[image: image1.wmf]
Development Reference

[image: image2.wmf]I

P

A

C

T

n

t

e

g

r

a

t

e

d

r

o

c

e

s

s

u

t

o

m

a

t

i

o

n

&

o

n

t

r

o

l

e

c

h

n

o

l

o

g

i

e

s

Ipact Queuer and Router Services

Development Reference

Document Revision: July 19, 1995
Integrated Process Automation and Control Technologies
260 South Campbell

Valparaiso, IN 46383

(219) 464-7212

Fax: (219) 462-5387

Table of Contents

11.
Introduction

2.
Concepts
2
2.1
Queue Services
2
2.1.1
Message Processing
2
2.1.2
Message Notification
3
2.1.3
Queue File
3
2.1.3.1
Queue Region
3
2.1.3.2
Enabling Queuing Service
3
2.1.3.3
Message Id Headers
3
2.2
Router Service
4
2.3
Process Expanded Region
4
2.4
Utilities
4
2.5
Mapping
4
2.6
Interactive Process CONTROL_Y Handling
5
2.7
Design
5
2.7.1
Attaching to the Hub file
5
2.7.2
Adding a Message id Queue
5
2.7.3
Deleting a Message id Queue
5
2.7.4
Writing a message to a Message id Queue
5
2.7.5
Reading a message from a Message id Queue
5
2.7.6
Acknowledging a message from a Message id Queue
5
3.
Debugging and Development Environment
6
3.1
Overview
6
3.2
Directory Structure
6
3.3
Logicals
6
3.4
Command Procedures
7
4.
Creating A Kit
8
5.
Function Design
10
5.1.1
SERVICES
10
6.
Queue Overview
11
6.1
OVERVIEW
11
6.1.1
MESSAGE QUEUE
11
6.1.2
HUB
12
6.1.3
ROUTER
12
6.1.4
SERVICES
12
6.1.5
USER APPLICATIONS
13
6.1.6
UTILITIES
13
7.
Data Design
15
7.1
DATA DESIGN
15
7.1.1
HUB CONTAINER FILE
15
7.1.1.1
CONTAINER HEADER
15
7.1.1.2
MESSAGE QUEUE DEFINITION BLOCKS
16
7.1.1.3
BIT MAPS
16
7.1.1.4
CONTAINER DATA
16
7.1.2
HUB REGION
17
7.1.2.1
REGION HEADER
17
7.1.2.2
REGION BIT MAPS
18
7.1.2.3
HUB CONTAINER INFORMATION
18
7.1.2.4
REGION DATA
18
7.1.3
MESSAGE FILE
18
7.1.4
PROCESS EXPANDED REGION
18
7.1.5
ROUTER DATABASE
18
7.1.6
RESOURCE LOCKS
19
8.
IQR Locks
20
8.1
Introduction
20
8.2
Lock Definitions
20
8.2.1
Hub Container Lock
20
8.2.2
Hub Region Lock
21
8.2.3
Hub Container Allocation Lock
21
8.2.4
Hub Region Allocation Lock
21
8.2.5
Hub Container Hash Table Lock
22
8.2.6
Hub Region Hash Table Lock
22
8.2.7
Hub Process Lock
22
8.2.8
Message Queue Lock
22
8.2.9
Reader Message Queue Locks
23
8.2.10
Reader Notification Lock
23
8.2.11
Doorbell Lock
24
8.3
Lock Usage
24
8.3.1
Hub Container Lock
24
8.3.1.1
Hub Container Allocation Lock
24
8.3.2
Hub Region Lock
25
8.3.2.1
Hub Region Allocation Lock
25
8.3.3
Message Queue Lock
25
8.3.4
Reader Message Queue Locks
26
8.3.5
Reader Notification Lock
26
9.
Queue Global Section Definition
27
9.1
Overview
27
9.2
Disk Allocation Bit Maps
27
9.2.1
Allocation Scheme
27
9.3
Disk Message Id Hash Table
28
9.4
Section Message Id Hash Table
28
9.5
Disk Allocation Bit Maps
28
9.6
Section Allocation Bit Maps
28
10.
IQR Message Definition Block Caching
29
10.1
Message Definition Queue Blocks (MQD)
29
10.2
Dynamic Message Queues
29
10.3
Disk MQD Blocks
29
10.4
Memory Resident MQD blocks
30
10.5
MQD Search Algorithm
30
10.6
Writing to a Message Queue
30
10.7
Reading a Message Queue
31
10.8
Secondary Reader
31
10.9
Memory Allocation
31
10.10
Container File Allocation
31
11.
IQR TCP/IP Router
33
11.1
Implementation
33
11.2
Connection Management
33
11.2.1
Incoming Message Queues
33
11.2.2
Incoming Connections
33
11.2.3
Outgoing Message Queues and Connections
34
11.3
TCP/IP Router Database Definition
34
11.3.1
GLOBAL Section
34
11.3.2
INCOMING Section
35
11.3.3
OUTGOING Section
35
11.4
Sample Router Database
36
11.5
TCP/IP Router Protocol
38
11.5.1
PACKET_WRITE_Q
39
11.5.2
PACKET_READ_Q
40
11.5.3
PACKET_ACK_Q
40
11.5.4
PACKET_UNACK_Q
41
11.5.5
PACKET_ERRORS
42
11.5.6
PACKET_GET_STAT
43
11.6
TCP/IP Router Thread Organization & Structures
44
11.6.1
Internal Thread Organization
44
11.6.2
Major Data Structures
44
12.
Configuring a license
46
13.
Sample System
47
13.1
SAMPLE SYSTEM
47
13.2
ARCHITECTURE
47
13.3
HUB
47
13.3.1
DISK RESIDENT HUB
47
13.3.2
MEMORY RESIDENT HUB
47
13.4
SERVICES
47
13.5
ROUTER
47
13.6
USER APPLICATION
48
13.7
UTILITIES
48

1. Introduction

The IPACT Queue and Routing (IQR) package conveys messages between applications in a distributed environment. The IQR can reside on hardware supplied by different vendors and run under different operating systems. The primary features of the IQR are:

· Provide a standard interface for message transactions.

· Guarantee message delivery between applications.

· Provide message recovery in the event of a system crash

On a node, the IQR consists of Hub(s), Message Queue(s), Router(s), User Application(s), Services and Utilities. A Hub is a storehouse for Message Queues. A Message Queue contains a queue of messages. The Router conveys messages from a Hub to another Router. User Applications utilize Services to send and receive messages. Services enable User Applications to read and write messages. A System Manager utilizes Utilities to define, install, start, stop, maintain, test, etc. the IQR.

In the IQR environment, Message Senders write a message to a Message Queue in a Hub. After a Message Queue receives a message, the Message Queue holds the message until its acknowledgment. Message Receivers receive notification of message arrival. Message Receivers read the message from a Message Queue and acknowledge the message after processing.

2. Concepts

2.1 Queue Services

The IQR system service provides the queuing services for all messages. In the IQR queue and routing environment, all messages are queued before they are delivered to their targets. The queuing can be in a local memory queue, or to disk. The actual method that is selected is determined when each of the message ids is defined. A message has the following characteristics:

· Message Id- A name given to all the messages of this type. Normally a functional name.

· Length- Simply the length of the message

· Header- A standard header

· Message Id Queue Class- Queue all messages to disk or Queue all messages to memory (all messages to memory are lost upon a system bootstrap)

· Full Message Id Functioning- Delete oldest if full or return full status

· Maximum Count- Maximum Number of Messages in the Message Id Queue before rejecting any more for the queue, or deleting the oldest.

· No ACK- All messages written to this Message Id queue are acknowledged when they are read.

· Dual Reader- This Message Id queue supports the ability to have two processes reading messages from the message id queue at the same time.

· Replicating Message Queue - Messages written to this Message Id queue are copied to one to four message id queues. This type of Message Id queue contains no messages, only a list of other message id queues to copy the message to.

· Stale messages- A Message Id Queue may be set up that will automatically delete any messages or discard any message if the message has been queued for a time greater than specified for the message id queue.

· Message Type- This field is written when the message is first queued by an application. It maintained as part of the header for the message.

Message id queues that are queued to disk are maintained cluster wide. The messages queued to memory are maintained separately for each VMS Cluster member. This is because only the RMS container file for the disk file is available to all cluster members, and not the global memory section. The distributed lock manager is used for access to the RMS container file.

2.1.1 Message Processing

All reads of messages are non destructive (except for the No Ack). The normal application program reads and processes data in the following sequence:

1. Attaches to the hub (IQR_ATTACH_H)

2. Connects as a reader to one or more of the Message Queues (IQR_CONNECT_READ)

3. Reads a message from a Message Queue (IQR_READ_Q or IQR_READ_QW)

4. Process the message

5. Acknowledge the message from the Message Queue (IQR_ACK_READ)

6. Go and read the next message or disconnect (IQR_DISCONNECT_Q)

2.1.2 Message Notification

As messages are written to the queue (IQR_WRITE_Q), the queue service will attempt to notify any process that is currently reading the Message Id queue. The service uses the distributed lock manager to provide this functionality. When the writer converts the notification lock, the reader will have a blocking AST waiting that upon activation, will set the reader’s event flag.

2.1.3 Queue File

Each queue file defines a single cluster wide queue which contains within it multiple Message Id queues

as described earlier. There may be multiple queue files available and a process may connect to more than one queue file at a time. The IQR_ATTACH_Q is the actual queue service call that open the queue file for the process. A simple application may have only a single queue file, however, if disjoint unrelated applications are developed, they should have their own queue file and routers. This allows the flexibility to move applications between members in the cluster, and to allow maintenance on subsystems while not affecting other users of the queue services.

The queue file is a single RMS file available cluster wide. The Queue file name must be from one to six characters long and its file type must be ".QUE". This restriction is based on the method that is used to create locks for protecting the queue file by access from multiple programs. The location of the queue file may contain logical names and directory strings. The utility program IQU allows the specification of the location of this file. When the Queue services are active the complete device and directory specification are retrieved and stored in the queue global section.

2.1.3.1 Queue Region

The queue region is used to cached information for the queue file and to provide a memory resident queue for Message Id queues that are stored in memory. The items that are cached within the region are:

· The bit maps that are used for allocation within the queue file.

· Hash table for all message ids

· All Message Id Queue Headers referenced on a particular node are loaded upon queue installation. They space for the Message Id Queue Headers are allocated from a different allocation chain than the data blocks used for the in memory queues. This allocation can be expanded using the IQU utility which transfers blocks from the free memory queue list to the Message Id queue header list.

· Queue Statistics and Counters

2.1.3.2 Enabling Queuing Service

The IQU utility is used to actually enable the Queue service on a particular node. The IQRSS system service must have already been installed via VMS startup or other methods. IQU will open the RMS queue file and from the queue file and from the IQU command line create a target RMS page file with the name of the queue file and the local node name in the IQR_QQQQ directory. It will attempt to use an existing one if it exits and the sizes are compatible. It will initialize the RMS page file and thread all of the data and Message Id header blocks. After the file has been initialized, the file will be installed as a shared system wide global region protected in executive mode.

2.1.3.3 Message Id Headers

Whenever a message id is first used on a node, the message id header block will placed into the Message Id header chain. From then on, reads and writes of the Message Id header block will be done from this copy within the region. For Message Id queues that are written to the Disk Queue, the version of the Message Id header is always maintained in the disk file. However, it is very probable that the version in the region is also current. A simple counter is maintained in the lock data value block to determine when the one in memory is not current and must be refreshed from disk. Since the Queue may be installed on multiple members of a cluster, if a message id queue is deleted from one cluster member, it must be reflected on all members of the cluster.

2.2 Router Service

The delivery messages to another node is provided by the IQR router. The queue service also supports the ability of any customer to provide its own router to deliver the messages. Further the router's protocol is documented allowing unsupported nodes the ability to connect to the IQR router.

The router uses a routing database to map the target destination of all message id queues and the source of message id queues. The router attempts to minimize the quotas required for transmission by sending large messages in smaller hunks. No message will ever be removed from a source queue until the cooperating router in the target node acknowledges the fact the message has successfully been queued in the target. In the event that this acknowledgment is lost, it is possible that on a link re-establishment, the same message could be sent again. Application programs should be aware of this possibility.

2.3 Process Expanded Region

Whenever a process attaches to one of the queue files the IQR_ATTACH_Q service expands the processes P0 space to accommodate information needed for accessing the queue file. In particular, a process may connect more than one hub, and it may connect to more than a single hub at any one time. If a second attach to an already attached hub is done, the subsequent attach is ignored and the value of the original attachment is returned. The actual data for this attachment is maintained in the process's executive mode exit block.

2.4 Utilities

The IQR provide utilities to display statistics about the operation of the routers, and the queues themselves.

2.5 Mapping

As each process calls to attach to a queue file, the process is mapped to the cached region of the Queue maintained as a system global section, and the process expanded region. If the caller attaches to the queue file and then detaches, the process expanded region is never released (the size of the region is set to a maximum for the number of message id queues the caller desires). The queue region which contains the queue header, the message id cache, and the resetable type messages is unmapped, and the queue container file is also closed. If a subsequent call is made, the SYS$MPGBLC is used with a flag indicating to use the Virtual Address where we mapped the global region before as long as all of the virtual addresses are free. If any are not free, the process’s virtual address will be expanded again to map the region. If the region was not unmapped, the queue container file could never be removed from the system.

If a second call is made to attach to the queue file, a test is made to ensure that the process has not already attached before. If the process has, then previous attachment is returned. The actual storage for the attachment will be maintained within the executive mode exit handler block similar to the method used for the MAQ software.

2.6 Interactive Process CONTROL_Y Handling

This version will determine if the current mode of the process is interactive, and if so, will set up a CONTROL_Y AST that will cause the process to run the IQR rundown handler (IQR_DISCONNECT_H) and then exit from the process.

2.7 Design

The following provides some basic design verbage for some of the major functions required for the IQR software.

2.7.1 Attaching to the Hub file

When a process attaches to a Hub file, attach service must do the following:

1. Open the RMS file for the Hub Container file

2. Create a the queue locks in null mode

3. Expand the callers process virtual address space for information needed by the queue services

4. Map the queue region (the region name is limited to 15 characters).

2.7.2 Adding a Message id Queue

2.7.3 Deleting a Message id Queue

2.7.4 Writing a message to a Message id Queue

2.7.5 Reading a message from a Message id Queue

2.7.6 Acknowledging a message from a Message id Queue

3. Debugging and Development Environment

3.1 Overview

The IQR Software includes a number of features that allow for easy debugging purposes. Most routines that are called in the IQR Software check for the existence of the global definition of IQR$DEBUG$OUT. If it exists, then any routines run by the IQR service will display debugging information.

Also, by setting the IQRNOEXEC global variable, one can disable the use of EXECUTIVE protection of memory of global sections. This will allow for a debugger to read directly into the global section (normally not allowed).

In addition, the IQR account on the ALPHA includes it’s own GROUP definitions of the IQR process logicals, to allow for simultaneous development of the software. In the SS directory, there are two command procedures that build the system service: SS.COM and SSD.COM. SS.COM will build the normal system service. SSD.COM builds a special debugger version of the system service that allows calling programs to debug into the system service routines. To use SSD.COM, you must have IQRNOEXEC enabled for all installed hubs that you intend to use.

3.2 Directory Structure

3.3 Logicals

The following are the defined logicals used by the IQR System Service.

Logical Name
Type
Description

IQRSS XE "IQRSS"
System/Group
This is assigned to the directory containing the IQR System Service shared system service file (IQRSS.EXE).

IQR$PROD XE "IQR$PROD"
System/Group
This is assigned to the directory containing all of the executable code for the IQR Software. This includes all utilities and command procedures.

IQR$LIB XE "IQR$LIB"
System/Group
This is assigned to the directory that contains all linkable object libraries, header libraries, text libraries, and object files.

IQR$RTR XE "IQR$RTR"
System/Group
This is assigned to the directory that contains the router database files.

IQR$QQQQ XE "IQR$QQQQ"
System/Group
This is assigned to the directory that contains the hub message queue container files.

IQRDEF XE "IQRDEF"
System/Group
This is defined to be the default hub name.

RTRDEF XE "RTRDEF"
System/Group
This is defined to be the default router database name.

IQR$DEBUG$OUT
Process
When defined, all IQR Routines will display debugging information to the console device.

IQRNOEXEC
Process
When defined, all IQR Routines will NOT use executive mode in defining global sections. This must be enabled in order to use a debugging version of the system service.

3.4 Command Procedures

The following command procedures are provided for development of the IQR System Services.

Command Procedure
Location
Description

LOADDCL XE "IQRSS"
[000000]
This will load the DCL command interpreter database with a DCL command definition file.

UPLIB
n/a
This is used to update either a header file in the [DEF] directory, or subroutines in the [SUBROUTINES] directories. You may use wildcards for the file names.

SS
[SS]
Builds the system service (executive mode)

SSD
[SS]
Builds the system service (debugger mode)

IQR_RTR
[RTR.ROUTER]
Builds the IQR Router

RTRDBS
[RTR.RTRDBS]
Builds the Router Database

MAKE_KIT
[MAKE_KIT]
Builds a kit (see Creating a Kit)

DMPQUE
[UTILITIES.DMPQUE]
Builds the utility DMPQUE.

DQIT
[UTILITIES.DQIT]
Builds the utility DQIT

QIT
[UTILITIES.QIT]
Builds the utility QIT

DMPRTR
[UTILITIES.DMPRTR]
Builds the utility DMPRTR

IQR_TEST
[UTILITIES.IQR_TEST]
Builds the IQR_TEST utility for testing IQR functions.

IQU
[UTILITIES.IQU]
Builds the IQU utility.

LSTRTR
[UTILITIES.LSTRTR]
Builds the LSTRTR utility.

4. Creating A Kit

To create a kit for the IQR software, follow the following procedure:

· Login to IPCALP as IQR (password IQR).

· Initiate the command procedure to build the kit. Type at the command prompt:

KIT

@MAKE_KIT

· You should now be in the IQR Kit Build Command Procedure. Enter at the prompt your options for the creation of the kit. You may enter one or a multiple of the options listed (except where noted). Your options are as follows:

Option
Definition and Use

*
This option is the standard one used to create most kits. It will copy all of the necessary files to the kit directory, and then build the kit onto floppy disks. You will need 4 blank HD floppy disks in order to create the kit.

C
Compile All software. This will remove all executable, object, and library files from the IQR directory structure. Then, the routine will build all of the components of the IQR account. This takes some time (about 15 minutes) so be patient. This option will usually only need to be done if changes have been made to the software and you want to insure that it is implemented to all parts of the software package.

L
Create Kit Directory and copy files. This will move all the necessary files to create the kit over to the IQR kit directory. Unless changes have been made to the IQR software, this option should not be necessary.

K
Build the Kit. Normally, you will use this option to tell the command procedure that after setting up all the files, go ahead and create a distribution kit. You can enter two option flags with the K option to indicate the target of your new kit:

F
Create a floppy disk distribution kit

M
Create a magnetic tape distribution kit
If you don’t specify an option, the target will be a saveset in the IQRDEV:[KIT.SAVESET] directory

X
Do not modify SERIAL NUMBER. This is used to create a kit without saving the version number. Normally, the command procedure will update the serial number to the next number in the sequence. This option disables this feature. Use this with the R option to select a temporary serial number for this kit only (for example, to re-build a kit that was already released).

R
Change Release Level. Use this option to change the version numbers for the distribution kit. Follow the prompts to enter all the new information:

Release number - a two digit number for the current release.

Version number - the current version of this release

DAY - the day of the new release

MONTH - the month of the new release

YEAR - the year (two digits) of the new release

SERIAL NUMBER - Normally, do not change this or reset it to zero.

· After enter your options, you will then be shown the following information:

Name of Kit being created:IQR002

Serial Number to build: 002-950713-0005

Check and insure that the version number of the kit is correct and then note down the serial number of the kit being built. The serial number consists of the version number, the release date, and a serial index number. If there is any doubt about the number, enter N at the prompt and the command procedure will exit. By entering a Y or YES, the command procedure will begin updating the information for the new kit and then start the build procedure.
· If you are building a kit to floppy disks, the IQR Distribution kit will require 4 blank HD disks. Insert the first disk when prompted and follow the on-screen prompts to continue. When switching disks, you must make sure that the disk activity light is off before taking a disk out of the drive! You will have to wait about 10 seconds before the light will go out. If you don’t, the kit may be corrupted.

· If all goes well, then the kit is now complete.

To quickly make a floppy kit, just enter the following from the command line:

KIT

@MAKE_KIT *

and then enter a Y or YES at the prompt for version number verification.

5. Function Design

The Function Design describes how IQR functions manipulate data. This description includes a discussion on the actions performed, the order of performance, and valid and invalid conditions. Functions are grouped into the following categories:

· Services

· Utilities

· Router

5.1.1 SERVICES

Services enable Applications to perform functions on an installed Queue. All Services are implemented as System Services. The characteristics of a IQR System Service are:

· The code is reentrant

· Only one copy of the code exists

· The Service validates the arguments for type and/or range and/or content and/or accessibility.

6. Queue Overview

6.1 OVERVIEW

Following is a description of each part of the IQR and how they relate to each other. No part of the IQR can stand alone.

6.1.1 MESSAGE QUEUE

A Message Queue is a first in-first out queue of messages. Specifying the following characteristics defines a Message Queue:

· Hub Name: The name of a Hub for this Message Queue.

· Message Queue Name: The name of the Message Queue for messages being sent and/or received.

· Maximum Length: The maximum length of data sent in a message.

· Journal/No Journal: If “Journal”, guarantee the existence of a message until acknowledgment, even if an IQR failure. On Hub installation, the Message Queue contains any saved messages.

If “No Journal”, there is no guarantee of a message’s existence until acknowledgment if there is an IQR failure. On Hub installation, the Message Queue is empty.

· Volatile/Not Volatile: If “Volatile”, delete the oldest message when the Message Queue becomes full.

If “Not Volatile”, do not accept any new messages when the Message Queue becomes full.

· Maximum Count: The maximum number of messages contained in a Message Queue at one time.

· Acknowledge/No Acknowledge Required: If “Acknowledge Required”, after reading a message, a message must have an acknowledgment before removal from the Message Queue.

If “No Acknowledge Required”, on reading a message, message acknowledgment is automatic.

· Single Reader/Dual Readers: If “Single Reader”, only one User Application can read messages from the Message Queue.

If “Dual Readers”, two User Applications may read messages. The reader of a message must acknowledge the read message before removal from the Message Queue. If the readers require synchronization, the readers must provide synchronization.

· Expire/No Expire: If “Expire”, remove a message from the Message Queue when it is older than a specified time.

Of “No Expire”, there is no expiration date for a message.

· Check/Don’t Check Off Node: If “Check Off Node”, when routing a message to another Hub, write to the Message Queue only if the other Hub is available.

If “Don’t Check Off Node”, require no checking on the routing of the message.

· Permanent/Temporary: If “Permanent”, a Message Queue’s definition exists whether the Hub exists or not.

If “Temporary”, a Message Queue’s definition exists only when the Hub exists. A User Application can create a Temporary Message Queue. The Temporary Message Queue exists only as long as the User Application exists or until the User Application deletes the Temporary Message Queue. The Temporary Message Queue has a characteristic of No Journal.

· Broadcast/No Broadcast: If “Broadcast”, broadcast the message to other Hubs. Once a User Application successfully writes a message to the Message Queue, the Router receives notification. The Router reads the message from the Message Queue, broadcasts it to all other known Routers and acknowledges the message. A Router accepts the message and places it on a Message Queue in the Hub if it recognizes the Message Queue. User Applications receive notification. User Applications read the message from the Message Queue, and acknowledge the message after processing.

If “No Broadcast”, the Router does not broadcast the message to other Hubs.

· Replicate/No Replicate: If “Replicate”, copy a message to multiple Message Queues. This also associates a list of receiving Message Queues with this Message Queue.

If “No Replicate”, a message is destine for the named Message Queue only.

The associated Message Queue defines the behavior of a message when sending and receiving. Information defined for a message is:

· Message Queue Name

· Message Header: A standard list of data on a message.

· Message Class: Specify the contents of a message.

· Message Data

6.1.2 HUB

A Hub is a depository for messages, Message Queue specifications and data, and Hub statistics. A Hub is a set of Message Queues. Messages contain a standard message header and message data. Message Queue specifications define the characteristics of a message and are specific for a Hub. The Message Queue data consists of statistics and locations of messages in a Hub. There may be more than one Hub on a node. Each Hub on a node is unique.

Hubs have the following characteristic:

· Hub Name: Uniquely identify a Hub on a node.

6.1.3 ROUTER

The Router is a specialized application that is responsible for sending messages from a Message Queue in a Hub to other Routers and receiving messages for a Message Queue in a Hub from other Routers. When a Router receives notification to route a message, the Router reads the message from the Message Queue and sends the message to the specified Router. The Router acknowledges the message after receipt by the specified Router. The specified Router receives the message and places it on the Message Queue.

When a Router receives notification to route a Broadcast message, the Router reads the message from the Message Queue, broadcasts to all other known Routers. If no listening Router accepts the message, the broadcasting Router acknowledges the message. If a listening Router accepts the message, the sending Router acknowledges the message after receipt by the listening Router. A listening Router accepts the message and places it on the Message Queue if it recognizes the Message Queue.

Routers have the following characteristics:

· Router Name: Uniquely identify the Router on a node.

· Hub Name: The name of the Hub associated to this Router.

· Message Limits: Specify the characteristics of messages handled by the Router.

· Connections: Identify the name and location of other known Routers.

· Send Messages: The name of Message Queues requiring the routing of messages.

· Receive Messages: The name of Message Queues whose messages are originating from another Hub.

6.1.4 SERVICES

Services enable User Applications to read and write messages. The basic Services available to User Applications are:

· Attach Hub: Attach to a specific Hub. A User Application can attach to more than one Hub.

· Disconnect Hub: Detach from a specific Hub.

· Connect Message Read: Connect to a specific Message Queue for reading. Only a certain number of User Applications can connect to a Message Queue for reading at one time. User Applications can connect to more than one Message Queue. Connecting for read also connects a User Application for write.

· Connect Message Write: Connect to a specific Message for writing. User Applications can connect to more than one Message Queue.

· Disconnect Message: Disconnect from a specific Message Queue for reading and/or writing.

· Read Message: Read a message from a specific Message Queue.

· Acknowledge Message: Acknowledge a message from a specific Message Queue.

· Write Message: Write a message to a specific Message Queue.

Descriptions of other available Services appear later in the document.

6.1.5 USER APPLICATIONS

User Applications use Services to send and receive messages. Following is the normal sequence used by a User Application to read messages:

· Attach to a Hub(s).

· Connect to a Message Queue(s) for Read.

· Read a message from a Message Queue.

· Validate and process the message.

· Acknowledge the message to a Message Queue.

· Continue to read, process and acknowledge messages.

· When exiting, disconnect from Message Queue(s) and Hub(s).

Following is the normal sequence used by a User Application to write messages:

· Attach to a Hub(s).

· Connect to a Message Queue(s) for Write.

· Perform other functions and when necessary, build and write a message to a Message Queue.

· Continue to perform functions and write messages.

· When exiting, disconnect from Message Queue(s) and Hub(s).

User Applications can perform combinations of reading and writing along with using other Services.

6.1.6 UTILITIES

The System Manager uses Utilities to maintain the IQR. The basic functions performed by Utilities are:

· Create Hub: Create a Hub based on the Hub Name and Message Queue definitions.

· Install Hub: Install a Hub and makes it available to applications.

· Load Hub: Loads a Hub with saved messages.

· Dump Hub: Dump the contents of a Hub.

· Update Hub: Modify an installed Hub based on new Message Queue definitions.

· Shutdown Hub: Mark the Hub as unavailable to applications.

· Remove Hub: Remove an installed Hub.

· Analyze Hub: Get statistics on a Hub and its Message Queues.

· Define Message Type: Specify the characteristics of a Message Queue for a Hub.

· Modify Message Type: Modify the characteristics of a Message Queue.

· Delete Message Type: Delete a Message Queue.

· Dump Message: Dump the contents of a Message Queue.

· Erase Message: Delete all messages for a Message Queue.

· Define Router: Specify the characteristics of a Router.

· Create Router: Create a Router based on its definitions.

· Start Router: Start a specified Router.

· Stop Router: Stop a specified Router.

· Analyze Router: Get statistics on a Router.

· Services: All Services are available as Utilities.

Later in the document are descriptions of other available Utilities.

7. Data Design

7.1 DATA DESIGN

The Data Design describes the layout of IQR data for installed Hubs, Message Queues, Routers, User Applications and Utilities. Following is a list of data structures:

· Hub Container File (Disk Resident Hub)

· Hub Region (Memory Resident Hub)

· Message Queue Definition File

· Process Expanded Region

· Router Database

· Resource Locks

Access to these structures is by routines described in the Function Design. Access to some of the structures is also protected by the privileges of the requesting routine. This protection is required to prevent unfamiliar routines from corrupting the structure. If the privilege of a requesting routine is not at a proper level, access to the structure is denied. Following are the possible privileges for IQR structures, with the highest privilege listed first:

· System

· Normal

7.1.1 HUB CONTAINER FILE

The Hub Container File contains data required by IQR to install or reinstall a Hub. Allocation of all data in the Hub Container File is in block sizes appropriate to the target system. A routine requires System privileges to access this structure. A Hub Container File has the following layout:

· Container Header: This contains general data about the Hub and specific data about the Hub Container File. It also contains data about the size and location of other Hub Container File data.

· Container Message Queue Definition Blocks: These contain data about Journal Message Queue characteristics and the size and location of their messages.

· Container Bit Maps: These indicate the status of Container Data blocks.

· Container Data: This contains messages.

7.1.1.1 CONTAINER HEADER

The Container Header contains data about the Hub and the Hub Container File. Determination of the number of blocks allocated for the Container Header is by the layout of the Container Header. A detailed definition can be found in QHDDEF.H. The type of data in the Container Header is:

· Common Hub Header Data

· Message Queue Hash Table

· Unique Container Header Data

7.1.1.1.1 COMMON HUB HEADER DATA

The data in the Common Hub Header Data is common to both the Hub Container File Header and the Hub Region Header. The data in the Common Hub Header Data is:

· Header blockentifier

· Size of Header, Bit Maps, Data

· Statistics on amount and times of different Hub transactions

· Information on Messages and Data

7.1.1.1.2 MESSAGE QUEUE HASH TABLE

The Message Queue Hash Table (Hash Table) is used to locate Container Message Queue Definition Blocks (MQD Blocks) for Journal Messages Queues. The Message Queue Name is hashed and the result of the hash is used as an index into the Hash Table. Each entry in the Hash Table points to the first MQD Block in a hash chain. Because the MQD Blocks are maintained in a linked list, the list of MQD Blocks is termed a chain. Each MQD Block contains a forward pointer to the next MQD Block in the MQD Block hash chain. The last MQD Block in the chain has a zero forward pointer. If an entry in the Hash Table contains a zero, there are no MQD Blocks associated with that Hash Table entry.

7.1.1.1.3 UNIQUE CONTAINER HEADER DATA

The data in the Unique Container Header Data is unique to the Container File Header. The data in the Unique Container Header Data is:

· Hub Name

· Hub Container and Message Queue Definition File names identifiers

· Hub Lock Data

· Location of Hub Container Data

7.1.1.2 MESSAGE QUEUE DEFINITION BLOCKS

The Message Queue Definition Blocks contain data about Journal Message Queues. The number of blocks allocated for MQD Blocks is determined at Hub Container creation time and based on the maximum number of Journal Message Queues to be supported. See the “Hub Region” section for further discussion on the layout and allocation of these blocks. A detailed definition is in MQDDEF.H.

The type of data in the MQD Block is:

· Message Queue characteristics

· MQD Hash Chain Data - Pointer to the next MQD Block in a MQD Hash Chain

· MQD Statistics

· Message Locations - Pointers to the first and last Header Message Blocks in a Message Chain

· MQD Status

7.1.1.3 BIT MAPS

Bit Maps are used to indicate the status of Container Data blocks. The number of blocks allocated for Bit Maps is determined at Hub Container creation time and based on the number of Container Data blocks allocated. Each Container Data block has a corresponding bit in a Bit Map. If the bit is clear, that Container Data block is available for use. If the bit is set, that Container Data Block is in use. Since each Bit Map block contains 512 bytes, a single Bit Map block can be used to control the allocation of 4096 Container Data blocks.

7.1.1.4 CONTAINER DATA

Container Data blocks are used to store message information. The number of blocks allocated for Container Data is determined at creation time and is based on the desired size of the Hub Container File. Message information can take one of the following forms:

· Header Message Blocks

· Additional Message Data

7.1.1.4.1 HEADER MESSAGE BLOCKS

The Header Message Block contains the first block of data for a message. It also contains data on the location of the next message in a Message’s Message Chain. Because Header Message Blocks are maintained in a linked list, the list of Header Message Blocks is termed a chain. Each Header Message Block contains a forward pointer to the next Header Message Block in the Message Chain. The last Header Message Block in the chain has a zero forward pointer.

A detailed definition can be found in IPCMV3::DSA1:[IQR.DEF]HMBDEF.H. The type of data in the Header Message Block is:

· MQD Name

· Location of next Header Message Block

· Location of Additional Message Data - If all data for a Message cannot fit in this Message Header Block, Message Data is stored in additional Container Data blocks. The location of these additional Container Data Blocks are contained in the Header Message Block.

· Message Header Data - This contains data on the source and destination of the message and statistics on the message. A detailed definition can be found in IPCMV3::DSA1:[IQR.DEF]HDRDEF.H.

7.1.2 HUB REGION

The Hub Region contains volatile data. The IQR creates this data on startup and during execution. All messages, except Journal Messages, are stored in the Hub Region. All data in the Hub Region is allocated in 512 byte blocks. A routine requires System privileges to access this structure. A Hub Region has the following layout:

· Region Header: This contains general data about the Hub and specific data about the Hub Region. It also contains data about the size and location of other Hub Region data.

· Bit Maps: These indicate the status of Region Data blocks.

· Hub Container Information: This is an exact copy of portions of the Hub Container File.

· Region Data: This contains messages.

7.1.2.1 REGION HEADER

The Region Header contains data about the Hub and the Hub Region. The number of blocks allocated for the Region Header is pre-determined by the layout of the Region Header. A detailed definition can be found in IPCMV3::DSA1:[IQR.DEF]QHDDEF.H. The type of data in the Region Header is:

· Common Hub Header Data (see description in the “Container Header” section)

· Message Hash Table

· Unique Region Header Data

7.1.2.1.1 MESSAGE HASH TABLE

The Hash Table is used to locate MQD Blocks for all Messages, except Journal Messages. Its layout and function is the same as the Message Hash Table described in the “Container Header” section.

7.1.2.1.2 UNIQUE REGION HEADER DATA

The data in the Unique Region Header Data is unique to the Region Header. The data in the Unique Region Header Data is:

· Node information

· Location of Hub Region Data

7.1.2.2 REGION BIT MAPS

Region Bit Maps are used to indicate the status of Region Data blocks. The number of blocks allocated for Bit Maps is determined at Hub Region installation time and is based on the number of Region Data blocks allocated. Each Region Data block has a corresponding bit in a Bit Map. Its layout and function is the same as the Container Bit Map (see description in the “Container Bit Maps” section)

7.1.2.3 HUB CONTAINER INFORMATION

Hub Container Information is an exact copy of portions of the Hub Container File. The number of blocks allocated for Hub Container Information is exactly the same as that allocated for the same data in the Hub Container File. This information is copied so that the IQR knows the location of Container information without having to access the Hub Container File. See the “Hub Container File” section for a description of this data. The data copied from the Hub Container File is:

· Container Header

· Message Definition Blocks

· Bit Maps

7.1.2.4 REGION DATA

Region Data blocks are used to store message information. The number of blocks allocated for Region Data is determined at creation time and is based on the desired size of the Hub Region. Message information can take one of the following forms:

· Message Definition Blocks: These contain data about Message characteristics and the size and location of their messages.

· Header Message Blocks (see description in the “Container Data” section)

· Additional Message (see description in the “Container Data” section)

7.1.2.4.1 MESSAGE DEFINITION BLOCKS

The Message Definition Blocks contain data about all messages, except Journal Messages. The layout and function of the MQD Blocks in the Hub Region are exactly the same as the MQD Blocks in the Hub Container File. A detailed definition can be found in IPCMV3::DSA1:[IQR.DEF]MQDDEF.H.

However, there is a major difference in the location of the MQD Blocks for the Hub Region and the Hub Container File. In the Hub Container File, a maximum number of MQD Blocks has been allocated in the Container File. In the Hub Region, MQD Blocks are allocated from available Region Data.

In the Hub Container File, the pointers to the MQD Blocks in the Message Hash Table and MQD Blocks are relative to the first MQD Block. When the Hub Container Information is copied from the Hub Container File to the Hub Region, the pointers are valid and can be used to locate data in either.

7.1.3 MESSAGE FILE

7.1.4 PROCESS EXPANDED REGION

7.1.5 ROUTER DATABASE

7.1.6 RESOURCE LOCKS

8. IQR Locks

8.1 Introduction

The IQR service uses the VMS distributed lock manager to control synchronization to data structures, queue removal, and for wakeup. The capturing of locks is strictly controlled such that dead lock waits do not occur.

The resource name for each lock is limited to thirty one characters. All locks are allocated system wide and in executive mode. To ensure that all locks are unique, the maximum length of a Hub name is nine characters. Some locks have lock value blocks. The content of the lock value blocks are used to caching purposes. :The lock status and lock ids are maintained in the processes expanded region (PEX). The message queue locks are maintained in a sub-structure (CMQD) maintained within the PEX. The CMQD is allocated for each message queue the process connect to for either read or write.

The following list the locks used by the IQR software. The second section of this document explains routines which create the resource name, and control the lock usage. For each lock the following is documented:

1. Functional name of the lock

2. Purpose of the lock

3. How the lock resource name is created

4. Subroutine if any that creates the lock name

5. Where the lock id is stored

6. If the lock has a lock value block

7. Where the lock value block is stored

8. Parent of the lock

9. Routines provided that acquire and release the lock

8.2 Lock Definitions

8.2.1 Hub Container Lock

This is parent lock for all user’s of a particular hub container file. This lock is also used to determine what processes are currently attached to the hub container file when the queue container file needs to be removed from the system (See: IQU/REMOVE). It is also used to determine if a process has already attached to a hub container file. This lock is created from the following:

Hub name
9 bytes

Check char's
2 bytes (resultant hub container file name and FID)

Total
11 bytes

The routine: HCF_LOCK_NAME creates the hub container lock resource name. This routine uses the hub name plus a summation resultant filename, and file id to create a unique hub lock name. If the hub name is not nine characters, it is filled with "~" characters. Each process that attaches to the hub will acquire this lock in null mode. The lock is created by IQR_ATTACH_H. The hub container lock id is stored in the PEX at: L_hlockid.

8.2.2 Hub Region Lock

The hub region lock resource name is created from the following:

Hub Container File Lock Name
11 bytes

Cluster Id
04 bytes

Total
15 bytes

The routine: HRF_LOCK_NAME creates the Hub Region Lock resource name. This routine uses the hub container lock and adds the cluster id to it. It is created by IQR_ATTACH_H. This lock serves as a parent to all locks which are node specific used by the IQR software. This reduces the amount of off node traffic needed by the distributed lock manager. The hub region lock id is stored in the PEX at: L_reglockid.

8.2.3 Hub Container Allocation Lock

This lock is captured whenever the disk file allocation bit maps of the hub container file needed to accessed for allocation or deallocation. The lock value block provides a transaction counter to indicate that the bit maps on a particular node may not be current. This is a child lock of the hub container file lock. This lock is created from the following:

Hub_Container_Lock Name
11 bytes

ALC suffix
3 bytes

Total
13 bytes

The routine: HCFALC_LOCK_NAME will create the hub container allocation lock resource name. The following internal routines are provided to control access to this lock. The lock is created by IQR_ATTACH_HUB.

The hub container allocation lock status block (lock id and value block) is stored in the PEX at: S_alclckblk. This lock value block contains a transaction counter that is used to determine if the bit map blocks contained within the cache region (cache region is a per node global section for caching data from the hub container file, not to be confused with hub region which is used for non-journaled message storage).

This lock should be acquired before the MQD lock is acquired to ensure that no deadlock waits occur. When this lock is captured, the calling process may allocate or release blocks to or from the hub container file. A side effect is that this also protects any process from adding message queues to the hub as space must be allocated for the message queue definition block (MQD).

8.2.4 Hub Region Allocation Lock

This lock is captured when data blocks are to be allocated or deallocated from the queue section. This is a child lock of the Hub Region lock. The hub region resource lock name is created from the following:

Region name
15 bytes

ALC Suffix
03 bytes

Total
18 bytes

The routine HRFALC_LOCK_NAME will create the hub region lock resource name. Each process that reads, writes, adds a message queue, or deletes a non-journaled message queue will acquire this lock. When this lock is captured, the allocation bit maps may be modified by the current process. This lock is created by the IQR_ATTACH_H service.

This lock should be acquired before the MQD lock is acquired to ensure that no deadlock waits occur. When this lock is captured, the calling process may allocate or release blocks to or from the hub container file. A side effect is that this also protects any process from adding message queues to the Hub as space must be allocated for the message queue definition block (MQD).

8.2.5 Hub Container Hash Table Lock

This lock is captured when data blocks are to be allocated or deallocated from the disk queue container file. This is a child lock of the queue container file lock. This lock is created from the following:

Hub_Container_Lock Name
11 bytes

HSH Suffix
3 bytes

Total
13 bytes

The HCFHSH_LOCK_NAME will create the hub container hash table lock. The lock is created by IQR_ATTACH_HUB.

This lock is not currently used.
8.2.6 Hub Region Hash Table Lock

This lock is captured when a new message id block is to be threaded into the local hub global section. The resource lock name is created from the following:

Hub_Region_Lock Name
11 bytes

HSH suffix
3 bytes

total
13 bytes

The routine HRFHSH_LOCK_NAME will create the hub region hash table lock resource name.

This lock is not currently used.
8.2.7 Hub Process Lock

The hub process lock is created as a place to store some data associated with a name in a protected fashion. The data saved is where the PEX region of the process is. This is stored in the lock value block for the process. It is created when the process first attaches to the hub and it is translated if the user calls the IQR_ATTACH_H service a second time. This lock is created from the following:

Hubname
09 bytes

Process ID
04 bytes

Total
13 bytes

The hub process lock resource name is created by PROC_LOCK_NAME routine. The resource name contains the hubname and the process id such that a process can attach to multiple hubs. The lock id is stored in
pex->L_plockid.

8.2.8 Message Queue Lock

The message queue lock is captured when a new message is written, or a message is acknowledged from a message queue. The lock value block contains a transaction counter that provides caching of the message queue definition block (MQD). The message queue lock resource name is simply the message queue name and it is a child lock of either the hub region lock or the hub container lock depending if the message queue is a journaled message queue or a non-journaled message queue.

This lock is also captured when a routine wishes exclusive access to a particular message queue without the worry for something being changed while it “looks”. All writer routines must have this lock to safely write to the message queue.

NOTE: If a change to the allocation blocks also need to be made, the hub or region allocation lock must be captured first, then the MQD lock -- this is to insure that there will be no deadlocks.

Message Queue name
16 bytes

Total
16 bytes

The routine MQD_LOCK_NAME will create the resource name.

8.2.9 Reader Message Queue Locks

The reader message queue locks are captured when a process desires to be the primary reader or secondary reader of a particular message queue. This lock is captured with a noqueue option such that if another process already holds the lock (e.g. is the current reader) the new reader will be given the unsuccessful status. This is a child lock of the hub container file lock or the hub region lock.

Use of this lock is primarily for the checking the existence of connected readers within a particular queue. The routine FIND_READER is used to check for the existence of a connected reader in a particular message queue and is called from within numerous IQR routines.

Message Queue Name
16 bytes

Suffix $RDR or $SRD
4 bytes

Total
20 bytes

The lock is initially created from the IQR_CONNECT_READ routine. The reader message queue lock resource name is the message queue lock plus the suffix: "$RDR" for the primary reader and "$SRD" for the secondary reader.

8.2.10 Reader Notification Lock

This lock is used to communicate between a reader and a writer process that a new message has been placed onto a message queue.

Initially, the lock is created from within the IQR_CONNECT_READ routine with null mode. It also will call the special routine SET_NOTIFY_LOCK that will then convert the lock to shared write mode (to allow other readers to also wait on the lock) with a blocking AST for waiting on the given event flag.

When a writer wants to notify one of the readers that a new message is present, the writer attempts to capture this lock. The routine SET_NOTIFY_AST is called to try to capture the lock in protected write mode. If it cannot, then it will trigger’s the ASTs of the readers waiting on the lock. If, however, the writer gets the lock (i.e. there is no reader connected), then the routine will reset the lock to null mode.

Message Queue Name
16 bytes

Suffix $NOT
4 bytes

Total
20 bytes

The lock is initially created in null mode during the IQR_CONNECT_READ routine after successful connection to a message queue. Lock names are created by taking the current message queue name and appending the suffix “$NOT”.

8.2.11 Doorbell Lock

A problem was detected with the VMS distributed lock manager when the number of processes trying to connect to a resource was greater than 50 even if the requesting lock was compatible as the currently granted locks. It may be necessary to continue the support of this if it has not been fixed in the current release of VMS.

8.3 Lock Usage

Not all of the above mentioned locks are always used. Only three locks are always allocated by all process as they are done by the IQR_ATTACH_H service:

· Process Lock

· Hub Container Lock

· Hub Region Lock

The remaining locks are created only if the calling process attempts to read or write a particular message queue, or if the process attempts to connect as the reader of a message queue. The following lists what each of the above mentioned lock are currently used for, and the content of the lock value blocks if one is used.

8.3.1 Hub Container Lock

This lock is captured and held in null mode. It is provided such that one can determine which processes in the system are currently attached to the hub. It is also the parent lock for all journaled MQD locks. This lock has no lock value block.

8.3.1.1 Hub Container Allocation Lock

This lock controls more than simply the allocation of blocks from the container file. In effect, it also protects the ability to add a new message queue or write to one as well. For this reason it is captured in protected read when a search for message queues is done. It is captured in exclusive mode when the process intends to allocate or deallocate data blocks from the hub container file.

This lock is required under the following conditions:

1. A message queue is added

2. A message is written to a message queue

3. A message is acknowledged

4. Messages or information is removed from the message queue (as in stale messages)

It is important to realize that this lock must always be captured before a lock to the message queue. This is to insure that no deadlocks occur between two processes waiting on opposite locks. If the message queue lock is already captured, it must first be released, then the allocation lock and message locks are acquired, in that order.
The lock value block contains a transaction counter. If the transaction counter in the lock value block does not equal the value in the hub container cache region, then the hub container file header should be read from the hub container file. The transaction counter is normally updated whenever a bit map is modified (allocation or deallocation of a data block),.
8.3.2 Hub Region Lock

The hub region lock is the parent lock to all non-journaled message queue MQD locks and MQD reader locks. These children locks function in a similar fashion as the child locks for the hub container lock.

8.3.2.1 Hub Region Allocation Lock

This lock functions in an identical fashion as the hub container lock. However, it does not need a lock value block as the region is only local to a particular node. However, it currently is implemented with a lock value block.

This lock is required under the following conditions:

1. A message is written to a message queue

2. A message is acknowledged

3. Messages or information is removed from the message queue (as in stale messages)

It is important to realize that this lock must always be captured before a lock to the message queue. This is to insure that no deadlocks occur between two processes waiting on opposite locks. If the message queue lock is already captured, it must first be released, then the allocation lock and message locks are acquired, in that order.
8.3.3 Message Queue Lock

This lock is normally captured whenever a process requires access to a message queue. This lock is required for any writes to a message queue, and should be captured for an “uninterupted” read from the queue. Reading from a message queue without this lock can result in information being changed during a read.

This lock is not dependant on the type of queue (journaled or non-journaled), but is a child lock of the hub container file lock or the hub region lock.

If a change to the allocation blocks also need to be made (i.e. during a write), the hub or region allocation lock must be captured first, then the MQD lock -- this is to insure that there will be no deadlocks. If the message queue lock is already captured, it must first be released, then the allocation lock and message locks are acquired, in that order.

8.3.4 Reader Message Queue Locks

The reader message queue locks are used to insure that only one reader of a particular type (primary or secondary) is connected to a message queue at any one time. It is also used to check for the existance of such connected readers to a message queue. This lock is only created for readers on a particular message queue.

This lock is captured when a process desires to be the primary reader or secondary reader of a particular message queue. This lock is captured with a no queue option such that if another process already holds the lock (e.g. is the current reader) the new reader will be given the unsuccessful status. This is a child lock of the Hub Container File lock or the hub region lock.

8.3.5 Reader Notification Lock

This lock is used for communication between a reader and a writer that a new message has been placed onto a message queue. This lock is created for all connected proccess to a message queue (read or write).

Initially, the lock is created from within the IQR_CONNECT_READ routine with null mode. This also will call the special routine SET_NOTIFY_LOCK that will then convert the lock to shared write mode (to allow other readers to also wait on the lock) with a blocking AST and then wait on its event flag. The blocking AST routine will set the event flag when it’s lock is attempted to be captured by the write routine, thus resuming control of the IQR_READ_QW process.

When a writer wants to notify one of the readers that a new message is present, the writer attempts to capture this lock. The routine SET_NOTIFY_AST is called to try to capture the lock in protected write mode. If it cannot get the lock, then it will trigger’s the ASTs of all readers waiting on the lock. If, however, the writer gets the lock due to no reader being connected, then the routine will reset the lock to null mode.

9. Queue Global Section Definition

9.1 Overview

The global section is created by the IQU utility using an RMS page file (the system swap file and page file are not used such). This RMS page file is unique per node that the queue service is installed on. The RMS page file name is the VMS node name plus the queue name with the file extension “.qsc”. The global section is used for the following purposes:

· Keeping Global statistics

· Keeping per node information

· Its existence indicates that a queue is available on a VMS node

· Caching Message id blocks

· Storing volatile messages in the region (number of blocks allocated using the IQR/MEMSIZE=)

· Allocation bit maps for volatile messages

· Caching Disk allocation bit maps

9.2 Disk Allocation Bit Maps

The disk allocation bit maps exist both within the disk queue file (see queue file definition document) and the global section. The layout of the queue disk file and the global section are identical for the disk allocation blocks. The disk queue file always has the current allocation bit maps. The contents of the Disk allocation bit maps within the queue global region may or may not be identical to that contained within the disk file.

The Disk allocation bit maps are protected by a VMS Lock. The attached lock value block contains a transaction counter that is maintained can be compared to that saved in the global section to determine if the bit map blocks for the current node match the bit maps in the Disk queue file. The transaction counter is the first long word of a four page structure followed by a long word transaction counter for each possible Disk bit map block (255 bit maps). This structure is duplicated within the region for what the current node has current in the cache it maintains of the Disk allocation bit maps (all bit maps are cached by the queue service to reduce disk I/O).

9.2.1 Allocation Scheme

To allocate disk blocks from the Disk queue file:

1. Capture the Disk bit map allocation lock

2. Compare the transaction counter. If the transaction counter is different, then read the four block transaction counter for the bit map blocks.

3. Determine where to start in the Disk allocation bit maps to allocate the disk blocks

4. Before scanning a bit map, determine if the current copy is current by comparing the transaction counter for the Disk bit map block for the one currently in memory and that in the four block transaction counter structure. If the one within the region is not current, then read the updated one from the disk and update the Disk allocation bit maps transaction counter for the bit map just read.

5. Find the first free bits and set the bits to indicate they have been allocated and write the Disk bit map block back to disk. Update the transaction counter for the bit map block and the overall transaction structure and write the Disk bit map transaction structure to disk. Increment the transaction counter for the lock value block and release the lock.

In a single node environment, or where the most of the messages are read or written on a single node, all of the bit maps will be current resulting only in the writes of the bit maps. If the queue service is installed in a non-cluster environment (determined when the queue is installed by the IQU utility) then the Disk bit map transaction counter structure is never updated to disk.

9.3 Disk Message Id Hash Table

To provide for speed of search, each message id queue that has been defined to be queued to the Queue disk file is threaded into one of sixty four hash chains. The particular hash chain is determined by simply calculating the hash index using the messsage id name. The Disk message id hash table is protected by the Disk Hash Table lock. The lock value block contains a transaction counter that allows the service to determine if message id queues have been added to the Disk queue file.

9.4 Section Message Id Hash Table

To provide for speed of search, each message id queue that has been defined to be queued to the section or to the disk file is threaded into one of sixty four hash chains. The particular hash chain is determined by simply calculating the hash index using the messsage id name. The section hash table contains both message id definition blocks for both those stored only in the section and within the disk file. This is done to provide for speed by eliminating the possible need to read the MID block for disk based message id queues. This table is protected by the Section hash table lock.

9.5 Disk Allocation Bit Maps

The Disk Allocation Bit Maps are cached within the region. The number of bit maps is dependent on the size of the Disk Container file. The maximum is 255 bit maps.

9.6 Section Allocation Bit Maps

The number of the Section allocation bit maps is dependent on the number of data blocks to be allocated on the local node for volatile messages. This is determined when the queue is installed using the IQU utility (IQU/INSTALL/MEMSIZE=nnnn).

10. IQR Message Definition Block Caching

10.1 Message Definition Queue Blocks (MQD)

When a process desires to connect for read or write to a message queue, the IQR service must find the message queue definition block (MQD). The queue container file always contains the most recent message queue definition block for normal message queues. It is desirable to access the MQD block that is located in the memory resident region on the caller’s node if possible such that a disk access is not required.

The lock value block is used for each message queue to determine if the value in the MQD in the resident region is current or not. A MQD can be stale if another node has deleted the message queue, or if another node has wrote or read a message from the message queue.

A transaction counter is maintained with the MQD block in both the lock value block and in the MQD block. The service can determine if the MQD block is valid by examining the value block, and comparing the transaction counter with what it has in the resident region. If they are different, or the value block shows a status of “bad” then the MQD block within the region should be considered invalid and a new copy from the Queue container file should be acquired.

When a new message queue is added, or deleted, the MQD is added or deleted first from the disk queue container file (unless it is a dynamic message queue which exists only on a local node, see discussion later). This is done by capturing the message queue hash table lock and marking the MQD block as being deleted. If the message queue is successfully added, the transaction counter for the lock and the queue file hash table is incremented. This allows any subsequent process that attempts to connect for read or write to be notified that his queue file hash table is not longer current.

It should be noted that no MQD block is never deleted from the Queue Container file. It however can be reused whenever another message queue whose hash index is the same as the deleted message queue name is added. Therefore when a process on another node in which the message queue was deleted tries to write to the message queue block, either the MQD will show a different message name, or the MQD block will be marked as deleted. This will result in a failure status to the calling process and the service will return the cached MQD block in the local region to the free space.

10.2 Dynamic Message Queues

Dynamic Message queues are temporary message queues that exist only on a single node. The MQD name is limited four less as the cluster id is automatically made part of the message queue name. These types of messages are never written to the disk file. The MQD blocks for these message queues are always current on the caller’s node. The user must specify that the message queue is a dynamic message queue on all read or write connects.

10.3 Disk MQD Blocks

The Disk MQD blocks are threaded from the Disk Message queue name hash table. The number of message queues allowed in the Disk queue container file is set using the “/MAXMQDS” IQU utility switch when the queue container file is created. This limitation is imposed such that the message queues may be cached within the per node global sections. The MQD blocks are allocated imediately after the disk bit map blocks both within the disk container file and also within the global region. By there adjacency to the bit maps and there fixed nature, all nodes within a cluster can find the location of the MQD block both within the global section and also within the disk container file. Any other method would require a node by node unique thread to find the MQD block on the hash chain.

10.4 Memory Resident MQD blocks

The Memory Resident MQD blocks are allocated from the data blocks and therefore any number of these MQD blocks may be allocated or deallocated as needed provided there is sufficient free blocks available.

10.5 MQD Search Algorithm

There are two message queue name hash tables, one for those resident in the memory resident section, and one that is identical (or as current as last read from the file) to that in the RMS Queue container file. The MQD cache lock protects the RMS Queue container file queue name cache table.

1. Hash the message queue name to get a hash index (0 to 127)

2. Search the region for the message queue name by traversing the hash chain.

3. If found, capture the message queue lock and compare the transaction counter with that in the lock value block.

4. If the lock value block is invalid, or the value in the lock value block is not identical to that contained in MQD block within the region, then read the MQD block from the RMS queue container file. Test to see if the message queue name contained in the MQD block are identical and that the MQD is not marked as deleted. If marked deleted, or different, return the MQD block to the free list and return a deleted message queue status; otherwise store the MQD location and MQD lock id in the process expanded region (PEX) and return good status.

5. If the MQD block is not found in the local cache region, then capture the MQD file cache lock. If the MQD file cache lock value block is either invalid, or shows that the local copy of the queue container file cache table is invalid, then read a new copy of the file cache table.

6. Index into the file message queue name cache table and traverse the hash chain looking for the message queue MQD block. If not found, release the lock and report status. If found, add to local regions message queue name cache table, by allocating a block from the free list for the MQD block. Return status if there are no more free blocks in the region. If successful, store the MQD location in the process expanded region (PEX) and return good status.

7. Release the file cache lock.

10.6 Writing to a Message Queue

To write to a message queue requires that the MQD block be found. The user should have already connected for write to the message queue. The PEX should have the address of the MQD block within the local node’s region. Examine to make sure that the MQD is truely valid (check the MQD identifier in the MQD block and the message queue name contained within the MQD). Capture the MQD lock and by promoting the lock captured earlier when the message queue was connect for write (lock id stored in PEX).

If the lock value block is invalid, or the value is not identical to that contained in the MQD block, then read a new copy of the MQD block from the Queue Container file. Examine to see if there is room for another message in either the region or the queue file. If so, then write the message to the resident section or the queue containter file depending on the type of message.

If the message type is a broadcast type message, then check to see if there is a designated router connected for the message queue. If not, then simply return with status indicating that the broadcast service is not currently available.

If the message type is a list type message, then call ourselves back with each of the message queues in the list.

10.7 Reading a Message Queue

To read from a message queue requires that the MQD block be found. The user should have already connected for read for the message queue. The PEX should have the address of the MQD block within the local node’s region. Examine to make sure that the MQD is truely valid (check the MQD identifier in the MQD block and the message queue name contained within the MQD). Capture the MQD lock and by promoting the lock captured earlier when the message queue was connect for read (lock id stored in PEX).

Examine the MQD to see if any messages are present. If the MQD shows that message queue is a reset type message queue, then the MQD contain a thread to the HMB block within the global section. Copy the messages from the region into the caller’s buffer and mark that a message has been read but not acknowledged.

10.8 Secondary Reader

To read from a message queue as a secondary reader requires that the MQD block be found. The user should have already connected for read as a secondary reader for the message queue. The PEX should have the address of the MQD block within the local node’s region. Examine to make sure that the MQD is truely valid (check the MQD identifier in the MQD block and the message queue name contained within the MQD). Capture the MQD lock and by promoting the lock captured earlier when the message queue was connect for read (lock id stored in PEX).

Examine the MQD to see if any messages are present. If the MQD shows that message queue is a reset type message queue, then the MQD contain a thread to the HMB block within the global section. Copy the messages from the region into the caller’s buffer and mark that a secondary message has been read but not acknowledged.

10.9 Memory Allocation

The queue region is contains some fixed portions that allow for the allocation of memory blocks. The free memory blocks are threaded using the VAX insert and remove queue instructions. Each memory allocation unit is the same size as that for the disk file. Each allocation unit has a quad word header that supports the different threading.

10.10 Container File Allocation

When the Queue Container file was created, the file was allocated with fixed regions, variable number of bit maps for allocations, and data blocks. The allocation for the data blocks are done in increments of 4096 blocks (the number of bits in 512 bytes). Blocks are normally allocated in sequential order when requested. This will allow for the ability to write more than a single block to the container file when file I/O is done. An allocation lock is used to control access to the bit maps. Whenever blocks are allocated or returned the bitmaps are written back to the disk file. The local memory region contains a transaction counter that is compared to the lock value block of the allocation lock. If the value block is invalid or the transaction counter does not match that contained in the allocation bit maps, then the bit maps are reread from the queue container file. Whenever block are allocated, an attempt is made to acquire new blocks after the last allocation position. This tends to use the queue file in a circular fashion with an attempt to allocate contiguous blocks by assuming that messages are being dequeued as they are written.

11. IQR TCP/IP Router

The OpenVMS TCP/IP IQR router allows the IQR product to communicate over TCP/IP networks using TCP/IP sockets. This provides the ability to communicate IQR messages with a number of clients, such as the Windows NT, Windows 95/98, Unix, and VMS.

11.1 Implementation

The TCP/IP IQR router functions in a similar fashion to the DECnet router. However, the router uses the multi-packet ability of the network layer to handle large byte transmissions. The TCP/IP Router creates stream sockets over a user defined port to process incoming connections and messages.

The TCP/IP Router uses the standard socket library to help facilitate use on varying operating systems and varieties of TCP/IP stacks on OpenVMS (Digital’s UCX, Pathworks, etc.).

The TCP/IP Router is based heavily on the use of threads … single threads manage each client connection and each outbound message queue. This allows for easy overlap of networking operations.

The Router implements a new format of the routing database to support the new functionality of the TCP/IP protocol.

11.2 Connection Management

The TCP/IP Router is based heavily on threads to manage all outbound message queues and incoming connections to the router.

11.2.1 Incoming Message Queues

The Router connects, as a writer, to each queue specified as in incoming queue. Messages received from remote routers are then written into the incoming queues, as specified in the message header information. Information about the connection is shared in common memory in order to allow any incoming connection thread to write to the message queue.

11.2.2 Incoming Connections

Upon startup, the router creates a “listener” thread which listens on a particular socket port (default is 3000) for incoming connections. When a connection is made to the port, from a remote node, the thread will then create a clone of itself to handle any further connect requests while it handles this particular connection’s requests. The new cloned thread will continue listening for new connections on the original port. This thread, and its clones, are shown as CONNECT_TCP_THD in the Thread Organization Diagram.

In this way, each incoming client connection is handled via a private thread. After a connection is established , the thread will then wait for a packet command to be sent to it to indicate the operation to perform. The CONNECT_TCP_THD is then responsible for carrying out the actions requested by the remote node via this connection.

11.2.3 Outgoing Message Queues and Connections

Outgoing message queues have two basic types: polled and routed.

Polled message queues are message queues connected to as a reader by a RDR_Thread in the router process. Once the thread has connected to an outbound queue, the information is stored in global memory. If the outbound queue has no remote node specified for it, it is deemed a polled queue. Polled meaning that there is no automatic routing of messages from the queue. In this way, a remote node can request a read from a local message queue.

Routed message queues are designed to be sent to up to 4 remote nodes. During startup, message queues are connected to as a reader with a known event flag. Next, all outbound nodes are connected to by the router through a socket to the remote router’s known port (default is 3000). If the remote router is unavailable, the process will delay the connection to the remote node for a predetermined amount of time for a reconnect attempt.

Once connected, the router then waits on the event flag to be set from IQR. When set, the router then looks to see what remote router connections are available, determines if enough connections have been made to warrant processing of the data, and then sends out messages to each of the remote nodes to process the read message.

In the event of an error on the remote node processing the message, the router checks to see if enough connections are still available to process the message. If not, then the message is backed up onto the IQR message queue for later processing. Otherwise, after a successful write by the remote router, the local router will acknowledge the message from the local message queue.

11.3 TCP/IP Router Database Definition

The Router Database definition file is used by the router during startup to determine the capabilities of the router.

The router database is a text file. Create files using your favorite text editor. Comments in the file are made with a '!' character. All text following this is excluded from processing.

Parameters are defined in different SECTIONS. Each section is defined by the

format

[SECTION_NAME]

where SECTION_NAME is one of GLOBAL, INCOMING, or OUTGOING. Within a section, parameters are specified with values in the format of

PARAMETER=VALUE

Case is not significant for parameters. Spaces and/or tabs can be around both the parameter or value and are stripped during processing of the file.

The following explains the items that can be present in each of the sections.

11.3.1 GLOBAL Section

The GLOBAL section defines parameters for the whole router processes. The following

parameters are valid:

Parameter
Use
Description

HUB
Optional
This is the name of the hub that this TCPIQR process will connect to. Only one hub can be connected at a time by any one TCPIQR process. If not given, the logical IQRHUB is translated for the name of the HUB to use.

PORT
Optional
This is the TCP/IP port number that this TCPIQR process will listen on for external connections to it. It must be unique for each router process. If the port is in use, an error is given and the router will exit. If not specified, a default value of 3000 is used

BUFFERSIZE
Optional
The buffersize parameter is used only with MAQ installations. The value must be set to the size of the largest queued message expected + 106 bytes.

11.3.2 INCOMING Section

The INCOMING section defines parameters for incoming message queues. Queues defined in this section are the ONLY ones allowed to be written to by the application. Parameters are:

Parameter
Use
Description

QUEUENAME
Per Queue
The name of a message queue in the hub that messages can be written to. Any number of these can be specified by the file.

11.3.3 OUTGOING Section

The OUTGOING section defines a list of queues on the HUB that we want to route to a remote TCPIQR router for placing on remote queues. Each queue can support up to 4 remote connections. Valid parameters are:

Parameter
Use
Description

QUEUENAME
Per Queue
The name of a message queue on the local hub that you want to read messages from. This will be connected to by TCPIQR for reading at startup

For each queue, the following parameters can also be added to specify how to route the message queue. Specifying no additional parameters will make the queue a polled only message queue, requiring a remote client to initiate read access to the queue.

Parameter
Use
Description

MINCON
Optional for each QueueName
Specify this for each QUEUENAME. This indicates the minimum number of remote routers that must be connected for any messages to be successfully read from the local QUEUENAME. The value defaults to the number of REMOTENODEs defined for the QUEUENAME. It must be at least 1 and less than the number of REMOTENODEs. Messages will not be read from the message QUEUNAME until at least MINCON connections are established to remote TCPIQR routers.

REMOTENODE
Up to 4 for each QueueName
Specify this after a QUEUENAME parameter to indicate a remote node that you want to route QUEUENAME's messages to. Up to four can be given per QUEUENAME entry. Specify each REMOTENODE as a single parameter. This name can be given in IP address format (xxx.xxx.xxx.xxx) or as a resolvable name.

For each REMOTENODE parameter, the following can be added immediately after it to modify how the remote connection is made.

Parameter
Use
Description

REMOTEPORT
Optional per RemoteNode
Specify this after a REMOTENODE parameter. This will specify the port number to connect to on the remote node. If not specified, this defaults to a value of 3000.

REMOTEQNAME
Optional per RemoteNode
Specify this after a REMOTENODE paramter. This is the name of the message queue on the REMOTENODE that the message is written to. If not specified, this defaults to the name of the message queue on the local node.

RETRYTIMER
Optional per RemoteNode
Specify this after a REMOTENODE parameter. This will define the time to wait for attempting to reconnect to a remote router after a connection failure. Time is in minutes. Default is 1.

11.4 Sample Router Database

An example file is given below:

!

! TCP/IP IQR Router definition file

!

! This file is read during startup of the TCPIQR process to configure

! global buffers for local and remote queue access.

!

! Specify sections with [SECTION_NAME]. Valid sections are GLOBAL,

! INCOMING, and OUTGOING

!

! Specify with parameters as PARAMETER = VALUE

! You can have spaces/tabs around both PARAMETER and VALUE. Leading

! and trailing spaces are stripped by TCPIQR.

!--

! The GLOBAL section defines parameters for the whole processes. The following

! parameters are valid:

!

! HUB = (Optional) This is the name of the hub that this TCPIQR process will

! connect to. Only one hub can be connected at a time by any one TCPIQR

! process. If not given, the logical IQRHUB is translated for the name of

! the HUB to use.

!

! PORT = (Optional) This is the TCP/IP port number that this TCPIQR process

! will listen on for external connections to it. It must be unique for each

! node. If the port is in use, an error is given. If not specified, a

! default of 3000 is used.

!--

[GLOBAL]

HUB=TEST_IQR ! Use this hub and listen on default port (3000)

!--

! The INCOMING section defines parameters for incoming message queues. Queues

! defined in this section are the ONLY ones allowed to be written to by the

! application. Parameters are:

!

! QUEUENAME = The name of a message queue in the hub that messages can be

! written to. Any number of these can be specified by the file.

!--

[INCOMING]

QueueName=MY_INCOMING_Q ! Incoming queue name

QueueName=QUEUE_TO_WRITE ! Another one

QueueName=TEST_WRT_Q ! Another one

!--

! The OUTGOING section defines a list of queues on the HUB that we want to route

! to a remote TCPIQR router for placing on remote queues. Each queue can

! support up to 4 remote connections. Valid parameters are:

!

! QUEUENAME = The name of a message queue on the local hub that you want to

! read messages from. This will be connected to by TCPIQR for reading at

! startup. Each queue name must have at least one, but no more than four

! REMOTENODE parameters associated with it.

!

! MINCON = (Optional) Specify this for each QUEUENAME. This indicates the

! minimum number of remote routers that must be connected for any messages to

! be successfully read from the local QUEUENAME. The value defaults to the

! number of REMOTENODEs defined for the QUEUENAME. It must be at least 1 and

! less than the number of REMOTENODEs. Messages will not be read from the

! message QUEUNAME until at least MINCON connections are established to

! remote TCPIQR routers.

!

! REMOTENODE = Specify this after a QUEUENAME parameter to indicate a remote

! node that you want to route QUEUENAME's messages to. Up to four can be

! given per QUEUENAME entry. This must be a resolvable internet address.

! Not specifying any remote nodes indicates the message queue is a polled

! only message queue.

!

! REMOTEPORT = (Optional) Specify this after a REMOTENODE parameter. This

! will specify the port number to connect to on the remote node. If not

! specified, this defaults to a value of 3000.

!

! REMOTEQNAME = (Optional) Specify this after a REMOTENODE paramter. This is

! the name of the message queue on the REMOTENODE that the message is written

! to. If not specified, this defaults to the name of the message queue on

! the local node.

!

! RETRYTIMER = (Optional) Specify this after a REMOTENODE parameter. This

! will define the time to wait for attempting to reconnect to a remote

! router after a connection failure. Time is in minutes. Default is 1.

!

!--

[OUTGOING]

QueueName=POLL_Q

! A poll only queue

QueueName=OUTBOUND_Q

! Send out this Queue. MINCON defaults

! to a value of 2 in this case.

 RemoteNode = REMNODE

! Send to this node, default values

 RemoteNode = REMNODE2

! And send to this one

 RemotePort = 3004

! Using this port

 RetryTimer = 15

! With a connection retry of 15 minutes

 RemoteQName= FROM_THERE

! Route to this queue on remote node

QueueName=OUTGOING

 MinCon = 1

! We only need one of the two remote

! nodes up to route a message

 RemoteNode = REMNODE

! Route here, defaults for options

 RemoteNode = BACKUP

! Route here, defaults for options

11.5 TCP/IP Router Protocol

The router protocol is implemented through TCP/IP sockets. A router process will listen on a known socket port for connections from either another router, or from client applications.

The protocol is as follows:

Offset
Size
Name
Description

0
Longword
PACKET_CMD
Packet command. Identifies the following sequence of bytes.

Based on the received protocol value, the router can then process messages accordingly. Currently, the following commands are supported:

11.5.1 PACKET_WRITE_Q

This identifier begins a sequence of bytes that indicates a message to be written to a remote message queue. The message queue must be one that the remote router has already connected to as a writer. The following describes the packet information for this message:

Offset
Size
Name
Description

0
Longword
SEQUENCE_ID
Sequence ID of message from remote node.

4
Char[32]
QUEUE_NAME
Name of message queue the packet is to write to

36
Char[32]
FROM_NODE
Node name message is coming in from

40
Longword
PKT_SIZE
Number of bytes to follow this item. Can be up to MAX_PKT_SIZE in length (defined by the router)

72
…
HDRDEF
Header of message to be written

…
MESSAGE
Actual data bytes of message

After the client sends the message, the server router process will respond back to the client with a status packet of information. The status packet is in the form of:

Offset
Size
Name
Description

0
Longword
PACKET_CMD
Set to a value of PACKET_RESPONSE.

4
Longword
SEQUENCE_ID
Sequence ID of message being responded to.

8
Longword
STATUS
Resulting status of the write on the router node. Usually indicates an IQR status code.

11.5.2 PACKET_READ_Q

This identifier is sent from a client application to a router server to request to read from a particular message queue. This can only occur on queues that are setup as polled only queues (i.e. the connected queue has no remote nodes to route to). Format of the message is as follows:

Offset
Size
Name
Description

0
Longword
SEQUENCE_ID
Sequence ID of message from remote node.

4
Char[32]
QUEUE_NAME
Name of message queue the packet is to read from

36
Char[32]
FROM_NODE
Node name message is coming in from

After receiving this message, the router node will attempt to read from the indicated message queue. The result of the read, and the included message (if any) is then sent back to the client in the following packet format:

Offset
Size
Name
Description

0
Longword
PACKET_CMD
Response to a value of READ_RESPONSE

4
Longword
SEQUENCE_ID
Sequence ID of message being responded to.

8
Longword
STATUS
Status of the read.

12
Longword
PKT_SIZE
Number of bytes to follow this item. If zero, then no more bytes in message. Can be up to MAX_PKT_SIZE in length (defined by the router)

16
…
HDRDEF
Header of message read from queue.

…
MESSAGE
Actual data bytes of message read from message queue.

11.5.3 PACKET_ACK_Q

After reading a polled message from a remote router, the client must acknowledge the message in order to remove the message from the remote message queue. This message has the following packing information:

Offset
Size
Name
Description

0
Longword
SEQUENCE_ID
Sequence ID of message from remote node.

4
Char[32]
QUEUE_NAME
Name of message queue the packet is to acknowledged from

36
Char[32]
FROM_NODE
Node name message is coming in from

After receiving the message, the server router then acknowledges the message queue and returns the status back to the client. The format of the response message is:

Offset
Size
Name
Description

0
Longword
PACKET_CMD
Set to a value of PACKET_RESPONSE.

4
Longword
SEQUENCE_ID
Sequence ID of message being responded to.

8
Longword
STATUS
Resulting status of the acknowledge on the router node. Usually indicates an IQR status code.

11.5.4 PACKET_UNACK_Q

In some cases, after a reading a message from a remote queue, the client may wish to not process the message and return the message back to the head of the queue. This is un-acknowledging a message and is performed by sending the following packing information:

Offset
Size
Name
Description

0
Longword
SEQUENCE_ID
Sequence ID of message from remote node.

4
Char[32]
QUEUE_NAME
Name of message queue the packet is to un-acknowledge

36
Char[32]
FROM_NODE
Node name message is coming in from

After receiving the message, the server router then returns the message back to the head of the queue and returns the status back to the client. The format of the response message is:

Offset
Size
Name
Description

0
Longword
PACKET_CMD
Set to a value of PACKET_RESPONSE.

4
Longword
SEQUENCE_ID
Sequence ID of message being responded to.

8
Longword
STATUS
Resulting status of the un-acknowledge on the router node. Usually indicates an IQR status code.

11.5.5 PACKET_ERRORS

IQR can return a variety of status codes, and these codes are dependant on how the IQR software is installed on the system. Different nodes can have different error codes for IQR software. Additionally, remote clients (such as a Windows NT box) will not know anything about IQR error codes. In order to identify common error codes, the following protocol is requested by a client application to get a list of error codes for IQR errors:

Offset
Size
Name
Description

0
Longword
SEQUENCE_ID
Sequence ID of message from remote node.

4
Char[32]
FROM_NODE
Node name message is coming in from

After receiving the message, a router server will then respond back with its list of error codes in the following packet format:

Offset
Size
Name
Description

0
Longword
PACKET_CMD
Set to a value of ERRORS_RESPONSE.

4
Longword
SEQUENCE_ID
Sequence ID of message being responded to.

8
Longword

[64]
ERROR_LIST
Array of 64 error codes.

The client receives this array of error codes and then stores them for future comparisons. The index into the array determines the error code of interest. Currently, the following errors are reported:

TCPRTR_NOMESS
No message in remote message queue

TCPRTR_RNAMESS
Message has an RNA message present and can’t be read again.

TCPRTR_NORNAMESS
Message has no RNA present for an acknowledge.

TCPRTR_CONTAINERFULL
Container hub is full

TCPRTR_MQDQFULL
Message queue is full of messages.

TCPRTR_REGIONFULL
Region memory is full

Use these message codes in your application as the offsets into the error array for testing purposes. For example, errorl[TCPRTR_NOMESS] will return the no messages error in IQR. Under any circumstances, any odd value error code can be considered a success, even values an error.

11.5.6 PACKET_GET_STAT

Statistics and connection information can be received from a router server through this protocol command. Its format is as follows:

Offset
Size
Name
Description

0
Longword
SEQUENCE_ID
Sequence ID of message from remote node.

4
Char[32]
FROM_NODE
Node name message is coming in from

Data returned is a set of packets based on actual memory structures within the router. The router will send structure info for the following:

Offset
Size
Name
Description

0
struct gdata (96 bytes)
GLOBAL_DATA
Global data from the remote router. Includes number of input and output queues.

96
struct s_qin array (48 bytes each)
QIN_DATA
There will be up to n of these items sent, based on the value in global_data.

…
struct s_qout array (624 bytes each)
QOUT_DATA
There will be up to n of these items sent, based on the value in global_data.

…
Longword
N_CONN
Number of connections to the remote router

…
strcuct d_conn array (136 bytes each)
CONN
There will be up to n_conn of these items sent.

11.6 TCP/IP Router Thread Organization & Structures

The following diagrams show the thread organization within a TCP/IP IQR Router. They also show the relationships between the major data structures used by the router and the thread that it is comprised of.

11.6.1 Internal Thread Organization

[image: image3.wmf]TCP IQR

CONNECT_TCP_THD

CLONE

Global

Section (PEX)

PORT

3000

Initialization File

Connection Requests

TCP IQR ROUTER

PThread Create

CON_THREAD

0

CON_THREAD

3

RDR

Thread

Socket

Socket

Pthread Create

Pthread Create

Pthread Create

Outbound

Queues

CONNECT_TCP_THD

Socket

X

Outbound

Queues

Inbound

Queues

Queue

Message

Inbound

Queues

- One RDR_thread is created by TCP

 IQR for Each Outbound Queue.

- One con_thread will be created for each target

 node/destination specified for each queue.

 Each will in turn create a socket and establish

 a connection to the remote router for the

 rdr_thread and then exit.

- Upon receipt of a connect request by the

 connect_tcp_thd, connect_tcp_thd clones itself. It

 then handles the current connection and the clone

 listens on Port 3000 for additional requests. Typically

 each instance of the connect_tcp_thd handles one

 incoming queue. Another instance of the same thread

 handles maintenance operations such as reporting statistics.

11.6.2 Major Data Structures

[image: image4.wmf]struct

struct

char

int

int

int

int

struct

long

int

int

struct

TCPRTR GLOBAL

DATA REGION

9data

char

int

int

pthread_t

time_t

pthread_mutex

int

int

int

long

struct

s_qout

qname

qindex

d_qname [2]

thd_info

last_read

mutex

tcp_conn

n_conn

req_conn

rna

s_qout_conn qconn [4]

s_qin * qin

s_qout * qout

hubname [32]

d_hubname [2]

port

n_qin

n_qout

HSKDEF hub

hubfill [4]

read_ef

socket

sockaddr_in server_address

char

struct

int

int

int

struct

pthread_t

int

time_t

time_t

time_t

long

int

long

int

struct

int

long

remote_qname [24]

s_qout_conn_nodes node list [4]

curr_node

max_nodes

remote_port

s_qout * parent

thd_info

delay

con_time

last_packet

retry_con

retry_cnt

wait_min

seq_num

lqr_stat

sockaddr_in svr_addr

socket

errlist [64]

s_qout_conn

char

int

remote_node [32]

client_ipadr

x 4

x 4

Outbound QUE

Global Data

(x) QUEUES

Inbound QUE

Global Data

(N) QUEUES

s_qin QUE 0

s_qin QUE N-1

s_qin QUE N

~

~

~

~

s_qout QUE 0

s_qout QUE X-1

s_qout QUE X

~

~

~

~

char

int

int

time_t

long

long

s_qin

qname [24]

qindex

d_qname [2]

last_write

seq_id

status

Con_thread cycles through node_list

until it is able to successfully connect

to a node. That node becomes the

curr_node until exit or until a failure

occurs on the link to curr_node.

*d_conn

*d_conn

*d_conn

*d_conn

*d_conn

*d_conn

*d_conn

First

*d_conn

Last

struct d_conn

struct d_conn

struct d_conn

time_t

time_t

long

char

struct sockaddr_in

int

struct s_qout

long

int

pthread_t

long

char

long

* Next

* Prev

connect_time

last_packet

seq_number

from_node [32]

client_addr

socket

* read_q

mode

client_ipadr

thd_info

shutme

qname

packet_cmd

12. Configuring a license

The IQR Software requires a license to operate. Generating a license is done by running the IQRLICENSE program, passing it on the command line parameters for a particular client’s installation. This program is not installed in a client installation – it only exists in a development directory. The program generates a license key by hashing together all three variables. This is then passed to the client’s IQR installation via a IQU/KEY=xxxx where xxx is the key given by the license program.

Usage of the program is as follows:

 $IQRLICENSE <node name> <serial number> [<expiration date>]

· SERIAL NUMBER must be of the form IQRxxx.

· NODE NAME must either be a node name with two :: at the end (format nnnn::) or is a cluster hex ID (no leading zeros).

· EXPIRATION DATE is the date the software will expire

· Enter in VMS date/time format. Not giving it will default to a maximum time

Have the client issue IQU/INFO to get these values for their particular system.

A sample license request for a node called IPCALP with serial number IQR003 and no expiration date is:

$ IQRLICENSE IPCALP:: IQR003

SERIAL:iqr003 Node:ipcalp:: Exp Date:30-DEC-9999 07:36:50.73

CODE IS: N-D3-65-6B-F1-11-D0-5D-28-7E-81-11-02

A sample for a cluster with a cluster ID of 4953, serial number IQR003 and expiration date of 10/1/98:

$ IQRLICENSE 4953 IQR003 1-OCT-1998

SERIAL:iqr003 Node:4953 Exp Date: 1-OCT-1998 07:38:45.34

CODE IS: C-8D-0A-9E-CC-B3-14-12-9A-C3-E0-DB-82
13. Sample System

13.1 SAMPLE SYSTEM

Following is a description of a sample IQR system. This sample system highlights major IQR features and implementation details. Figure 1, Sample System Overview, shows a system that uses all aspects of the IQR. Following is a discussion of different portions.

13.2 ARCHITECTURE

The IQR operates in a distributed environment. Each node connects to a full function network. The IQR supports clustered systems that share common resources with a mechanism to coordinate access to the resource.

13.3 HUB

Hubs contain Message Queues. There may be more than one Hub on a node. Each Hub on a node is unique. A Hub has 2 portions: Disk and Memory.

13.3.1 DISK RESIDENT HUB

The Disk Resident Hub contains data required by the IQR in the case of a system failure. This data enables the IQR to restart a portion of the Hub to its state before the system failure.

Journal messages for Message Queues are one type of data stored in the Disk Resident Hub. Journal messages maintained on the Disk Resident Hub guarantee the existence of a message until acknowledgment.

In a clustered system, the Disk Resident Hub can be common between identical Hubs on nodes in the cluster. Using a Disk Resident Hub in a clustered system allows message sending between nodes without using the network.

13.3.2 MEMORY RESIDENT HUB

The Memory Resident Hub contains volatile data. The IQR creates this data on startup and during execution. The Memory Resident Hub stores all messages, except Journal messages.

13.4 SERVICES

All access to a Hub is through Services. Services manipulate the data in Hubs. Services are available to any application on a node.

13.5 ROUTER

A Router is responsible for sending a message from a Hub to another Router and writing a message from another Router to a Hub. A Router is a specialized User Application. All Hub interaction is through Services. A Router may have only one Hub association. A Hub may have more than one Router association.

13.6 USER APPLICATION

A User Application uses Services to send and receive messages. All Hub interaction is through Services. A User Application may have more than one Hub association. A Hub may have more than one User Application association.

13.7 UTILITIES

All maintenance of the IQR is through Utilities.

_867492190

