$ FOO WRITE SYSSOUTPUT "hello" ! This
$ | WRITE SYSSOUTPUT "hello" ! This

command should output "hello".

command defines FOO as a blank.
command should output "hello".

command defines FOO as a !.

command should be ignored.
command should be ignored too.

DCLI-1

= (Assignment Statement)

= (Assignment Statement)

Defines a symbolic name for a character string or integer value.

Format
symbol-name =[=] expression

symbol-namel[bit-position,size] =[=] replacement-expression

Note

HP advises against assigning a symbolic name that is already a DCL
command name. HP especially discourages the assignment of symbols
such as IF, THEN, ELSE, and GOTO, which can affect the interpretation
of command procedures.

Parameters

symbol-name

Specifies a string of 1 to 255 characters for the symbol name. The name can
contain any alphanumeric characters from the DEC Multinational character set,
the underscore (_), and the dollar sign ($). However, the name must begin only
with an alphabetic character (uppercase and lowercase characters are equivalent),
an underscore, or a dollar sign. Using one equal sign (=) places the symbol name
in the local symbol table for the current command level. Using two equal signs
(==) places the symbol name in the global symbol table.

expression

Names the value on the right-hand side of an assignment statement. This
parameter can consist of a character string, an integer, a symbol name, a lexical
function, or a combination of these entities. The components of the expression are
evaluated, and the result is assigned to the symbol. All literal character strings
must be enclosed in quotation marks (“ 7). If the expression contains a symbol,
the expression is evaluated using the symbol’s value.

The result of expression evaluation is either a character string or a signed integer
value. If the expression is evaluated as a string, the symbol is assigned a string
value. If the expression is evaluated as an integer, the symbol is assigned an
integer value. If the integer value exceeds the capacity of the 4-byte buffer that
holds it, no error message is issued.

For a summary of operators used in expressions, details on how to specify
expressions, and details on how expressions are evaluated, see the OpenVMS
User’s Manual.

DCL uses a buffer that is 1024 bytes long to hold an assignment statement and
to evaluate the expression. The length of the symbol name, the expression, and
the expression’s calculations cannot exceed 1024 bytes.

[bit-position,size]

States that a binary overlay is to be inserted in the current 32-bit value of a
symbol name. The current value of the symbol name is evaluated. Then, the
specified number of bits is replaced by the result of the replacement expression.
The bit position is the location relative to bit 0 at which the overlay is to occur.

DCLI-2

Description

Examples

= (Assignment Statement)

If the symbol you are overlaying is an integer, then the bit position must be less
than 32. The sum of the bit position and the size must be less than or equal to
32.

If the symbol you are overlaying is a string, then the bit position must be less
than 6152. Because each character is represented using 8 bits, you can begin
an overlay at any character through the 768th character. (The 768th character
starts in bit position 6144.) The sum of the bit position and the size must be less
than or equal to 6152.

The size is the number of bits to be overlaid. If you specify a size that is greater
than 32, DCL reduces the size to 32.

The brackets are required notation; no spaces are allowed between the symbol
name and the left bracket. Specify values for the bit position and size as integers.

replacement-expression
Specifies the value that is used to overlay the symbol you are modifying. Specify
the replacement expression as an integer.

If the symbol you are modifying is an integer, the replacement expression defines
a bit pattern that is overlaid on the value assigned to the symbol. If the symbol
you are modifying is a character string, the result of the replacement expression
defines a bit pattern that is overlaid on the specified bits of the character string.
If the symbol you are modifying is undefined, the result of the replacement
expression is overlaid on a null string.

Symbols defined using assignment statements allow you to extend the command
language. At the interactive command level, you can use symbols to define
synonyms for commands or command lines. In command procedure files, you can
use symbols to provide for conditional execution and substitution of variables.

The maximum number of symbols that can be defined at any time depends on the
following:

e The amount of space available to the command interpreter to contain symbol
tables and labels for the current process. The amount of space is determined
for each process by the system parameter CLISYMTBL.

¢ The size of the symbol names and their values. The command interpreter
allocates space for a symbol name and its value. In addition, a few bytes of
overhead are allocated for each symbol.

1. §$ LIST == "DIRECTORY"

The assignment statement in this example assigns the user-defined synonym
LIST as a global symbol definition for the DCL command DIRECTORY.

DCLI-3

= (Assignment Statement)

DCLI-4

S COUNT = 0

$ LOOP:

S COUNT = COUNT + 1

S IF P’COUNT’ .EQS. "" THEN EXIT
S APPEND/NEW &P’ COUNT’ SAVE.ALL
S DELETE &P’ COUNT' ;*

S IF COUNT .LT. 8 THEN GOTO LOOP

$ EXIT

This command procedure, COPYDEL.COM, appends files (specified as
parameters) to a file called SAVE.ALL. After a file has been appended, the
command procedure deletes the file. Up to eight file names can be passed to
the command procedure. The file names are assigned to the symbols P1, P2,
and so on.

The command procedure uses a counter to refer to parameters that are passed
to it. Each time through the loop, the procedure uses an IF command to check
whether the value of the current parameter is a null string. When the IF
command is scanned, the current value of the symbol COUNT is concatenated
with the letter P. The first time through the loop, the IF command tests P1;
the second time through the loop it tests P2, and so on. After the expression
P‘COUNT is evaluated, the substitution of the file names that correspond to
P1, P2, and so on is automatic within the context of the IF command.

The APPEND and DELETE commands do not perform any substitution
automatically, because they expect and require file specifications as input
parameters. The ampersand (&) precedes the PFCOUNT’ expression for
these commands to force the appropriate symbol substitution. When these
commands are initially scanned each time through the loop, COUNT is
substituted with its current value. Then, when the commands execute,
the ampersand causes another substitution: the first file specification is
substituted for P1, the second file specification is substituted for P2, and so
on.

To invoke this procedure, use the following command:
$ @COPYDEL ALAMO.TXT BEST.DOC

The files ALAMO.TXT and BEST.DOC are each appended to the file
SAVE.ALL and are then deleted.

$ A =25
$ CODE = 4 + FSINTEGER("6") - A
$ SHOW SYMBOL CODE
CODE = -15 HEX = FFFFFFF1 Octal = 1777761

This example contains two assignment statements. The first assignment
statement assigns the value 25 to the symbol A. The second assignment
statement evaluates an expression containing an integer (4), a lexical function
(F$INTEGER(“6”)), and the symbol A. The result of the expression, —15, is
assigned to the symbol CODE.

$ FILENAME = "JOBSEARCH" - "JOB"
$ FILETYPE = ".OBJ"
$ FILESPEC = FILENAME + FILETYPE

$ TYPE 'FILESPEC’

The first command in this example assigns the symbol FILENAME the value
“SEARCH”. Notice that the string “SEARCH?” is the result of the string
reduction operation performed by the expression. The second command
assigns the symbol FILETYPE the character string “.OBJ”.

= (Assignment Statement)

The symbols FILENAME and FILETYPE are then added together in an
expression assigned to the symbol FILESPEC. Because the values of the
symbols FILENAME and FILETYPE are concatenated, the resultant value
assigned to FILESPEC is the character string “SEARCH.OBJ”. The symbol
FILESPEC is then used as a parameter for the TYPE command. The single
quotation marks (‘’) request the command interpreter to replace the symbol
FILESPEC with its value SEARCH.OBJ. Thus, the TYPE command types the
file named SEARCH.OBJ.

$ BELL[0,32] = %X07
$ SHOW SYMBOL BELL
BELL = ""

In this example, the symbol BELL is created with an arithmetic overlay
assignment statement. Because the symbol BELL is previously undefined,
the hexadecimal value 7 is inserted over a null character string and is
interpreted as the ASCII code for the bell character on a terminal. When you
issue the command SHOW SYMBOL BELL, the terminal beeps.

If the symbol BELL had been previously defined with an integer value, the
result of displaying BELL would have been to show its new integer value.

$ $=34

$DCL-W-NOCOMD, no command on line - reenter with alphabetic first
character

S $5=34

$ SHOW SYMBOL $$

$DCL-W-UNDSYM, undefined symbol - check validity and spelling

$ SHOW SYMBOL $

$ = 34 Hex = 00000022 Octal = 00000000042

If you begin a symbol name with the dollar sign ($), use two dollar signs ($$)
because DCL discards the first instance of the dollar sign.

DCLI-5

:= (String Assignment)

:= (String Assignment)
Defines a symbolic name for a character string value.

Format
symbol-name :=[=] string

symbol-nameloffset,size] :=[=] replacement-string

Note

HP advises against assigning a symbolic name that is already a DCL
command name. HP especially discourages the assignment of symbols

such as IF, THEN, ELSE, and GOTO, which can affect the interpretation
of command procedures.

Parameters

symbol-name

Specifies a string of 1 to 255 characters for the symbol name. The name can
contain any alphanumeric characters from the DEC Multinational character

set, the underscore (_), and the dollar sign ($). However, the name must begin
only with an alphabetic character, an underscore, or a dollar sign. Using one
equal sign (:=) places the symbol name in the local symbol table for the current
command level. Using two equal signs (:==) places the symbol name in the global
symbol table.

string

Names the character string value to be equated to the symbol. The string can
contain any alphanumeric or special characters. DCL uses a buffer that is 1024
bytes long to hold a string assignment statement. Therefore, the length of the
symbol name, the string, and any symbol substitution within the string cannot
exceed 1024 characters.

With the string assignment statement (:=), you do not need to enclose a string
literal in quotation marks (“”). String values are converted to uppercase
automatically. Also, any leading and trailing spaces and tabs are removed, and
multiple spaces and tabs between characters are compressed to a single space.

To prohibit uppercase conversion and to retain required space and tab characters
in a string, place quotation marks around the string. To use quotation marks in
a string, enclose the entire string within quotation marks and use a double set of
quotation marks within the string. For example:

$ TEST := "this is a ""test"" string"
$ SHOW SYMBOL TEST
TEST = "this is a "test" string"

In this example, the spaces, lowercase letters, and quotation marks are preserved
in the symbol definition.

To continue a symbol assignment on more than one line, use the hyphen (-) as a
continuation character. For example:

DCLI-6

Examples

:= (String Assignment)

$ LONG_STRING := THIS SYMBOL ASSIGNMENT IS A VERY LONG-
_$ _SYMBOL_STRING

To assign a null string to a symbol by using the string assignment statement, do
not specify a string. For example:

$ NULL :=

Specify the string as a string literal, or as a symbol or lexical function that
evaluates to a string literal. If you use symbols or lexical functions, place single
quotation marks (‘’) around them to request symbol substitution. See the
OpenVMS User’s Manual for more information on symbol substitution.

You can also use the string assignment statement to define a foreign command.
See the OpenVMS User’s Manual for more information about foreign commands.

[offset,size]

Specifies that a portion of a symbol value is to be overlaid with a replacement
string. This form of the string assignment statement evaluates the value assigned
to a symbol and then replaces the portion of the value (defined by the offset and
size) with the replacement string. The brackets are required notation, and no
spaces are allowed between the symbol name and the left bracket.

The offset specifies the character position relative to the beginning of the symbol
name’s string value at which replacement is to begin. Offset values start at 0.

If the offset is greater than the offset of the last character in the string you are
modifying, spaces are inserted between the end of the string and the offset where
the replacement string is added. The maximum offset value you can specify is
768.

The size specifies the number of characters to replace. Size values start at 1.

Specify the offset and size as integer expressions. See the OpenVMS User’s
Manual for more information on integer expressions. The value of the size plus
the offset must not exceed 769.

replacement-string

Specifies the string that is used to overwrite the string you are modifying. If the
replacement string is shorter than the size argument, the replacement string

is filled with blanks on the right until it equals the specified size. Then the
replacement string overwrites the string assigned to the symbol name. If the
replacement string is longer than the size argument, then the replacement string
is truncated on the right to the specified size.

You can specify the replacement string as a string literal, or as a symbol or lexical
function that evaluates to a string literal. If you use symbols or lexical functions,
place single quotation marks (‘’) around them to request symbol substitution.
For more information on symbol substitution, see the OpenVMS User’s Manual.

1. §$ TIME := SHOW TIME
$ TIME
24-DEC-2001 11:55:44

In this example, the symbol TIME is equated to the command string SHOW
TIME. Because the symbol name appears as the first word in a command
string, the command interpreter automatically substitutes it with its string
value and executes the command SHOW TIME.

DCLI-7

:= (String Assignment)

DCLI-8

2.

$ STAT := $DKAL: [TEDESCO]STAT
$ STAT

This example shows how to define STAT as a foreign command. The symbol
STAT is equated to a string that begins with a dollar sign followed by a file
specification. The command interpreter assumes that the file specification is
that of an executable image, that is, a file with a file type of .EXE.

When you subsequently enter STAT, the command interpreter executes the
image.

$ A = "this is a big space."
$ SHOW SYMBOL A

A = "this is a big space."
$B := A

$ SHOW SYMBOL B
B = "THIS IS A BIG SPACE."

This example compares the assignment and the string assignment
statements. The symbol A is defined using the assignment statement, so
lowercase letters and multiple spaces are retained. The symbol B is defined
using the string assignment statement. Note that the single quotation marks
(¢7) are required; otherwise, the symbol name B would have been equated to
the literal string A. However, when symbol A’s value is assigned to symbol B,
the letters are converted to uppercase and multiple spaces are compressed.

$ FILE NAME := MYFILE

$ FILE NAME[0,2]:= OL

$ SHOW SYMBOL FILE NAME
FILE NAME = "OLFILE"

In this example, the substring expression in the assignment statement
overlays the first 2 characters of the string assigned to the symbol FILE_
NAME with the letters OL. The offset of 0 requests that the overlay begin
with the first character in the string, and the size specification of 2 indicates
the number of characters to overlay.

:= (String Assignment)

$ FILE NAME := MYFILE
$ FILE TYPE := .TST
$ FILE NAME [FSLENGTH (FILE NAME), 4] := 'FILE TYPE'

$ SHOW SYMBOL FILE NAME
FILE NAME = "MYFILE.TST"

In this example, the symbol name FILE_NAME is equated to the string
MYFILE and the symbol name FILE_TYPE is equated to the string .TST. The
third assignment statement uses the lexical function FSLENGTH to define
the offset value where the overlay is to begin. The symbol name FILE_TYPE
is used to refer to the replacement string (.\TST). Note that you must use
single quotation marks (‘’) to request symbol substitution.

The FSLENGTH lexical function returns the length of the string equated to
the symbol FILE_NAME; this length is used as the offset. The expression
requests that 4 characters of the string currently equated to the symbol
FILE_TYPE be placed at the end of the string currently equated to FILE_
NAME. The resultant value of the symbol FILE_NAME is MYFILE.TST.

DCLI-9

@ (Execute Procedure)

@ (Execute Procedure)

Format

Parameters

DCLI-10

Executes a command procedure or requests the command interpreter to read
subsequent command input from a specific file or device.

@ filespec [parameter],...]]

filespec

Specifies either the input device or the file for the preceding command, or the
command procedure to be executed. The default file type is .COM. The asterisk
(*) and the percent sign (%) wildcard characters are not allowed in the file
specification.

parameter],...]

Specifies from one to eight optional parameters to pass to the command
procedure. The symbols (P1, P2, ... P8) are assigned character string values
in the order of entry. The symbols are local to the specified command procedure.
Separate each parameter with one or more blanks. Use two consecutive quotation
marks ("") to specify a null parameter. You can specify a parameter with a
character string value containing alphanumeric or special characters, with the
following restrictions:

¢ The command interpreter converts alphabetic characters to uppercase and
uses blanks to delimit each parameter. To pass a parameter that contains
embedded blanks or literal lowercase letters, place the parameter in quotation
marks.

e If the first parameter begins with a slash (/), you must enclose the parameter
in quotation marks (“”).

e To pass a parameter that contains literal quotation marks and spaces, enclose
the entire string in quotation marks and use two consecutive quotation marks
within the string. For example, the command procedure TEST.COM contains
the following line:

S WRITE SYSSOUTPUT P1
Enter the following at the DCL prompt ($):
$ @TEST "Never say ""quit"""

When the procedure TEST.COM executes, the parameter P1 is equated to the
following string:

Never say "quit"

If a string contains quotation marks and does not contain spaces, the

quotation marks are preserved in the string and the letters within the
quotation marks remain in lowercase. For example, enter the following at the
DCL prompt:

$ @TEST abc"def"ghi

Description

@ (Execute Procedure)

When the procedure TEST.COM executes, the parameter P1 is equated to the
following string:

ABC"def"GHI

To use a symbol as a parameter, enclose the symbol in single quotation marks
(“?) to force symbol substitution. For example:

$ NAME = "JOHNSON"
$ @INFO ’'NAME’

The single quotation marks cause the value “JOHNSON” to be substituted for
the symbol NAME. Therefore, the parameter “JOHNSON” is passed as P1 to
INFO.COM.

Use the @ command to execute a command procedure that contains the following:
e DCL command lines or data, or both
e (Qualifiers or parameters, or both, for a specific command line

To execute a command procedure containing commands or data, or both, place the
@ command at the beginning of a command line and then specify the name of the
command procedure file. The command procedure can contain DCL commands
and input data for a command or program that is currently executing. All DCL
commands in a command procedure must begin with a dollar sign ($). If a
command is continued with a hyphen (-), the subsequent lines must not begin
with a dollar sign.

Any line in a command procedure that does not contain a dollar sign in the first
character position (and is not a continuation line) is treated as input data for the
command or program that is currently executing. The DECK command allows
you to specify that data contains dollar signs in record position one.

A command procedure can also contain the @ command to execute another
command procedure. The maximum command level you can achieve by
nesting command procedures is 16, including the top-level command procedure.
Command procedures can also be queued for processing as batch jobs, either
by using the SUBMIT command or by placing a deck of cards containing the
command procedure in the system card reader.

To execute a command procedure that contains qualifiers or parameters, or
both, for a specific command line, place the @ command where the qualifiers or
parameters normally would be in the command line. Then specify the name of
the command procedure file containing the qualifiers or parameters.

If the command procedure file begins with parameters for the command, the @
command must be preceded by a space. For example:

$ CREATE TEST.COM

TIME

[CuiZ]

$ SHOW @TEST
14-SEP-2001 17:20:26

DCLI-11

@ (Execute Procedure)

Qualifier

Examples

DCLI-12

If the file begins with qualifiers for the command, do not precede the @ command
with a space. For example:

$ CREATE TEST 2.COM
/SIZE

$ DIR@TEST 2

Directory WORKS: [SCHEDULE]

JANUARY . TXT; 8 14-DEC-2001 15:47:45.57
FEBRUARY.TXT; 7 14-DEC-2001 15:43:16.20

MARCH.TXT; 6 14-DEC-2001 11:11:45.74

Totél of 11 files.

If the file contains parameters or qualifiers, or both, do not begin the lines in
the file with dollar signs. Any additional data on the command line following
@filespec is treated as parameters for the procedure.

/OUTPUT=filespec

Specifies the name of the file to which the command procedure output is written.
By default, the output is written to the current SYSSOUTPUT device. The
default output file type is .LIS. The asterisk (*) and the percent sign (%)
wildcard characters are not allowed in the output file specification. System
responses and error messages are written to SYS$COMMAND as well as to

the specified file. The /OUTPUT qualifier must immediately follow the file
specification of the command procedure; otherwise, the qualifier is interpreted as
a parameter to pass to the command procedure.

You can also redefine SYS$OUTPUT to redirect the output from a command
procedure. If you place the following command as the first line in a command
procedure, output will be directed to the file you specify:

$ DEFINE SYSSOUTPUT filespec

When the procedure exits, SYS$OUTPUT will be restored to its original
equivalence string. This produces the same result as using the /OUTPUT
qualifier when you execute the command procedure.

CREATE DOFOR.COM

ON WARNING THEN EXIT

IF P1.EQS."" THEN INQUIRE P1 FILE
FORTRAN/LIST 'P1’

LINK 'P1'

RUN 'P1’

PRINT 'P1’

$ @DOFOR AVERAGE

Ur Ur U Ur Ur U >

This example shows a command procedure, named DOFOR.COM, that
executes the FORTRAN, LINK, and RUN commands to compile, link, and
execute a program. The ON command requests that the procedure not
continue if any of the commands result in warnings or errors.

@ (Execute Procedure)

When you execute DOFOR.COM, you can pass the file specification of the
FORTRAN program as the parameter P1. If you do not specify a value for P1
when you execute the procedure, the INQUIRE command issues a prompting
message to the terminal and equates what you enter with the symbol P1. In
this example, the file name AVERAGE is assigned to P1. The file type is not
included because the commands FORTRAN, LINK, RUN, and PRINT provide
default file types.

$ @MASTER/OUTPUT=MASTER.LOG

This command executes a procedure named MASTER.COM; all output is
written to the file MASTER.LOG.

$ CREATE FILES.COM
* . FOR, *.0BJ

$ DIRECTORY @FILES

This example shows a command procedure, FILES.COM, that contains
parameters for a DCL command line. The entire file is treated by DCL as
command input. You can execute this procedure after the DIRECTORY
command to get a listing of all FORTRAN source and object files in your
current default directory.

$ CREATE QUALIFIERS.COM
/DEBUG/SYMBOL_TABLE/MAP/FULL/CROSS REFERENCE

$ LINK SYNAPSE@QUALIFIERS

This example shows a command procedure, QUALIFIERS.COM, that contains
qualifiers for the LINK command. When you enter the LINK command,
specify the command procedure immediately after the file specification of the
file you are linking. Do not type a space between the file specification and the
@ command.

$ CREATE SUBPROCES.COM
$ RUN 'P1’ -
/BUFFER_LIMIT=1024 -
/FILE_LIMIT=4 -
/PAGE_FILES=256 -
/QUEUE_LIMIT=2 -
/SUBPROCESS_LIMIT=2 -
IP2/ IP3I IP4I IPSI IP6I IP7I IP8I
[ciz)
$ @SUBPROCES LIBRA /PROCESS NAME=LIBRA

This example shows a command procedure named SUBPROCES.COM. This
procedure issues the RUN command to create a subprocess to execute an
image and also contains qualifiers defining quotas for subprocess creation.

The name of the image to be run is passed as the parameter P1. Parameters
P2 to P8 can be used to specify additional qualifiers.

In this example, the file name LIBRA is equated to P1; it is the name of an
image to execute in the subprocess. The qualifier /PROCESS_NAME=LIBRA
is equated to P2; it is an additional qualifier for the RUN command.

DCLI-13

@ (Execute Procedure)

DCLI-14

6.

$ CREATE EDOC.COM
$ ASSIGN SYSSCOMMAND: SYS$INPUT

$ NEXT:

$ INQUIRE NAME "File name"
$ IF NAME.EQS."" THEN EXIT
$ EDIT/TPU 'NAME’ .DOC

$ GOTO NEXT

[Ctriz]

$ @EDOC

This procedure, named EDOC.COM, invokes the EVE editor. When an edit
session is terminated, the procedure loops to the label NEXT. Each time
through the loop, the procedure requests another file name for the editor and
supplies the default file type .DOC. When a null line is entered in response to
the INQUIRE command, the procedure terminates with the EXIT command.

The ASSIGN command changes the equivalence name of SYS$INPUT for the
duration of the procedure. This change allows the EVE editor to read input
data from the terminal, rather than from the command procedure file (the
default input data stream if SYS$INPUT had not been changed). When the
command procedure exits, SYS$INPUT is reassigned to its original value.

! PEOPLE.DAT
| A set of data with embedded key qualifiers for the SORT command.
|

| Usage: SORT@PEOPLE.DAT
!

/KEY=(P0S:10,SIZE:10) sys$input people.out

Fred Flintstone 555-1234
Barney Rubble 555-2244
Wilma Flintstone 555-1234
Betty Rubble 555-2244
George Slate 555-8911
Dino Dinosaur 555-1234
Sl

$ purge people.out

$ type people.out

Creates a sorted list of people in file PEOPLE.OUT and displays it. This
demonstrates when using "@" in the middle of a DCL command, DCL
redirects the entire file as command input.

ACCOUNTING

ACCOUNTING

Runs the Accounting utility, which produces reports of resource use.

For more information about the Accounting utility, see the HP OpenVMS System
Management Utilities Reference Manual or online help.

Format
ACCOUNTING [filespec],...]]

DCLI-15

ALLOCATE

ALLOCATE

Format

Parameters

Qualifiers

DCLI-16

Provides your process with exclusive access to a device until you deallocate the
device or terminate your process. Optionally associates a logical name with the
device.

Requires read (R), write (W), or control access.

ALLOCATE device-name[:][,...] [logical-name[:]]

device-name[:][,...]

Specifies the name of a physical device or a logical name that translates to the
name of a physical device. The device name can be generic: if no controller or
unit number is specified, any device that satisfies the specified part of the name
is allocated. If more than one device is specified, the first available device is
allocated.

logical-name[:]

Specifies a string of 1 to 255 alphanumeric characters. Enclose the string in
single quotation marks (‘’) if it contains blanks. Trailing colons (:) are not
used. The name becomes a process logical name with the device name as the
equivalence name. The logical name remains defined until it is explicitly deleted
or your process terminates.

IGENERIC

/INOGENERIC (default)

Indicates that the first parameter is a device type rather than a device name.
Example device types are: RX50, RD52, TK50, RC25, RCF25, and RL02. The
first free, nonallocated device of the specified name and type is allocated.

The /INO]JGENERIC qualifier is placed before the device-name parameter in the
ALLOCATE command line. For example, you can allocate an RK07 device by
entering the following command at the DCL prompt ($):

$ ALLOCATE/GENERIC RK07 DISK

The following table shows some device types that you can specify with the
/GENERIC qualifier. To see what devices are available, see your SPD for the
OpenVMS version they are currently using.

Devices by Classification

Disk Devices

EF51 EF52 EF53 EF54 EF58
ESE20 ESE25 ESE52 ESE56 ESE58
EZ31 EZ31L EZ32 EZ32L EZ33
EZ33L EZ34 EZ35 EZ51 EZ52

ALLOCATE

Devices by Classification

Disk Devices

EZ53 EZ54 EZ56R EZ58 HSZ10
HSZ15 HSZ20 HSZ40 ML11 RA60
RA70 RAT1 RA72 RAT73 RAS80
RAS81 RAS82 RA90 RA92 RAHT72
RB02 RB80 RC25 RCF25 RD26
RD31 RD32 RD33 RD51 RD52
RD53 RD54 RF30 RF31 RF31F
RF32 RF35 RF36 RF37 RF70
RF71 RF72 RF73 RF74 RF75
RFF31 RFH31 RFH32 RFH35 RFH72
RFH73 RKO06 RKO7 RLO1 RLO02
RMO3 RMO5 RM80 RP0O4 RPO5
RPO0O6 RPO7 RPO7HT RX01 RX02
RX04 RX18 RX23 RX23S RX26
RX33 RX33S RX35 RX50 RZ01
RZ13 RZ14 RZ15 RZ16 RZ17
RZ18 RZ22 RZ23 RZ23L RZ24
RZ24L RZ25 RZ25L RZ26 RZ26B
RZ26L RZ26M RZ27 RZ27B RZ27L
RZ28 RZ28B RZ28L RZ29 RZ29B
RZ31 RZ34L RZ35 RZ35L RZ36
RZ36L RZ37 RZ38 RZ55 RZ55L
RZ56 RZ56L RZ57 RZ571 RZ57L
RZ58 RZ59 RZ72 RZ73 RZ73B
RZ74 RZ74B RZ75 RZ75B RZF01
Compact Disk Devices

RRD40 RRD40S RRD42 RRD43 RRD44
RRD50 RV20 RV60 RV80 RW504
RW510 RW514 RW516 RWZ01 RWZ21
RWZ31 RWZ51 RWZ52 RWZ53 RWZ54

DCLI-17

ALLOCATE

Examples

DCLI-18

Devices by Classification

Tape Devices

TA78 TA79 TA81 TA85 TA86
TA87 TA90 TA9OE TA91 TAD85
TAPE9 TD34 TD44 TE16 TF30
TF70 TF85 TF86 TK50 TK50S
TK60 TK70 TK70L TKZ09 TKZ60
TL810 TL820 TLZ04 TLZ06 TLZ07
TLZ6 TLZ7 TM32 TS11 TSZ05
TSZ07 TSZ08 TU45 TU56 TU58
TU77 TU78 TU80 TUS81 TZ30
TZ30S TZ85 TZ857 TZ86 TZ865
TZ867 TZ87 TZ875 TZ877 TZ88
TZ885 TZ887 TZ89 TZ895 TZ897
TZK10 TZK11 TZX0

/LOG (default)

I/INOLOG

Displays a message indicating the name of the device allocated. If the operation
specifies a logical name that is currently assigned to another device, then the
superseded value is displayed.

1.

$ ALLOCATE DMB2:
%DCL-I-ALLOC, DMB2: allocated

The ALLOCATE command in this example requests the allocation of a specific
RKO06/RKO07 disk drive, that is, unit 2 on controller B. The system response
indicates that the device was allocated successfully.

$ ALLOCATE MT,MF: TAPE:
%$DCL-I-ALLOC, MTB2: allocated

$ SHOW LOGICAL TAPE:

TAPE: = MTB2: (process)
$ DEALLOCATE TAPE:

$ DEASSIGN TAPE:

The ALLOCATE command in this example requests the allocation of a tape
device whose name begins with MT or MF and assigns it the logical name
TAPE. The ALLOCATE command locates an available tape device whose
name begins with MT, and responds with the name of the device allocated. (If
no tape device beginning with MT had been found, the ALLOCATE command
would have searched for a device beginning with MF.) Subsequent references
to the device TAPE in user programs or command strings are translated to
the device name MTB2.

ALLOCATE

When the tape device is no longer needed, the DEALLOCATE command
deallocates it and the DEASSIGN command deletes the logical name. Note
that the logical name TAPE was specified with a colon on the ALLOCATE
command, but that the logical name table entry does not have a colon.

$ ALLOCATE/GENERIC RL02 WORK
%DCL-I-ALLOC, DLAl: allocated
$DCL-I-SUPERSEDE, previous value of WORK has been superseded

The ALLOCATE command in this example requests the allocation of any
RLO02 disk device and assigns the logical name WORK to the device. The
completion message identifies the allocated device and indicates that the
assignment of the logical name WORK supersedes a previous assignment of
that name.

$ ALLOCATE STAPE1
%$DCL-I-ALLOC, MUAO: allocated

The ALLOCATE command in this example allocates the tape device MUAO,
which is associated with the logical name $TAPE1.
$ ALLOCATE /GENERIC RX50 ACCOUNTS

The ALLOCATE command in this example allocates the first free diskette
drive and makes its name equivalent to the process logical name ACCOUNTS.

DCLI-19

ANALYZE/AUDIT

ANALYZE/AUDIT

Invokes the Audit Analysis utility, which selectively extracts and displays
information from security audit log files or security archive files.

For more information about the Audit Analysis utility, see the HP OpenVMS
System Management Utilities Reference Manual or online help.

Format
ANALYZE/AUDIT [filespec]

DCLI-20

ANALYZE/CRASH_DUMP

ANALYZE/CRASH_DUMP

Format

Description

Invokes the System Dump Analyzer utility, which analyzes a system dump file.
The /CRASH_DUMP qualifier is required.

For more information about the System Dump Analyzer utility on Alpha, refer
to the HP OpenVMS System Analysis Tools Manual or online help. For more
information about the System Dump Analyzer utility on VAX, see the OpenVMS
VAX System Dump Analyzer Utility Manual®

ANALYZE/CRASH_DUMP filespec

Invokes the System Dump Analyzer utility, which analyzes a system dump file.
The /CRASH_DUMP qualifier is required.

For OpenVMS Alpha Systems

You can also use the ANALYZE/CRASH_DUMP command with process dumps.
However, the preferred command is ANALYZE/PROCESS, which provides
complete access to the information in the dump.

! This manual has been archived. It is no longer maintained and is not part
of the OpenVMS documentation set. However, you can view it online at
http:/ lwww.hp.com/go/openvms/doc or online help.

DCLI-21

ANALYZE/DISK_STRUCTURE

ANALYZE/DISK_STRUCTURE

Invokes the Analyze/Disk_Structure utility, which does the following:

e Checks the readability and validity of Files-11 On-Disk Structure Level 1, 2,
and 5 disk volumes

e Reports errors and inconsistencies
The /DISK_STRUCTURE qualifier is required.

For more information about the Analyze/Disk_Structure utility, see the HP
OpenVMS System Management Utilities Reference Manual or online help.

Format
ANALYZE/DISK_STRUCTURE device-name:[/qualifier]

DCLI-22

ANALYZE/ERROR_LOG/ELV (Alpha/l64 Only)

ANALYZE/ERROR_LOG/ELYV (Alpha/l64 Only)

Format

Invokes the Error Log Viewer (ELV) to selectively report the contents of one or
more error log files. This utility is most useful with error logs written on systems
running OpenVMS Version 7.3 and later. For more information about the Error
Log Viewer, see the HP OpenVMS System Management Utilities Reference Manual
or online help.

For error logs written on OpenVMS Version 7.2% systems, you must use the
DIAGNOSE command, which invokes the DECevent utility. DECevent is no
longer supported, but those who need it can download the software and related
documentation from the Freeware Web site:

http://h71000.www7.hp.com/openvms/freeware/

For error logs written on OpenVMS versions prior to 7.2, use the
ANALYZE/ERROR_LOG command, which invokes the Error Log Report
Formatter (ERF). Documentation for ERF is posted on the Freeware Web site:

http://h71000.www7.hp.com/openvms/freeware/

ANALYZE/ERROR_LOG/ELV [command]

DCLI-23

ANALYZE/IMAGE

ANALYZE/IMAGE

Format

Parameter

Description

DCLI-24

Analyzes the contents of an executable image file or a shareable image file on
OpenVMS VAX and Alpha systems, and an Executable and Linkable Format
(ELF) image file or sharable image file on OpenVMS 164 systems, identifying
obvious errors in the file. This analysis includes translated images on 164 and
Alpha systems. The /IMAGE qualifier is required.

For general information about image files, see the description of the linker in the
HP OpenVMS Linker Utility Manual. (Use the ANALYZE/OBJECT command to
analyze the contents of an object file.)

ANALYZE/IMAGE filespec],...]

filespecl,...]

Specifies the name of one or more image files that you want analyzed. You must
specify at least one file name. If you specify more than one file, separate the file
specifications with either commas (,) or plus signs (+). The default file type is
.EXE.

The asterisk (*) and percent sign (%) wildcard characters are allowed in the file
specification.

The ANALYZE/IMAGE command provides a description of the components of
an executable image file or shareable image file on OpenVMS VAX and Alpha
systems, and of an Executable and Linkable Format (ELF) image file or sharable
image file on OpenVMS 164 systems. It also verifies that the structure of

the major parts of the image file is correct. However, the ANALYZE/IMAGE
command cannot ensure that program execution is error free.

On OpenVMS 164 systems, the ANALYZE/IMAGE command automatically
distinguishes between 164, Alpha, and VAX images by examining the header
information.

If errors are found, the first error of the worst severity is returned. For example,
if a warning (A) and two errors (B and C) are found, the first error (B) is returned
as the image exit status. The image exit status is placed in the DCL symbol
$STATUS at image exit.

Notes

For 164 images and objects, the Analyze utility determines whether
the file it analyzes is an image file or object file. Although Analyze
allows you to specify ANALYZE/OJBECT on an ELF image file, use
ANALYZE/IMAGE for ELF image files and ANALYZE/OJBECT for ELF
object files.

When parsing output from ANALYZE/IMAGE, be aware that the output
for ELF images may change.

ANALYZE/IMAGE

When using ANALYZE without a qualifier, the default is /OBJECT. Therefore,
when using this default to analyze an image in the output file, the utility correctly
identifies itself as "Analyze Object File".

The OpenVMS VAX and Alpha versions of ANALYZE/IMAGE do not have the
capability of analyzing all non-platform images. For example, ANALYZE/IMAGE
cannot analyze 164 images on VAX or Alpha images on older versions of VAX.

When you analyze 164 images on 164 platforms, ANALYZE/IMAGE accepts
VAX-only or Alpha-only qualifiers, but ignores any effect of these qualifiers.

Depending on the platform, the ANALYZE/IMAGE command distinguishes 164
images from VAX and ALpha images by examining the meta information (for
example, ELF, EIHD, or THD).

The ANALYZE/IMAGE command provides the following information for image
files:

¢ Image architecture and type — The OpenVMS platform and whether the
image is executable or shareable.

¢ Image name — The name of the image or shareable image.

¢ Image identification — The identification given in a link operation.

¢ Creating linker identification — The linker that generated the image.
e Link date and time — The date and time of the link operation.

e Image transfer addresses — The addresses to which control is passed at
image execution time.

¢ Image version — The revision level (major ID and minor ID) of the image.
e Location and size of the image’s symbol vector (Alpha and 164 only).
e List of required sharable images — The dependencies on sharable images.

e Location of the debugger symbol table (DST) — The location of the DST in the
image file. DST information is present only in executable images that have
been linked with the /DEBUG or the /TRACEBACK command qualifier. (VAX
and Alpha only.)

e Location and interpretation of the debug and traceback information — The
sections that contain the information and formats the data (DWARF) (164
only).

e Location of the global symbol table (GST)— The location of the GST in the
image file. GST information is present only in shareable image files. (VAX
and Alpha only.)

e Location of the global symbol table (.symtab) — The location of the GST in
the image file. GST information is present only in shareable image files (164
only.)

e Patch information — Indicates whether the image has been patched (changed
without having been recompiled or reassembled and relinked). If a patch is
present, the actual patch code can be displayed. (VAX and Alpha only.)

e Image section descriptors (ISD) — Identify portions of the image binary
contents that are grouped in OpenVMS Cluster systems according to their
attributes. An ISD contains information that the image activator needs
when it initializes the address space for an image. For example, an ISD tells
whether the ISD is shareable, whether it is readable or writable, whether it

DCLI-25

ANALYZE/IMAGE

Qualifiers

DCLI-26

is based or position independent, and how much memory should be allocated.
(VAX only.)

e Summary of internal tables — Lists the program segments and sections of
which the image consists. (164 only.)

e Fixup vectors — Contain information that the image activator needs to ensure
the position independence of shareable image references. (VAX and Alpha
only.)

e Fixup information — Information that the image activator needs to ensure
the position independence of shareable image references. (164 only.)

e System version categories — For an image that is linked against the executive
(the system shareable image on 164 and Alpha or the system symbol table on
VAX), displays both the values of the system version categories for which the
image was linked originally and the values for the system that is currently
running. You can use these values to identify changes in the system since the
image was linked last.

The ANALYZE/IMAGE command has command qualifiers and positional
qualifiers. For VAX and Alpha images, by default, if you do not specify any
positional qualifiers (for example, /GST or /HEADER), the entire image is
analyzed. If you do specify a positional qualifier, the analysis excludes all other
positional qualifiers except the /HEADER qualifier (which is always enabled) and
any qualifier that you request explicitly.

The default behavior for analyzing ELF images differs from the behavior for
analyzing Alpha or VAX images. For ELF images, a summary of the major ELF
tables is displayed. With this information, you can select specific segments and/or
sections for analysis. To locate errors, analyze the entire image by selecting all
sections and segments.

[FIXUP_SECTION (VAX and Alpha only)
Positional qualifier.

Specifies that the analysis should include all information in the fixup section of
the image.

If you specify the /FIXUP_SECTION qualifier after the ANALYZE/IMAGE
command, the fixup section of each image file in the parameter list is analyzed.

If you specify the /FIXUP_SECTION qualifier after a file specification, only the
information in the fixup section of that image file is analyzed.

[FLAGVALUES=(keyword][,...]) (164 only)

Several fields in an ELF module represent bit flags. Where possible, these bit-flag
values are examined and displayed individually. By default, only the flag values
that are set to 1 (ON) are displayed.

The keywords are as follows:

Keyword Description
ON The keyword ON displays all flags whose value is 1.
OFF The keyword OFF displays all flags whose value is 0.

ANALYZE/IMAGE

Keyword Description

ALL The keyword ALL displays all flag values. The keywords ON
and OFF, in contrast, indicate the value of each specific flag bit.

/IGST (VAX and Alpha only)
Positional qualifier.

Specifies that the analysis should include all global symbol table records. This
qualifier is valid only for shareable images.

If you specify the /GST qualifier after the ANALYZE/IMAGE command, the global
symbol table records of each image file in the parameter list are analyzed.

If you specify the /GST qualifier after a file specification, only the global symbol
table records of that file are analyzed.

/HEADER (VAX and Alpha only)
Positional qualifier.

Specifies that the analysis should include all header items and image section
descriptions. The image header items are always analyzed.

/INTERACTIVE

INOINTERACTIVE (default)

Specifies whether the analysis is interactive. In interactive mode, as each item is
analyzed, the results are displayed on the screen and you are asked whether you
want to continue.

/MODULE [=(module_namel,...])] (164 only)

Selectively formats debug or traceback information for the named module or
list of modules. You must request debug or traceback information by using
the /SECTIONS qualifier with keywords ALL, DEBUG or TRACE. If debug
or traceback information is selectively formatted, then the module name is a
subselection.

If you do not specify a module name, only debug or traceback meta information
about the available modules is printed. In this case, any other debug or traceback
selection is deactivated.

Note

This qualifier is only valid for ANALYZE/IMAGE. Although
ANALYZE/OBJECT can be used to format 164 images, Analyze rejects the
/MODULE qualifier.

/OUTPUT=filespec

Identifies the output file for storing the results of the image analysis. The
asterisk (*) and the percent sign (%) wildcard characters are not allowed in the
file specification. If you specify a file type and omit the file name, the default file
name ANALYZE is used. The default file type is .ANL. If you omit the qualifier,
the results are output to the current SYS$OUTPUT device.

DCLI-27

ANALYZE/IMAGE

/PAGE_BREAK=keyword (164 only)

Specifies if and where page breaks (form feeds) are inserted in the report file.
This qualifier is only useful if /OUTPUT is used to write a report file. It is
ignored if /INTERACTIVE is used to specify an interactive analysis.

The keywords are as follows:

Keyword Description

NONE Creates a report without any page break.

PRINTABLE_ Creates a printable report with page breaks as in listing files.

REPORT The number of lines per page is the default number of lines
on a printer page. This is the default behavior for ANALYZE_
IMAGE when no qualifier is specified.

SEPARATE _ Inserts a page break between different section information.
INFORMATION

/PATCH_TEXT (VAX only)
Positional qualifier.

Specifies that the analysis include all patch text records. If you specify the
/PATCH_TEXT qualifier after the ANALYZE/IMAGE command, the patch text
records of each image file in the parameter list are analyzed.

If you specify the /PATCH_TEXT qualifier after a file specification, only the patch
text records of that file are analyzed.

/SECTIONS [=(keyword],...])] (164 only)
Selects individual program sections or section types to display.

Note

This qualifier and its keywords can only be used to form an inclusion list
of sections to be displayed. This qualifier is not negatable and cannot
be used to form an exclusion list. If no values are specified, the default
keyword is HEADERS.

The keywords are as follows:

Keyword Description

ALL Displays a detailed analysis of every section in the
module. Note that this keyword can generate a large
amount of output.

CODE Displays all of all sections of type SHT_PROGBITS
where the executable flag is set (SHDR$M_SHF_
EXECINSTR in the section header). The section data
will be displayed as machine instructions.

DCLI-28

ANALYZE/IMAGE

Keyword

Description

DEBUG
[=(suffix],...])]

EXTENSIONS

GROUP

HEADERS

LINKAGES

NOBITS

NOTE

NULL

NUMBERS=
(number [,...])

Analyzes and displays sections consisting of debug
information.

In addition, you can use a list of debug section name
suffixes to selectively format DEBUG information. The
debug section names, which appear as ".debug_suffix",
can be viewed in the summary table. The suffix can be
specified as follows:

¢ ABBREV—Format DEBUG abbreviations
e ARANGES—Formats DEBUG address lookup tables

¢ FRAME—Formats DEBUG frame descriptors for
unwinding

¢ INFO—Formats DEBUG symbols

e LINE—Formats DEBUG source line info

e PUBNAMES—Formats DEBUG name lookup tables
e PUBTYPES—Formats DEBUG type lookup tables

Analyzes and displays sections of type SHT IA64_EXT.
The data is displayed in hexadecimal format.

Analyzes and displays sections of type SHT_GROUP.
Sections of this type consist of a list of the section
numbers of sections belonging to that group.

The default keyword. Displays the ELF header and the
section header details.

Analyzes and displays sections of type SHT _VMS_
LINKAGES.The data is displayed as a list of linkage
descriptors.

Analyzes and displays sections of type SHT_NOBITS.
There is no module data associated with sections of this
type.

Analyzes and displays sections of type SHT_NOTE. The
data for this section is displayed as a list of formatted
OpenVMS note entries.

Displays all sections of type PT_NULL. No data will be
displayed for segments of this type.

Displays individual sections, as follows:
e The selected sections will have a detailed display of
their header and their contents. An informational

message is displayed for section numbers that do not
exist in the module.

e One or more numeric values may be specified.

e Section numbers may be specified in decimal, octal
(using the %0 prefix), or hexadecimal (using the %X
prefix).

DCLI-29

ANALYZE/IMAGE

DCLI-30

Keyword Description

STRTAB Analyzes and displays sections of type SHT_STRTAB.
The data for this section is displayed as a string table.

SYMTAB Displays sections of type SHT_SYMTAB. The data for

SYMBOL_VECTOR

TRACE
[=(suffix[,...])]

UNWIND

this section is displayed as a symbol table.

Sections of this type will only appear in sharable image
files. If present, they point to the same data as the
dynamic segment DT_VMS_SYMVEC tags.

Analyzes and displays sections consisting of traceback
information.

In addition, you can use a list of trace section name
suffixes to selectively format TRACE information. The
trace section names, which appear as ".trace_suffix",
can be viewed in the summary table. The suffix can be
specified as shown below. In addition, because there is
one common debug and traceback section, ".debug_line",
the suffix "line" can be specified as shown below as well:

e ABBREV—Formats TRACE abbreviations

e ARANGES—Formats TRACE address lookup tables
e INFO—Formats TRACE symbols

¢ LINE—Formats TRACE source line info

Analyzes and displays sections of type SHT_IA64_
UNWIND. Each section of this type has an associated
Unwind Information section of type SHT_PROGBITS.
This associated section is also displayed.

/SEGMENTS [=(keyword]l,...])] (164 only)
Selects individual program segments or program segments of a specified type to

be displayed.

Note

This qualifier and its keywords can only be used to form an inclusion list
of segments to be displayed. This qualifier is not negatable and cannot
be used to form an exclusion list. If no values are specified, the default
keyword is HEADERS.

The keywords are as follows:

Keyword Description

ALL Analyzes and displays information for every program segment.
Note that this can generate a large amount of output.

CODE Analyzes and displays all executable segments
(PHDR$M_PF_X bit set in the segment header). Segment
data is displayed as machine instructions.

ANALYZE/IMAGE

Keyword Description

DYNAMIC Analyzes and displays the segment of type PT_DYNAMIC.

EXTENSIONS Analyzes and displays segments of type IA_64_ARCHEXT.

HEADERS The default keyword. Analyzes and displays the ELF header
and segment header details.

LOAD Analyzes and displays segments of type PT_LOAD. If the

segment header indicates this is an executable segment
(PHDR$M_PF_X bit set in the segment header), the contents
will be formatted as machine instructions, otherwise the
contents are formatted as hexadecimal data.

NULL Analyzes and displays segments of type PT_NULL. No a data
will be displayed for segments of this type.

NUMBERS= Analyzes and displays individual segments, as follows:

(number [,...1) e The selected segments have a detailed display of header

and content information. For section numbers that do not
exist in the module, an informational message is displayed.

¢ One or more numeric values may be specified.

e Segment numbers may be specified in decimal, octal (using
the %0 prefix), or hexadecimal (using the %X prefix).

ISELECT=(keyword][,...])
Allows for the collection of specific image file information and displays the
selected keyword items in the order specified.

Analyze creates DCL symbols for all selectable information with the /SELECT
qualifier. The symbol names consist of the prefix ANALYZES$ and a descriptive
name of the information they hold. The symbol value is the selected information,
usually printed to SYS$OUTPUT. Effectively, all of the printed information is
duplicated in the symbols. For unselected information, the corresponding symbols
will contain the null string.

The keywords are as follows:

Keyword Description

ARCHITECTURE Writes the architecture information into the DCL
symbol ANALYZE$ARCHITECTURE. Returns
"OpenVMS TA64" if the file is an OpenVMS 164
image file. Returns "OpenVMS Alpha" if the file is
an OpenVMS Alpha image file. Returns "OpenVMS
VAX" if the file is an OpenVMS VAX image file.

BUILD_ Writes build identification information into the DCL

IDENTIFICATION symbol ANALYZE$BUILD_IDENTIFICATION. For
OpenVMS 164 and Alpha image files, returns the image
build identification stored in the image file, enclosed in
quotation marks. For OpenVMS VAX image files, the
null string that is represented by adjacent quotation
marks is returned.

DCLI-31

ANALYZE/IMAGE

Keyword Description

FILE_TYPE Writes file type information into the DCL symbol
ANALYZES$FILE_TYPE. Returns "Image" if the file is
an OpenVMS 164, Alpha, or VAX image file.

IDENTIFICATION The possible keywords are as follows:

[=keyword] e IMAGE (default) — Writes the image
identification information into the DCL symbol
ANALYZES$IDENTIFICATION. Returns the image
identification that is stored in the image file,
enclosed in quotation marks. Otherwise, returns
"Unknown".

e LINKER — Writes the linker identification
information into the DCL symbol
ANALYZES$LINKER_IDENTIFICATION. Returns
the identification of the linker used to link the
image.

IMAGE_TYPE Writes image type information into the DCL symbol
ANALYZE$IMAGE_TYPE. Returns "Shareable" if the
file is a shareable image file. Returns "Executable" if
the file is either an OpenVMS 164, Alpha, or OpenVMS
VAX executable (nonshareable) image file.

LINK TIME Writes link time information into the DCL symbol
ANALYZES$LINK_TIME. Returns the image link time
that is stored in the image file, enclosed in quotation
marks.

NAME Writes the image name into the DCL symbol
ANALYZE$NAME. For image files, returns the image
name that is stored in the image header, enclosed in
quotation marks.

VERSION_NUMBERS If an image depends on the system base image and

(Alpha/I64 only) system components, ANALYZE writes the version
numbers from the image into DCL symbols. The
symbols are named after the components. The symbol
values contain the minor and major version numbers.
When the image is for the same platform on which
ANALYZE is running, the version numbers from the
running system are also written and compared.

Note

The Analyze utility can work on several files. Because there is only one
set of DCL symbols, the symbols only contain information from the last
analyzed file. When an error occurs, symbol values are undefined. Check
for Analyze errors first, then use the symbols.

DCLI-32

Examples

ANALYZE/IMAGE

$ ANALYZE/IMAGE LINEDT

The ANALYZE/IMAGE command in this example produces a description and
an error analysis of the image LINEDT.EXE. Output is sent to the current
SYS$OUTPUT device.

$ ANALYZE/IMAGE/OUTPUT=LIALPHEX/FIXUP_SECTION/PATCH TEXT
LINEDT, ALPRIN (VAX and Alpha only)

The ANALYZE/IMAGE command in this example produces a description
and an error analysis of the fixup sections and patch text records of
LINEDT.EXE and ALPRIN.EXE in file LIALPHEX.ANL. Output is sent
to the file LIALPHEX.ANL.

$ ANALYZE/IMAGE/SELECT=(ARCH,FILE,NAME, IDENT,BUILD,LINK) *.EXE
DISK: [DIRECTORY]ALPHA.EXE; 1
OpenVMS ALPHA

Image

"Test image ALPHA"

"A11-27"

"X5SC-SSB-0000"

14-JUN-2004 07:16:19.24
DISK: [DIRECTORY] VAX.EXE;1
OpenVMS VAX

Image

"Test image VAX"

"W11-27"

15-JUN-2004 13:18:40:70

On an Alpha system, this example displays the information requested about
the executable files ALPHA.EXE and VAX.EXE.

$ ANALYZE/IMAGE/SELECT= (ARCHITECTURE, IDENT,NAME) HELLO @

USER: [JOE]HELLO.EXE; 1

OpenVMS IA64

"Vl . O n

"HELLO"

$

$ SHOW SYMBOL ANALYZES*
ANALYZESARCHITECTURE = "OpenVMS IA64"
ANALYZE$BUILD_IDENTIFICATION ="
ANALYZE$FILE_TYPE =
ANALYZESIDENTIFICATION = ""y1.0""
ANALYZE$IMAGE_TYPE =
ANALYZE$LINKER_IDENTIFICATION ="
ANALYZE$LINK_TIME =
ANALYZESNAME = ""HELLO""

$

$ ANALYZE/IMAGE/SELECT= (IDENT= (IMAGE, LINKER) , IMAGE, LINK) HELLO @

USER: [JOE]HELLO.EXE; 1

llvl . 0 n

"Linker I01-54"

Executable

7-JUN-2004 11:47:08.10

S

$ SHOW SYMBOL ANALYZES*
ANALYZESARCHITECTURE = ""
ANALYZESBUILD IDENTIFICATION = "
ANALYZESFILE TYPE = "

DCLI-33

ANALYZE/IMAGE

DCLI-34

ANALYZESIDENTIFICATION = ""v1.Q""
ANALYZESIMAGE TYPE = "Executable"

ANALYZESLINKEﬁ_IDENTIFICATION = ""Linker I01-54""
ANALYZESLINK TIME = " 7-JUN-2004 11:47:08.10"
ANALYZESNAME = ""

$ ANALYZE/IMAGE/SELECT=FILE HELLO.* (3]
USER: [JOE]HELLO.C;1
$ANALYZE-E-ILLFIL, Illegal file format encountered
USER: [JOE]HELLO.EXE;1
Image
USER: [JOE]HELLO.MAP;1
$ANALYZE-E-ILLFIL, Illegal file format encountered
USER: [JOE]HELLO.OBJ;1
Object
S
$ SHOW SYMBOL ANALYZES*
ANALYZESARCHITECTURE = ""
ANALYZE$BUILD_IDENTIFICATION = "
ANALYZESFILE TYPE = "Object"
ANALYZESIDENTIFICATION = ""
ANALYZESIMAGE TYPE = ""
ANALYZESLINKER IDENTIFICATION = ""
ANALYZESLINK TIME = ""
ANALYZESNAME =
$

This 164 example displays the information requested for the executable file,
HELLO.EXE. The following text is keyed to the callout numbers at the ends
of each ANALYZE/IMAGE command line in the example:

© Only the selected information can be found in the DCL symbols.
The information in the symbols is identical to what is printed to
SYS$OUTPUT, that is, if quoted strings are printed, there are quoted
strings in the symbol.

@ If the new linker identification is selected, it is necessary to use IDENT
with a keyword list.

© When using wildcards, errors in the analyzed file (for example, illegal file
format errors) do not terminate Analyze. Only the information from the
last analyzed file can be found in the DCL symbols.

ANALYZE/MEDIA

ANALYZE/MEDIA

Invokes the Bad Block Locator utility, which analyzes block-addressable devices
and records the location of blocks that cannot store data reliably.

For more information about the Bad Block Locator utility, see the OpenVMS
Bad Block Locator Utility Manual (available on the Documentation CD-ROM) or
online help.

Format
ANALYZE/MEDIA device

DCLI-35

ANALYZE/OBJECT

ANALYZE/OBJECT

Format

Parameter

Description

DCLI-36

Analyzes the contents of an object file on OpenVMS VAX and Alpha systems, and
an Executable and Linkable Format (ELF) object file on OpenVMS 164 systems,
and identifies obvious errors. The /OBJECT qualifier is required.

For general information about object files, see the description of the linker in the
HP OpenVMS Linker Utility Manual. (Use the ANALYZE/IMAGE command to
analyze the contents of an image file.)

ANALYZE/OBJECT filespec],...]

filespecl,...]

Specifies the object files or object module libraries you want analyzed (the default
file type is .OBJ). Use commas (,) or plus signs (+) to separate file specifications.
The asterisk (*) and the percent sign (%) wildcard characters are allowed in the
file specification.

The ANALYZE/OBJECT command describes the contents of one or more object
modules contained in one or more files. It also performs a partial error analysis.
This analysis determines whether all records in an object module conform in
content, format, and sequence to the specifications of the 164, Alpha, or VAX
Object Language.

On OpenVMS 164 systems, the ANALYZE/OBJECT command automatically
distinguishes 164, Alpha, and VAX objects by examining the format of the object
modules header.

ANALYZE/OBJECT is intended primarily for programmers of compilers,
debuggers, or other software involving the operating system’s object modules.

It checks that the ELF object format (I64) or the object language records (VAX
and Alpha) generated by the object modules are acceptable to the Linker utility,
and it identifies certain errors in the file. It also provides a description of the
records in the object file or object module library. For more information on the
linker and on the Alpha and VAX object languages, see the HP OpenVMS Linker
Utility Manual. Information on the 164 object format will be available in a future
release.

Notes

For 164 images and objects, the Analyze utility determines whether the
file it analyzes is an image file or object file. Although Analyze allows you
to specify ANALYZE/IMAGE on an ELF object file, use ANALYZE/IMAGE
for ELF image files and ANALYZE/OJBECT for ELF object files.

The OpenVMS VAX and OpenVMS Alpha versions of ANALYZE/OBJECT
are not fully capable of analyzing non-platform objects (for example 164
objects on VAX or Alpha).

The output format of ANALYZE/OBJECT for ELF objects may change.
Further, the default behavior for analyzing ELF objects differs from the
behavior for analyzing Alpha or VAX objects. For ELF objects, a summary

ANALYZE/OBJECT

of the major ELF tables is displayed. With this information, you can
select specific sections for further analysis. To locate errors, the entire
object should be analyzed by selecting all sections.

When you analyze 164 objects on 164 platforms, ANALYZE/OBJECT
accepts either VAX- or Alpha-only qualifiers, but ignores any effect of
these qualifiers.

The ANALYZE/OBJECT command analyzes the object modules in order, record
by record, from the first to the last record in the object module. Fields in each
record are analyzed in order from the first to the last field in the record. After
the object module is analyzed, you should compare the content and format of each
type of record to the required content and format of that record as described by
the OpenVMS 164, Alpha, or OpenVMS VAX Object Language. This comparison
is particularly important if the analysis output contains a diagnostic message.

ANALYZE/OBJECT displays the following information for object modules:
e Module architecture and type

e Module name

e Module version

e Module creation date and time

e Language processor creator

Linking an object module differs from analyzing an object module. The object’s
contents are not interpreted; rather, only the meta information is checked for
consistency. As a result, even if the analysis is error free, the linking operation
may not be. In particular, the analysis does not check the following for VAX and
Alpha objects:

e That data arguments in TIR commands are in the correct format
e That “Store Data” TIR commands are storing within legal address limits

Therefore, as a final check, you should still link an object module whose analysis
is error free.

If an error is found, however, the first error of the worst severity that is
discovered is returned. For example, if a warning (A) and two errors (B and
C) are signaled, then the first error (B) is returned as the image exit status,
which is placed in the DCL symbol $STATUS at image exit.

ANALYZE/OBJECT uses positional qualifiers; that is, qualifiers whose function
depends on their position in the command line. When a positional qualifier
precedes all of the input files in a command line, it affects all input files. For
example, the following command line requests that the analysis include the global
symbol directory records in files A, B, and C:

$ ANALYZE/OBJECT/GSD A,B,C

Conversely, when a positional qualifier is associated with only one file in the
parameter list, only that file is affected. For example, the following command line
requests that the analysis include the global symbol directory records in file B
only:

$ ANALYZE/OBJECT A,B/GSD,C

DCLI-37

ANALYZE/OBJECT

Qualifiers

DCLI-38

For VAX and Alpha objects, typically all records in an object module are analyzed.
However, when the /DBG, /EOM, /GSD, /LNK, /MHD, /TBT, or /TIR qualifier is
specified, only the record types indicated by the qualifiers are analyzed. All other
record types are ignored.

By default, the analysis includes all record types unless you explicitly request a
limited analysis using appropriate qualifiers.

Note

For VAX and Alpha objects, End-of-Module (EOM) records and module
header (MHD) records are always analyzed, no matter which qualifiers
you specify.

For 164 objects, the Elf header, the section header table and the note
section are always analyzed, no matter which qualifiers you specify.

/IDISASSEMBLE (164 only)
Positional qualifier.

Displays all sections of type SHT_PROGBITS where the executable flag is set
(SHDR$M_SHF EXECINSTR in the section header). The section data will be
displayed as machine instructions with symbolization of labels, branch targets,
and so on. All local and global symbols from the symbol table are used for
symbolization. The output is similar to compiler generated machine code listings.

Note

This qualifier is accepted only for objects. 164 images contain only global
symbols, if any at all. In addition, output produced with this qualifier
differs from output produced by ANALYZE/OBJECT/SECTIONS=CODE,
which provides machine code output for the same sections, although
without symbolization.

/DBG (VAX and Alpha only)
Positional qualifier.

Specifies that the analysis should include all debugger information records. If you
want the analysis to include debugger information for all files in the parameter
list, insert the /DBG qualifier immediately following the /OBJECT qualifier. If
you want the analysis to include debugger information selectively, insert the
/DBG qualifier immediately following each of the selected file specifications.

/EOM (VAX and Alpha only)
Positional qualifier.

Specifies that the analysis should be limited to MHD records, EOM records,
and records explicitly specified by the command. If you want this to apply to all
files in the parameter list, insert the /EOM qualifier immediately following the
/OBJECT qualifier.

ANALYZE/OBJECT

To make the /EOM qualifier applicable selectively, insert it immediately following
each of the selected file specifications.
Note

End-of-module records can be EOM or EOMW records. See the HP
OpenVMS Linker Utility Manual for more information.

IFLAGVALUES=(keyword[,...]) (164 only)

Several fields in an ELF module represent bit flags. Where possible, these bit-flag
values are examined and displayed individually. By default, only the flag values
that are set to 1 (ON) are displayed.

The keywords are as follows:

Keyword Description

ON Displays all flags whose value is 1.

OFF Displays all flags whose value is 0.

ALL Displays all flag values. The keywords ON and OFF, in contrast,

indicate the value of each specific flag bit.

/GSD (VAX and Alpha only)
Positional qualifier.

Specifies that the analysis should include all global symbol directory (GSD)
records.

If you want the analysis to include GSD records for each file in the parameter
list, specify the /GSD qualifier immediately following the /OBJECT qualifier.

If you want the analysis to include GSD records selectively, insert the /GSD
qualifier immediately following each of the selected file specifications.

/INCLUDE [=(modulel,...])]

When the specified file is an object module library, use this qualifier to list
selected object modules within the library for analysis. If you omit the list or
specify an asterisk (*), all modules are analyzed. If you specify only one module,
you can omit the parentheses.

/INTERACTIVE

INOINTERACTIVE (default)

Controls whether the analysis occurs interactively. In interactive mode, as each
record is analyzed, the results are displayed on the screen, and you are asked
whether you want to continue.

/LNK (VAX and Alpha only)
Positional qualifier.

Specifies that the analysis should include all link option specification (LNK)
records.

If you want the analysis to include LNK records for each file in the parameter
list, specify the /LNK qualifier immediately following the /OBJECT qualifier.

If you want the analysis to include LNK records selectively, insert the /LNK
qualifier immediately following each of the selected file specifications.

DCLI-39

ANALYZE/OBJECT

/MHD (VAX and Alpha only)
Positional qualifier.

Specifies that the analysis should be limited to MHD records, EOM records, and
records explicitly specified by the command. If you want this analysis to apply
to all files in the parameter list, insert the /MHD qualifier immediately following
the /OBJECT qualifier.

To make the /MHD qualifier applicable selectively, insert immediately following
each of the selected file specifications.

/OUTPUT [=filespec]

Directs the output of the object analysis (the default is SYS$OUTPUT). If you
specify a file type and omit the file name, the default file name ANALYZE is used.
The default file type is .ANL.

The asterisk (*) and the percent sign (%) wildcard characters are not allowed in
the file specification.

/PAGE_BREAK=keyword (164 only)

Specifies if and where page breaks (form feeds) are inserted in the report file.
This qualifier is only useful if /OUTPUT is used to write a report file. It is
ignored if /INTERACTIVE is used to specify an interactive analysis.

The keywords are as follows:

Keyword Description

NONE Creates a report without any page break.

PRINTABLE_ Creates a printable report with page breaks as in listing files.

REPORT The number of lines per page is the default number of lines
on a printer page. This is the default behavior for ANALYZE_
OBJECT when no qualifier is not specified.

SEPARATE _ Inserts a page break between different section information.
INFORMATION

/SECTIONS [=(keywordl,...])] (164 only)
Selects individual program sections or section types to display.

Note

This qualifier and its keywords can only be used to form an inclusion list
of sections to be displayed. This qualifier is not negatable and cannot
be used to form an exclusion list. If no values are specified, the default
keyword is HEADERS.

The keywords are as follows:

Keyword Description

ALL Displays a detailed analysis of every section in
the module. Note that this keyword can generate
a large amount of output.

DCLI-40

ANALYZE/OBJECT

Keyword Description

CODE Displays all sections of type SHT_PROGBITS
where the executable flag is set (SHDR$M_SHF
EXECINSTR in the section header). The section
data will be displayed as machine instructions.

DEBUG Analyzes and displays sections consisting of

[=(suffix[,...])]

EXTENSIONS

GROUP

HEADERS

LINKAGES

NOBITS

NOTE

NULL

debug formatted debug information.

In addition, you can use a list of debug section
name suffixes to selectively format DEBUG
information. The debug section names, which
appear as ".debug_suffix", can be viewed in the
summary table. The suffix can be specified as
follows:

e ABBREV—Formats DEBUG abbreviations

e ARANGES—Formats DEBUG address
lookup tables

e FRAME—Formats DEBUG frame descriptors
for unwinding

e INFO—Formats DEBUG symbols
e LINE—Formats DEBUG source line info

e PUBNAMES—Formats DEBUG name lookup
tables

e PUBTYPES—Formats DEBUG type lookup
tables

Analyzes and displays sections of type SHT_
TIA64_EXT. The data is displayed in hexadecimal
format.

Analyzes and displays sections of type SHT_
GROUP. Sections of this type consist of a list of
the section numbers of sections belonging to that
group.

The default keyword. Displays the ELF header
and the section header details.

Analyzes and displays sections of type SHT_
VMS_LINKAGES.The data is displayed as a list
of linkage descriptors.

Analyzes and displays sections of type SHT_
NOBITS. There is no module data associated
with sections of this type.

Analyzes and displays sections of type SHT_
NOTE. The data for this section is displayed as a
list of formatted OpenVMS note entries.
Displays all sections of type PT_NULL. No data
will be displayed for segments of this type.

DCLI-41

ANALYZE/OBJECT

Keyword

Description

NUMBERS= (number [,...])

PROGBITS

RELOCATIONS

STRTAB

SYMTAB

DCLI-42

Displays individual sections, as follows:

e The selected sections will have a detailed
display of their header and their contents.
An informational message is displayed for
section numbers that do not exist in the
module.

e One or more numeric values may be specified.

e Section numbers may be specified in decimal,
octal (using the %0 prefix), or hexadecimal
(using the %X prefix).

Displays all sections of type SHT_PROGBITS,
except unwind sections.

Formatting for the sections of type SHT_
PROGBITS depends on the EXECINSTR flag
(SHDR$M_SHF EXECINSTR) in its section
header. If this bit is set, the section data will be
displayed as machine instructions. Otherwise, it
will be displayed as hexadecimal data.

Unwind sections will be displayed if
/SECTIONS=UNWIND is specified.

Analyzes and displays sections of type SHT_
RELA. The data for this section is displayed as
table of relocation entries.

Analyzes and displays sections of type SHT_
STRTAB. The data for this section is displayed
as a string table.

Displays sections of type SHT_SYMTAB. The
data for this section is displayed as a symbol
table.

ANALYZE/OBJECT

Keyword Description
TRACE Analyzes and displays sections consisting of
[=(suffix],...])] traceback information.

In addition, you can use a list of trace section
name suffixes to selectively format TRACE
information. The trace section names, which
appear as ".trace_suffix", can be viewed in the
summary table. The suffix can be specified as
shown below. In addition, because there is one
common debug and traceback section, ".debug_
line", the suffix "line" can be specified as shown
below as well:

e ABBREV—Formats TRACE abbreviations

¢ ARANGES—Formats TRACE address lookup
tables

e INFO—Formats TRACE symbols
e LINE—Formats TRACE source line info

UNWIND Analyzes and displays sections of type SHT_
IA64_UNWIND. Each section of this type has an
associated Unwind Information section of type
SHT PROGBITS. This associated section is also
displayed.

ISELECT=(keyword][,...])
Allows for the collection of specific object file information and displays the selected
keyword items in the order specified.

Note

The /SELECT qualifier can be used on object and image files. The same
keywords are valid selections. However, some information can not be in
an object, such as the link date and time. Therefore, for some keywords
the Analyze utility returns "Unknown". In the following table, only the
keywords (which are useful for object files) and their return values are

listed.

Analyze creates DCL symbols for all selectable information with the /SELECT
qualifier. The symbol names consist of the prefix ANALYZE$ and a descriptive
name of the information they hold. The symbol value is the selected information,
usually printed to SYS$OUTPUT. Effectively, all of the printed information is
duplicated in the symbols. For unselected information, the corresponding symbols
will contain the null string.

The keywords are as follows:

DCLI-43

ANALYZE/OBJECT

Examples

DCLI-44

Keyword Description

ARCHITECTURE Writes the architecture information into the DCL
symbol ANALYZE$ARCHITECTURE. Returns
"OpenVMS IA64" if the file is an OpenVMS 164
object file. Returns "OpenVMS Alpha" if the file is
an OpenVMS Alpha object file. Returns "OpenVMS
VAX" if the file is an OpenVMS VAX object file.

FILE_TYPE Writes file type information into the DCL symbol
ANALYZES$FILE_TYPE. Returns "Object" if the file is
an OpenVMS 164, Alpha, or VAX object file.

[TBT (VAX and Alpha only)
Positional qualifier.

Specifies that the analysis should include all module traceback (TBT) records.

If you want the analysis to include TBT records for each file in the parameter list,
specify the /TBT qualifier immediately following the /OBJECT qualifier.

If you want the analysis to include TBT records selectively, insert the /TBT
qualifier immediately following each of the selected file specifications.

[TIR (VAX and Alpha only)
Positional qualifier.

Specifies that the analysis should include all text information and relocation
(TIR) records.

If you want the analysis to include TIR records for each file in the parameter list,
specify the /TIR qualifier immediately following the /OBJECT qualifier.

If you want the analysis to include TIR records selectively, insert the /TIR
qualifier immediately following the selected file specifications.

1. $ ANALYZE/OBJECT/INTERACTIVE LINEDT

In this example, the ANALYZE/OBJECT command produces a description
and a partial error analysis of the object file LINEDT.OBJ. Output is to the
terminal, because the /INTERACTIVE qualifier has been used. As each item
is analyzed, the utility displays the results on the screen and asks if you want
to continue.

2. $ ANALYZE/OBJECT/OUTPUT=LIOBJ/DBG LINEDT (VAX and Alpha only)

In this example, the ANALYZE/OBJECT command analyzes only the
debugger information records of the file LINEDT.OBJ. Output is to the
file LIOBJ.ANL.

ANALYZE/OBJECT

3. $ ANALYZE/OBJECT/SELECT=(ARCH,FILE) *.0BJ
DISK: [DIRECTORY]ALPHA.OBJ; 1
OpenVMS ALPHA
Object
DISK: [DIRECTORY]VAX.OBJ;1
OpenVMS VAX
Object

This example displays the information requested about the object files
ALPHA.OBJ and VAX.OBJ.

DCLI-45

ANALYZE/PROCESS_DUMP

ANALYZE/PROCESS_DUMP

Format

Parameter

Description

DCLI-46

Invokes the OpenVMS Debugger to analyze a process dump file that was created
when an image failed during execution. (Use the /DUMP qualifier with the RUN
or the SET PROCESS command to generate a dump file.)

Note that on Alpha systems, you can also force a process to dump by using the
DUMP/PROCESS command.

The ANALYZE/PROCESS_DUMP command invokes the OpenVMS debugger to
display a process dump file for either an Alpha or a VAX image. For a complete
description of the debugger, including information about the DEBUG command,
see the HP OpenVMS Debugger Manual.

Requires read (R) access to the dump file.

ANALYZE/PROCESS_DUMP dump-file

dump-file
Specifies the dump file to be analyzed with the debugger.

The ANALYZE/PROCESS_DUMP command examines the dump file of an image
that failed during execution. The OpenVMS Debugger is invoked automatically.
To cause a dump file to be created for a process, you must use the /DUMP
qualifier with the RUN command when invoking the image, or you must use the
SET PROCESS/DUMP command before invoking the image. On Alpha systems,
you can use the DUMP/PROCESS command.

For OpenVMS VAX Systems
This section also applies to Alpha systems running Version 7.2 or before.

Note

HP strongly recommends that you analyze a process dump on the system
where the dump was generated. It is highly unlikely that you can analyze
a dump successfully if you move the dump file to a different system.

Different configurations can cause the process executing the
ANALYZE/PROCESS_DUMP command to fail to load the dumped image
successfully. For example, if the systems have different versions of the
operating system, the analysis might work, but it is not guaranteed.

Other restrictions include the configuration of the control regions in P1 space,
the process running at the time of the dump, and the process performing the
ANALYZE/PROCESS_DUMP command. The location of the base of the user
stack for each process, which depends on the size of allocated space, determines
whether the processes are compatible. The size of allocated space for the process
analyzing the dump must be less than the size of allocated space for the process
that created the dump. If you are analyzing the dump on a different system,
but with the same version of the operating system, you can decrease the size of

ANALYZE/PROCESS_DUMP

allocated space by modifying one or more of the system parameters that affect the
size of allocated space.

You can modify the system parameter IMGIOCNT dynamically. Other parameters
to adjust allocated space require a reboot of the system.

On Alpha systems, the system parameter IMGREG_PAGES is likely to cause
a problem with allocated size. When a dump comes from a system without
DECwindows and is examined on a system with DECwindows, a P1 message is
displayed. DECwindows requires IMGREG_PAGES to be at least 2000 pages,
which means that the value is too large by 1200 to 1400 pages.

Also on Alpha systems, in some cases, the OpenVMS Debugger is incapable
of analyzing the dumped image. For example, when the dumped image’s PC
is set to an invalid address or when the dumped image’s stack is corrupted
by a bad process descriptor, you must use the Delta Debugger (DELTA) to
analyze the dump. To use DELTA as the debugger, you must install the
SYS$LIBRARY:DELTA image by invoking the Install utility. For complete
information on the Install utility, see the HP OpenVMS System Management
Utilities Reference Manual.

For OpenVMS Alpha Systems
This section applies to OpenVMS Alpha systems running Version 7.3 or greater.

You can now analyze a dump file on a system other than where the dump was
generated. However, if the base image link date and time are not the same,
you will need to also copy the file, SYS$BASE_IMAGE.EXE from the generating
system, and point to it using the logical, SDASREAD_DIR. For example:

$ COPY other node::SYSSLOADABLE IMAGES:SYS$BASE IMAGE.EXE my disk$: [my dir]
$ DEFINE/USER SDASREAD DIR my disk$: [my dir],SYS$SSYSROOT: [SYSSLDR], SYS$SYSROOT: [SYSLIB]
$ ANALYZE/PROCESS DUMP mycrash.dmp

If you are analyzing a threaded process dump on a system other than the

system on which it was generated, you may also need to copy and point to
PTHREADS$RTL and PTHREAD$DBGSHR (DECthread debug assistant) on the
generating system. For example:

COPY other node::SYSSLOADABLE IMAGES:SYSSBASE IMAGE.EXE my disk$: [my dir]

COPY other_node::SYS$SHARE:PTHREAD$RTL.EXE my_disk$:[my_dir]

COPY other node::SYSSSHARE:PTHREADSDBGSHR.EXE my disk$: [my dir]

DEFINE/USER SDASREAD DIR my disk$: [my dir],SYS$SYSROOT: [SYSSLDR],SYSSSYSROOT: [SYSLIB]
DEFINE/USER PTHREADSRTL my disk$: [my dir] PTHREADSRTL.EXE

DEFINE/USER PTHREADSDBGSHR my disk$: [my dir] PTHREADSDBGSHR.EXE

ANALYZE/PROCESS DUMP mycrash.dmp

Uy Ur Ur Ur Ur Ur U

If you are unable to analyze a process dump with the debugger, then you
should attempt to use the System Dump Analyzer (SDA) utility. See the
ANALYZE/CRASH command in online help for more information. For example:
$ ANALYZE/CRASH mycrash.dmp

OpenVMS (TM) Alpha system dump analyzer
...analyzing a compressed process dump...

Dump taken on 19-0OCT-1999 12:03:40.95
SDA> ..

DCLI-47

ANALYZE/PROCESS_DUMP

Qualifiers

DCLI-48

/FULL

On VAX and Alpha systems, shows the information that is displayed by the
following debugger commands: SHOW IMAGE, SHOW THREAD/ALL, and
SHOW CALL.

IMAGE=dump-file

On VAX systems, specifies the image to be activated to set up the process context
for the analysis. If you use the /NOIMAGE qualifier, the DELTA debugger will be
used for the analysis.

By default, symbols are taken from the image with the same name as the image
that was running at the time of the dump.

/IMAGE_PATH[=directory-spec] dump-file

/NOIMAGE_PATH

On Alpha systems, specifies the search path the debugger is to use to find the
debugger symbol table (DST) file. As in prior debuggers, the debugger builds an
image list from the saved process image list. When you set an image (the main
image is automatically set), the debugger attempts to open that image in order to
find the DST file.

If you include the /IMAGE_PATH=directory-spec qualifier, the debugger
searches for the DST file in the specified directory. The debugger first tries

to translate directory-spec as the logical name of a directory search list. If
that fails, the debugger interprets directory-spec as a directory specification,
and searches that directory for matching .DSF or .EXE files. A .DSF file takes
precedence over an .EXE file. The name of the .DSF or .EXE file must match the
image.

If you do not include the /IMAGE_PATH=directory-spec qualifier, the debugger
looks for the DST file first in the directory that contains the dump file. If

that fails, the debugger searches directory SYS$SHARE and then directory
SYS$MESSAGE. If the debugger fails to find a DST file for an image, the
symbolic information available to the debugger is limited to global and universal
symbol names.

Version 7.3 and later debuggers check for dumpfile image specification and DST
file link date-time mismatches and issue a warning if one is discovered.

The dump-file parameter is the name of the process dump file to be analyzed.
Note that the process dump file file type must be .DMP and the DST file type
must be either .DSF or .EXE.

Restrictions

You cannot use a logical to redirect the search for an image and use the
/IMAGE_PATH qualifier at the same time. If you use the /IMAGE_PATH
qualifier, then all images that are not in their original locations must be
found through that path. Individual image logicals (for example, the "SH"
in "DEFINE SH SYS$LOGIN:SH.EXE") are not processed.

Additionally, you cannot input a directory search path directly to the
/IMAGE_PATH qualifier, as it does not process a directory list separated
by commas; however, you can specify a logical that translates into a
directory search path.

ANALYZE/PROCESS_DUMP

/INTERACTIVE

I/NOINTERACTIVE (default)

On VAX systems, causes the display of information to pause when your terminal
screen is filled. Press Return to display additional information. By default, the
display is continuous.

/MISCELLANEOUS

On VAX systems, displays process information and registers at the time of the
dump. See the $GETJPI system service for further explanation of the process
information displayed.

/RELOCATION

On VAX systems, displays the addresses to which data structures saved in the
dump are mapped in PO space. (Examples of such data structures are the stacks.)
The data structures in the dump must be mapped into PO space so that the
debugger can use those data structures in P1 space.

Examples

1. $ ANALYZE/PROCESS/FULL ZIPLIST

RO = 00018292 R1 = 8013DE20 R2 = 7FFE6A40 R3 = 7FFE6A98
R4 = 8013DE20 R5 = 00000000 Ré6 = 7FFE7B9A R7 = 0000F000
R8 = 00000000 R9 =

00000000 R10 = 00000000 RI11 = 00000000
SP = 7FFAEF44 AP TFFAEF48 FP = TFFAEF84

FREE PO VA 00001600 FREE P1 VA 7FFAC600

Active ASTs 00 Enabled ASTs OF

Current Privileges FFFFFF80 1010C100

Event Flags 00000000 EO0000000

Buffered I/0 count/limit 6/6

Direct I/O0 count/limit 6/6

File count/limit 27/30

Process count/limit 0/0

Timer queue count/limit 10/10

AST count/limit 6/6

Enqueue count/limit 30/30

Buffered I/0 total 7 Direct I/O total 18

Link Date 27-DEC-2001 15:02:00.48 Patch Date 17-NOV-2001 00:01:53.71
ECO Level 0030008C 00540040 00000000 34303230

Kernel stack 00000000 pages at 00000000 moved to 00000000

Exec stack 00000000 pages at 00000000 moved to 00000000

Vector page 00000001 page at 7FFEFE00 moved to 00001600

PIO (RMS) area 00000005 pages at 7FFE1200 moved to 00001800

Image activator context 00000001 page at 7FFE3400 moved to 00002200
User writable context 0000000A pages at 7FFE1C00 moved to 00002400
Creating a subprocess

VAX DEBUG Version 5.4

DBG>

This example shows the output of the ANALYZE/PROCESS command when used
with the /FULL qualifier on a VAX system. The file specified, ZIPLIST, contains
the dump of a process that encountered a fatal error. The DBG> prompt indicates
that the debugger is ready to accept commands.

DCLI-49

ANALYZE/PROCESS_DUMP

2.

$ ANALYZE/PROCESS/FULL WECRASH.DMP

OpenVMS Alpha Debugé64 Version X7.3-010
$SYSTEM-F-IMGDMP, dynamic image dump signal at PC=001D0F8CB280099C, PS=001D0028
break on unhandled exception preceding WECRASH\th run\$LINE 26412 in THREAD 8
$DEBUG-W-UNAOPNSRC, unable to open source file DSKDS$: [IMGDMP]WECRASH.C;11
-RMS-F-DEV, error in device name or inappropriate device type for operation

26412: Source line not available

image name
CMASTIS SHR
CODEO
DATAl
DATA2
DATA3
DATA4
DATAS
DECC$SHR
CODEO
DATAl
DATA2
DATA3
DATA4
DATAS
DATA6
DATA7
DPML$SHR
CODEO
DATAl
DATA2
DATA3
DATA4
DATAS
DATA6
LIBOTS
DATAl
DATA2
DATA3
LIBRTL
CODEO
DATAl
DATA2
DATA3
DATA4
DATAS
DATA6
PTHREADSRTL
DATAO
DATAl
DATA2
DATA3
DATA4
DATAS
DATA6
*WECRASH

total images: 7

DCLI-50

set
no

no

no

no

no

no

yes

base address

000000007B8CA000
FFFFFFFF80500000
000000007B8CA000
000000007B8CC0O00
000000007B8D2000
000000007B8D4000
000000007B8D6000
000000007BE7A000
FFFFFFFF8055C000
000000007BE7A000
000000007BEBA0OO
000000007BECA000
000000007BEDAOOO
000000007BEEA000
000000007BEFA000
000000007BFOA000
000000007BB92000
FFFFFFFF80504000
000000007BB92000
000000007BBAE00O
000000007BBBE00O
000000007BBC0000
000000007BBCE000O
000000007BBD0O000O
000000007B5AA000
000000007B5AA000
000000007B5AE000
000000007B5B0000O
000000007B558000
FFFFFFFF8041C000
000000007B558000
000000007B568000
000000007B578000
000000007B588000
000000007B598000
000000007B5A8000
000000007BBD2000
000000007BBD2000
000000007BBDC0O00
000000007BBE000OO
000000007BBE4000
000000007BC20000
000000007BC22000
000000007BC26000
0000000000010000

end address

000000007B8D7FFF
FFFFFFFF805033FF
000000007B8CB3FF
000000007B8D13FF
000000007B8D21FF
000000007B8D41FF
000000007B8D63FF
000000007BFODFFF
FFFFFFFF806CI9DFF
000000007BEACFFF
000000007BEC2DFF
000000007BED77FF
000000007BEDASFF
000000007BEEALFF
000000007BEFE7FF
000000007BFOD1FF
000000007BBD1FFF
FFFFFFFF8055B5FF
000000007BBACLFF
000000007BBBDBFF
000000007BBBELFF
000000007BBCCIOFF
000000007BBCE3FF
000000007BBDO7FF
000000007B5B1FFF
000000007B5ACSFF
000000007B5AFBFF
000000007B5BO1FF
000000007B5A9FFF
FFFFFFFF804BD7FF
000000007B5669FF
000000007B5697FF
000000007B5845FF
000000007B5881FF
000000007B59A5FF
000000007B5A99FF
000000007BC27FFF
000000007BBDALFF
000000007BBDF3FF
000000007BBE2FFF
000000007BC1ELFF
000000007BC20BFF
000000007BC247FF
000000007BC275FF
00000000000403FF

default thread

thread
thread
thread
thread
thread
thread
thread
thread
thread
thread

H O Wo-~J0 Ul WN K

o

module name
*WECRASH

0: counting
1: dumping
2

counting
dumping

O 00 ~J O\ Ul i W

routine name

th run

SHARE$PTHREADSRTL_DATAQ
SHARE$PTHREADSRTL_DATAO

DBG>

DBG> set source/latest sysS$disk: []

DBG> examine/source .pc-4

module WECRASH
26411:
DBG>

blocked
ready VP 0
ready VP 0
blocked
blocked
blocked
ready VP 0
running
blocked
blocked
blocked

line
26411

ANALYZE/PROCESS_DUMP

Substate

rel PC
0000000000000244 0000000000030244

Policy

SCHED OTHER
SCHED OTHER
SCHED OTHER
SCHED OTHER
SCHED OTHER
SCHED OTHER
SCHED OTHER
SCHED OTHER
SCHED OTHER
SCHED OTHER
SCHED OTHER

abs PC

000000000001F15C 000000007BC0315C
000000000000F494 000000007BBF3494
0000000000000000 0000000000000C000
————— the above looks like a null frame in the same scope as the frame below
SHARESPTHREADSRTL DATAQ

lib$signal (SS$ IMGDMP) ;

?

This example shows the output of the ANALYZE/PROCESS command on a
multithreaded process dump, using the /FULL qualifier on an Alpha system.

DCLI-51

ANALYZE/RMS_FILE

ANALYZE/RMS_FILE

Invokes the Analyze/RMS_File utility, which is used to inspect and analyze
the internal structure of an OpenVMS RMS file. The /RMS_FILE qualifier is

required.

For more information about the Analyze/RMS_File utility, see the OpenVMS
Record Management Utilities Reference Manual or online help.

Format
ANALYZE/RMS_FILE filespec],...]

DCLI-52

ANALYZE/SSLOG (Alpha/l64 Only)

ANALYZE/SSLOG (Alpha/l64 Only)

Analyzes the SSLOG.DAT file, which contains system service logging data. The
/SSLOG qualifier is required.

For more information, see the online help for ANALYZE/SSLOG or read the
chapter about system service logging in the HP OpenVMS System Analysis Tools
Manual.

Format
ANALYZE/SSLOG [qualifiers] [filespec]

DCLI-53

ANALYZE/SYSTEM

ANALYZE/SYSTEM

Format

DCLI-54

Invokes the System Dump Analyzer utility, which analyzes a running system.
The /SYSTEM qualifier is required.

For more information about the System Dump Analyzer utility on Alpha and 164
systems, see the HP OpenVMS System Analysis Tools Manual or online help.
For more information about the System Dump Analyzer utility on VAX, see the
OpenVMS VAX System Dump Analyzer Utility Manual®

ANALYZE/SYSTEM

! This manual has been archived. It is no longer maintained and is not part
of the OpenVMS documentation set. However, you can view it online at
http:/ lwww.hp.com/go/openvms/doc or online help.

APPEND

APPEND

Format

Parameters

Description

Qualifiers

Adds the contents of one or more specified input files to the end of the specified
output file.

APPEND input-filespec],...] output-filespec

input-filespecl,...]

Specifies the names of one or more input files to be appended. Multiple input files
are appended to the output file in the order specified. If you specify more than
one input file, separate each file specification with either a comma (,) or a plus
sign (+).

The asterisk (*) and the percent sign (%) wildcard characters are allowed in the
input file specifications.

output-filespec
Specifies the name of the file to which the input files will be appended.

You must specify at least one field in the output file specification. If you do not
specify a device or directory, the APPEND command uses the current default
device and directory. Other unspecified fields default to the corresponding fields
of the first input file specification.

If you use the asterisk (*) wildcard character in any fields of the output file
specification, the APPEND command uses the corresponding field of the input
file specification. If you are appending more than one input file, the APPEND
command uses the corresponding fields from the first input file.

The APPEND command is similar in syntax and function to the COPY command.
Normally, the APPEND command adds the contents of one or more files to the
end of an existing file without incrementing the version number. The /NEW_
VERSION qualifier causes the APPEND command to create a new output file if
no file with that name exists.

Note that there are special considerations for using the APPEND command with
DECwindows compound documents. For more information, see the Guide to
OpenVMS File Applications.

/ALLOCATION=number-of-blocks

Forces the initial allocation of the output file to the specified number of 512-byte
blocks. If you do not specify the /ALLOCATION qualifier, or if you specify it
without the number-of-blocks parameter, the initial allocation of the output file is
determined by the size of the input file.

The allocation size is applied only if a new file is actually created by using the
/NEW_VERSION qualifier.

DCLI-55

APPEND

DCLI-56

/BACKUP

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /BACKUP qualifier selects files according to the dates of their most recent
backups. This qualifier is incompatible with the /CREATED, /EXPIRED, and
/MODIFIED qualifiers, which also allow you to select files according to time
attributes. If you specify none of these four time qualifiers, the default is the
/CREATED qualifier.

/BEFORE[=time]

Selects only those files dated prior to the specified time. You can specify time
as absolute time, as a combination of absolute and delta times, or as one of

the following keywords: BOOT, LOGIN, TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /BEFORE qualifier
to indicate the time attribute to be used as the basis for selection: /BACKUP,
/CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the OpenVMS User’s
Manual or the online help topic Date.

/BLOCK_SIZE=n
Overrides the default block size (124) used by COPY. You can specify a value in
the range of 1 through 127.

/BY_OWNER[=uic]
Selects only those files whose owner user identification code (UIC) matches the
specified owner UIC. The default UIC is that of the current process.

Specify the UIC by using standard UIC format as described in the OpenVMS
User’s Manual.

/CONFIRM

/NOCONFIRM (default)

Controls whether a request is issued before each append operation to confirm that
the operation should be performed on that file. The following responses are valid:

YES NO QUIT
TRUE FALSE
1 0 ALL

You can use any combination of uppercase and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for example,
T, TR, or TRU for TRUE), but these abbreviations must be unique. Affirmative
answers are YES, TRUE, and 1. Negative answers include: NO, FALSE, 0, and
pressing Return. Entering QUIT or pressing Ctrl/Z indicates that you want to
stop processing the command at that point. When you respond by entering ALL,
the command continues to process, but no further prompts are given. If you type
a response other than one of those in the list, DCL issues an error message and
redisplays the prompt.

/CONTIGUOUS

/NOCONTIGUOUS

Specifies that the output file must occupy physically contiguous disk blocks. By
default, the APPEND command creates an output file in the same format as the
corresponding input file and does not report an error if not enough space exists for

APPEND

a contiguous allocation. This qualifier is relevant only with the /NEW_VERSION
qualifier.

If an input file is contiguous, the APPEND command attempts to create a
contiguous output file, but does not report an error if there is not enough space.
If you append multiple input files of different formats, the output file may or may
not be contiguous. Use the /CONTIGUOUS qualifier to ensure that the output
file is contiguous.

/CREATED (default)

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The
/CREATED qualifier selects files based on their dates of creation. This qualifier is
incompatible with the /BACKUP, /EXPIRED, and /MODIFIED qualifiers, which
also allow you to select files according to time attributes. If you specify none of
these four time qualifiers, the default is the /CREATED qualifier.

/EXCLUDE-=(filespecl,...])

Excludes the specified files from the append operation. You can include a
directory but not a device in the file specification. Wildcard characters (* and
%) are allowed in the file specification. However, you cannot use relative version
numbers to exclude a specific version. If you specify only one file, you can omit
the parentheses.

/EXPIRED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /EXPIRED qualifier selects files according to their expiration dates. (The
expiration date is set with the SET FILE/EXPIRATION_DATE command.)
The /EXPIRED qualifier is incompatible with the /BACKUP, /CREATED, and
/MODIFIED qualifiers, which also allow you to select files according to time
attributes. If you specify none of these four time qualifiers, the default is the
/CREATED qualifier.

/EXTENSION=number-of-blocks

Specifies the number of blocks to be added to the output file each time the file

is extended. When you specify the /EXTENSION qualifier, the /NEW_VERSION
qualifier is assumed and need not be typed on the command line. This qualifier is
relevant only with the /NEW_VERSION qualifier.

The extension value is applied only if a new file is actually created.

/LOG

/NOLOG (default)

Controls whether the APPEND command displays the file specifications of each
file appended. If the /LOG qualifier is specified, the command displays the file
specifications of the input and output files as well as the number of blocks or
records appended after each append operation.

/MODIFIED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /MODIFIED qualifier selects files according to the dates on which they were
last modified. This qualifier is incompatible with the /BACKUP, /CREATED,
and /EXPIRED qualifiers, which also allow you to select files according to time
attributes. If you specify none of these four time modifiers, the default is the
/CREATED qualifier.

DCLI-57

APPEND

Examples

/NEW_VERSION

/NONEW_VERSION (default)

Controls whether the APPEND command creates a new output file if the specified
output file does not exist. (By default, the specified output file already exists.) If
the specified output file does not already exist, use the /NEW_VERSION qualifier
to create a new output file. If the output file does exist, the /NEW_VERSION
qualifier is ignored and the input file is appended to the output file.

/PROTECTION=(ownership[:access][,...])
Specifies protection for the output file.

e Specify the ownership parameter as system (S), owner (O), group (G), or
world (W).

e Specify the access parameter as read (R), write (W), execute (E), or delete
(D).

The default protection, including any protection attributes not specified, is that
of the existing output file. If no output file exists, the current default protection
applies. This qualifier is relevant only with the /NEW_VERSION qualifier.

For more information on specifying protection codes, see the HP OpenVMS Guide
to System Security.

/READ_CHECK
/INOREAD_CHECK (default)
Reads each record in the input files twice to verify that it has been read correctly.

/SINCE[=time]

Selects only those files dated on or after the specified time. You can specify
time as absolute time, as a combination of absolute and delta times, or as one
of the following keywords: BOOT, JOB_LOGIN, LOGIN, TODAY (default),
TOMORROW, or YESTERDAY. Specify one of the following qualifiers with
the /SINCE qualifier to indicate the time attribute to be used as the basis for
selection: /BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the OpenVMS User’s
Manual or the online help topic Date.

/WRITE_CHECK

/INOWRITE_CHECK (default)

Reads each record in the output file after the record is written to verify that it
was appended successfully and that the output file can subsequently be read
without error.

1. $ APPEND TEST3.DAT TESTALL.DAT

DCLI-58

The APPEND command appends the contents of the file TEST3.DAT from the
default disk and directory to the file TESTALL.DAT, also located on the default
disk and directory.

2.

5.

APPEND

S APPEND/NEW_VERSION/LOG * TXT MEM.SUM

%APPEND-I-CREATED, USES: [MAL]MEM.SUM;1 created

$APPEND-S-COPIED, USES: [MAL]A.TXT;2 copied to USES: [MAL]MEM.SUM;1 (1 block)
%APPEND-S-APPENDED, USE$ [MAL]B.TXT;3 appended to USES: [MAL]MEM.SUM;1 (3 records)
$APPEND-S-APPENDED, USES: [MAL]G.TXT;7 appended to USE$: [MAL]MEM.SUM;1 (51 records)

The APPEND command appends all files with file types of .TXT to a file named
MEM.SUM. The /LOG qualifier requests a display of the specifications of each
input file appended. If the file MEM.SUM does not exist, the APPEND command
creates it, as the output shows. The number of blocks or records shown in the
output refers to the source file and not to the target file total.

$ APPEND/LOG A.DAT, B.MEM C.*
%APPEND-S-APPENDED, USES: [MAL]A.DAT;4 appended to USES: [MAL]C.DAT;4 (2 records)
%APPEND-S-APPENDED, USES: [MAL]B MEM;5 appended to USES$: [MAL]C DAT;4 (29 records)

The APPEND command appends the files A.DAT and B.MEM to the file C.DAT,
which must already exist.

$ APPEND/LOG A.* B.*
%APPEND-S-APPENDED, USES: [MAL]A.DAT;5 appended to USES$: [MAL]B.DAT;1 (5 records)
%APPEND-S-APPENDED, USES:[MAL]A.DOC;2 appended to USES: [MAL]B.DAT;1 (1 record)

Both the input and output file specifications contain wildcard characters in the
file type field. The APPEND command appends each file with a file name of A to
an existing file with B as its file name. The file type of the first input file located
determines the output file type.

$ APPEND BOSTON"BILL BESTON YANKEE"::DEMO1.DAT, DEMO2.DAT
$ To: DALLAS: :DISK1: [MODEL.TEST] TEST.DAT

This APPEND command adds the contents of the files DEMO1.DAT and
DEMOZ2.DAT at remote node BOSTON to the end of the file TEST.DAT at
remote node DALLAS.

DCLI-59

ASSIGN

ASSIGN

Format

Parameters

DCLI-60

Creates a logical name and assigns an equivalence string, or a list of strings,
to the specified logical name. If you specify an existing logical name, the new
equivalence name replaces the existing equivalence name.

ASSIGN equivalence-namel,...] logical-name[:]

equivalence-namel[,...]

Specifies a character string of 1 to 255 characters. Defines the equivalence name,
usually a file specification, device name, or other logical name, to be associated
with the logical name in the specified logical name table. If the string contains
other than uppercase alphanumeric, dollar sign ($), or underscore (_) characters,
enclose it in quotation marks (“”). Use two sets of quotation marks (““””) to
denote an actual quotation mark within the string. Specifying more than one
equivalence name for a logical name creates a search list. A logical name can
have a maximum of 128 equivalence names.

When you specify an equivalence name that will be used as a file specification,
you must include the punctuation marks (colons (:), brackets ([]), and periods
(.)) that would be required if the equivalence name were used directly as a file
specification. Therefore, if you specify a device name as an equivalence name,

terminate the device name with a colon.

The ASSIGN command allows you to assign the same logical name to more than
one equivalence name. When you specify more than one equivalence name for a
logical name, you create a search list. For more information on search lists, see
the OpenVMS User’s Manual.

logical-name[:]

Specifies the logical name string, which is a character string containing up to 255
characters. You choose a logical name to represent the equivalence name in the
specified logical name table.

If the string contains other than uppercase alphanumeric, dollar sign, or
underscore characters, enclose it in quotation marks. Use two sets of quotation
marks to denote an actual quotation mark. If you terminate the logical-

name parameter with a colon, the system removes the colon before placing

the name in a logical name table. (This differs from the DEFINE command,
which saves the colon.) If the logical name is to be entered into the process
directory (LNM$PROCESS_DIRECTORY) or system directory (LNM$SYSTEM_
DIRECTORY) logical name tables, the name can have only 1 to 31 alphanumeric
characters (including the dollar sign and underscore). If the logical name being
entered into the process or system directory translates to a logical name table
name, any alphabetic characters in the name should all be uppercase. By default,
the logical name is placed in the process logical name table.

If the logical name contains any characters other than alphanumeric characters,
the dollar sign, or the underscore, enclose the name in quotation marks. If the
logical name contains quotation marks, enclose the name in quotation marks and
use two sets of quotation marks in the places where you want one set of quotation

Description

Qualifiers

ASSIGN

marks to occur. Note that if you enclose a name in quotation marks, the case of
alphabetic characters is preserved.

The ASSIGN command creates an entry in a logical name table by defining a
logical name to stand for one or more equivalence names. An equivalence name
can be a device name, another logical name, a file specification, or any other
string.

To specify the logical name table where you want to enter a logical name, use the
/PROCESS, /JOB, /GROUP, /SYSTEM, or /TABLE qualifier. If you enter more
than one of these qualifiers, only the last one entered is accepted. If you do not
specify a table, the default is /TABLE=LNM$PROCESS (or /PROCESS).

To specify the access mode of the logical name you are creating, use the /USER_
MODE, /SUPERVISOR_MODE, or /EXECUTIVE_MODE qualifier. If you enter
more than one of these qualifiers, only the last one entered is accepted. If you
do not specify an access mode, then a supervisor-mode name is created. You can
create a logical name in the same mode as the table in which you are placing the
name or in an outer mode. (User mode is the outermost mode; executive mode is
the innermost mode.)

You can enter more than one logical name with the same name in the same logical
name table, as long as each name has a different access mode. (However, if an
existing logical name within a table has the NO_ALIAS attribute, you cannot use
the same name to create a logical name in an outer mode in this table.)

If you create a logical name with the same name, in the same table, and in the
same mode as an existing name, the new logical name assignment replaces the
existing assignment.

You can also use the DEFINE command to create logical names. To delete a
logical name from a table, use the DEASSIGN command.

Note

Avoid assigning a logical name that matches the file name of an
executable image in SYS$SYSTEM:. Such an assignment will prohibit
you from invoking that image.

For additional information on creating and using logical names, see the OpenVMS
User’s Manual.

/CLUSTER_SYSTEM
You must be signed in to the SYSTEM account or have SYSNAM (system
logical name) or SYSPRYV (system) privilege to use this qualifier.

Assigns a clusterwide logical name in the LNM$SYSCLUSTER table.

/EXECUTIVE_MODE
Requires SYSNAM (system logical name) privilege.

DCLI-61

ASSIGN

DCLI-62

Creates an executive-mode logical name. If you specify executive mode, but do
not have SYSNAM privilege, a supervisor-mode logical name is created. The
mode of the logical name must be the same as or external to (less privileged than)
the mode of the table in which you are placing the name.

/GROUP
Requires SYSPRYV (system privilege) or GRPNAM (group logical name)
privilege.

Places the logical name in the group logical name table. Other users who
have the same group number in their user identification codes (UICs) can
access the logical name. The /GROUP qualifier is synonymous with the
/TABLE=LNM$GROUP qualifier.

/JOB

Places the logical name in the jobwide logical name table. All processes within
the same job tree as the process creating the logical name can access the logical
name. The /JOB qualifier is synonymous with the /TABLE=LNM$JOB qualifier.

/LOG (default)
/NOLOG

Displays a message when a new logical name supersedes an existing name.

INAME_ATTRIBUTES[=(keyword[,...])]
Specifies the attributes for a logical name. By default, no attributes are set. You
can specify the following keywords for attributes:

CONFINE Does not copy the logical name into a spawned subprocess; this
keyword is relevant only for logical names in a private table.

NO_ALIAS Prohibits creation of logical names with the same name in an
outer (less privileged) access mode within the specified table. If
another logical name with the same name and an outer access
mode already exists in this table, the name is deleted.

If you specify only one keyword, you can omit the parentheses. Only the
attributes you specify are set.

/PROCESS (default)
Places the logical name in the process logical name table. The /PROCESS
qualifier is synonymous with the /TABLE=LNM$PROCESS qualifier.

/SUPERVISOR_MODE (default)
Creates a supervisor-mode logical name in the specified table.

ISYSTEM
Requires SYSNAM (system logical name) or SYSPRYV (system privilege)
privilege.

Places the logical name in the system logical name table. All system users
can access the logical name. The /SYSTEM qualifier is synonymous with the
/TABLE=LNM$SYSTEM qualifier.

Examples

ASSIGN

[TABLE=name
Requires write (W) access to the table if the table is shareable.

Specifies the logical name table in which the logical name is to be entered. You
can use the /TABLE qualifier to specify a user-defined logical name table (created
with the CREATE/NAME_TABLE command); to specify the process, job, group,
or system logical name tables; or to specify the process or system logical name
directory tables.

If you specify the table name using a logical name that has more than one
translation, the logical name is placed in the first table found. For example, if
you specify ASSIGN/TABLE=LNM$FILE_DEV and LNM$FILE_DEYV is equated
to LNM$PROCESS, LNM$JOB, LNM$GROUP, and LNM$SYSTEM, then the
logical name is placed in LNM$PROCESS.

If you do not explicitly specify the /TABLE qualifier, the default is the
/TABLE=LNM$PROCESS qualifier.

/TRANSLATION_ATTRIBUTES[=(keyword],...])]
Equivalence-name qualifier.

Specifies attributes of the equivalence-name parameter. Possible keywords are as
follows:

CONCEALED Indicates that the equivalence string is the name of a concealed
device.

When a concealed device name is defined, the system displays
the logical name, rather than the equivalence string, in
messages that refer to the device. If you specified the
CONCEALED attribute, then the equivalence string must

be a physical device name.

TERMINAL Indicates that the equivalence string should not be translated
iteratively; logical name translation should terminate with the
current equivalence string.

If you specify only one keyword, you can omit the parentheses. Only the
attributes you specify are set.

Note that different equivalence strings of the same logical name can have
different translation attributes specified.

/USER_MODE
Creates a user-mode logical name in the specified table.

If you specify a user-mode logical name in the process logical name table, that
logical name is used for the execution of a single image only; user-mode entries
are deleted from the logical name table when any image executing in the process
exits; that is, after any DCL command that executes an image or user program
completes execution. Also, user-mode logical names are automatically deleted
when invoking and exiting a command procedure.

1. $ ASSIGN $DISKI1:[CREMERS.MEMOS] MEMOSD

The ASSIGN command in this example equates the partial file specification
$DISK1:[CREMERS.MEMOS] to the logical name MEMOSD.

DCLI-63

ASSIGN

DCLI-64

$ ASSIGN/USER MODE $DISK1:[FODDY.MEMOS]WATER.TXT TM1

The ASSIGN command in this example equates the logical name TM1 to a
file specification. After the next image runs, the logical name is deassigned
automatically.

$ ASSIGN XXX1:[HEROLD] ED
$ PRINT ED:TEST.DAT
Job 274 entered on queue SYSSPRINT

The ASSIGN command in this example associates the logical name ED with
the directory name [HEROLD] on the disk XXX1. Subsequent references to
the logical name ED result in the correspondence between the logical name
ED and the disk and directory specified. The PRINT command queues a copy
of the file XXX1:[HEROLD]TEST.DAT to the system printer.

$ ASSIGN YYY2: TEMP:
$ SHOW LOGICAL TEMP

"TEMP" = "YYY2:" (LNM$PROCESS TABLE)
$ DEASSIGN TEMP

The ASSIGN command in this example equates the logical name TEMP

to the device YYY2. TEMP is created in supervisor mode and placed in

the process logical name table. The SHOW LOGICAL command verifies
that the logical name assignment was made. Note that the logical name
TEMP was terminated with a colon in the ASSIGN command, but that the
command interpreter deleted the colon before placing the name in the logical
name table. Thus, you can specify TEMP without a colon in the subsequent
DEASSIGN command. You should omit the colon in the SHOW LOGICAL
command (for example, SHOW LOGICAL TEMP).

$ MOUNT TTT1: MASTER TAPE
$ ASSIGN TAPE:NAMES.DAT PAYROLL
$ RUN PAYROLL

The MOUNT command in this example establishes the logical name TAPE
for the device TTT1, which has the volume labeled MASTER mounted on

it. The ASSIGN command equates the logical name PAYROLL with the file
named NAMES.DAT on the logical device TAPE. Thus, an OPEN request in a
program referring to the logical name PAYROLL results in the correspondence
between the logical name PAYROLL and the file NAMES.DAT on the tape
whose volume label is MASTER.

$ CREATE/NAME_TABLE TABLEL

$ ASSIGN/TABLE=LNM$PROCESS DIRECTORY TABLEIL, -

_$ LNM$PROCESS, LNM$JOB, LNMSGROUP, LNM$SYSTEM LNM$FILE DEV
$ ASSIGN/TABLE=TABLEL -

_$ /TRANSLATION ATTRIBUTES=CONCEALED DKAl: WORK DISK

The CREATE/NAME_TABLE command in this example creates the process
private logical name table TABLEL.

The first ASSIGN command ensures that TABLE1 is searched first in any
logical name translation of a file specification or device name (because
TABLE1 is the first item in the equivalence string for the logical name
LNMS$FILE_DEYV, which determines the default search sequence of logical
name tables whenever a device or file specification is translated).

10.

ASSIGN

The second ASSIGN command assigns the logical name WORK_DISK to the
physical device DKA1, and places the name in TABLE1. The logical name
has the concealed attribute. Therefore, the logical name WORK_DISK will be
displayed in system messages.

$ ASSIGN/TABLE=LNMSPROCESS/TABLE=LNMSGROUP DKAO: SYSFILES
$ SHOW LOGICAL SYSFILES
"SYSFILES" = "DKAQ:" (LNMSGROUP 000240)

The ASSIGN command in this example contains conflicting qualifiers. When
you specify conflicting qualifiers, the ASSIGN command uses the last qualifier
specified. The response from the SHOW LOGICAL command indicates that
the name was placed in the group logical name table.

$ ASSIGN/TABLE=LNMSGROUP 'FS$TRNLNM ("SYSSCOMMAND")' TERMINAL
%DCL-I-SUPERSEDE, previous value of TERMINAL has been superseded

The ASSIGN command in this example uses the lexical function FTRNLNM
to translate the logical name SYS$COMMAND and use the result as the
equivalence name for the logical name TERMINAL. The message from the
ASSIGN command indicates that an entry for the logical name TERMINAL
already existed in the group logical name table, and that the new entry has
replaced the previous one.

If this command is used in a LOGIN.COM file, the entry for TERMINAL will
be redefined at the beginning of each terminal session. The current process
and any subprocesses it creates can execute images that use the logical name
TERMINAL to write messages to the current terminal device.

$ ASSIGN DALLAS::DMAl: DATA

The ASSIGN command in this example associates the logical name DATA
with the device specification DMA1 on remote node DALLAS. Subsequent
references to the logical name DATA result in references to the disk on the
remote node.

$ CREATE AVERAGE.COM

S ASSIGN/USER_MODE SYSSCOMMAND: SYSSINPUT
$ EDIT/EDT AVERAGE.FOR
$ FORTRAN AVERAGE

$ LINK AVERAGE

$ RUN AVERAGE

87

80

90

9999

$ EXIT

$ @AVERAGE.COM

The CREATE command in this example creates the command procedure
AVERAGE.COM. Then the command procedure is executed.

The command procedure uses the ASSIGN command with the /USER_MODE
qualifier to change temporarily the value of SYS$INPUT. When the EDT
editor is invoked, it accepts input from the terminal. This allows you to
create or modify the program AVERAGE.FOR interactively.

DCLI-65

ASSIGN

When you exit from EDT, SYS$INPUT is reassigned to its original value
(the input stream provided by the command procedure). Thus, when the
program AVERAGE.FOR is ready to accept input, it looks for that input in
the command procedure.

DCLI-66

ASSIGN/MERGE

ASSIGN/MERGE

Format

Parameters

Description

Example

Removes all jobs from one queue and merges them into another existing queue.
This command does not affect jobs that are executing.

Requires manage (M) access to both queues.

ASSIGN/MERGE target-queue[:] source-queuel:]

target-queue|:]
Specifies the name of the queue into which the jobs are being merged.

source-queuel:]
Specifies the name of the queue from which the jobs are being removed.

The ASSIGN/MERGE command removes the pending jobs in one queue and
places them in another queue. This command does not affect any executing
jobs in either the target queue or the source queue. Jobs currently running in
the source queue complete in that queue. This command is generally used with
printer queues, although it can be used with batch queues.

The ASSIGN/MERGE command is particularly useful when a line printer
malfunctions. By entering the ASSIGN/MERGE command, you can reroute
existing jobs to a different printing device. To perform the merge operation
without losing or disrupting any jobs, stop the source queue with the
STOP/QUEUE/NEXT command. Then enter the STOP/QUEUE/REQUEUE
command to ensure that the current job on the source queue is requeued for
processing on the target queue. (If the STOP/QUEUE/REQUEUE command fails
to requeue the job, use the STOP/QUEUE/RESET command to regain control of
the queue.) Once you enter the STOP commands, enter the ASSIGN/MERGE
command.

$ STOP/QUEUE/NEXT LPBO
$ STOP/QUEVE/REQUEUE=LPA0 LPBO
$ ASSIGN/MERGE LPAO LPBO

In this example, the STOP/QUEUE/NEXT command prevents another job from
executing on queue LPB0. The STOP/QUEUE/REQUEUE command requeues the
current job running on LPBO to the target queue LPAO. The ASSIGN/MERGE
command removes the remaining jobs from the LPBO printer queue and places
them in the LPAO printer queue.

DCLI-67

ASSIGN/QUEUE

ASSIGN/QUEUE

Format

Parameters

Description

Examples

DCLI-68

Assigns, or redirects, a logical queue to a single execution queue. The
ASSIGN/QUEUE command can be used only with printer or terminal queues.

Requires manage (M) access to both queues.

ASSIGN/QUEUE queue-name[:] logical-queue-name:]

queue-name][:]
Specifies the name of the execution queue. The queue cannot be a logical queue,
a generic queue, or a batch queue.

logical-queue-name][:]
Specifies the name of the logical queue.

The ASSIGN/QUEUE command sets up a one-to-one correspondence between a
logical queue and an execution queue. Jobs submitted to the logical queue are
always queued to the specified execution queue for eventual printing.

When you enter the ASSIGN/QUEUE command, the logical queue cannot be
running.

Once you initialize a logical queue, use the ASSIGN/QUEUE command to
associate the logical queue with an existing execution queue. You must perform
the following tasks to set up a logical queue:

1. Initialize the logical queue with the INITIALIZE/QUEUE command. (Do not
use the /START qualifier.)

2. Assign the logical queue name to an existing execution queue.
3. Start the logical queue with the START/QUEUE command.

After you enter the START/QUEUE command for the logical queue, jobs can be
sent to the logical queue for processing.

1. $ INITIALIZE/QUEUE/DEFAULT=FLAG=ONE/START LPAQ
$ INITIALIZE/QUEUE TEST QUEUE
$ ASSIGN/QUEUE LPAO TEST QUEUE
$ START/QUEUE TEST QUEUE

This example first initializes and starts the printer queue LPAO. The
LPAO queue is set to have a flag page precede each job. The second
INITIALIZE/QUEUE command creates the logical queue TEST_QUEUE.
The ASSIGN/QUEUE command assigns the logical queue TEST_QUEUE to
the printer queue LPAO. The START/QUEUE command starts the logical
queue.

ASSIGN/QUEUE

2. $ INITIALIZE/QUEUE/START LPBO

The ASSIGN/QUEUE command is not needed in this example because
a logical queue is not being initialized. A printer queue is being
initialized; LPBO is the name of a line printer. After you enter the
INITIALIZE/QUEUE/START command, jobs can be queued to LPBO for
printing.

DCLI-69

ATTACH

ATTACH

Format

Parameter

Description

Qualifier

DCLI-70

Transfers control from your current process (which then hibernates) to the
specified process.

The ATTACH and SPAWN commands cannot be used if your terminal has
an associated mailbox.

ATTACH [process-name]

process-name

Specifies the name of a parent process or spawned subprocess to which control
passes. The process must already exist, be part of your current job, and share the
same input stream as your current process. However, the process cannot be your
current process or a subprocess created with the /NOWAIT qualifier.

Process names can contain from 1 to 15 alphanumeric characters. If a connection
to the specified process cannot be made, an error message is displayed.

The process-name parameter is incompatible with the /IDENTIFICATION
qualifier.

The ATTACH command allows you to connect your input stream to another
process. You can use the ATTACH command to change control from one
subprocess to another subprocess or to the parent process.

When you enter the ATTACH command, the parent or “source” process is put
into hibernation, and your input stream is connected to the specified destination
process. You can use the ATTACH command to connect to a subprocess that is
part of a current job left hibernating as a result of the SPAWN/WAIT command or
another ATTACH command as long as the connection is valid. (No connection can
be made to the current process, to a process that is not part of the current job,

or to a process that does not exist. If any of these connections are attempted, an
error message is displayed.)

You can also use the ATTACH command in conjunction with the SPAWN/WAIT
command to return to a parent process without terminating the created
subprocess. See the description of the SPAWN command for more details.

/IDENTIFICATION=pid

Specifies the process identification (PID) of the process to which terminal control
will be transferred. Leading zeros can be omitted. The /IDENTIFICATION
qualifier is incompatible with the process-name parameter.

If you omit the /IDENTIFICATION qualifier, you must specify a process name.

ATTACH

Examples

1. $ ATTACH JONES 2

The ATTACH command transfers the terminal’s control to the subprocess
JONES_2.

2. $ ATTACH/IDENTIFICATION=30019

The ATTACH command switches control from the current process to a process
having the PID 30019. Notice that because the /IDENTIFICATION qualifier
is specified, the process-name parameter is omitted.

DCLI-71

BACKUP

BACKUP

Invokes the Backup utility (BACKUP) to perform one of the following backup
operations:

e Make copies of disk files.

e Save disk files as data in a file created by BACKUP on disk or magnetic tape.
(Files created by BACKUP are called save sets.)

e Restore disk files from a BACKUP save set.
e Compare disk files or files in a BACKUP save set with other disk files.
e List information about files in a BACKUP save set to an output device or file.

You cannot invoke BACKUP to back up a system disk; a system disk must be
bootstrapped to run.

For more information about BACKUP and backing up the system disk, see the HP
OpenVMS System Manager’s Manual and the HP OpenVMS System Management
Utilities Reference Manual or online help.

Format
BACKUP input-specifier output-specifier

DCLI-72

CALL

CALL

Format

Parameters

Transfers control to a labeled subroutine within a command procedure.

CALL label [parameter [...]]

label

Specifies a label of 1 to 255 alphanumeric characters that appears as the first
item on a command line. A label cannot contain embedded blanks. When
the CALL command is executed, control passes to the command following the
specified label.

The label can precede or follow the CALL statement in the current command
procedure. A label in a command procedure must be terminated with a colon (:).
Labels for subroutines must be unique.

Labels declared in inner procedure levels are inaccessible from outer levels, as in
the following example:

SCALL B

SA: SUBROUTINE

$ B: SUBROUTINE
$ ENDSUBROUTINE
SENDSUBROUTINE

In this example, the label B in subroutine A is inaccessible from the outer
procedure level.

parameter [...]

Specifies from one to eight optional parameters to pass to the command
procedure. Use quotation marks (“”) to specify a null parameter. The
parameters assign character string values to the symbols named P1, P2, and

so on in the order of entry, to a maximum of eight. The symbols are local to the
specified command procedure. Separate each parameter with one or more spaces.

You can specify a parameter with a character string value containing
alphanumeric or special characters, with the following restrictions:

¢ The command interpreter converts alphabetic characters to uppercase and
uses blanks to delimit each parameter. To pass a parameter that contains
embedded blanks or lowercase letters, enclose the parameter in quotation
marks (“ 7).

e If the first parameter begins with a slash (/), you must enclose the parameter
in quotation marks.

e To pass a parameter that contains quotation marks and spaces, enclose the
entire string in quotation marks and use two sets of quotation marks within
the string. For example:

$ CALL SUBL "Never say ""quit"""

When control transfers to SUB1, the parameter P1 is equated to the following
string:

Never say "quit"

DCLI-73

CALL

Description

DCLI-74

If a string contains quotation marks and does not contain spaces, the
quotation marks are preserved in the string and the letters within the
quotation marks remain in lowercase. For example:

$ CALL SUB2 abc"def"ghi
When control transfers to SUB2, the parameter P1 is equated to the string:
ABCdefGHI

To use a symbol as a parameter, enclose the symbol in single quotation marks
(“?) to force symbol substitution. For example:

$ NAME = "JOHNSON"
$ CALL INFO 'NAME’

The single quotation marks cause the value “JOHNSON” to be substituted for
the symbol ‘NAME’. Therefore, the parameter “JOHNSON” is passed as P1 to the
subroutine INFO.

The CALL command transfers control to a labeled subroutine within a command
procedure. The CALL command is similar to the @ (execute procedure) command
in that it creates a new procedure level. The advantage of the CALL command
is that it does not require files to be opened and closed to process the procedure.
Using the CALL command also makes managing a set of procedures easier
because they can all exist in one file rather than in several files.

When you use the CALL command to transfer control to a subroutine, a new
procedure level is created and the symbols P1 to P8 are assigned the values of
the supplied arguments. Execution then proceeds until an EXIT command is
encountered. At this point, control is transferred to the command line following
the CALL command.

Procedures can be nested to a maximum of 32 levels, which includes any
combination of command procedure and subroutine calls. Local symbols and
labels defined within a nested subroutine structure are treated the same way as
if the routines had been invoked with the @ command; that is, labels are valid
only for the subroutine level in which they are defined.

Local symbols defined in an outer subroutine level are available to any subroutine
levels at an inner nesting level; that is, the local symbols can be read, but

they cannot be written to. If you assign a value to a symbol that is local to an
outer subroutine level, a new symbol is created at the current subroutine level.
However, the symbol in the outer procedure level is not modified.

The SUBROUTINE and ENDSUBROUTINE commands define the beginning and
end of a subroutine. The label defining the entry point to the subroutine must
appear either immediately before the SUBROUTINE command or on the same
command line.

A subroutine can have only one entry point. The subroutine must begin with the
SUBROUTINE command as the first executable statement. If an EXIT command
is not specified in the procedure, the ENDSUBROUTINE command functions as
an EXIT command.

Qualifier

CALL

The SUBROUTINE command performs two different functions depending

on the context in which it is executed. If executed as the result of a CALL
command, it initiates a new procedure level, defines the parameters P1 to P8 as
specified in the CALL statement, and begins execution of the subroutine. If the
SUBROUTINE verb is encountered in the execution flow of the procedure
without having been invoked by a CALL command, all the commands
following the SUBROUTINE command are skipped until the corresponding
ENDSUBROUTINE command is encountered.

Note

The SUBROUTINE and ENDSUBROUTINE commands cannot be
abbreviated to fewer than 4 characters.

IOUTPUT=filespec

Writes all output to the file or device specified. By default, the output is written
to the current SYS$OUTPUT device and the output file type is .LIS. System
responses and error messages are written to SYS$COMMAND as well as to the
specified file. If you specify /OUTPUT, the qualifier must immediately follow the
CALL command. The asterisk (*) and the percent sign (%) wildcard characters
are not allowed in the output file specification.

You can also redefine SYS$OUTPUT to redirect the output from a command
procedure. If you place the following command as the first line in a command
procedure, output will be directed to the file you specify:

$ DEFINE SYSSOUTPUT filespec

When the procedure exits, SYSSOUTPUT is restored to its original equivalence
string. This produces the same result as using the /OUTPUT qualifier when you
execute the command procedure.

DCLI-75

CALL

Example

DCLI-76

$
$! CALL.COM

$! Define subroutine SUB1

$!
$ SUBl: SUBROUTINE

$ CALL SUB2 !Invoke SUB2 from within SUB1

$ @FILE !Invoke another procedure command file

$ EXIT

$ ENDSUBROUTINE !End of SUB1 definition
$!

$! Define subroutine SUB2

$!

$ SUB2: SUBROUTINE

$ EXIT

$ ENDSUBROUTINE !End of SUB2 definition

Sl

$! Start of main routine. At this point, both SUB1 and SUB2
$! have been defined but none of the previous commands have
$! been executed.

Sl

$ START:

$ CALL/OUTPUT=NAMES.LOG SUB1 "THIS IS P1"

$ CALL SUB2 "THIS IS P1" "THIS IS P2"

$ EXIT !Exit this command procedure file

The command procedure in this example shows how to use the CALL command
to transfer control to labeled subroutines. The example also shows that you can
call a subroutine or another command file from within a subroutine.

The CALL command invokes the subroutine SUB1, directing output to the
file NAMES.LOG and allowing other users write (W) access to the file. The
subroutine SUB2 is called from within SUB1. The procedure executes SUB2 and
then uses the @ (execute procedure) command to invoke the command procedure

FILE.COM.

When all the commands in SUB1 have executed, the CALL command in the main
procedure calls SUB2 a second time. The procedure continues until SUB2 has
executed.

CANCEL

CANCEL

Format

Parameters

Description

Cancels wakeup requests for a specified process, including wakeup requests
scheduled with either the RUN command or the $SCHDWK system service.

Requires one of the following:
e Ownership of the process

e GROUP privilege to cancel scheduled wakeup requests for processes
in the same group but not owned by you

e WORLD privilege to cancel scheduled wakeup requests for any
process in the system

CANCEL [[node-name::]process-name]

node-name::
The name of the node on which the specified process is running.

You cannot specify a node name on a different OpenVMS Cluster system from the
current process.

process-name
The name of the process for which wakeup requests are to be canceled. The
process name can have up to 15 alphanumeric characters.

The specified process must be in the same group as the current process.

The CANCEL command cancels scheduled wakeup requests for the specified
process.

The CANCEL command does not delete the specified process. If the process is
executing an image when the CANCEL command is issued for it, the process
hibernates instead of exiting after the image completes execution.

To delete a hibernating process for which wakeup requests have been canceled,
use the STOP command. You can determine whether a subprocess has been
deleted by entering the SHOW PROCESS command with the /SUBPROCESSES
qualifier.

A local process name can look like a remote process name. Therefore,

if you specify ATHENS::SMITH, the system checks for a process named
ATHENS::SMITH on the local node before checking node ATHENS for a process
named SMITH.

You also can use the /IDENTIFICATION=pid qualifier to specify a process name.
If you use the /IDENTIFICATION qualifier and the process-name parameter
together, the qualifier overrides the parameter. If you do not specify either

the process-name parameter or the /IDENTIFICATION qualifier, the CANCEL
command cancels scheduled wakeup requests for the current (that is, the issuing)
process.

DCLI-77

CANCEL

Qualifier

Examples

DCLI-78

/IDENTIFICATION=pid
Identifies the process by its process identification (PID). You can omit leading
zeros when you specify the PID.

1.

$ CANCEL CALENDAR

The CANCEL command in this example cancels a wakeup request for a
process named CALENDAR (which continues to hibernate until it is deleted
with the STOP command).

$ RUN/SCHEDULE=14:00 STATUS
%RUN-S-PROC ID, identification of created process is 00130123

$ CANCEL/IDENTIFICATION=13012A

The RUN command in this example creates a process to execute the image
STATUS. The process hibernates and is scheduled to be awakened at 14:00.
Before the process is awakened, the CANCEL command cancels the wakeup
request.

$ RUN/PROCESS_NAME=LIBRA/INTERVAL=1:00 LIBRA
%RUN-S-PROC_ID, identification of created process is 00130027

$ CANCEL LIBRA
$ STOP LIBRA

The RUN command in this example creates a subprocess named LIBRA to
execute the image LIBRA.EXE at hourly intervals.

Subsequently, the CANCEL command cancels the wakeup request. The
process continues to exist, but in a state of hibernation, until the STOP
command deletes it.

CHECKSUM

CHECKSUM

Format

Parameter

Description

The CHECKSUM command invokes a utility to calculate one or more checksums
for OpenVMS files. The result, or checksum, is available in the DCL symbol
CHECKSUM$CHECKSUM.

CHECKSUM filespec

filespec
Specifies the name of an existing file to be checksummed. The asterisk (*) and
percent sign (%) wildcard characters are allowed in the file specification.

The CHECKSUM utility calculates file, image, or object checksums for an
OpenVMS file. For a file checksum the algorithm used determines if the internal
record structure of the file is followed or not. For an image or object checksum,
the utility always follows the image or object structure.

The /FILE, /IMAGE, and /OBJECT qualifiers determine which kind of checksum
is calculated. They imply a default file type (.DAT, .EXE or .OBJ) and determine
the amount of information displayed. The default, /FILE, results in an XOR file
checksum, according to the file’s record structure. It implies a default file type
.DAT and determines that no information is output to SYS$OUTPUT.

For file checksums, you can specify which algorithm CHECKSUM will use

to perform calculations. By default, the Alpha and VAX XOR record-based
algorithm is used. Optionally, you can select either the CRC algorithm or

the MD5 algorithm, each using the whole content of the file to calculate the
checksum. The CRC algorithm is the same as the algorithm used for ELF-64 files
and is used by popular compression tools like PKZIP. (That is, a file checksum in
a ZIP file can be compared with the file checksum obtained by the CHECKSUM
utility.) The MD5 algorithm is the MD5 digest, which can be obtained using
public domain tools such as MD5.EXE and md5sum.

Image checksums differ between the Alpha/VAX platforms and the 164
platform. Object checksums are only available for the 164 platform. With the
platform qualifiers, /ALPHA, /164 or /VAX non-native images or objects can be
checksummed.

For all ELF-64 image and object checksums, CHECKSUM uses a CRC-32
algorithm. The CRC, known as AUTODIN II, Ethernet, or FDDI CRC, is
documented as part of the VAX CRC instructions. The image or object checksum
follows the ELF-64 data structures that are used for OpenVMS 164 object

and image files. For these checksums, only the invariant data is used for the
calculation. Variant data, such as timestamps and versions, are excluded from
the checksum calculation in order to compare results from different compile and
link operations.

DCLI-79

CHECKSUM

Qualifiers

DCLI-80

For Alpha and VAX images, CHECKSUM uses an XOR algorithm. The image
checksum follows the Alpha and VAX image structure and only uses invariant
data for the calculation. Variant data, such as timestamps are excluded in order
to compare results from different link operations. Note that on Alpha and VAX
systems, object files cannot be checksummed based on object invariant data.

/ALGORITHM=option

/ALGORITHM=XOR (default)

Selects the algorithm used for file checksums. The default is the XOR algorithm
for data within records, as used by the previous Checksum utilities on OpenVMS
Alpha and VAX systems. Options include:

¢ CRC — A CRC-32 algorithm for all bytes within the file (possible record
structures are ignored); this algorithm is also known as AUTODIN II,
Ethernet, or FDDI CRC.

e MD5 — The MD5 digest, as published by Ronald L. Rivest (RFC 1321), for all
bytes within the file (possible record structures are ignored).

¢ XOR — An XOR algorithm for all data, according to the record structure of
the file.

/ALPHA

Calculates an Alpha-type checksum and is only useful with the /IMAGE qualifier
on 164 systems (that is, it checksums Alpha images on 164 systems). It is set by
default on Alpha platforms and invalid on VAX platforms.

[FILE (default)
Calculates a file checksum.

By default, the XOR algorithm (/ALGORITHM=XOR) is used for the checksum.
The /FILE qualifier also implies a default file type of .DAT. By default, unsigned
decimal checksum value is saved in the DCL symbol CHECKSUM$CHECKSUM
and not output to the screen. By specifying /SHOW=DATA, the full filename of
the specified input file is output in addition to the file checksum, an unsigned
decimal value.

The /ALPHA, /164, or /VAX platform qualifiers do not influence the file checksum
result. However, /ALPHA and /VAX prohibit the /SHOW qualifier because these
qualifiers were not available on the original Checksum utility for Alpha and VAX
systems.

/64

Calculates an 164-type checksum and is only useful on Alpha systems with
/IMAGE or /OBJECT (that is, it checksums 164 images or objects on Alpha
systems). The /164 qualifier is set by default on 164 platforms and invalid on VAX
platforms.

IMAGE

Calculates a checksum of all image bytes. The image structure is followed to
include only the image bytes into the checksum. Invariant data, such as the
linker version and the link date, are omitted.

For 164 images (that is, 164 formatted files), a CRC checksum is calculated and
additional information is output to SYS§OUTPUT, including the following:

e The resulting full filename and checksums for the image segments

CHECKSUM

¢ The header checksums and the overall image checksum

The output values are shown in hexadecimal notation. The DCL symbol,
CHECKSUM$CHECKSUM, shows the result in hexadecimal notation.

For Alpha and VAX images, an XOR checksum is calculated and additional
information is output to SYS$OUTPUT:

¢ The resulting full filename and checksums for the image sections
e The header checksum and the overall image checksum
The output checksum values are in hexadecimal notation. However, the result in

the DCL symbol CHECKSUM$CHECKSUM is in unsigned decimal notation.

Note

For Alpha and VAX images, the unsigned decimal notation of the
checksum value in the DCL symbol CHECKSUM$CHECKSUM retains
compatiblity with the previous checksum tool.

The /IMAGE qualifier implies the default file type of .EXE. For 164 images, this
qualifier also implies the default keyword values HEADERS and SEGMENTS for
the /SHOW qualifier.

/OBJECT
Calculates a CRC checksum of all 164 object bytes.

The /OBJECT qualifier follows the ELF-64 object structure to include only the
object bytes into the checksum. Invariant data, as the language processor version
and the generation date, are omitted.

Additional information is output to SYS$OUTPUT, including the following:
e The resulting full filename of the specified input file

¢ The checksums for the object sections, headers, and the overall object
checksum

The output checksum values are in hexadecimal notation. The result provided in
the DCL symbol, CHECKSUM$CHECKSUM, is in hexadecimal notation.

The /OBJECT qualifier implies the default file type of .OBJ. This qualifier also
implies the default keyword values HEADERS and SECTIONS for the /SHOW
qualifier.

This qualifier is invalid on the VAX platform. On Alpha platforms, it it is only
applicable with the /164 qualifier.

IOUTPUT[=filespec]

/INOOUTPUT

The /OUTPUT qualifier controls where the output of the command is sent. The
/NOOUTPUT qualifier supresses output.

If you specify /OUTPUT and a file specification (/OUTPUT=filespec), the output is
sent to the specified file, rather than to the current output device, SYS$OUTPUT.
If you do not enter the qualifier, or if you enter the /OUTPUT qualifier without a
file specification, the output is sent to SYS$OUTPUT.

Using the /OUTPUT qualifier does not affect the result (that is, the DCL symbol
CHECKSUM$CHECKSUM).

DCLI-81

CHECKSUM

Examples

DCLI-82

/SHOW=(optionl[,...])
Controls which checksum and additional information is output to the device.

Options for this qualifier are as follows:

ALL — Sets all of the applicable options, with the following restrictions:
— For file checksums, only the DATA keyword is allowed.

— For image checksums, all keywords are allowed.

— For object checksums, the SEGMENT keyword is not allowed.

DATA — Outputs the full file name and the file checksum. For compatibility,
this option is available for /FILE.

EXCLUDED — Formats the data excluded from the image or object
checksums.

HEADERS — Output checksums of all 164 headers. This option is set by
default for IMAGE and /OBJECT.

SECTIONS — Output checksums of all ELF-64 sections. This option is set by
default for /OBJECT.

SEGMENTS — Output checksums of all ELF-64 program segments. This
option is set by default for /IMAGE.

The /SHOW qualifier is invalid on the VAX platform.

IVAX

Calculates a VAX-type checksum and is only useful on 164 or Alpha systmes with
/IMAGE to checksum VAX images on non-VAX systems. This qualifier is invalid
on VAX platforms.

The CHECKSUM/IMAGE command results in different output for 164 and Alpha
platforms. Because there are different image structures, the names for the
checksums differ:

The checksum for Alpha outputs the section number as BLISS constant:
%D’1’ whereas the 164 checksum outputs decimal numbers.

The checksum for Alpha outputs the checksums as BLISS constant:
%X’6C5404CB’ whereas the 164 checksum outputs DCL-style hexadecimal
numbers.

The DCL symbol on Alpha is an unsigned decimal value, whereas the DCL
symbol for 164 is a hexadecimal value.

On Alpha systems:

$ CHECKSUM/IMAGE HELLO.EXE

file DISKSUSER: [JOE]HELLO.EXE;10

image section %D’'1’ checksum is %X’6C5404CB’
image section %$D’2’ checksum is %X’E29D6A3A’
image section %D’3’ checksum is %X’114B0786’
image header checksum is %$X’'00000204'
checksum of all image sections is %X'9F826977’

$ SHOW SYMBOL CHECKSUMS$CHECKSUM
CHECKSUMSCHECKSUM = "2676124023"

On 164 systems:
$ CHECKSUM/IMAGE FOOBAR.EXE

File DISKSUSER: [JOE] FOOBAR.EXE;3
Checksum program segment 0: %X18E293D7
Checksum program segment 1: %XEFBCE000
Checksum program segment 2: %XA6D02DD5
Checksum program segment 3: %X30130E3E
Checksum dynamic segment /XOF704080

E1f header checksum: %X7A6AC80F

E1f program header checksum: %XBF6B41D8
E1f section header checksum: %X6C770CF6
E1f (object/image) checksum: $X2EEE7726

m[\)l—‘

$ SHOW SYMBOL CHECKSUMS$CHECKSUM
CHECKSUMSCHECKSUM = "2EEE7726"

CHECKSUM

DCLI-83

CLOSE

CLOSE

Format

Parameter

Description

Qualifiers

Examples

DCLI-84

Closes a file opened with the OPEN command and deassigns the associated
logical name.

CLOSE logical-namel:]

logical-name[:]
Specifies the logical name assigned to the file when it was opened with the OPEN
command.

Files that are opened for reading or writing at the command level remain open
until closed with the CLOSE command, or until the process terminates. If a
command procedure that opens a file terminates without closing the open file, the
file remains open; the command interpreter does not automatically close it.

/DISPOSITION=o0ption
Specifies what action to take when the file is closed. The options are:

DELETE Delete the file.
KEEP (default) Keep the file.
PRINT Print the file.
SUBMIT Submit the file.
/ERROR=label

Specifies a label in the command procedure to receive control if the close operation
results in an error. Overrides any ON condition action specified. If an error
occurs and the target label is successfully given control, the global symbol
$STATUS retains the code for the error that caused the error path to be taken.

/LOG (default)

/NOLOG

Generates a warning message when you attempt to close a file that was not
opened by DCL. If you specify the /ERROR qualifier, the /LOG qualifier has no
effect. If the file has not been opened by DCL, the error branch is taken and no
message is displayed.

1. $ OPEN/READ INPUT FILE TEST.DAT
$ READ LOOP:
$ READ/END OF FILE=NO MORE INPUT FILE DATA LINE

$ GOTO READ LOOP
$ NO_MORE:
$ CLOSE INPUT FILE

CLOSE

The OPEN command in this example opens the file TEST.DAT and assigns it
the logical name of INPUT _FILE. The /END_OF_FILE qualifier on the READ
command requests that, when the end-of-file (EOF) is reached, the command
interpreter should transfer control to the line at the label NO_MORE. The
CLOSE command closes the input file.

$ @READFILE

$ STOP

$ SHOW LOGICAL/PROCESS

"INFILE" = " DB1"
"OUTFILE" = " DBI1"
$ CLOSE INFILE
$ CLOSE OUTFILE

In this example, pressing Ctrl/Y interrupts the execution of the command
procedure READFILE.COM. Then, the STOP command stops the procedure.
The SHOW LOGICAL/PROCESS command displays the names that currently
exist in the process logical name table. Among the names listed are the
logical names INFILE and OUTFILE, assigned by OPEN commands in the
procedure READFILE.COM.

The CLOSE commands close these files and deassign the logical names.

DCLI-85

CONNECT

CONNECT

Format

Parameter

Description

DCLI-86

Connects your physical terminal to a virtual terminal that is connected to another
process.

You must connect to a virtual terminal that is connected to a process
with your user identification code (UIC). No other physical terminals
may be connected to the virtual terminal.

CONNECT virtual-terminal-name

virtual-terminal-name

Specifies the name of the virtual terminal to which you are connecting. A virtual
terminal name always begins with the letters VTA. To determine the name of
the virtual terminal that is connected to a process, enter the SHOW USERS
command.

The CONNECT command connects you to a separate process, as opposed to the
SPAWN and ATTACH commands, which create and attach subprocesses.

The CONNECT command is useful when you are logged in to the system using
telecommunications lines. If there is noise over the line and you lose the carrier
signal, your process does not terminate. After you log in again, you can reconnect
to the original process and log out of your second process.

To use the CONNECT command, the virtual terminal feature must be enabled
for your system with the System Manager utility (SYSMAN) on OpenVMS Alpha
systems and the System Generation utility (SYSGEN) on OpenVMS VAX systems.

If virtual terminals are allowed on your system, use the SET
TERMINAL/DISCONNECT/PERMANENT command to enable the virtual
terminal characteristic for a particular physical terminal. When you enable this
characteristic, a virtual terminal is created when a user logs in to the physical
terminal. The physical terminal is connected to the virtual terminal, which is in
turn connected to the process.

For new virtual terminals, you must first set the TT2$V_DISCONNECT bit in
the TTY_DEFCHAR2 system parameter and reboot the system. This is done by
creating the virtual device VTAO: using the ttdriver. For example, on Alpha:

$ RUN SYS$SYSTEM:SYSMAN
SYSMAN> IO CONNECT/NOADAPTER/DRIVER=SYSSLOADABLE IMAGES:SYSSTTDRIVER VTAO:

On VAX:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> CONNECT /NOADAPTER/DRIVER=TTDRIVER VTAO:

When the connection between the physical terminal and the virtual terminal
is broken, you are logged out of your current process (and any images that the
process is executing stop running) unless you have specified the /NOLOGOUT
qualifier.

Qualifiers

Examples

CONNECT

If you have specified the INOLOGOUT qualifier, the process remains connected
to the virtual terminal. If the process is executing an image, it continues until
the process needs terminal input or attempts to write to the terminal. At that
point, the process waits until the physical terminal is reconnected to the virtual
terminal.

You can connect to a virtual terminal even if you are not currently using a virtual
terminal; however, to log out of your current process you must use the CONNECT
command with the /[LOGOUT qualifier. If you connect to a virtual terminal

from another virtual terminal, you can save your current process by using the
/NOLOGOUT qualifier.

/CONTINUE

/NOCONTINUE (default)

Controls whether the CONTINUE command is executed in the current process
just before connecting to another process. This qualifier allows an interrupted
image to continue processing after you connect to another process.

The /CONTINUE qualifier is incompatible with the /[LOGOUT qualifier.

/LOGOUT (default)

/INOLOGOUT

Logs out your current process when you connect to another process using a
virtual terminal.

When you enter the CONNECT command from a process that is not connected
to a virtual terminal, you must specify the /[LOGOUT qualifier; otherwise, DCL
displays an error message.

The /LOGOUT qualifier is incompatible with the /CONTINUE qualifier.

1. $ RUN AVERAGE

$ CONNECT/CONTINUE VTA72

In this example, you use the RUN command to execute the image
AVERAGE.EXE. You enter this command from a terminal that is connected to
a virtual terminal. Next, you press Ctrl/Y to interrupt the image. After you
interrupt the image, enter the CONNECT command with the /CONTINUE
qualifier. This operation issues the CONTINUE command, so the image
continues to run and connects you to another virtual terminal. You can
reconnect to the process later.

DCLI-87

CONNECT

DCLI-88

2.

$ SHOW USERS/FULL
VAX/VMS User Processes at 22-DEC-2001 14:11:56.91
Total number of users = 51, number of processes = 158

Username Node Process Name PID Terminal

KIDDER BUKETT KIDDER 29A0015E FTA3:

KIDDER BUKETT FTA4: 29A0015F FTA4:

KIDDER RACEY1 KIDDER 05800062 FTA5:

KIDDER RACEY1 DECWSMWM 0580005D MBA44: Disconnected
KIDDER RACEY1 DECWS$SSESSION 05800059

KIDDER RACEY1 VUE$KIDDER_2 0580005E (subprocess of 05800059)
KIDDER RACEY1 VUE$KIDDER_3 0580005F MBA51: Disconnected
KIDDER RACEY1 VUE$KIDDER_4 05800060 MBA53: Disconnected
SMITH BUKETT SMITH 29A002C1 FTAT7:

SMITH BUKETT SMITH 1 29A006C2 (subprocess of 29A002C1)
SMITH BUKETT SMITH 2 29A00244 (subprocess of 29A002C1)
SMITH HAMLET SMITH 24800126 FTA6:

SMITH HAMLET DECWSBANNER 24800155 (subprocess of 24800126)
SMITH HAMLET DECWSMWM 2480011F MBA170: Disconnected
SMITH HAMLET DECWS$SSESSION 2480011D FTAS:

$ CONNECT VTA273
SMITH
$

This example shows how to reconnect to your original process after you have
lost the carrier signal. First, you must log in again and create a new process.
After you log in, enter the SHOW USERS/FULL command to determine the
virtual terminal name for your initial process. Then enter the CONNECT
command to connect to the virtual terminal associated with your original
process. The process from which you enter the CONNECT command is logged
out because you have not specified any qualifiers.

logged out at 22-DEC-2001 14:12:04.53

When you reconnect to the original process, you continue running the image
that you were running when you lost the carrier signal. In this example, the
user SMITH was at interactive level when the connection was broken.

CONTINUE

CONTINUE

Format

Parameters

Description

Examples

Resumes execution of a DCL command, a program, or a command procedure that
was interrupted by pressing Ctrl/Y or Ctrl/C. You cannot resume execution of the
image if you have entered a command that executes another image or if you have
invoked a command procedure.

CONTINUE

None.

The CONTINUE command enables you to resume processing an image or a
command procedure that was interrupted by pressing Ctrl/Y or Ctrl/C. You
cannot resume execution of the image if you have entered a command that
executes another image or if you have invoked a command procedure; however,
you can use CONTINUE after commands that do not execute separate images.
For a list of these commands, see the OpenVMS User’s Manual.

You can abbreviate the CONTINUE command to a single letter, C.

The CONTINUE command serves as the target command of an IF or ON
command in a command procedure. The CONTINUE command is also a target
command when it follows a label that is the target of a GOTO command. In
addition, you can use the CONTINUE command to resume processing of a
program that has executed either a VAX Fortran PAUSE statement or a VAX
COBOL-74 STOP literal statement.

1. $ RUN MYPROGRAM A

$ SHOW TIME
14-DEC-2001 13:40:12
$ CONTINUE

In this example, the RUN command executes the program MYPROGRAM_A.
While the program is running, pressing Ctrl/Y interrupts the image. The
SHOW TIME command requests a display of the current date and time. The
CONTINUE command resumes the image.

2. $ ON SEVERE ERROR THEN CONTINUE

In this example, the command procedure statement requests the command
interpreter to continue executing the procedure if any warning, error, or
severe error status value is returned from the execution of a command or
program. This ON statement overrides the default action, which is to exit
from a procedure following errors or severe errors.

DCLI-89

CONVERT

CONVERT

Format

DCLI-90

Invokes the Convert utility, which copies records from one file to another and
changes the organization and format of the input file to those of the output file.

For more information about the Convert utility, see the OpenVMS Record
Management Utilities Reference Manual or online help.

CONVERT input-filespec],...] output-filespec

CONVERT/DOCUMENT

CONVERT/DOCUMENT

Format

Parameters

Description

Qualifiers

Converts a CDA supported revisable input file to another revisable or final form
output file.

Note

You can use this command only if DECwindows Motif for OpenVMS is
installed on your system.

CONVERT/DOCUMENT input-filespec output-filespec

input-filespec
Specifies the name of the input file to be converted. The default file type is .DDIF.

output-filespec
Specifies the name of the output file. The default file type is .DDIF.

The CONVERT/DOCUMENT command lets you convert documents from one
format to another. You specify the name and format of the input file (a file whose
format is incompatible with the application that needs to read the file) and the
output file (the file to be created in a new format).

You can convert a file from one format to another if an input converter exists

for the input file format and an output converter exists for the output file
format. The default input and output file format is DDIF (DIGITAL Document
Interchange Format). DDIF is a standard format for the storage and interchange
of compound documents, which can include text, graphics, and images.

DDIF input and output converters, in addition to several other converters, are
installed with the CDA Base Services for DECwindows Motif for OpenVMS.
Some of the converters support processing options, which ensure minimal
changes when your input file is converted to a different output file format.
Create an options file with the processing options you need before specifying the
CONVERT/DOCUMENT command with the /OPTIONS qualifier.

Every converter supports a message log option, which is a file name you specify
and to which informational and error messages are logged during the conversion.

/[FORMAT=format-name
Specifies the encoding format of the input or output file. The default input and
output format is DDIF.

Input converters bundled with the CDA Base Services for DECwindows Motif
for OpenVMS and the default file type for the file formats they support are as
follows:

DCLI-91

CONVERT/DOCUMENT

DCLI-92

Input Format File Type
DDIF .DDIF
DTIF .DTIF
TEXT TXT

Output converters bundled with the CDA Base Services for DECwindows Motif
for OpenVMS and the default file types for the file formats they support are as
follows:

Output Format File Type

DDIF .DDIF

DTIF .DTIF

TEXT TXT

PS .PS

ANALYSIS .CDA$ANALYSIS

The CDA Converter Library is a layered product that offers several other
document, graphics, image, and data table input and output converters.
Independent software vendors also write CDA conforming applications and
converters for the operating system. Contact your system manager for a complete
list of converters available on your system.

Analysis Output Converter

The Analysis output converter produces an analysis of the intermediate
representation of the input file. The analysis output file shows the named objects
and values stored in the input file. Application programmers use an analysis
output file for debugging purposes.

Application end users use an analysis output file to determine whether an input
file contains references or links to multiple subfiles. Each subfile must be copied
separately across a network because subfiles are not automatically included when
an input file is transferred across the network.

You can search the analysis output file for all occurrences of the string “ERF_".
The following example shows that the image file “griffin.img” is linked to the
DDIF compound document that is the input file:

ERF_LABEL ISO LATIN1 "griffin.img" ! Char. string.
ERF LABEL TYPE RMS LABEL TYPE "$RMS:
ERF_CONTROL COPY REFERENCE ! Integer = 1

Note that an analysis output file is intended as a programmer’s tool. The coded
information in the file is not intended for modification but rather to examine the
content of a file. The previous example shows how you can search analysis output
for references to linked files.

DDIF Input Converter

The DDIF input converter converts a DDIF input file to an intermediate
representation that is subsequently converted to the specified output file format.
The following list summarizes the data mapping, conversion restrictions, external
file references, and document syntax errors relevant to the DDIF input converter:

CONVERT/DOCUMENT

Data mapping

The information in the DDIF input file maps directly to an intermediate
representation.

Conversion restrictions

The DDIF input file does not lose any information when converted to the
intermediate representation.

However, if the DDIF input file is a newer version of the DDIF grammar than
that understood by the DDIF input converter, data represented by the new
grammar elements is lost.

External file references

Any external file references within the DDIF input file are converted to the
intermediate representation.

The DDIF input converter makes no attempt to resolve external references,
although the converter kernel can if requested by the output converter.

Document syntax errors

A document syntax error in the DDIF input file causes a fatal input
processing error. If the DDIF input converter encounters a document syntax
error, the conversion stops and no further input processing occurs.

DDIF Output Converter

The DDIF output converter creates a DDIF output file from the intermediate
representation of the input file. The following list summarizes the data mapping
and conversion restrictions relevant to the DDIF output converter.

Data mapping

The information in the intermediate representation of the input file maps
directly to the DDIF output file.

Conversion restrictions

The intermediate representation of the input file does not lose any
information when converted to the DDIF output file.

DTIF Input Converter

The DTIF input converter converts a DTIF input file to an intermediate
representation that is subsequently converted to the specified output file format.
The following list summarizes the data mapping, conversion restrictions, external
file references, and document syntax errors relevant to the DTIF input converter:

Data mapping

The information in the DTIF input file maps directly to an intermediate
representation.

Conversion restrictions

The DTIF input file does not lose any information when converted to the
intermediate representation.

However, if the DTIF input file is a newer version of the DTIF grammar than
that understood by the DTIF front end, data represented by the new grammar
elements is lost.

External file references

Any external file references within the DTIF input file are converted to the
intermediate representation.

DCLI-93

CONVERT/DOCUMENT

DCLI-94

The DTIF input converter makes no attempt to resolve external references.

Document syntax errors

A document syntax error in the DTIF input file causes a fatal input processing
error. If the DTIF input converter encounters a document syntax error, the
conversion stops and no further input processing occurs.

DTIF Output Converter

The DTIF output converter converts the intermediate representation of the input
file to a DTIF output file. The following list summarizes the data mapping,
conversion restrictions, and external file references relevant to the DTIF output
converter:

Data mapping

The information in the intermediate representation of the input file maps
directly to the DTIF output file.

Conversion restrictions

The intermediate representation of the input file does not lose any
information when converted to the DTIF output file.

External file references

The DTIF output converter converts external file references stored in the
intermediate representation of the input file but makes no attempt to resolve
external references.

Text Input Converter

The Text input converter converts a Text (ISO Latinl) input file to an
intermediate representation that is subsequently converted to the specified
output file format. The following list summarizes the data mapping, conversion
restrictions, external file references, and document syntax errors relevant to the
Text input converter:

Data mapping

The information in the text input file maps directly to an intermediate
representation. Line breaks and form feeds are mapped to DDIF directives.
One or more contiguous blank lines are interpreted as end-of-paragraph
markers.

If the text input file was entered as a DEC Multinational character set file
on a character-cell terminal or terminal emulator, the following conversions
occur:

Original Character Converted Character
Concurrency sign Diaeresis

Capital OE ligature Multiplication sign

Capital Y with diaeresis Capital Y with acute accent
Small oe ligature Division sign

Small y with diaeresis Y with acute accent

Conversion restrictions

The text input file does not lose any information when converted to the
intermediate representation because no structure information is contained in
a text file.

CONVERT/DOCUMENT

All nonprinting characters are converted to space characters. For example,
characters introducing ANSI escape characters are converted to space
characters. There is no attempt to interpret ANSI escape sequences.

e External file references

Text files do not contain external file references.

¢ Document syntax errors

Text files do not contain syntax, so syntax errors are not reported by the Text
input converter.

Text Output Converter

The Text output converter converts the intermediate representation of the input
file to a Text output file. The following list summarizes the data mapping and
conversion restrictions relevant to the Text output converter:

e Data mapping

All Latinl text in the intermediate representation of the input file is
converted to the text output file.

When converting an input file to a text output file, you should be aware

that text output files can contain only textual content and minimal formatting
such as line feeds, page breaks, and tabs. The Text output converter preserves
formatting information to the extent possible. Page coordinates convert to the
nearest character cell (line,column) position.

e (Conversion restrictions

All graphics, images, and text attributes in the intermediate representation of
the input file are lost when converted to the text output file.

Because a monospace font is used, it is possible that some text may be lost
due to overwriting to preserve the layout. It is also possible that lines can be
truncated if the specified page width is smaller than the page width specified
in the document’s format information. Neither of these cases occur when you
use the OVERRIDE_FORMAT processing option because, in that case, the
document’s format information is ignored.

PostScript Output Converter

The PostScript output converter converts the intermediate representation of the
input file to a PostScript output file. The following list summarizes the data
mapping and conversion restrictions relevant to the PostScript output converter.

¢ Data mapping
The information in the intermediate representation of the input file maps
directly to the PostScript output file.

e Conversion restrictions

The intermediate representation of the input file does not lose any
information when converted to the PostScript output file.

/IMESSAGE_FILE=filespec

INOMESSAGE_FILE (default)

Turns on message logging for document conversion. Messages output by the
input and output converters are directed to the file specified with filespec. If
filespec is not specified, messages are output to SYS$ERROR. The default is
/NOMESSAGE_FILE.

DCLI-95

CONVERT/DOCUMENT

DCLI-96

/OPTIONS=options-filename
Specifies a text file that contains processing options applied to the input file and

the output file during the conversion. The default file type for an options file is
.CDAS$OPTIONS.

Creating the Options File

You can create an options file prior to specifying the CONVERT/DOCUMENT
command with the /OPTIONS qualifier. An options file is a text file with a
default file type of .CDA$OPTIONS on the operating system.

The options file contains all the processing options for your input file format and
your output file format. Processing options help ensure minimal changes when
your input file is converted to a different output file format.

An options file is not required. Default processing options are applied
automatically when you convert a file. However, you may require an options
file if you need to use other than the default settings.

Use the following guidelines to create an options file:
e Begin each line of the options file with the keyword for the input or output
format, followed by one or more spaces or tabs, or by a slash (/).

For some file formats, such as DDIF and DTIF, there is an input converter
and an output converter. You can restrict a processing option to only the
input format or the output format by following the format keyword with
_INPUT or _OUTPUT.

e Specify only one processing option on each line when there are several options
for the same input or output format.

e Use uppercase and lowercase alphabetic characters, digits (0-9), dollar signs
($), and underscores (_) to specify the processing options.

e Use one or more spaces or tabs to precede values specified for a processing
option.

The following example is a typical entry in an options file:

PS PAPER HEIGHT 10

In this example, the extension _OUTPUT is not required for the format keyword
because PostScript is available only as an output format. The value specified for
PAPER_HEIGHT is in inches by default.

If the options file includes options that do not apply to the converters for a
particular conversion, those options are ignored.

If you specify an invalid option for an input or output format or an invalid value
for an option, you receive an error message. The processing options described in
the following sections document any restrictions.

Processing Options for Analysis Output

The Analysis output converter supports the following options:

e COMMENT DEFAULT VALUES

Inserts a comment character (!) at the beginning of lines generated by default
values. (The comment prefix is also included on associated aggregate brackets
and array parentheses where they may apply.)

CONVERT/DOCUMENT

COMMENT INHERITED_VALUES

Inserts a comment character (!) at the beginning of lines generated by
inherited values. (The comment prefix is also included on associated
aggregate brackets and array parentheses where they may apply.)

TRANSLATE BYTE_STRINGS

Overrides the default. For data of type BYTE STRING, the analysis output
no longer displays the hexadecimal translation if all the characters in the

byte string are printable characters (hex values 20 through 7E). This feature
can be overridden by supplying the TRANSLATE_BYTE_STRINGS option.

IMAGE_DATA

Overrides the default. For the special case of byte string data for item
DDIF$_IDU_PLANE_DATA (a bitmapped image), the analysis output
previously included both a hexadecimal and an ASCII translation display,
neither of which were of particular value to most users. With the new version,
both displays will be replaced with the following comment:

| *** Bit-mapped data not displayed here ***

To retain the hexadecimal display, supply the IMAGE_DATA option. Even
with this option turned on, there will be no translation into ASCII.

INHERITANCE

Specifies that the analysis is shown with attribute inheritance enabled.
Inherited attributes are marked as “[Inherited value.]” in the output. This
option also causes external references to be imported into the main document.

Processing Options for Text Output
The Text output converter supports the following options:

ASCII_FALLBACK [ON,OFF]

Causes the Text output converter to output text in 7-bit ASCII. The fallback
representation of the characters is described in the ASCII standard. If this
option is not specified, the default is OFF; if this option is specified without a
value, the default is ON.

CONTENT_MESSAGES [ON,OFF]

Causes the Text output converter to put a message in the output file each
time a nontext element is encountered in the intermediate representation of
the input file. If this option is not specified, the default is OFF; if this option
is specified without a value, the default is ON.

HEIGHT value

Specifies the maximum number of lines per page in your text output file. If
you specify zero, the number of lines per page will correspond to the height
specified in your document. If you also specify OVERRIDE_FORMAT, or if
the document has no inherent page size, the document is formatted to the
height value specified by this option. The default height is 66 lines.

OVERRIDE FORMAT [ON,OFF]

Causes the Text output converter to ignore the document formatting
information included in your document, so that the text is formatted in

a single large galley per page that corresponds to the size of the page as
specified by the HEIGHT and WIDTH processing options. If this option is not
specified, the default is OFF; if this option is specified without a value, the
default is ON.

DCLI-97

CONVERT/DOCUMENT

DCLI-98

SOFT _DIRECTIVES [ON,OFF]

Causes the Text output converter to obey the soft directives contained in the
document when creating your text output file. If this option is not specified,
the default is OFF; if this option is specified without a value, the default is

ON.

WIDTH value

Specifies the maximum number of columns of characters per page in your
text output file. If you specify zero, the number of columns per page will
correspond to the width specified in your document. If you also specify
OVERRIDE_FORMAT, or if the document has no inherent page size, the
document is formatted to the value specified by this processing option. If any
lines of text exceed this width value, the additional columns are truncated.
The default width is 80 characters.

PostScript Output Converter
The PostScript output converter supports the following options:

PAPER_SIZE size

Specifies the size of the paper to be used when formatting the resulting
PostScript output file. Valid values for the size argument are as follows:

Keyword Size

A0 841 x 1189 millimeters (33.13 x 46.85 inches)
Al 594 x 841 millimeters (23.40 x 33.13 inches)
A2 420 x 594 millimeters (16.55 x 23.40 inches)
A3 297 x 420 millimeters (11.70 x 16.55 inches)
A4 210 x 297 millimeters (8.27 x 11.70 inches)
A 8.5 x 11 inches (216 x 279 millimeters)

B 11 x 17 inches (279 x 432 millimeters)

C 17 x 22 inches (432 x 559 millimeters)

D 22 x 34 inches (559 x 864 millimeters)

E 34 x 44 inches (864 x 1118 millimeters)
LEDGER 11 x 17 inches (279 x 432 millimeters)
LEGAL 8.5 x 14 inches (216 x 356 millimeters)
LETTER 8.5 x 11 inches (216 x 279 millimeters)

LP 13.7 x 11 inches (348 x 279 millimeters)

VT 8 x 5 inches (203 x 127 millimeters)

The A paper size (8.5 x 11 inches) is the default.
PAPER_HEIGHT height

Specifies a paper size other than one of the predefined values provided. The
default paper height is 11 inches.

PAPER_WIDTH width

Specifies a paper size other than one of the predefined sizes provided. The
default paper width is 8.5 inches.

CONVERT/DOCUMENT

PAPER_TOP_MARGIN top-margin

Specifies the width of the margin provided at the top of the page. The default
value is 0.25 inch.

PAPER_BOTTOM_MARGIN bottom-margin

Specifies the width of the margin provided at the bottom of the page. The
default value is 0.25 inch.

PAPER LEFT MARGIN left-margin

Specifies the width of the margin provided on the left-hand side of the page.
The default value is 0.25 inch.

PAPER_RIGHT_MARGIN right-margin

Specifies the width of the margin provided on the right-hand side of the page.
The default value is 0.25 inch.

PAPER _ORIENTATION orientation

Specifies the paper orientation to be used in the output PostScript file. The
valid values for the orientation argument are as follows:

Keyword Meaning

PORTRAIT The page is oriented so that the larger dimension
is parallel to the vertical axis.

LANDSCAPE The page is oriented so that the larger dimension

is parallel to the horizontal axis.

The default is PORTRAIT.

EIGHT BIT OUTPUT [ON,OFF]

Specifies whether the PostScript output converter should use 8-bit output.
The default value is ON.

LAYOUT [ON,OFF]

Specifies whether the PostScript output converter processes the layout
specified in the DDIF document. The default value is ON.

OUTPUT_BUFFER_SIZE output-buffer-size

Specifies the size of the output buffer. The value you specify must be within
the range 64 to 256. The default value is 132.

PAGE_WRAP [ON,OFF]

Specifies whether the PostScript output converter performs page wrapping of
any text that would exceed the bottom margin. The default value is ON.

SOFT _DIRECTIVES [ON,OFF]

Specifies whether the PostScript output converter processes soft directives
in the DDIF file in order to format output. (Soft directives specify such
formatting commands as new line, new page, and tab.) If the PostScript
output converter processes soft directives, the output file will look more like
you intended. The default value is ON.

DCLI-99

CONVERT/DOCUMENT

DCLI-100

e WORD_WRAP [ON,OFF]

Specifies whether the PostScript output converter performs word wrapping of
any text that would exceed the right margin. The default value is ON. If you
specify OFF, the PostScript output converter allows text to exceed the right
margin.

Domain Converter

You might create an options file containing processing options that apply to any
CDA supported tabular file format for which there is an input converter. Data
tables and spreadsheets are examples of tabular file formats.

To convert tabular input files to document output files, use the DTIF_TO_DDIF

format name, followed by the processing options described in this section. Specify
the DTIF_TO_DDIF processing options in addition to the processing options for a
particular tabular input file format and a particular document output file format.

You might want to convert tabular input files to document output files so that
you can include textual representations of tables in reports and other documents.
You should be aware, however, that you lose cell borders, headers, grid lines,

all formulas, and font types when converting a tabular input file to a document
output file.

The domain converter supports the following options:
e COLUMN_TITLE

Displays the column titles as contained in the column attributes centered at
the top of the column.

e CURRENT _DATE

Displays the current date and time in the bottom left corner of the page. The
value is formatted according to the document’s specification for a default date
and time.

e DOCUMENT_DATE

Displays the document date and time as contained in the document header
in the top left corner of the page. The value is formatted according to the
document’s specification for a default date and time.

e DOCUMENT TITLE

Displays the document title or titles as contained in the document header
centered at the top of the page, one string per line.

e PAGE_NUMBER
Displays the current page number in the top right corner of the page.

e PAPER SIZE size

Specifies the size of the paper to be used when formatting the resulting
PostScript output file. Valid values for the size argument are as follows:

Keyword Size

A0 841 x 1189 millimeters (33.13 x 46.85 inches)
Al 594 x 841 millimeters (23.40 x 33.13 inches)
A2 420 x 594 millimeters (16.55 x 23.40 inches)

CONVERT/DOCUMENT

Keyword Size

A3 297 x 420 millimeters (11.70 x 16.55 inches)
A4 210 x 297 millimeters (8.27 x 11.70 inches)
A5 148 x 210 millimeters (5.83 x 8.27 inches)
A 8.5 x 11 inches (216 x 279 millimeters)

B 11 x 17 inches (279 x 432 millimeters)

B4 250 x 353 millimeters (9.84 x 13.90 inches)
B5 176 x 250 millimeters (6.93 x 9.84 inches)
C 17 x 22 inches (432 x 559 millimeters)

C4 229 x 324 millimeters (9.01 x 12.76 inches)
C5 162 x 229 millimeters (6.38 x 9.02 inches)
D 22 x 34 inches (559 x 864 millimeters)

DL 110 x 220 millimeters (4.33 x 8.66 inches)
E 34 x 44 inches (864 x 1118 millimeters)
10x13_ 13 x 254 millimeters (15600 x 10 inches)
ENVELOPE

9x12_ 12 x 229 millimeters (14400 x 9 inches)
ENVELOPE

BUSINESS_ 9.5 x 105 millimeters (11400 x 4.13 inches)
ENVELOPE

EXECUTIVE 10 x 191 millimeters (12000 x 7.5 inches)
LEDGER 11 x 17 inches (279 x 432 millimeters)
LEGAL 8.5 x 14 inches (216 x 356 millimeters)
LETTER 8.5 x 11 inches (216 x 279 millimeters)

LP 13.7 x 11 inches (348 x 279 millimeters)
VT 8 x 5 inches (203 x 127 millimeters)

The A paper size (8.5 x 11 inches) is the default.
PAPER_HEIGHT height

Specifies a paper size other than one of the predefined values provided. The
default paper height is 11 inches.

PAPER WIDTH width

Specifies a paper size other than one of the predefined sizes provided. The
default paper width is 8.5 inches.

PAPER_TOP_MARGIN top-margin

Specifies the width of the margin provided at the top of the page. The default
value is 0.25 inch.

PAPER_BOTTOM_MARGIN bottom-margin

Specifies the width of the margin provided at the bottom of the page. The
default value is 0.25 inch.

PAPER _LEFT MARGIN left-margin

Specifies the width of the margin provided on the left side of the page. The
default value is 0.25 inch.

DCLI-101

CONVERT/DOCUMENT

e PAPER RIGHT MARGIN right-margin

Specifies the width of the margin provided on the right side of the page. The
default value is 0.25 inch.

e PAPER ORIENTATION orientation

Specifies the paper orientation to be used in the output file. The valid values
for the orientation argument are as follows:

Keyword Meaning

PORTRAIT The page is oriented so that the larger dimension
is parallel to the vertical axis.

LANDSCAPE The page is oriented so that the larger dimension

is parallel to the horizontal axis.

The default is PORTRAIT.

Example

$ CONVERT/DOCUMENT/OPTIONS=MY OPTIONS.CDA$OPTIONS -
_SMY INPUT.DTIF/FORMAT=DTIF MY OUTPUT.DDIF/FORMAT=DDIF

This command converts an input file named MY_INPUT.DTIF, which has the
DTIF format, to an output file named MY_OUTPUT.DDIF, which has the DDIF
format. The specified options file is named MY_OPTIONS.CDA$OPTIONS.

DCLI-102

CONVERT/RECLAIM

CONVERT/RECLAIM

Invokes the Convert/Reclaim utility, which makes empty buckets in Prolog
3 indexed files available so that new records can be written in them. The
/RECLAIM qualifier is required.

For more information about the Convert/Reclaim utility, see the OpenVMS Record
Management Utilities Reference Manual or online help.

Format
CONVERT/RECLAIM filespec

DCLI-103

COPY

COPY

Format

Parameters

Description

DCLI-104

Creates a new file from one or more existing files. The COPY command can do
the following:

e Copy an input file to an output file.
e Concatenate two or more input files into a single output file.

e Copy a group of input files to a group of output files.

COPY input-filespec],...] output-filespec

input-filespecl,...]

Specifies the name of an existing file to be copied. The asterisk (*) and the
percent sign (%) wildcard characters are allowed. If you do not specify the device
or directory, the COPY command uses your current default device and directory.
If you specify more than one file, separate the file specifications with either
commas (,) or plus signs (+).

output-filespec
Specifies the name of the output file into which the input is copied.

You must specify at least one field in the output file specification. If you do not
specify the device or directory, the COPY command uses your current default
device and directory. The COPY command replaces any other missing fields
(file name, file type, version number) with the corresponding field of the input
file specification. If you specify more than one input file, the COPY command
generally uses the fields from the first input file to determine any missing fields
in the output file.

You can use the asterisk (*) wildcard character in place of any two of the
following: the file name, the file type, or the version number. The COPY
command uses the corresponding field in the related input file to name the
output file.

The COPY command creates a new file from one or more existing files. If you do
not specify the device or directory, the COPY command uses your current default
device and directory. The COPY command can do the following:

e Copy an input file to an output file.
e (Concatenate two or more input files into a single output file.
e Copy a group of input files to a group of output files.

The COPY command, by default, creates a single output file. When you specify
more than one input file, the first input file is copied to the output file, and each
subsequent input file is appended to the end of the output file. If a field of the
output file specification is missing or contains an asterisk (*) wildcard character,
the COPY command uses the corresponding field from the first, or only, input file
to name the output file.

COPY

If you specify multiple input files with maximum record lengths, the COPY
command gives the output file the maximum record length of the first input file.
If the COPY command encounters a record in a subsequent input file that is
longer than the maximum record length of the output file, it issues a message
noting the incompatible file attributes and begins copying the next file.

To create multiple output files, specify multiple input files and use at least one of
the following:

e An asterisk (*) wildcard character in the output directory specification, file
name, file type, or version number field

¢ Only a node name, a device name, or a directory specification as the output
file specification

e The /INOCONCATENATE qualifier

When the COPY command creates multiple output files, it uses the corresponding
field from each input file in the output file name. You also can use the asterisk
(*) wildcard character in the output file specification to have COPY create more
than one output file. For example:

$ COPY A.A;1, B.B;1 *.C

This COPY command creates the files A.C;1 and B.C;1 in the current default
directory. When you specify multiple input and output files you can use the /LOG
qualifier to verify that the files were copied as you intended.

Note that there are special considerations for using the COPY command with
DECwindows compound documents. For more information, see the Guide to
OpenVMS File Applications.

Version Numbers

If you do not specify version numbers for input and output files, the COPY
command (by default) assigns a version number to the output files that is either
of the following:

e The version number of the input file

e A version number one greater than the highest version number of an existing
file with the same file name and file type

When you specify the output file version number by an asterisk (*) wildcard
character, the COPY command uses the version numbers of the associated input
files as the version numbers of the output files.

If you specify the output file version number by an explicit version number,
the COPY command uses that number for the output file specification. If a
higher version of the output file exists, the COPY command issues a warning
message and copies the file. If an equal version of the output file exists, the
COPY command issues a message and does not copy the input file.

File Protection and Creation/Revision Dates

The COPY command considers an output file to be new when you specify any
portion of the output file name explicitly. The COPY command sets the creation
date for a new file to the current time and date.

If you specify the output file by one or more asterisk (*) and percent sign (%)
wildcard characters, the COPY command uses the creation date of the input file.

DCLI-105

COPY

Qualifiers

DCLI-106

The COPY command always sets the revision date of the output file to the current
time and date; it sets the backup date to zero. The file system assigns the output
file a new expiration date. (The file system sets expiration dates if retention is
enabled; otherwise, it sets expiration dates to zero.)

The protection and access control list (ACL) of the output file is determined by
the following parameters, in the following order:

e Protection of previously existing versions of the output file
e Default Protection and ACL of the output directory
e Process default file protection

(Note that the BACKUP command takes the creation and revision dates as well
as the file protection from the input file.)

Use the /PROTECTION qualifier to change the output file protection.

Normally, the owner of the output file will be the same as the creator of the
output file; however, if a user with extended privileges creates the output file, the
owner will be the owner of the parent directory or of a previous version of the
output file if one exists.

Extended privileges include any of the following:
e SYSPRV (system privilege) or BYPASS
e System user identification code (UIC)

e GRPPRYV (group privilege) if the owner of the parent directory (or previous
version of the output file) is in the same group as the creator of the new
output file

e An identifier (with the resource attribute) representing the owner of the
parent directory (or the previous version of the output file)

Copying Directory Files

If you copy a file that is a directory, the COPY command creates a new empty
directory of the named directory. The COPY command does not copy any files
from the named directory to the new directory. See the examples section for
examples of copying directory files.

/ALLOCATION=number-of-blocks

Forces the initial allocation of the output file to the specified number of 512-byte
blocks. If you do not specify the /ALLOCATION qualifier, or if you specify it
without the number-of-blocks parameter, the initial allocation of the output file is
determined by the size of the input file being copied.

/BACKUP

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /BACKUP qualifier selects files according to the dates of their most recent
backups. This qualifier is incompatible with the /CREATED, /EXPIRED, and
/MODIFIED qualifiers, which also allow you to select files according to time
attributes. If you specify none of these four time qualifiers, the default is the
/CREATED qualifier.

COPY

/BEFORE[=time]

Selects only those files dated prior to the specified time. You can specify time
as absolute time, as a combination of absolute and delta times, or as one of
the following keywords: BOOT, LOGIN, TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /BEFORE qualifier
to indicate the time attribute to be used as the basis for selection: /BACKUP,
/CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the OpenVMS User’s
Manual or the online help topic Date.

/BLOCK_SIZE=n
Overrides the default block size (124) used by COPY. You can specify a value in
the range of 1 through 2**31-1.

/BY_OWNER]I=uic]
Selects only those files whose owner user identification code (UIC) matches the
specified owner UIC. The default UIC is that of the current process.

Specify the UIC by using standard UIC format as described in the HP OpenVMS
Guide to System Security.

/CONCATENATE (default)

/INOCONCATENATE

Creates one output file from multiple input files when you do not use the asterisk
(*) or percent sign (%) wildcard characters in the output file specification.

The /INOCONCATENATE qualifier generates multiple output files. A wildcard
character in an input file specification results in a single output file consisting of
the concatenation of all input files matching the file specification.

Files from Files-11 On-Disk Structure Level 2 and 5 disks are concatenated in
alphanumeric order. If you specify an asterisk (*) or percent sign (%) wildcard
character in the file version field, files are copied in descending order by version
number. Files from Files-11 On-Disk Structure Level 1 disks are concatenated in
random order.

/CONFIRM

/NOCONFIRM (default)

Controls whether a request is issued before each copy operation to confirm that
the operation should be performed on that file. The following responses are valid:

YES NO QUIT
TRUE FALSE Ctrl/Z
1 0 ALL

You can use any combination of uppercase and lowercase letters for word
responses. You can abbreviate word responses to one or more letters (for example,
T, TR, or TRU for TRUE), but these abbreviations must be unique. Affirmative
answers are YES, TRUE, and 1. Negative answers include: NO, FALSE, 0, and
pressing Return. Entering QUIT or pressing Ctrl/Z indicates that you want to
stop processing the command at that point. When you respond by entering ALL,
the command continues to process but no further prompts are given. If you type
a response other than one of those in the list, DCL issues an error message and
redisplays the prompt.

DCLI-107

COPY

DCLI-108

/CONTIGUOUS

/NOCONTIGUOUS

Specifies that the output file must occupy contiguous physical disk blocks.

By default, the COPY command creates an output file in the same format as
the corresponding input file. Also, by default, if not enough space exists for

a contiguous allocation, the COPY command does not report an error. If you
copy multiple input files of different formats, the output file may or may not be
contiguous. You can use the /CONTIGUOUS qualifier to ensure that files are
copied contiguously.

The /CONTIGUOUS qualifier has no effect when you copy files to or from tapes
because the size of the file on tape cannot be determined until after it is copied to
the disk. If you copy a file from a tape and want the file to be contiguous, use the
COPY command twice: once to copy the file from the tape, and a second time to
create a contiguous file.

/CREATED (default)

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The
/CREATED qualifier selects files based on their dates of creation. This qualifier is
incompatible with the /BACKUP, /EXPIRED, and /MODIFIED qualifiers, which
also allow you to select files according to time attributes. If you specify none of
these four time qualifiers, the default is the /CREATED qualifier.

/EXCLUDE-=(filespecl,...])

Excludes the specified files from the copy operation. You can include a directory
but not a device in the file specification. The asterisk (*) and the percent sign
(%) wildcard characters are allowed in the file specification; however, you cannot
use relative version numbers to exclude a specific version. If you specify only one
file, you can omit the parentheses.

/EXPIRED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /EXPIRED qualifier selects files according to their expiration dates. (The
expiration date is set with the SET FILE/EXPIRATION_DATE command.)
The /EXPIRED qualifier is incompatible with the /BACKUP, /CREATED, and
/MODIFIED qualifiers, which also allow you to select files according to time

attributes. If you specify none of these four time qualifiers, the default is the
/CREATED qualifier.

[EXTENSION=n

Specifies the number of blocks to be added to the output file each time the file is
extended. If you do not specify the /EXTENSION qualifier, the extension attribute
of the corresponding input file determines the default extension attribute of the
output file.

/LOG

/NOLOG (default)

Controls whether the COPY command displays the file specifications of each file
copied.

When you use the /LOG qualifier, the COPY command displays the following for
each copy operation:

e The file specifications of the input and output files

¢ The number of blocks or the number of records copied (depending on whether
the file is copied on a block-by-block or record-by-record basis)

COPY

e The total number of new files created

/MODIFIED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /MODIFIED qualifier selects files according to the dates on which they were
last modified. This qualifier is incompatible with the /BACKUP, /CREATED,
and /EXPIRED qualifiers, which also allow you to select files according to time
attributes. If you specify none of these four time modifiers, the default is the
/CREATED qualifier.

/OVERLAY

/NOOVERLAY (default)

Requests that data in the input file be copied into the existing specified file,
overlaying the existing data, rather than allocating new space for the file. The
physical location of the file on disk does not change; however, for RMS indexed
and relative files, if the output file has fewer blocks allocated than the input file,
the copy fails giving an RMS-E-EOF error.

The /OVERLAY qualifier is ignored if the output file is written to a non-file-
structured device.

/PROTECTION=(ownership[:access][,...])
Specifies protection for the output file.

e Specify the ownership parameter as system (S), owner (O), group (G), or
world (W).

e Specify the access parameter as read (R), write (W), execute (E), or delete
(D).

The default protection, including any protection attributes not specified, is that
of the existing output file. If no output file exists, the current default protection
applies.

For more information on specifying protection codes, see the HP OpenVMS Guide
to System Security.

/READ_CHECK
/INOREAD_CHECK (default)
Reads each record in the input files twice to verify that it has been read correctly.

/REPLACE

/INOREPLACE (default)

Requests that, if a file exists with the same file specification as that entered for
the output file, the existing file is to be deleted. The COPY command allocates
new space for the output file. In general, when you use the /REPLACE qualifier,
include version numbers with the file specifications. By default, the COPY
command creates a new version of a file if a file with that specification exists,
incrementing the version number. The /NOREPLACE qualifier signals an error
when a conflict in version numbers occurs.

/SINCE[=time]

Selects only those files dated on or after the specified time. You can specify
time as absolute time, as combination of absolute and delta times, or as one
of the following keywords: BOOT, JOB_LOGIN, LOGIN, TODAY (default),
TOMORROW, or YESTERDAY. Specify one of the following qualifiers with
the /SINCE qualifier to indicate the time attribute to be used as the basis for
selection: /BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

DCLI-109

COPY

DCLI-110

For complete information about specifying time values, see the OpenVMS User’s
Manual or the online help topic Date.

ISTYLE=keyword
Specifies the file name format for display purposes.

The valid keywords for this qualifier are CONDENSED and EXPANDED.
Descriptions are as follows:

Keyword Explanation
CONDENSED Displays the file name representation of what is generated
(default) to fit into a 255-length character string. This file name may
contain a DID or FID abbreviation in the file specification.
EXPANDED Displays the file name representation of what is stored
on disk. This file name does not contain any DID or FID
abbreviations.

The keywords CONDENSED and EXPANDED are mutually exclusive. This
qualifier specifies which file name format is displayed in the output message,
along with the confirmation if requested.

File errors are displayed with the CONDENSED file specification unless the
EXPANDED keyword is specified.

See the OpenVMS User’s Manual for more information.

/SYMLINK

/NOSYMLINK (default)

If an input file is a symbolic link, the file to which the symbolic link refers is the
file that is copied.

The /SYMLINK qualifier indicates that any input symbolic link is copied.

ITRUNCATE (default)

/INOTRUNCATE

Controls whether the COPY command truncates an output file at the end-of-file
(EOF) when copying it. This operation can only be used with sequential files.

By default, the actual size of the input file determines the size of the output file.
If you select / NOTRUNCATE, the allocation of the input file determines the size
of the output file.

/VOLUME=n

Places the output file on the specified relative volume number of a multivolume
set. By default, the COPY command places the output file arbitrarily in a
multivolume set.

/WRITE_CHECK

/INOWRITE_CHECK (default)

Reads each record in the output file after it is written to verify that the record
copied successfully and that the file can be read subsequently without error.

COPY

Note

Some hardware devices, such as TK50 tape drives, verify data integrity
as part of their hardware function. For devices such as these, you do
not need to use /WRITE_CHECK. For information about which devices
provide automatic write checking, consult your hardware documentation.

Examples

1. S COPY TEST.DAT NEWTEST.DAT

In this example, the COPY command copies the contents of the file TEST.DAT
from the default disk and directory to a file named NEWTEST.DAT on the same
disk and directory. If a file named NEWTEST.DAT exists, the COPY command
creates a new version of the file.

2. $ COPY ALPHA.TXT TMP
$ COPY ALPHA.TXT .TMP

In this example, the first COPY command copies the file ALPHA.TXT into a

file named TMP.TXT. The COPY command uses the file type of the input file to
complete the file specification for the output file. The second COPY command
creates a file named ALPHA.TMP. The COPY command uses the file name of the
input file to name the output file.

3. $ COPY/LOG TEST.DAT NEW.DAT;1/REPLACE
%COPY-I-REPLACED, DKAO: [MAL]NEW.DAT;1 being replaced
%COPY-S-COPIED, DKAO: [MAL]TEST.DAT;1 copied to DKAO: [MAL]NEW.DAT;1 (1 block)

In this example, the /REPLACE qualifier requests that the COPY command
replace an existing version of the output file with the new file. The first message
from the COPY command indicates that it is replacing an existing file. The
version number in the output file must be explicit; otherwise, the COPY command
creates a new version of the file NEW.DAT.

4. $ COPY *.COM [MALCOLM.TESTFILES]

In this example, the COPY command copies the highest versions of files in
the current default directory with the file type .COM to the subdirectory
MALCOLM.TESTFILES.

5. $ COPY/LOG *.TXT *.OLD
%COPY-S-COPIED, DKAO: [MAL]A.TXT;2 copied to DKAO: [MAL]A.OLD;2 (1 block)
%$COPY-S-COPIED, DKAO: [MAL]B.TXT;2 copied to DKAO:[MAL]B.OLD;2 (1 block)
%$COPY-S-COPIED, DKAO: [MAL]G.TXT;2 copied to DKAO: [MAL]G.OLD;2 (4 blocks)
%$COPY-S-NEWFILES, 3 files created

1

In this example, the COPY command copies the highest versions of files with file
types .TXT into new files. Each new file has the same file name as an existing
file, but a file type .OLD. The last message from the COPY command indicates
the number of new files that have been created.

DCLI-111

COPY

6.

8.

9.

$ COPY/LOG A.DAT,B.MEM C.*

%COPY-S-COPIED, DKAO: [MAL]A.DAT;5 Copied to DKAO: [MAL]C.DAT;11 (1 block)
$COPY-S-COPIED, DKAO: [MAL]B.MEM;2 copied to DKAO:[MAL]C.MEM;24 (58 records)
%COPY-S-NEWFILES, 2 files created

In this example, the two input file specifications are separated with a comma.
The asterisk (*) wildcard character in the output file specification indicates that
two output files are to be created. For each copy operation, the COPY command
uses the file type of the input file to name the output file.

$ COPY/LOG *.TXT TXT.SAV

%COPY-S-COPIED, DKAO: [MAL]A.TXT;2 copied to DKAO: [MAL]TXT.SAV;1 (1 block)
%$COPY-S-APPENDED, DKAO: [MAL]B.TXT;2 appended to DKAO: [MAL]TXT.SAV;1 (3 records)
%COPY-S-APPENDED, DKAO: [MAL]G.TXT;2 appended to DKAO: [MAL]TXT.SAV;1 (51 records)
%$COPY-S-NEWFILES, 1 file created

In this example, the COPY command copies the highest versions of all files with
the file type TXT to a single output file named TXT.SAV. After the first input file
is copied, the messages from the COPY command indicate that subsequent files
are being appended to the output file.

Note that, if you use the /NOCONCATENATE qualifier in this example, the
COPY command creates one TXT.SAV file for each input file. Each TXT.SAV file
has a different version number.

$ COPY MASTER.DOC DKAL: [BACKUP]

In this example, the COPY command copies the highest version of the file
MASTER.DOC to the device DKA1. If no file named MASTER.DOC exists in
the directory [BACKUP], the COPY command assigns the version number of
the input file to the output file. You must have write (W) access to the directory
[BACKUP] on device DKA1 for the command to work.

$ COPY SAMPLE.EXE DALLAS::DISK2:[000,000] SAMPLE.EXE/CONTIGUOUS

In this example, the COPY command copies the file SAMPLE.EXE on the local
node to a file with the same name at remote node DALLAS. The /CONTIGUOUS
qualifier indicates that the output file is to occupy consecutive physical disk
blocks. You must have write (W) access to the device DISK2 on remote node
DALLAS for the command to work.

10. $ COPY *.* PRTLND::*. *

11.

In this example, the COPY command copies all files within the user directory at
the local node to the remote node PRTLND. The new files have the same names
as the input file. You must have write (W) access to the default directory on
remote node PRTLND for the command to work.

$ COPY BOSTON::DISK2:TEST.DAT;5
_To: DALLAS"SAM SECReturn"::DISKO: [MODEL.TEST]TEST.DAT/ALLOCATION=50

In this example, the COPY command copies the file TEST.DAT;5 on the device
DISK2 at node BOSTON to a new file named TEST.DAT at remote node
DALLAS. The /ALLOCATION qualifier initially allocates 50 blocks for the

new file TEST.DAT at node DALLAS. The access control string SAM SECReturn
is used to access the remote directory.

DCLI-112

12. $ MOUNT

13.

14.

15.

16.

COPY

TAPED1: VOL025 TAPE:

S COPY TAPE:*. * *

In this example, the MOUNT command requests that the volume labeled VOL025
be mounted on the magnetic tape device TAPED1 and assigns the logical name
TAPE to the device.

The COPY command uses the logical name TAPE as the input file specification,
requesting that all files on the magnetic tape be copied to the current default disk
and directory. All the files copied retain their file names and file types.

$ ALLOCATE CR:

_CR1: ALLOCATED

$ COPY CR1: CARDS.DAT
$ DEALLOCATE CR1:

Uy U U Ur U

In this example, the ALLOCATE command allocates a card reader for exclusive
use by the process. The response from the ALLOCATE command indicates the
device name of the card reader, CR1.

After the card reader is allocated, you can place a deck of cards in the reader and
enter the COPY command, specifying the card reader as the input file. The COPY
command reads the cards into the file CARDS.DAT. The end-of-file (EOF) in the
card deck must be indicated with an EOF card (12-11-0-1-6-7-8-9 overpunch).

The DEALLOCATE command relinquishes use of the card reader.

COPY [SMITH]MONKEY.DIR [JONES]
COPY [SMITH.MONKEY]*.* [JONES.MONKEY]*.*

In this example, the COPY command creates the new empty directory
[JONES.MONKEY] that is registered in the [JONESIMONKEY.DIR directory file.
After the COPY command creates the new [JONESIMONKEY.DIR directory file,
you can copy or create files in the [JONES.MONKEY] directory.

The second COPY command in this example copies files from the
[SMITH.MONKEY] directory to the [JONES.MONKEY] directory.

COPY [SMITH]CATS.DIR [SMITH]DOGS.DIR

In this example, the COPY command creates the new empty directory file, called
[SMITH]DOGS.DIR. Use this copy command to create a directory file that has
the same attributes as the [SMITH]CATS.DIR file. This command example has
the same effect as entering the command:

$ CREATE/DIRECTORY [SMITH.DOGS]

COPY [SMITH]TIGER.DIR [SMITH.ANIMALS]
COPY [SMITH.TIGER]*.* [SMITH.ANIMALS.TIGER]*.*

[SMITH.TIGER] *.*;*

SET SECURITY/PROTECTION=(WORLD:DELETE) TIGER.DIR
DELETE TIGER.DIR;

In this example, the COPY command creates the new empty directory file
called [SMITH.ANIMALS|TIGER.DIR. The subsequent commands in this
example then copy the files from the [SMITH.TIGER] directory to the
[SMITH.ANIMALS.TIGER] directory, then delete the original TIGER.DIR
directory file. Because TIGER.DIR is a directory file, you must specify a
protection code of DELETE before you can delete the directory.

DCLI-113

COPY/FTP

COPY/FTP

Format

Parameters

Description

Qualifiers

DCLI-114

Transfers files between hosts with possibly dissimilar file systems over a TCP/IP
connection by invoking the FTP utility.

COPY/FTP input-filespec output-filespec

input-filespec
Specifies the name of an existing file (the source file) to be copied.

output-filespec
Specifies the name of the output file (the destination file) into which the input file
is copied.

The COPY/FTP command copies files to and from remote nodes using the File
Transfer Protocol (FTP). The services provided by this command are a subset
of the architected features of FTP (see vendor documentation for usage of their
supplied FTP program).

For OpenVMS to OpenVMS Transfers

If both machines support OpenVMS structured transfers, the /BINARY,
/ASCII, and /FDL qualifiers will be ignored. The cooperating OpenVMS
FTP client and server will automatically transfer the file with proper
OpenVMS attributes.

COPY/FTP commonly supports the asterisk wildcard character (*) in remote file
specifications.

/ANONYMOUS

Causes an anonymous access to the remote node or nodes. /ANONYMOUS is the
default remote access. The password passed to the remote node should be in the
form of "user@fullyqualifiednodename".

/ASCII
Used to identify an ASCII file (text file). /ASCII is the default.

/BINARY
Required to identify binary files.

/FDL

This qualifier is optional. Causes interaction with an FDL (file definition
language) file. If the file is being copied to the local OpenVMS system, a remote
FDL file is sought and interpreted for the operation. If the file is being copied
outside the local OpenVMS system, an FDL file is generated and copied in
addition to the requested file. If the /FDL qualifier is specified and the vendor
application does not support it, a warning message may be issued.

Examples

COPY/FTP

/ILOG
Displays a message at SYS$OUTPUT when a file is transferred.

/INOSTRUVMS
Used to explicitly disable the negotiation of STRU OpenVMS transfers.
Otherwise, some servers will immediately abort when negotiating the feature.

/PASSIVE=option

Controls whether the FTP client or server initiates the data connection. If you
do not specify this qualifier, the Internet Protocol appropriate value is used. The
values are: OFF for IPv4, ON for IPv6.

The following table describes the /PASSIVE options:

Option Description
OFF The FTP server initiates the data connection.
ON (default) The FTP client initiates the data connection.

This is often used where a firewall between the FTP client
and server prevents the server from making an outbound
connection.

ON is the default value only if /PASSIVE is specified.

The underlying TCP/IP Networking product must recognize this qualifier and
must support FTP passive in order for this qualifier to have an effect.

Note that the /PASSIVE qualifier is equivalent to the FTP PASV command.

/VERBOSE

/NOVERBOSE

Specifies whether all messages (including banner messages) are to be displayed
on the terminal. By default, disables the display of the messages.

1. $ COPY/FTP/FDL/ANON rms indexed file.idx -
remotehst5::"/public/rms.idx.file"

This example transfers the OpenVMS RMS file rms_indexed_file.idx to the
remote file public/rms.idx.file on remotehst5 over a TCP/IP connection.
Access to the remote host is anonymous and an FDL file is generated and
copied along with rms_indexed_file.idx.

2. $ COPY/FTP/VERBOSE sysSlogin:login.com -
xdelta.zko.dec.com"username password"::sysslogin:login.tmp

This example transfers the OpenVMS RMS file sys$login:login.com to the

remote file sys$login:login.tmp over a TCP/IP connection while specifying the
user name and password on the remote system.

3. $ COPY/FTP/LOG RESULTS.LOG -
_To: grad.ug.edu.au"JONES BYRONBAY"::DKA200$: [JONES.DATA]

In this example, the COPY/FTP command copies the file RESULTS.LOG
to the file DKA200$:[JONES.DATA]JRESULTS.LOG using the user account
JONES, with password BYRONBAY on node grad, that is located in the
uq.edu.au internet domain.

DCLI-115

COPY/RCP

COPY/RCP

Format

Parameters

Description

Qualifiers

DCLI-116

Copies files from host to host over a TCP/IP connection by invoking the RCP
utility.

COPY/RCP input-filespec output-filespec

input-filespec
Specifies the name of an existing file (the source file) to be copied.

output-filespec
Specifies the name of the output file (the destination file) into which the input file
is copied.

The COPY/RCP command copies one or more files (or directory trees) to or from a
remote host using the RCP utility.

The OpenVMS DCL commands for TCP/IP support the same remote file
specification format as the DCL commands for DECnet network connections.
Some implementations of the file transaction applications support file transfers in
which both the source file and the destination file are remote file specifications.

The full format for a remote file specification is as follows:
node"username password account"::flename.ext

If a file resides on a system other than OpenVMS, enclose the name of the file in
quotation marks. For example, to access a file named /usr/users/user/Orders on
a Tru64 UNIX node named U32, you would use the following format for the file
specification:

U32"user password"::"/usr/users/user/Orders"

Note that UNIX® systems support case sensitive file specifications.

/AUTHENTICATE
Specifies that Kerberos authentication should be used for acquiring access to the
remote node.

/LOG
Displays a message in SYS$OUTPUT when a file is transferred.

/PRESERVE
Preserves the file protection codes.

/RECURSIVE
Requests a subdirectory copy operation.

ITRUNCATE=USERNAME
Truncates the user name to 8 characters.

Example

COPY/RCP

/USERNAME=username

Optional qualifier that specifies the remote user name. The standard operation is
to log in to a remote system using the same user name as at the local terminal.
The command supports quoted parameters in the /USERNAME value.

$ COPY/RCP local file.c remotehst4"Smith smpw"::rem file.c

This example copies local_file.c to rem_file.c on the remote host remotehst4 over a
TCP/IP connection.

DCLI-117

CREATE

CREATE

Format

Parameter

Description

DCLI-118

Creates a sequential disk file or files.

CREATE filespec],...]

filespecl,...]

Specifies the name of one or more input files to be created. Wildcard characters
are not allowed. If you omit either the file name or the file type, the CREATE
command does not supply any defaults. The file name or file type is null. If the
specified file already exists, a new version is created.

The CREATE command creates a new sequential disk file. In interactive mode,
each separate line that you enter after you enter the command line becomes a
record in the newly created file. To terminate the file input, press Ctrl/Z.

When you enter the CREATE command from a command procedure file, the
system reads all subsequent records in the command procedure file into the
new file until it encounters a dollar sign ($) in the first position in a record.
Terminate the file input with a line with a dollar sign in column 1 (or with the
end of the command procedure).

If you use an existing file specification with the CREATE command, the newly
created file has a higher version number than any existing files with the same
specification.

If you use the CREATE command to create a file in a logical name search list,
the file will only be created in the first directory produced by the logical name
translation.

Normally, the owner of the output file will be the same as the creator of the
output file. However, if a user with extended privileges creates the output file,
the owner will be the owner of the parent directory or any previous versions of
the output file.

Extended privileges include any of the following:
e SYSPRV (system privilege) or BYPASS
e System user identification codes (UICs)

e GRPPRYV (group privilege) if the owner of the parent directory (or previous
version of the output file) is in the same group as the creator of the new
output file

e An identifier (with the resource attribute) representing the owner of the
parent directory (or previous version of the output file)

Qualifiers

CREATE

/LOG
I/NOLOG (default)
Displays the file specification of each new file created as the command executes.

/OWNER_UIC=uic
Requires SYSPRYV (system privilege) privilege to specify a user
identification code (UIC) other than your own.

Specifies the UIC to be associated with the file being created. Specify the UIC by
using standard UIC format as described in the OpenVMS User’s Manual.

/PROTECTION=(ownership[:access][,...])
Specifies protection for the file.

e Specify the ownership parameter as system (S), owner (O), group (G), or
world (W).

e Specify the access parameter as read (R), write (W), execute (E), or delete
(D).

If you do not specify a value for each access category, or if you omit the
/PROTECTION qualifier, the CREATE command applies the following protection
for each unspecified category:

File Already

Exists? Protection Applied

Yes Protection of the existing file
No Current default protection

Note

If you attempt to create a file with no access, the file is created with the
system default RMS protection values. To create a file with no access, use
the SET SECURITY/PROTECTION command.

For more information on specifying protection codes, see the HP OpenVMS Guide
to System Security.

/SYMLINK="text"

Creates a symbolic link containing the specified text without the enclosing
quotation marks. If the created symbolic link is subsequently encountered during
any file-name processing, the contents of the symbolic link are read and treated
as a POSIX pathname specification. No previous version of the symbolic link can
exist.

/VOLUME=n
Places the file on the specified relative volume of a multivolume set. By default,
the file is placed arbitrarily in a multivolume set.

DCLI-119

CREATE

Examples

1. $ CREATE MEET.TXT
John, Residents in the apartment complex will hold their annual
meeting this evening. We hope to see you there, Regards, Elwood

The CREATE command in this example creates a text file named MEET.TXT
in your default directory. The text file MEET.TXT contains the lines that
follow until the Ctrl/Z.

2. $ CREATE A.DAT, B.DAT
Input line one for A.DAT...
Input line two for A.DAT...

Input line one for B.DAT...
Input line two for B.DAT...

5

After you enter the CREATE command from the terminal, the system reads
input lines into the sequential file A.DAT until Ctrl/Z terminates the first
input. The next set of input data is placed in the second file, B.DAT. Again,
Ctrl/Z terminates the input.

$ FILE = FSSEARCH ("MEET.TXT")

$ IF FILE .EQS. ""

$ THEN CREATE MEET.TXT
John, Residents in the apartment complex will hold their annual
meeting this evening. We hope to see you there, Regards, Elwood

$ ELSE TYPE MEET.TXT

$ ENDIF

$ EXIT

In this example, the command procedure searches the default disk and
directory for the file MEET.TXT. If the command procedure determines that
the file does not exist, it creates a file named MEET.TXT using the CREATE
command.

4. S SET DEFAULT DKAS500: [TEST]
$ SET PROCESS /CASE=CASE_LOOKUP=SENSITIVE /PARSE_STYLE=EXTENDED
$ CREATE COEfile.txt
$ CREATE COEFILE.TXT
$ CREATE CoEfIlE.txt

$ DIRECTORY

Directory DKA500: [TEST]

CoEfIlE.txt;1
COEFILE.TXT;1
COEfile.txt;1

DCLI-120

CREATE

In this example, DKA500 is an ODS-5 disk. If your process is set to CASE_
LOOKUP=SENSITIVE and you create more than one file with the same name
differing only in case, DCL treats subsequent files as new files and lists them
as such.

DCLI-121

CREATE/DIRECTORY

CREATE/DIRECTORY

Format

Parameter

Description

Qualifiers

DCLI-122

Creates one or more new directories or subdirectories. The /DIRECTORY qualifier
is required.

Requires write (W) access to the master file directory (MFD) to create
a first-level directory. On a system volume, generally only users with a
system user identification code (UIC) or the SYSPRYV (system privilege)
or BYPASS user privileges have write (W) access to the MFD to create a
first-level directory.

Requires write (W) access to the lowest level directory that currently
exists to create a subdirectory.

CREATE/DIRECTORY directory-spec],...]

directory-specl,...]

Specifies the name of one or more directories or subdirectories to be created. The
directory specification optionally can be preceded by a device name (and colon [:]).
The default is the current default directory. Wildcard characters are not allowed.
When you create a subdirectory, separate the names of the directory levels with
periods (.).

Note that it is possible to create a series of nested subdirectories with a single
CREATE/DIRECTORY command. For example, [a.b.c] can be created, even
though neither [a.b] nor [a] exists at the time the command is entered. Each
subdirectory will be created, starting with the highest level and proceeding
downward.

The CREATE/DIRECTORY command creates new directories as well as
subdirectories. Special privileges are needed to create new first-level directories.
(See the restrictions noted above.) Generally, users have sufficient privileges to
create subdirectories in their own directories. Use the SET DEFAULT command
to move from one directory to another.

/ALLOCATION=n
Specifies the initial number of blocks to be allocated to each of the specified
directories. The default allocation is 1 block.

This qualifier is useful for creating large directories, for example MAIL.DIR;1. It
can improve performance by avoiding the need for later dynamic expansion of the
directory.

This qualifier does not apply to Files-11 ODS-1, ODS-3, or ODS-4 volumes.

/ILOG

/NOLOG (default)

Controls whether the CREATE/DIRECTORY command displays the directory
specification of each directory after creating it.

CREATE/DIRECTORY

/OWNER_UIC=option
Requires SYSPRV (system privilege) privilege for a user identification
code (UIC) other than your own.

Specifies the owner UIC for the directory. The default is your UIC. You can
specify the keyword PARENT in place of a UIC to mean the UIC of the parent
(next-higher-level) directory. If a user with privileges creates a subdirectory, by
default, the owner of the subdirectory will be the owner of the parent directory
(or the owner of the MFD, if creating a main level directory). If you do not
specifiy the /OWNER_UIC qualifier when creating a directory, the command
assigns ownership as follows: (1) if you specify the directory name in either
alphanumeric or subdirectory format, the default is your UIC (unless you are
privileged, in which case the UIC defaults to the parent directory); (2) if you
specify the directory in UIC format, the default is the specified UIC.

Specify the UIC by using standard UIC format as described in the OpenVMS
User’s Manual.

/PROTECTION=(ownership[:access][,...])
Specifies protection for the directory.

e Specify the ownership parameter as system (S), owner (O), group (G), or
world (W).

e Specify the access parameter as read (R), write (W), execute (E), or delete

(D).

The default protection is the protection of the parent directory (the next-higher
level directory, or the master directory for top-level directories) minus any delete
(D) access.

If you are creating a first-level directory, then the next-higher-level directory
is the MFD. (The protection of the MFD is established by the INITIALIZE
command.)

For more information on specifying protection code, see the HP OpenVMS Guide
to System Security.

/VERSION_LIMIT=n

Specifies the number of versions of any one file that can exist in the directory.
If you exceed the limit, the system deletes the lowest numbered version. A
specification of 0 means no limit. The maximum number of versions allowed is
32,767. The default is the limit for the parent (next-higher-level) directory.

When you change the version limit setting, the new limit applies only to files
created after the setting was changed. New versions of files created before the
change are subject to the previous version limit.

/VOLUME=n

Requests that the directory file be placed on the specified relative volume of a
multivolume set. By default, the file is placed arbitrarily within the multivolume
set.

DCLI-123

CREATE/DIRECTORY

Examples

DCLI-124

$ CREATE/DIRECTORY/VERSION LIMIT=2 $DISK1:[ACCOUNTS.MEMOS]

In this example, the CREATE/DIRECTORY command creates a subdirectory
named MEMOS in the ACCOUNTS directory on $DISK1. No more than two
versions of each file can exist in the directory.

$ CREATE/DIRECTORY/PROTECTION= (SYSTEM:RWED, OWNER :RWED, GROUP, WORLD) -
_ S [KONSTANZ. SUB.HLP]

In this example, the CREATE/DIRECTORY command creates a subdirectory
named [KONSTANZ.SUB.HLP]. The protection on the subdirectory allows
read (R), write (W), execute (E), and delete (D) access for the system and
owner categories, but prohibits all access for the group or world categories.

$ CREATE/DIRECTORY DISK2:[GOLDSTEIN]

In this example, the CREATE/DIRECTORY command creates a directory
named [GOLDSTEIN] on the device DISK2. Special privileges are required to
create a first-level directory.

$ CREATE/DIRECTORY [HOFFMAN.SUB]
$ SET DEFAULT [HOFFMAN.SUB]

In this example, the CREATE/DIRECTORY command creates a subdirectory
named [HOFFMAN.SUB]I. This directory file is placed in the directory named
[HOFFMAN]. The command SET DEFAULT [HOFFMAN.SUB]J changes the
current default directory to this subdirectory. All files subsequently created
are cataloged in [HOFFMAN.SUB].

$ CREATE/DIRECTORY [BOAEN.SUBL1.SUB2.SUB3]

In this example, the CREATE/DIRECTORY command creates a top-
level directory ([BOAEN]) and three subdirectories ((BOAEN.SUB1],
[BOAEN.SUB1.SUB2], and [BOAEN.SUB1.SUB2.SUB3]).

CREATE/FDL

CREATE/FDL

Invokes the Create/FDL utility, which uses the specifications in a File Definition
Language (FDL) file to create a new, empty data file. The /FDL qualifier is
required.

For more information about the Create/FDL utility, see the OpenVMS Record
Management Utilities Reference Manual or online help.

Format
CREATE/FDL=fdI-filespec [filespec]

DCLI-125

CREATE/MAILBOX (Alpha/64 Only)

CREATE/MAILBOX (Alpha/l64 Only)

Creates a virtual mailbox named MBAn and assigns an I/O channel number to it.
The /MAILBOX qualifier is required.

Note

The following privileges are required:

e TMPMBX (temporary mailbox) to create a temporary mailbox (which
is the default)

e CMEXEC (change mode to executive) to create a temporary mailbox
(which is the default). Note: This requirement is temporary and will
be removed in a future release.

e PRMMBX (permanent mailbox) to create a permanent mailbox (using
the /PERMANENT qualifier)

e SYSNAM (system logical name) to place a logical name for a mailbox
in the system logical name table

e GRPNAM (group logical name) to place a logical name for a mailbox
in the group logical name table

To delete a mailbox, use the DELETE/MAILBOX command.

Format
CREATE/MAILBOX logical-name

Parameter

logical-name
Specifies a logical name for the new mailbox. The system creates the mailbox and
sets the logical name to point to it.

Description
The CREATE/MAILBOX command creates a virtual mailbox.

Qualifiers

/BUFFER_SIZE=n
Specifies the number of bytes of system dynamic memory that can be used
to buffer messages sent to the mailbox. If you do not specify /BUFFER_SIZE

or specify it as 0, the operating system provides a default value from the
DEFMBXBUFQUO system parameter.

/LOG
/NOLOG (default)
Displays the name of the new mailbox when it is created.

/IMESSAGE_SIZE=n
Specifies the maximum size (in bytes) of a message that can be sent to the
mailbox. The maximum value is 65535. If you do not specify /MESSAGE_SIZE

DCLI-126

Example

CREATE/MAILBOX (Alpha/l64 Only)

or specify the value as 0, the operating system provides a default value from the
DEFMBXMXMSG system parameter.

/PERMANENT
Specifies that the mailbox is to be permanent. By default, mailboxes are
temporary.

/PROTECTION=(ownership[:access][....])
Specifies protection for the mailbox.

e Specify the ownership parameter as system (S), owner (O), group (G), or
world (W).

e Specify the access parameter as read (R), write (W), logical I/O (L), or
physical I/O (P).

If no protection is specified, the mailbox template is used.

For more information about specifying protection codes, see the HP OpenVMS
Guide to System Security.

ITEMPORARY (default)
Specifies that the mailbox is temporary. By default, mailboxes are temporary
unless you specify /PERMANENT.

$CREATE/MAILBOX/PERMANENT/MESSAGE_SIZE:512/LOG MY MAILBOX

%$CREATE-I-CREATED, MBA38: created

$SHOW DEVICE MBA38/FULL

Device MBA38:, device type local memory mailbox, is online,
record-oriented device, shareable, mailbox device.

Error count 0 Operations completed 0
Owner process " Owner UIC [SYSTEM]
Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:RWPL,W:RWPL
Reference count 0 Default buffer size 512

In this example, a permanent mailbox is created with the logical name MY _
MAILBOX. The SHOW DEVICE command displays the full characteristics of the
mailbox.

DCLI-127

CREATE/NAME_TABLE

CREATE/NAME_TABLE

Format

Parameter

Description

Qualifiers

DCLI-128

Creates a new logical name table. The /INAME_TABLE qualifier is required.

CREATE/NAME_TABLE table-name

table-name

Specifies a string of 1 to 31 characters that identifies the logical name table you
are creating. The string can include alphanumeric characters, the dollar sign ($),
and the underscore (_). Table names must be in uppercase letters; if you specify
a name using lowercase letters, it will be converted to all uppercase. The table
name is entered as a logical name in either the process directory logical name
table (LNM$PROCESS_DIRECTORY) or the system directory logical name table
(LNM$SYSTEM_DIRECTORY).

The CREATE/NAME_TABLE command creates a new logical name table.
The name of the table is contained within the LNM$PROCESS_DIRECTORY
directory table if the table is process-private, and within the LNM$SYSTEM _
DIRECTORY directory table if the table is shareable.

Every new table has a parent table, which determines whether the new table is
process-private or shareable. To create a process-private table, use the /PARENT _
TABLE qualifier to specify the name of a process-private table (the process
directory table). To create a shareable table, specify the parent as a shareable
table.

If you do not explicitly provide a parent table, the CREATE/NAME_TABLE
command creates a process-private table whose parent is LNM$PROCESS_
DIRECTORY,; that is, the name of the table is entered in the process directory.

Every table has a size quota. The quota may either constrain the potential
growth of the table or indicate that the table’s size can be virtually unlimited.
The description of the /QUOTA qualifier explains how to specify a quota.

To specify an access mode for the table you are creating, use the /USER_MODE,
the /SUPERVISOR_MODE, or the /EXECUTIVE_MODE qualifier. If you specify
more than one of these qualifiers, only the last one entered is accepted. If you do
not specify an access mode, then a supervisor-mode table is created.

To delete a logical name table, use the DEASSIGN command, specify the name of
the table you want to delete, and use the /TABLE qualifier to specify the directory
table where the name of the table was entered.

For more information about logical name tables, see the HP OpenVMS System
Manager’s Manual.

/ATTRIBUTES[=(keyword[,...])]

Specifies attributes for the logical name table. If you specify only one keyword,
you can omit the parentheses. If you do not specify the /ATTRIBUTES qualifier,
no attributes are set.

CREATE/NAME_TABLE

You can specify the following keywords for attributes:

CONFINE Specifies that the table name and the logical names contained
in the table are not copied into a spawned subprocess. This
keyword can be used only when creating a private logical name
table. If a table is created with the CONFINE attribute, all
names subsequently entered into the table are also confined.

NO_ALIAS Specifies that no identical names (either logical names or
names of logical name tables) can be created in an outer (less
privileged) mode in the current directory. Unless you specify the
NO_ALIAS attribute, the table can be “aliased” by an identical
name created in an outer access mode. This attribute deletes
any previously created identical table names in an outer access
mode in the same logical name table directory.

SUPERSEDE Creates a new table that supersedes any previous (existing)
table that contains the name, access mode, and directory
table that you specify. The new table is created regardless
of whether the previous table exists. (If you do not specify
the SUPERSEDE attribute, the new table is not created if the
previous table exists.) This attribute applies to all types of
logical name tables except clusterwide logical name tables.
Whether or not you specify SUPERSEDE, the following
conditions apply:

¢ You cannot create a new clusterwide logical name table with
the same name and access mode as an existing clusterwide
logical name table until you delete the existing table.

e If you specify a new clusterwide logical name table with
the same name and access mode as an existing local
logical name table, the new clusterwide logical name table
is created, and the local table and its logical names are
deleted.

If you specify or accept the default for the qualifier /LOG, you
receive a message indicating the result.

/EXECUTIVE_MODE
Requires SYSNAM (system logical name) privilege.

Creates an executive-mode logical name table. If you specify executive mode, but
do not have SYSNAM privilege, a supervisor-mode logical name table is created.

/LOG (default)

/INOLOG

Controls whether an informational message is generated when the SUPERSEDE
attribute is specified, or when the table already exists but the SUPERSEDE
attribute is not specified. The default is the /[LOG qualifier; that is, the
informational message is displayed.

/PARENT_TABLE-=table
Requires either create (C) access to the parent table and write (W) access
to the system directory or the SYSPRV privilege.

DCLI-129

CREATE/NAME_TABLE

Examples

DCLI-130

Specifies the name of the parent table. The parent table determines whether a
table is private or shareable; it also determines the size quota of the table. If you
do not specify a parent table, the default table is LNM$PROCESS_DIRECTORY.
A shareable table has LNM$SYSTEM_DIRECTORY as its parent table. The
parent table must have the same access mode or a higher level access mode than
the one you are creating.

/PROTECTION=(ownership[:access][,...])
Applies the specified protection to shareable name tables.

e Specify the ownership parameter as system (S), owner (O), group (G), or
world (W).

e Specify the access parameter as read (R), write (W), create (C), or delete
(D).

For more information on specifying protection codes, see the HP OpenVMS Guide
to System Security.

The /PROTECTION qualifier affects only shareable logical name tables; it does
not affect process-private logical name tables.

/QUOTA=number-of-bytes

Specifies the size limit of the logical name table. The size of each logical name
entered in the new table is deducted from this size limit. The new table’s
quota is statically subtracted from the parent table’s quota holder. The parent
table’s quota holder is the first logical name table encountered when working
upward in the table hierarchy that has an explicit quota and is therefore its own
quota holder. If the /QUOTA qualifier is not specified or the size limit is 0, the
parent table’s quota holder becomes the new table’s quota holder and space is
dynamically withdrawn from it whenever a logical name is entered in this new
table. If the table has no quota holder and you specify /QUOTA=0, the table has
unlimited quota.

/SUPERVISOR_MODE (default)
Creates a supervisor-mode logical name table. If you do not specify a mode, a
supervisor-mode logical name table is created.

/USER_MODE
Creates a user-mode logical name table. If you do not explicitly specify a mode, a
supervisor-mode logical name table is created.

Note

User-mode logical names are automatically deleted when invoking and
exiting a command procedure.

1. S CREATE/NAME_TABLE TEST _TAB
$ SHOW LOGICAL TEST TAB
%SHOW-S-NOTRAN, no translation for logical name TEST TAB
$ SHOW LOGICAL/TABLE=LNM$PROCESS_DIRECTORY TEST TAB

In this example, the CREATE/NAME_TABLE command creates a new table
called TEST _TAB. By default, the name of the table is entered in the process
directory. The first SHOW LOGICAL command does not find the name

CREATE/NAME_TABLE

TEST_TAB because it does not, by default, search the process directory table.
You must use the /TABLE qualifier to request that the process directory be
searched.

$ CREATE/NAME TABLE/ATTRIBUTES=CONFINE EXTRA

$ DEFINE/TABLE=EXTRA MYDISK DISK4:

$ DEFINE/TABLE=LNMSPROCESS DIRECTORY LNMS$FILE DEV -
_$ EXTRA, LNM$PROCESS, LNM$JOB, LNM$GROUP, LNM$SSYSTEM
$ TYPE MYDISK: [COHEN]EXAMPLEL.LIS

This example creates a new logical name table called EXTRA that is created
with the CONFINE attribute. Therefore, the EXTRA table and the names it
contains will not be copied to subprocesses.

Next, the logical name MYDISK is placed into the table EXTRA. To use

the name MYDISK in file specifications, you must make sure that the table
EXTRA is searched when RMS parses file specifications. To do this, you
can define a process-private version of the logical name LNM$FILE_DEV

to include the name EXTRA as one of its equivalence strings. (The system
uses LNM$FILE_DEV to determine the tables to search during logical name
translation for device or file specifications, and will use the process-private
version of the logical name before using the default system version.) After
you define LNM$FILE_DEYV, the system searches the following tables during
logical name translation: EXTRA, your process table, your job table, your
group table, and the system table. Now, you can use the name MYDISK in a
file specification and the equivalence string DISK4 will be substituted.

DCLI-131

CREATE/TERMINAL

CREATE/TERMINAL

Format

Parameter

Description

DCLI-132

Creates a window that emulates another terminal type.

Note

At present, only DECterm windows are available with this command.

CREATE/TERMINAL [command-string]

command-string

Specifies a command string that is to be executed in the context of the created
subprocess. You cannot specify this parameter with the /DETACH or the
/NOPROCESS qualifier. The CREATE/TERMINAL command is used in much the
same way as the SPAWN command.

The CREATE/TERMINAL command creates a subprocess of your current process.
When the subprocess is created, the process-permanent open files and any image
or procedure context are not copied from the parent process. The subprocess is
set to command level 0 (DCL level with the current prompt).

If you do not specify the /PROCESS qualifier, the name of this subprocess is
composed of the same base name as the parent process and a unique number.
For example, if the parent process name is SMITH, the subprocess name can be
SMITH_1, SMITH_2, and so on.

The LOGIN.COM file of the parent process is not executed for the subprocess,
because the context is copied separately, allowing quicker initialization of the
subprocess. When the /WAIT qualifier is in effect, the parent process remains in
hibernation until the subprocess terminates and returns control to the parent by
using the ATTACH command.

You should use the LOGOUT command to terminate the subprocess and return
to the parent process. You can also use the ATTACH command to transfer control
of the terminal to another process in the subprocess tree, including the parent
process. (The SHOW PROCESS/SUBPROCESS command displays the process in
the subprocess tree and points to the current process.)

Qualifiers

CREATE/TERMINAL

Note

Because a tree of subprocesses can be established using the
CREATE/TERMINAL command, you must be careful when terminating
any process in the tree. When a process is terminated, all the
subprocesses below that point in the tree are automatically terminated.
For example, the SPAWN/NOWAIT CREATE/TERMINAL command
creates a subprocess that exits as soon as the DECterm window is
created. Once this process exits, the DECterm window disappears.
Instead, use the SPAWN/NOWAIT CREATE/TERMINAL/WAIT command
to allow the process to continue.

Qualifiers with the CREATE/TERMINAL command must directly follow the
command verb. The command-string parameter begins after the last qualifier
and continues to the end of the command line.

/APPLICATION_KEYPAD

Sets the APPLICATION_KEYPAD terminal characteristic in the created terminal
window. If the /APPLICATION_KEYPAD or the /NUMERIC_KEYPAD qualifier
is not specified, the default is to inherit the characteristic from the parent. (See
also /NUMERIC_KEYPAD.)

/BIG_FONT

Specifies that the big font (as specified in resource files) be selected when the
created terminal window is initialized. It is an error to specify the /BIG_FONT
qualifier in combination with the /[LITTLE_FONT qualifier. If you do not specify
either the /BIG_FONT or the /LITTLE_FONT qualifier, the initial font is the big
font.

/BROADCAST

/NOBROADCAST

Determines whether the terminal window is created with broadcast messages
enabled. If neither qualifier is specified, the created terminal window inherits the
broadcast characteristic of the parent.

ICARRIAGE_CONTROL

/INOCARRIAGE_CONTROL

Determines whether carriage-return and line-feed characters are prefixed to
the subprocess’s prompt string. By default, the CREATE/TERMINAL command
copies the current setting of the parent process. The CARRIAGE_CONTROL
qualifier is used only with the /NODETACH qualifier.

ICLI=cli-filespec

/NOCLI

Specifies the name of a command language interpreter (CLI) to be used by the
subprocess. The default CLI is the same as that of the parent process (defined in
SYSUAF). If you specify the /CLI qualifier, the attributes of the parent process are
copied to the subprocess. The CLI you specify must be located in SYS$SYSTEM
and have the file type .EXE. This qualifier is used only with the /NODETACH
qualifier.

DCLI-133

CREATE/TERMINAL

DCLI-134

/CONTROLLER=filespec

Specifies the name of the terminal window controller image. This name allows
the CREATE/TERMINAL command to create a window on a variant controller,
such as for a language not supported by the base product. For a DECterm
window, the default is SYS$SYSTEM:DECWSTERMINAL.EXE. The device and
directory default to SYS$SYSTEM and the file type defaults to .EXE.

Note

The “name” field of the file name as returned by $PARSE is

used to form the mailbox logical name. For example, if the file

“name” is DECW$TERMINAL, the mailbox logical name will be
DECW$TERMINAL_MAILBOX node::0.0. For backward compatibility,
the controller also defines a logical name DECW$DECTERM_MAILBOX_
host::0.0 to point to the same mailbox.

/DEFINE_LOGICAL=({logname, TABLE=tablename} [,...])

Specifies one or more logical names that are set to the name of the created
pseudo terminal device. Each element in the list is either a logical name or
TABLE= followed by the name of a logical name table in which all subsequent
logical names will be entered. The default is the process logical name table.

/DETACH

/NODETACH (default)

Determines whether the created terminal process is detached or a subprocess of
the current process. The /DETACH qualifier cannot be used with the command-
string parameter.

/IDISPLAY=display-name
Specifies the name of the display on which to create the terminal window. If this
parameter is omitted, the DECW$DISPLAY logical name is used.

/ESCAPE

/NOESCAPE

Sets or clears the ESCAPE characteristic of the created terminal window. The
default is to inherit the characteristic of the parent.

/FALLBACK

/INOFALLBACK

Sets or clears the FALLBACK characteristic of the created terminal window. The
default is to inherit the characteristic of the parent.

/HOSTSYNC (default)

/INOHOSTSYNC

Sets or clears the HOSTSYNC characteristic of the created terminal window. The
default is to inherit the characteristic of the parent.

/INPUT=filespec

Specifies an alternate input file or device to use as SYS$INPUT for the new
process. The default is to use the created terminal window for input. This
qualifier can be used with or without the /DETACH qualifier.

CREATE/TERMINAL

/INSERT

Creates the terminal window with insert mode as the default for line editing.
If the /INSERT or the /OVERSTRIKE qualifier is not specified, the default is to
inherit the characteristic from the parent. (See also /OVERSTRIKE.)

/KEYPAD (default)

/INOKEYPAD

Determines whether keypad definitions and the current keypad state are copied
from the parent process. This qualifier is used only with the /NODETACH
qualifier.

/LINE_EDITING

/NOLINE_EDITING

Determines whether the terminal window is created with line editing enabled.
If neither qualifier is specified, the created terminal window inherits the line
editing characteristic of the parent.

/LITTLE_FONT

Specifies that the little font (as specified in resource files) be selected when the
created terminal window is initialized. It is an error to specify the /LITTLE_
FONT qualifier in combination with the /BIG_FONT qualifier. If you do not
specify either the /BIG_FONT or the /[LITTLE_FONT qualifier, the initial font is
the big font.

/LOGGED_IN (default)

/INOLOGGED_IN

Determines whether a prompt for a user name and password are supplied
(/NOLOGGED_IN) or the created terminal window is logged in automatically
(/LOGGED_IN). This qualifier is used only with the /DETACH qualifier.

/LOGICAL_NAMES (default)

/NOLOGICAL_NAMES

Determines whether the created terminal window inherits the parent’s logical
names. This qualifier is used only with the /NODETACH qualifier.

INOTIFY

/NONOTIFY (default)

Determines whether a notification message is broadcast to the parent when the
created terminal window exits. This qualifier is used only with the /NODETACH
qualifier.

/INUMERIC_KEYPAD

Sets the NUMERIC_KEYPAD terminal characteristic in the created terminal
window. If the /NUMERIC_KEYPAD or the /APPLICATION_KEYPAD qualifier
is not specified, the default is to inherit the characteristic from the parent. (See
also /APPLICATION_KEYPAD.)

/OVERSTRIKE

Creates the terminal window with overstrike mode as the default for line editing.
If the /OVERSTRIKE or the /INSERT qualifier is not specified, the default is to
inherit the characteristic from the parent. (See also /INSERT.)

/PASTHRU

/NOPASTHRU

Sets or clears the PASTHRU characteristic in the created terminal window. The
default is to inherit the characteristic of the parent.

DCLI-135

CREATE/TERMINAL

DCLI-136

/PROCESS (default)

/PROCESS=process-name

/INOPROCESS

Specifies the name of the process or subprocess to be created. The /INOPROCESS
qualifier causes a window to be created without a process. You can log in from
this window.

If you specify the /PROCESS qualifier without a process name, a unique process
name is assigned with the same base name as the parent process and a unique
number. The default process name format is username_n. If you specify a process
name that already exists, an error message is displayed. This qualifier is used
with either the /DETACH or the /NODETACH qualifier.

/PROMPT=prompt
Specifies the prompt string of the created terminal window. This qualifier is used
only with the /NODETACH qualifier.

/READSYNC

/NOREADSYNC

Sets or clears the READSYNC terminal characteristic in the created terminal
window. The default is to inherit the characteristic from the parent.

/RESOURCE_FILE=filespec

Specifies that the created terminal window use the resource file “filespec” instead
of the default resource file, DECW$USER_DEFAULTS:DECW$TERMINAL_
DEFAULT.DAT.

/SYMBOLS (default)

/INOSYMBOLS

Determines whether the subprocess inherits the parent’s DCL symbols. This
qualifier is used only with the /NODETACH qualifier.

[TABLE=command-table
Specifies the name of an alternate command table to be used by the subprocess.
This qualifier is used only with the /NODETACH qualifier.

/TTSYNC

/INOTTSYNC

Sets or clears the TTSYNC terminal characteristic in the created terminal
window; the default is to inherit the characteristic of the parent.

ITYPE_AHEAD

INOTYPE_AHEAD

Sets or clears the TYPE_AHEAD terminal characteristic in the created terminal
window. The default is to inherit the characteristic of the parent.

/WAIT

/INOWAIT (default)

Requires that you wait for the subprocess to terminate before you enter another
DCL command. The /NOWAIT qualifier allows you to enter new commands while
the subprocess is running. This qualifier is used only with the /NODETACH
qualifier.

Examples

CREATE/TERMINAL

/WINDOW_ATTRIBUTES=(parameter [,...])
Specifies initial attributes for the created terminal window to override the
defaults read from the resource file. These parameters include:

Parameter Description

BACKGROUND The background color.

FOREGROUND The foreground color.

WIDTH The width, in pixels.

HEIGHT The height, in pixels.

X_POSITION The x-position, in pixels.

Y_POSITION The y-position, in pixels.

ROWS The number of rows in the window, in character cells. If
the Auto Resize Window option is enabled, the ROWS and
COLUMNS parameters override the size specified by the
WIDTH and HEIGHT parameters.

COLUMNS The number of columns in the window, in character cells. If

INITIAL_STATE
TITLE
ICON_NAME
FONT

the Auto Resize Window option is enabled, the ROWS and
COLUMNS parameters override the size specified by the
WIDTH and HEIGHT parameters.

The initial state of the window, either ICON or WINDOW.

A character string specifying the window title.

A character string specifying the window icon name.

The name of the font to be used in the window. If you specify
the /[LITTLE_FONT qualifier, or omit both the /LITTLE_
FONT and /BIG_FONT qualifiers, this overrides the name
of the little font that is set in the resource files; otherwise it
overrides the name of the big font. The font name can be a
logical name, and it can be (but does not have to be) the base
font in a complete font set.

1. $ CREATE/TERMINAL=DECTERM/DETACH -
_$ /DISPLAY=MYNODE::0 -
$ /WINDOW ATTRIBUTES=(-

_$ ROWS=36, -
$ COLUMNS=80, -

:$ TITLE="REMOTE TERMINAL", -
_$ ICON_NAME="REMOTE TERMINAL")

In this example, the command creates a detached process in a DECterm
window on node MYNODE:: that is 36 rows by 80 columns and has its title
and icon name set to “Remote terminal”.

2. $ CREATE/TERMINAL=DECTERM -

$ /NOPROCESS -

$: /DEFINE_LOGICAL=(TABLE=LNMS$GROUP, DBGSINPUT, DBGSOUTPUT)

In this example, the command creates a DECterm with no associated process.
The command defines DBG$INPUT and DBG$OUTPUT in the group table as
the new terminal for the purposes of debugging a problem with a detached
process that is subsequently created.

DCLI-137

DEALLOCATE

DEALLOCATE

Format

Parameter

Qualifier

Examples

DCLI-138

Makes an allocated device available to other processes (but does not deassign
any logical name associated with the device). DEALLOCATE does not deallocate
devices that are in use.

DEALLOCATE device-name[:]

device-name][:]

Name of the device to be deallocated. The device name can be a physical device
name or a logical name that is not in use. On a physical device name, the
controller defaults to A and the unit to 0. This parameter is incompatible with
the /ALL qualifier.

/ALL
Deallocates all devices currently allocated by your process that are not in use.
This qualifier is incompatible with the device-name parameter.

1. $ DEALLOCATE DMBI:

In this example, the DEALLOCATE command deallocates unit 1 of the
RKO06/RKO07 devices on controller B.

2. $ ALLOCATE MT: TAPE
%DCL-I-ALLOC, MTBl: allocated

$ DEALLOCATE TAPE:

In this example, the ALLOCATE command requests that any magnetic tape
drive be allocated and assigns the logical name TAPE to the device. The
response to the ALLOCATE command indicates the successful allocation of
the device MTB1. The DEALLOCATE command specifies the logical name
TAPE to release the tape drive.

3. $ DEALLOCATE/ALL

In this example, the DEALLOCATE command deallocates all devices that are
currently allocated.

DEASSIGN

DEASSIGN

Format

Parameter

Description

Cancels a logical name assignment that was made with one of the following
commands: ALLOCATE, ASSIGN, DEFINE, or MOUNT. The DEASSIGN
command also deletes a logical name table that was created with the
CREATE/NAME_TABLE command.

DEASSIGN [logical-name[:]]

logical-name[:]

Specifies the logical name to be deassigned. Logical names can have from

1 to 255 characters. If the logical name contains any characters other than
alphanumerics, dollar signs ($), or underscores (_), enclose it in quotation marks
(“”). The logical-name parameter is required unless you use the /ALL qualifier.

If the logical-name parameter ends with a colon (:), the command interpreter
ignores the colon. (Note that the ASSIGN and ALLOCATE commands remove

a trailing colon, if present, from a logical name before placing the name in a
logical name table.) If the logical name contains one or more trailing colons, you
must append one additional colon to the DEASSIGN logical-name parameter (for
example, type DEASSIGN FILE:: to deassign the logical name FILE:).

To delete a logical name table, specify the table name as the logical-name
parameter. You must also use the /TABLE qualifier to indicate the logical name
directory table where the table name is entered.

The DEASSIGN command cancels a logical name assignment that was made with
one of the following commands: ALLOCATE, ASSIGN, DEFINE, or MOUNT.
The DEASSIGN command also deletes a logical name table that was created
with the CREATE/NAME_TABLE command. You can use the /ALL qualifier with
DEASSIGN to cancel all logical names in a specified table. If you use the /ALL
qualifier and do not specify a table, then all names in the process table (except
names created by the command interpreter) are deassigned; that is, all names
entered at the indicated access mode or an outer access mode are deassigned.

To specify the logical name table from which you want to deassign a logical
name, use the /PROCESS, /JOB, /GROUP, /[SYSTEM, or /TABLE qualifier. If you
enter more than one of these qualifiers, only the last one entered is accepted.

If entries exist for the specified logical name in more than one logical name
table, the name is deleted from only the last logical name table specified on

the command line. If you do not specify a logical name table, the default is the
/TABLE=LNM$PROCESS qualifier.

To delete a shareable logical name, you need write (W) access to the logical name
table. To delete a shareable logical name table, you need write (W) access to the
parent table and delete (D) access to the target logical name table.

DCLI-139

DEASSIGN

Qualifiers

DCLI-140

To specify the access mode of the logical name you want to deassign, use the
/USER_MODE, /SUPERVISOR_MODE, or /EXECUTIVE_MODE qualifier. If you
enter more than one of these qualifiers, only the last one is accepted. If you do
not specify a mode, the DEASSIGN command deletes a supervisor-mode name.
When you deassign a logical name, any identical names created with outer access
modes in the same logical name table are also deleted.

You must have SYSNAM (system logical name) privilege to deassign an executive-
mode logical name.

If you specify the /EXECUTIVE_MODE qualifier and you do not have SYSNAM
privilege, then the DEASSIGN command ignores the qualifier and attempts to
deassign a supervisor-mode logical name.

All process-private logical names and logical name tables are deleted when you
log out of the system. User-mode entries within the process logical name table
are deassigned when any image exits. The logical names in the job table, and the
job table itself, are deleted when you log off the system.

Names in all other shareable logical name tables remain there until they are
explicitly deassigned, regardless of whether they are user-, supervisor-, or
executive-mode names. You must have write (W) access to a shareable logical
name table to delete any name in that table.

If you delete a logical name table, all the logical names in the table are also
deleted. Also, any descendant tables are deleted. To delete a shareable logical
name table, you must have delete (D) access to the table.

/ALL

Deletes all logical names in the same or an outer (less privileged) access
mode. If no logical name table is specified, the default is the process table,
LNM$PROCESS. If you specify the /ALL qualifier, you cannot enter a logical-
name parameter.

/ICLUSTER_SYSTEM

You must be signed in to the SYSTEM account or have SYSNAM (system
logical name) or SYSPRV (system) privilege to deassign a clusterwide
logical name.

Deassigns a logical name from the LNM$SYSCLUSTER table.

/[EXECUTIVE_MODE
Requires SYSNAM (system logical name) privilege to deassign executive-
mode logical names.

Deletes only entries that were created in the specified mode or an outer (less
privileged) mode. If you do not have SYSNAM privilege for executive mode, a
supervisor-mode operation is assumed.

/GROUP
Requires GRPNAM (group logical name) or SYSPRYV privilege to delete
entries from the group logical name table.

Indicates that the specified logical name is in the group logical name table. The
/GROUP qualifier is synonymous with the /TABLE=LNM$GROUP qualifier.

DEASSIGN

/JOB

Indicates that the specified logical name is in the jobwide logical name table. The
/JOB qualifier is synonymous with the /TABLE=LNM$JOB qualifier. If you do
not explicitly specify a logical name table, the default is the /PROCESS qualifier.

You should not deassign jobwide logical name entries that were made by the
system at login time, for example, SYS$LOGIN, SYS$LOGIN_DEVICE, and
SYS$SCRATCH. However, if you assign new equivalence names for these logical
names (that is, create new logical names in outer access modes), you can deassign
the names you explicitly created.

/LOG (default)

/NOLOG

/NOLOG overrides the default /LOG to suppress output of a fatal error that
would be returned if the specified logical name were not found. When you specify
/NOLOG, $STATUS is set to Success instead of to Fatal and no error message is
output.

/PROCESS (default)
Indicates that the specified logical name is in the process logical name table. The
/PROCESS qualifier is synonymous with the /TABLE=LNM$PROCESS qualifier.

You cannot deassign logical name table entries that were made by the command
interpreter, for example, SYS$INPUT, SYS$OUTPUT, and SYS$ERROR.
However, if you assign new equivalence names for these logical names (that

is, create new logical names in outer access modes), you can deassign the names
you explicitly created.

/SUPERVISOR_MODE (default)

Deletes entries in the specified logical name table that were created in supervisor
mode. If you specify the /SUPERVISOR_MODE qualifier, the DEASSIGN
command also deassigns user-mode entries with the same name.

ISYSTEM
Indicates that the specified logical name is in the system logical name table. The
/SYSTEM qualifier is synonymous with the /TABLE=LNM$SYSTEM qualifier.

[TABLE=name

Specifies the table from which the logical name is to be deleted. Defaults to
LNM$PROCESS. The table can be the process, group, job, or system table, one
of the directory tables, or the name of a user-created table. (The process, job,

group, and system logical name tables should be referred to by the logical names
LNM$PROCESS, LNM$JOB, LNM$GROUP, and LNM$SYSTEM, respectively.)

The /TABLE qualifier also can be used to delete a logical name table. To delete a
process-private table, enter the following command:

S DEASSIGN/TABLE:LNM$PROCESS_DIRECTORY table-name
To delete a shareable table, enter the following command:
S DEASSIGN/TABLE=LNM$SYSTEM_DIRECTORY table-name

To delete a shareable logical name table, you must have delete (D) access to the
table or write (W) access to the directory table in which the name of the shareable
table is cataloged.

If you do not explicitly specify the /TABLE qualifier, the default is the
/TABLE=LNM$PROCESS qualifier.

DCLI-141

DEASSIGN

Examples

DCLI-142

/USER_MODE

Deletes entries in the process logical name table that were created in user mode.
If you specify the /USER_MODE qualifier, the DEASSIGN command can deassign
only user-mode entries. Also, user-mode logical names are automatically deleted
when invoking and exiting a command procedure.

1. $ DEASSIGN MEMO

The DEASSIGN command in this example deassigns the process logical name
MEMO.

2. $ DEASSIGN/ALL

The DEASSIGN command in this example deassigns all process logical names
that were created in user and supervisor mode. This command does not,
however, delete the names that were placed in the process logical name table
in executive mode by the command interpreter (for example, SYS$INPUT,
SYS$OUTPUT, SYS$ERROR, SYS$DISK, and SYS$COMMAND).

3. $ DEASSIGN/TABLE=LNMSPROCESS DIRECTORY TAX

The DEASSIGN command in this example deletes the logical name table
TAX, and any descendant tables. When you delete a logical name table,
you must specify either the /TABLE=LNM$PROCESS_DIRECTORY or the
/TABLE=LNM$SYSTEM_DIRECTORY qualifier, because the names of all
tables are contained in these directories.

4. $ ASSIGN USER DISK: COPY
$ SHOW LOGICAL COPY
"COPY" = "USER DISK:" (LNMS$SPROCESS TABLE)
$ DEASSIGN COPY

The ASSIGN command in this example equates the logical name COPY with
the device USER_DISK and places the names in the process logical name
table. The DEASSIGN command deletes the logical name.

5. $ DEFINE SWITCH: TEMP
$ DEASSIGN SWITCH::

The DEFINE command in this example places the logical name SWITCH: in
the process logical name table. The trailing colon is retained as part of the
logical name. Two colons are required on the DEASSIGN command to delete
this logical name because the DEASSIGN command removes one trailing
colon, and the other colon is needed to match the characters in the logical
name.

6. $ ASSIGN/TABLE=LNM$GROUP DKAl: GROUP DISK
$ DEASSIGN/PROCESS/GROUP GROUP DISK

The ASSIGN command in this example places the logical name GROUP_
DISK in the group logical name table. The DEASSIGN command specifies
conflicting qualifiers; because the /GROUP qualifier is last, the name is
successfully deassigned.

DEASSIGN

7. S ASSIGN DALLAS::USER DISK: DATA

$ DEASSIGN DATA

The ASSIGN command in this example associates the logical name DATA
with the device specification USER_DISK on remote node DALLAS.
Subsequent references to the logical name DATA result in references to
the disk on the remote node. The DEASSIGN command cancels the logical

name assignment.

DCLI-143

DEASSIGN/QUEUE

DEASSIGN/QUEUE

Format

Parameter

Description

Example

DCLI-144

Deassigns a logical queue from a printer or terminal queue and stops the logical
queue. The DEASSIGN/QUEUE command cannot be used with batch queues.

Requires manage (M) access to the queue.
DEASSIGN/QUEUE logical-queue-namel:]

logical-queue-name][:]
Specifies the name of the logical queue that you want to deassign from a specific
printer or terminal queue.

Once you enter the DEASSIGN/QUEUE command, the jobs in the logical queue
remain pending until the queue is reassigned to another printer queue or device
with the ASSIGN/QUEUE command.

$ ASSIGN/QUEUE LPAO ASTER

$ DEASSIGN/QUEUE ASTER
$ ASSIGN/MERGE LPB0 ASTER

The ASSIGN/QUEUE command in this example associates the logical queue
ASTER with the print queue LPAQ. Later, you deassign the logical queue with
the DEASSIGN/QUEUE command. The ASSIGN/MERGE command reassigns
the jobs from ASTER to the print queue LPBO.

DEBUG

DEBUG

Format

Invokes the OpenVMS Debugger.

For a complete description of the OpenVMS Debugger, see the HP OpenVMS
Debugger Manual.

To get help on debugger commands from DCL level, type the following command:
$ HELP/LIBRARY=SYSSHELP:DBGSHELP DEBUG

DEBUG

Heap Analyzer

Qualifiers

The Heap Analyzer provides a graphical representation of memory use in real
time. This allows you to quickly identify inefficient memory usage in your
application such as allocations that are made too often, memory blocks that are
too large, fragmentation, or memory leaks.

For details on running the Heap Analyzer from within the debugger, see the HP
OpenVMS Debugger Manual.

On OpenVMS 164, the standalone Heap Analyzer is started within the kept
debugger using the START HEAP_ANALYZER command (see example).

On OpenVMS Alpha, the standalone Heap Analyzer is started within the kept
debugger using the RUN/HEAP command.

On OpenVMS VAX, the standalone Heap Analyzer is started by entering the
following commands:

$ DEFINE/USER/NAME=CONFINE LIBRTL SYSSLIBRARY:LIBRTL INSTRUMENTED
$ RUN/NODEBUG program

ICLIENT

Invokes the DEBUG client Motif interface. From the client, use the network
binding string displayed by the server at startup to establish the connection. The
first client to connect to the server is the primary client, and controls the number
of secondary clients allowed to connect to the server.

IKEEP

Invokes the kept debugger. The kept debugger includes a Run/Rerun capability
that allows you to debug an image multiple times or debug a series of distinct
images without exiting the debugger.

Issuing the DEBUG/KEEP command is the only way to invoke the kept debugger.
/RESUME (default)
Reinvokes the non-kept debugger after a Ctrl/Y key sequence has interrupted the

execution of a program you are debugging. (The interrupted program must not
have been linked with a /INOTRACEBACK qualifier on the LINK command.)

DCLI-145

DEBUG

DCLI-146

If you issue the DEBUG/RESUME command without a previous Ctrl/Y key
sequence, no action occurs.

/SERVER [=([BINDING_INFO=filespec] [,PROTOCOLS=(protocol[,...])])]
Invokes the DEBUG server. The DEBUG server allows up to 30 simultaneous
connections from clients on the same or remote OpenVMS nodes, or from PC
nodes running a supported Microsoft® Windows® platform.

(Optional) If specified, the BINDING_INFO keyword specifies that the server
binding identification strings are to be written to filespec. If not specified, no file
is created.

(Optional) If specified, the PROTOCOLS keyword specifies which network
protocols should be enabled for connection to the DEBUG server. Only the
specified protocols are enabled. If not specified, all protocols are enabled. The
protocol argument can be one or more of the following keywords:

ALL
[NOJDECNET
[NO]TCP_IP
[NOJUDP

The first client to connect to the server is the primary client. A client that
connects to the server after the primary client establishes the connection is a
secondary client. The primary client controls the number of secondary clients
allowed to connect to the server.

The server displays a series of RPC binding strings that identify the port numbers
through which the client can connect to the server. The port number appears in
square brackets ([]) at the end of the identification strings.

When connecting from the client, the simplest port identification string consists
of the node name of the server followed by the port number in square brackets.
The following are all valid binding identification strings:

NODNAM][1234]
NCACN_IP_TCP:16.32.16.25[1112]
16.32.16.25(1112]
NCACN_DNET_NSP:63.1004[RPC20A020DD0001]

Note

You must hold the DBG$ENABLE_SERVER identifier in the rights
database to be able to run the debug server. Exercise care when using the
debug server. Once a debug server is running, anyone on the network has
the ability to connect to the debug server.

Before granting the DBGSENABLE_SERVER identifier, the system manager
must create it by entering the command DEBUG/SERVER from an account
with write access to the rights database. The system manager needs to do this

only once. The system manager can then run the Authorize utility to grant the
DBG$ENABLE_SERVER identifier to the user’s account in the rights database.

Examples

1.

DEBUG

$ FORTRAN/DEBUG/NOOPTIMIZE WIDGET
$ LINK/DEBUG WIDGET
$ RUN WIDGET

[Debugger Banner and Version]

$DEBUG-I-INITIAL, language is FORTRAN, module set to WIDGET
DBG>

The FORTRAN and LINK commands both specify the /DEBUG qualifier to
compile the program WIDGET.FOR with debugger symbol table information.
Because the program has been compiled and linked with debug information,
the debugger is automatically invoked by the image activator upon starting
the program with the RUN command. No program code has yet been executed
when the debugger is invoked.

$ FORTRAN/DEBUG/NOOPTIMIZE WIDGET
$ LINK/DEBUG WIDGET
$ RUN/NODEBUG WIDGET

NAME :
NAME :
NAME :

*Y

$ DEBUG/RESUME

[Debugger Banner and Version]

$DEBUG-I-INITIAL, language is FORTRAN, module set to WIDGET
DBG>

The FORTRAN and LINK commands both specify the /DEBUG qualifier to
compile the program WIDGET.FOR with debugger symbol table information.
The RUN command begins execution of the image WIDGET.EXE, which loops
uncontrollably. Ctrl/Y interrupts the program, and the DEBUG/RESUME
command gives control to the debugger.

$ CC/DEBUG/NOOPTIMIZE ECHOARGS

$ LINK/DEBUG ECHOARGS

$ ECHO == "$ sys$disk: []echoargs.exe"
$ DEBUG/KEEP

[Debugger Banner and Version]

DBG> RUN/COMMAND="ECHO"/ARGUMENTS="fa sol la mi"
%$DEBUG-I-INITIAL, language is C, module set to ECHOARGS
$DEBUG-I-NOTATMAIN, type GO to get to start of main program
DBG>

DBG> RERUN/ARGUMENTS="fee fii foo fum"

$DEBUG-I-INITIAL, language is C, module set to ECHOARGS
$DEBUG-I-NOTATMAIN, type GO to get to start of main program
DBG>

DBG> RUN/ARGUMENTS="a b c" ECHOARGS

$DEBUG-I-INITIAL, language is C, module set to ECHOARGS
$DEBUG-I-NOTATMAIN, type GO to get to start of main program
DBG>

DCLI-147

DEBUG

DCLI-148

The CC and LINK commands both specify the /DEBUG qualifier to compile
the program ECHOARGS.C with debugger symbol table information.

The symbol definition command defines a foreign command for use during the
debugging session.

The DEBUG/KEEP command invokes the kept debugger.

The first RUN command uses the /COMMAND qualifier to specify a foreign
command to invoke the image file and the /ARGUMENTS qualifier to specify
a string of arguments.

The RERUN command reinvokes the same image file and uses the
/ARGUMENTS qualifier to specify a new string of arguments.

The second RUN command specifies a new image file and a new string of
arguments.

On 164 systems, start the Heap Analyzer within the kept debugger:

$ debug/keep
DBG> run/heap 8queens

or, alternately:

$ debug/keep
DBG> run 8queens

DBG> deactivate break/all
DBG> deactivate watch/all
DBG> deactivate trace/all
DBG> start heap_ analyzer
DBG> activate break/all
DBG> activate watch/all
DBG> activate trace/all

Using this method, you must first deactivate all watchpoints, breakpoints,
and tracepoints before starting the heap analzyer with the START HEAP_
ANALYZER command. This procedure prevents a potential race condition
from occurring. After starting the heap analyzer, re-activate the breakpoints,
watchpoints, and trace points.

On Alpha systems, start the Heap Analyzer within the kept debugger:

$ debug/keep
DBG> run/heap 8queens

On VAX systems, start the heap analyzer as in the following PASCAL
example:

7.

DEBUG

$ PASCAL/DEBUG/NOOPTIMIZE 8QUEENS

$ LINK/DEBUG 8QUEENS

$ DEFINE/USER/NAME=CONFINE LIBRTL SYS$LIBRARY:LIBRTL INSTRUMENTED
$ RUN/NODEBUG 8QUEENS

The PASCAL and LINK commands both specify the /DEBUG qualifier to
compile the program 8QUEENS.PAS with debugger symbol table information.

The DEFINE command causes the Heap Analyzer to access a version of
LIBRTL designed to collect memory allocation and deallocation information.

The RUN/NODEBUG command invokes the Heap Analyzer but not the
Debugger.

$ DEBUG/SERVER= (PROTOCOLS=(TCP_IP,DECNET))

$DEBUG-I-SPEAK: TCP/IP: YES, DECnet: YES, UDP: NO

%DEBUG-I-WATCH: Network Binding: ncacn ip tcp:16.32.16.25[1112]
%DEBUG-I-WATCH: Network Binding: ncacn_dnet nsp:63.1004 [RPC20A020DD0001]
$DEBUG-I-AWAIT: Ready for client connection...

The DEBUG/SERVER command establishes a connection to the debug server,
requesting network protocols TCP/IP and DECnet. Note that the binding
strings are saved in file TEMP.TMP. You can use the TYPE command to
display the contents of TEMP.TMP.

DCLI-149

DECK

DECK

Format

Description

Qualifier

DCLI-150

Marks the beginning of an input stream for a command or program.

DECK

The DECK command marks the data that follows it as input for a command or
program. The DECK command can be used only after a request to execute a
command or program that requires input data.

In command procedures, this command is required when the first nonblank
character in any data record in the input stream is a dollar sign. Also in
command procedures, the DECK command must be preceded by a dollar sign; the
dollar sign must be in the first character position (column 1) of the input record.

The DECK command defines an end-of-file (EOF) indicator only for a single data
stream. Using the DECK command enables you to place data records beginning
with dollar signs in the input stream. You can place one or more sets of data in
the input stream following a DECK command, if each is terminated by an EOF

indicator.

After an EOF indicator specified with the /DOLLARS qualifier is encountered,
the EOF indicator is reset to the default, that is, to any record beginning with
a dollar sign. The default is also reset if an actual EOF indicator occurs for the
current command level.

/DOLLARS[=string]

Sets the EOF indicator to the specified string of 1 to 15 characters. Specify a
string if the input data contains one or more records beginning with the string
$EOD. Enclose the string in quotation marks (“ ”) if it contains literal lowercase
letters, multiple blanks, or tabs. If you do not specify /DOLLARS or if you specify
/DOLLARS without specifying a string, you must use the EOD command to signal
the end-of-file (EOF).

DECK

Examples

Input Stream AN
for AN | $ EOJ
\,
Program A “_ | $ PRINT SUMMARY.DAT
[$ EOD
\\ E .
\\ [
\,
N $ 99.50
$ 86.42
|$ DECK
$ RUN A
$ LINK A
|$ FORTRAN A

=

ZK-0783-GE

In this example, the Fortran and LINK commands compile and link program
A. When the program is run, any data the program reads from the logical
device SYS$INPUT is read from the command stream. The DECK command
indicates that the input stream can contain dollar signs in column 1 of the
record. The EOD command signals end-of-file (EOF) for the data.

DCLI-151

DECK

[$ EQJ

N
N o’
N\ L]
\

\[s @TesT

[%

™\ [$ PRINT RUNTEST.OUT
[$ EOD

[$ DECK
[$ RUN READFILE
N $ ASSIGN RUNTEST.OUT
AN OUTFILE
AN $ ASSIGN SYSS$INPUT
. INFILE

™\, [$ DECK/DOLLARS="%"

s CREATE TEST.COM
| E .
$ JOB HIGGINS -

@ Input stream for CREATE command.
@ Input stream for program READFILE.
ZK-0784-GE

The CREATE command in this example creates the command procedure file
TEST.COM from lines entered into the input stream. The DECK/DOLLARS
command indicates that the percent sign (%) is the EOF indicator for the
CREATE command. This allows the string $EOD to be read as an input
record, signaling the end of the input for the RUN command.

DCLI-152

DECRYPT

DECRYPT

Decrypts files previously encrypted with the ENCRYPT command. DES is the
default algorithm unless otherwise specified with the /KEY_ALGORITHM
qualifier. The key specified must match the algorithm (DES or AES), and the
same key is used to decript as was used to encrypt; a symettric key alogithm.

Format
DECRYPT input-file key-name [qualifiers]

Parameters

input-file
File names of the files to decrypt. If you use wildcard characters, do not include
directory files or files with bad blocks.

key-name
Key name that was previously stored in the key storage table by the ENCRYPT
/CREATE_KEY command.

Qualifiers

/BACKUP[=time]
Selects files according to the dates of their most recent backup.

This qualifier is relevant only when used with the /BEFORE or the /SINCE
qualifier. In addition, do not use /BACKUP with /EXPIRED or /MODIFIED.

If you omit ¢ime, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/BEFORE[=time]
Selects files that have a creation time before the time you specify.

If you omit ¢#ime, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/BY_OWNER[=uic]
/NOBY_OWNER
Selects files with the owner UIC you specify.

If you omit uic, the UIC of the current process is used. For more information on
specifying UIC format, see the OpenVMS User’s Manual.

/CONFIRM

/NOCONFIRM

Controls whether or not a confirmation request is displayed before each
decryption, as follows:

Response Meaning

YES Decrypts the file

NO or Does not decrypt the file (default)

QUIT or Does not decrypt the file or any subsequent files

DCLI-153

DECRYPT

DCLI-154

Response Meaning

ALL Decrypts the file plus all subsequent files
/DELETE

/NODELETE

Default: /NODELETE.

Controls whether or not the input files are deleted after the decryption operation
is complete and the output file is written and closed.

/ERASE

INOERASE

Controls whether or not the input files are erased with the data security pattern
before being deleted. By default, the location in which the data was stored is not

overwritten with the data security pattern. The /ERASE qualifier must be used
with /DELETE.

[EXCLUDE-=file-spec

/NOEXCLUDE

Excludes the specified files from the decryption operation. You can use wildcard
characters. You do not need to enter an entire file specification. Any field that
you omit defaults to the input file specification.

Because directory files are never encrypted, you need not specify them.

[EXPIRED[=time]
Selects files according to the dates on which they expire.

This qualifier is relevant only when used with the /BEFORE or the /SINCE
qualifier. In addition, do not use /EXPIRED with /BACKUP or /MODIFIED.

If you omit time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/KEY_ALGORITHM= { Rggs’fégﬂaum }

Where mmm is the mode CBC, ECB, CFB, or OFB; and kkk is 128, 192, or
256 bits. Cipher Block Chaining (CBC) and Electronic Code Book (ECB) are
16-byte block modes, meaning blocks are padded to 16 bytes if necessary during
encryption. The padding is removed during decryption. Cipher Feedback (CFB)
and Output Feedback (OFB) are 8-bit character stream mode emulation, useful
in data communications and where no padding is required. Note that /KEY_
ALGORITHM=AES is a shortcut for specifying AESCBC128.

The algorithm by which the random key and the initialization vector are protected
within the encrypted file. Specify the same algorithm (AES or DES) that you used
to encrypt the file and create the key, if not, the default is DESCBC.

/MODIFIED[=time]
Selects files according to the dates on which they were last modified.

This qualifier is relevant only when used with the /BEFORE or the /SINCE
qualifier. In addition, do not use /MODIFIED with /BACKUP or /EXPIRED.

If you omit ¢ime, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

DECRYPT

/OUTPUT=file-spec
Alternate output file name for the decryption operation.

By default, each input file decrypted is written to a separate output file that

is one version higher than that of the input file. When using the /OUTPUT
qualifier, specify the parts of the file specification different from the defaults. You
do not need to provide an entire file specification. Any field that you omit defaults
to the input file specification.

ISHOW=(keyword-list)
Controls whether or not the following information about the decryption operation
is displayed on SYS$COMMAND:

Keyword Meaning

FILES Displays input and output file names on
SYS$COMMAND

STATISTICS Displays the encryption stream statistics:

e Bytes processed
e Internal records processed

e (CPU time consumed within the encryption algorithm

ISINCE[=time]
Selects files that have a creation date before the time you specify.

If you omit ¢ime, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

ISTATISTICS
Similar to /SHOW, except that /STATISTICS lists both files and statistics,
whereas /SHOW can be customized to list only one or the other.

Examples

1. $ DECRYPT BOSTON MYKEY
Decrypts the file name BOSTON using the DES key, MYKEY, and the DESCBC
algorithm.

2. $ DECRYPT CHIGAGO.ENC KEY2 /KEY=AESECB256 /OUT=CHICAGO.DEC

Decrypts the file named CHICAGO.ENC using the AES key, KEY2, and the
AESECB256 algorithm, renaming the decrypted output file to CHICAGO.DEC,
the original plaintext file.

DCLI-155

DEFINE

DEFINE

Format

Parameters

DCLI-156

Associates an equivalence name with a logical name.

DEFINE logical-name equivalence-namey,...]

logical-name
Specifies the logical name string, which is a character string containing from 1 to
255 characters. The following rules apply:

e If the logical name is to be entered into the process or system directory logical
name tables (LNM$PROCESS_DIRECTORY, LNM$SYSTEM_DIRECTORY),
then the name can only have from 1 to 31 alphanumeric characters, including
the dollar sign ($) and underscore (_). If the logical name translates to a
logical name table name, any alphabetic characters in the name should all be
uppercase.

e If you specify a colon (:) at the end of a logical name, the DEFINE command
saves the colon as part of the logical name. (This is in contrast to the ASSIGN
command, which removes the colon before placing the name in a logical name
table.) By default, the logical name is placed in the process logical name
table.

e If the string contains any characters other than uppercase alphanumerics, the
dollar sign, or the underscore character, enclose the string in quotation marks
(“”). Use two sets of quotation marks (““) to denote actual quotation
marks. When you enclose a name in quotation marks, the case of alphabetic
characters is preserved.

equivalence-namel[,...]
Specifies a character string containing from 1 to 255 characters. The following
rules apply:

e If the string contains any characters other than uppercase alphanumerics,
the dollar sign, or the underscore character, enclose the string in quotation
marks. Use two sets of quotation marks to denote an actual quotation mark.
Specifying more than one equivalence name for a logical name creates a
search list. A logical name can have a maximum of 128 equivalence names.

e When you specify an equivalence name that will be used as a file specification,
you must include the punctuation marks (colons, brackets, periods) that would
be required if the equivalence name were used directly as a file specification.
Therefore, if you specify a device name as an equivalence name, you must
terminate the equivalence name with a colon.

The DEFINE command allows you to assign multiple equivalence names to a
single logical name. For example, you can use the same logical name to access
different directories on different disks or to access different files in different
directories.

Description

DEFINE

The DEFINE command creates a logical name that represents one or more
equivalence names. An equivalence name can be a device name, another logical
name, a file specification, or any other string.

You can limit the use of a logical name to a process, a job, a group, an entire
system, or an entire OpenVMS Cluster system. How you use a logical name
depends on the table you created in it. You can specify a table with one of the
following qualifiers: /PROCESS, /JOB, /GROUP, /SYSTEM, or /TABLE.

The first four qualifiers represent the process, job, group, or system logical name
tables, respectively, whereas the /TABLE qualifier is used to specify any type of
table. Furthermore, the /TABLE qualifier is the only one to use when specifying
a clusterwide logical name table.

If you enter more than one of the qualifiers, only the last one entered is accepted.
If you do not specify a table with one of the qualifiers, the logical name is added
to your process logical name table.

To specify the access mode of the logical name you are creating, use the /USER_
MODE, the /SUPERVISOR_MODE, or the /EXECUTIVE_MODE qualifier. If you
enter more than one of these qualifiers, only the last one entered is accepted. If
you do not specify an access mode, a supervisor-mode name is created. You can
create a logical name in the same mode as the table in which you are placing the
name, or in an outer mode. (User mode is the outermost mode; executive mode is
the innermost mode.)

You can enter more than one logical name with the same name in the same table,
as long as each name has a different access mode. (However, if an existing logical
name within a table has the NO_ALIAS attribute, you cannot use the same name
to create a logical name in an outer mode in this table.)

If you create a logical name with the same name, in the same table, and in the
same mode as an existing name, the new logical name assignment replaces the
existing assignment.

You can also use the ASSIGN command to create logical names. To delete a
logical name from a table, use the DEASSIGN command.

Note

Avoid assigning a logical name that matches the file name of an
executable image in SYS$SYSTEM:. Such an assignment prohibits
you from invoking that image.

To create a logical name with no equivalence name (and therefore no indices), use
the $CRELNM system service.

If you want to specify an ODS-5 file name as an equivalence name, see the HP
OpenVMS System Manager’s Manual, Volume 1: Essentials.

For a complete description of logical names and logical name tables, except

for their use in applications, see the OpenVMS User’s Manual. For the use of
logical names in applications, see the HP OpenVMS Programming Concepts
Manual. For managing clusterwide logical names, see the HP OpenVMS Cluster
Systems manual. In this manual, see also the description of the lexical function
F$TRNLNM, which is used to translate logical names.

DCLI-157

DEFINE

Qualifiers

/CLUSTER_SYSTEM
You must be signed in to the SYSTEM account or have SYSNAM (system
logical name) or SYSPRYV (system) privilege to use this qualifier.

Defines a clusterwide logical name in the LNM$SYSCLUSTER table.

/EXECUTIVE_MODE
Requires SYSNAM (system logical name) privilege to create an executive-
mode logical name.

Creates an executive-mode logical name in the specified table.

If you specify the /EXECUTIVE_MODE qualifier and you do not have SYSNAM
privilege, the DEFINE command ignores the qualifier and creates a supervisor-
mode logical name. The mode of the logical name must be the same or less
privileged than the mode of the table in which you are placing the name.

/GROUP
Requires GRPNAM (group logical name) or SYSNAM (system logical
name) privilege to place a name in the group logical name table.

Places the logical name in the group logical name table. Other users who
have the same group number in their user identification codes (UICs) can
access the logical name. The /GROUP qualifier is synonymous with the
/TABLE=LNM$GROUP qualifier.

/JOB

Places the logical name in the jobwide logical name table. All processes in the
same job tree as the process that created the logical name can access the logical
name. The /JOB qualifier is synonymous with the /TABLE=LNM$JOB qualifier.

/LOG (default)
/NOLOG

Displays a message when a new logical name supersedes an existing name.

INAME_ATTRIBUTES[=(keyword[,...])]
Specifies attributes for a logical name. By default, no attributes are set. Possible
keywords are as follows:

CONFINE The logical name is not copied into a spawned subprocess. This
qualifier is relevant only for logical names in a private table.
The logical name inherits the CONFINE attribute from the
logical name table where it is entered; if the logical name table
is “confined,” then all names in the table are “confined.”

NO_ALIAS A logical name cannot be duplicated in the specified table in
a less privileged access mode; any previously created identical
names in an outer (less privileged) access mode within the
specified table are deleted.

If you specify only one keyword, you can omit the parentheses. Only the
attributes you specify are set.

/PROCESS (default)
Places the logical name in the process logical name table. The /PROCESS
qualifier is synonymous with the /TABLE=LNM$PROCESS qualifier.

DCLI-158

DEFINE

/SUPERVISOR_MODE (default)

Creates a supervisor-mode logical name in the specified table. The mode of the
logical name must be the same as or less privileged than the mode of the table in
which you are placing the name.

ISYSTEM
Requires write (W) access or SYSNAM (system logical name) privilege to
place a name in the system logical name table.

Places the logical name in the system logical name table. All system users
can access the logical name. The /SYSTEM qualifier is synonymous with the
/TABLE=LNM$SYSTEM qualifier.

/TABLE=name
Requires write (W) access to the table to specify the name of a shareable
logical name table.

Specifies the name of the logical name table in which the logical name is to

be entered. You can use the /TABLE qualifier to specify a user-defined logical
name table (created with the CREATE/NAME_TABLE command); to specify the
process, job, group, system, or clusterwide logical name tables; or to specify the
process or system logical name directory tables.

If you specify the table name using a logical name that has more than one
translation, the logical name is placed in the first table found. For example, if
you specify DEFINE/TABLE=LNM$FILE_DEV and LNM$FILE_DEYV is equated
to LNM$PROCESS, LNM$JOB, LNM$GROUP, and LNM$SYSTEM, then the
logical name is placed in LNM$PROCESS.

The default is the /TABLE=LNM$PROCESS qualifier.

/TRANSLATION_ATTRIBUTES[=(keyword],...])]
Equivalence-name qualifier.

Specifies one or more attributes that modify an equivalence string of the logical
name. Possible keywords are as follows:

CONCEALED Indicates that the equivalence string is the name of a concealed
device. When a concealed device name is defined, the system
displays the logical name, rather than the equivalence string, in
messages that refer to the device.

TERMINAL Logical name translation should terminate with the current
equivalence string; indicates that the equivalence string should
not be translated iteratively.

If you specify only one keyword, you can omit the parentheses. Only the
attributes you specify are set.

Note that different equivalence strings of a logical name can have different
translation attributes.

/USER_MODE
Creates a user-mode logical name in the specified table.

User-mode logical names created within the process logical name tables are used
for the execution of a single image; for example, you can create a user-mode
logical name to allow an image executing in a command procedure to redefine
SYS$INPUT. User-mode entries are deleted from the process logical name table
when any image executing in the process exits (that is, after a DCL command

DCLI-159

DEFINE

Examples

DCLI-160

or user program that executes an image completes execution). Also, user-mode
logical names are automatically deleted when invoking and exiting a command
procedure.

$ DEFINE/USER MODE TM1 $DISK1:[ACCOUNTS.MEMOS]WATER.TXT

In this example, the DEFINE command defines TM1 as equivalent to
a file specification. After the next image runs, the logical name TM1 is
automatically deassigned.

$ DEFINE CHARLIE XXX1: [CHARLES]
S PRINT CHARLIE:TEST.DAT
Job 274 entered on queue SYSSPRINT

In this example, the DEFINE command associates the logical name CHARLIE
with the directory name [CHARLES] on the disk XXX1. The PRINT command
queues a copy of the file XXX1:[CHARLES]TEST.DAT to the system printer.

$ DEFINE PROCESS NAME LIBRA
$ RUN WAKE

In this example, the DEFINE command places the logical name PROCESS_
NAME in the process logical name table with an equivalence name of
LIBRA. The logical name is created in supervisor mode. The program WAKE
translates the logical name PROCESS_NAME to perform some special action
on the process named LIBRA.

$ DEFINE TEMP: XXX1:

$ DEASSIGN TEMP: :

In this example, the DEFINE command creates an equivalence name for the
logical name TEMP: and places the name in the process logical name table.
The colon is retained as part of the logical name. The DEASSIGN command
deletes the logical name. Note that two colons are required on the logical
name in the DEASSIGN command. One colon is deleted by the DEASSIGN
command. The other colon is kept as part of the logical name.

$ DEFINE PORTLAND PRTLND::YYYO: [DECNET.DEMO.COM]

In this example, the DEFINE command places the logical name
PORTLAND in the process logical name table with an equivalence name
of PRTLND::YYYO0:[DECNET.DEMO.COM]. Subsequent references to the
logical name PORTLAND result in the correspondence between the logical
name PORTLAND and the node, disk, and subdirectory specified.

$ DEFINE LOCAL "BOSTON""JAY SABLE JKS""::"

In this example, the DEFINE command places the logical name LOCAL

in the process logical name table with a remote node equivalence name of
BOSTON"JAY_SABLE JKS"::. To satisfy conventions for local DCL command
string processing, you must use three sets of quotation marks. The quotation
marks ensure that access control information is enclosed in one set of
quotation marks in the equivalence name.

7.

10.

DEFINE

$ DEFINE MYDISK XXX0:[MYDIR], YYY0: [TESTDIR]

In this example, the DEFINE command places the logical name MYDISK in
the process logical name table with two equivalence names: XXX0:[MYDIR]
and YYYO:[TESTDIR].

$ DEFINE/TABLE=LNMSCLUSTER TABLE FIRENZE FIRENZE::FIESOLE: [ETRUSCAN]

In this example, the DEFINE command equates FIRENZE to the
directory specification FIRENZE::FIESOLE:[ETRUSCAN] and places
both the new logical name (FIRENZE) and its equivalence string
(FIRENZE::FIESOLE:[ETRUSCAN]) in the default clusterwide table. The
new logical name is automatically propagated to all nodes in the cluster.

$ CREATE/NAME TABLE TABLE1
$ DEFINE/TABLE=LNM$PROCESS DIRECTORY LNM$FILE DEV -
$ TABLEL, LNM$PROCESS, LNM$JOB, LNMSGROUP, LNM$SYSTEM

$ DEFINE/TABLE=TABLEl -
_$ /TRANSLATION ATTRIBUTES=CONCEALED WORK DISK DKAL:

In this example, the CREATE/NAME_TABLE command creates the process
private logical name table TABLE1.

The first DEFINE command ensures that TABLEL1 is searched first in any
logical name translation of a device or file specification (because TABLE1 is
the first item in the equivalence string for the logical name LNM$FILE_DEYV,
which determines the default search sequence of logical name tables whenever
a device or file specification is translated).

The second DEFINE command assigns the logical name WORK_DISK to the
physical device DKA1 and places the name in TABLE1. The logical name
has the concealed attribute. Therefore, the logical name WORK_DISK is
displayed in system messages.

$ CREATE/NAME TABLE SPECIAL

$ DEFINE/TABLE=LNM$PROCESS DIRECTORY LNM$FILE DEV -
_$ SPECIAL, LNM$PROCESS, LNM$JOB, LNM$GROUP, LNM$SYSTEM
$ DEFINE/TABLE=LNM$PROCESS DIRECTORY TAB SPECIAL

$ DEFINE/TABLE=TAB REPORT [CHELSEA]STORES
$ SHOW LOGICAL/TABLE=SPECIAL REPORT
"REPORT" = "[CHELSEA]STORES" (SPECIAL)

In this example, the CREATE/NAME_TABLE command is used to create a
new logical name table called SPECIAL. This table is defined in the process
directory, LNM$PROCESS_DIRECTORY.

The first DEFINE command ensures that SPECIAL is searched first in any
logical name translation of a device or file specification (because SPECIAL is
the first item in the equivalence string for the logical name LNM$FILE_DEYV,
which determines the default search sequence of logical name tables whenever
a device or file specification is translated). The logical name LNM$FILE_DEV
is placed in the process directory, LNM$PROCESS_DIRECTORY.

With the next DEFINE command, a new logical name, TAB, is defined. TAB
translates to the string SPECIAL, which identifies a logical name table. You
must define TAB in the process directory because it translates iteratively to a
logical name table.

DCLI-161

DEFINE

DCLI-162

Next, the logical name REPORT is placed into the logical name table TAB.
Because TAB translates to the table SPECIAL, the name REPORT is entered
into SPECIAL table. The SHOW LOGICAL command verifies that the name
REPORT has been entered into the table SPECIAL.

Note that you can redefine TAB so it translates to a different table. Therefore,
if you run different programs that use the name TAB as a table name, you
can change the actual tables where the names are entered or referenced.

DEFINE/CHARACTERISTIC

DEFINE/CHARACTERISTIC

Format

Parameters

Description

Assigns a numeric value to a queue characteristic. The /CHARACTERISTIC
qualifier is required. If a value has been assigned to the characteristic, you must
delete and redefine the characteristic to alter the assignment of the existing
characteristic.

Requires OPER (operator) privilege.

Note

You cannot define more than one characteristic name to a number.

DEFINE/CHARACTERISTIC characteristic-name characteristic-number

characteristic-name

Assigns a name to the characteristic being defined. The characteristic name can
be the name of an existing characteristic or a string of 1 to 31 characters that
defines a new characteristic. The character string can include any uppercase and
lowercase letters, digits, the dollar sign ($), and the underscore (_), and must
include at least one alphabetic character. Only one characteristic name can be
defined to each number.

characteristic-number
Assigns a number in the range 0 to 127 to the characteristic being defined.

The system manager or operator uses the DEFINE/CHARACTERISTIC command
to assign a name and number to a particular characteristic for queues in the
system. Characteristics can refer to any attribute of a print or batch job that is
meaningful for your environment. The name and number of a characteristic are
arbitrary, but they must be unique for that characteristic.

Note

Prior to OpenVMS Version 6.0, the DEFINE/CHARACTERISTIC
command allowed you to define more than one characteristic name to
a number, although this capability was unsupported.

The DEFINE/CHARACTERISTIC command no longer allows you to define
more than one characteristic name to a number; however, if your queue
configuration requires you to have more than one characteristic name for
a single number, you can define logical names to achieve the same result.
For example, you might enter the following commands:

$ DEFINE/CHARACTERISTIC SECOND FLOOR 2
$ DEFINE/SYSTEM/EXECUTIVE MODE SALES FLOOR SECOND FLOOR
$ DEFINE/SYSTEM/EXECUTIVE MODE SALES DEPT SECOND FLOOR

DCLI-163

DEFINE/CHARACTERISTIC

Example

DCLI-164

In this example, the characteristic name SECOND_FLOOR is assigned
to the characteristic number 2. The logical names SALES_FLOOR and
SALES_DEPT are then defined as equivalent to the characteristic
name SECOND_FLOOR. As a result, the logical names SALES_
FLOOR and SALES_DEPT are each equivalent to the characteristic
name SECOND_FLOOR and the characteristic number 2. These
logical names can be specified as the characteristic-name value for
any /CHARACTERISTIC=characteristic-name qualifier.

In an OpenVMS Cluster environment, you must define the logical names
on every node that requires them.

After characteristics have been defined, they can be associated with print or batch
jobs and execution queues. For information on specifying characteristics with
jobs, see the description of the /CHARACTERISTICS qualifier of the PRINT and
SUBMIT commands.

To find out what characteristics are currently defined for the system, use the
SHOW QUEUE/CHARACTERISTICS command. To find out which characteristics
have been specified for a particular queue, use the SHOW QUEUE/FULL
command. For information on associating characteristics with queues, see the
descriptions of the /CHARACTERISTICS qualifier of the INITIALIZE/QUEUE,
SET QUEUE, and START/QUEUE commands.

The DELETE/CHARACTERISTIC command deletes a previously defined
characteristic.

For more information on specifying queue characteristics, see the HP OpenVMS
System Manager’s Manual.

$ DEFINE/CHARACTERISTIC REDINK 3

The DEFINE/CHARACTERISTIC command in this example defines the
characteristic REDINK with the number 3. When a user enters the command
PRINT/CHARACTERISTICS=REDINK (or PRINT /CHARACTERISTICS=3), the
job is printed only if the printer queue has been established with the REDINK or
3 characteristic.

DEFINE/FORM

DEFINE/FORM

Format

Parameters

Description

Assigns a numeric value and attributes to a print form name. The /FORM
qualifier is required. To modify a form’s name or number, you must delete and
redefine the form. Values for any DEFINE/FORM qualifier can be modified by
reentering the DEFINE/FORM command with different values, as long as the
form name and number remain the same.

Requires OPER (operator) privilege.

DEFINE/FORM form-name form-number

form-name

Assigns a name to the form being defined. The form name can be the name of an
existing form type or a string of 1 to 31 characters that defines a new form type.
The character string can include any uppercase and lowercase letters, digits, the
dollar sign ($), and the underscore (_), and must include at least one alphabetic
character.

form-number

Assigns a number in the range 0 to 9999 to the form being defined. The
DEFAULT form, which is defined automatically when the system is bootstrapped,
is assigned number zero.

The system manager or operator uses the DEFINE/FORM command to assign a

name and number to a type of paper stock and printing area for use with printer
or terminal queues. When a new queue file is created, the system defines a form
named DEFAULT with a form number of zero and all the default attributes.

Some DEFINE/FORM qualifiers specify the area for printing. The LEFT and
RIGHT options of the /MARGIN qualifier and the /WIDTH qualifier determine
the number of characters per line. Using the RIGHT option of the MARGIN
qualifier and the /WIDTH qualifier, you can affect the point at which lines of text
wrap. (You cannot use the LEFT and RIGHT options of the /MARGIN qualifier
and the /WIDTH qualifier for filling or formatting the text, however.)

You also can use the DEFINE/FORM command to specify different types of paper
stock. The /DESCRIPTION qualifier enables you to describe more fully the form
name.

After forms have been defined, they can be associated with print jobs and
output execution queues. For information on specifying forms with jobs, see the
description of the PRINT/FORM command.

To find out what forms have been defined for the system, use the SHOW
QUEUE/FORM command. To find out which form is mounted currently on a
particular queue and which form is specified as that queue’s default form, use
the SHOW QUEUE/FULL command. For information on associating forms with
queues, see the descriptions of the /DEFAULT and /FORM_MOUNTED qualifiers
of the INITIALIZE/QUEUE, SET QUEUE, and START/QUEUE commands.

DCLI-165

DEFINE/FORM

Qualifiers

DCLI-166

For more information on how to use forms to control print jobs, see the HP
OpenVMS System Manager’s Manual.

/DESCRIPTION=string
A string of up to 255 characters used to provide operator information about the
form. The default string is the specified form name.

The string can be used to define the form type more specifically. For example,
if you have form names such as LETTER1, LETTER2, and LETTERS, the
/DESCRIPTION qualifier could be used to let the users and operators know that
LETTERI refers to the standard corporate letterhead paper (8.5 inches x 11
inches), LETTERZ2 refers to the smaller corporate letterhead paper (6 inches x 9
inches), and LETTERS refers to the president’s personalized letterhead paper.

Enclose strings containing lowercase letters, blanks, or other nonalphanumeric
characters (including spaces) in quotation marks (“”).

/LENGTH=n

Specifies the physical length of a form page in lines. The default page length is
66 lines, which assumes a standard page length of 11 inches with 6 lines of print
per inch. The parameter n must be a positive integer greater than zero and not
more than 255.

The print symbiont sets the page length of the device equal to the form length.
This enables the driver to compute the number of line feeds for devices lacking
mechanical form feed.

/MARGIN=(option][,...])
Specifies one or more of the four margin options: BOTTOM, LEFT, RIGHT, and
TOP.

BOTTOM=n Specifies the number of blank lines between the end of the print
image area and the end of the physical page; the value of n
must be between 0 and the value of the /[LENGTH qualifier.
The default value is 6, which generally means a 1-inch bottom
margin.

LEFT=n Specifies the number of blank columns between the leftmost
printing position and the print image area; the value of n
must be between 0 and the value of the /WIDTH qualifier. The
default is 0, which means that the print image area starts as far
to the left of the paper as the printer can go.

RIGHT=n Specifies the number of blank columns between the /WIDTH
qualifier and the image area; the value of n must be between
0 and the value of the /WIDTH qualifier. When determining
the value of the RIGHT option, start at the /WIDTH value and
count to the left. The default value is 0, which means that the
print image extends as far to the right as the /WIDTH value.

TOP=n Specifies the number of blank lines between the top of the
physical page and the top of the print image; the value of n
must be between 0 and the value of the /[LENGTH qualifier.
The default value is 0, which generally means that there is no
top margin.

DEFINE/FORM

/PAGE_SETUP=(modulel[,...])

/INOPAGE_SETUP (default)

Specifies one or more modules that set up the device at the start of each page.
The modules are located in the device control library. While the form is mounted,
the system extracts the specified module and copies it to the printer before each
page is printed.

/SETUP=(modulel,...])

Specifies one or more modules that set up the device at the start of each file. The
modules are located in the device control library. While the form is mounted, the
system extracts the specified module and copies it to the printer before each file
is printed.

For more information on device control modules, see the chapter on Batch and
Print Operations in the HP OpenVMS System Manager’s Manual.

/SHEET_FEED

I/NOSHEET_FEED (default)

Specifies that print jobs pause at the end of every physical page so that a new
sheet of paper can be inserted.

ISTOCK=string

Specifies the type of paper stock to be associated with the form. The string
parameter can be a string of 1 to 31 characters, including the dollar sign,
underscore, and all alphanumeric characters. If you specify the /STOCK qualifier,
you must specify the name of the stock to be associated with the form. If you do
not specify the /STOCK qualifier, the name of the stock will be the same as the
name of the form.

You can create any string that you want; however, when you are creating forms
with the same stock, be sure that the /STOCK string is identical in all the
DEFINE/FORM commands that refer to the same type of paper.

If you are defining a number of forms to provide different formatting options,
specify the same stock type for each form. Jobs that request any of these forms
will print on the same queue. If you want to modify the stock string associated
with a form, you can do this only if the form is not referenced by any job or queue.

/TRUNCATE (default)

/NOTRUNCATE

Discards any characters that exceed the current line length (specified by the
/WIDTH and /MARGIN=RIGHT qualifiers). The /TRUNCATE qualifier is
incompatible with the /WRAP qualifier. If you specify both the /NOTRUNCATE
and /NOWRAP qualifiers, the printer prints as many characters on a line as
possible. This combination of qualifiers is useful for some types of graphics
output.

/WIDTH=n

Specifies the physical width of the paper in terms of columns or character
positions. The parameter n must be an integer from 0 to 65,535; the default
value is 132.

Any lines exceeding this value wrap if the /WRAP qualifier is in effect or are
truncated if the /TRUNCATE qualifier is in effect. (If both the /NOTRUNCATE
and /NOWRAP qualifiers are in effect, lines print as far as possible.)

The /MARGIN=RIGHT qualifier overrides the /WIDTH qualifier when
determining when to wrap lines of text.

DCLI-167

DEFINE/FORM

/WRAP

/INOWRAP (default)

Causes lines that exceed the current line length (specified by the /WIDTH and
/MARGIN=RIGHT qualifiers) to wrap onto the next line. The /WRAP qualifier is
incompatible with the /TRUNCATE qualifier. If you specify both the /NOWRAP
and /NOTRUNCATE qualifiers, the printer prints as many characters on a line
as possible. This combination of qualifiers is useful for some types of graphics
output.

Example

$ DEFINE/FORM /MARGIN=(TOP=6,LEFT=10) CENTER 3

The DEFINE/FORM command in this example defines the form CENTER to have
a top margin of 6 and a left margin of 10. The defaults remain in effect for both
bottom margin (6) and right margin (0). The form is assigned the number 3.

DCLI-168

DEFINE/KEY

DEFINE/KEY

Format

Parameters

Associates an equivalence string and a set of attributes with a key on the
terminal keyboard.

DEFINE/KEY key-name equivalence-string

key-name

Specifies the name of the key that you are defining. All definable keys on VT52
terminals are located on the numeric keypad. On VT100-series terminals, you

can define the left and right arrow keys as well as all the keys on the numeric

keypad. On terminals with LK201 keyboards, the following three types of keys
can be defined:

e Keys on the numeric keypad
e Keys on the editing keypad (except the up and down arrow keys)

e Keys on the function key row across the top of the keyboard (except keys F1
to F5)

The following table lists the key names in column one. The remaining three
columns indicate the key designations on the keyboards of the three different
types of terminals that allow key definitions.

Key Name LK201 VT100-Series VT52
PF1 PF1 PF1 [blue]
PF2 PF2 PF2 [red]
PF3 PF3 PF3 [gray]
PF4 PF4 PF4 - -

KPO, KP1, ..., KP9 0,1,..,9 0,1,..9 0,1,..,9
Period

Comma , , n/a
Minus - - n/a
Enter Enter ENTER ENTER
Left — — —
Right — — —

Find (E1) Find — —
Insert Here (E2) Insert Here — —
Remove (E3) Remove — —
Select (E4) Select — —

Prev Screen (E5) Prev Screen — —

DCLI-169

DEFINE/KEY

Description

DCLI-170

Key Name LK201 VT100-Series VT52
Next Screen (E6) Next Screen — —
Help Help — —
Do Do — —
F6, F7, ..., F20 F6, F7, ..., F20 — —

Some definable keys are enabled for definition all the time. Others, including
KPO to KP9, Period, Comma, and Minus, must be enabled for definition
purposes. You must enter either the SET TERMINAL/APPLICATION or the
SET TERMINAL/NONUMERIC command before using these keys.

On LK201 keyboards, you cannot define the up and down arrow keys or function
keys F1 to F5. The left and right arrow keys and the F6 to F14 keys are reserved
for command line editing. You must enter the SET TERMINAL/NOLINE_
EDITING command before defining these keys. You can also press Ctrl/V to
enable keys F7 to F14. Note that Ctrl/V will not enable the F6 key.

equivalence-string
Specifies the character string to be processed when you press the key. Enclose the
string in quotation marks (“”) to preserve spaces and lowercase characters.

The DEFINE/KEY command enables you to assign definitions to the peripheral
keys on certain terminals. The terminals include VT52s, the VT100 series, and
terminals with LK201 keyboards.

To define keys on the numeric keypads of these terminals, you must first enter the
SET TERMINAL/APPLICATION or SET TERMINAL/NONUMERIC command.
When your terminal has this setting, the system interprets the keystrokes from
keypad keys differently. For example, with SET TERMINAL/NONUMERIC in
effect, pressing the 1 key on the keypad does not send the character “1” to the
system.

The equivalence string definition can contain different types of information.
Definitions often consist of DCL commands. For example, you can assign SHOW
TIME to the zero key. When you press 0, the system displays the current date
and time. Other definitions can consist of text strings to be appended to command
lines. When you define a key to insert a text string, use the /NOTERMINATE
qualifier so that you can continue typing more data after the string has been
inserted.

In most instances you will want to use the echo feature. The default setting is
/ECHO. With /ECHO set, the key definition is displayed on the screen each time
you press the key.

You can use the /STATE qualifier to increase the number of key definitions
available on your terminal. The same key can be assigned any number of
definitions, as long as each definition is associated with a different state. State
names can contain any alphanumeric characters, dollar signs, and underscores.
Be sure to create a state name that is easy to remember and type and, if possible,
one that might remind you of the types of definitions you created for that state.
For example, you can create a state called SETSHOW. The key definitions for this
state might all refer to various DCL SET and SHOW commands. If you are used
to the EDT Editor, you might define a state as GOLD. Then, using the /IF_STATE

Qualifiers

DEFINE/KEY

qualifier, you can assign different definitions to keys used in combination with a
key defined as GOLD.

The SET KEY command changes the keypad state. Use the SHOW KEY
command to display key definitions and states.

/ECHO (default)

/INOECHO

Displays the equivalence string on your screen after the key has been pressed.
You cannot use the /NOECHO qualifier with the /NOTERMINATE qualifier.

/ERASE

INOERASE (default)

Determines whether the current line is erased before the key translation is
inserted.

/IF_STATE=(state-name,...)

INOIF_STATE

Specifies a list of one or more states, one of which must be in effect for the key
definition to work. The /NOIF_STATE qualifier has the same meaning as /IF_
STATE=current_state. The state name is an alphanumeric string. States are
established with the /SET_STATE qualifier or the SET KEY command. If you
specify only one state name, you can omit the parentheses. By including several
state names, you can define a key to have the same function in all the specified
states.

/LOCK_STATE

/NOLOCK_STATE (default)

Specifies that the state set by the /SET_STATE qualifier remain in effect until
explicitly changed. (By default, the /SET_STATE qualifier is in effect only for
the next definable key you press or the next read-terminating character that you
type.) This qualifier can be specified only with the /SET_STATE qualifier.

/ILOG (default)

/NOLOG

Displays a message indicating that the key definition has been successfully
created.

ISET_STATE=state-name

I/NOSET_STATE (default)

Causes the specified state-name to be set when the key is pressed. (By default,
the current locked state is reset when the key is pressed.) If you have not
included this qualifier with a key definition, you can use the SET KEY command
to change the current state. The state name can be any alphanumeric string;
specify the state as a character string enclosed in quotation marks.

ITERMINATE

/INOTERMINATE (default)

Specifies whether the current equivalence string is to be processed immediately
when the key is pressed (equivalent to entering the string and pressing Return).
By default, you can press other keys before the definition is processed. This
allows you to create key definitions that insert text into command lines, after
prompts, or into other text that you are entering.

DCLI-171

DEFINE/KEY

Examples

DCLI-172

1.

$ DEFINE/KEY PF3 "SHOW TIME" /TERMINATE
%DCL-I-DEFKEY, DEFAULT key PF3 has been defined

$ [PFg
$ SHOW TIME
14-DEC-2001 14:43:59

In this example, the DEFINE/KEY command defines the PF3 key on the
keypad to perform the SHOW TIME command. DEFAULT refers to the
default state.

$ DEFINE/KEY PF1 "SHOW " /SET_STATE=GOLD/NOTERMINATE/ECHO
%DCL-I-DEFKEY, DEFAULT key PF1l has been defined

$ DEFINE/KEY PF1 " DEFAULT" /TERMINATE/IF_STATE:GOLD/ECHO
%DCL-I-DEFKEY, GOLD key PF1 has been defined

$ [PF]

S [PF1
$ SHOW DEFAULT
DISK1: [JOHN.TEST]

In this example, the first DEFINE/KEY command defines the PF1 key to

be the string SHOW. The state is set to GOLD for the subsequent key. The
/NOTERMINATE qualifier instructs the system not to process the string
when the key is pressed. The second DEFINE/KEY command defines the use
of the PF1 key when the keypad is in the GOLD state. When the keypad is in
the GOLD state, pressing PF1 causes the current read to be terminated.

If you press the PF1 key twice, the system displays and processes the SHOW
DEFAULT command.

The word DEFAULT in the second line of the example indicates that the PF1
key has been defined in the default state. Note the space before the word

DEFAULT in the second DEFINE/KEY command. If the space is omitted, the
system fails to recognize DEFAULT as the keyword for the SHOW command.

$ SET KEY/STATE=ONE

%DCL-I-SETKEY, keypad state has been set to ONE
$ DEFINE/KEY PF1 "ONE"

$DCL-I-DEFKEY, ONE key PF1 has been defined

S DEFINE/KEY/IF_STATE:ONE PF1 "ONE"
$DCL-I-DEFKEY, ONE key PF1 has been defined

This example shows two ways to define the PF1 key to be “ONE” for state
ONE.

The second DEFINE/KEY command shows the preferred method for defining
keys. This method eliminates the possibility of error by specifying the state
in the same command as the key definition.

DELETE

DELETE

Format

Parameter

Description

Qualifiers

Deletes one or more files from a mass storage disk volume.

Requires delete (D) access to the file and write (W) access to the parent
directory. If the target file is itself a directory, the directory must be
empty.

DELETE filespec],...]

filespecl,...]

Specifies the names of one or more files to be deleted from a mass storage disk
volume. The first file specification must contain an explicit or default directory
specification plus an explicit file name, file type, and version number. Subsequent
file specifications need contain only a version number; the defaults will come from
the preceding specification. The asterisk (*) and the percent sign (%) wildcard
characters can be used in any of the file specification fields.

If you omit the directory specification or device name, the current default device
and directory are assumed.

If the file specification contains a null version number (a semicolon (;) followed
by no file version number), a version number of 0, or one or more spaces in the
version number, the latest version of the file is deleted.

If an input-file specification parameter is a symbolic link, the symbolic link itself
is deleted.

To delete more than one file, separate the file specifications with either commas
(,) or plus signs (+).

The DELETE command deletes one or more files from a mass storage disk
volume. This command requires delete (D) access to the file and write (W) access
to the parent directory. If the target file is itself a directory, the directory must be
empty.

/BACKUP

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /BACKUP qualifier selects files according to the dates of their most recent
backups. This qualifier is incompatible with the /CREATED, /EXPIRED, and
/MODIFIED qualifiers, which also allow you to select files according to time
attributes. If you specify none of these four time qualifiers, the default is the
/CREATED qualifier.

/BEFORE[=time]

Selects only those files dated prior to the specified time. You can specify time
as absolute time, as a combination of absolute and delta times, or as one of
the following keywords: BOOT, LOGIN, TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /BEFORE qualifier

DCLI-173

DELETE

DCLI-174

to indicate the time attribute to be used as the basis for selection: /BACKUP,
/CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the OpenVMS User’s
Manual or the online help topic Date.

/BY_OWNER([=uic]
Selects only those files whose owner user identification code (UIC) matches the
specified owner UIC. The default UIC is that of the current process.

Specify the UIC by using standard UIC format as described in the HP OpenVMS
Guide to System Security.

/CONFIRM

/NOCONFIRM (default)

Controls whether a request is issued before each delete operation to confirm that
the operation should be performed on that file. The following responses are valid:

YES NO QUIT
TRUE FALSE Ctrl/Z
1 0 ALL

You can use any combination of uppercase and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for example,
T, TR, or TRU for TRUE), but these abbreviations must be unique. Affirmative
answers are YES, TRUE, and 1. Negative answers include: NO, FALSE, 0, and
pressing Return. Entering QUIT or pressing Ctrl/Z indicates that you want to
stop processing the command at that point. When you respond by entering ALL,
the command continues to process, but no further prompts are given. If you type
a response other than one of those in the list, DCL issues an error message and
redisplays the prompt.

/CREATED (default)

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The
/CREATED qualifier selects files based on their dates of creation. This qualifier is
incompatible with the /BACKUP, /EXPIRED, and /MODIFIED qualifiers, which
also allow you to select files according to time attributes. If you specify none of
these four time qualifiers, the default is the /CREATED qualifier.

/ERASE

/NOERASE (default)

When you delete a file, the area in which the file was stored is returned to the
system for future use. The data that was stored in that location still exists in the
system until new data is written over it. When you specify the /ERASE qualifier,
the storage location is overwritten with a system specified pattern so that the
data no longer exists.

[EXCLUDE-=(filespecl,...])

Excludes the specified files from the delete operation. You can include a directory
but not a device in the file specification. The asterisk (*) and the percent sign
(%) wildcard characters are allowed in the file specification. However, you cannot
use relative version numbers to exclude a specific version. If you specify only one
file, you can omit the parentheses.

DELETE

/EXPIRED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /EXPIRED qualifier selects files according to their expiration dates. (The
expiration date is set with the SET FILE/EXPIRATION_DATE command.)
The /EXPIRED qualifier is incompatible with the /BACKUP, /CREATED, and
/MODIFIED qualifiers, which also allow you to select files according to time
attributes. If you specify none of these four time qualifiers, the default is the
/CREATED qualifier.

/GRAND_TOTAL (Alpha/lé4 only)

Displays the total number of files and blocks or bytes deleted. The display is
shown as blocks or bytes depending on the current default setting. You can
use SHOW PROCESS/UNITS to display the current default. To change the
default, execute the DCL command SET PROCESS/UNITS=BYTES or SET
PROCESS/UNITS=BLOCKS.

/IGNORE=INTERLOCK (Alpha/l64 only)
Allows you to mark a write-accessed file for deletion. This removes the file name
entry, and the file is deleted when it is closed by the final user.

/LOG

/NOLOG (default)

Controls whether the DELETE command displays the file specification of each file
after its deletion.

/MODIFIED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /MODIFIED qualifier selects files according to the dates on which they were
last modified. This qualifier is incompatible with the /BACKUP, /CREATED,
and /EXPIRED qualifiers, which also allow you to select files according to time
attributes. If you specify none of these four time modifiers, the default is the
/CREATED qualifier.

ISINCE[=time]

Selects only those files dated on or after the specified time. You can specify
time as absolute time, as a combination of absolute and delta times, or as one
of the following keywords: BOOT, JOB_LOGIN, LOGIN, TODAY (default),
TOMORROW, or YESTERDAY. Specify one of the following qualifiers with
the /SINCE qualifier to indicate the time attribute to be used as the basis for
selection: /BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information about specifying time values, see the OpenVMS User’s
Manual or the online help topic Date.

/STYLE=keyword
Specifies the file name format for display purposes while deleting files.

The valid keywords for this qualifier are CONDENSED and EXPANDED.
Descriptions are as follows:

Keyword Explanation
CONDENSED Displays the file name representation of what is generated
(default) to fit into a 255-length character string. This file name may

contain a DID or a FID in the file specification.

DCLI-175

DELETE

Keyword Explanation

EXPANDED Displays the file name representation of what is stored
on disk. This file name does not contain any DID or FID
abbreviations.

The keywords CONDENSED and EXPANDED are mutually exclusive. This
qualifier specifies which file name format is displayed in the output message,
along with the confirmation if requested.

File errors are displayed with the CONDENSED file specification unless the
EXPANDED keyword is specified.

See the OpenVMS User’s Manual for more information.

Examples

1. $ DELETE COMMON.SUM;2

The DELETE command deletes the file COMMON.SUM;2 from the current
default disk and directory.

2. S DELETE *.OLD;*

The DELETE command deletes all versions of files with file type .OLD from
the default disk directory.

3. S DELETE ALPHA.TXT;*, BETA;*, GAMMA;*

The DELETE command deletes all versions of the files ALPHA.TXT,
BETA.TXT, and GAMMA.TXT. The command uses the file type of the first
input file as a temporary default. Note, however, that some form of version
number (here specified as the asterisk (*) wildcards) must be included in
each file specification.

4. $ DELETE /BEFORE=15-APR/LOG *.DAT;*
$DELETE-I-FILDEL, DISK2:[MAIN]ASSIGN.DAT;1 deleted (5 block)
%DELETE-I-FILDEL, DISK2:[MAIN]BATCHAVE.DAT;3 deleted (4 blocks)
%DELETE-I-FILDEL, DISK2:[MAIN]BATCHAVE.DAT;2 deleted (4 blocks)
%DELETE-I-FILDEL, DISK2:[MAIN]BATCHAVE.DAT;1 deleted (4 blocks)
%DELETE-I-FILDEL, DISK2:[MAIN]CANCEL.DAT;1 deleted (2 blocks)
%DELETE-I-FILDEL, DISK2: [MAIN]DEFINE.DAT;1 deleted (3 blocks)
%DELETE-I-FILDEL, DISK2:[MAIN]EXIT.DAT;1 deleted (1 block)
%DELETE-I-TOTAL, 7 files deleted (23 blocks)

The DELETE command deletes all versions of all files with file type .DAT
that were either created or updated before April 15 of this year. The /LOG
qualifier not only displays the name of each file deleted, but also the total
number of files deleted.

5. $ DELETE A.B;

The DELETE command deletes the file A.B with the highest version number.

DCLI-176

10.

DELETE

$ DELETE/CONFIRM/SINCE=TODAY [MEIER.TESTFILES]*.OBJ;*
DISKO: [MEIER.TESTFILES]AVERAG.OBJ;1, delete? [N]:Y
DISKO: [MEIER.TESTFILES] SCANLINE.OBJ;4, delete? [N]:N
DISKO: [MEIER.TESTFILES] SCANLINE.OBJ;3, delete? [N]:N
DISKO: [MEIER.TESTFILES] SCANLINE.OBJ;2, delete? [N]:N
DISKO: [MEIER.TESTFILES]WEATHER.OBJ;3, delete? [N]:Y

The DELETE command examines all versions of files with file type .OBJ in
the subdirectory [MEIER.TESTFILES], and locates those that were created or
modified today. Before deleting each file, it requests confirmation that the file
should be deleted. The default response—N—is given in brackets.

[
[
[
[

$ DIRECTORY [.SUBTEST]

$DIRECT-W-NOFILES, no files found

$ SET SECURITY/PROTECTION=(OWNER:DELETE) SUBTEST.DIR
$ DELETE SUBTEST.DIR;1

Before the directory file SUBTEST.DIR is deleted, the DIRECTORY command
is used to verify that there are no files cataloged in the directory. The SET
SECURITY/PROTECTION command redefines the protection for the directory
file so that it can be deleted; then the DELETE command deletes it.

$ DELETE DALLAS"THOMAS SECRET"::DISK0:[000,000]DECODE.LIS;1

This DELETE command deletes the file DECODE.LIS;1 from the directory
[000,000] on device DISKO at remote node DALLAS. The user name and
password follow the remote node name.

$ DELETE NODE12::"DISKI1:DEAL.BIG"
$ DELETE NODE12::DISKI:DEAL.BIG;

Either of these DELETE commands can be used to delete the file DEAL.BIG
on device ZZZ1 at remote node NODE12. Note that the DELETE command
requires an explicit version number in a file specification, but the file to be
deleted is on a remote node whose file syntax does not recognize version
numbers. (NODE12 is an RT-11 node.) Therefore, the file specification must
either be enclosed in quotation marks (“”) or entered with a null version
number (that is, a trailing semicolon [;]).

$ DELETE/GRAND TOTAL *.txt;*
%DELETE-I-TOTAL, 61 files deleted (274KB)

The output display in this example shows that 61 files were deleted for a total
of 274KB. The process is currently set to display file sizes in bytes. To change
future displays to show blocks, use the SET PROCESS/UNITS=BLOCKS

command.

DCLI-177

DELETE/BITMAP (Alpha/l64 Only)

DELETE/BITMAP (Alpha/l64 Only)

Enables the system manager to delete one or more active bitmaps to make
memory resources available. If a minicopy bitmap is deleted, then former virtual
unit members can be added only with a full copy operation. For more information
about bitmaps, see the HP Volume Shadowing for OpenVMS.

Requires ownership of the device or VOLPRO (volume protection)

privilege.
Format

DELETE/BITMAP n[,n,...]
Parameter

n[,n,...]

Specifies the bitmap ID for one or more bitmaps to delete.
Qualifier

/LOG

/NOLOG (default)

Specifies whether to list each bitmap when it is deleted.
Example

$ SHOW DEVICE /BITMAP DSA12

Device BitMap Size Percent Type of Master Active

Name ID (Bytes) Populated Bitmap Node

DSA12: 00020007 8364 0% Minimerge NODE1 Yes
00040008 8364 0% Minimerge NODE2 Yes

$ DELETE/BITMAP 00020007

In this example, the SHOW DEVICE command output lists two bitmaps. The
DELETE command deletes the bitmap with an ID of 00020007.

DCLI-178

DELETE/CHARACTERISTIC

DELETE/CHARACTERISTIC

Format

Parameter

Description

Qualifier

Example

Deletes the definition of a queue characteristic previously established with the
DEFINE/CHARACTERISTIC command. The /CHARACTERISTIC qualifier is
required.

Requires OPER (operator) privilege.
DELETE/CHARACTERISTIC characteristic-name

characteristic-name
Specifies the name of the characteristic to be deleted.

The DELETE/CHARACTERISTIC command deletes a characteristic from the
system characteristic table.

To modify a characteristic’s name or number, you must delete and redefine the
characteristic.

/LOG

/NOLOG (default)

Controls whether the DELETE/CHARACTERISTIC command displays the name
of each characteristic after its deletion.

$ DEFINE/CHARACTERISTIC BLUE 7

$ DELETE/CHARACTERISTIC BLUE
$ DEFINE/CHARACTERISTIC BLUE INK 7

The DEFINE/CHARACTERISTIC command in this example establishes the
characteristic BLUE, with number 7, to mean blue ink ribbons for printers. To
change the name of the characteristic, enter the DELETE/CHARACTERISTIC
command. Then enter another DEFINE/CHARACTERISTIC command to rename
the characteristic to BLUE_INK, using the characteristic number 7.

DCLI-179

DELETE/ENTRY

DELETE/ENTRY

Format

Parameters

Description

Qualifier

DCLI-180

Deletes one or more print or batch jobs. The jobs can be in progress or waiting in
the queue. The /ENTRY qualifier is required.

Requires manage (M) access to the queue, or delete (D) access to the
specified jobs.

DELETE/ENTRY=(entry-number|,...]) [queue-namel[:]]

entry-numberf,...]

Specifies the entry number (or a list of entry numbers) of jobs to be deleted. If
you specify only one entry number, you can omit the parentheses. If you do not
specify a queue name, you can delete entries from multiple queues.

The system assigns a unique entry number to each queued print or batch job in
the system. By default, the PRINT and SUBMIT commands display the entry
number when they successfully queue a job for processing. These commands also
create or update the local symbol $ENTRY to reflect the entry number of the
most recently queued job. To find a job’s entry number, enter the SHOW ENTRY
or SHOW QUEUE command.

queue-namel[:]

Specifies the name of the queue where the jobs are located. The queue name can
refer either to the queue to which the job was submitted or to the queue where
the job is executing. The queue-name parameter is optional syntax; however,
when you specify a queue name, the operating system uses it to verify an entry in
the specific queue before deleting the entry.

The DELETE/ENTRY command deletes one or more jobs from a queue. If you
specify a queue name and more than one entry number with a DELETE/ENTRY
command, all the jobs must be located in the same queue.

You can delete jobs that are currently executing, as well as jobs that are in other
states. For example, DELETE/ENTRY can delete a job that is currently in a
holding or a pending state.

/ILOG

I/NOLOG (default)

Controls whether the DELETE/ENTRY command displays the entry number of
each batch or print job that it deletes.

Examples

1.

DELETE/ENTRY

$ PRINT/HOLD ALPHA.TXT
Job ALPHA (queue SYSSPRINT, entry 110) holding

$ DELETE/ENTRY=110 SYSSPRINT

The PRINT command in this example queues a copy of the file ALPHA.TXT
in a HOLD status, to defer its printing until a SET ENTRY/RELEASE
command is entered. The system displays the job name, the entry number,
the name of the queue in which the job was entered, and the status. Later,
the DELETE/ENTRY command requests that the entry be deleted from the
queue SYS$PRINT.

$ SUBMIT/AFTER=18:00 WEATHER

Job WEATHER (queue SYS$BATCH, entry 203) holding until 14-DEC-2001
18:00

$ SUBMIT/HOLD/PARAMETERS=SCANLINE DOFOR

Job DOFOR (queue SYS$BATCH, entry 210) holding

$ DELETE/ENTRY=(203,210) /LOG
%DELETE-W-SEARCHFAIL, error searching for 203
-JBC-E-NOSUCHENT, no such entry
%$DELETE-I-DELETED, entry 210 aborting or deleted

The SUBMIT commands in this example queue the command procedures
WEATHER.COM and DOFOR.COM for processing as batch jobs.
WEATHER.COM is queued for execution after 6:00 P.M. DOFOR.COM

is queued in a HOLD status and cannot execute until you enter a SET
ENTRY/RELEASE command. Later, the DELETE/ENTRY/LOG command
requests that the system delete both these entries from the queue and display
a message indicating that the entries have been deleted.

The job WEATHER (entry 203) has completed by the time the
DELETE/ENTRY/LOG command is entered; therefore, entry 203 no

longer exists. Note that a message indicates that there is no entry 203

in the queue. The job DOFOR (entry 210) is in a HOLD status when the
DELETE/ENTRY/LOG command is entered. Thus, the system deletes entry
210 from the queue and displays a message to that effect.

$ PRINT CHAPTERS.MEM
Job CHAPTER8 (queue SYSSPRINT, entry 25) pending on queue SYSSPRINT

$ SHOW QUEUE SYSSPRINT
Printer queue SYSSPRINT, on PARROT::PARROTSLPAO, mounted form DEFAULT

Entry Jobname Username Status
24 CHAPTER7 SMITH Pending
25 CHAPTERS SMITH Pending

$ DELETE/ENTRY=25 SYSSPRINT

DCLI-181

DELETE/ENTRY

DCLI-182

The PRINT command in this example submits the file CHAPTER8.MEM to
the printer queue SYS$PRINT. Later, user SMITH needs to edit the file again
before printing it. Using the SHOW QUEUE command, SMITH verifies that
the job is still pending and that the entry number for the job is 25. SMITH
then enters the DELETE/ENTRY command to delete the job from the queue.

DELETE/FORM

DELETE/FORM

Format

Parameter

Description

Qualifier

Examples

Deletes a form (for printer or terminal queues) previously established with the
DEFINE/FORM command. The /FORM qualifier is required.

Requires OPER (operator) privilege.
DELETE/FORM form-name

form-name
Specifies the name of the form to be deleted.

The DELETE/FORM command deletes a form definition from the system forms
table. When you delete a form, there can be no outstanding references to the form
either in queues that have been mounted with the form or by jobs requesting
that form. To locate all references to the form, use the SHOW QUEUE/FULL
command.

To modify a form’s name or number, you must delete and redefine the form.
Values for any DEFINE/FORM qualifier can be modified by reentering the
DEFINE/FORM command with different values, as long as the form name and
number remain the same.

/LOG

I/NOLOG (default)

Controls whether the DELETE/FORM command displays the name of each form
after its deletion.

1. $ DELETE/FORM CENTER

The DELETE/FORM command in this example deletes the form named
CENTER.

2. $ DEFINE/FORM -
_$ /DESCRIPTION="letter size continuous form paper" CFLET 7

$ DELETE/FORM CFLET
$ DEFINE/FORM -
S /DESCRIPTION="letter size continuous form paper" LETTER CONT 7

The DEFINE/FORM command in this example establishes the form CFLET
with number 7 to mean continuous-form paper 8.5 inches by 11 inches. To
change the name of the form, delete the form named CFLET and define a new
one named LETTER_CONT.

DCLI-183

DELETE/INTRUSION_RECORD

DELETE/INTRUSION_RECORD

Format

Parameter

Description

Qualifiers

Examples

DCLI-184

Removes an entry from the break-in database.

Requires CMKRNL (change mode to kernel) and SECURITY privileges.

DELETE/INTRUSION_RECORD source

source

Specifies the name of the device or the remote system where the user is
attempting to log in. The source name can be presented in the syntax of another
operating system domain, for example, one that is case sensitive or conflicts
with DCL syntax rules. In such cases, you must enclose the source parameter in
quotation marks.

Use the DELETE/INTRUSION_RECORD command to remove an entry from
the break-in database. For example, if the user Hammer repeatedly attempted
to log in to terminal TTA24 with an expired password, the SHOW INTRUSION
command would display the following entry:

Intrusion Type Count Expiration Source

TERM_USER INTRUDER 9 10:29:39.16 TTA24 : HAMMER

The terminal is locked out of the system because the login failure limit has
been reached. When Hammer approaches you and you identify the problem as
an expired password, you can then use the DELETE/INTRUSION command to
remove the record from the break-in database.

INODE=(node-name],...])

Deletes the node information relating to the specified nodes. If the specified
nodes are the only nodes in the node information list, the intrusion record is also
deleted.

1. $ DELETE/INTRUSION RECORD TTC2:

In this example, the DELETE/INTRUSION_RECORD command removes all
intrusion records generated by break-in attempts on TTC2. No user name is
specified because none of the login failures occurred for valid users.

2. $ DELETE/INTRUSION RECORD "AV34C2/LC-2-10":FORGETFUL

In this example, the source of the break-in is a local terminal that is
connected to a terminal server. To delete the record from the break-in
database, you must enclose the terminal port name within quotation marks
so that the operating system interprets the slash as a foreign character and
not as a qualifier.

DELETE/INTRUSION_RECORD

$ DELETE/INTRUSION RECORD NODEL::HAMMER

This command removes all intrusion entries generated from node NODE1 for
user HAMMER.

$ DELETE/INTRUSION RECORD/NODE=(CAPPY,INDI)
$ SHOW INTRUSION
NETWORK SUSPECT 2 26-JUL-2001 08:51:25.66 BARNEY::HAMMER

Node: TSAVO Count: 2

This command removes intrusion entries for the nodes CAPPY and INDI.

$ DELETE/INTRUSION RECORD/NODE=FOOBAR

$ SHOW INTRUSION
NETWORK SUSPECT 2 26-JUL-2001 08:51:25.66 BARNEY::HAMMER
Node: TSAVO Count: 2

This command removes intrusion entries for the node FOOBAR.

$ DELETE/INTRUSION_RECORD/NODE=TSAVO
$ SHOW INTRUSION
$SHOW-F-NOINTRUDERS, no intrusion records match specification

This command attempts to remove intrusion entries for node TSAVO, however
there were no intrusion records for this node.

DCLI-185

DELETE/KEY

DELETE/KEY

Format

Parameter

Qualifiers

Examples

DCLI-186

Deletes key definitions that have been established by the DEFINE/KEY
command. The /KEY qualifier is required.

DELETE/KEY [key-name]

key-name
Specifies the name of the key to be deleted. This parameter is incompatible with
the /ALL qualifier.

/ALL

Deletes all key definitions in the specified state; the default is the current state.
If you use the /ALL qualifier, do not specify a key name. Use the /STATE qualifier
to specify one or more states.

/LOG (default)

/NOLOG

Controls whether messages are displayed indicating that the specified key
definitions have been deleted.

/STATE=(state-name],...])

INOSTATE (default)

Specifies the name of the state for which the specified key definition is to be
deleted. The default state is the current state. If you specify only one state name,
you can omit the parentheses. State names can be any alphanumeric string.

1. $ DELETE/KEY/ALL
%DCL-I-DELKEY, DEFAULT key PF1l has been deleted
%DCL-I-DELKEY, DEFAULT key PF2 has been deleted
%DCL-I-DELKEY, DEFAULT key PF3 has been deleted
%DCL-I-DELKEY, DEFAULT key PF4 has been deleted

$

In this example, the user has defined keys PF1 to PF4 in the default state.
The DELETE/KEY command deletes all key definitions in the current state,
which is the default state.

2. $ DEFINE/KEY PF3 "SHOW TIME" /TERMINATE
$DCL-I-DEFKEY, DEFAULT key PF3 has been defined
5 P
$ SHOW TIME
14-DEC-2001 14:43:59

$ DELETE/KEY PF3

%DCL-I-DELKEY, DEFAULT key PF3 has been deleted
s [PF

$

DELETE/KEY

In this example, the DEFINE/KEY command defines the PF3 key on the
keypad as SHOW TIME. To delete the definition for the PF3 key, use the
DELETE/KEY command. When the user presses PF3, only the system
prompt is displayed.

DCLI-187

DELETE/MAILBOX (Alpha/I64 Only)

DELETE/MAILBOX (Alpha/l64 Only)

Format

Parameter

Qualifier

Example

DCLI-188

Deletes the specified mailbox.
Requires PRMMBX (permanent mailbox) privilege.

DELETE/MAILBOX name

name
Specifies the name of the mailbox device (MBAn) or the logical name pointing to
the mailbox to be deleted

/ILOG
I/NOLOG (default)
Displays a notice when the mailbox is marked for deletion.)

$SHOW LOGICAL MY MBX
"MY MBX" = "MBA37:" (LNMSSYSTEM TABLE)
$SHOW DEVICE MBA37

Device Device Error
Name Status Count
MBA37: Online 0

$DELETE/MAILBOX/LOG MBA37

%$DELETE-I-MBXDEL, Mailbox MBA37 has been marked for deletion
SSHOW DEV MBA37

%SYSTEM-W-NOSUCHDEV, no such device available

This example shows the status of mailbox MBA37, which is pointed to by logical
name MY_MBX, before and after it is deleted.

DELETE/QUEUE

DELETE/QUEUE

Format

Parameter

Description

Qualifier

Deletes a print or batch queue created by the INITIALIZE/QUEUE command,
and deletes all the jobs in the queue. The /QUEUE qualifier is required.

Requires manage (M) access to the queue.

DELETE/QUEUE queue-namel:]

queue-namel:]
Specifies the name of the queue to be deleted.

To delete a queue, use the following procedure:

1. Stop the specified queue by using the STOP/QUEUE/NEXT command.

The STOP/QUEUE/NEXT command stops the specified queue after all
executing jobs have completed processing. Wait for any executing jobs to
complete processing.

2. Make sure that there are no outstanding references to the specified queue.

If a generic queue refers to the specified queue as a target execution queue,
you must remove the specified queue from the list of target execution queues.

If a logical queue refers to the specified queue, you must deassign the logical
queue.

If the specified queue is a generic queue, jobs that were entered initially

on the generic queue and still exist on any of its target queues count as
references to the specified queue. Before you can delete the specified queue,
you must delete any jobs that were submitted originally to the specified queue
and are executing on its target queues, or you must wait until these jobs have
completed processing.

3. To move jobs from the specified queue to another queue, use the SET
ENTRY/REQUEUE or ASSIGN/MERGE commands. Any jobs that remain in
the specified queue are deleted when the queue is deleted.

4. Enter the DELETE/QUEUE command.

/LOG

/NOLOG (default)

Controls whether the DELETE/QUEUE command displays the name of each
queue after it is deleted.

DCLI-189

DELETE/QUEUE

Example

$ INITIALIZE/QUEUE/DEFAULT=FLAG/START/ON=LPAO LPAO QUEUE

$ STOP/QUEUE/NEXT LPAO0 QUEUE
$ DELETE/QUEUE LPA0_QUEUE

In this example, the first command initializes and starts the printer queue
LPAO_QUEUE. The STOP/QUEUE/NEXT command stops the queue. The
DELETE/QUEUE command deletes the queue.

DCLI-190

DELETE/QUEUE/MANAGER

DELETE/QUEUE/MANAGER

Format

Parameter

Description

Qualifier

Example

Deletes a queue manager on a node or OpenVMS Cluster system. All queues and
jobs managed by the specified queue manager are also deleted. You must first
stop the queue manager. The /NAME_OF_MANAGER qualifier is required.

Requires OPER (operator) and SYSNAM (system logical name)
privileges.

DELETE/QUEUE/MANAGER/NAME_OF_MANAGER=name

None.

To delete a queue manager, use the following procedure:

1. Stop the specified queue manager by using the
STOP/QUEUE/MANAGER/CLUSTER/NAME_OF_MANAGER=name

command.

2. Enter the DELETE/QUEUE/MANAGER/NAME_OF_MANAGER command,
specifying the queue manager name.

INAME_OF_MANAGER=string

Identifies the name of the queue manager to be deleted. The /NAME_OF_
MANAGER qualifier is required. The required name value can be up to 31
characters long and can be a logical name.

$ DELETE/QUEUE/MANAGER/NAME_OF MANAGER=BATCH MANAGER

The DELETE/QUEUE/MANAGER/NAME_OF_MANAGER command in this
example deletes the queue manager named BATCH_MANAGER. The command
removes all references to the specified queue manager from the shared master file

of the queue database and deletes the queue and journal files associated with the
BATCH_MANAGER’s database.

DCLI-191

DELETE/SYMBOL

DELETE/SYMBOL

Format

Parameter

Description

Qualifiers

Examples

DCLI-192

Deletes one or all symbol definitions from a local or global symbol table. The
/SYMBOL qualifier is required.

DELETE/SYMBOL [symbol-name]

symbol-name

Specifies the name of the symbol to be deleted. A name is required unless the
/ALL qualifier is specified. The symbol-name parameter is incompatible with the
/ALL qualifier. Symbol names can have from 1 to 255 characters. By default,
the DELETE/SYMBOL command assumes that the symbol is in the local symbol
table for the current command procedure.

The DELETE/SYMBOL command deletes a symbol definition from a symbol
table. If you do not specify either the global or local symbol table, the symbol
is deleted from the local table. If you specify both the /GLOBAL and /LOCAL
qualifiers, only the last specified qualifier is accepted. The /SYMBOL qualifier
must always immediately follow the DELETE command name.

/ALL

Deletes all symbols from the specified table. If you do not specify either the
/LOCAL or the /GLOBAL qualifier, all symbols defined at the current command
level are deleted. The /ALL qualifier is incompatible with the symbol-name
parameter.

/GLOBAL
Deletes the symbol from the global symbol table of the current process.

/LOCAL (default)
Deletes the symbol from the local symbol table of the current process.

/ILOG

I/NOLOG (default)

Controls whether an informational message listing each symbol being deleted is
displayed.

1. $ DELETE/SYMBOL/ALL

In this example, the DELETE/SYMBOL command deletes all symbol
definitions at the current command level.

DELETE/SYMBOL

2. $ DELETE/SYMBOL/LOG KUDOS
%DCL-I-DELSYM, LOCAL symbol KUDOS has been deleted

In this example, the DELETE/SYMBOL command deletes the symbol KUDOS
from the local symbol table for the current process. In addition, the /LOG
qualifier causes an informational message, listing the symbol being deleted,
to be displayed.

3. $ DELETE/SYMBOL/GLOBAL PDEL

In this example, the DELETE/SYMBOL command deletes the symbol named
PDEL from the global symbol table for the current process.

DCLI-193

DEPOSIT

DEPOSIT

Format

Parameters

DCLI-194

Replaces the contents of the specified locations in virtual memory and displays
the new contents.

The DEPOSIT command, together with the EXAMINE command, aids in
debugging programs interactively. The DCL command DEPOSIT is similar to
the DEPOSIT command of the OpenVMS Debugger.

Requires user-mode read (R) and write (W) access to the virtual memory
location whose contents you wish to change.

DEPOSIT location=datal,...]

location

Specifies the starting virtual address or range of virtual addresses (where the
second address is larger than the first) whose contents are to be changed. A
location can be any valid integer expression containing an integer value, a symbol
name, a lexical function, or a combination of these entities. Radix qualifiers
determine the radix in which the address is interpreted; hexadecimal is the
initial default radix. Symbol names are always interpreted in the radix in which
they were defined. The radix operators %X, %D, or %0 can precede the location.
A hexadecimal value must begin with a number (or be preceded by %X).

The specified location must be within the virtual address space of the image
currently running in the process.

The DEPOSIT and EXAMINE commands maintain a pointer to a current memory
location. The DEPOSIT command sets this pointer to the byte following the last
byte modified; you can refer to this pointer by using a period (.) in subsequent
EXAMINE and DEPOSIT commands. If the DEPOSIT command cannot deposit
the specified data, the pointer does not change. The EXAMINE command does
not change the value of the pointer.

datal,...]

Specifies the data to be deposited into the specified locations. By default, the data
is assumed to be in hexadecimal format; it is then converted to binary format and
is written into the specified location.

If you specify more than one item, separate the items with commas (,). The
DEPOSIT command writes the data in consecutive locations, beginning with the
address specified.

When non-ASCII data is deposited, you can specify each item of data using any
valid integer expression.

When ASCII data is deposited, only one item of data is allowed. All characters
to the right of the equal sign are considered to be part of a single string. The
characters are converted to uppercase, and all spaces are compressed.

Description

DEPOSIT

When the DEPOSIT command completes, it displays both the virtual memory
address into which data is deposited and the new contents of the location, as
follows:

address: contents

If the specified address can be read from but not written to by the current access
mode, the DEPOSIT command displays the original contents of the location.

If the specified address can be neither read from nor written to, the DEPOSIT
command displays asterisks (*) in the data field. The DEPOSIT command
maintains a pointer at that location (at the byte following the last byte modified).

If you specify a list of numeric values, some but not all of the values may be
successfully deposited before an access violation occurs. If an access violation
occurs while ASCII data is being deposited, nothing is deposited.

Radix Qualifiers: The radix default for a DEPOSIT or EXAMINE command
determines how the command interpreter interprets numeric literals. The
initial default radix is hexadecimal; all numeric literals in the command line are
assumed to be hexadecimal values. If a radix qualifier modifies the command,
that radix becomes the default for subsequent EXAMINE and DEPOSIT
commands, until another qualifier overrides it. For example:

$ DEPOSIT/DECIMAL 900=256
00000384: 256

The DEPOSIT command interprets both the location 900 and the value 256

as decimal. All subsequent DEPOSIT and EXAMINE commands assume that
numbers you enter for addresses and data are decimal. Note that the DEPOSIT
command always displays the address location in hexadecimal.

Symbol values defined by = (assignment statement) commands are always
interpreted in the radix in which they were defined.

Note that hexadecimal values entered as deposit locations or as data to be
deposited must begin with a numeric character (0 to 9); otherwise, the command
interpreter assumes that you have entered a symbol name and attempts symbol
substitution.

You can use the radix operators %X, %D, or %O to override the current default
when you enter the DEPOSIT command. For example:

$ DEPOSIT/DECIMAL %X900=10

This command deposits the decimal value 10 in the location specified as
hexadecimal 900.

Length Qualifiers: The initial default length unit for the DEPOSIT command
is a longword. If a list of data values is specified, the data is deposited into
consecutive longwords beginning at the specified location. If a length qualifier
modifies the command, that length becomes the default for subsequent EXAMINE
and DEPOSIT commands, until another qualifier overrides it. If you specify data
values that are longer than the specified length, an error occurs.

Length qualifiers are ignored when ASCII values are deposited.

Restriction on Placement of Qualifiers: The DEPOSIT command analyzes
expressions arithmetically. Therefore, qualifiers, which must be preceded by a
slash (/), must appear immediately after the command name to be interpreted
correctly.

DCLI-195

DEPOSIT

Qualifiers

Examples

DCLI-196

/ASCII
Indicates that the specified data is ASCII.

Only one data item is allowed; all characters to the right of the equal sign (=)
are considered to be part of a single string. Unless they are enclosed within
quotation marks (“”), characters are converted to uppercase and multiple spaces
are compressed to a single space before the data is written in memory.

The DEPOSIT command converts the data to its binary equivalent before placing
it in virtual memory. When you specify /ASCII, or when ASCII mode is the
default, the location you specify is assumed to be hexadecimal.

/BYTE
Requests that data be deposited 1 byte at a time.

/DECIMAL
Indicates that the data is decimal. The DEPOSIT command converts the data to
its binary equivalent before placing it in virtual memory.

/HEXADECIMAL
Indicates that the data is hexadecimal. The DEPOSIT command converts the
data to its binary equivalent before placing it in virtual memory.

/LONGWORD
Requests that data be deposited a longword at a time.

/OCTAL
Indicates that the data is octal. The DEPOSIT command converts the data to its
binary equivalent before placing it in virtual memory.

/WORD
Requests that the data be deposited one word at a time.

1. $ RUN MYPROG

$ EXAMINE %D2145876444

TFE779DC: 0000000000
$ DEPOSIT .=17
TFE779DC: 0000000017
$ CONTINUE

The RUN command executes the image MYPROG.EXE; subsequently,

Ctrl/Y interrupts the program. Assuming that the initial defaults of the
/HEXADECIMAL and /[LONGWORD qualifiers are in effect, the DEPOSIT
command places a longword value 17 (23 decimal) in virtual memory location
2145876444.

Because the EXAMINE command sets up a pointer to the current memory
location, which in this case is virtual address 2145876444, you can refer to
this location with a period (.) in the DEPOSIT command.

The CONTINUE command resumes execution of the image.

2.

DEPOSIT

$ DEPOSIT/ASCII 2C00=FILE: NAME: TYPE:
00002C00: FILE: NAME: TYPE:...

In this example, the DEPOSIT command deposits character data at
hexadecimal location 2C00 and displays the contents of the location after
modifying it. Because the current default length is a longword, the response
from the DEPOSIT command displays full longwords. The ellipsis (...)
indicates that the remainder of the last longword of data contains information
that was not modified by the DEPOSIT command.

$ EXAMINE 9CO0 ! Look at Hex location 9C0
000009C0: 8C037DB3

$ DEPOSIT .=0 ! Deposit longword of 0
000009C0: 00000000

$ DEPOSIT/BYTE .=1 ! Put 1 byte at next location
000009C4: 01

$ DEPOSIT .+2=55 ! Deposit 55 next

000009C7: 55
$ DEPOSIT/LONG .=0C,0D,0E ! Deposit longwords
000009C8: 0000000C 0000000D 0000000E

The sequence of DEPOSIT commands in the above example illustrates how
the DEPOSIT command changes the current position pointer. Note that after
you specify the /BYTE qualifier, all data is deposited and displayed in bytes,
until the /[LONGWORD qualifier restores the system default.

$ BASE=%X200 ! Define a base address

$ LIST=BASE+%X40 ! Define offset from base
$ DEPOSIT/DECIMAL LIST=1,22,333,4444

00000240: 00000001 00000022 00000333 00004444

$ EXAMINE/HEX LIST:LIST+0C ! Display results in hex
00000240: 00000001 00000016 0000014D 0000115C

The assignment statements define a base address in hexadecimal and a label
at a hexadecimal offset from the base address. The DEPOSIT command reads
the list of values and deposits each value into a longword, beginning at the
specified location. The EXAMINE command requests a hexadecimal display
of these values.

DCLI-197

DIFFERENCES

DIFFERENCES

Format

Parameters

Description

DCLI-198

Compares the contents of two disk files and displays a listing of the records that
do not match.

DIFFERENCES inputi-filespec [input2-filespec]

input1-filespec

Specifies the first file to be compared. The file specification must include a
file name and a file type. The asterisk (*) and the percent sign (%) wildcard
characters are not allowed.

input2-filespec

Specifies the second file to be compared. Unspecified fields default to the
corresponding fields in the inputl-filespec parameter. The asterisk (*) and
the percent sign (%) wildcard characters are not allowed.

If you do not specify a secondary input file, the DIFFERENCES command uses
the next lower version of the primary input file.

Use the DIFFERENCES command to determine whether two files are identical
and, if not, how they differ. The DIFFERENCES command compares the two

specified files on a record-by-record basis and produces an output file that lists
the DIFFERENCES, if any.

The qualifiers for the DIFFERENCES command can be categorized according to
their functions, as follows:

¢ Qualifiers that request the DIFFERENCES command to ignore data in each
record:

/COMMENT_DELIMITERS
/IGNORE

These qualifiers allow you to define characters that denote comments or to
designate characters or classes of characters to ignore when comparing files.
For example, you can have the DIFFERENCES command ignore extra blank
lines or extra spaces within lines.

By default, the DIFFERENCES command compares every character in each
record.

¢ Qualifiers that control the format of the information contained in the list of
differences:

/CHANGE_BAR
/IGNORE
/MERGED
/MODE
/PARALLEL
/SEPARATED
/SLP

/WIDTH

Qualifiers

DIFFERENCES

By default, the DIFFERENCES command merges the differences it finds in
the files being compared. It lists each record in the file that has no match in
the other input file and then lists the next record that it finds that does have
a match.

By default, the DIFFERENCES command also supplies a line number
with each listed record, and it lists the records with all designated ignore
characters deleted.

You can specify combinations of qualifiers to request an output listing that
includes the comparison in more than one format. Note that SLP output is
incompatible with all other types of output; parallel output can be generated
only in ASCII mode.

¢ Qualifiers that control the extent of the comparison:

/MATCH
/MAXIMUM_DIFFERENCES
/WINDOW

By default, the DIFFERENCES command reads every record in the master
input file and looks for a matching record in the revision input file. A search
for a match between the two input files continues until either a match is
found or the ends of the two files are reached. Sections of the two files are
considered a match only if three sequential records are found to be identical
in each file.

By default, DIFFERENCES command output is written to the current
SYS$OUTPUT device. Use the /OUTPUT qualifier to request that the
DIFFERENCES command write the output to an alternate file or device.

The DIFFERENCES command terminates with an exit status. The following
severity levels indicate the result of the comparison:

SUCCESS Files are identical.
INFORMATIONAL Files are different.
WARNING User-specified maximum number of DIFFERENCES has

been exceeded.

ERROR Insufficient virtual memory to complete comparison.

All severity levels other than SUCCESS indicate that the two input files are
different.

/CHANGE_BAR[=([change-char][,[NOJNUMBER])]

Marks differences using the specified character. The /CHANGE_BAR qualifier
displays output that depends on where the qualifier is placed. The following
examples describe the result of /CHANGE_BAR qualifier placement.

The following placement displays the latest version of input.file with the pound
sign (#) preceding any lines that differ from the preceding version of input.file:

$ DIFFERENCES input.file/CHANGE BAR=#

The following placement displays input.file;2 with the pound sign (#) preceding
any lines that differ from input.file;I:

$ DIFFERENCES input.file;1 input.file;2 /CHANGE BAR=#

DCLI-199

DIFFERENCES

DCLI-200

The following placement displays input.file;1 with the pound sign (#) preceding
any lines that differ from input.file;2:

$ DIFFERENCES input.file;1/CHANGE BAR=# input.file;2

The following placement displays input.file;1 with the percent sign (%) preceding
any lines that differ from input.file;2, and also displays input.file;2 with the pound
sign (#) preceding any lines that differ from input.file;1:

$ DIFFERENCES input.file;1/CHANGE BAR=% input.file;2/CHANGE BAR=#

e If you do not specify a change bar character, the default is an exclamation
point (!) for ASCII output.

e If you specify hexadecimal or octal output (see the description of the /MODE
qualifier), the change bar character is ignored and differences are marked by
a “***CHANGE***” string in the record header. The keyword NONUMBER
suppresses line numbers in the listing.

e If neither the NUMBER nor the NONUMBER keyword is specified, the
default is controlled by the /[INOJINUMBER command qualifier.

e If you specify only one option, you can omit the parentheses.

e If you use an exclamation point (!) as the specified character, you
must enclose it in quotation marks (“”); for example, /CHANGE_
BAR=(“1”",NUMBER).

/COMMENT_DELIMITER[=(character],...])]
Ignores characters on a line to the right of (and including) a specified comment
character.

If you specify just one character, you can omit the parentheses. Lowercase
characters are automatically converted to uppercase unless they are enclosed in
quotation marks. Nonalphanumeric characters (such as ! and ,) must be enclosed
in quotation marks. Multicharacter comment characters are not allowed. You can
specify up to 32 comment characters by typing the character itself or one of the
following keywords. (Keywords can be abbreviated provided that the resultant
keyword is not ambiguous and has at least 2 characters; single letters are treated
as delimiters.)

Keyword Character
COLON Colon (:)
COMMA Comma (,)
EXCLAMATION Exclamation point (!)
FORM_FEED Form feed

LEFT Left bracket ([)
RIGHT Right bracket (])
SEMI_COLON Semicolon (;)
SLASH Slash (/)

SPACE Space

TAB Tab

If you specify the /COMMENT_DELIMITER qualifier, the
/IGNORE=COMMENTS qualifier is implicitly also included.

DIFFERENCES

If both the uppercase and lowercase forms of a letter are to be used as comment
characters, the letter must be specified twice, once in uppercase and once in
lowercase. If you do not include either a comment character or a keyword with
the /COMMENT _DELIMITER qualifier, the DIFFERENCES command assumes
a default comment character based on the file type. For some file types (.COB
and .FOR), the default comment characters are considered valid delimiters only if
they appear in the first column of a line.

The following characters are the default comment delimiters for files with the
specified file types:

File Type Default Comment Character

.B2S, .B32, .BAS, .BLI !

.CBL, .CMD ! and ;

.COB * or / in the first column

.COM, .COR !

.FOR I anywhere and C, D, ¢, d in the first column
HLP !

.MAC, .MAR ;

.R32, REQ !

IEXACT

Use with the /PAGE=SAVE and /SEARCH qualifiers to specify a search string
that must match the search string exactly and must be enclosed with quotation
marks (“7).

If you specify the /EXACT qualifier without the /SEARCH qualifier, exact search
mode is enabled when you set the search string with the Find (E1) key.

/HIGHLIGHT[=keyword]

Use with the /PAGE=SAVE and /SEARCH qualifiers to specify the type of
highlighting you want when a search string is found. When a string is found, the
entire line is highlighted. You can use the following keywords: BOLD, BLINK,
REVERSE, and UNDERLINE. BOLD is the default highlighting.

/IGNORE=(keyword][,...])

Inhibits the comparison of the specified characters, strings, or records; also
controls whether the comparison records are output to the listing file as edited
records or exactly as they appeared in the input file. If you specify only one
keyword, you can omit the parentheses. The keyword parameter refers to either
a character or a keyword. The first set of keywords determines what, if anything,
is ignored during file comparison; the second set of keywords determines whether
or not ignored characters are included in the output. The following keywords are
valid options for the /IGNORE qualifier:

Keyword Item Ignored
BLANK_LINES Blank lines between data lines.
CASE Case of the text being compared.

DCLI-201

DIFFERENCES

DCLI-202

Keyword

Item Ignored

COMMENTS

FORM_FEEDS
HEADER[=n]

SPACING
TRAILING_SPACES
WHITE_SPACE

Data following a comment character. (Use the
/COMMENT_DELIMITER qualifier to designate one
or more nondefault comment delimiters.)

Form feed character.

Defines n records of the file as header records,
beginning with a record whose first character is a
form feed. The first record is not ignored if the only
character it contains is a form feed. (n indicates the
header size and defaults to 2. A record containing
only a single form feed is not counted in n.)

Extra spaces or tabs within data lines.
Space and tab characters at the end of a data line.

All spaces and tab characters.

Keyword Status of Ignored Items in Output

EDITED Omits ignored characters from the output records.
EXACT Includes ignored characters in the output records.
PRETTY Formats output records.

Each data line is checked for COMMENTS, FORM_FEEDS, HEADER, and
SPACING before it is tested for TRAILING_SPACES and then BLANK_LINES.
Therefore, if you direct the DIFFERENCES command to ignore COMMENTS,
TRAILING_SPACES, and BLANK_LINES, it ignores a record that contains

several spaces or blank lines followed by a comment.

By default, the DIFFERENCES command compares every character in each file
and reports all differences. Also, by default, the DIFFERENCES command lists
records in the output file with all ignored characters deleted.

If you specify the /PARALLEL qualifier, output records are always formatted. The
following table shows the corresponding output for the various characters that
are being translated:

Character Formatted Output
Tab (Ctrl/T) 1-8 spaces
Return (Ctrl/M) <CR>

Line feed (Ctrl/J) <LF>

Vertical tab (Ctrl/K) <VT>

Form feed (Ctrl/L) <FF>

Other nonprinting characters . (period)

IMATCH=size

Specifies the number of records that should indicate matching data after a
difference is found. By default, after the DIFFERENCES command finds
unmatched records, it assumes that the files once again match after it finds
three sequential records that match. Use the /MATCH qualifier to override the
default match size of 3.

DIFFERENCES

You can increase the /MATCH qualifier value if you feel that the DIFFERENCES
command is incorrectly matching sections of the master and revision input files
after it has detected a difference.

/MAXIMUM_DIFFERENCES=n
Terminates the DIFFERENCES command after the specified number of
unmatched records (specified with the n parameter) is found.

The number of unmatched records is determined by finding the maximum number
of difference records for each difference section and adding them together.

If the DIFFERENCES command reaches the maximum number of differences
that you specify, it will output only those records that were detected before the
maximum was reached. Also, it will output, at most, one listing format and
return a warning message.

By default, there is no maximum number of differences. All records in the
specified input files are compared.

/MERGED[=n]

Specifies that the output file contain a merged list of differences with the specified
number of matched records listed after each group of unmatched records. The
value of the parameter n must be less than or equal to the number specified

in the /MATCH qualifier. By default, the DIFFERENCES command produces a
merged listing with one matched record listed after each set of unmatched records
(that is, MERGED=1). If the /MERGED, /SEPARATED, or /PARALLEL qualifier
is not specified, the resulting output is merged, with one matched record following
each unmatched record.

Use the /MERGED qualifier to override the default value of the parameter n, or
to include a merged listing with other types of output.

I/MODE=(radix][,...])

Specifies the format of the output. You can request that the output be formatted
in one or more radix modes by specifying the following keywords, which may be
abbreviated: ASCII (default), HEXADECIMAL, or OCTAL. If you specify only one
radix, you can omit the parentheses.

By default, the DIFFERENCES command writes the output file in ASCII. If you
specify more than one radix, the output listing contains the file comparison in
each specified radix. When you specify two or more radix modes, separate them
with commas.

If you specify the /PARALLEL or the /SLP qualifier, the /MODE qualifier is
ignored for that listing form.

/NUMBER (default)
/INONUMBER
Includes line numbers in the listing of DIFFERENCES.

IOUTPUT[=filespec]

Specifies an output file to receive the list of differences. By default, the output
is written to the current SYS$OUTPUT device. If the filespec parameter is not
specified, the output is directed to the first input file with a file type .DIF. The
asterisk (*) and the percent sign (%) wildcard characters are not allowed.

When you specify the /OUTPUT qualifier, you can control the defaults applied to
the output file specification as described in the OpenVMS User’s Manual. The
default output file type is .DIF.

DCLI-203

DIFFERENCES

DCLI-204

/PAGE[=keyword]
/NOPAGE (default)
Controls the display of difference information on the screen.

You can use the following keywords with the /PAGE qualifier:

CLEAR_SCREEN Clears the screen before each page is displayed.
SCROLL Displays information one line at a time.
SAVE|[=n] Enables screen navigation of information, where n is the

number of pages to store.

The /PAGE=SAVE qualifier allows you to navigate through screens of information.
The /PAGE=SAVE qualifier stores up to 5 screens of up to 255 columns of
information. When you use the /PAGE=SAVE qualifier, you can use the following
keys to navigate through the information:

Key Sequence Description

Up arrow key, Ctrl/B Scroll up one line.

Down arrow key Scroll down one line.

Left arrow key Scroll left one column.

Right arrow key Scroll right one column.

Find (E1) Specify a string to find when the information is
displayed.

Insert Here (E2) Scroll right one half screen.

Remove (E3) Scroll left one half screen.

Select (E4) Toggle 80/132 column mode.

Prev Screen (E5) Get the previous page of information.

Next Screen (E6), Get the next page of information.

Return, Enter, Space

F10, Ctrl/Z Exit. (Some utilities define these differently.)

Help (F15) Display utility help text.

Do (F16) Toggle the display to oldest/newest page.

Ctrl/'W Refresh the display.

The /PAGE qualifier is not compatible with the /OUTPUT qualifier.

/PARALLEL[=n]
Lists the records with differences side by side. The value of the parameter n
specifies the number of matched records to merge after each unmatched record,

it must be a non-negative decimal number less than or equal to the number
specified in the /MATCH qualifier.

By default, the DIFFERENCES command does not list records after each list of
unmatched records. Also by default, the DIFFERENCES command creates only a
list of merged differences.

/SEARCH="string"

Use with the /PAGE=SAVE qualifier to specify a string that you want to find in
the information being displayed. Quotation marks are required for the /SEARCH
qualifier, if you include spaces in the text string.

DIFFERENCES

You can also dynamically change the search string by pressing the Find key (E1)
while the information is being displayed. Quotation marks are not required for a
dynamic search.

/SEPARATED[=MASTER, REVISION]

Lists sequentially only the records from the specified file that contain differences.
Use the MASTER keyword to list the differences in the first input file specified;
use the REVISION keyword to list the differences in the second input file
specified.

By default, the DIFFERENCES command creates only a merged list of
differences.

/ISLP

Requests that the DIFFERENCES command produce an output file suitable for
input to the SLP editor. If you use the /SLP qualifier, you cannot specify any of
the following output file qualifiers: /MERGED, /PARALLEL, /SEPARATED, or
/CHANGE_BAR.

Use the output file produced by the SLP qualifier as input to SLP to update the
master input file, that is, to make the master input file match the revision input
file.

When you specify the /SLP qualifier and you do not specify the /OUTPUT
qualifier, the DIFFERENCES command writes the output file to a file with the
same file name as the master input file with the file type DIF.

/WIDTH=n

Specifies the width of the lines in the output file. The default is 132 characters.
If output is written to the terminal, the /WIDTH qualifier is ignored and the
terminal line width is used.

Use the SET TERMINAL command to change the terminal line width.

/WINDOW-=size

Searches the number of records specified by the size parameter, before a record
is declared as unmatched. By default, the DIFFERENCES command searches to
the ends of both input files before listing a record as unmatched.

The window size is the minimum size of a differences section that will cause the
DIFFERENCES command to lose synchronization between the two input files.

/WRAP

/INOWRAP (default)

Use with the /PAGE=SAVE qualifier to limit the number of columns to the width
of the screen and to wrap lines that extend beyond the width of the screen to the
next line.

The /INOWRAP qualifier extends lines beyond the width of the screen and can
be seen when you use the scrolling (left and right) features provided by the
/PAGE=SAVE qualifier.

DCLI-205

DIFFERENCES

Examples

1. $ DIFFERENCES EXAMPLE.TXT
*kkkkkkkkkkk
File DISK1:[CHRIS.TEXT]EXAMPLE.TXT;?2
1 DEMONSTRATION
2 OF V7.3 DIFFERENCES
3 UTILITY
*kkkk*x
File DISK1: [CHRIS.TEXT]EXAMPLE.TXT;1
1 DEMONSTRETION
2 OF VMS DIFFERENCES
3 UTILITY
*kkkkkkkkkkkk
Number of difference sections found: 1
Number of difference records found: 2
DIFFERENCES/ IGNORE=()/MERGED=1-
DISK1: [CHRIS.TEXT] EXAMPLE.TXT;2-
DISK1: [CHRIS.TEXT]EXAMPLE.TXT;1

In this example, the DIFFERENCES command compares the contents of the two
most recent versions of the file EXAMPLE.TXT in the current default directory.
The DIFFERENCES command compares every character in every record and
displays the results at the terminal.

2. $ DIFFERENCES/PARALLEL/WIDTH=80/COMMENT DELIMITER="V" EXAMPLE.TXT

Number of difference sections found: 1
Number of difference records found: 1
DIFFERENCES/IGNORE:(COMMENTS)/COMMENT_DELIMITER:("V")/WIDTH:SO/PARALLEL—
DISK1: [CHRIS.TEXT] EXAMPLE.TXT;2-
DISK1: [CHRIS.TEXT]EXAMPLE.TXT;1

The DIFFERENCES command compares the same files as in Example 1, but
ignores all characters following the first “V” on any line. The command also
specifies that an 80-column parallel list of differences be displayed.

DCLI-206

3.

4.

DIFFERENCES

$ DIFFERENCES/WIDTH=80/MODE= (HEX,ASCII) EXAMPLE.TXT/CHANGE BAR
Kok Kk ok k ok ok ok Kk -
File DISK1: [CHRIS.TEXT]EXAMPLE.TXT;?2

1 ! DEMONSTRATION

2 | OF V7.3 DIFFERENCES

3 UTILITY
*ok ok ok ok kK kok ok ok ok

kkkkkkkkkkk*k

File DISK1: [CHRIS.TEXT]EXAMPLE.TXT;2

RECORD NUMBER 1 (00000001) LENGTH 14 (0000000E) ***CHANGE***
204E 4F495441 5254534E 4F4D4544 DEMONSTRATION .. 000000

RECORD NUMBER 2 (00000002) LENGTH 19 (00000013) ***CHANGE***

4E455245 46464944 20302E33 5620464F OF V7.3 DIFFEREN 000000

534543 CES............. 000010
RECORD NUMBER 3 (00000003) LENGTH 7 (00000007)
595449 4C495455 UTILITY......... 000000

kkkkkkkkkkk*x

Number of difference sections found: 1

Number of difference records found: 2

DIFFERENCES /WIDTH=80/MODE= (HEX,ASCII)
DISKl:[CHRIS.TEXT]EXAMPLE.TXT;2/CHANGE_BAR—
DISK1: [CHRIS.TEXT]EXAMPLE.TXT;1

The DIFFERENCES command compares the same files as in Example 1, but
lists the differences in both hexadecimal and ASCII formats. The command also
specifies that default change bars be used in the output. The default change bar
notation for the hexadecimal output is ***CHANGE***. For the ASCII output,
the default change bar character is the exclamation point.

$ DIFFERENCES/OUTPUT BOSTON::DISK2:TEST.DAT OMAHA::DISK1:[PGM]TEST.DAT

The DIFFERENCES command compares two remote files and displays any
differences found. The first file is TEST.DAT on remote node BOSTON.
The second file is also named TEST.DAT on remote node OMAHA. The
DIFFERENCES output is located in the file DISK1:[PGM|TEST.DIF.

DCLI-207

DIRECTORY

DIRECTORY

Provides a list of files or information about a file or group of files.

Requires execute (E) access to look up files you know the names of, read
(R) access to read or list a file or to use a file name with the asterisk (*)
and the percent sign (%) wildcard characters to look up files.

Format
DIRECTORY [filespec],...]]
DIRECTORY/FTP directory-spec

Parameter

filespecl,...]
Specifies one or more files to be listed. The syntax of a file specification
determines which files will be listed, as follows:

e If you do not enter a file specification, the DIRECTORY command lists all
versions of the files in the current default directory.

e If you specify only a device name, the DIRECTORY command uses your
default directory specification.

e Whenever the file specification does not include a file name, a file type, and a
version number, all versions of all files in the specified directory are listed.

e If a file specification contains a file name or a file type, or both, and no version
number, the DIRECTORY command lists all versions.

e If a file specification contains only a file name, the DIRECTORY command
lists all files in the current default directory with that file name, regardless of
file type and version number.

e If a file specification contains only a file type, the DIRECTORY command lists
all files in the current default directory with that file type, regardless of file
name and version number.

The asterisk (*) and the percent sign (%) wildcard characters can be used in
the directory specification, file name, file type, or version number fields of a file
specification to list all files that satisfy the components you specify. If you specify
more than one file, separate the file specifications with either commas (,) or plus
signs (+).

directory-spec

Specifies the standard DECnet remote file specification. Use a quoted file string
to preserve the case (for case sensitive systems such as UNIX) and to identify a
foreign device/directory specification. See the /FTP qualifier for more information.

Description

The DIRECTORY command lists the files contained in a directory. When you use
certain qualifiers with the command, additional information is displayed, along
with the names of the files.

DCLI-208

Qualifiers

DIRECTORY

The output of the DIRECTORY command depends on certain formatting qualifiers
and their defaults. These qualifiers are as follows: /COLUMNS, /DATE, /FULL,
/OWNER, /PROTECTION, and /SIZE. However, the files are always listed in
alphabetical order, with the highest numbered versions listed first.

In studying the qualifiers and the capabilities they offer, watch for qualifiers that
work together and for qualifiers that override other qualifiers. For example, if
you specify the /FULL qualifier, the system cannot display all the information

in more than one column. Thus, if you specify both the /COLUMNS and /FULL
qualifiers, the number of columns you request is ignored.

You can also select other languages and formats that have been defined on your
systems with international date and time formatting routines available in the
run-time library. See the HP OpenVMS RTL Library (LIB$) Manual.

/ACL

Controls whether the access control list (ACL) is displayed for each file. By
default, the DIRECTORY command does not display the ACL for each file. Access
control entries (ACEs) that were created with the hidden option are displayed
only if the SECURITY privilege is turned on. The /ACL qualifier overrides the
/COLUMNS qualifier.

For further information, see the HP OpenVMS Guide to System Security.

/BACKUP

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /BACKUP qualifier selects files according to the dates of their most recent
backups. This qualifier is incompatible with the /CREATED, /EXPIRED, and
/MODIFIED qualifiers, which also allow you to select files according to time
attributes. If you specify none of these four time qualifiers, the default is the
/CREATED qualifier.

/BEFORE[=time]

Selects only those files dated prior to the specified time. You can specify time
as an absolute time, as a combination of absolute and delta times, or as one

of the following keywords: BOOT, LOGIN, TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /BEFORE qualifier
to indicate the time attribute to be used as the basis for selection: /BACKUP,
/CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the OpenVMS User’s
Manual or the online help topic Date.

/BRIEF (default)

Displays only a file’s name, type, and version number. The brief format lists the
files in alphabetical order from left to right on each line, in descending version
number order. You can use the /ACL, /DATE, /FILE_ID, /FULL, /INOHEADING,
/OWNER, /PROTECTION, /SECURITY, and /SIZE qualifiers to expand a brief
display.

/BY_OWNER[=uic]
Selects only those files whose owner user identification code (UIC) matches the
specified owner UIC. The default UIC is that of the current process.

Specify the UIC by using standard UIC format as described in the OpenVMS
User’s Manual.

DCLI-209

DIRECTORY

DCLI-210

For further information, see the HP OpenVMS Guide to System Security.

/ICACHING_ATTRIBUTE
Displays the caching attributes of the selected files.

/COLUMNS=n

Specifies the number of columns in a brief display. The default is four; however,
you can request as many columns as you like, restricted by the value of the
/WIDTH qualifier. The /COLUMNS qualifier is incompatible with the /ACL,
/FULL, and /SECURITY qualifiers.

The number of columns actually displayed depends on the amount of information
requested for each column and the display value of the /WIDTH qualifier. The
system displays only as many columns as can fit within the default or specified
display width, regardless of how many columns you specify with the /COLUMNS
qualifier.

The DIRECTORY command truncates long file names only when you specify
more than one column and you have asked for additional information to be
included in each column. The default file name size is 19 characters. Use the
/WIDTH qualifier to change the default. When a file name is truncated, the
system displays one less character than the file name field size and inserts a
vertical bar in the last position. For example, if the file name is SHOW_QUEUE _
CHARACTERISTICS, and if you requested DIRECTORY to display both file
name and size in each column, the display for that file would be SHOW_QUEUE_
CHARACT | 120.

/CREATED (default)

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The
/CREATED qualifier selects files based on their dates of creation. This qualifier is
incompatible with the /BACKUP, /EXPIRED, and /MODIFIED qualifiers, which
also allow you to select files according to time attributes. If you specify none of
these four time qualifiers, the default is the /CREATED qualifier.

/IDATE[=0ption]

/NODATE (default)

Includes the creation, last modification, expiration, backup, effective, or recording
date for each specified file; the default is the /NODATE qualifier. If you use the
/DATE qualifier without an option, the creation date is provided. Possible options
are as follows:

Option Description

ACCESSED Specifies the last access date.

See the Guide to OpenVMS File Applications for additional
information.

ALL Specifies all optional dates in the following order: creation, last
modification, expiration, backup, effective, and recording.

ATTRIBUTES Specifies the last attribute modification date.
See the Guide to OpenVMS File Applications for additional

information.
BACKUP Specifies the last backup date.
CREATED Specifies the creation date.

DIRECTORY

Option Description

DATA Specifies the last data modification date.

MODIFIED See the Guide to OpenVMS File Applications for additional
information.

EFFECTIVE Specifies the effective date the contents are valid (ISO 9660).

EXPIRED Specifies the expiration date.

MODIFIED Specifies the last modification date.
RECORDING Specifies the recording date on the media (ISO 9660).

IEXACT

Use with the /PAGE=SAVE and /SEARCH qualifiers to specify a search string
that must match the search string exactly and must be enclosed with quotation
marks (“ 7).

If you specify the /EXACT qualifier without the /SEARCH qualifier, exact search
mode is enabled when you set the search string with the Find (E1) key.

/EXCLUDE-=(filespecl,...])
Excludes the specified files from the DIRECTORY command. You can include a
directory but not a device in the file specification.

The asterisk (*) and the percent sign (%) wildcard characters are allowed in the
file specification; however, you cannot use relative version numbers to exclude a
specific version.

If you specify only one file, you can omit the parentheses.

/EXPIRED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /EXPIRED qualifier selects files according to their expiration dates. (The
expiration date is set with the SET FILE/EXPIRATION_DATE command.)

The /EXPIRED qualifier is incompatible with the /BACKUP, /CREATED, and
/MODIFIED qualifiers, which also allow you to select files according to time
attributes. If you specify none of these four time qualifiers, the default is the
/CREATED qualifier.

/FILE_ID
Controls whether the file identification (FID) number is displayed. By default,
the FID is not displayed unless the /FULL qualifier is specified.

/FTP

Invokes the directory (dir or Is) operation of the FTP utility. The
DIRECTORY/FTP command writes a listing of the contents of the specified
remote directory to the local host over a TCP/IP connection by invoking the FTP
utility.

The format is:
$ DIR/FTP nodename"username password"::directory pathname

If the directory path name is omitted, the contents of the user’s home
directory are displayed. If only the node name is entered, the contents of the
ANONYMOUS directory are displayed.

DCLI-211

DIRECTORY

DCLI-212

/FULL
Displays the following information for each file:

File name

File type

Version number

File identification number (FID)
Number of blocks used

Number of blocks allocated

File owner’s user identification code (UIC)
Date of creation

Date last modified and revision number
Date of expiration

Date of last backup

Date of effective usage

Date of recording on media

File organization

Shelved state

Caching attribute

File attributes

Record format

Record attributes

RMS attributes

Journaling information

File protection

Access control list (ACL)

Client attribute

Value of the stored semantics tag (where applicable)

/GRAND_TOTAL

Displays only the totals for all files and directories that have been specified.
Suppresses both the per-directory total and individual file information. (See the
/TRAILING qualifier for information on displaying directory totals.)

[HEADING

/NOHEADING

Controls whether heading lines consisting of a device description and directory
specification are printed. The default output format provides this heading. When
the /NOHEADING qualifier is specified, the display is in single-column format
and the device and directory information appears with each file name. The
/NOHEADING qualifier overrides the /COLUMNS qualifier.

The combination of the /NOHEADING and /NOTRAILING qualifiers is useful in
command procedures where you want to create a list of complete file specifications
for later operations.

MMHIGHLIGHT[=keyword]

Use with the /PAGE=SAVE and /SEARCH qualifiers to specify the type of
highlighting you want when a search string is found. When a string is found, the
entire line is highlighted. You can use the following keywords: BOLD, BLINK,
REVERSE, and UNDERLINE. BOLD is the default highlighting.

/MODIFIED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The
/MODIFIED qualifier selects files according to the dates on which they were last
modified.

DIRECTORY

This qualifier is incompatible with the /BACKUP, /CREATED, and /EXPIRED
qualifiers, which also allow you to select files according to time attributes. If you
specify none of these four time modifiers, the default is the /CREATED qualifier.

/OUTPUT[=filespec]

/INOOUTPUT

Controls where the output of the command is sent. By default, the display is
written to the current SYS$OUTPUT device. The asterisk (*) and the percent
sign (%) wildcard characters are not allowed.

If you enter the /OUTPUT qualifier with a partial file specification (for example,
/OUTPUT=[KIER]), DIRECTORY is the default file name and .LIS the default file
type. If you enter the /NOOUTPUT qualifier, output is suppressed.

If the output will be written to a file in the same directory, the output file name
will appear in the directory listing.

/OWNER
/INOOWNER (default)
Controls whether the file owner’s user identification code (UIC) is listed.

The default size of the owner field is 20 characters. If the file owner’s UIC
exceeds the length of the owner field, the information will be truncated. The size
of this field can be altered by specifying /WIDTH=OWNER, along with a value
for the owner field. For more information, see the description of the /WIDTH
qualifier.

I/PAGE[=keyword]
/NOPAGE (default)
Controls the display of directory information on the screen.

You can use the following keywords with the /PAGE qualifier:

CLEAR_SCREEN Clears the screen before each page is displayed.
SCROLL Displays information one line at a time.
SAVE([=n] Enables screen navigation of information, where n is the

number of pages to store.

The /PAGE=SAVE qualifier allows you to navigate through screens of information.
The /PAGE=SAVE qualifier stores up to 5 screens of up to 255 columns of
information. When you use the /PAGE=SAVE qualifier, you can use the following
keys to navigate through the information:

Key Sequence Description

Up arrow key, Ctrl/B Scroll up one line.

Down arrow key Scroll down one line.

Left arrow key Scroll left one column.

Right arrow key Scroll right one column.

Find (E1) Specify a string to find when the information is
displayed.

Insert Here (E2) Scroll right one half screen.

Remove (E3) Scroll left one half screen.

Select (E4) Toggle 80/132 column mode.

DCLI-213

DIRECTORY

DCLI-214

Key Sequence Description

Prev Screen (E5) Get the previous page of information.

Next Screen (E6), Get the next page of information.

Return, Enter, Space

F10, Ctrl/Z Exit. (Some utilities define these differently.)
Help (F15) Display utility help text.

Do (F16) Toggle the display to oldest/newest page.
Ctrl/'W Refresh the display.

The /PAGE qualifier is not compatible with the /OUTPUT qualifier.

/PRINTER

Puts the display in a file and queues the file to SYS$PRINT for printing under
the name given by the /OUTPUT qualifier. If you do not specify the /OUTPUT
qualifier, output is directed to a temporary file named DIRECTORY.LIS, which is
queued for printing and then is deleted.

/PROTECTION
/NOPROTECTION (default)
Controls whether the file protection for each file is listed.

/SEARCH="string"

Use with the /PAGE=SAVE qualifier to specify a string that you want to find in
the information being displayed. Quotation marks are required for the /SEARCH
qualifier, if you include spaces in the text string.

You can also dynamically change the search string by pressing the Find key (E1)
while the information is being displayed. Quotation marks are not required for a
dynamic search.

/SECURITY

Controls whether information about file security is displayed; using the
/SECURITY qualifier is equivalent to using the /ACL, /OWNER, and
/PROTECTION qualifiers together. ACEs that were created with the hidden
option are displayed only if the SECURITY privilege is turned on.

For further information, See the HP OpenVMS Guide to System Security.

ISELECT=(keyword[,...])
Allows you to select files for display. Choose one of the following keywords:

ACL Displays files that have an associated ACL or files
NOACL that do not (NOACL keyword).
CACHING._ Displays files that have the specified caching
ATTRIBUTE=(option[,...]) attribute. Possible options are:

NO_CACHING

WRITETHROUGH

FILE=(optionl,...])

ONLINE
NOONLINE

PRESHELVED
NOPRESHELVED

SHELVABLE
NOSHELVABLE

SIZE=(optionl|,...])

VERSION=(option[,option])
(Alpha/164 Only)

DIRECTORY

Displays portions of the file specification. The
/SELECT=FILE qualifier is used to turn off specific
portions by explicit or implicit specification of the
options. Possible options are:

[NOINODE
[NO]DEVICE
[NOIDIRECTORY
[NOINAME
[NO]TYPE
[NOJVERSION

/SELECT=FILE qualifier cannot be used with the
/FULL qualifier.

Displays files that are online or shelved.

Displays files that are preshelved or not preshelved.

Displays files that are shelvable or not shelvable.

Displays files according to their size. Possible
options are:

Option Description

MAXIMUM=n Displays files that have fewer
blocks than the value of n, which
defaults to 1,073,741,823. Use
with MINIMUM=n to specify a
size range for files to be displayed.

MINIMUM=n Displays files that have blocks
equal to or greater than the value
of n. Use with MAXIMUM-=n to
specify a size range for files to be
displayed.

(MINIMUM=n, Displays files whose block
size falls within the specified

MAXIMUM=n) MINIMUM and MAXIMUM range.

UNUSED[=n] Displays a file only if the
difference between the used
portion of a file and the allocated
size of a file exceeds the disk’s
cluster size. If a value is specified,
any file with unused space
exceeding that value is displayed.

Displays all files with version numbers that fall
within the range specified by one or both of the
following options:

MINIMUM=number
MAXIMUM=number

DCLI-215

DIRECTORY

/SHELVED_STATE
Displays whether the file is shelved, preshelved, or online.

/SINCE[=time]

Selects only those files dated on or after the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times, or as
one of the following keywords: BOOT, JOB_LOGIN, LOGIN, TODAY (default),
TOMORROW, or YESTERDAY. Specify one of the following qualifiers with
the /SINCE qualifier to indicate the time attribute to be used as the basis for
selection: /BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, See the OpenVMS User’s
Manual or the online help topic Date.

DCLI-216

DIRECTORY

ISIZE[=option]

INOSIZE (default)

Displays the size in blocks of each file. If you omit the option parameter, the
default lists the file size in blocks used (USED). Specify one of the following
options:

ALL Lists the file size both in blocks allocated and blocks used.
ALLOCATION Lists the file size in blocks allocated.

UNITS[=option] Allows you to override the current default specified by SET

PROCESS/UNITS so that you can display file size in your
choice of blocks or bytes.

The following keywords are valid options with the UNITS
keyword: BLOCKS, BYTES.

If you specify UNITS with no option, the default value is not
changed.

USED Lists the file size in blocks used.

The size of this field can be altered by supplying the size value of the /WIDTH
qualifier.

ISTYLE=keyword[,keyword]
Specifies the file name format for display purposes while displaying directory
contents.

The valid keywords for this qualifier are CONDENSED and EXPANDED.
Descriptions are as follows:

Keyword Explanation
CONDENSED Displays the file name representation of what is generated
(default) to fit into a 255-length character string. This file name may
contain a DID or FID abbreviation in the file specification.
EXPANDED Displays the file name representation of what is stored
on disk. This file name does not contain any DID or FID
abbreviations.

If both CONDENSED and EXPANDED keywords are specified, then the file
specifications are displayed in two columns. The column size is dependent on the
display width, and the file names wrap within their respective columns.

File errors are displayed with the CONDENSED file specification unless the
EXPANDED keyword is specified.

See the HP OpenVMS System Manager’s Manual, Volume 1: Essentials for more
information.

/ISYMLINK (default)

/INOSYMLINK

If an input-file specification parameter is a symbolic link, the displayed file
attributes are those of the symbolic link itself. If any file attribute is requested,
then the contents of the symbolic link are also displayed, with an arrow appearing
beween the file name and the contents (for example, LINK.TXT -> FILE.TXT).

The /NOSYMLINK qualifier indicates that if an input file specification is a
symbolic link, then the file attributes of the file to which the symbolic link refers
are displayed; the displayed name is still the name of the symbolic link itself.

DCLI-217

DIRECTORY

DCLI-218

[TIME[=0ption]

/NOTIME (default)

The same as the /DATE qualifier: includes the backup, creation, expiration, or
modification time for each specified file; the default is the /NOTIME qualifier.
If you use the /TIME qualifier without an option, the creation time is provided.
Possible options are as follows:

Option Description

ALL Specifies creation, expiration, backup, and last modification
times.

BACKUP Specifies the last backup time.

CREATED Specifies the creation time.

EFFECTIVE Specifies the effective time the contents are valid.

EXPIRED Specifies the expiration time.

MODIFIED Specifies the last modification time.
RECORDING Specifies the recording time on the media.

[TOTAL
Displays only the directory name and total number of files.

By default, the output format is determined by the /BRIEF qualifier, which gives
this total but also lists all the file names, file types, and their version numbers.

/TRAILING

/NOTRAILING

Controls whether trailing lines that provide the following summary information
are displayed:

e Number of files listed
e Total number of blocks used per directory
e Total number of blocks allocated

e Total number of directories and total blocks used or allocated in all directories
(only if more than one directory is listed)

By default, the output format includes most of this summary information. The
/SIZE and /FULL qualifiers determine more precisely what summary information
is included.

When used alone, the /TRAILING qualifier lists the number of files in the
directory. When used with the /SIZE qualifier, the /TRAILING qualifier lists the
number of files and the number of blocks (displayed according to the option of the
/SIZE qualifier, FULL or ALLOCATION). When used with the /FULL qualifier,
the /TRAILING qualifier lists the number of files as well as the number of blocks
used and allocated. If more than one directory is listed, the summary includes
the total number of directories, the total number of blocks used, and the total
number of blocks allocated.

/VERSIONS=n
Specifies the number of versions of a file to be listed. The default is all versions
of each file. A value less than 1 is not allowed.

Examples

DIRECTORY

/WIDTH=(keyword][,...])
Formats the width of the display. If you specify only one keyword, you can omit
the parentheses. Possible keywords are as follows:

DISPLAY=n Specifies the total width of the display as an integer in the
range 1 to 256 and defaults to zero (setting the display
width to the terminal width). If the total width of the
display exceeds the terminal width, the information will
be truncated.

FILENAME=n Specifies the width of the file name field; defaults to 19
characters. If you request another piece of information to be
displayed along with the file name in each column, file names
that exceed the n parameter cause the line to wrap after the
file name field. (See the /COLUMNS qualifier.)

OWNER=n Specifies the width of the owner field; defaults to 20
characters. If the owner’s user identification code (UIC)
exceeds the length of the owner field, the information will be
truncated.

SIZE=n Specifies the width of the size field; defaults to 6 characters
on systems prior to OpenVMS Version 6.0; the default is 7
characters on OpenVMS Version 6.0 systems or higher. If the
file size exceeds the length of the size field, the field is filled
with asterisks.

/WRAP

/INOWRAP (default)

Use with the /PAGE=SAVE qualifier to limit the number of columns to the width
of the screen and to wrap lines that extend beyond the width of the screen to the
next line.

The /INOWRAP qualifier extends lines beyond the width of the screen and can
be seen when you use the scrolling (left and right) features provided by the
/PAGE=SAVE qualifier.

1. S DIRECTORY AVERAGE.*
Directory DISK$DOCUMENT: [SOUDER]
AVERAGE.EXE; 6 AVERAGE.FOR; 6 AVERAGE.LIS;4 AVERAGE.OBJ;12

Total of 4 files.

In this example, the DIRECTORY command lists all files with the file name
AVERAGE and any file type.

2. $ DIRECTORY/SIZE=USED/DATE=CREATED/VERSIONS=1/PROTECTION AVERAGE

Directory DISKSDOCUMENT: [SLOUGH]

AVERAGE.EXE; 6 6 19-DEC-2001 15:43:02.10 (RE,RE,RWED,RE)
AVERAGE.FOR; 6 2 19-DEC-2001 10:29:53.37 (RE,RE,RWED,RE)
AVERAGE.LIS;4 5 19-DEC-2001 16:27:27.19 (RE,RE,RWED,RE)
AVERAGE.OBJ; 6 2 19-DEC-2001 16:27:44.23 (RE,RE,RWED,RE)

Total of 4 files, 15 blocks.

DCLI-219

DIRECTORY

DCLI-220

In this example, the DIRECTORY command lists the number of blocks used,
the creation date, and the file protection code for the highest version number
of all files named AVERAGE in the current directory.

$ DIRECTORY/FULL DISK$GRIPS_2:[VMS.TV]DEMO.EXE
Directory DISKSGRIPS 2:[VMS.TV]

DEMO.EXE; 1 File ID: (36,11,0)
Size: 390/390 Owner: [0,0]
Created: 12-NOV-2001 11:45:19.00

Revised: 14-DEC-2001 15:45:19.00 (34)

Expires: <None specified>

Backup: 28-NOV-2001 04:00:12.22

Effective: <None specified>

Recording: <None specified>

File organization: Sequential

Shelved state: Online

Caching attribute: Writethrough

File attributes: Allocation: 390, Extend: 0, Global buffer count: 0,
Version limit: 0, Backups disabled, Not shelvable

Record format: Fixed length 512 byte records

Record attributes: None

RMS attributes: None

Journaling enabled: None

File protection: System:RE, Owner:RE, Group:RE, World:RE

Access Cntrl List: None
Client attributes: None

Total of 1 file, 390/390 blocks.
The example illustrates the DIRECTORY/FULL command.

$ DIRECTORY/VERSIONS=1/COLUMNS=1 AVERAGE.*

The DIRECTORY command in this example lists only the highest version of
each file named AVERAGE in the current default directory. The format is
brief and restricted to one column. Heading and trailing lines are provided.

$ DIRECTORY BLOCK%%%

The DIRECTORY command in this example locates all versions and types of
files in the default device and directory whose names begin with the letters
BLOCK and end with any three additional characters. The default output
format is brief, four columns, with heading and trailing lines.

$ DIRECTORY/EXCLUDE= (AVER.DAT;*, AVER.EXE;*) [*...]AVER

The DIRECTORY command in this example lists and totals all versions and
types of files named AVER in all directories and subdirectories on the default
disk, except any files named AVER.DAT and AVER.EXE.

$ DIRECTORY/SIZE=ALL FRESNO::DISK1:[TAMBA]*.COM

The DIRECTORY command in this example lists all versions of all files with
the file type COM in the directory TAMBA on node FRESNO and device
DISK1. The listing includes the file size both in blocks used and in blocks
allocated for each file.

8.

10.

DIRECTORY

$ DIRECTORY-
_$ /MODIFIED/SINCE=14-DEC-2001:01:30/SIZE=ALL/OWNER-
_$ /PROTECTION/OUTPUT=UPDATE/PRINTER [A*]

The DIRECTORY command in this example locates all files that have been
modified since 1:30 a.m. on December 14, 2001, and that reside on the default
disk in all directories whose names begin with the letter A. It formats the
output to include all versions, the size used and size allocated, the date last
modified, the owner, and the protection codes. The output is directed to a file
named UPDATE.LIS, which is queued automatically to the default printer
queue and then is deleted.

$ DIRECTORY/SHELVED STATE
Directory MYDISK: [THOMPSON]

MYFILE.TXT;2 Online
NOT SHELVED.TXT;1 Online
SHELVED. TXT Shelved

Total of 3 files.

The DIRECTORY command in this example lists all the files in a directory
and shows whether a file is shelved, preshelved, online, or remote.

$ DIRECTORY *.PS

Directory MYDISK: [TEST]
REPORT.PS;1 1197

Total of 1 file, 1197 blocks.

$ DIRECTORY/SIZE=UNITS=BYTES *.PS
Directory 1DKC600: [TEST]
REPORT.PS;1 598KB

Total of 1 file, 598KB

By default, the first DIRECTORY command displays the file size in blocks.
The second DIRECTORY command specifies that the file size be displayed in
bytes.

DCLI-221

DISABLE AUTOSTART

DISABLE AUTOSTART

Format

Parameters

Description

Qualifiers

DCLI-222

Disables the autostart feature on a node for all autostart queues managed by the
specific queue manager. By default, this command uses the /QUEUES qualifier.

Requires OPER (operator) privileges.

For more information on autostart queues, see the chapter on batch and print
queues in the HP OpenVMS System Manager’s Manual.

DISABLE AUTOSTART[/QUEUES]

None.

The DISABLE AUTOSTART/QUEUES command notifies the queue manager to
perform the following tasks on the affected node:

e Mark all of the queue manager’s autostart queues as “stop pending” in
preparation for a planned shutdown.

e Prevent any of the queue manager’s autostart queues from failing over to the
node.

e Upon completion of any jobs currently executing on any of that queue
manager’s autostart queues, force the queue to fail over to the next available
node in the queue’s failover list (if any) on which autostart is enabled. (For
information on failover lists for autostart queues, see the /AUTOSTART_ON
qualifier for the INITIALIZE/QUEUE command.)

Autostart queues on the node that do not have a failover list, or for which no
failover node is enabled for autostart, are stopped upon completion of any current
jobs. These stopped queues remain activated for autostart. The queue manager
will restart these stopped autostart queues when the ENABLE AUTOSTART
command is entered for the affected node or a node to which the queue can fail
over.

By default the command affects the node on which it is entered. Specify the
/ON_NODE qualifier to disable autostart on a different node.

The DISABLE AUTOSTART/QUEUES command is included in the node
shutdown command procedure SHUTDOWN.COM. If you shutdown a node
without using SHUTDOWN.COM, and the node is running autostart queues, you
might want to enter the DISABLE AUTOSTART/QUEUES command first.

The DISABLE AUTOSTART/QUEUES command only affects autostart queues.

/INAME_OF_MANAGER=name

Specifies the name of the queue manager controlling the autostart queues you
want to disable. The qualifier allows the autostart feature to be used differently
for different sets of queues.

Examples

DISABLE AUTOSTART

If the /NAME_OF_MANAGER qualifier is omitted, the default queue manager
name SYS$QUEUE_MANAGER is used. For more information on multiple queue
managers, see the HP OpenVMS System Manager’s Manual.

/ON_NODE=nodename
Specifies a node in an OpenVMS Cluster system. Use this qualifier to disable
autostart on a node other than the one from which you enter the command.

/QUEUES
Specifies that autostart is to be disabled for queues. (This qualifier is used by
default.)

1.

$ INITIALIZE/QUEUE/BATCH/START/AUTOSTART ON=SATURN:: BATCH 1
$ ENABLE AUTOSTART/QUEUES

$ DISABLE AUTOSTART/QUEUES

In this example, the INITIALIZE/QUEUE command creates an
autostart queue BATCH_1, capable of executing on node SATURN.

The /START qualifier activates the queue for autostart. The ENABLE
AUTOSTART/QUEUES command (executed on node SATURN) enables
autostart on the node, causing the queue (and any other active autostart
queues on the node) to begin executing jobs.

The DISABLE AUTOSTART command (executed on node SATURN) stops
autostart queues on the node, and prevents any queues from failing over to
the node.

This command only affects queues managed by the default queue manager
SYS$QUEUE_MANAGER because the/ NAME_OF_MANAGER qualifier is
not specified.

Because BATCH_1 is set up to run only on one node, the queue cannot fail
over to another node and therefore is stopped; however, the queue remains
active for autostart and will be started when the ENABLE AUTOSTART
command is entered for node SATURN. No START/QUEUE command is
needed to restart BATCH_1 unless autostart of the queue is deactivated with
the STOP/QUEUE/NEXT or STOP/QUEUE/RESET command.

$ DISABLE AUTOSTART/QUEUES/ON NODE=JADE

The DISABLE AUTOSTART/QUEUES command in this example disables
autostart on the OpenVMS Cluster node JADE. This command can be entered
from any node in the cluster.

DCLI-223

DISCONNECT

DISCONNECT

Format

Parameters

Description

Qualifier

Examples

DCLI-224

Breaks the connection between a physical terminal and a virtual terminal. After
the physical terminal is disconnected, both the virtual terminal and the process
using it remain on the system.

Requires that your physical terminal is connected to a virtual terminal.

DISCONNECT

None.

Use the DISCONNECT command to disconnect a physical terminal from a virtual
terminal and its associated process. The virtual terminal and the process remain
on the system, so you can use the CONNECT command to reconnect to the
process later. (For more information about virtual terminals and how to connect
to them, see the description of the CONNECT command.) To terminate a process
connected to a virtual terminal, use the LOGOUT command.

After you are disconnected from a virtual terminal, you can use the physical
terminal to log in again.

You can use the DISCONNECT command only if your physical terminal is
connected to a virtual terminal.

/CONTINUE

/NOCONTINUE (default)

Controls whether the CONTINUE command is executed in the current process
just before connecting to another process. This procedure permits an interrupted
image to continue processing after the disconnection until the process needs
terminal input or attempts to write to the terminal. At that point, the process
waits until the physical terminal is reconnected to the virtual terminal.

1. $ DISCONNECT

This command disconnects a physical terminal from a virtual terminal, but
does not log the process out. Now you can use the physical terminal to log in
again.

2. $ RUN PAYROLL

$ DISCONNECT/CONTINUE

DISCONNECT

In this example, the RUN command is entered from a physical terminal
that is connected to a virtual terminal. After the image PAYROLL.EXE is
interrupted, the DISCONNECT command disconnects the physical and the
virtual terminals without logging out the process. The /CONTINUE qualifier
allows the image PAYROLL.EXE to continue to execute until the process
needs terminal input or attempts to write to the terminal. At that point,
the process waits until the physical terminal is reconnected to the virtual
terminal; however, you can use the physical terminal to log in again and
perform other work.

DCLI-225

DISMOUNT

DISMOUNT

Format

Parameter

Description

DCLI-226

Closes a mounted disk or tape volume for further processing and deletes the
logical name associated with the device.

Requires the GRPNAM (group logical name) and SYSNAM (system logical
name) privileges to dismount group and system volumes.

DISMOUNT device-name[:]

device-name][:]

Name of the device containing the volume—either a logical name or a physical
name. If a physical name is specified, the controller defaults to A and the unit
defaults to 0.

If the volume currently mounted on the device is a member of a disk or tape
volume set, all volumes in the set are dismounted, unless the /UNIT qualifier is
specified.

The DISMOUNT command (which invokes the $DISMOU system service) checks
for conditions that prevent a Files-11 volume from dismounting. The conditions
fall into the following categories:

e Installed swap and page files

e Installed images

e Devices spooled to the volume

e Open user files (any files not falling into one of the first three categories)

If the DISMOUNT command does not find any of these conditions, it performs the
following operations:

e Removes the volume from the user’s list of mounted volumes, deletes the
logical name (if any) associated with the volume, and decrements the mount
count.

e If the mount count equals zero after being decremented, the DISMOUNT
command marks the volume for dismounting.

As soon as the volume is idle, that is, after the DISMOUNT command has
determined that no user has any open files on the volume, the DISMOUNT
command marks a Files-11 volume for dismounting, and dismounts the
volume soon.

e If the mount count does not equal zero after being decremented, the
DISMOUNT command does not mark the volume for dismount (because
the volume must have been mounted shared). In this case, the total effect for
the issuing process is that the process is denied access to the volume and the
logical name is deleted.

Qualifiers

DISMOUNT

e After a volume is dismounted, nonpaged pool is returned to the system.
Paged pool is also returned if the volume was mounted using the /GROUP or
/SYSTEM qualifiers.

If the DISMOUNT command does find open files or any other condition that
prevents the volume from dismounting, it does not mark the volume for
dismounting. Instead, the DISMOUNT command displays a message indicating
that the volume cannot be dismounted, followed by messages indicating the
conditions that exist and the number of instances of each condition.

The /OVERRIDE=CHECKS qualifier allows a volume to be marked for
dismounting despite open files or other conditions. For example, marking a
volume for dismounting prevents any new files from being opened. Also, when a
volume is marked for dismounting, file-system caches are flushed. This activity is
especially important when the system is shutting down and the file-system caches
must be written to the disk.

If a volume is part of a Files-11 volume set and the /UNIT qualifier is not
specified, the entire volume set will be dismounted.

If the volume was mounted with the /SHARE qualifier, it is not actually
dismounted until all users who mounted it dismount it or log out; however,
the DISMOUNT command deletes the logical name associated with the device.

If the device was allocated with an ALLOCATE command, it remains allocated
after the volume is dismounted with the DISMOUNT command. If the device
was implicitly allocated by the MOUNT command, the DISMOUNT command
deallocates it.

If the volume was mounted with the /GROUP or the /SYSTEM qualifier, it is

dismounted even if other users are currently accessing it. The GRPNAM and
SYSNAM user privileges are required to dismount group and system volumes,
respectively.

/ABORT

Requires volume ownership or the user privilege VOLPRO (volume
protection) to use this qualifier with a volume that was mounted with
neither the /GROUP nor the /SYSTEM qualifier. Additionally requires the
user privilege SHARE if the volume is mounted privately by a process
other than the process issuing the DISMOUNT command.

Specifies that the volume is to be dismounted, regardless of who mounted it. The
primary purpose of the /ABORT qualifier is to terminate mount verification. The
DISMOUNT/ABORT command also cancels any outstanding I/O requests. If the
volume was mounted with the /SHARE qualifier, the /ABORT qualifier causes the
volume to be dismounted for all of the users who mounted it.

ICLUSTER

Dismounts a volume throughout a mixed-architecture OpenVMS Cluster system.
If you specify DISMOUNT/CLUSTER, the DISMOUNT command checks for open
files or other conditions that will prevent a Files-11 volume on the local node from
dismounting. If the DISMOUNT command does not find any open files or other
conditions, it checks for conditions on all other nodes in the OpenVMS Cluster. If
the DISMOUNT command finds one of the conditions on any node, it displays an
error message identifying the device and the nodes on which the error occurred,

DCLI-227

DISMOUNT

DCLI-228

followed by an error message indicating open files or other conditions on the
volume.

After the DISMOUNT command successfully dismounts the volume on the local
node, it dismounts the volume on every other node in the existing OpenVMS
Cluster environment. If the system is not a member of a cluster, the /CLUSTER
qualifier has no effect.

/[FORCE_REMOVAL ddcu:
Expels a named shadow set member from the shadow set.

If connectivity to a device has been lost and the shadow set is in mount
verification, you can use the /FORCE_REMOVAL ddcu: to immediately expel a
named shadow set member (ddcu:) from the shadow set. If you omit this
qualifier, the device is not dismounted until mount verification completes.

Note that you cannot use this qualifier in conjunction with the
/POLICY=MINICOPY (=OPTIONAL) qualifier.

The device specified must be a member of a shadow set that is mounted on the
node where the command is issued.

/OVERRIDE=CHECKS

Marks a Files-11 volume for dismounting even if files are open on the volume.
If you specify DISMOUNT/OVERRIDE=CHECKS, the DISMOUNT command
displays messages indicating any open files or other conditions that prevent
dismounting, immediately followed by a message indicating that the volume has
been marked for dismounting.

This command does not close open files on the device. A device cannot be properly
dismounted until either all processes with open files have properly closed them,
or the processes have been rundown completely.

A substantial amount of time can pass between the time you enter the
DISMOUNT/OVERRIDE=CHECKS command and the completion of the dismount
operation. Always wait for the dismount to complete before you remove the
volume. (To verify that the dismount has completed, enter the SHOW DEVICES
command.) Note that the final phase of volume dismounting occurs in the

file system, and all open files on the volume must be closed before the actual
dismount can be done. Note also that the file system cannot dismount a volume
while any known file lists associated with it contain entries.

By using this command, the device is marked for dismount. This prevents
additional processes from opening files on the device while existing open files are
closed.

/POLICY=[NO]JMINICOPY[=(OPTIONAL)] (Alpha/l64 only)
Controls the setup and use of the shadowing minicopy function.

Requires LOG_IO (logical I/0) privilege to create bitmaps.

The exact meaning of the MINICOPY keyword depends on the context of the
DISMOUNT command, as follows:

1. If this is a dismount of a single member from a multi-member shadow set,
a write bitmap is created to track all writes to the shadow set. This write
bitmap may be used at a later time to return the removed member to the
shadow set with a minicopy.

Examples

DISMOUNT

If the write bitmap cannot be initiated and the keyword OPTIONAL is not
specified, the dismount will fail and the member will not be removed.

If you omit the /POLICY qualifier or if you specify /POLICY=NOMINICOPY,
no bitmap will be created.

2. If this is the final dismount of the shadow set in the cluster, the shadow set is
verified to be capable of a future minicopy operation.

If the shadow set has only one member or is in a merge state, and if
OPTIONAL was not specified, the dismount will fail.

Specifying neither NOMINICOPY nor MINICOPY is the same as
MINICOPY=OPTIONAL, as the set will be dismounted regardless of the
prior checks.

For additional information, see the HP Volume Shadowing for OpenVMS.

/UNIT
Dismounts only one volume of a volume set on the specified device. By default,
all volumes in a set are dismounted.

Note

Avoid dismounting the root volume of a volume set, because it contains
the master file directory (MFD). It may be impossible to access files on a
volume set if the MFD is not accessible.

/UNLOAD

/NOUNLOAD

Determines whether the device on which the volume is mounted is physically
unloaded. If you specify the DISMOUNT command without the /UNLOAD or
the /NOUNLOAD qualifier, the qualifier that you specified with the MOUNT
command (either /UNLOAD or /NOUNLOAD) determines whether the volume is
unloaded physically.

1. $ MOUNT MTAO: PAYVOL TAPE

$ DISMOUNT TAPE

The MOUNT command in this example mounts the tape whose volume
identification is PAYVOL on the device MTAO: and assigns the logical
name TAPE to the device. By default, the volume is not shareable. The
DISMOUNT command releases access to the volume, deallocates the device,
and deletes the logical name TAPE.

2. $ MOUNT/SHARE DKA3: DOC FILES

$ DISMOUNT DKA3:

The MOUNT command in this example mounts the volume labeled DOC_
FILES on the device DKA3. Other users can enter MOUNT commands
to access the device. The DISMOUNT command shown in this example

DCLI-229

DISMOUNT

DCLI-230

deaccesses the device for the process issuing the command. If other users still
have access to the volume, the volume remains mounted for their process or
processes.

$ DISMOUNT/NOUNLOAD DMA2:

The DISMOUNT command in this example dismounts the volume; the
/NOUNLOAD qualifier requests that the volume remain in a ready state.

$ MOUNT/BIND=PAYROLL DMAl:,DMA2: PAYROLLO1,PAYROLLO2

$ DISMOUNT/UNIT DMA2:

The MOUNT command in this example mounts PAYROLL, a two-volume set.
The DISMOUNT command dismounts only PAYROLLO0Z2, leaving PAYROLLO1
accessible. Note that because the master file directory (MFD) for the volume
set is on the root volume, you should not dismount the root volume (in this
case, PAYROLLO1) of the volume set.

$ DISMOUNT 10DJA100

%$DISM-W-CANNOTDMT, 10DJA100: cannot be dismounted
%DISM-W-INSWPGFIL, 4 swap or page files installed on volume
$DISM-W-SPOOLEDEV, 3 devices spooled to volume
$DISM-W-INSTIMAGE, 7 images installed on volume
$DISM-W-USERFILES, 6 user files open on volume

The DISMOUNT command in this example displays the open files and other
conditions that prevent device 10DJA100 from dismounting.

S DISMOUNT/CLUSTER $10SDJA100

%$DISM-W-RMTDMTFAIL, $10SDJA100: failed to dismount on node SALT
%DISM-W-FILESOPEN, volume has files open on remote node
$DISM-W-RMTDMTFAIL, $10SDJA100: failed to dismount on node PEPPER
$DISM-W-FILESOPEN, volume has files open on remote node
$DISM-W-CANNOTDMT, 10DJA100: cannot be dismounted

The DISMOUNT command in this example displays messages identifying
device 10DJA100 and nodes SALT and PEPPER on which errors occurred
followed by messages indicating open files on the volume.

DUMP

DUMP

Format

Parameter

Description

Displays the contents of a file, a directory, a disk volume, a magnetic tape volume,
or a CD-ROM volume in decimal, hexadecimal, octal format, ASCII, or formatted
data structures. This command can be used to generate process dumps.

DUMP filespec [,...]

filespec [,...]
Specifies the file or name of the device being dumped.

If the specified device is not a disk, a tape, or a network device, or if the device
is mounted with the /FOREIGN qualifier, the file specification must contain only
the device name.

If the specified device is a network device, a disk device, or a tape device that is
mounted without the /FOREIGN qualifier, the file specification can contain the
asterisk (*) and the percent sign (%) wildcard characters.

Files-11 C/D format standards have been implemented on mounted and foreign
mounted volumes.

By default, the DUMP command formats the output both in ASCII characters
and in hexadecimal longwords. You can specify another format for the dump by
using a radix qualifier (/OCTAL, /DECIMAL, or /HEXADECIMAL) or a length
qualifier (/BYTE, /WORD, or /LONGWORD).

Dumping Files

If the input medium is a network device, a disk device, or a tape device that is
mounted without the /FOREIGN qualifier, the DUMP command operates on files.
You can dump files by either records or blocks. The asterisk (*) and the percent
sign (%) wildcard character specifications can be used to select a group of files for
processing.

Dumping Volumes

If the input medium is not a disk or a tape device, or if it is mounted with the
/FOREIGN qualifier, the DUMP command operates on the input device as a
non-file-structured (NFS) medium. Disk devices are dumped by 512-byte logical
blocks. Other devices are dumped by physical blocks. No repositioning of the
input medium occurs; therefore, consecutive blocks on a tape can be dumped by a
single DUMP command.

If you have LOG_IO (logical I/O) privilege, you can dump random blocks on a
Files-11 volume. For example, by using the /BLOCKS qualifier, you could dump
block 100 on the system disk.

Dumping Processes

If you use the /PROCESS qualifier, the DUMP command attempts to generate a
process dump file.

DCLI-231

DUMP

Qualifiers

DCLI-232

Reading Dumps
The ASCII representation is read left to right. The hexadecimal, decimal, and
octal representations are read right to left.

Specifying Numeric Qualifier Values

The numeric values for the /BLOCKS, /RECORDS, and /NUMBER qualifiers
can be specified either as decimal numbers or with a leading %X, %0, or %D to
signify hexadecimal, octal, or decimal numbers respectively. For example, the
following are all valid ways to specify decimal value 24:

24

%X18
%030
%D24

/ALLOCATED
Includes in the dump all blocks allocated to the file. (By default, the dump does
not include blocks following the end-of-file [EOF].)

You can specify the /ALLOCATED qualifier if the input is a disk that is mounted
without the /FOREIGN qualifier. The /ALLOCATED and /RECORDS qualifiers
are mutually exclusive.

/BLOCKS[=(optionL,...])]
Dumps the specified blocks one block at a time, which is the default method for
all devices except network devices.

Block numbers are specified as integers relative to the beginning of the file.
Typically, blocks are numbered beginning with 1. If a disk device is mounted
using the /FOREIGN qualifier, blocks are numbered beginning with zero. Select a
range of blocks to be dumped by specifying one of the following options:

START:n Specifies the number of the first block to be dumped; the default
is the first block.
END:n Specifies the number of the last block to be dumped; the default

is the last block or the end-of-file (EOF) block, depending on
whether you have specified the /ALLOCATED qualifier.

COUNT:n Specifies the number of blocks to be dumped. The COUNT
option provides an alternative to the END option; you cannot
specify both.

If you specify only one option, you can omit the parentheses.

The /BLOCKS and /RECORDS qualifiers are mutually exclusive.

Use the /BLOCKS qualifier to dump random blocks from Files-11 volumes. This
procedure requires LOG-IO (logical I/O) privilege.

/BYTE
Formats the dump in bytes. The /BYTE, /[LONGWORD, and /WORD qualifiers
are mutually exclusive. The default format is composed of longwords.

/DECIMAL
Dumps the file in decimal radix. The /DECIMAL, /HEXADECIMAL (default), and
/OCTAL qualifiers are mutually exclusive.

DUMP

/DESCRIPTOR[=(option[,...])]
Dumps the specified ISO 9660 volume descriptors in a formatted manner. If
/NOFORMATTED is specified, block mode format is used.

The descriptor options that you can specify are as follows:

BOOT:n Searches for the nth occurrence of a Boot Record.

PVD:n Searches for the nth occurrence of a Primary Volume Descriptor.

SVD:n Searches for the nth occurrence of a Supplementary Volume
Descriptor.

VPD:n Searches for the nth occurrence of a Volume Partition
Descriptor.

VDST:n Searches for the nth occurrence of a Volume Descriptor Set
Terminator.

If you specify only one option, you can omit the parentheses.

ISO 9660 descriptors are specified by their ordinal position from the start of

the volume, defaulting to 1 if they are not specified. The ISO 9660 volume is
sequentially searched from the beginning of the volume descriptor set sequence to
the end to find the specified descriptor and output it in a formatted manner.

/DIRECTORY

Dumps data blocks of the specified file as formatted on-disk structures for Files-
11 On-Disk Structure Level 1, 2, or 5 directory records, ISO 9660, or High Sierra
directory records.

/EXACT

Use with the /PAGE=SAVE and /SEARCH qualifiers to specify a search string
that must match the search string exactly and must be enclosed with quotation
marks (“ 7).

If you specify the /EXACT qualifier without the /SEARCH qualifier, exact search
mode is enabled when you set the search string with the Find (E1) key.

/FILE_HEADER
Dumps each data block that is a valid Files-11 header in Files-11 header format
rather than in the selected radix and length formats.

/[FORMATTED (default)

/NOFORMATTED

Dumps the file header in Files-11 format; the /NOFORMATTED qualifier dumps
the file header in octal format. This qualifier is useful only when the /HEADER
qualifier is specified.

/HEADER

Dumps the file header and access control list (ACL). To dump only the file header,
and not the file contents, also specify /BLOCK=(COUNT:0). The /HEADER
qualifier is invalid for devices mounted using the /FOREIGN qualifier.

Use the /FORMATTED qualifier to control the format of the display.

You can use the /FILE_HEADER qualifier with the /HEADER qualifier to have
Files-11 file headers printed in an interpreted representation.

By default, the file header is not displayed.

DCLI-233

DUMP

DCLI-234

/HEXADECIMAL (default)
Dumps the file in hexadecimal radix. The /DECIMAL, /HEXADECIMAL (default),
and /OCTAL qualifiers are mutually exclusive.

/HIGHLIGHT[=keyword]

Use with the /PAGE=SAVE and /SEARCH qualifiers to specify the type of
highlighting you want when a search string is found. When a string is found, the
entire line is highlighted. You can use the following keywords: BOLD, BLINK,
REVERSE, and UNDERLINE. BOLD is the default highlighting.

/IDENTIFIER=file-id

Dumps the file selected by the file identification (FID) number from the specified
volume. For further information, see the /FILE_ID qualifier from the DCL
command, DIRECTORY.

/LONGWORD (default)
Formats the dump in longwords. The /BYTE, /[LONGWORD, and /WORD
qualifiers are mutually exclusive.

/MEDIA_FORMAT=keyword
Specifies the format in which a data structure is to be dumped. If you specify this
qualifier, you must use one of the following keywords:

CDROM Specifies ISO 9660 media format. This format is the
default if you do not specify the /MEDIA_FORMAT
qualifier.

CDROM_HS Specifies High Sierra media format.

/NUMBER[=n]

Specifies how byte offsets are assigned to the lines of output. If you specify the
/NUMBER qualifier, the byte offsets increase continuously through the dump,
beginning with n; if you omit the INUMBER qualifier, the first byte offset is zero.
By default, the byte offset is reset to zero at the beginning of each block or record.

/OCTAL
Dumps the file in octal radix. The /DECIMAL, /HEXADECIMAL (default), and
/OCTAL qualifiers are mutually exclusive.

/OUTPUT[=filespec]

Specifies the output file for the dump. If you do not specify a file specification,
the default is the file name of the file being dumped and the file type .DMP. If
the /OUTPUT qualifier is not specified, the dump goes to SYS§OUTPUT. The
/OUTPUT and /PRINTER qualifiers are mutually exclusive.

[PAGE[=keyword]
/NOPAGE (default)
Controls the display of dump information on the screen.

You can use the following keywords with the /PAGE qualifier:

CLEAR_SCREEN Clears the screen before each page is displayed.
SCROLL Displays information one line at a time.
SAVE[=n] Enables screen navigation of information, where n is the

number of pages to store.

DUMP

The /PAGE=SAVE qualifier allows you to navigate through screens of information.
The /PAGE=SAVE qualifier stores up to 5 screens of up to 255 columns of
information. When you use the /PAGE=SAVE qualifier, you can use the following
keys to navigate through the information:

Key Sequence Description

Up arrow key, Ctrl/B Scroll up one line.

Down arrow key Scroll down one line.

Left arrow key Scroll left one column.

Right arrow key Scroll right one column.

Find (E1) Specify a string to find when the information is
displayed.

Insert Here (E2) Scroll right one half screen.

Remove (E3) Scroll left one half screen.

Select (E4) Toggle 80/132 column mode.

Prev Screen (E5) Get the previous page of information.

Next Screen (E6), Get the next page of information.

Return, Enter, Space

F10, Ctrl/Z Exit. (Some utilities define these differently.)

Help (F15) Display utility help text.

Do (F16) Toggle the display to oldest/newest page.

Ctrl/'W Refresh the display.

The /PAGE qualifier is not compatible with the /OUTPUT qualifier.

/PATH_TABLE
Dumps data blocks in ISO 9660 Path Table format.

/PRINTER

Queues the dump to SYS$PRINT in a file named with the file name of the file
being dumped and the file type .DMP. If the /PRINTER qualifier is not specified,
the dump goes to SYS$OUTPUT. The asterisk (*) and the percent sign (%)
wildcard characters are not allowed. The /OUTPUT and /PRINTER qualifiers are
mutually exclusive.

/PROCESS [/ID=pid] [process-name]

Attempts to generate a process dump. The default process is the current process.
To generate a target process dump, specify either the process ID or the process
name.

/RECORDS[=(option[,...])]
Dumps the file a record at a time rather than a block at a time. (By default,
input is dumped one block at a time for all devices except network devices.)

Records are numbered beginning with 1.
Select a range of records to be dumped by specifying one of the following options:

START:n Specifies the number of the first record to be dumped; the
default is the first record.

DCLI-235

DUMP

DCLI-236

END:n Specifies the number of the last record to be dumped; the default
is the last record of the file.

COUNT:n Specifies the number of records to be dumped. The COUNT
option provides an alternative to the END option; you cannot
specify both.

If you specify only one option, you can omit the parentheses.

If you specify the /RECORDS qualifier, you cannot specify the /ALLOCATED or
the /BLOCKS qualifier.

I/SEARCH="string"

Use with the /PAGE=SAVE qualifier to specify a string that you want to find in
the information being displayed. Quotation marks are required for the /SEARCH
qualifier, if you include spaces in the text string.

You can also dynamically change the search string by pressing the Find key (E1)
while the information is being displayed. Quotation marks are not required for a
dynamic search.

/STYLE=keyword
Specifies the file name format for display purposes while performing a file dump.

The valid keywords for this qualifier are CONDENSED and EXPANDED.
Descriptions are as follows:

Keyword Explanation
CONDENSED Displays the file name representation of what is generated
(default) to fit into a 255-length character string. This file name may
contain a DID or FID abbreviation in the file specification.
EXPANDED Displays the file name representation of what is stored
on disk. This file name does not contain any DID or FID
abbreviations.

The keywords CONDENSED and EXPANDED are mutually exclusive. This
qualifier specifies which file name format is displayed in the output header.

File errors are displayed with the CONDENSED file specification unless the
EXPANDED keyword is specified.

See the OpenVMS User’s Manual for more information.

/SYMLINK

/NOSYMLINK (default)

If an input file is a symbolic link, the file referred to by the symbolic link is the
file that is dumped.

The /SYMLINK qualifier indicates that any input symbolic link is dumped.

/VALIDATE_HEADER
Verifies /DIRECTORY records for Files-11.

/WIDTH=n
Formats the dump output into 80 or 132 columns by specifying n as either 80 or
132.

Examples

DUMP

/WORD
Formats the dump in words. The /BYTE, /LONGWORD, and /WORD qualifiers
are mutually exclusive.

/WRAP

/INOWRAP (default)

Use with the /PAGE=SAVE qualifier to limit the number of columns to the width
of the screen and to wrap lines that extend beyond the width of the screen to the
next line.

The /INOWRAP qualifier extends lines beyond the width of the screen and can
be seen when you use the scrolling (left and right) features provided by the
/PAGE=SAVE qualifier.

1. $ DUMP TEST.DAT
Dump of file DISKO: [MOORE]TEST.DAT;1 on 14-DEC-2001 15:43:26.08
File ID (3134,818,2) End of file block 1 / Allocated 3
Virtual block number 1 (00000001), 512 (0200) bytes

706D6173 20612073 69207369 68540033 3.This is a samp 000000
73752065 62206F74 20656C69 6620656C le file to be us 000010
61786520 504D5544 2061206E 69206465 ed in a DUMP exa 000020
00000000 00000000 0000002E 656C706D mple............ 000030
00000000 00000000 00000000 00000000 ..o, 000040
00000000 00000000 00000000 00000000cvvvuenn. .. 000050
00000000 00000000 00000000 00000000 ..o 000060
00000000 00000000 00000000 00000000covvvnnnn. 0001E0
00000000 00000000 00000000 00000000cvvnven .. 0001F0

The DUMP command displays the contents of TEST.DAT both in hexadecimal
longword format and in ASCII beginning with the first block in the file.

2. $ DUMP TEST.DAT/OCTAL/BYTE
Dump of file DISKO: [SCHELL]TEST.DAT;1 on 14-DEC-2001 15:45:33.58
File ID (74931,2,1) End of file block 1 / Allocated 3
Virtual block number 1 (00000001), 512 (0200) bytes
151 040 163 151 150 124 000 063 3.This 1 000000
160 155 141 163 040 141 040 163 s a samp 000010
040 145 154 151 146 040 145 154 le file 000020
163 165 040 145 142 040 157 164 to be us 000030
040 141 040 156 151 040 144 145 ed in a 000040
141 170 145 040 120 115 125 104 DUMP exa 000050

377 377 000 056 145 154 160 155 mple.... 000060
000 000 000 000 000 000 000 000 000070
000 000 000 000 000 000 000 000 000100
000 000 000 000 000 000 000 000 000110
000 000 000 000 000 000 000 000 000760
000 000 000 000 000 000 000 000 000770

The DUMP command displays the image of the file TEST.DAT, formatted both
in octal bytes and in ASCII characters beginning with the first block.

DCLI-237

DUMP

3. S DUMP NODE3::DISK2:[STATISTICS]RUN1.DAT

This command line dumps the file RUN1.DAT that is located at remote node
NODES3. The default DUMP format will be used.

4. $ DUMP/HEADER/BLOCK=COUNT=0 SYS$SYSTEM:DATASHARE.EXE

Dump of file SYSSSYSTEM:DATASHARE.EXE on 12-NOV-2001 16:06:46.75
File ID (16706,59,0) End of file block 410 / Allocated 411

File Header

Header area

Identification area offset: 40
Map area offset: 100
Access control area offset: 255
Reserved area offset: 255
Extension segment number: 0
Structure level and version: 2, 1
File identification: (16706,59,0)
Extension file identification: (0,0,0)
VAX RMS attributes
Record type: Fixed
File organization: Sequential
Record attributes: <none specifieds>
Record size: 512
Highest block: 411
End of file block: 410
End of file byte: 414
Bucket size: 0
Fixed control area size: 0
Maximum record size: 512
Default extension size: 0
Global buffer count: 0
Directory version limit: 0
File characteristics: Contiguous best try
Caching attribute: Writethrough
Map area words in use: 3
Access mode: 0
File owner UIC: [1,4]
File protection: S:RWED, O:RWED, G:RE, W:
Back link file identification: (7149,80,0)
Journal control flags: <none specified>
Active recovery units: None
Highest block written: 411
Client attributes: None
Identification area
File name: DATASHARE.EXE
Revision number: 1
Creation date: 12-AUG-2001 14:06:49.84
Revision date: 12-AUG-2001 14:06:53.20
Expiration date: <none specified>
Backup date: <none specified>
Map area
Retrieval pointers
Count: 411 LBN: 1297155
Checksum: 30710

In this example, the DUMP command dumps the file header of the specified
file. Because this file is recorded on Files-11 ODS-2 9660 media, the file
header is displayed in a Files-11 File Header format. Imbedded on the
Files-11 Header is a VAX RMS attributes block.

DCLI-238

DUMP

5. $ DUMP/HEADER/BLOCK=COUNT=0 DISKS$GRIPS 2:[000000] AAREADME.TXT;
Dump of file DISK$GRIPS 2:[000000]AAREADME.TXT;1 on 15-DEC-2001

10

:07:29.70

File ID (4,6,0) End of file block 29 / Allocated 29
ISO 9660 File Header

Length of Directory Record:
Extended Attribute Length:
Location of Extent (LSB/MSB):

Data Length of File Section (LSB/MSB):

Recording Date and Time
File Flags

Interleave File Unit size:
Interleave Gap size:

Volume Sequence # of extent (LSB/MSB):

File Identifier Field Length:
File Identifier:
System Use

48

1

312/312
14640/14640
10-DEC-2001 16:22:30 GMT(0)
RECORD, PROTECTION
0

0

1/1

14

AAREADME.TXT; 1

5458542E 454D4441 45524141 0E010000 01000018 001E1610 100B5930 395000000

L90Y L AAREADME.TXT 000000

.............................. 000020

Extended Attribute record

Owner Identification (LSB/MSB):
Group Identification (LSB/MSB):

Access permission for classes of users

File Creation Date/Time:
File Modification Date/Time:
File Expiration Date/Time:
File Effective Date/Time:
Record Format

Record Attributes

Record Length (LSB/MSB):
System Identifier:

System Use

Extended Attribute Version:
Escape Sequence record length:

Application Use Length (LSB/MSB):

Application Use

VAX RMS attributes
Record type:
File organization:
Record attributes:
Record size:
Highest block:
End of file block:
End of file byte:
Bucket size:
Fixed control area size:
Maximum record size:
Default extension size:
Global buffer count:
Directory version limit:

00313B

7/7

246/246

S:R, O:R, G:RE, W:RE
5-0CT-2001 14:17:49.29 GMT
6-NOV-2001 16:22:30.96 GMT
00-00-0000 00:00:00.00 GMT
00-00-0000 00:00:00.00 GMT
Fixed

CRLF

80/80

1
0
0/0

Fixed

Sequential

Implied carriage control
80

29

29

304

0

0

80

o O o

The DUMP/HEADER command dumps the file header of the specified file.
Because this file is recorded on ISO 9660 media, the file header is displayed in
the format of an ISO 9660 File Header and, since this file contains an optional
ISO 9660 Extended Attribute Record (XAR), it is also displayed. Finally, as
with all DUMP/HEADER requests, VAX RMS attributes are displayed.

DCLI-239

EDIT/ACL

EDIT/ACL
Invokes the access control list (ACL) editor, which creates or modifies an access
control list for a specified object. The /ACL qualifier is required.
For more information about the ACL Editor, see the HP OpenVMS System
Management Utilities Reference Manual or the HP OpenVMS Guide to System
Security or online help.

Format

EDIT/ACL object-spec

DCLI-240

EDIT/EDT

EDIT/EDT

Format

Parameter

Description

Invokes EDT, an interactive text editor. The /EDT qualifier is required.

Information on EDT commands is available from within EDT by pressing Ctrl/Z
and typing HELP at the EDT Command prompt. In addition to command help,
you can also press PF2 for keypad help. For a description of EDT, including
information about EDT commands and qualifiers, see the OpenVMS User’s
Manual.

EDIT/EDT filespec

filespec
Specifies the file to be created or edited using EDT. If the file does not exist, it is
created by EDT.

EDT does not provide a default file type when creating files; if you do not include
a file type, it is null. The file must be a disk file on a Files-11 formatted volume.

The asterisk (*) and the percent sign (%) wildcard characters are not allowed in
the file specification.

EDT creates or edits text files. You can use EDT to enter or edit text in three
modes: keypad, line, or nokeypad. Keypad editing, which is screen-oriented, is
available on VT300-series, VT200-series, VI'100, and VT52 terminals. A screen-
oriented editor allows you to see several lines of text at once and move the cursor
throughout the text in any direction. Line editing operates on all terminals. In
fact, if you have a terminal other than a VT300-series, VT200-series, VT'100,

or VT52, line editing is the only way you can use EDT. You might prefer line
editing if you are accustomed to editing by numbered lines. Nokeypad mode is a
command-oriented screen editor available on VT300-series, VI'200-series, VT'100,
and VT52 terminals. You can use line mode and nokeypad mode to redefine keys
for use in keypad mode.

When you invoke EDT, you are in line mode by default. If you are editing an
existing file, EDT displays the line number and text for the first line of the file. If
you are creating a new file, EDT displays the following message:

Input file does not exist
[EOB]

In either case, EDT then displays the line mode prompt, which is the asterisk
().

For complete details on the EDT editor, see the OpenVMS EDT Reference Manual
(available on the Documentation CD-ROM).

DCLI-241

EDIT/EDT

Qualifiers

DCLI-242

/COMMANDI=filespec]

/NOCOMMAND

Determines whether or not EDT uses a startup command file. The /COMMAND
file qualifier should be followed by an equal sign (=) and the specification of
the command file. The default file type for command files is .EDT. The asterisk
(*) and the percent sign (%) wildcard characters are not allowed in the file
specification.

The following command line invokes EDT to edit a file named MEMO.DAT and
specifies that EDT use a startup command file named XEDTINL.EDT:

$ EDIT/COMMAND=XEDTINI.EDT MEMO.DAT

If you do not include the /COMMAND=command file qualifier, EDT looks for the
EDTSYS logical name assignment. If EDTSYS is not defined, EDT processes the
systemwide startup command file SYS$LIBRARY:EDTSYS.EDT. If this file does

not exist, EDT looks for the EDTINI logical name assignment. If EDTINI is not
defined, EDT looks for the file named EDTINI.EDT in your default directory. If

none of these files exists, EDT begins your editing session in the default state.

To prevent EDT from processing either the systemwide startup command file or
the EDTINLEDT file in your default directory, use the /NOCOMMAND qualifier
as follows:

$ EDIT/EDT/NOCOMMAND MEMO.DAT

/CREATE (default)

/INOCREATE

Controls whether EDT creates a new file when the specified input file is not
found.

Normally, EDT creates a new file to match the input file specification if it
cannot find the requested file name in the specified directory. When you use the
/NOCREATE qualifier in the EDT command line and type a specification for a
file that does not exist, EDT displays an error message and returns to the DCL
command level as follows:

$ EDIT/EDT/NOCREATE NEWFILE.DAT
Input file does not exist

$

[JOURNAL[=journal-file]

/NOJOURNAL

Determines whether EDT keeps a journal during your editing session. A journal
contains a record of the keystrokes you enter during an editing session. The
default file name for the journal is the same as the input file name. The default
file type is .JOU. The /JJOURNAL qualifier enables you to use a different file
specification for the journal.

The following command line invokes EDT to edit a file named MEMO.DAT and
specifies the name SAVE.JOU for the journal:

$ EDIT/EDT/JOURNAL=SAVE MEMO.DAT

If you are editing a file from another directory and want the journal to be located
in that directory, you must use the /JOURNAL qualifier with a file specification
that includes the directory name; otherwise, EDT creates the journal in the
default directory.

EDIT/EDT

The directory that is to contain the journal should not be write-protected.

To prevent EDT from keeping a record of your editing session, use the
/NOJOURNAL qualifier in the EDT command line as follows:

$ EDIT/EDT/NOJOURNAL MEMO.DAT

Once you have created a journal, enter the EDT/RECOVER command to execute
the commands in the journal. The asterisk (*) and the percent sign (%) wildcard
characters are not allowed in the file specification.

/OUTPUT=output-file

/INOOUTPUT

Determines whether EDT creates an output file at the end of your editing session.
The default file specification for both the input file and the output file is the same.
Use the /OUTPUT qualifier to give the output file a different file specification
from the input file.

The following command line invokes EDT to edit a file named MEMO.DAT and
gives the resulting output file the name OUTMEM.DAT:

$ EDIT/EDT/OUTPUT=OUTMEM.DAT MEMO.DAT

You can include directory information as part of your output file specification to
send output to another directory as follows:

$ EDIT/EDT/OUTPUT=[BARRETT.MAIL]MEMO.DAT MEMO.DAT

The /NOOUTPUT qualifier suppresses the creation of an output file, but not the
creation of a journal. If you decide that you do not want an output file, you can
use the /NOOUTPUT qualifier as follows:

$ EDIT/EDT/NOOUTPUT MEMO.DAT

A system interruption does not prevent you from recreating your editing session
because a journal is still being maintained. To save your editing session, even
when you specify /NOOUTPUT, use the line mode command WRITE to put the
text in an external file before you end the session.

The asterisk (*) and the percent sign (%) wildcard characters are not allowed in
the file specification.

/READ_ONLY

/NOREAD_ONLY (default)

Determines whether EDT keeps a journal and creates an output file. With
the /NOREAD_ONLY qualifier, EDT maintains the journal and creates an
output file when it processes the line mode command EXIT. Using the /READ_
ONLY qualifier has the same effect as specifying both the /NOJOURNAL and
/NOOUTPUT qualifiers.

The following command line invokes EDT to edit a file named CALENDAR.DAT,
but does not create a journal or an output file:

$ EDIT/EDT/READ ONLY CALENDAR.DAT

Use the /READ_ONLY qualifier when you are searching a file and do not intend
to make any changes to it. To modify the file, use the line mode command WRITE
to save your changes. Remember, however, that you have no journal.

DCLI-243

EDIT/EDT

Examples

DCLI-244

/RECOVER
/NORECOVER (default)
Determines whether EDT reads a journal at the start of the editing session.

When you use the /RECOVER qualifier, EDT reads the appropriate journal and
processes whatever commands it contains. The appropriate syntax is as follows:

$ EDIT/EDT/RECOVER MEMO.DAT

If the journal file type is not .JOU or the file name is not the same as the input
file name, you must include both the /JOURNAL qualifier and the /RECOVER
qualifier as follows:

$ EDIT/EDT/RECOVER/JOURNAL=SAVE.XXX MEMO.DAT

Because the /NORECOVER qualifier is the default for EDT, you do not need to
specify it in a command line.

1.

$ EDIT/EDT/OUTPUT=NEWFILE.TXT OLDFILE.TXT

1 This is the first line of the file OLDFILE.TXT.
*

This command invokes EDT to edit the file OLDFILE.TXT. EDT looks for the
EDTSYS logical name assignment. If EDTSYS is not defined, EDT processes
the systemwide startup command file SYS$LIBRARY:EDTSYS.EDT. If this
file does not exist, EDT looks for the EDTINI logical name assignment. If
EDTINTI is not defined, EDT looks for the file named EDTINL.EDT in your
default directory. If none of these files exists, EDT begins your editing session
in the default state. When the session ends, the edited file has the name
NEWFILE.TXT.

$ EDIT/EDT/RECOVER OLDFILE.TXT

This command invokes EDT to recover from an abnormal exit during a
previous editing session. EDT opens the file OLDFILE.TXT, and then
processes the journal OLDFILE.JOU. Once the journal has been processed,
the user can resume interactive editing.

EDIT/FDL

EDIT/FDL

Invokes the Edit/FDL (File Definition Language) utility, which creates and
modifies FDL files. The /FDL qualifier is required.

For more information about the File Definition Language utility, see the
OpenVMS Record Management Utilities Reference Manual or online help.

Format
EDIT/FDL filespec

DCLI-245

EDIT/SUM

EDIT/SUM

Invokes the SUMSLP utility, a batch-oriented editor, to update a single input file
with multiple files of edit commands.

For more information about the SUMSLP utility, see the OpenVMS SUMSLP
Utility Manual (available on the Documentation CD-ROM) or online help.

Format
EDIT/SUM input-file

DCLI-246

EDIT/TECO

EDIT/TECO

Format

Parameter

Description

Qualifiers

Invokes the TECO interactive text editor.

EDIT/TECO [filespec]
EDIT/TECO/EXECUTE=command-file [argument]

filespec

Specifies the file to be created or edited using the TECO editor. If the file does
not exist, it is created by TECO, unless you specify the /NOCREATE qualifier.
The asterisk (*) and the percent sign (%) wildcard characters are not allowed in
the file specification.

If you specify the /MEMORY qualifier (default) without a file specification, TECO
edits the file identified by the logical name TEC$MEMORY. If TEC$MEMORY
has no equivalence string, or if the /NOMEMORY qualifier is specified, TECO
starts in command mode and does not edit an existing file.

If you specify the /MEMORY qualifier and a file specification, the file specification
is equated to the logical name TEC$MEMORY.

argument
See the /EXECUTE qualifier.

The TECO editor creates or edits text files. For detailed information on the use
of TECO, see the Standard TECO Text Editor and Corrector for the VAX, PDP-11,
PDP-10, and PDP-8 manual (available on the Documentation CD-ROM).

/ICOMMAND[=filespec]

/INOCOMMAND

Controls whether a startup command file is used. The /COMMAND file qualifier
may be followed by an equal sign (=) and the specification of the command file.
The default file type for command files is . TEC.

The following command line invokes TECO to edit a file named MEMO.DAT and
specifies that TECO use a startup command file named XTECOINIL.TEC:

$ EDIT/TECO/COMMAND=XTECOINI.TEC MEMO.DAT

If you do not include the /COMMAND qualifier, or if you enter /COMMAND
without specifying a command file, TECO looks for the TEC$INIT logical name
assignment. If TECS$INIT is not defined, no startup commands are executed.

The logical name TEC$INIT can equate either to a string of TECO commands or
to a dollar sign ($) followed by a file specification. If TEC$INIT translates to a
string of TECO commands, the string is executed; if it translates to a dollar sign
followed by a file specification, the contents of the file are executed as a TECO
command string. For further information, see the Standard TECO Text Editor

DCLI-247

EDIT/TECO

DCLI-248

and Corrector for the VAX, PDP-11, PDP-10, and PDP-8 manual (available on the
Documentation CD-ROM).

To prevent TECO from using any startup command file, use the /INOCOMMAND
qualifier as follows:

$ EDIT/TECO/NOCOMMAND MEMO.DAT

The asterisk (*) and the percent sign (%) wildcard characters are not allowed in
the file specification.

/CREATE (default)

INOCREATE

Creates a new file when the specified input file cannot be found. If the /MEMORY
qualifier is specified and no input file is specified, the file created is the one
specified by the logical name TEC$MEMORY. Normally, TECO creates a new file
to match the input file specification if it cannot find the requested file name in
the specified directory. When you use the /INOCREATE qualifier in the TECO
command line and type a specification for a file that does not exist, TECO
displays an error message and returns you to the DCL command level. The
/CREATE and /NOCREATE qualifiers are incompatible with the /EXECUTE
qualifier.

[EXECUTE=command-file [argument]

Invokes TECO and executes the TECO macro found in the command file. The
argument, if specified, appears in the text buffer when macro execution starts.
Blanks or special characters must be enclosed in quotation marks (“”). For
detailed information on the use of TECO macros, see the Standard TECO Text
Editor and Corrector for the VAX, PDP-11, PDP-10, and PDP-8 manual (available
on the Documentation CD-ROM).

The /EXECUTE qualifier is incompatible with the /CREATE and /MEMORY
qualifiers.

/MEMORY (default)

/INOMEMORY

Specifies that the last file you edited with TECO, identified by the logical name
TEC$MEMORY, will be the file edited if you omit the file specification to the
EDIT/TECO command.

/OUTPUT=output-file

/NOOUTPUT (default)

Controls how the output file is named at the end of your editing session. By
default, the output file has the same name as the input file but is given the next
higher available version number. Use the /OUTPUT qualifier to give the output
file a file specification different from the input file.

The following command line invokes TECO to edit a file named MEMO.DAT and
gives the resulting output file the name OUTMEM.DAT:

$ EDIT/TECO/OUTPUT=0UTMEM.DAT MEMO.DAT

You can include directory information as part of your output file specification to
send output to another directory as follows:

$ EDIT/TECO/OUTPUT= [BARRRET.MAIL]MEMO.DAT MEMO.DAT

The asterisk (*) and the percent sign (%) wildcard characters are not allowed in
the file specification.

EDIT/TECO

/READ_ONLY

/NOREAD_ONLY (default)

Controls whether an output file is created. By default, an output file is created;
the /READ_ONLY qualifier suppresses the creation of the output file.

Examples

1. $ EDIT/TECO/OUTPUT=NEWFILE.TXT OLDFILE.TXT

This EDIT command invokes the TECO editor to edit the file OLDFILE.TXT.
TECO looks for the TEC$INIT logical name assignment. If TEC$INIT is
not defined, TECO begins the editing session without using a command file.
When the session ends, the edited file has the name NEWFILE.TXT.

2. $ EDIT/TECO/EXECUTE=FIND DUPS "TEMP, ARGS, BLANK"

In this example, the /EXECUTE qualifier causes the TECO macro contained
in the file FIND_DUPS.TEC to be executed, with the argument string “TEMP,
ARGS, BLANK” located in the text buffer.

DCLI-249

EDIT/TPU

EDIT/TPU

Format

DCLI-250

Invokes the DEC Text Processing utility (DECTPU). By default, this runs the
Extensible Versatile Editor (EVE). DECTPU provides a structured programming
language and other components for creating text editors and other applications.
EVE is a general-purpose text editor that is the OpenVMS default editor.

For more information about editing with EVE, see the OpenVMS User’s Manual
or online help.

EDIT[/TPU] [input-file]

ENABLE AUTOSTART

ENABLE AUTOSTART

Format

Parameters

Description

Qualifiers

Enables the autostart feature on a node for all autostart queues managed by the
specified queue manager. By default, this command uses the /QUEUES qualifier.

Requires OPER (operator) privileges.

For more information on autostart queues, see the chapter on batch and print
queues in the HP OpenVMS System Manager’s Manual.

ENABLE AUTOSTART[/QUEUES]

None.

Enabling autostart for queues notifies the queue manager to automatically start
all of its stopped active autostart queues on a node. It also notifies the queue
manager to automatically start any of its autostart queues that fail over to the
node. By default, the ENABLE AUTOSTART command affects the node from
which it is entered. Specify the /ON_NODE qualifier to enable autostart on a
different node.

By default, the command affects autostart queues managed by the default
queue manager, SYS$QUEUE_MANAGER. Specify the /NAME_OF_MANAGER
qualifier to disable autostart of a different queue manager’s autostart queues on
the node.

An autostart queue is active if it has been activated by the /START qualifier
with the INITIALIZE/QUEUE command or by the START/QUEUE command
and has not been stopped by the STOP/QUEUE/NEXT or STOP/QUEUE/RESET
command.

When a node boots, autostart is disabled until you enter the ENABLE
AUTOSTART command. Typically, you would add this command to your site-
specific startup command procedure or your queue startup command procedure to
start a node’s autostart queues each time the node boots.

INAME_OF_MANAGER=name

Specifies the name of the queue manager controlling the autostart queues you
want to enable. The qualifier allows the autostart feature to be used differently
for different sets of queues.

If the /NAME_OF_MANAGER qualifier is omitted, the default queue manager
name SYS$QUEUE_MANAGER is used.

For more information on multiple queue managers, see the chapter on the queue
manager in the HP OpenVMS System Manager’s Manual.

/ON_NODE=nodename
Specifies a node in an OpenVMS Cluster system. Use this qualifier to enable
autostart on a node other than the one from which you enter the command.

DCLI-251

ENABLE AUTOSTART

Examples

DCLI-252

/QUEUES
Specifies that autostart is to be enabled for queues. (This qualifier is used by
default.)

1.

$ INITIALIZE/QUEUE/BATCH/START-
_$ /AUTOSTART ON=SATURN:: BATCH 1
$ ENABLE AUTOSTART/QUEUES

$ DISABLE AUTOSTART/QUEUES

In this example, the INITIALIZE/QUEUE command creates an autostart
queue BATCH_1, capable of running on node SATURN. The /START qualifier
activates the queue for autostart. The ENABLE/AUTOSTART/QUEUES
command (executed on node SATURN) enables autostart on the node, causing
the queue (and any other active autostart queues on the node) to begin
executing jobs.

The DISABLE AUTOSTART command (executed on node SATURN) stops
autostart queues on the node and prevents any queues from failing over to
the node.

These commands only affect queues managed by the default queue manager
SYS$QUEUE_MANAGER because the / NAME_OF_MANAGER qualifier is
not specified.

Because BATCH_1 is set up to run only on one node, the queue cannot fail
over to another node and therefore is stopped; however, the queue remains
active for autostart and will be started when the ENABLE AUTOSTART
command is entered for node SATURN. No START/QUEUE command is
needed to restart BATCH_1 unless autostart of the queue is deactivated with
the STOP/QUEUE/NEXT or STOP/QUEUE/RESET command.

$ INITIALIZE/QUEUE/BATCH/START-

S /AUTOSTART ON=(NEPTUN::,SATURN::) BATCH 1
$ ENABLE AUTOSTART/QUEUES/ON NODE=NEPTUN

$ ENABLE AUTOSTART/QUEUES/ON NODE=SATURN

$ STOP/QUEUES/ON_NODE=NEPTUN

In this example, the INITIALIZE/QUEUE command creates an autostart
queue BATCH_1. The /START qualifier activates the queue for autostart.

The first ENABLE AUTOSTART/QUEUES command causes the

queue to begin executing on node NEPTUN. The second ENABLE
AUTOSTART/QUEUES command enables autostart on node SATURN to
start all stopped active autostart queues on that node and to start any
autostart queues that might fail over to that node.

ENABLE AUTOSTART

Later, suppose node NEPTUN must be removed from the OpenVMS Cluster
system. The STOP/QUEUES/ON_NODE command stops all queues on node
NEPTUN, and causes the autostart queue BATCH_1 to fail over to node
SATURN. Because the queue is active for autostart, and because autostart
has been enabled on node SATURN, the queue is automatically started on
that node.

This command only affects queues managed by the default queue manager
SYS$QUEUE_MANAGER because the / NAME_OF_MANAGER qualifier is
not specified.

DCLI-253

ENCRYPT

ENCRYPT

Format

Parameters

Qualifiers

DCLI-254

Encrypts files by default with the Data Encryption Standard (DES) algorithm
in Cipher Block Chaining (CBC) mode unless otherwise specified with the
/KEY_ALGORITHM and /DATA ALGORITHM qualifiers. Before you enter this
command, create a key with the ENCRYPT /CREATE_KEY command. The key
specified must match the algorithm (DES or AES).

ENCRYPT input-file key-name [qualifiers]

input-file
File names of the files to encrypt. If you use wildcard characters, do not include
directory files or files with bad blocks.

key-name
Key name previously stored in the key storage table with the ENCRYPT
/CREATE_KEY command.

/BACKUP[=time]
Selects files according to the dates of their most recent backup.

This qualifier is relevant only when used with the /BEFORE or the /SINCE
qualifier. In addition, do not use /BACKUP with /EXPIRED or /MODIFIED.

If you omit ¢time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/BEFORE[=time]
Selects files that have a creation time before the time you specify.

If you omit time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/BY_OWNER[=uic]
/INOBY_OWNER
Selects files with the owner UIC you specify.

If you omit uic, the UIC of the current process is used. For more information on
specifying UIC format, see the OpenVMS User’s Manual.

/COMPRESS
/INOCOMPRESS
Optional. Default: /NOCOMPRESS.

Controls whether or not data compression occurs before a file is encrypted.

/CONFIRM

/NOCONFIRM

Controls whether or not a confirmation request is displayed before each
encryption, as follows:

ENCRYPT

Response Meaning

YES Encrypts the file

NO or Does not encrypt the file (default)

QUIT or Does not encrypt the file or any subsequent files
ALL Encrypts the file plus all subsequent files

IDATA_ALGORITHM:{ Rggg':? nfg:;a“") }

Where mmm is the mode CBC, ECB, CFB, or OFB; and kkk is 128, 192, or

256 bits. Cipher Block Chaining (CBC) and Electronic Code Book (ECB) are
16-byte block modes, meaning blocks are padded to 16 bytes if necessary during
encryption. The padding is removed during decruption. Cipher Feedback (CFB)
and Output Feedback (OFB) are 8-bit character stream mode emulation, useful in
data communications and where no padding is required.

Note that /DATA_ALGORITM=AES is a shortcut for specifying AESCBC128.

The data algorithm is used with the randomly generated key to perform
encryption of the file’s data. When specifying an AES algorithm, specify both
/KEY and /DATA=AESmmmkkk qualifiers and use an AES created key.

/IDELETE

I/NODELETE

Controls whether or not the input files are deleted after the encryption operation
is complete and the output file is written and closed. By default, the input file is
not deleted.

/ERASE

INOERASE

Controls whether or not the input files are erased with the data security pattern
before being deleted. By default, the location in which the data was stored is not
overwritten with the data security pattern. The /ERASE qualifier must be used
with /DELETE.

IEXCLUDE-=file-spec

/NOEXCLUDE

Excludes the specified files from the encryption operation. You can use wildcard
characters. You do not need to enter an entire file specification. Any field that
you omit defaults to the input file specification.

Beacuse directory files are never encrypted, you need not specify them.

IEXPIRED[=time]
Selects files according to the dates on which they expire.

This qualifier is relevant only when used with the /BEFORE or the /SINCE
qualifier. In addition, do not use /EXPIRED with /BACKUP or /MODIFIED.

If you omit ¢ime, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/KEY_ALGORITHM= { Rggg‘?n%::;a”") }

Where mmm is the mode CBC, ECB, CFB, or OFB; and kkk is 128, 192, or
256 bits. Note that /KEY_ALGORITHM=AES is a shortcut for specifying
AESCBC128.

DCLI-255

ENCRYPT

DCLI-256

The command uses this key algorithm with the key you supply to encrypt the
randomly generated data encryption key and the initialization vector stored
within the file.

When specifying an AES algorithm, specify both /KEY and /DATA qualifiers and
use an AES created key.

/MODIFIED[=time]
Selects files according to the dates on which they were last modified.

This qualifier is relevant only when used with the /BEFORE or the /SINCE
qualifier. In addition, do not use /MODIFIED with /BACKUP or /EXPIRED.

If you omit time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/OUTPUT=file-spec

Alternate output file name for the encryption operation. By default, each input

file encrypted is written to a separate output file that is one version higher than
the highest version of the input file. When using the /OUTPUT qualifier, specify
the parts of the file specification different from the defaults. You do not need to

provide an entire file specification. Any field that you omit defaults to the input
file specification.

ISHOW=keyword-list
Controls whether or not the following information about the encryption operation
is displayed on SYS$COMMAND:

Keyword Meaning

FILES Displays input and output file names on
SYS$COMMAND

STATISTICS Displays the encryption stream statistics:

e Bytes processed
e Internal records processed

e (CPU time consumed within the encryption algorithm

/SINCE[=time]
Selects files that have a creation date before the time you specify.

If you omit time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

ISTATISTICS
Similar to /SHOW, except that /STATISTICS lists both files and statistics,
whereas /SHOW can be customized to list only one or the other.

/VERSION
Displays the version number of the Encryption for OpenVMS software running on
your system.

ENCRYPT

Examples

1. $ ENCRYPT TROY MYKEY
Encrypts the file TROY using the key MYKEY.

2. $ ENCRYPT NEWFILE.TXT MONET/KEY ALGORITHM=AESCBC128/DATA ALGORITHM=AESCBC128

Encrypts the file NEWFILE.TXT with the AES key, MONET, using the algorithm
AESCBC128. A new version, NEWFILE.TXT;n+1, of the original file (now
encrypted) is created. Use the /OUTPUT=filename qualifier to preserve the
original file name, renaming the encrypted output file.

DCLI-257

ENCRYPT /AUTHENTICATE

ENCRYPT /AUTHENTICATE

Format

Parameters

Qualifiers

DCLI-258

Associates a DES algorithm Message Authenticate Code (MAC) value with one or
more files and checks for any modification of either plain text or cipher text files.
Use the additional /UPDATE qualifier to store each file’s MAC in the databases.
Use only the /AUTHENTICATE qualifier to subsequently test the integrity of the
file’s data and security attributes. You must create a DES key prior to updating
or checking an existing MAC. The AES algorithm is not supported for file MAC
operations.

ENCRYPT /AUTHENTICATE file-spec key-name [qualifiers]

file-spec
File names of the files to authenticate. Behavior can be modified with the
/MULTIPLE_FILES qualifier.

key-name
Key name previously stored in the key storage table with the ENCRYPT
/CREATE_KEY command.

/BACKUP[=time]
Selects files according to the dates of their most recent backup.

This qualifier is relevant only when used with the /BEFORE or the /SINCE
qualifier. In addition, do not use /BACKUP with /EXPIRED or /MODIFIED.

If you omit time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/BEFORE=time
Selects files that have a creation time before the time you specify.

If you omit ¢ime, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/BY_OWNER([=uic]
/NOBY_OWNER
Selects files with the owner UIC you specify.

If you omit uic, the UIC of the current process is used. For more information on
specifying UIC format, see the OpenVMS User’s Manual.

/CONFIRM

/NOCONFIRM

Controls whether or not a confirmation request is displayed before each
authentication, as follows:

ENCRYPT /AUTHENTICATE

Response Meaning

YES Authenticates the file

NO or Does not authenticate the file (default)

QUIT or Does not authenticate the file or any subsequent
files

ALL Encrypts the file plus all subsequent files

I/DATABASE-=file-spec
/INODATABASE
File name of the file in which to store binary MAC values.

Generates a MAC using the file contents. If you do not specify a file name, the
file name SYS$LOGIN:ENCRYPT$MAC.DAT is used.

IEXCLUDE-=file-spec

/NOEXCLUDE

Excludes the specified files from the authentication operation. You can use
wildcard characters. You do not need to enter an entire file specification. Any
field that you omit defaults to the input file specification.

Because directory files are never encrypted, you need not specify them.

IEXPIRED[=time]
Selects files according to the dates on which they expire.

This qualifier is relevant only when used with the /BEFORE or the /SINCE
qualifier. In addition, do not use /EXPIRED with /BACKUP or /MODIFIED.

If you omit a time value, TODAY is used. For more information on time
specifications, see the OpenVMS User’s Manual.

/ILOG

Displays the results of the authentication operation.

/MODIFIED[=time]
Selects files according to the dates on which they were last modified.

This qualifier is relevant only when used with the /BEFORE or the /SINCE
qualifier. In addition, do not use /MODIFIED with /BACKUP or /EXPIRED.

If you omit a time value, TODAY is used. For more information on time
specifications, see the OpenVMS User’s Manual.

/MULTIPLE_FILES
Indicates that the file-spec parameter contains a list of file names to be checked.
The file-spec file is opened and each record is read and treated as a file-spec.

/OUTPUT=file-spec

/INOOUTPUT

File name of the file in which to store readable MAC values. These MAC values
represent both the file contents as well as the security settings. If you do not
specify a file name, the default file name SYS$LOGIN:ENCRYPT$MAC.LIS is
used.

DCLI-259

ENCRYPT /AUTHENTICATE

ISECURITY=file-spec
/NOSECURITY

File name of the file in which to store binary MAC values. If you do not specify a
file name, the default file name ENCRYPT$SEC.DAT is used.

Generates a MAC using the file’s security settings: owner, protection settings,
and optional ACL.

/SINCE[=time]
Selects files that have a creation time before the time you specify.

If you omit time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/UPDATE
/INOUPDATE
Associates new MAC values with one or more files.

Example

$ ENCRYPT /AUTHENTICATE NEWFILE HAMLET/CONFIRM

Associates a MAC with the file NEWFILE using the key HAMLET. This command
also displays a confirmation request before each authentication.

$ ENCRYPT/AUTHENTICATE/UPDATE *.* MYKEY

%ENCRYPT-NEWDB, new authentication code database has been created
$ENCRYPT-NEWSECDB, new authentication security settings database has been created
$ENCRYPT-I-SUMMARY1, Summary: Files successfully authenticated: 0

$ENCRYPT-I-SUMMARY2, Files failing authentication: 0
%ENCRYPT-I-SUMMARY3, Files not in database: 73
$ENCRYPT-I-SECSUMM1, Summary: Security settings authenticated: 0
$ENCRYPT-I-SECSUMM2, Security settings failing authentication: 0
$ENCRYPT-I-SECSUMM3, Security settings not in database: 73

This example reates a MAC for each file in the current directory
using the key named MYKEY, storing them in the two databases:
SYS$SLOGIN:ENCRYPT$MAC.DAT and ENCRYPT$SEC_MAC.DAT.

$ ENCRYPT /AUTHENTICATE *.* MYKEY
$ENCRYPT-I-NOUPDATE, database will not be updated with new authentication codes
%ENCRYPT-I-SUMMARY1, Summary: Files successfully authenticated: 73

$ENCRYPT-I-SUMMARY2, Files failing authentication: 0
$ENCRYPT-I-SUMMARY3, Files not in database: 0
$ENCRYPT-I-SECSUMM1, Summary: Security settings authenticated: 73
$ENCRYPT-I-SECSUMM2, Secruity settings failing authentication: 0
$ENCRYPT-I-SECSUMM3, Security settings not in database: 0

This example authenticates the same files as in Example 3 by creating a new
MAC and comparing that with those in each database, testing file data integrity
and security attributes as indicated in the summary.

DCLI-260

ENCRYPT /CREATE_KEY

ENCRYPT /CREATE_KEY

Format

Parameters

Creates a key definition name and value to be used for encrypting and decrypting
files. The key is a string that represents the name under which its value is
encrypted and stored in the key storage table; a logical name table. A DES key is
created in the PROCESS logical name table by default unless the /AES qualifier
is specified. Note that AES requires longer key-length values than the 8-byte
DES keys. AES requires a minimum of 16, 24, or 32 bytes depending on the
algorithm/key size specified for encryption or decryption.

ENCRYPT /CREATE_KEY key-name key-value [qualifiers]

key-name
Name under which the encryption key will be stored in the key storage table.
Specify a character string according to the following conventions:

e 1 to 243 alphanumeric characters
e Dollar signs and underscores are valid.
e Not case sensitive

Use a name that has meaning to you, to help you remember it.

Note
Key names beginning with ENCRYPT$ are reserved for HP.

key-value
String representing the value of the encryption key. Specify either ASCII text or
a hexadecimal constant, as follows:

e ASCII text string (default)

— Minimum length: 8 (DES) 16, 24, or 32 (AES—128, 192, and 256 bits
respectively).

— Maximum length: approximately 240 characters.
— The string is not case sensitive for DES keys.

— If you use characters other than alphanumeric characters, for example,
blank spaces, enclose the string in quotation marks (" ").

e Hexadecimal constant
— Use the HEXADECIMAL qualifier.
— Valid characters: 0 to 9, A to F (ASCII coded HEX nibbles).

— Minimum length: 16 characters—DES—32, 48, or 64 (AES—128, 192,
and 256 bits respectively).

— Do not enclose the value in quotation marks.

DCLI-261

ENCRYPT /CREATE_KEY

Qualifiers

Examples

IAES
Designates that an AES key is to be created, which is encrypted with the
AESBC128 encryption routine.

/GROUP
Enters the key definition in the group key storage table.

/HEXADECIMAL

/NOHEXADECIMAL

Specifies that the value for the key is a hexadecimal number. Default: key values
are interpreted as ASCII text characters (see the description of the key-value
parameter).

/JOB
Enters the key definition in the job key storage table.

/LOG
Verifies successful creation of the key.

/PROCESS
Enters the key definition in the process key storage table.

ISYSTEM
Enters the key definition in the system key storage table.

1. $ ENCRYPT /CREATE_KEY HAMLET
_ Key value: "And you yourself shall keep the key of it"

This example defines a DES key named HAMLET with the character string value
"And you yourself shall keep the key of it".

2. $ ENCRYPT /CREATE KEY /HEXADECIMAL ARCANE 2F4A98F46BBC11DC

This example defines a DES key named ARCANE with hexadecimal value of
2F4A98F46BBC11DC.)

3. $ ENCRYPT /CREATE KEY MYKEY "The 16 char. key" /LOG/AES

DCLI-262

This example defines an AES key named MYKEY with the minimum 16-
character string value "The 16 char. key" that is required for AESxxx128, logging

its successful creation. The key is encrypted with AES prior to storage in the
PROCESS (default) logical name table.

ENCRYPT /CREATE_KEY

4. $ SHOW LOGICAL ENC* /TABLE=ENCRYPT$KEY STORE
LNM$PROCESS TABLE

"ENCRYPTSKEYSMYKEY" = "8¢E.3-0S3M..... OsBoy(i.}a00L. 4. 2"
= "AEGM

LNM$JOB_8210B400
LNM$GROUP 000001
ENCRYPT$SYSTEM

This example shows that key names are prepended with ENCRYPT$KEYS$, as in
the named key ENCRYPTKEYMYKEY.

DCLI-263

ENCRYPT /REMOVE_KEY

ENCRYPT /REMOVE_KEY

Format

Parameters

Qualifiers

Example

Deletes a key definition from a key storage table. The PROCESS logical name
table is the default unless otherwise specified.

ENCRYPT /REMOVE_KEY key-name [qualifiers]

key-name
Key name previously stored in the key storage table with the ENCRYPT
/CREATE_KEY command.

/IAES

Designates that an AES key is to be deleted. Specifying a unique key name
and table is sufficient for deletion, making the /AES qualifier unnecessary but
included for clarification.

/GROUP
Deletes the key definition from the group key storage table.

/JOB
Deletes the key definition from the job key storage table.

/PROCESS
Deletes the key definition from the process key storage table.

ISYSTEM
Deletes the key definition from the system key storage table.

$ ENCRYPT /REMOVE KEY MYKey /AES

DCLI-264

This command removes or deletes the AES key, MYKEY.

ENDSUBROUTINE

ENDSUBROUTINE

Defines the end of a subroutine in a command procedure.

For more information about the ENDSUBROUTINE command, see the
description of the CALL command or online help.

Format
ENDSUBROUTINE

DCLI-265

EOD

EOD

Format

Parameters

Description

Examples

DCLI-266

Signals the end of a data stream when a command or program is reading data
from an input device other than an interactive terminal.

$ EOD

None.

The EOD (end of deck) command in a command procedure or in a batch job does
the following:

Terminates input data lines that begin with dollar signs ($). The DECK
command indicates that the following lines begin with dollar signs and should
be interpreted as data, not as commands; the EOD command indicates the
end of the data lines.

Terminates an input file if multiple input files are contained in the command
stream without intervening commands. The program or command reading
the data receives an end-of-file (EOF) condition when the EOD command is
read.

The EOD command must be preceded by a dollar sign; the dollar sign must be in
the first character position (column 1) of the input record.

1.

$ CREATE WEATHER.COM
$ DECK

$ FORTRAN WEATHER

$ LINK WEATHER

$ RUN WEATHER

$ EOD

$ @WEATHER

In this example, the command procedure creates a command procedure called
WEATHER.COM. The lines delimited by the DECK and EOD commands are
written to the file WEATHER.COM. Then the command procedure executes
WEATHER.COM.

EOD

$ EOJ
| $ PRINT TESTDATA.OUT

E...Second Input Data File...
|

$ EOD

_E—_First Input Data File...

$ RUN MYPROG
|$ PASSWORD HENRY

$ JOB HIGGINS

ZK-0785-GE

The program MYPROG requires two input files; these are read from the
logical device SYS$INPUT. The EOD command signals the end of the first
data file and the beginning of the second. The next line that begins with a
dollar sign (a PRINT command in this example) signals the end of the second
data file.

DCLI-267

EOJ

EOJ
Marks the end of a batch job submitted through a card reader.

Format
$ EOJ

Parameters
None.

Description
The EOJ (end of job) command marks the end of a batch job submitted through a
card reader. An EOJ card is not required; however, if present, the first nonblank
character in the command line must be a dollar sign ($). If issued in any other
context, the EOJ command logs the process out. The EOJ command cannot be
abbreviated.
The EOF card is equivalent to the EOJ card.

Example

[s EOJ

I
l_,;.Command Input Stream...
I

I

$ PASSWORD HENRY
$ JOB HIGGINS

ZK-0786-GE

The JOB and PASSWORD commands mark the beginning of a batch job
submitted through the card reader; the EOJ command marks the end of the
job.

DCLI-268

EXAMINE

EXAMINE

Format

Parameter

Description

Displays the contents of virtual memory.

Requires user-mode read (R) access to the virtual memory location
whose contents you want to examine.

EXAMINE location[:location]

location[:location]

Specifies a virtual address or a range of virtual addresses (where the second
address is larger than the first) whose contents you want to examine. If you
specify a range of addresses, separate the beginning and ending addresses with a
colon (:).

A location can be any valid arithmetic expression containing arithmetic or logical
operators or previously assigned symbols. Radix qualifiers determine the radix in
which the address is interpreted; hexadecimal is the initial default radix. Symbol
names are always interpreted in the radix in which they were defined. The radix
operators %X, %D, or %0 can precede the location. A hexadecimal value must
begin with a number (or be preceded by %X).

The DEPOSIT and EXAMINE commands maintain a pointer to the current
memory location. The EXAMINE command sets this pointer to the last location
examined when you specify an EXAMINE command. You can refer to this
location using the period (.) in a subsequent EXAMINE command or DEPOSIT
command.

The EXAMINE command displays the contents of virtual memory. The address
is displayed in hexadecimal format and the contents are displayed in the radix
requested, as follows:

address: contents

If the address specified is not accessible to user mode, four asterisks (*) are
displayed in the contents field.

Radix Qualifiers: The radix default for a DEPOSIT command or an EXAMINE
command determines how the command interprets numeric literals. The initial
default radix is hexadecimal; all numeric literals in the command line are
assumed to be hexadecimal values. If a radix qualifier modifies an EXAMINE
command, that radix becomes the default for subsequent EXAMINE and
DEPOSIT commands, until another qualifier overrides it. For example:

$ EXAMINE/DECIMAL 900
00000384: 0554389621

The EXAMINE command interprets the location 900 as a decimal number and
displays the contents of that location in decimal. All subsequent DEPOSIT and
EXAMINE commands assume that numbers you enter for addresses and data are
decimal. Note that the EXAMINE command always displays the address location
in hexadecimal format.

DCLI-269

EXAMINE

Qualifiers

DCLI-270

Symbol names defined by = (assignment statement) commands are always
interpreted in the radix in which they were defined.

Note that hexadecimal values entered as examine locations or as data to be
deposited must begin with a numeric character (0 to 9); otherwise, the command
interpreter assumes that you have entered a symbol name, and attempts symbol
substitution.

You can use the radix operators %X, %D, or %0 to override the current default
when you enter the EXAMINE command. For example:

$ EXAMINE/DECIMAL %X900
00000900: 321446536

This command requests a decimal display of the data in the location specified as
hexadecimal 900.

Length Qualifiers: The initial default length unit for the EXAMINE command
is a longword. The EXAMINE command displays data, one longword at a time,
with blanks between longwords. If a length qualifier modifies the command, that
length becomes the default length of a memory location for subsequent EXAMINE
and DEPOSIT commands, until another qualifier overrides it.

Restriction on Placement of Qualifiers: The EXAMINE command analyzes
expressions arithmetically. Therefore, qualifiers are interpreted correctly only
when they appear immediately after the command name.

/ASCII
Displays the data at the specified location in ASCII format.

Binary values that do not have ASCII equivalents are displayed as periods (.).

When you specify the /ASCII qualifier, or when ASCII mode is the default,
hexadecimal is used as the default radix for numeric literals that are specified on
the command line.

/BYTE
Displays data at the specified location, one byte at a time.

/DECIMAL
Displays the contents of the specified location in decimal format.

/HEXADECIMAL
Displays the contents of the specified location in hexadecimal format.

/LONGWORD
Displays data at the specified location, one longword at a time.

/OCTAL
Displays the contents of the specified location in octal format.

/WORD

Displays data at the specified location, one word at a time.

Examples

1.

EXAMINE

$ RUN MYPROG

$ EXAMINE 2678

0002678: 1F4C5026
$ CONTINUE

In this example, the RUN command begins execution of the image
MYPROG.EXE. While MYPROG is running, pressing Ctrl/Y interrupts

its execution, and the EXAMINE command displays the contents of virtual
memory location 2678 (hexadecimal).

$ BASE = %$X1C00

$ READBUF = BASE + 3X50
$ ENDBUF = BASE + %XA0Q
$ RUN TEST

$ EXAMINE/ASCII READBUF:ENDBUF

00001C50: BEGINNING OF FILE MAPPED TO GLOBAL SECTION

In this example, before executing the program TEST.EXE, symbolic names
are defined for the program’s base address and for labels READBUF and
ENDBUF; all are expressed in hexadecimal format using the radix operator
%X. READBUF and ENDBUF define offsets from the program base.

While the program is executing, pressing Ctrl/Y interrupts it, and the
EXAMINE command displays in ASCII format all data between the specified
memory locations.

DCLI-271

EXCHANGE

EXCHANGE

Format

DCLI-272

Invokes the Exchange utility (EXCHANGE), which manipulates mass storage
volumes that are written in formats other than those normally recognized by the
operating system.

EXCHANGE allows you to perform any of the following tasks:
e C(Create foreign volumes.

¢ Transfer files to and from the volume.

e List directories of the volume.

For block-addressable devices, such as RT-11 disks, EXCHANGE performs
additional operations such as renaming and deleting files. EXCHANGE can
also manipulate Files-11 files that are images of foreign volumes; these files are
called virtual devices.

For more information about EXCHANGE, see the OpenVMS Exchange Utility
Manual (available on the Documentation CD-ROM) or online help.

EXCHANGE [subcommand] [filespec] [filespec]

EXCHANGE/NETWORK

EXCHANGE/NETWORK

Format

Parameters

Enables the operating system to transfer files to or from operating systems
that do not support OpenVMS file organizations. The transfer occurs over a
DECnet network communications link that connects OpenVMS systems and non
OpenVMS operating system nodes.

Using DECnet services, the EXCHANGE/NETWORK command can perform any
of the following tasks:

e Transfer files between an OpenVMS node and a non OpenVMS system node.
e Transfer a group of input files to a group of output files.

¢ Transfer files between two non OpenVMS nodes, provided those nodes
share DECnet connections with th